target.def (conditional_register_usage): Define.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42
43 /* Forward declarations */
44 static void set_of_1 (rtx, const_rtx, void *);
45 static bool covers_regno_p (const_rtx, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
47 static int rtx_referenced_p_1 (rtx *, void *);
48 static int computed_jump_p_1 (const_rtx);
49 static void parms_set (rtx, const_rtx, void *);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
52 const_rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
55 const_rtx, enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
61 enum machine_mode, unsigned int);
62
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands[NUM_RTX_CODE];
66
67 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
68 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
69 SIGN_EXTEND then while narrowing we also have to enforce the
70 representation and sign-extend the value to mode DESTINATION_REP.
71
72 If the value is already sign-extended to DESTINATION_REP mode we
73 can just switch to DESTINATION mode on it. For each pair of
74 integral modes SOURCE and DESTINATION, when truncating from SOURCE
75 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
76 contains the number of high-order bits in SOURCE that have to be
77 copies of the sign-bit so that we can do this mode-switch to
78 DESTINATION. */
79
80 static unsigned int
81 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 \f
83 /* Return 1 if the value of X is unstable
84 (would be different at a different point in the program).
85 The frame pointer, arg pointer, etc. are considered stable
86 (within one function) and so is anything marked `unchanging'. */
87
88 int
89 rtx_unstable_p (const_rtx x)
90 {
91 const RTX_CODE code = GET_CODE (x);
92 int i;
93 const char *fmt;
94
95 switch (code)
96 {
97 case MEM:
98 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99
100 case CONST:
101 case CONST_INT:
102 case CONST_DOUBLE:
103 case CONST_FIXED:
104 case CONST_VECTOR:
105 case SYMBOL_REF:
106 case LABEL_REF:
107 return 0;
108
109 case REG:
110 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
111 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
112 /* The arg pointer varies if it is not a fixed register. */
113 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
114 return 0;
115 /* ??? When call-clobbered, the value is stable modulo the restore
116 that must happen after a call. This currently screws up local-alloc
117 into believing that the restore is not needed. */
118 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
119 return 0;
120 return 1;
121
122 case ASM_OPERANDS:
123 if (MEM_VOLATILE_P (x))
124 return 1;
125
126 /* Fall through. */
127
128 default:
129 break;
130 }
131
132 fmt = GET_RTX_FORMAT (code);
133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
134 if (fmt[i] == 'e')
135 {
136 if (rtx_unstable_p (XEXP (x, i)))
137 return 1;
138 }
139 else if (fmt[i] == 'E')
140 {
141 int j;
142 for (j = 0; j < XVECLEN (x, i); j++)
143 if (rtx_unstable_p (XVECEXP (x, i, j)))
144 return 1;
145 }
146
147 return 0;
148 }
149
150 /* Return 1 if X has a value that can vary even between two
151 executions of the program. 0 means X can be compared reliably
152 against certain constants or near-constants.
153 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
154 zero, we are slightly more conservative.
155 The frame pointer and the arg pointer are considered constant. */
156
157 bool
158 rtx_varies_p (const_rtx x, bool for_alias)
159 {
160 RTX_CODE code;
161 int i;
162 const char *fmt;
163
164 if (!x)
165 return 0;
166
167 code = GET_CODE (x);
168 switch (code)
169 {
170 case MEM:
171 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
172
173 case CONST:
174 case CONST_INT:
175 case CONST_DOUBLE:
176 case CONST_FIXED:
177 case CONST_VECTOR:
178 case SYMBOL_REF:
179 case LABEL_REF:
180 return 0;
181
182 case REG:
183 /* Note that we have to test for the actual rtx used for the frame
184 and arg pointers and not just the register number in case we have
185 eliminated the frame and/or arg pointer and are using it
186 for pseudos. */
187 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
188 /* The arg pointer varies if it is not a fixed register. */
189 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
190 return 0;
191 if (x == pic_offset_table_rtx
192 /* ??? When call-clobbered, the value is stable modulo the restore
193 that must happen after a call. This currently screws up
194 local-alloc into believing that the restore is not needed, so we
195 must return 0 only if we are called from alias analysis. */
196 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
197 return 0;
198 return 1;
199
200 case LO_SUM:
201 /* The operand 0 of a LO_SUM is considered constant
202 (in fact it is related specifically to operand 1)
203 during alias analysis. */
204 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
205 || rtx_varies_p (XEXP (x, 1), for_alias);
206
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
210
211 /* Fall through. */
212
213 default:
214 break;
215 }
216
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
220 {
221 if (rtx_varies_p (XEXP (x, i), for_alias))
222 return 1;
223 }
224 else if (fmt[i] == 'E')
225 {
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
229 return 1;
230 }
231
232 return 0;
233 }
234
235 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
236 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
237 whether nonzero is returned for unaligned memory accesses on strict
238 alignment machines. */
239
240 static int
241 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
242 enum machine_mode mode, bool unaligned_mems)
243 {
244 enum rtx_code code = GET_CODE (x);
245
246 if (STRICT_ALIGNMENT
247 && unaligned_mems
248 && GET_MODE_SIZE (mode) != 0)
249 {
250 HOST_WIDE_INT actual_offset = offset;
251 #ifdef SPARC_STACK_BOUNDARY_HACK
252 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
253 the real alignment of %sp. However, when it does this, the
254 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
255 if (SPARC_STACK_BOUNDARY_HACK
256 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
257 actual_offset -= STACK_POINTER_OFFSET;
258 #endif
259
260 if (actual_offset % GET_MODE_SIZE (mode) != 0)
261 return 1;
262 }
263
264 switch (code)
265 {
266 case SYMBOL_REF:
267 if (SYMBOL_REF_WEAK (x))
268 return 1;
269 if (!CONSTANT_POOL_ADDRESS_P (x))
270 {
271 tree decl;
272 HOST_WIDE_INT decl_size;
273
274 if (offset < 0)
275 return 1;
276 if (size == 0)
277 size = GET_MODE_SIZE (mode);
278 if (size == 0)
279 return offset != 0;
280
281 /* If the size of the access or of the symbol is unknown,
282 assume the worst. */
283 decl = SYMBOL_REF_DECL (x);
284
285 /* Else check that the access is in bounds. TODO: restructure
286 expr_size/tree_expr_size/int_expr_size and just use the latter. */
287 if (!decl)
288 decl_size = -1;
289 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
290 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
291 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
292 : -1);
293 else if (TREE_CODE (decl) == STRING_CST)
294 decl_size = TREE_STRING_LENGTH (decl);
295 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
296 decl_size = int_size_in_bytes (TREE_TYPE (decl));
297 else
298 decl_size = -1;
299
300 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
301 }
302
303 return 0;
304
305 case LABEL_REF:
306 return 0;
307
308 case REG:
309 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
310 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
311 || x == stack_pointer_rtx
312 /* The arg pointer varies if it is not a fixed register. */
313 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
314 return 0;
315 /* All of the virtual frame registers are stack references. */
316 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
317 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
318 return 0;
319 return 1;
320
321 case CONST:
322 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
323 mode, unaligned_mems);
324
325 case PLUS:
326 /* An address is assumed not to trap if:
327 - it is the pic register plus a constant. */
328 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
329 return 0;
330
331 /* - or it is an address that can't trap plus a constant integer,
332 with the proper remainder modulo the mode size if we are
333 considering unaligned memory references. */
334 if (CONST_INT_P (XEXP (x, 1))
335 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
336 size, mode, unaligned_mems))
337 return 0;
338
339 return 1;
340
341 case LO_SUM:
342 case PRE_MODIFY:
343 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
344 mode, unaligned_mems);
345
346 case PRE_DEC:
347 case PRE_INC:
348 case POST_DEC:
349 case POST_INC:
350 case POST_MODIFY:
351 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
352 mode, unaligned_mems);
353
354 default:
355 break;
356 }
357
358 /* If it isn't one of the case above, it can cause a trap. */
359 return 1;
360 }
361
362 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
363
364 int
365 rtx_addr_can_trap_p (const_rtx x)
366 {
367 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
368 }
369
370 /* Return true if X is an address that is known to not be zero. */
371
372 bool
373 nonzero_address_p (const_rtx x)
374 {
375 const enum rtx_code code = GET_CODE (x);
376
377 switch (code)
378 {
379 case SYMBOL_REF:
380 return !SYMBOL_REF_WEAK (x);
381
382 case LABEL_REF:
383 return true;
384
385 case REG:
386 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
387 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
388 || x == stack_pointer_rtx
389 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
390 return true;
391 /* All of the virtual frame registers are stack references. */
392 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
393 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
394 return true;
395 return false;
396
397 case CONST:
398 return nonzero_address_p (XEXP (x, 0));
399
400 case PLUS:
401 if (CONST_INT_P (XEXP (x, 1)))
402 return nonzero_address_p (XEXP (x, 0));
403 /* Handle PIC references. */
404 else if (XEXP (x, 0) == pic_offset_table_rtx
405 && CONSTANT_P (XEXP (x, 1)))
406 return true;
407 return false;
408
409 case PRE_MODIFY:
410 /* Similar to the above; allow positive offsets. Further, since
411 auto-inc is only allowed in memories, the register must be a
412 pointer. */
413 if (CONST_INT_P (XEXP (x, 1))
414 && INTVAL (XEXP (x, 1)) > 0)
415 return true;
416 return nonzero_address_p (XEXP (x, 0));
417
418 case PRE_INC:
419 /* Similarly. Further, the offset is always positive. */
420 return true;
421
422 case PRE_DEC:
423 case POST_DEC:
424 case POST_INC:
425 case POST_MODIFY:
426 return nonzero_address_p (XEXP (x, 0));
427
428 case LO_SUM:
429 return nonzero_address_p (XEXP (x, 1));
430
431 default:
432 break;
433 }
434
435 /* If it isn't one of the case above, might be zero. */
436 return false;
437 }
438
439 /* Return 1 if X refers to a memory location whose address
440 cannot be compared reliably with constant addresses,
441 or if X refers to a BLKmode memory object.
442 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
443 zero, we are slightly more conservative. */
444
445 bool
446 rtx_addr_varies_p (const_rtx x, bool for_alias)
447 {
448 enum rtx_code code;
449 int i;
450 const char *fmt;
451
452 if (x == 0)
453 return 0;
454
455 code = GET_CODE (x);
456 if (code == MEM)
457 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
458
459 fmt = GET_RTX_FORMAT (code);
460 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
461 if (fmt[i] == 'e')
462 {
463 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
464 return 1;
465 }
466 else if (fmt[i] == 'E')
467 {
468 int j;
469 for (j = 0; j < XVECLEN (x, i); j++)
470 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
471 return 1;
472 }
473 return 0;
474 }
475 \f
476 /* Return the value of the integer term in X, if one is apparent;
477 otherwise return 0.
478 Only obvious integer terms are detected.
479 This is used in cse.c with the `related_value' field. */
480
481 HOST_WIDE_INT
482 get_integer_term (const_rtx x)
483 {
484 if (GET_CODE (x) == CONST)
485 x = XEXP (x, 0);
486
487 if (GET_CODE (x) == MINUS
488 && CONST_INT_P (XEXP (x, 1)))
489 return - INTVAL (XEXP (x, 1));
490 if (GET_CODE (x) == PLUS
491 && CONST_INT_P (XEXP (x, 1)))
492 return INTVAL (XEXP (x, 1));
493 return 0;
494 }
495
496 /* If X is a constant, return the value sans apparent integer term;
497 otherwise return 0.
498 Only obvious integer terms are detected. */
499
500 rtx
501 get_related_value (const_rtx x)
502 {
503 if (GET_CODE (x) != CONST)
504 return 0;
505 x = XEXP (x, 0);
506 if (GET_CODE (x) == PLUS
507 && CONST_INT_P (XEXP (x, 1)))
508 return XEXP (x, 0);
509 else if (GET_CODE (x) == MINUS
510 && CONST_INT_P (XEXP (x, 1)))
511 return XEXP (x, 0);
512 return 0;
513 }
514 \f
515 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
516 to somewhere in the same object or object_block as SYMBOL. */
517
518 bool
519 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
520 {
521 tree decl;
522
523 if (GET_CODE (symbol) != SYMBOL_REF)
524 return false;
525
526 if (offset == 0)
527 return true;
528
529 if (offset > 0)
530 {
531 if (CONSTANT_POOL_ADDRESS_P (symbol)
532 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
533 return true;
534
535 decl = SYMBOL_REF_DECL (symbol);
536 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
537 return true;
538 }
539
540 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
541 && SYMBOL_REF_BLOCK (symbol)
542 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
543 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
544 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
545 return true;
546
547 return false;
548 }
549
550 /* Split X into a base and a constant offset, storing them in *BASE_OUT
551 and *OFFSET_OUT respectively. */
552
553 void
554 split_const (rtx x, rtx *base_out, rtx *offset_out)
555 {
556 if (GET_CODE (x) == CONST)
557 {
558 x = XEXP (x, 0);
559 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
560 {
561 *base_out = XEXP (x, 0);
562 *offset_out = XEXP (x, 1);
563 return;
564 }
565 }
566 *base_out = x;
567 *offset_out = const0_rtx;
568 }
569 \f
570 /* Return the number of places FIND appears within X. If COUNT_DEST is
571 zero, we do not count occurrences inside the destination of a SET. */
572
573 int
574 count_occurrences (const_rtx x, const_rtx find, int count_dest)
575 {
576 int i, j;
577 enum rtx_code code;
578 const char *format_ptr;
579 int count;
580
581 if (x == find)
582 return 1;
583
584 code = GET_CODE (x);
585
586 switch (code)
587 {
588 case REG:
589 case CONST_INT:
590 case CONST_DOUBLE:
591 case CONST_FIXED:
592 case CONST_VECTOR:
593 case SYMBOL_REF:
594 case CODE_LABEL:
595 case PC:
596 case CC0:
597 return 0;
598
599 case EXPR_LIST:
600 count = count_occurrences (XEXP (x, 0), find, count_dest);
601 if (XEXP (x, 1))
602 count += count_occurrences (XEXP (x, 1), find, count_dest);
603 return count;
604
605 case MEM:
606 if (MEM_P (find) && rtx_equal_p (x, find))
607 return 1;
608 break;
609
610 case SET:
611 if (SET_DEST (x) == find && ! count_dest)
612 return count_occurrences (SET_SRC (x), find, count_dest);
613 break;
614
615 default:
616 break;
617 }
618
619 format_ptr = GET_RTX_FORMAT (code);
620 count = 0;
621
622 for (i = 0; i < GET_RTX_LENGTH (code); i++)
623 {
624 switch (*format_ptr++)
625 {
626 case 'e':
627 count += count_occurrences (XEXP (x, i), find, count_dest);
628 break;
629
630 case 'E':
631 for (j = 0; j < XVECLEN (x, i); j++)
632 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
633 break;
634 }
635 }
636 return count;
637 }
638
639 \f
640 /* Nonzero if register REG appears somewhere within IN.
641 Also works if REG is not a register; in this case it checks
642 for a subexpression of IN that is Lisp "equal" to REG. */
643
644 int
645 reg_mentioned_p (const_rtx reg, const_rtx in)
646 {
647 const char *fmt;
648 int i;
649 enum rtx_code code;
650
651 if (in == 0)
652 return 0;
653
654 if (reg == in)
655 return 1;
656
657 if (GET_CODE (in) == LABEL_REF)
658 return reg == XEXP (in, 0);
659
660 code = GET_CODE (in);
661
662 switch (code)
663 {
664 /* Compare registers by number. */
665 case REG:
666 return REG_P (reg) && REGNO (in) == REGNO (reg);
667
668 /* These codes have no constituent expressions
669 and are unique. */
670 case SCRATCH:
671 case CC0:
672 case PC:
673 return 0;
674
675 case CONST_INT:
676 case CONST_VECTOR:
677 case CONST_DOUBLE:
678 case CONST_FIXED:
679 /* These are kept unique for a given value. */
680 return 0;
681
682 default:
683 break;
684 }
685
686 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
687 return 1;
688
689 fmt = GET_RTX_FORMAT (code);
690
691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
692 {
693 if (fmt[i] == 'E')
694 {
695 int j;
696 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
697 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
698 return 1;
699 }
700 else if (fmt[i] == 'e'
701 && reg_mentioned_p (reg, XEXP (in, i)))
702 return 1;
703 }
704 return 0;
705 }
706 \f
707 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
708 no CODE_LABEL insn. */
709
710 int
711 no_labels_between_p (const_rtx beg, const_rtx end)
712 {
713 rtx p;
714 if (beg == end)
715 return 0;
716 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
717 if (LABEL_P (p))
718 return 0;
719 return 1;
720 }
721
722 /* Nonzero if register REG is used in an insn between
723 FROM_INSN and TO_INSN (exclusive of those two). */
724
725 int
726 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
727 {
728 rtx insn;
729
730 if (from_insn == to_insn)
731 return 0;
732
733 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
734 if (NONDEBUG_INSN_P (insn)
735 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
736 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
737 return 1;
738 return 0;
739 }
740 \f
741 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
742 is entirely replaced by a new value and the only use is as a SET_DEST,
743 we do not consider it a reference. */
744
745 int
746 reg_referenced_p (const_rtx x, const_rtx body)
747 {
748 int i;
749
750 switch (GET_CODE (body))
751 {
752 case SET:
753 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
754 return 1;
755
756 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
757 of a REG that occupies all of the REG, the insn references X if
758 it is mentioned in the destination. */
759 if (GET_CODE (SET_DEST (body)) != CC0
760 && GET_CODE (SET_DEST (body)) != PC
761 && !REG_P (SET_DEST (body))
762 && ! (GET_CODE (SET_DEST (body)) == SUBREG
763 && REG_P (SUBREG_REG (SET_DEST (body)))
764 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
765 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
766 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
767 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
768 && reg_overlap_mentioned_p (x, SET_DEST (body)))
769 return 1;
770 return 0;
771
772 case ASM_OPERANDS:
773 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
775 return 1;
776 return 0;
777
778 case CALL:
779 case USE:
780 case IF_THEN_ELSE:
781 return reg_overlap_mentioned_p (x, body);
782
783 case TRAP_IF:
784 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
785
786 case PREFETCH:
787 return reg_overlap_mentioned_p (x, XEXP (body, 0));
788
789 case UNSPEC:
790 case UNSPEC_VOLATILE:
791 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
792 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
793 return 1;
794 return 0;
795
796 case PARALLEL:
797 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
798 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
799 return 1;
800 return 0;
801
802 case CLOBBER:
803 if (MEM_P (XEXP (body, 0)))
804 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
805 return 1;
806 return 0;
807
808 case COND_EXEC:
809 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
810 return 1;
811 return reg_referenced_p (x, COND_EXEC_CODE (body));
812
813 default:
814 return 0;
815 }
816 }
817 \f
818 /* Nonzero if register REG is set or clobbered in an insn between
819 FROM_INSN and TO_INSN (exclusive of those two). */
820
821 int
822 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
823 {
824 const_rtx insn;
825
826 if (from_insn == to_insn)
827 return 0;
828
829 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
830 if (INSN_P (insn) && reg_set_p (reg, insn))
831 return 1;
832 return 0;
833 }
834
835 /* Internals of reg_set_between_p. */
836 int
837 reg_set_p (const_rtx reg, const_rtx insn)
838 {
839 /* We can be passed an insn or part of one. If we are passed an insn,
840 check if a side-effect of the insn clobbers REG. */
841 if (INSN_P (insn)
842 && (FIND_REG_INC_NOTE (insn, reg)
843 || (CALL_P (insn)
844 && ((REG_P (reg)
845 && REGNO (reg) < FIRST_PSEUDO_REGISTER
846 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
847 GET_MODE (reg), REGNO (reg)))
848 || MEM_P (reg)
849 || find_reg_fusage (insn, CLOBBER, reg)))))
850 return 1;
851
852 return set_of (reg, insn) != NULL_RTX;
853 }
854
855 /* Similar to reg_set_between_p, but check all registers in X. Return 0
856 only if none of them are modified between START and END. Return 1 if
857 X contains a MEM; this routine does use memory aliasing. */
858
859 int
860 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
861 {
862 const enum rtx_code code = GET_CODE (x);
863 const char *fmt;
864 int i, j;
865 rtx insn;
866
867 if (start == end)
868 return 0;
869
870 switch (code)
871 {
872 case CONST_INT:
873 case CONST_DOUBLE:
874 case CONST_FIXED:
875 case CONST_VECTOR:
876 case CONST:
877 case SYMBOL_REF:
878 case LABEL_REF:
879 return 0;
880
881 case PC:
882 case CC0:
883 return 1;
884
885 case MEM:
886 if (modified_between_p (XEXP (x, 0), start, end))
887 return 1;
888 if (MEM_READONLY_P (x))
889 return 0;
890 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
891 if (memory_modified_in_insn_p (x, insn))
892 return 1;
893 return 0;
894 break;
895
896 case REG:
897 return reg_set_between_p (x, start, end);
898
899 default:
900 break;
901 }
902
903 fmt = GET_RTX_FORMAT (code);
904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
905 {
906 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
907 return 1;
908
909 else if (fmt[i] == 'E')
910 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
911 if (modified_between_p (XVECEXP (x, i, j), start, end))
912 return 1;
913 }
914
915 return 0;
916 }
917
918 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
919 of them are modified in INSN. Return 1 if X contains a MEM; this routine
920 does use memory aliasing. */
921
922 int
923 modified_in_p (const_rtx x, const_rtx insn)
924 {
925 const enum rtx_code code = GET_CODE (x);
926 const char *fmt;
927 int i, j;
928
929 switch (code)
930 {
931 case CONST_INT:
932 case CONST_DOUBLE:
933 case CONST_FIXED:
934 case CONST_VECTOR:
935 case CONST:
936 case SYMBOL_REF:
937 case LABEL_REF:
938 return 0;
939
940 case PC:
941 case CC0:
942 return 1;
943
944 case MEM:
945 if (modified_in_p (XEXP (x, 0), insn))
946 return 1;
947 if (MEM_READONLY_P (x))
948 return 0;
949 if (memory_modified_in_insn_p (x, insn))
950 return 1;
951 return 0;
952 break;
953
954 case REG:
955 return reg_set_p (x, insn);
956
957 default:
958 break;
959 }
960
961 fmt = GET_RTX_FORMAT (code);
962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
963 {
964 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
965 return 1;
966
967 else if (fmt[i] == 'E')
968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
969 if (modified_in_p (XVECEXP (x, i, j), insn))
970 return 1;
971 }
972
973 return 0;
974 }
975 \f
976 /* Helper function for set_of. */
977 struct set_of_data
978 {
979 const_rtx found;
980 const_rtx pat;
981 };
982
983 static void
984 set_of_1 (rtx x, const_rtx pat, void *data1)
985 {
986 struct set_of_data *const data = (struct set_of_data *) (data1);
987 if (rtx_equal_p (x, data->pat)
988 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
989 data->found = pat;
990 }
991
992 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
993 (either directly or via STRICT_LOW_PART and similar modifiers). */
994 const_rtx
995 set_of (const_rtx pat, const_rtx insn)
996 {
997 struct set_of_data data;
998 data.found = NULL_RTX;
999 data.pat = pat;
1000 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1001 return data.found;
1002 }
1003 \f
1004 /* Given an INSN, return a SET expression if this insn has only a single SET.
1005 It may also have CLOBBERs, USEs, or SET whose output
1006 will not be used, which we ignore. */
1007
1008 rtx
1009 single_set_2 (const_rtx insn, const_rtx pat)
1010 {
1011 rtx set = NULL;
1012 int set_verified = 1;
1013 int i;
1014
1015 if (GET_CODE (pat) == PARALLEL)
1016 {
1017 for (i = 0; i < XVECLEN (pat, 0); i++)
1018 {
1019 rtx sub = XVECEXP (pat, 0, i);
1020 switch (GET_CODE (sub))
1021 {
1022 case USE:
1023 case CLOBBER:
1024 break;
1025
1026 case SET:
1027 /* We can consider insns having multiple sets, where all
1028 but one are dead as single set insns. In common case
1029 only single set is present in the pattern so we want
1030 to avoid checking for REG_UNUSED notes unless necessary.
1031
1032 When we reach set first time, we just expect this is
1033 the single set we are looking for and only when more
1034 sets are found in the insn, we check them. */
1035 if (!set_verified)
1036 {
1037 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1038 && !side_effects_p (set))
1039 set = NULL;
1040 else
1041 set_verified = 1;
1042 }
1043 if (!set)
1044 set = sub, set_verified = 0;
1045 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1046 || side_effects_p (sub))
1047 return NULL_RTX;
1048 break;
1049
1050 default:
1051 return NULL_RTX;
1052 }
1053 }
1054 }
1055 return set;
1056 }
1057
1058 /* Given an INSN, return nonzero if it has more than one SET, else return
1059 zero. */
1060
1061 int
1062 multiple_sets (const_rtx insn)
1063 {
1064 int found;
1065 int i;
1066
1067 /* INSN must be an insn. */
1068 if (! INSN_P (insn))
1069 return 0;
1070
1071 /* Only a PARALLEL can have multiple SETs. */
1072 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1073 {
1074 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1075 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1076 {
1077 /* If we have already found a SET, then return now. */
1078 if (found)
1079 return 1;
1080 else
1081 found = 1;
1082 }
1083 }
1084
1085 /* Either zero or one SET. */
1086 return 0;
1087 }
1088 \f
1089 /* Return nonzero if the destination of SET equals the source
1090 and there are no side effects. */
1091
1092 int
1093 set_noop_p (const_rtx set)
1094 {
1095 rtx src = SET_SRC (set);
1096 rtx dst = SET_DEST (set);
1097
1098 if (dst == pc_rtx && src == pc_rtx)
1099 return 1;
1100
1101 if (MEM_P (dst) && MEM_P (src))
1102 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1103
1104 if (GET_CODE (dst) == ZERO_EXTRACT)
1105 return rtx_equal_p (XEXP (dst, 0), src)
1106 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1107 && !side_effects_p (src);
1108
1109 if (GET_CODE (dst) == STRICT_LOW_PART)
1110 dst = XEXP (dst, 0);
1111
1112 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1113 {
1114 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1115 return 0;
1116 src = SUBREG_REG (src);
1117 dst = SUBREG_REG (dst);
1118 }
1119
1120 return (REG_P (src) && REG_P (dst)
1121 && REGNO (src) == REGNO (dst));
1122 }
1123 \f
1124 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1125 value to itself. */
1126
1127 int
1128 noop_move_p (const_rtx insn)
1129 {
1130 rtx pat = PATTERN (insn);
1131
1132 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1133 return 1;
1134
1135 /* Insns carrying these notes are useful later on. */
1136 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1137 return 0;
1138
1139 if (GET_CODE (pat) == SET && set_noop_p (pat))
1140 return 1;
1141
1142 if (GET_CODE (pat) == PARALLEL)
1143 {
1144 int i;
1145 /* If nothing but SETs of registers to themselves,
1146 this insn can also be deleted. */
1147 for (i = 0; i < XVECLEN (pat, 0); i++)
1148 {
1149 rtx tem = XVECEXP (pat, 0, i);
1150
1151 if (GET_CODE (tem) == USE
1152 || GET_CODE (tem) == CLOBBER)
1153 continue;
1154
1155 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1156 return 0;
1157 }
1158
1159 return 1;
1160 }
1161 return 0;
1162 }
1163 \f
1164
1165 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1166 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1167 If the object was modified, if we hit a partial assignment to X, or hit a
1168 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1169 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1170 be the src. */
1171
1172 rtx
1173 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1174 {
1175 rtx p;
1176
1177 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1178 p = PREV_INSN (p))
1179 if (INSN_P (p))
1180 {
1181 rtx set = single_set (p);
1182 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1183
1184 if (set && rtx_equal_p (x, SET_DEST (set)))
1185 {
1186 rtx src = SET_SRC (set);
1187
1188 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1189 src = XEXP (note, 0);
1190
1191 if ((valid_to == NULL_RTX
1192 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1193 /* Reject hard registers because we don't usually want
1194 to use them; we'd rather use a pseudo. */
1195 && (! (REG_P (src)
1196 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1197 {
1198 *pinsn = p;
1199 return src;
1200 }
1201 }
1202
1203 /* If set in non-simple way, we don't have a value. */
1204 if (reg_set_p (x, p))
1205 break;
1206 }
1207
1208 return x;
1209 }
1210 \f
1211 /* Return nonzero if register in range [REGNO, ENDREGNO)
1212 appears either explicitly or implicitly in X
1213 other than being stored into.
1214
1215 References contained within the substructure at LOC do not count.
1216 LOC may be zero, meaning don't ignore anything. */
1217
1218 int
1219 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1220 rtx *loc)
1221 {
1222 int i;
1223 unsigned int x_regno;
1224 RTX_CODE code;
1225 const char *fmt;
1226
1227 repeat:
1228 /* The contents of a REG_NONNEG note is always zero, so we must come here
1229 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1230 if (x == 0)
1231 return 0;
1232
1233 code = GET_CODE (x);
1234
1235 switch (code)
1236 {
1237 case REG:
1238 x_regno = REGNO (x);
1239
1240 /* If we modifying the stack, frame, or argument pointer, it will
1241 clobber a virtual register. In fact, we could be more precise,
1242 but it isn't worth it. */
1243 if ((x_regno == STACK_POINTER_REGNUM
1244 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1245 || x_regno == ARG_POINTER_REGNUM
1246 #endif
1247 || x_regno == FRAME_POINTER_REGNUM)
1248 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1249 return 1;
1250
1251 return endregno > x_regno && regno < END_REGNO (x);
1252
1253 case SUBREG:
1254 /* If this is a SUBREG of a hard reg, we can see exactly which
1255 registers are being modified. Otherwise, handle normally. */
1256 if (REG_P (SUBREG_REG (x))
1257 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1258 {
1259 unsigned int inner_regno = subreg_regno (x);
1260 unsigned int inner_endregno
1261 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1262 ? subreg_nregs (x) : 1);
1263
1264 return endregno > inner_regno && regno < inner_endregno;
1265 }
1266 break;
1267
1268 case CLOBBER:
1269 case SET:
1270 if (&SET_DEST (x) != loc
1271 /* Note setting a SUBREG counts as referring to the REG it is in for
1272 a pseudo but not for hard registers since we can
1273 treat each word individually. */
1274 && ((GET_CODE (SET_DEST (x)) == SUBREG
1275 && loc != &SUBREG_REG (SET_DEST (x))
1276 && REG_P (SUBREG_REG (SET_DEST (x)))
1277 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1278 && refers_to_regno_p (regno, endregno,
1279 SUBREG_REG (SET_DEST (x)), loc))
1280 || (!REG_P (SET_DEST (x))
1281 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1282 return 1;
1283
1284 if (code == CLOBBER || loc == &SET_SRC (x))
1285 return 0;
1286 x = SET_SRC (x);
1287 goto repeat;
1288
1289 default:
1290 break;
1291 }
1292
1293 /* X does not match, so try its subexpressions. */
1294
1295 fmt = GET_RTX_FORMAT (code);
1296 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1297 {
1298 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1299 {
1300 if (i == 0)
1301 {
1302 x = XEXP (x, 0);
1303 goto repeat;
1304 }
1305 else
1306 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1307 return 1;
1308 }
1309 else if (fmt[i] == 'E')
1310 {
1311 int j;
1312 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1313 if (loc != &XVECEXP (x, i, j)
1314 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1315 return 1;
1316 }
1317 }
1318 return 0;
1319 }
1320
1321 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1322 we check if any register number in X conflicts with the relevant register
1323 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1324 contains a MEM (we don't bother checking for memory addresses that can't
1325 conflict because we expect this to be a rare case. */
1326
1327 int
1328 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1329 {
1330 unsigned int regno, endregno;
1331
1332 /* If either argument is a constant, then modifying X can not
1333 affect IN. Here we look at IN, we can profitably combine
1334 CONSTANT_P (x) with the switch statement below. */
1335 if (CONSTANT_P (in))
1336 return 0;
1337
1338 recurse:
1339 switch (GET_CODE (x))
1340 {
1341 case STRICT_LOW_PART:
1342 case ZERO_EXTRACT:
1343 case SIGN_EXTRACT:
1344 /* Overly conservative. */
1345 x = XEXP (x, 0);
1346 goto recurse;
1347
1348 case SUBREG:
1349 regno = REGNO (SUBREG_REG (x));
1350 if (regno < FIRST_PSEUDO_REGISTER)
1351 regno = subreg_regno (x);
1352 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1353 ? subreg_nregs (x) : 1);
1354 goto do_reg;
1355
1356 case REG:
1357 regno = REGNO (x);
1358 endregno = END_REGNO (x);
1359 do_reg:
1360 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1361
1362 case MEM:
1363 {
1364 const char *fmt;
1365 int i;
1366
1367 if (MEM_P (in))
1368 return 1;
1369
1370 fmt = GET_RTX_FORMAT (GET_CODE (in));
1371 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1372 if (fmt[i] == 'e')
1373 {
1374 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1375 return 1;
1376 }
1377 else if (fmt[i] == 'E')
1378 {
1379 int j;
1380 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1381 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1382 return 1;
1383 }
1384
1385 return 0;
1386 }
1387
1388 case SCRATCH:
1389 case PC:
1390 case CC0:
1391 return reg_mentioned_p (x, in);
1392
1393 case PARALLEL:
1394 {
1395 int i;
1396
1397 /* If any register in here refers to it we return true. */
1398 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1399 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1400 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1401 return 1;
1402 return 0;
1403 }
1404
1405 default:
1406 gcc_assert (CONSTANT_P (x));
1407 return 0;
1408 }
1409 }
1410 \f
1411 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1412 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1413 ignored by note_stores, but passed to FUN.
1414
1415 FUN receives three arguments:
1416 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1417 2. the SET or CLOBBER rtx that does the store,
1418 3. the pointer DATA provided to note_stores.
1419
1420 If the item being stored in or clobbered is a SUBREG of a hard register,
1421 the SUBREG will be passed. */
1422
1423 void
1424 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1425 {
1426 int i;
1427
1428 if (GET_CODE (x) == COND_EXEC)
1429 x = COND_EXEC_CODE (x);
1430
1431 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1432 {
1433 rtx dest = SET_DEST (x);
1434
1435 while ((GET_CODE (dest) == SUBREG
1436 && (!REG_P (SUBREG_REG (dest))
1437 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1438 || GET_CODE (dest) == ZERO_EXTRACT
1439 || GET_CODE (dest) == STRICT_LOW_PART)
1440 dest = XEXP (dest, 0);
1441
1442 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1443 each of whose first operand is a register. */
1444 if (GET_CODE (dest) == PARALLEL)
1445 {
1446 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1447 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1448 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1449 }
1450 else
1451 (*fun) (dest, x, data);
1452 }
1453
1454 else if (GET_CODE (x) == PARALLEL)
1455 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1456 note_stores (XVECEXP (x, 0, i), fun, data);
1457 }
1458 \f
1459 /* Like notes_stores, but call FUN for each expression that is being
1460 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1461 FUN for each expression, not any interior subexpressions. FUN receives a
1462 pointer to the expression and the DATA passed to this function.
1463
1464 Note that this is not quite the same test as that done in reg_referenced_p
1465 since that considers something as being referenced if it is being
1466 partially set, while we do not. */
1467
1468 void
1469 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1470 {
1471 rtx body = *pbody;
1472 int i;
1473
1474 switch (GET_CODE (body))
1475 {
1476 case COND_EXEC:
1477 (*fun) (&COND_EXEC_TEST (body), data);
1478 note_uses (&COND_EXEC_CODE (body), fun, data);
1479 return;
1480
1481 case PARALLEL:
1482 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1483 note_uses (&XVECEXP (body, 0, i), fun, data);
1484 return;
1485
1486 case SEQUENCE:
1487 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1488 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1489 return;
1490
1491 case USE:
1492 (*fun) (&XEXP (body, 0), data);
1493 return;
1494
1495 case ASM_OPERANDS:
1496 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1497 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1498 return;
1499
1500 case TRAP_IF:
1501 (*fun) (&TRAP_CONDITION (body), data);
1502 return;
1503
1504 case PREFETCH:
1505 (*fun) (&XEXP (body, 0), data);
1506 return;
1507
1508 case UNSPEC:
1509 case UNSPEC_VOLATILE:
1510 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1511 (*fun) (&XVECEXP (body, 0, i), data);
1512 return;
1513
1514 case CLOBBER:
1515 if (MEM_P (XEXP (body, 0)))
1516 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1517 return;
1518
1519 case SET:
1520 {
1521 rtx dest = SET_DEST (body);
1522
1523 /* For sets we replace everything in source plus registers in memory
1524 expression in store and operands of a ZERO_EXTRACT. */
1525 (*fun) (&SET_SRC (body), data);
1526
1527 if (GET_CODE (dest) == ZERO_EXTRACT)
1528 {
1529 (*fun) (&XEXP (dest, 1), data);
1530 (*fun) (&XEXP (dest, 2), data);
1531 }
1532
1533 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1534 dest = XEXP (dest, 0);
1535
1536 if (MEM_P (dest))
1537 (*fun) (&XEXP (dest, 0), data);
1538 }
1539 return;
1540
1541 default:
1542 /* All the other possibilities never store. */
1543 (*fun) (pbody, data);
1544 return;
1545 }
1546 }
1547 \f
1548 /* Return nonzero if X's old contents don't survive after INSN.
1549 This will be true if X is (cc0) or if X is a register and
1550 X dies in INSN or because INSN entirely sets X.
1551
1552 "Entirely set" means set directly and not through a SUBREG, or
1553 ZERO_EXTRACT, so no trace of the old contents remains.
1554 Likewise, REG_INC does not count.
1555
1556 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1557 but for this use that makes no difference, since regs don't overlap
1558 during their lifetimes. Therefore, this function may be used
1559 at any time after deaths have been computed.
1560
1561 If REG is a hard reg that occupies multiple machine registers, this
1562 function will only return 1 if each of those registers will be replaced
1563 by INSN. */
1564
1565 int
1566 dead_or_set_p (const_rtx insn, const_rtx x)
1567 {
1568 unsigned int regno, end_regno;
1569 unsigned int i;
1570
1571 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1572 if (GET_CODE (x) == CC0)
1573 return 1;
1574
1575 gcc_assert (REG_P (x));
1576
1577 regno = REGNO (x);
1578 end_regno = END_REGNO (x);
1579 for (i = regno; i < end_regno; i++)
1580 if (! dead_or_set_regno_p (insn, i))
1581 return 0;
1582
1583 return 1;
1584 }
1585
1586 /* Return TRUE iff DEST is a register or subreg of a register and
1587 doesn't change the number of words of the inner register, and any
1588 part of the register is TEST_REGNO. */
1589
1590 static bool
1591 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1592 {
1593 unsigned int regno, endregno;
1594
1595 if (GET_CODE (dest) == SUBREG
1596 && (((GET_MODE_SIZE (GET_MODE (dest))
1597 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1598 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1599 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1600 dest = SUBREG_REG (dest);
1601
1602 if (!REG_P (dest))
1603 return false;
1604
1605 regno = REGNO (dest);
1606 endregno = END_REGNO (dest);
1607 return (test_regno >= regno && test_regno < endregno);
1608 }
1609
1610 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1611 any member matches the covers_regno_no_parallel_p criteria. */
1612
1613 static bool
1614 covers_regno_p (const_rtx dest, unsigned int test_regno)
1615 {
1616 if (GET_CODE (dest) == PARALLEL)
1617 {
1618 /* Some targets place small structures in registers for return
1619 values of functions, and those registers are wrapped in
1620 PARALLELs that we may see as the destination of a SET. */
1621 int i;
1622
1623 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1624 {
1625 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1626 if (inner != NULL_RTX
1627 && covers_regno_no_parallel_p (inner, test_regno))
1628 return true;
1629 }
1630
1631 return false;
1632 }
1633 else
1634 return covers_regno_no_parallel_p (dest, test_regno);
1635 }
1636
1637 /* Utility function for dead_or_set_p to check an individual register. */
1638
1639 int
1640 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1641 {
1642 const_rtx pattern;
1643
1644 /* See if there is a death note for something that includes TEST_REGNO. */
1645 if (find_regno_note (insn, REG_DEAD, test_regno))
1646 return 1;
1647
1648 if (CALL_P (insn)
1649 && find_regno_fusage (insn, CLOBBER, test_regno))
1650 return 1;
1651
1652 pattern = PATTERN (insn);
1653
1654 if (GET_CODE (pattern) == COND_EXEC)
1655 pattern = COND_EXEC_CODE (pattern);
1656
1657 if (GET_CODE (pattern) == SET)
1658 return covers_regno_p (SET_DEST (pattern), test_regno);
1659 else if (GET_CODE (pattern) == PARALLEL)
1660 {
1661 int i;
1662
1663 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1664 {
1665 rtx body = XVECEXP (pattern, 0, i);
1666
1667 if (GET_CODE (body) == COND_EXEC)
1668 body = COND_EXEC_CODE (body);
1669
1670 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1671 && covers_regno_p (SET_DEST (body), test_regno))
1672 return 1;
1673 }
1674 }
1675
1676 return 0;
1677 }
1678
1679 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1680 If DATUM is nonzero, look for one whose datum is DATUM. */
1681
1682 rtx
1683 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1684 {
1685 rtx link;
1686
1687 gcc_checking_assert (insn);
1688
1689 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1690 if (! INSN_P (insn))
1691 return 0;
1692 if (datum == 0)
1693 {
1694 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1695 if (REG_NOTE_KIND (link) == kind)
1696 return link;
1697 return 0;
1698 }
1699
1700 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1701 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1702 return link;
1703 return 0;
1704 }
1705
1706 /* Return the reg-note of kind KIND in insn INSN which applies to register
1707 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1708 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1709 it might be the case that the note overlaps REGNO. */
1710
1711 rtx
1712 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1713 {
1714 rtx link;
1715
1716 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1717 if (! INSN_P (insn))
1718 return 0;
1719
1720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1721 if (REG_NOTE_KIND (link) == kind
1722 /* Verify that it is a register, so that scratch and MEM won't cause a
1723 problem here. */
1724 && REG_P (XEXP (link, 0))
1725 && REGNO (XEXP (link, 0)) <= regno
1726 && END_REGNO (XEXP (link, 0)) > regno)
1727 return link;
1728 return 0;
1729 }
1730
1731 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1732 has such a note. */
1733
1734 rtx
1735 find_reg_equal_equiv_note (const_rtx insn)
1736 {
1737 rtx link;
1738
1739 if (!INSN_P (insn))
1740 return 0;
1741
1742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1743 if (REG_NOTE_KIND (link) == REG_EQUAL
1744 || REG_NOTE_KIND (link) == REG_EQUIV)
1745 {
1746 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1747 insns that have multiple sets. Checking single_set to
1748 make sure of this is not the proper check, as explained
1749 in the comment in set_unique_reg_note.
1750
1751 This should be changed into an assert. */
1752 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1753 return 0;
1754 return link;
1755 }
1756 return NULL;
1757 }
1758
1759 /* Check whether INSN is a single_set whose source is known to be
1760 equivalent to a constant. Return that constant if so, otherwise
1761 return null. */
1762
1763 rtx
1764 find_constant_src (const_rtx insn)
1765 {
1766 rtx note, set, x;
1767
1768 set = single_set (insn);
1769 if (set)
1770 {
1771 x = avoid_constant_pool_reference (SET_SRC (set));
1772 if (CONSTANT_P (x))
1773 return x;
1774 }
1775
1776 note = find_reg_equal_equiv_note (insn);
1777 if (note && CONSTANT_P (XEXP (note, 0)))
1778 return XEXP (note, 0);
1779
1780 return NULL_RTX;
1781 }
1782
1783 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1784 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1785
1786 int
1787 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1788 {
1789 /* If it's not a CALL_INSN, it can't possibly have a
1790 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1791 if (!CALL_P (insn))
1792 return 0;
1793
1794 gcc_assert (datum);
1795
1796 if (!REG_P (datum))
1797 {
1798 rtx link;
1799
1800 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1801 link;
1802 link = XEXP (link, 1))
1803 if (GET_CODE (XEXP (link, 0)) == code
1804 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1805 return 1;
1806 }
1807 else
1808 {
1809 unsigned int regno = REGNO (datum);
1810
1811 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1812 to pseudo registers, so don't bother checking. */
1813
1814 if (regno < FIRST_PSEUDO_REGISTER)
1815 {
1816 unsigned int end_regno = END_HARD_REGNO (datum);
1817 unsigned int i;
1818
1819 for (i = regno; i < end_regno; i++)
1820 if (find_regno_fusage (insn, code, i))
1821 return 1;
1822 }
1823 }
1824
1825 return 0;
1826 }
1827
1828 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1829 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1830
1831 int
1832 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1833 {
1834 rtx link;
1835
1836 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1837 to pseudo registers, so don't bother checking. */
1838
1839 if (regno >= FIRST_PSEUDO_REGISTER
1840 || !CALL_P (insn) )
1841 return 0;
1842
1843 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1844 {
1845 rtx op, reg;
1846
1847 if (GET_CODE (op = XEXP (link, 0)) == code
1848 && REG_P (reg = XEXP (op, 0))
1849 && REGNO (reg) <= regno
1850 && END_HARD_REGNO (reg) > regno)
1851 return 1;
1852 }
1853
1854 return 0;
1855 }
1856
1857 \f
1858 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1859 stored as the pointer to the next register note. */
1860
1861 rtx
1862 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1863 {
1864 rtx note;
1865
1866 switch (kind)
1867 {
1868 case REG_CC_SETTER:
1869 case REG_CC_USER:
1870 case REG_LABEL_TARGET:
1871 case REG_LABEL_OPERAND:
1872 /* These types of register notes use an INSN_LIST rather than an
1873 EXPR_LIST, so that copying is done right and dumps look
1874 better. */
1875 note = alloc_INSN_LIST (datum, list);
1876 PUT_REG_NOTE_KIND (note, kind);
1877 break;
1878
1879 default:
1880 note = alloc_EXPR_LIST (kind, datum, list);
1881 break;
1882 }
1883
1884 return note;
1885 }
1886
1887 /* Add register note with kind KIND and datum DATUM to INSN. */
1888
1889 void
1890 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1891 {
1892 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1893 }
1894
1895 /* Remove register note NOTE from the REG_NOTES of INSN. */
1896
1897 void
1898 remove_note (rtx insn, const_rtx note)
1899 {
1900 rtx link;
1901
1902 if (note == NULL_RTX)
1903 return;
1904
1905 if (REG_NOTES (insn) == note)
1906 REG_NOTES (insn) = XEXP (note, 1);
1907 else
1908 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1909 if (XEXP (link, 1) == note)
1910 {
1911 XEXP (link, 1) = XEXP (note, 1);
1912 break;
1913 }
1914
1915 switch (REG_NOTE_KIND (note))
1916 {
1917 case REG_EQUAL:
1918 case REG_EQUIV:
1919 df_notes_rescan (insn);
1920 break;
1921 default:
1922 break;
1923 }
1924 }
1925
1926 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1927
1928 void
1929 remove_reg_equal_equiv_notes (rtx insn)
1930 {
1931 rtx *loc;
1932
1933 loc = &REG_NOTES (insn);
1934 while (*loc)
1935 {
1936 enum reg_note kind = REG_NOTE_KIND (*loc);
1937 if (kind == REG_EQUAL || kind == REG_EQUIV)
1938 *loc = XEXP (*loc, 1);
1939 else
1940 loc = &XEXP (*loc, 1);
1941 }
1942 }
1943
1944 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1945
1946 void
1947 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1948 {
1949 df_ref eq_use;
1950
1951 if (!df)
1952 return;
1953
1954 /* This loop is a little tricky. We cannot just go down the chain because
1955 it is being modified by some actions in the loop. So we just iterate
1956 over the head. We plan to drain the list anyway. */
1957 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
1958 {
1959 rtx insn = DF_REF_INSN (eq_use);
1960 rtx note = find_reg_equal_equiv_note (insn);
1961
1962 /* This assert is generally triggered when someone deletes a REG_EQUAL
1963 or REG_EQUIV note by hacking the list manually rather than calling
1964 remove_note. */
1965 gcc_assert (note);
1966
1967 remove_note (insn, note);
1968 }
1969 }
1970
1971 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1972 return 1 if it is found. A simple equality test is used to determine if
1973 NODE matches. */
1974
1975 int
1976 in_expr_list_p (const_rtx listp, const_rtx node)
1977 {
1978 const_rtx x;
1979
1980 for (x = listp; x; x = XEXP (x, 1))
1981 if (node == XEXP (x, 0))
1982 return 1;
1983
1984 return 0;
1985 }
1986
1987 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1988 remove that entry from the list if it is found.
1989
1990 A simple equality test is used to determine if NODE matches. */
1991
1992 void
1993 remove_node_from_expr_list (const_rtx node, rtx *listp)
1994 {
1995 rtx temp = *listp;
1996 rtx prev = NULL_RTX;
1997
1998 while (temp)
1999 {
2000 if (node == XEXP (temp, 0))
2001 {
2002 /* Splice the node out of the list. */
2003 if (prev)
2004 XEXP (prev, 1) = XEXP (temp, 1);
2005 else
2006 *listp = XEXP (temp, 1);
2007
2008 return;
2009 }
2010
2011 prev = temp;
2012 temp = XEXP (temp, 1);
2013 }
2014 }
2015 \f
2016 /* Nonzero if X contains any volatile instructions. These are instructions
2017 which may cause unpredictable machine state instructions, and thus no
2018 instructions should be moved or combined across them. This includes
2019 only volatile asms and UNSPEC_VOLATILE instructions. */
2020
2021 int
2022 volatile_insn_p (const_rtx x)
2023 {
2024 const RTX_CODE code = GET_CODE (x);
2025 switch (code)
2026 {
2027 case LABEL_REF:
2028 case SYMBOL_REF:
2029 case CONST_INT:
2030 case CONST:
2031 case CONST_DOUBLE:
2032 case CONST_FIXED:
2033 case CONST_VECTOR:
2034 case CC0:
2035 case PC:
2036 case REG:
2037 case SCRATCH:
2038 case CLOBBER:
2039 case ADDR_VEC:
2040 case ADDR_DIFF_VEC:
2041 case CALL:
2042 case MEM:
2043 return 0;
2044
2045 case UNSPEC_VOLATILE:
2046 /* case TRAP_IF: This isn't clear yet. */
2047 return 1;
2048
2049 case ASM_INPUT:
2050 case ASM_OPERANDS:
2051 if (MEM_VOLATILE_P (x))
2052 return 1;
2053
2054 default:
2055 break;
2056 }
2057
2058 /* Recursively scan the operands of this expression. */
2059
2060 {
2061 const char *const fmt = GET_RTX_FORMAT (code);
2062 int i;
2063
2064 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2065 {
2066 if (fmt[i] == 'e')
2067 {
2068 if (volatile_insn_p (XEXP (x, i)))
2069 return 1;
2070 }
2071 else if (fmt[i] == 'E')
2072 {
2073 int j;
2074 for (j = 0; j < XVECLEN (x, i); j++)
2075 if (volatile_insn_p (XVECEXP (x, i, j)))
2076 return 1;
2077 }
2078 }
2079 }
2080 return 0;
2081 }
2082
2083 /* Nonzero if X contains any volatile memory references
2084 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2085
2086 int
2087 volatile_refs_p (const_rtx x)
2088 {
2089 const RTX_CODE code = GET_CODE (x);
2090 switch (code)
2091 {
2092 case LABEL_REF:
2093 case SYMBOL_REF:
2094 case CONST_INT:
2095 case CONST:
2096 case CONST_DOUBLE:
2097 case CONST_FIXED:
2098 case CONST_VECTOR:
2099 case CC0:
2100 case PC:
2101 case REG:
2102 case SCRATCH:
2103 case CLOBBER:
2104 case ADDR_VEC:
2105 case ADDR_DIFF_VEC:
2106 return 0;
2107
2108 case UNSPEC_VOLATILE:
2109 return 1;
2110
2111 case MEM:
2112 case ASM_INPUT:
2113 case ASM_OPERANDS:
2114 if (MEM_VOLATILE_P (x))
2115 return 1;
2116
2117 default:
2118 break;
2119 }
2120
2121 /* Recursively scan the operands of this expression. */
2122
2123 {
2124 const char *const fmt = GET_RTX_FORMAT (code);
2125 int i;
2126
2127 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2128 {
2129 if (fmt[i] == 'e')
2130 {
2131 if (volatile_refs_p (XEXP (x, i)))
2132 return 1;
2133 }
2134 else if (fmt[i] == 'E')
2135 {
2136 int j;
2137 for (j = 0; j < XVECLEN (x, i); j++)
2138 if (volatile_refs_p (XVECEXP (x, i, j)))
2139 return 1;
2140 }
2141 }
2142 }
2143 return 0;
2144 }
2145
2146 /* Similar to above, except that it also rejects register pre- and post-
2147 incrementing. */
2148
2149 int
2150 side_effects_p (const_rtx x)
2151 {
2152 const RTX_CODE code = GET_CODE (x);
2153 switch (code)
2154 {
2155 case LABEL_REF:
2156 case SYMBOL_REF:
2157 case CONST_INT:
2158 case CONST:
2159 case CONST_DOUBLE:
2160 case CONST_FIXED:
2161 case CONST_VECTOR:
2162 case CC0:
2163 case PC:
2164 case REG:
2165 case SCRATCH:
2166 case ADDR_VEC:
2167 case ADDR_DIFF_VEC:
2168 case VAR_LOCATION:
2169 return 0;
2170
2171 case CLOBBER:
2172 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2173 when some combination can't be done. If we see one, don't think
2174 that we can simplify the expression. */
2175 return (GET_MODE (x) != VOIDmode);
2176
2177 case PRE_INC:
2178 case PRE_DEC:
2179 case POST_INC:
2180 case POST_DEC:
2181 case PRE_MODIFY:
2182 case POST_MODIFY:
2183 case CALL:
2184 case UNSPEC_VOLATILE:
2185 /* case TRAP_IF: This isn't clear yet. */
2186 return 1;
2187
2188 case MEM:
2189 case ASM_INPUT:
2190 case ASM_OPERANDS:
2191 if (MEM_VOLATILE_P (x))
2192 return 1;
2193
2194 default:
2195 break;
2196 }
2197
2198 /* Recursively scan the operands of this expression. */
2199
2200 {
2201 const char *fmt = GET_RTX_FORMAT (code);
2202 int i;
2203
2204 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2205 {
2206 if (fmt[i] == 'e')
2207 {
2208 if (side_effects_p (XEXP (x, i)))
2209 return 1;
2210 }
2211 else if (fmt[i] == 'E')
2212 {
2213 int j;
2214 for (j = 0; j < XVECLEN (x, i); j++)
2215 if (side_effects_p (XVECEXP (x, i, j)))
2216 return 1;
2217 }
2218 }
2219 }
2220 return 0;
2221 }
2222 \f
2223 /* Return nonzero if evaluating rtx X might cause a trap.
2224 FLAGS controls how to consider MEMs. A nonzero means the context
2225 of the access may have changed from the original, such that the
2226 address may have become invalid. */
2227
2228 int
2229 may_trap_p_1 (const_rtx x, unsigned flags)
2230 {
2231 int i;
2232 enum rtx_code code;
2233 const char *fmt;
2234
2235 /* We make no distinction currently, but this function is part of
2236 the internal target-hooks ABI so we keep the parameter as
2237 "unsigned flags". */
2238 bool code_changed = flags != 0;
2239
2240 if (x == 0)
2241 return 0;
2242 code = GET_CODE (x);
2243 switch (code)
2244 {
2245 /* Handle these cases quickly. */
2246 case CONST_INT:
2247 case CONST_DOUBLE:
2248 case CONST_FIXED:
2249 case CONST_VECTOR:
2250 case SYMBOL_REF:
2251 case LABEL_REF:
2252 case CONST:
2253 case PC:
2254 case CC0:
2255 case REG:
2256 case SCRATCH:
2257 return 0;
2258
2259 case UNSPEC:
2260 case UNSPEC_VOLATILE:
2261 return targetm.unspec_may_trap_p (x, flags);
2262
2263 case ASM_INPUT:
2264 case TRAP_IF:
2265 return 1;
2266
2267 case ASM_OPERANDS:
2268 return MEM_VOLATILE_P (x);
2269
2270 /* Memory ref can trap unless it's a static var or a stack slot. */
2271 case MEM:
2272 /* Recognize specific pattern of stack checking probes. */
2273 if (flag_stack_check
2274 && MEM_VOLATILE_P (x)
2275 && XEXP (x, 0) == stack_pointer_rtx)
2276 return 1;
2277 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2278 reference; moving it out of context such as when moving code
2279 when optimizing, might cause its address to become invalid. */
2280 code_changed
2281 || !MEM_NOTRAP_P (x))
2282 {
2283 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2284 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2285 GET_MODE (x), code_changed);
2286 }
2287
2288 return 0;
2289
2290 /* Division by a non-constant might trap. */
2291 case DIV:
2292 case MOD:
2293 case UDIV:
2294 case UMOD:
2295 if (HONOR_SNANS (GET_MODE (x)))
2296 return 1;
2297 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2298 return flag_trapping_math;
2299 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2300 return 1;
2301 break;
2302
2303 case EXPR_LIST:
2304 /* An EXPR_LIST is used to represent a function call. This
2305 certainly may trap. */
2306 return 1;
2307
2308 case GE:
2309 case GT:
2310 case LE:
2311 case LT:
2312 case LTGT:
2313 case COMPARE:
2314 /* Some floating point comparisons may trap. */
2315 if (!flag_trapping_math)
2316 break;
2317 /* ??? There is no machine independent way to check for tests that trap
2318 when COMPARE is used, though many targets do make this distinction.
2319 For instance, sparc uses CCFPE for compares which generate exceptions
2320 and CCFP for compares which do not generate exceptions. */
2321 if (HONOR_NANS (GET_MODE (x)))
2322 return 1;
2323 /* But often the compare has some CC mode, so check operand
2324 modes as well. */
2325 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2326 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2327 return 1;
2328 break;
2329
2330 case EQ:
2331 case NE:
2332 if (HONOR_SNANS (GET_MODE (x)))
2333 return 1;
2334 /* Often comparison is CC mode, so check operand modes. */
2335 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2336 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2337 return 1;
2338 break;
2339
2340 case FIX:
2341 /* Conversion of floating point might trap. */
2342 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2343 return 1;
2344 break;
2345
2346 case NEG:
2347 case ABS:
2348 case SUBREG:
2349 /* These operations don't trap even with floating point. */
2350 break;
2351
2352 default:
2353 /* Any floating arithmetic may trap. */
2354 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2355 && flag_trapping_math)
2356 return 1;
2357 }
2358
2359 fmt = GET_RTX_FORMAT (code);
2360 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2361 {
2362 if (fmt[i] == 'e')
2363 {
2364 if (may_trap_p_1 (XEXP (x, i), flags))
2365 return 1;
2366 }
2367 else if (fmt[i] == 'E')
2368 {
2369 int j;
2370 for (j = 0; j < XVECLEN (x, i); j++)
2371 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2372 return 1;
2373 }
2374 }
2375 return 0;
2376 }
2377
2378 /* Return nonzero if evaluating rtx X might cause a trap. */
2379
2380 int
2381 may_trap_p (const_rtx x)
2382 {
2383 return may_trap_p_1 (x, 0);
2384 }
2385
2386 /* Same as above, but additionally return nonzero if evaluating rtx X might
2387 cause a fault. We define a fault for the purpose of this function as a
2388 erroneous execution condition that cannot be encountered during the normal
2389 execution of a valid program; the typical example is an unaligned memory
2390 access on a strict alignment machine. The compiler guarantees that it
2391 doesn't generate code that will fault from a valid program, but this
2392 guarantee doesn't mean anything for individual instructions. Consider
2393 the following example:
2394
2395 struct S { int d; union { char *cp; int *ip; }; };
2396
2397 int foo(struct S *s)
2398 {
2399 if (s->d == 1)
2400 return *s->ip;
2401 else
2402 return *s->cp;
2403 }
2404
2405 on a strict alignment machine. In a valid program, foo will never be
2406 invoked on a structure for which d is equal to 1 and the underlying
2407 unique field of the union not aligned on a 4-byte boundary, but the
2408 expression *s->ip might cause a fault if considered individually.
2409
2410 At the RTL level, potentially problematic expressions will almost always
2411 verify may_trap_p; for example, the above dereference can be emitted as
2412 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2413 However, suppose that foo is inlined in a caller that causes s->cp to
2414 point to a local character variable and guarantees that s->d is not set
2415 to 1; foo may have been effectively translated into pseudo-RTL as:
2416
2417 if ((reg:SI) == 1)
2418 (set (reg:SI) (mem:SI (%fp - 7)))
2419 else
2420 (set (reg:QI) (mem:QI (%fp - 7)))
2421
2422 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2423 memory reference to a stack slot, but it will certainly cause a fault
2424 on a strict alignment machine. */
2425
2426 int
2427 may_trap_or_fault_p (const_rtx x)
2428 {
2429 return may_trap_p_1 (x, 1);
2430 }
2431 \f
2432 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2433 i.e., an inequality. */
2434
2435 int
2436 inequality_comparisons_p (const_rtx x)
2437 {
2438 const char *fmt;
2439 int len, i;
2440 const enum rtx_code code = GET_CODE (x);
2441
2442 switch (code)
2443 {
2444 case REG:
2445 case SCRATCH:
2446 case PC:
2447 case CC0:
2448 case CONST_INT:
2449 case CONST_DOUBLE:
2450 case CONST_FIXED:
2451 case CONST_VECTOR:
2452 case CONST:
2453 case LABEL_REF:
2454 case SYMBOL_REF:
2455 return 0;
2456
2457 case LT:
2458 case LTU:
2459 case GT:
2460 case GTU:
2461 case LE:
2462 case LEU:
2463 case GE:
2464 case GEU:
2465 return 1;
2466
2467 default:
2468 break;
2469 }
2470
2471 len = GET_RTX_LENGTH (code);
2472 fmt = GET_RTX_FORMAT (code);
2473
2474 for (i = 0; i < len; i++)
2475 {
2476 if (fmt[i] == 'e')
2477 {
2478 if (inequality_comparisons_p (XEXP (x, i)))
2479 return 1;
2480 }
2481 else if (fmt[i] == 'E')
2482 {
2483 int j;
2484 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2485 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2486 return 1;
2487 }
2488 }
2489
2490 return 0;
2491 }
2492 \f
2493 /* Replace any occurrence of FROM in X with TO. The function does
2494 not enter into CONST_DOUBLE for the replace.
2495
2496 Note that copying is not done so X must not be shared unless all copies
2497 are to be modified. */
2498
2499 rtx
2500 replace_rtx (rtx x, rtx from, rtx to)
2501 {
2502 int i, j;
2503 const char *fmt;
2504
2505 /* The following prevents loops occurrence when we change MEM in
2506 CONST_DOUBLE onto the same CONST_DOUBLE. */
2507 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2508 return x;
2509
2510 if (x == from)
2511 return to;
2512
2513 /* Allow this function to make replacements in EXPR_LISTs. */
2514 if (x == 0)
2515 return 0;
2516
2517 if (GET_CODE (x) == SUBREG)
2518 {
2519 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2520
2521 if (CONST_INT_P (new_rtx))
2522 {
2523 x = simplify_subreg (GET_MODE (x), new_rtx,
2524 GET_MODE (SUBREG_REG (x)),
2525 SUBREG_BYTE (x));
2526 gcc_assert (x);
2527 }
2528 else
2529 SUBREG_REG (x) = new_rtx;
2530
2531 return x;
2532 }
2533 else if (GET_CODE (x) == ZERO_EXTEND)
2534 {
2535 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2536
2537 if (CONST_INT_P (new_rtx))
2538 {
2539 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2540 new_rtx, GET_MODE (XEXP (x, 0)));
2541 gcc_assert (x);
2542 }
2543 else
2544 XEXP (x, 0) = new_rtx;
2545
2546 return x;
2547 }
2548
2549 fmt = GET_RTX_FORMAT (GET_CODE (x));
2550 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2551 {
2552 if (fmt[i] == 'e')
2553 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2554 else if (fmt[i] == 'E')
2555 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2556 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2557 }
2558
2559 return x;
2560 }
2561 \f
2562 /* Replace occurrences of the old label in *X with the new one.
2563 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2564
2565 int
2566 replace_label (rtx *x, void *data)
2567 {
2568 rtx l = *x;
2569 rtx old_label = ((replace_label_data *) data)->r1;
2570 rtx new_label = ((replace_label_data *) data)->r2;
2571 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2572
2573 if (l == NULL_RTX)
2574 return 0;
2575
2576 if (GET_CODE (l) == SYMBOL_REF
2577 && CONSTANT_POOL_ADDRESS_P (l))
2578 {
2579 rtx c = get_pool_constant (l);
2580 if (rtx_referenced_p (old_label, c))
2581 {
2582 rtx new_c, new_l;
2583 replace_label_data *d = (replace_label_data *) data;
2584
2585 /* Create a copy of constant C; replace the label inside
2586 but do not update LABEL_NUSES because uses in constant pool
2587 are not counted. */
2588 new_c = copy_rtx (c);
2589 d->update_label_nuses = false;
2590 for_each_rtx (&new_c, replace_label, data);
2591 d->update_label_nuses = update_label_nuses;
2592
2593 /* Add the new constant NEW_C to constant pool and replace
2594 the old reference to constant by new reference. */
2595 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2596 *x = replace_rtx (l, l, new_l);
2597 }
2598 return 0;
2599 }
2600
2601 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2602 field. This is not handled by for_each_rtx because it doesn't
2603 handle unprinted ('0') fields. */
2604 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2605 JUMP_LABEL (l) = new_label;
2606
2607 if ((GET_CODE (l) == LABEL_REF
2608 || GET_CODE (l) == INSN_LIST)
2609 && XEXP (l, 0) == old_label)
2610 {
2611 XEXP (l, 0) = new_label;
2612 if (update_label_nuses)
2613 {
2614 ++LABEL_NUSES (new_label);
2615 --LABEL_NUSES (old_label);
2616 }
2617 return 0;
2618 }
2619
2620 return 0;
2621 }
2622
2623 /* When *BODY is equal to X or X is directly referenced by *BODY
2624 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2625 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2626
2627 static int
2628 rtx_referenced_p_1 (rtx *body, void *x)
2629 {
2630 rtx y = (rtx) x;
2631
2632 if (*body == NULL_RTX)
2633 return y == NULL_RTX;
2634
2635 /* Return true if a label_ref *BODY refers to label Y. */
2636 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2637 return XEXP (*body, 0) == y;
2638
2639 /* If *BODY is a reference to pool constant traverse the constant. */
2640 if (GET_CODE (*body) == SYMBOL_REF
2641 && CONSTANT_POOL_ADDRESS_P (*body))
2642 return rtx_referenced_p (y, get_pool_constant (*body));
2643
2644 /* By default, compare the RTL expressions. */
2645 return rtx_equal_p (*body, y);
2646 }
2647
2648 /* Return true if X is referenced in BODY. */
2649
2650 int
2651 rtx_referenced_p (rtx x, rtx body)
2652 {
2653 return for_each_rtx (&body, rtx_referenced_p_1, x);
2654 }
2655
2656 /* If INSN is a tablejump return true and store the label (before jump table) to
2657 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2658
2659 bool
2660 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2661 {
2662 rtx label, table;
2663
2664 if (JUMP_P (insn)
2665 && (label = JUMP_LABEL (insn)) != NULL_RTX
2666 && (table = next_active_insn (label)) != NULL_RTX
2667 && JUMP_TABLE_DATA_P (table))
2668 {
2669 if (labelp)
2670 *labelp = label;
2671 if (tablep)
2672 *tablep = table;
2673 return true;
2674 }
2675 return false;
2676 }
2677
2678 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2679 constant that is not in the constant pool and not in the condition
2680 of an IF_THEN_ELSE. */
2681
2682 static int
2683 computed_jump_p_1 (const_rtx x)
2684 {
2685 const enum rtx_code code = GET_CODE (x);
2686 int i, j;
2687 const char *fmt;
2688
2689 switch (code)
2690 {
2691 case LABEL_REF:
2692 case PC:
2693 return 0;
2694
2695 case CONST:
2696 case CONST_INT:
2697 case CONST_DOUBLE:
2698 case CONST_FIXED:
2699 case CONST_VECTOR:
2700 case SYMBOL_REF:
2701 case REG:
2702 return 1;
2703
2704 case MEM:
2705 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2706 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2707
2708 case IF_THEN_ELSE:
2709 return (computed_jump_p_1 (XEXP (x, 1))
2710 || computed_jump_p_1 (XEXP (x, 2)));
2711
2712 default:
2713 break;
2714 }
2715
2716 fmt = GET_RTX_FORMAT (code);
2717 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2718 {
2719 if (fmt[i] == 'e'
2720 && computed_jump_p_1 (XEXP (x, i)))
2721 return 1;
2722
2723 else if (fmt[i] == 'E')
2724 for (j = 0; j < XVECLEN (x, i); j++)
2725 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2726 return 1;
2727 }
2728
2729 return 0;
2730 }
2731
2732 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2733
2734 Tablejumps and casesi insns are not considered indirect jumps;
2735 we can recognize them by a (use (label_ref)). */
2736
2737 int
2738 computed_jump_p (const_rtx insn)
2739 {
2740 int i;
2741 if (JUMP_P (insn))
2742 {
2743 rtx pat = PATTERN (insn);
2744
2745 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2746 if (JUMP_LABEL (insn) != NULL)
2747 return 0;
2748
2749 if (GET_CODE (pat) == PARALLEL)
2750 {
2751 int len = XVECLEN (pat, 0);
2752 int has_use_labelref = 0;
2753
2754 for (i = len - 1; i >= 0; i--)
2755 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2756 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2757 == LABEL_REF))
2758 has_use_labelref = 1;
2759
2760 if (! has_use_labelref)
2761 for (i = len - 1; i >= 0; i--)
2762 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2763 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2764 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2765 return 1;
2766 }
2767 else if (GET_CODE (pat) == SET
2768 && SET_DEST (pat) == pc_rtx
2769 && computed_jump_p_1 (SET_SRC (pat)))
2770 return 1;
2771 }
2772 return 0;
2773 }
2774
2775 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2776 calls. Processes the subexpressions of EXP and passes them to F. */
2777 static int
2778 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2779 {
2780 int result, i, j;
2781 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2782 rtx *x;
2783
2784 for (; format[n] != '\0'; n++)
2785 {
2786 switch (format[n])
2787 {
2788 case 'e':
2789 /* Call F on X. */
2790 x = &XEXP (exp, n);
2791 result = (*f) (x, data);
2792 if (result == -1)
2793 /* Do not traverse sub-expressions. */
2794 continue;
2795 else if (result != 0)
2796 /* Stop the traversal. */
2797 return result;
2798
2799 if (*x == NULL_RTX)
2800 /* There are no sub-expressions. */
2801 continue;
2802
2803 i = non_rtx_starting_operands[GET_CODE (*x)];
2804 if (i >= 0)
2805 {
2806 result = for_each_rtx_1 (*x, i, f, data);
2807 if (result != 0)
2808 return result;
2809 }
2810 break;
2811
2812 case 'V':
2813 case 'E':
2814 if (XVEC (exp, n) == 0)
2815 continue;
2816 for (j = 0; j < XVECLEN (exp, n); ++j)
2817 {
2818 /* Call F on X. */
2819 x = &XVECEXP (exp, n, j);
2820 result = (*f) (x, data);
2821 if (result == -1)
2822 /* Do not traverse sub-expressions. */
2823 continue;
2824 else if (result != 0)
2825 /* Stop the traversal. */
2826 return result;
2827
2828 if (*x == NULL_RTX)
2829 /* There are no sub-expressions. */
2830 continue;
2831
2832 i = non_rtx_starting_operands[GET_CODE (*x)];
2833 if (i >= 0)
2834 {
2835 result = for_each_rtx_1 (*x, i, f, data);
2836 if (result != 0)
2837 return result;
2838 }
2839 }
2840 break;
2841
2842 default:
2843 /* Nothing to do. */
2844 break;
2845 }
2846 }
2847
2848 return 0;
2849 }
2850
2851 /* Traverse X via depth-first search, calling F for each
2852 sub-expression (including X itself). F is also passed the DATA.
2853 If F returns -1, do not traverse sub-expressions, but continue
2854 traversing the rest of the tree. If F ever returns any other
2855 nonzero value, stop the traversal, and return the value returned
2856 by F. Otherwise, return 0. This function does not traverse inside
2857 tree structure that contains RTX_EXPRs, or into sub-expressions
2858 whose format code is `0' since it is not known whether or not those
2859 codes are actually RTL.
2860
2861 This routine is very general, and could (should?) be used to
2862 implement many of the other routines in this file. */
2863
2864 int
2865 for_each_rtx (rtx *x, rtx_function f, void *data)
2866 {
2867 int result;
2868 int i;
2869
2870 /* Call F on X. */
2871 result = (*f) (x, data);
2872 if (result == -1)
2873 /* Do not traverse sub-expressions. */
2874 return 0;
2875 else if (result != 0)
2876 /* Stop the traversal. */
2877 return result;
2878
2879 if (*x == NULL_RTX)
2880 /* There are no sub-expressions. */
2881 return 0;
2882
2883 i = non_rtx_starting_operands[GET_CODE (*x)];
2884 if (i < 0)
2885 return 0;
2886
2887 return for_each_rtx_1 (*x, i, f, data);
2888 }
2889
2890
2891 /* Searches X for any reference to REGNO, returning the rtx of the
2892 reference found if any. Otherwise, returns NULL_RTX. */
2893
2894 rtx
2895 regno_use_in (unsigned int regno, rtx x)
2896 {
2897 const char *fmt;
2898 int i, j;
2899 rtx tem;
2900
2901 if (REG_P (x) && REGNO (x) == regno)
2902 return x;
2903
2904 fmt = GET_RTX_FORMAT (GET_CODE (x));
2905 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2906 {
2907 if (fmt[i] == 'e')
2908 {
2909 if ((tem = regno_use_in (regno, XEXP (x, i))))
2910 return tem;
2911 }
2912 else if (fmt[i] == 'E')
2913 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2914 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2915 return tem;
2916 }
2917
2918 return NULL_RTX;
2919 }
2920
2921 /* Return a value indicating whether OP, an operand of a commutative
2922 operation, is preferred as the first or second operand. The higher
2923 the value, the stronger the preference for being the first operand.
2924 We use negative values to indicate a preference for the first operand
2925 and positive values for the second operand. */
2926
2927 int
2928 commutative_operand_precedence (rtx op)
2929 {
2930 enum rtx_code code = GET_CODE (op);
2931
2932 /* Constants always come the second operand. Prefer "nice" constants. */
2933 if (code == CONST_INT)
2934 return -8;
2935 if (code == CONST_DOUBLE)
2936 return -7;
2937 if (code == CONST_FIXED)
2938 return -7;
2939 op = avoid_constant_pool_reference (op);
2940 code = GET_CODE (op);
2941
2942 switch (GET_RTX_CLASS (code))
2943 {
2944 case RTX_CONST_OBJ:
2945 if (code == CONST_INT)
2946 return -6;
2947 if (code == CONST_DOUBLE)
2948 return -5;
2949 if (code == CONST_FIXED)
2950 return -5;
2951 return -4;
2952
2953 case RTX_EXTRA:
2954 /* SUBREGs of objects should come second. */
2955 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2956 return -3;
2957 return 0;
2958
2959 case RTX_OBJ:
2960 /* Complex expressions should be the first, so decrease priority
2961 of objects. Prefer pointer objects over non pointer objects. */
2962 if ((REG_P (op) && REG_POINTER (op))
2963 || (MEM_P (op) && MEM_POINTER (op)))
2964 return -1;
2965 return -2;
2966
2967 case RTX_COMM_ARITH:
2968 /* Prefer operands that are themselves commutative to be first.
2969 This helps to make things linear. In particular,
2970 (and (and (reg) (reg)) (not (reg))) is canonical. */
2971 return 4;
2972
2973 case RTX_BIN_ARITH:
2974 /* If only one operand is a binary expression, it will be the first
2975 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2976 is canonical, although it will usually be further simplified. */
2977 return 2;
2978
2979 case RTX_UNARY:
2980 /* Then prefer NEG and NOT. */
2981 if (code == NEG || code == NOT)
2982 return 1;
2983
2984 default:
2985 return 0;
2986 }
2987 }
2988
2989 /* Return 1 iff it is necessary to swap operands of commutative operation
2990 in order to canonicalize expression. */
2991
2992 bool
2993 swap_commutative_operands_p (rtx x, rtx y)
2994 {
2995 return (commutative_operand_precedence (x)
2996 < commutative_operand_precedence (y));
2997 }
2998
2999 /* Return 1 if X is an autoincrement side effect and the register is
3000 not the stack pointer. */
3001 int
3002 auto_inc_p (const_rtx x)
3003 {
3004 switch (GET_CODE (x))
3005 {
3006 case PRE_INC:
3007 case POST_INC:
3008 case PRE_DEC:
3009 case POST_DEC:
3010 case PRE_MODIFY:
3011 case POST_MODIFY:
3012 /* There are no REG_INC notes for SP. */
3013 if (XEXP (x, 0) != stack_pointer_rtx)
3014 return 1;
3015 default:
3016 break;
3017 }
3018 return 0;
3019 }
3020
3021 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3022 int
3023 loc_mentioned_in_p (rtx *loc, const_rtx in)
3024 {
3025 enum rtx_code code;
3026 const char *fmt;
3027 int i, j;
3028
3029 if (!in)
3030 return 0;
3031
3032 code = GET_CODE (in);
3033 fmt = GET_RTX_FORMAT (code);
3034 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3035 {
3036 if (fmt[i] == 'e')
3037 {
3038 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3039 return 1;
3040 }
3041 else if (fmt[i] == 'E')
3042 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3043 if (loc == &XVECEXP (in, i, j)
3044 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3045 return 1;
3046 }
3047 return 0;
3048 }
3049
3050 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3051 and SUBREG_BYTE, return the bit offset where the subreg begins
3052 (counting from the least significant bit of the operand). */
3053
3054 unsigned int
3055 subreg_lsb_1 (enum machine_mode outer_mode,
3056 enum machine_mode inner_mode,
3057 unsigned int subreg_byte)
3058 {
3059 unsigned int bitpos;
3060 unsigned int byte;
3061 unsigned int word;
3062
3063 /* A paradoxical subreg begins at bit position 0. */
3064 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3065 return 0;
3066
3067 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3068 /* If the subreg crosses a word boundary ensure that
3069 it also begins and ends on a word boundary. */
3070 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3071 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3072 && (subreg_byte % UNITS_PER_WORD
3073 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3074
3075 if (WORDS_BIG_ENDIAN)
3076 word = (GET_MODE_SIZE (inner_mode)
3077 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3078 else
3079 word = subreg_byte / UNITS_PER_WORD;
3080 bitpos = word * BITS_PER_WORD;
3081
3082 if (BYTES_BIG_ENDIAN)
3083 byte = (GET_MODE_SIZE (inner_mode)
3084 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3085 else
3086 byte = subreg_byte % UNITS_PER_WORD;
3087 bitpos += byte * BITS_PER_UNIT;
3088
3089 return bitpos;
3090 }
3091
3092 /* Given a subreg X, return the bit offset where the subreg begins
3093 (counting from the least significant bit of the reg). */
3094
3095 unsigned int
3096 subreg_lsb (const_rtx x)
3097 {
3098 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3099 SUBREG_BYTE (x));
3100 }
3101
3102 /* Fill in information about a subreg of a hard register.
3103 xregno - A regno of an inner hard subreg_reg (or what will become one).
3104 xmode - The mode of xregno.
3105 offset - The byte offset.
3106 ymode - The mode of a top level SUBREG (or what may become one).
3107 info - Pointer to structure to fill in. */
3108 void
3109 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3110 unsigned int offset, enum machine_mode ymode,
3111 struct subreg_info *info)
3112 {
3113 int nregs_xmode, nregs_ymode;
3114 int mode_multiple, nregs_multiple;
3115 int offset_adj, y_offset, y_offset_adj;
3116 int regsize_xmode, regsize_ymode;
3117 bool rknown;
3118
3119 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3120
3121 rknown = false;
3122
3123 /* If there are holes in a non-scalar mode in registers, we expect
3124 that it is made up of its units concatenated together. */
3125 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3126 {
3127 enum machine_mode xmode_unit;
3128
3129 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3130 if (GET_MODE_INNER (xmode) == VOIDmode)
3131 xmode_unit = xmode;
3132 else
3133 xmode_unit = GET_MODE_INNER (xmode);
3134 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3135 gcc_assert (nregs_xmode
3136 == (GET_MODE_NUNITS (xmode)
3137 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3138 gcc_assert (hard_regno_nregs[xregno][xmode]
3139 == (hard_regno_nregs[xregno][xmode_unit]
3140 * GET_MODE_NUNITS (xmode)));
3141
3142 /* You can only ask for a SUBREG of a value with holes in the middle
3143 if you don't cross the holes. (Such a SUBREG should be done by
3144 picking a different register class, or doing it in memory if
3145 necessary.) An example of a value with holes is XCmode on 32-bit
3146 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3147 3 for each part, but in memory it's two 128-bit parts.
3148 Padding is assumed to be at the end (not necessarily the 'high part')
3149 of each unit. */
3150 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3151 < GET_MODE_NUNITS (xmode))
3152 && (offset / GET_MODE_SIZE (xmode_unit)
3153 != ((offset + GET_MODE_SIZE (ymode) - 1)
3154 / GET_MODE_SIZE (xmode_unit))))
3155 {
3156 info->representable_p = false;
3157 rknown = true;
3158 }
3159 }
3160 else
3161 nregs_xmode = hard_regno_nregs[xregno][xmode];
3162
3163 nregs_ymode = hard_regno_nregs[xregno][ymode];
3164
3165 /* Paradoxical subregs are otherwise valid. */
3166 if (!rknown
3167 && offset == 0
3168 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3169 {
3170 info->representable_p = true;
3171 /* If this is a big endian paradoxical subreg, which uses more
3172 actual hard registers than the original register, we must
3173 return a negative offset so that we find the proper highpart
3174 of the register. */
3175 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3176 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3177 info->offset = nregs_xmode - nregs_ymode;
3178 else
3179 info->offset = 0;
3180 info->nregs = nregs_ymode;
3181 return;
3182 }
3183
3184 /* If registers store different numbers of bits in the different
3185 modes, we cannot generally form this subreg. */
3186 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3187 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3188 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3189 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3190 {
3191 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3192 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3193 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3194 {
3195 info->representable_p = false;
3196 info->nregs
3197 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3198 info->offset = offset / regsize_xmode;
3199 return;
3200 }
3201 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3202 {
3203 info->representable_p = false;
3204 info->nregs
3205 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3206 info->offset = offset / regsize_xmode;
3207 return;
3208 }
3209 }
3210
3211 /* Lowpart subregs are otherwise valid. */
3212 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3213 {
3214 info->representable_p = true;
3215 rknown = true;
3216
3217 if (offset == 0 || nregs_xmode == nregs_ymode)
3218 {
3219 info->offset = 0;
3220 info->nregs = nregs_ymode;
3221 return;
3222 }
3223 }
3224
3225 /* This should always pass, otherwise we don't know how to verify
3226 the constraint. These conditions may be relaxed but
3227 subreg_regno_offset would need to be redesigned. */
3228 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3229 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3230
3231 /* The XMODE value can be seen as a vector of NREGS_XMODE
3232 values. The subreg must represent a lowpart of given field.
3233 Compute what field it is. */
3234 offset_adj = offset;
3235 offset_adj -= subreg_lowpart_offset (ymode,
3236 mode_for_size (GET_MODE_BITSIZE (xmode)
3237 / nregs_xmode,
3238 MODE_INT, 0));
3239
3240 /* Size of ymode must not be greater than the size of xmode. */
3241 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3242 gcc_assert (mode_multiple != 0);
3243
3244 y_offset = offset / GET_MODE_SIZE (ymode);
3245 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3246 nregs_multiple = nregs_xmode / nregs_ymode;
3247
3248 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3249 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3250
3251 if (!rknown)
3252 {
3253 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3254 rknown = true;
3255 }
3256 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3257 info->nregs = nregs_ymode;
3258 }
3259
3260 /* This function returns the regno offset of a subreg expression.
3261 xregno - A regno of an inner hard subreg_reg (or what will become one).
3262 xmode - The mode of xregno.
3263 offset - The byte offset.
3264 ymode - The mode of a top level SUBREG (or what may become one).
3265 RETURN - The regno offset which would be used. */
3266 unsigned int
3267 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3268 unsigned int offset, enum machine_mode ymode)
3269 {
3270 struct subreg_info info;
3271 subreg_get_info (xregno, xmode, offset, ymode, &info);
3272 return info.offset;
3273 }
3274
3275 /* This function returns true when the offset is representable via
3276 subreg_offset in the given regno.
3277 xregno - A regno of an inner hard subreg_reg (or what will become one).
3278 xmode - The mode of xregno.
3279 offset - The byte offset.
3280 ymode - The mode of a top level SUBREG (or what may become one).
3281 RETURN - Whether the offset is representable. */
3282 bool
3283 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3284 unsigned int offset, enum machine_mode ymode)
3285 {
3286 struct subreg_info info;
3287 subreg_get_info (xregno, xmode, offset, ymode, &info);
3288 return info.representable_p;
3289 }
3290
3291 /* Return the number of a YMODE register to which
3292
3293 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3294
3295 can be simplified. Return -1 if the subreg can't be simplified.
3296
3297 XREGNO is a hard register number. */
3298
3299 int
3300 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3301 unsigned int offset, enum machine_mode ymode)
3302 {
3303 struct subreg_info info;
3304 unsigned int yregno;
3305
3306 #ifdef CANNOT_CHANGE_MODE_CLASS
3307 /* Give the backend a chance to disallow the mode change. */
3308 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3309 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3310 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3311 return -1;
3312 #endif
3313
3314 /* We shouldn't simplify stack-related registers. */
3315 if ((!reload_completed || frame_pointer_needed)
3316 && xregno == FRAME_POINTER_REGNUM)
3317 return -1;
3318
3319 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3320 && xregno == ARG_POINTER_REGNUM)
3321 return -1;
3322
3323 if (xregno == STACK_POINTER_REGNUM)
3324 return -1;
3325
3326 /* Try to get the register offset. */
3327 subreg_get_info (xregno, xmode, offset, ymode, &info);
3328 if (!info.representable_p)
3329 return -1;
3330
3331 /* Make sure that the offsetted register value is in range. */
3332 yregno = xregno + info.offset;
3333 if (!HARD_REGISTER_NUM_P (yregno))
3334 return -1;
3335
3336 /* See whether (reg:YMODE YREGNO) is valid.
3337
3338 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3339 This is a kludge to work around how float/complex arguments are passed
3340 on 32-bit SPARC and should be fixed. */
3341 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3342 && HARD_REGNO_MODE_OK (xregno, xmode))
3343 return -1;
3344
3345 return (int) yregno;
3346 }
3347
3348 /* Return the final regno that a subreg expression refers to. */
3349 unsigned int
3350 subreg_regno (const_rtx x)
3351 {
3352 unsigned int ret;
3353 rtx subreg = SUBREG_REG (x);
3354 int regno = REGNO (subreg);
3355
3356 ret = regno + subreg_regno_offset (regno,
3357 GET_MODE (subreg),
3358 SUBREG_BYTE (x),
3359 GET_MODE (x));
3360 return ret;
3361
3362 }
3363
3364 /* Return the number of registers that a subreg expression refers
3365 to. */
3366 unsigned int
3367 subreg_nregs (const_rtx x)
3368 {
3369 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3370 }
3371
3372 /* Return the number of registers that a subreg REG with REGNO
3373 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3374 changed so that the regno can be passed in. */
3375
3376 unsigned int
3377 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3378 {
3379 struct subreg_info info;
3380 rtx subreg = SUBREG_REG (x);
3381
3382 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3383 &info);
3384 return info.nregs;
3385 }
3386
3387
3388 struct parms_set_data
3389 {
3390 int nregs;
3391 HARD_REG_SET regs;
3392 };
3393
3394 /* Helper function for noticing stores to parameter registers. */
3395 static void
3396 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3397 {
3398 struct parms_set_data *const d = (struct parms_set_data *) data;
3399 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3400 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3401 {
3402 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3403 d->nregs--;
3404 }
3405 }
3406
3407 /* Look backward for first parameter to be loaded.
3408 Note that loads of all parameters will not necessarily be
3409 found if CSE has eliminated some of them (e.g., an argument
3410 to the outer function is passed down as a parameter).
3411 Do not skip BOUNDARY. */
3412 rtx
3413 find_first_parameter_load (rtx call_insn, rtx boundary)
3414 {
3415 struct parms_set_data parm;
3416 rtx p, before, first_set;
3417
3418 /* Since different machines initialize their parameter registers
3419 in different orders, assume nothing. Collect the set of all
3420 parameter registers. */
3421 CLEAR_HARD_REG_SET (parm.regs);
3422 parm.nregs = 0;
3423 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3424 if (GET_CODE (XEXP (p, 0)) == USE
3425 && REG_P (XEXP (XEXP (p, 0), 0)))
3426 {
3427 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3428
3429 /* We only care about registers which can hold function
3430 arguments. */
3431 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3432 continue;
3433
3434 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3435 parm.nregs++;
3436 }
3437 before = call_insn;
3438 first_set = call_insn;
3439
3440 /* Search backward for the first set of a register in this set. */
3441 while (parm.nregs && before != boundary)
3442 {
3443 before = PREV_INSN (before);
3444
3445 /* It is possible that some loads got CSEed from one call to
3446 another. Stop in that case. */
3447 if (CALL_P (before))
3448 break;
3449
3450 /* Our caller needs either ensure that we will find all sets
3451 (in case code has not been optimized yet), or take care
3452 for possible labels in a way by setting boundary to preceding
3453 CODE_LABEL. */
3454 if (LABEL_P (before))
3455 {
3456 gcc_assert (before == boundary);
3457 break;
3458 }
3459
3460 if (INSN_P (before))
3461 {
3462 int nregs_old = parm.nregs;
3463 note_stores (PATTERN (before), parms_set, &parm);
3464 /* If we found something that did not set a parameter reg,
3465 we're done. Do not keep going, as that might result
3466 in hoisting an insn before the setting of a pseudo
3467 that is used by the hoisted insn. */
3468 if (nregs_old != parm.nregs)
3469 first_set = before;
3470 else
3471 break;
3472 }
3473 }
3474 return first_set;
3475 }
3476
3477 /* Return true if we should avoid inserting code between INSN and preceding
3478 call instruction. */
3479
3480 bool
3481 keep_with_call_p (const_rtx insn)
3482 {
3483 rtx set;
3484
3485 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3486 {
3487 if (REG_P (SET_DEST (set))
3488 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3489 && fixed_regs[REGNO (SET_DEST (set))]
3490 && general_operand (SET_SRC (set), VOIDmode))
3491 return true;
3492 if (REG_P (SET_SRC (set))
3493 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3494 && REG_P (SET_DEST (set))
3495 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3496 return true;
3497 /* There may be a stack pop just after the call and before the store
3498 of the return register. Search for the actual store when deciding
3499 if we can break or not. */
3500 if (SET_DEST (set) == stack_pointer_rtx)
3501 {
3502 /* This CONST_CAST is okay because next_nonnote_insn just
3503 returns its argument and we assign it to a const_rtx
3504 variable. */
3505 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3506 if (i2 && keep_with_call_p (i2))
3507 return true;
3508 }
3509 }
3510 return false;
3511 }
3512
3513 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3514 to non-complex jumps. That is, direct unconditional, conditional,
3515 and tablejumps, but not computed jumps or returns. It also does
3516 not apply to the fallthru case of a conditional jump. */
3517
3518 bool
3519 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3520 {
3521 rtx tmp = JUMP_LABEL (jump_insn);
3522
3523 if (label == tmp)
3524 return true;
3525
3526 if (tablejump_p (jump_insn, NULL, &tmp))
3527 {
3528 rtvec vec = XVEC (PATTERN (tmp),
3529 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3530 int i, veclen = GET_NUM_ELEM (vec);
3531
3532 for (i = 0; i < veclen; ++i)
3533 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3534 return true;
3535 }
3536
3537 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3538 return true;
3539
3540 return false;
3541 }
3542
3543 \f
3544 /* Return an estimate of the cost of computing rtx X.
3545 One use is in cse, to decide which expression to keep in the hash table.
3546 Another is in rtl generation, to pick the cheapest way to multiply.
3547 Other uses like the latter are expected in the future.
3548
3549 SPEED parameter specify whether costs optimized for speed or size should
3550 be returned. */
3551
3552 int
3553 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3554 {
3555 int i, j;
3556 enum rtx_code code;
3557 const char *fmt;
3558 int total;
3559
3560 if (x == 0)
3561 return 0;
3562
3563 /* Compute the default costs of certain things.
3564 Note that targetm.rtx_costs can override the defaults. */
3565
3566 code = GET_CODE (x);
3567 switch (code)
3568 {
3569 case MULT:
3570 total = COSTS_N_INSNS (5);
3571 break;
3572 case DIV:
3573 case UDIV:
3574 case MOD:
3575 case UMOD:
3576 total = COSTS_N_INSNS (7);
3577 break;
3578 case USE:
3579 /* Used in combine.c as a marker. */
3580 total = 0;
3581 break;
3582 default:
3583 total = COSTS_N_INSNS (1);
3584 }
3585
3586 switch (code)
3587 {
3588 case REG:
3589 return 0;
3590
3591 case SUBREG:
3592 total = 0;
3593 /* If we can't tie these modes, make this expensive. The larger
3594 the mode, the more expensive it is. */
3595 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3596 return COSTS_N_INSNS (2
3597 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3598 break;
3599
3600 default:
3601 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3602 return total;
3603 break;
3604 }
3605
3606 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3607 which is already in total. */
3608
3609 fmt = GET_RTX_FORMAT (code);
3610 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3611 if (fmt[i] == 'e')
3612 total += rtx_cost (XEXP (x, i), code, speed);
3613 else if (fmt[i] == 'E')
3614 for (j = 0; j < XVECLEN (x, i); j++)
3615 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3616
3617 return total;
3618 }
3619
3620 /* Fill in the structure C with information about both speed and size rtx
3621 costs for X, with outer code OUTER. */
3622
3623 void
3624 get_full_rtx_cost (rtx x, enum rtx_code outer, struct full_rtx_costs *c)
3625 {
3626 c->speed = rtx_cost (x, outer, true);
3627 c->size = rtx_cost (x, outer, false);
3628 }
3629
3630 \f
3631 /* Return cost of address expression X.
3632 Expect that X is properly formed address reference.
3633
3634 SPEED parameter specify whether costs optimized for speed or size should
3635 be returned. */
3636
3637 int
3638 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3639 {
3640 /* We may be asked for cost of various unusual addresses, such as operands
3641 of push instruction. It is not worthwhile to complicate writing
3642 of the target hook by such cases. */
3643
3644 if (!memory_address_addr_space_p (mode, x, as))
3645 return 1000;
3646
3647 return targetm.address_cost (x, speed);
3648 }
3649
3650 /* If the target doesn't override, compute the cost as with arithmetic. */
3651
3652 int
3653 default_address_cost (rtx x, bool speed)
3654 {
3655 return rtx_cost (x, MEM, speed);
3656 }
3657 \f
3658
3659 unsigned HOST_WIDE_INT
3660 nonzero_bits (const_rtx x, enum machine_mode mode)
3661 {
3662 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3663 }
3664
3665 unsigned int
3666 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3667 {
3668 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3669 }
3670
3671 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3672 It avoids exponential behavior in nonzero_bits1 when X has
3673 identical subexpressions on the first or the second level. */
3674
3675 static unsigned HOST_WIDE_INT
3676 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3677 enum machine_mode known_mode,
3678 unsigned HOST_WIDE_INT known_ret)
3679 {
3680 if (x == known_x && mode == known_mode)
3681 return known_ret;
3682
3683 /* Try to find identical subexpressions. If found call
3684 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3685 precomputed value for the subexpression as KNOWN_RET. */
3686
3687 if (ARITHMETIC_P (x))
3688 {
3689 rtx x0 = XEXP (x, 0);
3690 rtx x1 = XEXP (x, 1);
3691
3692 /* Check the first level. */
3693 if (x0 == x1)
3694 return nonzero_bits1 (x, mode, x0, mode,
3695 cached_nonzero_bits (x0, mode, known_x,
3696 known_mode, known_ret));
3697
3698 /* Check the second level. */
3699 if (ARITHMETIC_P (x0)
3700 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3701 return nonzero_bits1 (x, mode, x1, mode,
3702 cached_nonzero_bits (x1, mode, known_x,
3703 known_mode, known_ret));
3704
3705 if (ARITHMETIC_P (x1)
3706 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3707 return nonzero_bits1 (x, mode, x0, mode,
3708 cached_nonzero_bits (x0, mode, known_x,
3709 known_mode, known_ret));
3710 }
3711
3712 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3713 }
3714
3715 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3716 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3717 is less useful. We can't allow both, because that results in exponential
3718 run time recursion. There is a nullstone testcase that triggered
3719 this. This macro avoids accidental uses of num_sign_bit_copies. */
3720 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3721
3722 /* Given an expression, X, compute which bits in X can be nonzero.
3723 We don't care about bits outside of those defined in MODE.
3724
3725 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3726 an arithmetic operation, we can do better. */
3727
3728 static unsigned HOST_WIDE_INT
3729 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3730 enum machine_mode known_mode,
3731 unsigned HOST_WIDE_INT known_ret)
3732 {
3733 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3734 unsigned HOST_WIDE_INT inner_nz;
3735 enum rtx_code code;
3736 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3737
3738 /* For floating-point and vector values, assume all bits are needed. */
3739 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3740 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3741 return nonzero;
3742
3743 /* If X is wider than MODE, use its mode instead. */
3744 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3745 {
3746 mode = GET_MODE (x);
3747 nonzero = GET_MODE_MASK (mode);
3748 mode_width = GET_MODE_BITSIZE (mode);
3749 }
3750
3751 if (mode_width > HOST_BITS_PER_WIDE_INT)
3752 /* Our only callers in this case look for single bit values. So
3753 just return the mode mask. Those tests will then be false. */
3754 return nonzero;
3755
3756 #ifndef WORD_REGISTER_OPERATIONS
3757 /* If MODE is wider than X, but both are a single word for both the host
3758 and target machines, we can compute this from which bits of the
3759 object might be nonzero in its own mode, taking into account the fact
3760 that on many CISC machines, accessing an object in a wider mode
3761 causes the high-order bits to become undefined. So they are
3762 not known to be zero. */
3763
3764 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3765 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3766 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3767 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3768 {
3769 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3770 known_x, known_mode, known_ret);
3771 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3772 return nonzero;
3773 }
3774 #endif
3775
3776 code = GET_CODE (x);
3777 switch (code)
3778 {
3779 case REG:
3780 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3781 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3782 all the bits above ptr_mode are known to be zero. */
3783 /* As we do not know which address space the pointer is refering to,
3784 we can do this only if the target does not support different pointer
3785 or address modes depending on the address space. */
3786 if (target_default_pointer_address_modes_p ()
3787 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3788 && REG_POINTER (x))
3789 nonzero &= GET_MODE_MASK (ptr_mode);
3790 #endif
3791
3792 /* Include declared information about alignment of pointers. */
3793 /* ??? We don't properly preserve REG_POINTER changes across
3794 pointer-to-integer casts, so we can't trust it except for
3795 things that we know must be pointers. See execute/960116-1.c. */
3796 if ((x == stack_pointer_rtx
3797 || x == frame_pointer_rtx
3798 || x == arg_pointer_rtx)
3799 && REGNO_POINTER_ALIGN (REGNO (x)))
3800 {
3801 unsigned HOST_WIDE_INT alignment
3802 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3803
3804 #ifdef PUSH_ROUNDING
3805 /* If PUSH_ROUNDING is defined, it is possible for the
3806 stack to be momentarily aligned only to that amount,
3807 so we pick the least alignment. */
3808 if (x == stack_pointer_rtx && PUSH_ARGS)
3809 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3810 alignment);
3811 #endif
3812
3813 nonzero &= ~(alignment - 1);
3814 }
3815
3816 {
3817 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3818 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3819 known_mode, known_ret,
3820 &nonzero_for_hook);
3821
3822 if (new_rtx)
3823 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3824 known_mode, known_ret);
3825
3826 return nonzero_for_hook;
3827 }
3828
3829 case CONST_INT:
3830 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3831 /* If X is negative in MODE, sign-extend the value. */
3832 if (INTVAL (x) > 0
3833 && mode_width < BITS_PER_WORD
3834 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3835 != 0)
3836 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3837 #endif
3838
3839 return UINTVAL (x);
3840
3841 case MEM:
3842 #ifdef LOAD_EXTEND_OP
3843 /* In many, if not most, RISC machines, reading a byte from memory
3844 zeros the rest of the register. Noticing that fact saves a lot
3845 of extra zero-extends. */
3846 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3847 nonzero &= GET_MODE_MASK (GET_MODE (x));
3848 #endif
3849 break;
3850
3851 case EQ: case NE:
3852 case UNEQ: case LTGT:
3853 case GT: case GTU: case UNGT:
3854 case LT: case LTU: case UNLT:
3855 case GE: case GEU: case UNGE:
3856 case LE: case LEU: case UNLE:
3857 case UNORDERED: case ORDERED:
3858 /* If this produces an integer result, we know which bits are set.
3859 Code here used to clear bits outside the mode of X, but that is
3860 now done above. */
3861 /* Mind that MODE is the mode the caller wants to look at this
3862 operation in, and not the actual operation mode. We can wind
3863 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3864 that describes the results of a vector compare. */
3865 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3866 && mode_width <= HOST_BITS_PER_WIDE_INT)
3867 nonzero = STORE_FLAG_VALUE;
3868 break;
3869
3870 case NEG:
3871 #if 0
3872 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3873 and num_sign_bit_copies. */
3874 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3875 == GET_MODE_BITSIZE (GET_MODE (x)))
3876 nonzero = 1;
3877 #endif
3878
3879 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3880 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3881 break;
3882
3883 case ABS:
3884 #if 0
3885 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3886 and num_sign_bit_copies. */
3887 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3888 == GET_MODE_BITSIZE (GET_MODE (x)))
3889 nonzero = 1;
3890 #endif
3891 break;
3892
3893 case TRUNCATE:
3894 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3895 known_x, known_mode, known_ret)
3896 & GET_MODE_MASK (mode));
3897 break;
3898
3899 case ZERO_EXTEND:
3900 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3901 known_x, known_mode, known_ret);
3902 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3903 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3904 break;
3905
3906 case SIGN_EXTEND:
3907 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3908 Otherwise, show all the bits in the outer mode but not the inner
3909 may be nonzero. */
3910 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3911 known_x, known_mode, known_ret);
3912 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3913 {
3914 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3915 if (inner_nz
3916 & (((unsigned HOST_WIDE_INT) 1
3917 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3918 inner_nz |= (GET_MODE_MASK (mode)
3919 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3920 }
3921
3922 nonzero &= inner_nz;
3923 break;
3924
3925 case AND:
3926 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3927 known_x, known_mode, known_ret)
3928 & cached_nonzero_bits (XEXP (x, 1), mode,
3929 known_x, known_mode, known_ret);
3930 break;
3931
3932 case XOR: case IOR:
3933 case UMIN: case UMAX: case SMIN: case SMAX:
3934 {
3935 unsigned HOST_WIDE_INT nonzero0
3936 = cached_nonzero_bits (XEXP (x, 0), mode,
3937 known_x, known_mode, known_ret);
3938
3939 /* Don't call nonzero_bits for the second time if it cannot change
3940 anything. */
3941 if ((nonzero & nonzero0) != nonzero)
3942 nonzero &= nonzero0
3943 | cached_nonzero_bits (XEXP (x, 1), mode,
3944 known_x, known_mode, known_ret);
3945 }
3946 break;
3947
3948 case PLUS: case MINUS:
3949 case MULT:
3950 case DIV: case UDIV:
3951 case MOD: case UMOD:
3952 /* We can apply the rules of arithmetic to compute the number of
3953 high- and low-order zero bits of these operations. We start by
3954 computing the width (position of the highest-order nonzero bit)
3955 and the number of low-order zero bits for each value. */
3956 {
3957 unsigned HOST_WIDE_INT nz0
3958 = cached_nonzero_bits (XEXP (x, 0), mode,
3959 known_x, known_mode, known_ret);
3960 unsigned HOST_WIDE_INT nz1
3961 = cached_nonzero_bits (XEXP (x, 1), mode,
3962 known_x, known_mode, known_ret);
3963 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3964 int width0 = floor_log2 (nz0) + 1;
3965 int width1 = floor_log2 (nz1) + 1;
3966 int low0 = floor_log2 (nz0 & -nz0);
3967 int low1 = floor_log2 (nz1 & -nz1);
3968 unsigned HOST_WIDE_INT op0_maybe_minusp
3969 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3970 unsigned HOST_WIDE_INT op1_maybe_minusp
3971 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3972 unsigned int result_width = mode_width;
3973 int result_low = 0;
3974
3975 switch (code)
3976 {
3977 case PLUS:
3978 result_width = MAX (width0, width1) + 1;
3979 result_low = MIN (low0, low1);
3980 break;
3981 case MINUS:
3982 result_low = MIN (low0, low1);
3983 break;
3984 case MULT:
3985 result_width = width0 + width1;
3986 result_low = low0 + low1;
3987 break;
3988 case DIV:
3989 if (width1 == 0)
3990 break;
3991 if (!op0_maybe_minusp && !op1_maybe_minusp)
3992 result_width = width0;
3993 break;
3994 case UDIV:
3995 if (width1 == 0)
3996 break;
3997 result_width = width0;
3998 break;
3999 case MOD:
4000 if (width1 == 0)
4001 break;
4002 if (!op0_maybe_minusp && !op1_maybe_minusp)
4003 result_width = MIN (width0, width1);
4004 result_low = MIN (low0, low1);
4005 break;
4006 case UMOD:
4007 if (width1 == 0)
4008 break;
4009 result_width = MIN (width0, width1);
4010 result_low = MIN (low0, low1);
4011 break;
4012 default:
4013 gcc_unreachable ();
4014 }
4015
4016 if (result_width < mode_width)
4017 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4018
4019 if (result_low > 0)
4020 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4021
4022 #ifdef POINTERS_EXTEND_UNSIGNED
4023 /* If pointers extend unsigned and this is an addition or subtraction
4024 to a pointer in Pmode, all the bits above ptr_mode are known to be
4025 zero. */
4026 /* As we do not know which address space the pointer is refering to,
4027 we can do this only if the target does not support different pointer
4028 or address modes depending on the address space. */
4029 if (target_default_pointer_address_modes_p ()
4030 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4031 && (code == PLUS || code == MINUS)
4032 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4033 nonzero &= GET_MODE_MASK (ptr_mode);
4034 #endif
4035 }
4036 break;
4037
4038 case ZERO_EXTRACT:
4039 if (CONST_INT_P (XEXP (x, 1))
4040 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4041 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4042 break;
4043
4044 case SUBREG:
4045 /* If this is a SUBREG formed for a promoted variable that has
4046 been zero-extended, we know that at least the high-order bits
4047 are zero, though others might be too. */
4048
4049 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4050 nonzero = GET_MODE_MASK (GET_MODE (x))
4051 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4052 known_x, known_mode, known_ret);
4053
4054 /* If the inner mode is a single word for both the host and target
4055 machines, we can compute this from which bits of the inner
4056 object might be nonzero. */
4057 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4058 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4059 <= HOST_BITS_PER_WIDE_INT))
4060 {
4061 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4062 known_x, known_mode, known_ret);
4063
4064 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4065 /* If this is a typical RISC machine, we only have to worry
4066 about the way loads are extended. */
4067 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4068 ? (((nonzero
4069 & (((unsigned HOST_WIDE_INT) 1
4070 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4071 != 0))
4072 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4073 || !MEM_P (SUBREG_REG (x)))
4074 #endif
4075 {
4076 /* On many CISC machines, accessing an object in a wider mode
4077 causes the high-order bits to become undefined. So they are
4078 not known to be zero. */
4079 if (GET_MODE_SIZE (GET_MODE (x))
4080 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4081 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4082 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4083 }
4084 }
4085 break;
4086
4087 case ASHIFTRT:
4088 case LSHIFTRT:
4089 case ASHIFT:
4090 case ROTATE:
4091 /* The nonzero bits are in two classes: any bits within MODE
4092 that aren't in GET_MODE (x) are always significant. The rest of the
4093 nonzero bits are those that are significant in the operand of
4094 the shift when shifted the appropriate number of bits. This
4095 shows that high-order bits are cleared by the right shift and
4096 low-order bits by left shifts. */
4097 if (CONST_INT_P (XEXP (x, 1))
4098 && INTVAL (XEXP (x, 1)) >= 0
4099 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4100 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4101 {
4102 enum machine_mode inner_mode = GET_MODE (x);
4103 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4104 int count = INTVAL (XEXP (x, 1));
4105 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4106 unsigned HOST_WIDE_INT op_nonzero
4107 = cached_nonzero_bits (XEXP (x, 0), mode,
4108 known_x, known_mode, known_ret);
4109 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4110 unsigned HOST_WIDE_INT outer = 0;
4111
4112 if (mode_width > width)
4113 outer = (op_nonzero & nonzero & ~mode_mask);
4114
4115 if (code == LSHIFTRT)
4116 inner >>= count;
4117 else if (code == ASHIFTRT)
4118 {
4119 inner >>= count;
4120
4121 /* If the sign bit may have been nonzero before the shift, we
4122 need to mark all the places it could have been copied to
4123 by the shift as possibly nonzero. */
4124 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4125 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4126 << (width - count);
4127 }
4128 else if (code == ASHIFT)
4129 inner <<= count;
4130 else
4131 inner = ((inner << (count % width)
4132 | (inner >> (width - (count % width)))) & mode_mask);
4133
4134 nonzero &= (outer | inner);
4135 }
4136 break;
4137
4138 case FFS:
4139 case POPCOUNT:
4140 /* This is at most the number of bits in the mode. */
4141 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4142 break;
4143
4144 case CLZ:
4145 /* If CLZ has a known value at zero, then the nonzero bits are
4146 that value, plus the number of bits in the mode minus one. */
4147 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4148 nonzero
4149 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4150 else
4151 nonzero = -1;
4152 break;
4153
4154 case CTZ:
4155 /* If CTZ has a known value at zero, then the nonzero bits are
4156 that value, plus the number of bits in the mode minus one. */
4157 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4158 nonzero
4159 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4160 else
4161 nonzero = -1;
4162 break;
4163
4164 case PARITY:
4165 nonzero = 1;
4166 break;
4167
4168 case IF_THEN_ELSE:
4169 {
4170 unsigned HOST_WIDE_INT nonzero_true
4171 = cached_nonzero_bits (XEXP (x, 1), mode,
4172 known_x, known_mode, known_ret);
4173
4174 /* Don't call nonzero_bits for the second time if it cannot change
4175 anything. */
4176 if ((nonzero & nonzero_true) != nonzero)
4177 nonzero &= nonzero_true
4178 | cached_nonzero_bits (XEXP (x, 2), mode,
4179 known_x, known_mode, known_ret);
4180 }
4181 break;
4182
4183 default:
4184 break;
4185 }
4186
4187 return nonzero;
4188 }
4189
4190 /* See the macro definition above. */
4191 #undef cached_num_sign_bit_copies
4192
4193 \f
4194 /* The function cached_num_sign_bit_copies is a wrapper around
4195 num_sign_bit_copies1. It avoids exponential behavior in
4196 num_sign_bit_copies1 when X has identical subexpressions on the
4197 first or the second level. */
4198
4199 static unsigned int
4200 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4201 enum machine_mode known_mode,
4202 unsigned int known_ret)
4203 {
4204 if (x == known_x && mode == known_mode)
4205 return known_ret;
4206
4207 /* Try to find identical subexpressions. If found call
4208 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4209 the precomputed value for the subexpression as KNOWN_RET. */
4210
4211 if (ARITHMETIC_P (x))
4212 {
4213 rtx x0 = XEXP (x, 0);
4214 rtx x1 = XEXP (x, 1);
4215
4216 /* Check the first level. */
4217 if (x0 == x1)
4218 return
4219 num_sign_bit_copies1 (x, mode, x0, mode,
4220 cached_num_sign_bit_copies (x0, mode, known_x,
4221 known_mode,
4222 known_ret));
4223
4224 /* Check the second level. */
4225 if (ARITHMETIC_P (x0)
4226 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4227 return
4228 num_sign_bit_copies1 (x, mode, x1, mode,
4229 cached_num_sign_bit_copies (x1, mode, known_x,
4230 known_mode,
4231 known_ret));
4232
4233 if (ARITHMETIC_P (x1)
4234 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4235 return
4236 num_sign_bit_copies1 (x, mode, x0, mode,
4237 cached_num_sign_bit_copies (x0, mode, known_x,
4238 known_mode,
4239 known_ret));
4240 }
4241
4242 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4243 }
4244
4245 /* Return the number of bits at the high-order end of X that are known to
4246 be equal to the sign bit. X will be used in mode MODE; if MODE is
4247 VOIDmode, X will be used in its own mode. The returned value will always
4248 be between 1 and the number of bits in MODE. */
4249
4250 static unsigned int
4251 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4252 enum machine_mode known_mode,
4253 unsigned int known_ret)
4254 {
4255 enum rtx_code code = GET_CODE (x);
4256 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4257 int num0, num1, result;
4258 unsigned HOST_WIDE_INT nonzero;
4259
4260 /* If we weren't given a mode, use the mode of X. If the mode is still
4261 VOIDmode, we don't know anything. Likewise if one of the modes is
4262 floating-point. */
4263
4264 if (mode == VOIDmode)
4265 mode = GET_MODE (x);
4266
4267 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4268 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4269 return 1;
4270
4271 /* For a smaller object, just ignore the high bits. */
4272 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4273 {
4274 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4275 known_x, known_mode, known_ret);
4276 return MAX (1,
4277 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4278 }
4279
4280 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4281 {
4282 #ifndef WORD_REGISTER_OPERATIONS
4283 /* If this machine does not do all register operations on the entire
4284 register and MODE is wider than the mode of X, we can say nothing
4285 at all about the high-order bits. */
4286 return 1;
4287 #else
4288 /* Likewise on machines that do, if the mode of the object is smaller
4289 than a word and loads of that size don't sign extend, we can say
4290 nothing about the high order bits. */
4291 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4292 #ifdef LOAD_EXTEND_OP
4293 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4294 #endif
4295 )
4296 return 1;
4297 #endif
4298 }
4299
4300 switch (code)
4301 {
4302 case REG:
4303
4304 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4305 /* If pointers extend signed and this is a pointer in Pmode, say that
4306 all the bits above ptr_mode are known to be sign bit copies. */
4307 /* As we do not know which address space the pointer is refering to,
4308 we can do this only if the target does not support different pointer
4309 or address modes depending on the address space. */
4310 if (target_default_pointer_address_modes_p ()
4311 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4312 && mode == Pmode && REG_POINTER (x))
4313 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4314 #endif
4315
4316 {
4317 unsigned int copies_for_hook = 1, copies = 1;
4318 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4319 known_mode, known_ret,
4320 &copies_for_hook);
4321
4322 if (new_rtx)
4323 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4324 known_mode, known_ret);
4325
4326 if (copies > 1 || copies_for_hook > 1)
4327 return MAX (copies, copies_for_hook);
4328
4329 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4330 }
4331 break;
4332
4333 case MEM:
4334 #ifdef LOAD_EXTEND_OP
4335 /* Some RISC machines sign-extend all loads of smaller than a word. */
4336 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4337 return MAX (1, ((int) bitwidth
4338 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4339 #endif
4340 break;
4341
4342 case CONST_INT:
4343 /* If the constant is negative, take its 1's complement and remask.
4344 Then see how many zero bits we have. */
4345 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4346 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4347 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4348 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4349
4350 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4351
4352 case SUBREG:
4353 /* If this is a SUBREG for a promoted object that is sign-extended
4354 and we are looking at it in a wider mode, we know that at least the
4355 high-order bits are known to be sign bit copies. */
4356
4357 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4358 {
4359 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4360 known_x, known_mode, known_ret);
4361 return MAX ((int) bitwidth
4362 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4363 num0);
4364 }
4365
4366 /* For a smaller object, just ignore the high bits. */
4367 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4368 {
4369 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4370 known_x, known_mode, known_ret);
4371 return MAX (1, (num0
4372 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4373 - bitwidth)));
4374 }
4375
4376 #ifdef WORD_REGISTER_OPERATIONS
4377 #ifdef LOAD_EXTEND_OP
4378 /* For paradoxical SUBREGs on machines where all register operations
4379 affect the entire register, just look inside. Note that we are
4380 passing MODE to the recursive call, so the number of sign bit copies
4381 will remain relative to that mode, not the inner mode. */
4382
4383 /* This works only if loads sign extend. Otherwise, if we get a
4384 reload for the inner part, it may be loaded from the stack, and
4385 then we lose all sign bit copies that existed before the store
4386 to the stack. */
4387
4388 if ((GET_MODE_SIZE (GET_MODE (x))
4389 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4390 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4391 && MEM_P (SUBREG_REG (x)))
4392 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4393 known_x, known_mode, known_ret);
4394 #endif
4395 #endif
4396 break;
4397
4398 case SIGN_EXTRACT:
4399 if (CONST_INT_P (XEXP (x, 1)))
4400 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4401 break;
4402
4403 case SIGN_EXTEND:
4404 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4405 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4406 known_x, known_mode, known_ret));
4407
4408 case TRUNCATE:
4409 /* For a smaller object, just ignore the high bits. */
4410 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4411 known_x, known_mode, known_ret);
4412 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4413 - bitwidth)));
4414
4415 case NOT:
4416 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4417 known_x, known_mode, known_ret);
4418
4419 case ROTATE: case ROTATERT:
4420 /* If we are rotating left by a number of bits less than the number
4421 of sign bit copies, we can just subtract that amount from the
4422 number. */
4423 if (CONST_INT_P (XEXP (x, 1))
4424 && INTVAL (XEXP (x, 1)) >= 0
4425 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4426 {
4427 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4428 known_x, known_mode, known_ret);
4429 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4430 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4431 }
4432 break;
4433
4434 case NEG:
4435 /* In general, this subtracts one sign bit copy. But if the value
4436 is known to be positive, the number of sign bit copies is the
4437 same as that of the input. Finally, if the input has just one bit
4438 that might be nonzero, all the bits are copies of the sign bit. */
4439 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4440 known_x, known_mode, known_ret);
4441 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4442 return num0 > 1 ? num0 - 1 : 1;
4443
4444 nonzero = nonzero_bits (XEXP (x, 0), mode);
4445 if (nonzero == 1)
4446 return bitwidth;
4447
4448 if (num0 > 1
4449 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4450 num0--;
4451
4452 return num0;
4453
4454 case IOR: case AND: case XOR:
4455 case SMIN: case SMAX: case UMIN: case UMAX:
4456 /* Logical operations will preserve the number of sign-bit copies.
4457 MIN and MAX operations always return one of the operands. */
4458 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4459 known_x, known_mode, known_ret);
4460 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4461 known_x, known_mode, known_ret);
4462
4463 /* If num1 is clearing some of the top bits then regardless of
4464 the other term, we are guaranteed to have at least that many
4465 high-order zero bits. */
4466 if (code == AND
4467 && num1 > 1
4468 && bitwidth <= HOST_BITS_PER_WIDE_INT
4469 && CONST_INT_P (XEXP (x, 1))
4470 && (UINTVAL (XEXP (x, 1))
4471 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4472 return num1;
4473
4474 /* Similarly for IOR when setting high-order bits. */
4475 if (code == IOR
4476 && num1 > 1
4477 && bitwidth <= HOST_BITS_PER_WIDE_INT
4478 && CONST_INT_P (XEXP (x, 1))
4479 && (UINTVAL (XEXP (x, 1))
4480 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4481 return num1;
4482
4483 return MIN (num0, num1);
4484
4485 case PLUS: case MINUS:
4486 /* For addition and subtraction, we can have a 1-bit carry. However,
4487 if we are subtracting 1 from a positive number, there will not
4488 be such a carry. Furthermore, if the positive number is known to
4489 be 0 or 1, we know the result is either -1 or 0. */
4490
4491 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4492 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4493 {
4494 nonzero = nonzero_bits (XEXP (x, 0), mode);
4495 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4496 return (nonzero == 1 || nonzero == 0 ? bitwidth
4497 : bitwidth - floor_log2 (nonzero) - 1);
4498 }
4499
4500 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4501 known_x, known_mode, known_ret);
4502 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4503 known_x, known_mode, known_ret);
4504 result = MAX (1, MIN (num0, num1) - 1);
4505
4506 #ifdef POINTERS_EXTEND_UNSIGNED
4507 /* If pointers extend signed and this is an addition or subtraction
4508 to a pointer in Pmode, all the bits above ptr_mode are known to be
4509 sign bit copies. */
4510 /* As we do not know which address space the pointer is refering to,
4511 we can do this only if the target does not support different pointer
4512 or address modes depending on the address space. */
4513 if (target_default_pointer_address_modes_p ()
4514 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4515 && (code == PLUS || code == MINUS)
4516 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4517 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4518 - GET_MODE_BITSIZE (ptr_mode) + 1),
4519 result);
4520 #endif
4521 return result;
4522
4523 case MULT:
4524 /* The number of bits of the product is the sum of the number of
4525 bits of both terms. However, unless one of the terms if known
4526 to be positive, we must allow for an additional bit since negating
4527 a negative number can remove one sign bit copy. */
4528
4529 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4530 known_x, known_mode, known_ret);
4531 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4532 known_x, known_mode, known_ret);
4533
4534 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4535 if (result > 0
4536 && (bitwidth > HOST_BITS_PER_WIDE_INT
4537 || (((nonzero_bits (XEXP (x, 0), mode)
4538 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4539 && ((nonzero_bits (XEXP (x, 1), mode)
4540 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4541 != 0))))
4542 result--;
4543
4544 return MAX (1, result);
4545
4546 case UDIV:
4547 /* The result must be <= the first operand. If the first operand
4548 has the high bit set, we know nothing about the number of sign
4549 bit copies. */
4550 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4551 return 1;
4552 else if ((nonzero_bits (XEXP (x, 0), mode)
4553 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4554 return 1;
4555 else
4556 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4557 known_x, known_mode, known_ret);
4558
4559 case UMOD:
4560 /* The result must be <= the second operand. If the second operand
4561 has (or just might have) the high bit set, we know nothing about
4562 the number of sign bit copies. */
4563 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4564 return 1;
4565 else if ((nonzero_bits (XEXP (x, 1), mode)
4566 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4567 return 1;
4568 else
4569 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4570 known_x, known_mode, known_ret);
4571
4572 case DIV:
4573 /* Similar to unsigned division, except that we have to worry about
4574 the case where the divisor is negative, in which case we have
4575 to add 1. */
4576 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4577 known_x, known_mode, known_ret);
4578 if (result > 1
4579 && (bitwidth > HOST_BITS_PER_WIDE_INT
4580 || (nonzero_bits (XEXP (x, 1), mode)
4581 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4582 result--;
4583
4584 return result;
4585
4586 case MOD:
4587 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4588 known_x, known_mode, known_ret);
4589 if (result > 1
4590 && (bitwidth > HOST_BITS_PER_WIDE_INT
4591 || (nonzero_bits (XEXP (x, 1), mode)
4592 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4593 result--;
4594
4595 return result;
4596
4597 case ASHIFTRT:
4598 /* Shifts by a constant add to the number of bits equal to the
4599 sign bit. */
4600 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4601 known_x, known_mode, known_ret);
4602 if (CONST_INT_P (XEXP (x, 1))
4603 && INTVAL (XEXP (x, 1)) > 0
4604 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4605 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4606
4607 return num0;
4608
4609 case ASHIFT:
4610 /* Left shifts destroy copies. */
4611 if (!CONST_INT_P (XEXP (x, 1))
4612 || INTVAL (XEXP (x, 1)) < 0
4613 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4614 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4615 return 1;
4616
4617 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4618 known_x, known_mode, known_ret);
4619 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4620
4621 case IF_THEN_ELSE:
4622 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4623 known_x, known_mode, known_ret);
4624 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4625 known_x, known_mode, known_ret);
4626 return MIN (num0, num1);
4627
4628 case EQ: case NE: case GE: case GT: case LE: case LT:
4629 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4630 case GEU: case GTU: case LEU: case LTU:
4631 case UNORDERED: case ORDERED:
4632 /* If the constant is negative, take its 1's complement and remask.
4633 Then see how many zero bits we have. */
4634 nonzero = STORE_FLAG_VALUE;
4635 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4636 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4637 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4638
4639 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4640
4641 default:
4642 break;
4643 }
4644
4645 /* If we haven't been able to figure it out by one of the above rules,
4646 see if some of the high-order bits are known to be zero. If so,
4647 count those bits and return one less than that amount. If we can't
4648 safely compute the mask for this mode, always return BITWIDTH. */
4649
4650 bitwidth = GET_MODE_BITSIZE (mode);
4651 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4652 return 1;
4653
4654 nonzero = nonzero_bits (x, mode);
4655 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4656 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4657 }
4658
4659 /* Calculate the rtx_cost of a single instruction. A return value of
4660 zero indicates an instruction pattern without a known cost. */
4661
4662 int
4663 insn_rtx_cost (rtx pat, bool speed)
4664 {
4665 int i, cost;
4666 rtx set;
4667
4668 /* Extract the single set rtx from the instruction pattern.
4669 We can't use single_set since we only have the pattern. */
4670 if (GET_CODE (pat) == SET)
4671 set = pat;
4672 else if (GET_CODE (pat) == PARALLEL)
4673 {
4674 set = NULL_RTX;
4675 for (i = 0; i < XVECLEN (pat, 0); i++)
4676 {
4677 rtx x = XVECEXP (pat, 0, i);
4678 if (GET_CODE (x) == SET)
4679 {
4680 if (set)
4681 return 0;
4682 set = x;
4683 }
4684 }
4685 if (!set)
4686 return 0;
4687 }
4688 else
4689 return 0;
4690
4691 cost = rtx_cost (SET_SRC (set), SET, speed);
4692 return cost > 0 ? cost : COSTS_N_INSNS (1);
4693 }
4694
4695 /* Given an insn INSN and condition COND, return the condition in a
4696 canonical form to simplify testing by callers. Specifically:
4697
4698 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4699 (2) Both operands will be machine operands; (cc0) will have been replaced.
4700 (3) If an operand is a constant, it will be the second operand.
4701 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4702 for GE, GEU, and LEU.
4703
4704 If the condition cannot be understood, or is an inequality floating-point
4705 comparison which needs to be reversed, 0 will be returned.
4706
4707 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4708
4709 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4710 insn used in locating the condition was found. If a replacement test
4711 of the condition is desired, it should be placed in front of that
4712 insn and we will be sure that the inputs are still valid.
4713
4714 If WANT_REG is nonzero, we wish the condition to be relative to that
4715 register, if possible. Therefore, do not canonicalize the condition
4716 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4717 to be a compare to a CC mode register.
4718
4719 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4720 and at INSN. */
4721
4722 rtx
4723 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4724 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4725 {
4726 enum rtx_code code;
4727 rtx prev = insn;
4728 const_rtx set;
4729 rtx tem;
4730 rtx op0, op1;
4731 int reverse_code = 0;
4732 enum machine_mode mode;
4733 basic_block bb = BLOCK_FOR_INSN (insn);
4734
4735 code = GET_CODE (cond);
4736 mode = GET_MODE (cond);
4737 op0 = XEXP (cond, 0);
4738 op1 = XEXP (cond, 1);
4739
4740 if (reverse)
4741 code = reversed_comparison_code (cond, insn);
4742 if (code == UNKNOWN)
4743 return 0;
4744
4745 if (earliest)
4746 *earliest = insn;
4747
4748 /* If we are comparing a register with zero, see if the register is set
4749 in the previous insn to a COMPARE or a comparison operation. Perform
4750 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4751 in cse.c */
4752
4753 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4754 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4755 && op1 == CONST0_RTX (GET_MODE (op0))
4756 && op0 != want_reg)
4757 {
4758 /* Set nonzero when we find something of interest. */
4759 rtx x = 0;
4760
4761 #ifdef HAVE_cc0
4762 /* If comparison with cc0, import actual comparison from compare
4763 insn. */
4764 if (op0 == cc0_rtx)
4765 {
4766 if ((prev = prev_nonnote_insn (prev)) == 0
4767 || !NONJUMP_INSN_P (prev)
4768 || (set = single_set (prev)) == 0
4769 || SET_DEST (set) != cc0_rtx)
4770 return 0;
4771
4772 op0 = SET_SRC (set);
4773 op1 = CONST0_RTX (GET_MODE (op0));
4774 if (earliest)
4775 *earliest = prev;
4776 }
4777 #endif
4778
4779 /* If this is a COMPARE, pick up the two things being compared. */
4780 if (GET_CODE (op0) == COMPARE)
4781 {
4782 op1 = XEXP (op0, 1);
4783 op0 = XEXP (op0, 0);
4784 continue;
4785 }
4786 else if (!REG_P (op0))
4787 break;
4788
4789 /* Go back to the previous insn. Stop if it is not an INSN. We also
4790 stop if it isn't a single set or if it has a REG_INC note because
4791 we don't want to bother dealing with it. */
4792
4793 prev = prev_nonnote_nondebug_insn (prev);
4794
4795 if (prev == 0
4796 || !NONJUMP_INSN_P (prev)
4797 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4798 /* In cfglayout mode, there do not have to be labels at the
4799 beginning of a block, or jumps at the end, so the previous
4800 conditions would not stop us when we reach bb boundary. */
4801 || BLOCK_FOR_INSN (prev) != bb)
4802 break;
4803
4804 set = set_of (op0, prev);
4805
4806 if (set
4807 && (GET_CODE (set) != SET
4808 || !rtx_equal_p (SET_DEST (set), op0)))
4809 break;
4810
4811 /* If this is setting OP0, get what it sets it to if it looks
4812 relevant. */
4813 if (set)
4814 {
4815 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4816 #ifdef FLOAT_STORE_FLAG_VALUE
4817 REAL_VALUE_TYPE fsfv;
4818 #endif
4819
4820 /* ??? We may not combine comparisons done in a CCmode with
4821 comparisons not done in a CCmode. This is to aid targets
4822 like Alpha that have an IEEE compliant EQ instruction, and
4823 a non-IEEE compliant BEQ instruction. The use of CCmode is
4824 actually artificial, simply to prevent the combination, but
4825 should not affect other platforms.
4826
4827 However, we must allow VOIDmode comparisons to match either
4828 CCmode or non-CCmode comparison, because some ports have
4829 modeless comparisons inside branch patterns.
4830
4831 ??? This mode check should perhaps look more like the mode check
4832 in simplify_comparison in combine. */
4833
4834 if ((GET_CODE (SET_SRC (set)) == COMPARE
4835 || (((code == NE
4836 || (code == LT
4837 && GET_MODE_CLASS (inner_mode) == MODE_INT
4838 && (GET_MODE_BITSIZE (inner_mode)
4839 <= HOST_BITS_PER_WIDE_INT)
4840 && (STORE_FLAG_VALUE
4841 & ((unsigned HOST_WIDE_INT) 1
4842 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4843 #ifdef FLOAT_STORE_FLAG_VALUE
4844 || (code == LT
4845 && SCALAR_FLOAT_MODE_P (inner_mode)
4846 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4847 REAL_VALUE_NEGATIVE (fsfv)))
4848 #endif
4849 ))
4850 && COMPARISON_P (SET_SRC (set))))
4851 && (((GET_MODE_CLASS (mode) == MODE_CC)
4852 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4853 || mode == VOIDmode || inner_mode == VOIDmode))
4854 x = SET_SRC (set);
4855 else if (((code == EQ
4856 || (code == GE
4857 && (GET_MODE_BITSIZE (inner_mode)
4858 <= HOST_BITS_PER_WIDE_INT)
4859 && GET_MODE_CLASS (inner_mode) == MODE_INT
4860 && (STORE_FLAG_VALUE
4861 & ((unsigned HOST_WIDE_INT) 1
4862 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4863 #ifdef FLOAT_STORE_FLAG_VALUE
4864 || (code == GE
4865 && SCALAR_FLOAT_MODE_P (inner_mode)
4866 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4867 REAL_VALUE_NEGATIVE (fsfv)))
4868 #endif
4869 ))
4870 && COMPARISON_P (SET_SRC (set))
4871 && (((GET_MODE_CLASS (mode) == MODE_CC)
4872 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4873 || mode == VOIDmode || inner_mode == VOIDmode))
4874
4875 {
4876 reverse_code = 1;
4877 x = SET_SRC (set);
4878 }
4879 else
4880 break;
4881 }
4882
4883 else if (reg_set_p (op0, prev))
4884 /* If this sets OP0, but not directly, we have to give up. */
4885 break;
4886
4887 if (x)
4888 {
4889 /* If the caller is expecting the condition to be valid at INSN,
4890 make sure X doesn't change before INSN. */
4891 if (valid_at_insn_p)
4892 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4893 break;
4894 if (COMPARISON_P (x))
4895 code = GET_CODE (x);
4896 if (reverse_code)
4897 {
4898 code = reversed_comparison_code (x, prev);
4899 if (code == UNKNOWN)
4900 return 0;
4901 reverse_code = 0;
4902 }
4903
4904 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4905 if (earliest)
4906 *earliest = prev;
4907 }
4908 }
4909
4910 /* If constant is first, put it last. */
4911 if (CONSTANT_P (op0))
4912 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4913
4914 /* If OP0 is the result of a comparison, we weren't able to find what
4915 was really being compared, so fail. */
4916 if (!allow_cc_mode
4917 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4918 return 0;
4919
4920 /* Canonicalize any ordered comparison with integers involving equality
4921 if we can do computations in the relevant mode and we do not
4922 overflow. */
4923
4924 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4925 && CONST_INT_P (op1)
4926 && GET_MODE (op0) != VOIDmode
4927 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4928 {
4929 HOST_WIDE_INT const_val = INTVAL (op1);
4930 unsigned HOST_WIDE_INT uconst_val = const_val;
4931 unsigned HOST_WIDE_INT max_val
4932 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4933
4934 switch (code)
4935 {
4936 case LE:
4937 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4938 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4939 break;
4940
4941 /* When cross-compiling, const_val might be sign-extended from
4942 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4943 case GE:
4944 if ((const_val & max_val)
4945 != ((unsigned HOST_WIDE_INT) 1
4946 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
4947 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4948 break;
4949
4950 case LEU:
4951 if (uconst_val < max_val)
4952 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4953 break;
4954
4955 case GEU:
4956 if (uconst_val != 0)
4957 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4958 break;
4959
4960 default:
4961 break;
4962 }
4963 }
4964
4965 /* Never return CC0; return zero instead. */
4966 if (CC0_P (op0))
4967 return 0;
4968
4969 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4970 }
4971
4972 /* Given a jump insn JUMP, return the condition that will cause it to branch
4973 to its JUMP_LABEL. If the condition cannot be understood, or is an
4974 inequality floating-point comparison which needs to be reversed, 0 will
4975 be returned.
4976
4977 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4978 insn used in locating the condition was found. If a replacement test
4979 of the condition is desired, it should be placed in front of that
4980 insn and we will be sure that the inputs are still valid. If EARLIEST
4981 is null, the returned condition will be valid at INSN.
4982
4983 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4984 compare CC mode register.
4985
4986 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4987
4988 rtx
4989 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4990 {
4991 rtx cond;
4992 int reverse;
4993 rtx set;
4994
4995 /* If this is not a standard conditional jump, we can't parse it. */
4996 if (!JUMP_P (jump)
4997 || ! any_condjump_p (jump))
4998 return 0;
4999 set = pc_set (jump);
5000
5001 cond = XEXP (SET_SRC (set), 0);
5002
5003 /* If this branches to JUMP_LABEL when the condition is false, reverse
5004 the condition. */
5005 reverse
5006 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5007 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5008
5009 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5010 allow_cc_mode, valid_at_insn_p);
5011 }
5012
5013 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5014 TARGET_MODE_REP_EXTENDED.
5015
5016 Note that we assume that the property of
5017 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5018 narrower than mode B. I.e., if A is a mode narrower than B then in
5019 order to be able to operate on it in mode B, mode A needs to
5020 satisfy the requirements set by the representation of mode B. */
5021
5022 static void
5023 init_num_sign_bit_copies_in_rep (void)
5024 {
5025 enum machine_mode mode, in_mode;
5026
5027 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5028 in_mode = GET_MODE_WIDER_MODE (mode))
5029 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5030 mode = GET_MODE_WIDER_MODE (mode))
5031 {
5032 enum machine_mode i;
5033
5034 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5035 extends to the next widest mode. */
5036 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5037 || GET_MODE_WIDER_MODE (mode) == in_mode);
5038
5039 /* We are in in_mode. Count how many bits outside of mode
5040 have to be copies of the sign-bit. */
5041 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5042 {
5043 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5044
5045 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5046 /* We can only check sign-bit copies starting from the
5047 top-bit. In order to be able to check the bits we
5048 have already seen we pretend that subsequent bits
5049 have to be sign-bit copies too. */
5050 || num_sign_bit_copies_in_rep [in_mode][mode])
5051 num_sign_bit_copies_in_rep [in_mode][mode]
5052 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5053 }
5054 }
5055 }
5056
5057 /* Suppose that truncation from the machine mode of X to MODE is not a
5058 no-op. See if there is anything special about X so that we can
5059 assume it already contains a truncated value of MODE. */
5060
5061 bool
5062 truncated_to_mode (enum machine_mode mode, const_rtx x)
5063 {
5064 /* This register has already been used in MODE without explicit
5065 truncation. */
5066 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5067 return true;
5068
5069 /* See if we already satisfy the requirements of MODE. If yes we
5070 can just switch to MODE. */
5071 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5072 && (num_sign_bit_copies (x, GET_MODE (x))
5073 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5074 return true;
5075
5076 return false;
5077 }
5078 \f
5079 /* Initialize non_rtx_starting_operands, which is used to speed up
5080 for_each_rtx. */
5081 void
5082 init_rtlanal (void)
5083 {
5084 int i;
5085 for (i = 0; i < NUM_RTX_CODE; i++)
5086 {
5087 const char *format = GET_RTX_FORMAT (i);
5088 const char *first = strpbrk (format, "eEV");
5089 non_rtx_starting_operands[i] = first ? first - format : -1;
5090 }
5091
5092 init_num_sign_bit_copies_in_rep ();
5093 }
5094 \f
5095 /* Check whether this is a constant pool constant. */
5096 bool
5097 constant_pool_constant_p (rtx x)
5098 {
5099 x = avoid_constant_pool_reference (x);
5100 return GET_CODE (x) == CONST_DOUBLE;
5101 }
5102 \f
5103 /* If M is a bitmask that selects a field of low-order bits within an item but
5104 not the entire word, return the length of the field. Return -1 otherwise.
5105 M is used in machine mode MODE. */
5106
5107 int
5108 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5109 {
5110 if (mode != VOIDmode)
5111 {
5112 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5113 return -1;
5114 m &= GET_MODE_MASK (mode);
5115 }
5116
5117 return exact_log2 (m + 1);
5118 }