[multiple changes]
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "diagnostic-core.h"
26 #include "hard-reg-set.h"
27 #include "rtl.h"
28 #include "insn-config.h"
29 #include "recog.h"
30 #include "target.h"
31 #include "output.h"
32 #include "tm_p.h"
33 #include "flags.h"
34 #include "regs.h"
35 #include "hashtab.h"
36 #include "hash-set.h"
37 #include "vec.h"
38 #include "machmode.h"
39 #include "input.h"
40 #include "function.h"
41 #include "predict.h"
42 #include "basic-block.h"
43 #include "df.h"
44 #include "symtab.h"
45 #include "wide-int.h"
46 #include "inchash.h"
47 #include "tree.h"
48 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
49 #include "addresses.h"
50 #include "rtl-iter.h"
51
52 /* Forward declarations */
53 static void set_of_1 (rtx, const_rtx, void *);
54 static bool covers_regno_p (const_rtx, unsigned int);
55 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
56 static int computed_jump_p_1 (const_rtx);
57 static void parms_set (rtx, const_rtx, void *);
58
59 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
60 const_rtx, machine_mode,
61 unsigned HOST_WIDE_INT);
62 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
63 const_rtx, machine_mode,
64 unsigned HOST_WIDE_INT);
65 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
66 machine_mode,
67 unsigned int);
68 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
69 machine_mode, unsigned int);
70
71 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
72 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
73
74 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
75 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
76 SIGN_EXTEND then while narrowing we also have to enforce the
77 representation and sign-extend the value to mode DESTINATION_REP.
78
79 If the value is already sign-extended to DESTINATION_REP mode we
80 can just switch to DESTINATION mode on it. For each pair of
81 integral modes SOURCE and DESTINATION, when truncating from SOURCE
82 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
83 contains the number of high-order bits in SOURCE that have to be
84 copies of the sign-bit so that we can do this mode-switch to
85 DESTINATION. */
86
87 static unsigned int
88 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
89 \f
90 /* Store X into index I of ARRAY. ARRAY is known to have at least I
91 elements. Return the new base of ARRAY. */
92
93 template <typename T>
94 typename T::value_type *
95 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
96 value_type *base,
97 size_t i, value_type x)
98 {
99 if (base == array.stack)
100 {
101 if (i < LOCAL_ELEMS)
102 {
103 base[i] = x;
104 return base;
105 }
106 gcc_checking_assert (i == LOCAL_ELEMS);
107 /* A previous iteration might also have moved from the stack to the
108 heap, in which case the heap array will already be big enough. */
109 if (vec_safe_length (array.heap) <= i)
110 vec_safe_grow (array.heap, i + 1);
111 base = array.heap->address ();
112 memcpy (base, array.stack, sizeof (array.stack));
113 base[LOCAL_ELEMS] = x;
114 return base;
115 }
116 unsigned int length = array.heap->length ();
117 if (length > i)
118 {
119 gcc_checking_assert (base == array.heap->address ());
120 base[i] = x;
121 return base;
122 }
123 else
124 {
125 gcc_checking_assert (i == length);
126 vec_safe_push (array.heap, x);
127 return array.heap->address ();
128 }
129 }
130
131 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
132 number of elements added to the worklist. */
133
134 template <typename T>
135 size_t
136 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
137 value_type *base,
138 size_t end, rtx_type x)
139 {
140 enum rtx_code code = GET_CODE (x);
141 const char *format = GET_RTX_FORMAT (code);
142 size_t orig_end = end;
143 if (__builtin_expect (INSN_P (x), false))
144 {
145 /* Put the pattern at the top of the queue, since that's what
146 we're likely to want most. It also allows for the SEQUENCE
147 code below. */
148 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
149 if (format[i] == 'e')
150 {
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
156 }
157 }
158 else
159 for (int i = 0; format[i]; ++i)
160 if (format[i] == 'e')
161 {
162 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
163 if (__builtin_expect (end < LOCAL_ELEMS, true))
164 base[end++] = subx;
165 else
166 base = add_single_to_queue (array, base, end++, subx);
167 }
168 else if (format[i] == 'E')
169 {
170 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
171 rtx *vec = x->u.fld[i].rt_rtvec->elem;
172 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
173 for (unsigned int j = 0; j < length; j++)
174 base[end++] = T::get_value (vec[j]);
175 else
176 for (unsigned int j = 0; j < length; j++)
177 base = add_single_to_queue (array, base, end++,
178 T::get_value (vec[j]));
179 if (code == SEQUENCE && end == length)
180 /* If the subrtxes of the sequence fill the entire array then
181 we know that no other parts of a containing insn are queued.
182 The caller is therefore iterating over the sequence as a
183 PATTERN (...), so we also want the patterns of the
184 subinstructions. */
185 for (unsigned int j = 0; j < length; j++)
186 {
187 typename T::rtx_type x = T::get_rtx (base[j]);
188 if (INSN_P (x))
189 base[j] = T::get_value (PATTERN (x));
190 }
191 }
192 return end - orig_end;
193 }
194
195 template <typename T>
196 void
197 generic_subrtx_iterator <T>::free_array (array_type &array)
198 {
199 vec_free (array.heap);
200 }
201
202 template <typename T>
203 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
204
205 template class generic_subrtx_iterator <const_rtx_accessor>;
206 template class generic_subrtx_iterator <rtx_var_accessor>;
207 template class generic_subrtx_iterator <rtx_ptr_accessor>;
208
209 /* Return 1 if the value of X is unstable
210 (would be different at a different point in the program).
211 The frame pointer, arg pointer, etc. are considered stable
212 (within one function) and so is anything marked `unchanging'. */
213
214 int
215 rtx_unstable_p (const_rtx x)
216 {
217 const RTX_CODE code = GET_CODE (x);
218 int i;
219 const char *fmt;
220
221 switch (code)
222 {
223 case MEM:
224 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
225
226 case CONST:
227 CASE_CONST_ANY:
228 case SYMBOL_REF:
229 case LABEL_REF:
230 return 0;
231
232 case REG:
233 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
234 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
235 /* The arg pointer varies if it is not a fixed register. */
236 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
237 return 0;
238 /* ??? When call-clobbered, the value is stable modulo the restore
239 that must happen after a call. This currently screws up local-alloc
240 into believing that the restore is not needed. */
241 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
242 return 0;
243 return 1;
244
245 case ASM_OPERANDS:
246 if (MEM_VOLATILE_P (x))
247 return 1;
248
249 /* Fall through. */
250
251 default:
252 break;
253 }
254
255 fmt = GET_RTX_FORMAT (code);
256 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
257 if (fmt[i] == 'e')
258 {
259 if (rtx_unstable_p (XEXP (x, i)))
260 return 1;
261 }
262 else if (fmt[i] == 'E')
263 {
264 int j;
265 for (j = 0; j < XVECLEN (x, i); j++)
266 if (rtx_unstable_p (XVECEXP (x, i, j)))
267 return 1;
268 }
269
270 return 0;
271 }
272
273 /* Return 1 if X has a value that can vary even between two
274 executions of the program. 0 means X can be compared reliably
275 against certain constants or near-constants.
276 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
277 zero, we are slightly more conservative.
278 The frame pointer and the arg pointer are considered constant. */
279
280 bool
281 rtx_varies_p (const_rtx x, bool for_alias)
282 {
283 RTX_CODE code;
284 int i;
285 const char *fmt;
286
287 if (!x)
288 return 0;
289
290 code = GET_CODE (x);
291 switch (code)
292 {
293 case MEM:
294 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
295
296 case CONST:
297 CASE_CONST_ANY:
298 case SYMBOL_REF:
299 case LABEL_REF:
300 return 0;
301
302 case REG:
303 /* Note that we have to test for the actual rtx used for the frame
304 and arg pointers and not just the register number in case we have
305 eliminated the frame and/or arg pointer and are using it
306 for pseudos. */
307 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
308 /* The arg pointer varies if it is not a fixed register. */
309 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
310 return 0;
311 if (x == pic_offset_table_rtx
312 /* ??? When call-clobbered, the value is stable modulo the restore
313 that must happen after a call. This currently screws up
314 local-alloc into believing that the restore is not needed, so we
315 must return 0 only if we are called from alias analysis. */
316 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
317 return 0;
318 return 1;
319
320 case LO_SUM:
321 /* The operand 0 of a LO_SUM is considered constant
322 (in fact it is related specifically to operand 1)
323 during alias analysis. */
324 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
325 || rtx_varies_p (XEXP (x, 1), for_alias);
326
327 case ASM_OPERANDS:
328 if (MEM_VOLATILE_P (x))
329 return 1;
330
331 /* Fall through. */
332
333 default:
334 break;
335 }
336
337 fmt = GET_RTX_FORMAT (code);
338 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
339 if (fmt[i] == 'e')
340 {
341 if (rtx_varies_p (XEXP (x, i), for_alias))
342 return 1;
343 }
344 else if (fmt[i] == 'E')
345 {
346 int j;
347 for (j = 0; j < XVECLEN (x, i); j++)
348 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
349 return 1;
350 }
351
352 return 0;
353 }
354
355 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
356 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
357 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
358 references on strict alignment machines. */
359
360 static int
361 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
362 machine_mode mode, bool unaligned_mems)
363 {
364 enum rtx_code code = GET_CODE (x);
365
366 /* The offset must be a multiple of the mode size if we are considering
367 unaligned memory references on strict alignment machines. */
368 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
369 {
370 HOST_WIDE_INT actual_offset = offset;
371
372 #ifdef SPARC_STACK_BOUNDARY_HACK
373 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
374 the real alignment of %sp. However, when it does this, the
375 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
376 if (SPARC_STACK_BOUNDARY_HACK
377 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
378 actual_offset -= STACK_POINTER_OFFSET;
379 #endif
380
381 if (actual_offset % GET_MODE_SIZE (mode) != 0)
382 return 1;
383 }
384
385 switch (code)
386 {
387 case SYMBOL_REF:
388 if (SYMBOL_REF_WEAK (x))
389 return 1;
390 if (!CONSTANT_POOL_ADDRESS_P (x))
391 {
392 tree decl;
393 HOST_WIDE_INT decl_size;
394
395 if (offset < 0)
396 return 1;
397 if (size == 0)
398 size = GET_MODE_SIZE (mode);
399 if (size == 0)
400 return offset != 0;
401
402 /* If the size of the access or of the symbol is unknown,
403 assume the worst. */
404 decl = SYMBOL_REF_DECL (x);
405
406 /* Else check that the access is in bounds. TODO: restructure
407 expr_size/tree_expr_size/int_expr_size and just use the latter. */
408 if (!decl)
409 decl_size = -1;
410 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
411 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
412 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
413 : -1);
414 else if (TREE_CODE (decl) == STRING_CST)
415 decl_size = TREE_STRING_LENGTH (decl);
416 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
417 decl_size = int_size_in_bytes (TREE_TYPE (decl));
418 else
419 decl_size = -1;
420
421 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
422 }
423
424 return 0;
425
426 case LABEL_REF:
427 return 0;
428
429 case REG:
430 /* Stack references are assumed not to trap, but we need to deal with
431 nonsensical offsets. */
432 if (x == frame_pointer_rtx)
433 {
434 HOST_WIDE_INT adj_offset = offset - STARTING_FRAME_OFFSET;
435 if (size == 0)
436 size = GET_MODE_SIZE (mode);
437 if (FRAME_GROWS_DOWNWARD)
438 {
439 if (adj_offset < frame_offset || adj_offset + size - 1 >= 0)
440 return 1;
441 }
442 else
443 {
444 if (adj_offset < 0 || adj_offset + size - 1 >= frame_offset)
445 return 1;
446 }
447 return 0;
448 }
449 /* ??? Need to add a similar guard for nonsensical offsets. */
450 if (x == hard_frame_pointer_rtx
451 || x == stack_pointer_rtx
452 /* The arg pointer varies if it is not a fixed register. */
453 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
454 return 0;
455 /* All of the virtual frame registers are stack references. */
456 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
457 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
458 return 0;
459 return 1;
460
461 case CONST:
462 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
463 mode, unaligned_mems);
464
465 case PLUS:
466 /* An address is assumed not to trap if:
467 - it is the pic register plus a constant. */
468 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
469 return 0;
470
471 /* - or it is an address that can't trap plus a constant integer. */
472 if (CONST_INT_P (XEXP (x, 1))
473 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
474 size, mode, unaligned_mems))
475 return 0;
476
477 return 1;
478
479 case LO_SUM:
480 case PRE_MODIFY:
481 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
482 mode, unaligned_mems);
483
484 case PRE_DEC:
485 case PRE_INC:
486 case POST_DEC:
487 case POST_INC:
488 case POST_MODIFY:
489 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
490 mode, unaligned_mems);
491
492 default:
493 break;
494 }
495
496 /* If it isn't one of the case above, it can cause a trap. */
497 return 1;
498 }
499
500 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
501
502 int
503 rtx_addr_can_trap_p (const_rtx x)
504 {
505 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
506 }
507
508 /* Return true if X is an address that is known to not be zero. */
509
510 bool
511 nonzero_address_p (const_rtx x)
512 {
513 const enum rtx_code code = GET_CODE (x);
514
515 switch (code)
516 {
517 case SYMBOL_REF:
518 return !SYMBOL_REF_WEAK (x);
519
520 case LABEL_REF:
521 return true;
522
523 case REG:
524 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
525 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
526 || x == stack_pointer_rtx
527 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
528 return true;
529 /* All of the virtual frame registers are stack references. */
530 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
531 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
532 return true;
533 return false;
534
535 case CONST:
536 return nonzero_address_p (XEXP (x, 0));
537
538 case PLUS:
539 /* Handle PIC references. */
540 if (XEXP (x, 0) == pic_offset_table_rtx
541 && CONSTANT_P (XEXP (x, 1)))
542 return true;
543 return false;
544
545 case PRE_MODIFY:
546 /* Similar to the above; allow positive offsets. Further, since
547 auto-inc is only allowed in memories, the register must be a
548 pointer. */
549 if (CONST_INT_P (XEXP (x, 1))
550 && INTVAL (XEXP (x, 1)) > 0)
551 return true;
552 return nonzero_address_p (XEXP (x, 0));
553
554 case PRE_INC:
555 /* Similarly. Further, the offset is always positive. */
556 return true;
557
558 case PRE_DEC:
559 case POST_DEC:
560 case POST_INC:
561 case POST_MODIFY:
562 return nonzero_address_p (XEXP (x, 0));
563
564 case LO_SUM:
565 return nonzero_address_p (XEXP (x, 1));
566
567 default:
568 break;
569 }
570
571 /* If it isn't one of the case above, might be zero. */
572 return false;
573 }
574
575 /* Return 1 if X refers to a memory location whose address
576 cannot be compared reliably with constant addresses,
577 or if X refers to a BLKmode memory object.
578 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
579 zero, we are slightly more conservative. */
580
581 bool
582 rtx_addr_varies_p (const_rtx x, bool for_alias)
583 {
584 enum rtx_code code;
585 int i;
586 const char *fmt;
587
588 if (x == 0)
589 return 0;
590
591 code = GET_CODE (x);
592 if (code == MEM)
593 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
594
595 fmt = GET_RTX_FORMAT (code);
596 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
597 if (fmt[i] == 'e')
598 {
599 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
600 return 1;
601 }
602 else if (fmt[i] == 'E')
603 {
604 int j;
605 for (j = 0; j < XVECLEN (x, i); j++)
606 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
607 return 1;
608 }
609 return 0;
610 }
611 \f
612 /* Return the CALL in X if there is one. */
613
614 rtx
615 get_call_rtx_from (rtx x)
616 {
617 if (INSN_P (x))
618 x = PATTERN (x);
619 if (GET_CODE (x) == PARALLEL)
620 x = XVECEXP (x, 0, 0);
621 if (GET_CODE (x) == SET)
622 x = SET_SRC (x);
623 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
624 return x;
625 return NULL_RTX;
626 }
627 \f
628 /* Return the value of the integer term in X, if one is apparent;
629 otherwise return 0.
630 Only obvious integer terms are detected.
631 This is used in cse.c with the `related_value' field. */
632
633 HOST_WIDE_INT
634 get_integer_term (const_rtx x)
635 {
636 if (GET_CODE (x) == CONST)
637 x = XEXP (x, 0);
638
639 if (GET_CODE (x) == MINUS
640 && CONST_INT_P (XEXP (x, 1)))
641 return - INTVAL (XEXP (x, 1));
642 if (GET_CODE (x) == PLUS
643 && CONST_INT_P (XEXP (x, 1)))
644 return INTVAL (XEXP (x, 1));
645 return 0;
646 }
647
648 /* If X is a constant, return the value sans apparent integer term;
649 otherwise return 0.
650 Only obvious integer terms are detected. */
651
652 rtx
653 get_related_value (const_rtx x)
654 {
655 if (GET_CODE (x) != CONST)
656 return 0;
657 x = XEXP (x, 0);
658 if (GET_CODE (x) == PLUS
659 && CONST_INT_P (XEXP (x, 1)))
660 return XEXP (x, 0);
661 else if (GET_CODE (x) == MINUS
662 && CONST_INT_P (XEXP (x, 1)))
663 return XEXP (x, 0);
664 return 0;
665 }
666 \f
667 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
668 to somewhere in the same object or object_block as SYMBOL. */
669
670 bool
671 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
672 {
673 tree decl;
674
675 if (GET_CODE (symbol) != SYMBOL_REF)
676 return false;
677
678 if (offset == 0)
679 return true;
680
681 if (offset > 0)
682 {
683 if (CONSTANT_POOL_ADDRESS_P (symbol)
684 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
685 return true;
686
687 decl = SYMBOL_REF_DECL (symbol);
688 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
689 return true;
690 }
691
692 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
693 && SYMBOL_REF_BLOCK (symbol)
694 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
695 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
696 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
697 return true;
698
699 return false;
700 }
701
702 /* Split X into a base and a constant offset, storing them in *BASE_OUT
703 and *OFFSET_OUT respectively. */
704
705 void
706 split_const (rtx x, rtx *base_out, rtx *offset_out)
707 {
708 if (GET_CODE (x) == CONST)
709 {
710 x = XEXP (x, 0);
711 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
712 {
713 *base_out = XEXP (x, 0);
714 *offset_out = XEXP (x, 1);
715 return;
716 }
717 }
718 *base_out = x;
719 *offset_out = const0_rtx;
720 }
721 \f
722 /* Return the number of places FIND appears within X. If COUNT_DEST is
723 zero, we do not count occurrences inside the destination of a SET. */
724
725 int
726 count_occurrences (const_rtx x, const_rtx find, int count_dest)
727 {
728 int i, j;
729 enum rtx_code code;
730 const char *format_ptr;
731 int count;
732
733 if (x == find)
734 return 1;
735
736 code = GET_CODE (x);
737
738 switch (code)
739 {
740 case REG:
741 CASE_CONST_ANY:
742 case SYMBOL_REF:
743 case CODE_LABEL:
744 case PC:
745 case CC0:
746 return 0;
747
748 case EXPR_LIST:
749 count = count_occurrences (XEXP (x, 0), find, count_dest);
750 if (XEXP (x, 1))
751 count += count_occurrences (XEXP (x, 1), find, count_dest);
752 return count;
753
754 case MEM:
755 if (MEM_P (find) && rtx_equal_p (x, find))
756 return 1;
757 break;
758
759 case SET:
760 if (SET_DEST (x) == find && ! count_dest)
761 return count_occurrences (SET_SRC (x), find, count_dest);
762 break;
763
764 default:
765 break;
766 }
767
768 format_ptr = GET_RTX_FORMAT (code);
769 count = 0;
770
771 for (i = 0; i < GET_RTX_LENGTH (code); i++)
772 {
773 switch (*format_ptr++)
774 {
775 case 'e':
776 count += count_occurrences (XEXP (x, i), find, count_dest);
777 break;
778
779 case 'E':
780 for (j = 0; j < XVECLEN (x, i); j++)
781 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
782 break;
783 }
784 }
785 return count;
786 }
787
788 \f
789 /* Return TRUE if OP is a register or subreg of a register that
790 holds an unsigned quantity. Otherwise, return FALSE. */
791
792 bool
793 unsigned_reg_p (rtx op)
794 {
795 if (REG_P (op)
796 && REG_EXPR (op)
797 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
798 return true;
799
800 if (GET_CODE (op) == SUBREG
801 && SUBREG_PROMOTED_SIGN (op))
802 return true;
803
804 return false;
805 }
806
807 \f
808 /* Nonzero if register REG appears somewhere within IN.
809 Also works if REG is not a register; in this case it checks
810 for a subexpression of IN that is Lisp "equal" to REG. */
811
812 int
813 reg_mentioned_p (const_rtx reg, const_rtx in)
814 {
815 const char *fmt;
816 int i;
817 enum rtx_code code;
818
819 if (in == 0)
820 return 0;
821
822 if (reg == in)
823 return 1;
824
825 if (GET_CODE (in) == LABEL_REF)
826 return reg == LABEL_REF_LABEL (in);
827
828 code = GET_CODE (in);
829
830 switch (code)
831 {
832 /* Compare registers by number. */
833 case REG:
834 return REG_P (reg) && REGNO (in) == REGNO (reg);
835
836 /* These codes have no constituent expressions
837 and are unique. */
838 case SCRATCH:
839 case CC0:
840 case PC:
841 return 0;
842
843 CASE_CONST_ANY:
844 /* These are kept unique for a given value. */
845 return 0;
846
847 default:
848 break;
849 }
850
851 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
852 return 1;
853
854 fmt = GET_RTX_FORMAT (code);
855
856 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
857 {
858 if (fmt[i] == 'E')
859 {
860 int j;
861 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
862 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
863 return 1;
864 }
865 else if (fmt[i] == 'e'
866 && reg_mentioned_p (reg, XEXP (in, i)))
867 return 1;
868 }
869 return 0;
870 }
871 \f
872 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
873 no CODE_LABEL insn. */
874
875 int
876 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
877 {
878 rtx_insn *p;
879 if (beg == end)
880 return 0;
881 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
882 if (LABEL_P (p))
883 return 0;
884 return 1;
885 }
886
887 /* Nonzero if register REG is used in an insn between
888 FROM_INSN and TO_INSN (exclusive of those two). */
889
890 int
891 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
892 const rtx_insn *to_insn)
893 {
894 rtx_insn *insn;
895
896 if (from_insn == to_insn)
897 return 0;
898
899 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
900 if (NONDEBUG_INSN_P (insn)
901 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
902 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
903 return 1;
904 return 0;
905 }
906 \f
907 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
908 is entirely replaced by a new value and the only use is as a SET_DEST,
909 we do not consider it a reference. */
910
911 int
912 reg_referenced_p (const_rtx x, const_rtx body)
913 {
914 int i;
915
916 switch (GET_CODE (body))
917 {
918 case SET:
919 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
920 return 1;
921
922 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
923 of a REG that occupies all of the REG, the insn references X if
924 it is mentioned in the destination. */
925 if (GET_CODE (SET_DEST (body)) != CC0
926 && GET_CODE (SET_DEST (body)) != PC
927 && !REG_P (SET_DEST (body))
928 && ! (GET_CODE (SET_DEST (body)) == SUBREG
929 && REG_P (SUBREG_REG (SET_DEST (body)))
930 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
931 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
932 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
933 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
934 && reg_overlap_mentioned_p (x, SET_DEST (body)))
935 return 1;
936 return 0;
937
938 case ASM_OPERANDS:
939 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
940 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
941 return 1;
942 return 0;
943
944 case CALL:
945 case USE:
946 case IF_THEN_ELSE:
947 return reg_overlap_mentioned_p (x, body);
948
949 case TRAP_IF:
950 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
951
952 case PREFETCH:
953 return reg_overlap_mentioned_p (x, XEXP (body, 0));
954
955 case UNSPEC:
956 case UNSPEC_VOLATILE:
957 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
958 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
959 return 1;
960 return 0;
961
962 case PARALLEL:
963 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
964 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
965 return 1;
966 return 0;
967
968 case CLOBBER:
969 if (MEM_P (XEXP (body, 0)))
970 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
971 return 1;
972 return 0;
973
974 case COND_EXEC:
975 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
976 return 1;
977 return reg_referenced_p (x, COND_EXEC_CODE (body));
978
979 default:
980 return 0;
981 }
982 }
983 \f
984 /* Nonzero if register REG is set or clobbered in an insn between
985 FROM_INSN and TO_INSN (exclusive of those two). */
986
987 int
988 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
989 const rtx_insn *to_insn)
990 {
991 const rtx_insn *insn;
992
993 if (from_insn == to_insn)
994 return 0;
995
996 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
997 if (INSN_P (insn) && reg_set_p (reg, insn))
998 return 1;
999 return 0;
1000 }
1001
1002 /* Internals of reg_set_between_p. */
1003 int
1004 reg_set_p (const_rtx reg, const_rtx insn)
1005 {
1006 /* After delay slot handling, call and branch insns might be in a
1007 sequence. Check all the elements there. */
1008 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1009 {
1010 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1011 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1012 return true;
1013
1014 return false;
1015 }
1016
1017 /* We can be passed an insn or part of one. If we are passed an insn,
1018 check if a side-effect of the insn clobbers REG. */
1019 if (INSN_P (insn)
1020 && (FIND_REG_INC_NOTE (insn, reg)
1021 || (CALL_P (insn)
1022 && ((REG_P (reg)
1023 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1024 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1025 GET_MODE (reg), REGNO (reg)))
1026 || MEM_P (reg)
1027 || find_reg_fusage (insn, CLOBBER, reg)))))
1028 return true;
1029
1030 return set_of (reg, insn) != NULL_RTX;
1031 }
1032
1033 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1034 only if none of them are modified between START and END. Return 1 if
1035 X contains a MEM; this routine does use memory aliasing. */
1036
1037 int
1038 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1039 {
1040 const enum rtx_code code = GET_CODE (x);
1041 const char *fmt;
1042 int i, j;
1043 rtx_insn *insn;
1044
1045 if (start == end)
1046 return 0;
1047
1048 switch (code)
1049 {
1050 CASE_CONST_ANY:
1051 case CONST:
1052 case SYMBOL_REF:
1053 case LABEL_REF:
1054 return 0;
1055
1056 case PC:
1057 case CC0:
1058 return 1;
1059
1060 case MEM:
1061 if (modified_between_p (XEXP (x, 0), start, end))
1062 return 1;
1063 if (MEM_READONLY_P (x))
1064 return 0;
1065 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1066 if (memory_modified_in_insn_p (x, insn))
1067 return 1;
1068 return 0;
1069 break;
1070
1071 case REG:
1072 return reg_set_between_p (x, start, end);
1073
1074 default:
1075 break;
1076 }
1077
1078 fmt = GET_RTX_FORMAT (code);
1079 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1080 {
1081 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1082 return 1;
1083
1084 else if (fmt[i] == 'E')
1085 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1086 if (modified_between_p (XVECEXP (x, i, j), start, end))
1087 return 1;
1088 }
1089
1090 return 0;
1091 }
1092
1093 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1094 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1095 does use memory aliasing. */
1096
1097 int
1098 modified_in_p (const_rtx x, const_rtx insn)
1099 {
1100 const enum rtx_code code = GET_CODE (x);
1101 const char *fmt;
1102 int i, j;
1103
1104 switch (code)
1105 {
1106 CASE_CONST_ANY:
1107 case CONST:
1108 case SYMBOL_REF:
1109 case LABEL_REF:
1110 return 0;
1111
1112 case PC:
1113 case CC0:
1114 return 1;
1115
1116 case MEM:
1117 if (modified_in_p (XEXP (x, 0), insn))
1118 return 1;
1119 if (MEM_READONLY_P (x))
1120 return 0;
1121 if (memory_modified_in_insn_p (x, insn))
1122 return 1;
1123 return 0;
1124 break;
1125
1126 case REG:
1127 return reg_set_p (x, insn);
1128
1129 default:
1130 break;
1131 }
1132
1133 fmt = GET_RTX_FORMAT (code);
1134 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1135 {
1136 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1137 return 1;
1138
1139 else if (fmt[i] == 'E')
1140 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1141 if (modified_in_p (XVECEXP (x, i, j), insn))
1142 return 1;
1143 }
1144
1145 return 0;
1146 }
1147 \f
1148 /* Helper function for set_of. */
1149 struct set_of_data
1150 {
1151 const_rtx found;
1152 const_rtx pat;
1153 };
1154
1155 static void
1156 set_of_1 (rtx x, const_rtx pat, void *data1)
1157 {
1158 struct set_of_data *const data = (struct set_of_data *) (data1);
1159 if (rtx_equal_p (x, data->pat)
1160 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1161 data->found = pat;
1162 }
1163
1164 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1165 (either directly or via STRICT_LOW_PART and similar modifiers). */
1166 const_rtx
1167 set_of (const_rtx pat, const_rtx insn)
1168 {
1169 struct set_of_data data;
1170 data.found = NULL_RTX;
1171 data.pat = pat;
1172 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1173 return data.found;
1174 }
1175
1176 /* Add all hard register in X to *PSET. */
1177 void
1178 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1179 {
1180 subrtx_iterator::array_type array;
1181 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1182 {
1183 const_rtx x = *iter;
1184 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1185 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1186 }
1187 }
1188
1189 /* This function, called through note_stores, collects sets and
1190 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1191 by DATA. */
1192 void
1193 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1194 {
1195 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1196 if (REG_P (x) && HARD_REGISTER_P (x))
1197 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1198 }
1199
1200 /* Examine INSN, and compute the set of hard registers written by it.
1201 Store it in *PSET. Should only be called after reload. */
1202 void
1203 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1204 {
1205 rtx link;
1206
1207 CLEAR_HARD_REG_SET (*pset);
1208 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1209 if (CALL_P (insn))
1210 {
1211 if (implicit)
1212 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1213
1214 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1215 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1216 }
1217 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1218 if (REG_NOTE_KIND (link) == REG_INC)
1219 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1220 }
1221
1222 /* Like record_hard_reg_sets, but called through note_uses. */
1223 void
1224 record_hard_reg_uses (rtx *px, void *data)
1225 {
1226 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1227 }
1228 \f
1229 /* Given an INSN, return a SET expression if this insn has only a single SET.
1230 It may also have CLOBBERs, USEs, or SET whose output
1231 will not be used, which we ignore. */
1232
1233 rtx
1234 single_set_2 (const rtx_insn *insn, const_rtx pat)
1235 {
1236 rtx set = NULL;
1237 int set_verified = 1;
1238 int i;
1239
1240 if (GET_CODE (pat) == PARALLEL)
1241 {
1242 for (i = 0; i < XVECLEN (pat, 0); i++)
1243 {
1244 rtx sub = XVECEXP (pat, 0, i);
1245 switch (GET_CODE (sub))
1246 {
1247 case USE:
1248 case CLOBBER:
1249 break;
1250
1251 case SET:
1252 /* We can consider insns having multiple sets, where all
1253 but one are dead as single set insns. In common case
1254 only single set is present in the pattern so we want
1255 to avoid checking for REG_UNUSED notes unless necessary.
1256
1257 When we reach set first time, we just expect this is
1258 the single set we are looking for and only when more
1259 sets are found in the insn, we check them. */
1260 if (!set_verified)
1261 {
1262 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1263 && !side_effects_p (set))
1264 set = NULL;
1265 else
1266 set_verified = 1;
1267 }
1268 if (!set)
1269 set = sub, set_verified = 0;
1270 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1271 || side_effects_p (sub))
1272 return NULL_RTX;
1273 break;
1274
1275 default:
1276 return NULL_RTX;
1277 }
1278 }
1279 }
1280 return set;
1281 }
1282
1283 /* Given an INSN, return nonzero if it has more than one SET, else return
1284 zero. */
1285
1286 int
1287 multiple_sets (const_rtx insn)
1288 {
1289 int found;
1290 int i;
1291
1292 /* INSN must be an insn. */
1293 if (! INSN_P (insn))
1294 return 0;
1295
1296 /* Only a PARALLEL can have multiple SETs. */
1297 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1298 {
1299 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1300 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1301 {
1302 /* If we have already found a SET, then return now. */
1303 if (found)
1304 return 1;
1305 else
1306 found = 1;
1307 }
1308 }
1309
1310 /* Either zero or one SET. */
1311 return 0;
1312 }
1313 \f
1314 /* Return nonzero if the destination of SET equals the source
1315 and there are no side effects. */
1316
1317 int
1318 set_noop_p (const_rtx set)
1319 {
1320 rtx src = SET_SRC (set);
1321 rtx dst = SET_DEST (set);
1322
1323 if (dst == pc_rtx && src == pc_rtx)
1324 return 1;
1325
1326 if (MEM_P (dst) && MEM_P (src))
1327 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1328
1329 if (GET_CODE (dst) == ZERO_EXTRACT)
1330 return rtx_equal_p (XEXP (dst, 0), src)
1331 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1332 && !side_effects_p (src);
1333
1334 if (GET_CODE (dst) == STRICT_LOW_PART)
1335 dst = XEXP (dst, 0);
1336
1337 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1338 {
1339 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1340 return 0;
1341 src = SUBREG_REG (src);
1342 dst = SUBREG_REG (dst);
1343 }
1344
1345 /* It is a NOOP if destination overlaps with selected src vector
1346 elements. */
1347 if (GET_CODE (src) == VEC_SELECT
1348 && REG_P (XEXP (src, 0)) && REG_P (dst)
1349 && HARD_REGISTER_P (XEXP (src, 0))
1350 && HARD_REGISTER_P (dst))
1351 {
1352 int i;
1353 rtx par = XEXP (src, 1);
1354 rtx src0 = XEXP (src, 0);
1355 int c0 = INTVAL (XVECEXP (par, 0, 0));
1356 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1357
1358 for (i = 1; i < XVECLEN (par, 0); i++)
1359 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1360 return 0;
1361 return
1362 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1363 offset, GET_MODE (dst)) == (int) REGNO (dst);
1364 }
1365
1366 return (REG_P (src) && REG_P (dst)
1367 && REGNO (src) == REGNO (dst));
1368 }
1369 \f
1370 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1371 value to itself. */
1372
1373 int
1374 noop_move_p (const rtx_insn *insn)
1375 {
1376 rtx pat = PATTERN (insn);
1377
1378 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1379 return 1;
1380
1381 /* Insns carrying these notes are useful later on. */
1382 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1383 return 0;
1384
1385 /* Check the code to be executed for COND_EXEC. */
1386 if (GET_CODE (pat) == COND_EXEC)
1387 pat = COND_EXEC_CODE (pat);
1388
1389 if (GET_CODE (pat) == SET && set_noop_p (pat))
1390 return 1;
1391
1392 if (GET_CODE (pat) == PARALLEL)
1393 {
1394 int i;
1395 /* If nothing but SETs of registers to themselves,
1396 this insn can also be deleted. */
1397 for (i = 0; i < XVECLEN (pat, 0); i++)
1398 {
1399 rtx tem = XVECEXP (pat, 0, i);
1400
1401 if (GET_CODE (tem) == USE
1402 || GET_CODE (tem) == CLOBBER)
1403 continue;
1404
1405 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1406 return 0;
1407 }
1408
1409 return 1;
1410 }
1411 return 0;
1412 }
1413 \f
1414
1415 /* Return nonzero if register in range [REGNO, ENDREGNO)
1416 appears either explicitly or implicitly in X
1417 other than being stored into.
1418
1419 References contained within the substructure at LOC do not count.
1420 LOC may be zero, meaning don't ignore anything. */
1421
1422 bool
1423 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1424 rtx *loc)
1425 {
1426 int i;
1427 unsigned int x_regno;
1428 RTX_CODE code;
1429 const char *fmt;
1430
1431 repeat:
1432 /* The contents of a REG_NONNEG note is always zero, so we must come here
1433 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1434 if (x == 0)
1435 return false;
1436
1437 code = GET_CODE (x);
1438
1439 switch (code)
1440 {
1441 case REG:
1442 x_regno = REGNO (x);
1443
1444 /* If we modifying the stack, frame, or argument pointer, it will
1445 clobber a virtual register. In fact, we could be more precise,
1446 but it isn't worth it. */
1447 if ((x_regno == STACK_POINTER_REGNUM
1448 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1449 && x_regno == ARG_POINTER_REGNUM)
1450 || x_regno == FRAME_POINTER_REGNUM)
1451 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1452 return true;
1453
1454 return endregno > x_regno && regno < END_REGNO (x);
1455
1456 case SUBREG:
1457 /* If this is a SUBREG of a hard reg, we can see exactly which
1458 registers are being modified. Otherwise, handle normally. */
1459 if (REG_P (SUBREG_REG (x))
1460 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1461 {
1462 unsigned int inner_regno = subreg_regno (x);
1463 unsigned int inner_endregno
1464 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1465 ? subreg_nregs (x) : 1);
1466
1467 return endregno > inner_regno && regno < inner_endregno;
1468 }
1469 break;
1470
1471 case CLOBBER:
1472 case SET:
1473 if (&SET_DEST (x) != loc
1474 /* Note setting a SUBREG counts as referring to the REG it is in for
1475 a pseudo but not for hard registers since we can
1476 treat each word individually. */
1477 && ((GET_CODE (SET_DEST (x)) == SUBREG
1478 && loc != &SUBREG_REG (SET_DEST (x))
1479 && REG_P (SUBREG_REG (SET_DEST (x)))
1480 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1481 && refers_to_regno_p (regno, endregno,
1482 SUBREG_REG (SET_DEST (x)), loc))
1483 || (!REG_P (SET_DEST (x))
1484 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1485 return true;
1486
1487 if (code == CLOBBER || loc == &SET_SRC (x))
1488 return false;
1489 x = SET_SRC (x);
1490 goto repeat;
1491
1492 default:
1493 break;
1494 }
1495
1496 /* X does not match, so try its subexpressions. */
1497
1498 fmt = GET_RTX_FORMAT (code);
1499 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1500 {
1501 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1502 {
1503 if (i == 0)
1504 {
1505 x = XEXP (x, 0);
1506 goto repeat;
1507 }
1508 else
1509 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1510 return true;
1511 }
1512 else if (fmt[i] == 'E')
1513 {
1514 int j;
1515 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1516 if (loc != &XVECEXP (x, i, j)
1517 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1518 return true;
1519 }
1520 }
1521 return false;
1522 }
1523
1524 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1525 we check if any register number in X conflicts with the relevant register
1526 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1527 contains a MEM (we don't bother checking for memory addresses that can't
1528 conflict because we expect this to be a rare case. */
1529
1530 int
1531 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1532 {
1533 unsigned int regno, endregno;
1534
1535 /* If either argument is a constant, then modifying X can not
1536 affect IN. Here we look at IN, we can profitably combine
1537 CONSTANT_P (x) with the switch statement below. */
1538 if (CONSTANT_P (in))
1539 return 0;
1540
1541 recurse:
1542 switch (GET_CODE (x))
1543 {
1544 case STRICT_LOW_PART:
1545 case ZERO_EXTRACT:
1546 case SIGN_EXTRACT:
1547 /* Overly conservative. */
1548 x = XEXP (x, 0);
1549 goto recurse;
1550
1551 case SUBREG:
1552 regno = REGNO (SUBREG_REG (x));
1553 if (regno < FIRST_PSEUDO_REGISTER)
1554 regno = subreg_regno (x);
1555 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1556 ? subreg_nregs (x) : 1);
1557 goto do_reg;
1558
1559 case REG:
1560 regno = REGNO (x);
1561 endregno = END_REGNO (x);
1562 do_reg:
1563 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1564
1565 case MEM:
1566 {
1567 const char *fmt;
1568 int i;
1569
1570 if (MEM_P (in))
1571 return 1;
1572
1573 fmt = GET_RTX_FORMAT (GET_CODE (in));
1574 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1575 if (fmt[i] == 'e')
1576 {
1577 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1578 return 1;
1579 }
1580 else if (fmt[i] == 'E')
1581 {
1582 int j;
1583 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1584 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1585 return 1;
1586 }
1587
1588 return 0;
1589 }
1590
1591 case SCRATCH:
1592 case PC:
1593 case CC0:
1594 return reg_mentioned_p (x, in);
1595
1596 case PARALLEL:
1597 {
1598 int i;
1599
1600 /* If any register in here refers to it we return true. */
1601 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1602 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1603 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1604 return 1;
1605 return 0;
1606 }
1607
1608 default:
1609 gcc_assert (CONSTANT_P (x));
1610 return 0;
1611 }
1612 }
1613 \f
1614 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1615 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1616 ignored by note_stores, but passed to FUN.
1617
1618 FUN receives three arguments:
1619 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1620 2. the SET or CLOBBER rtx that does the store,
1621 3. the pointer DATA provided to note_stores.
1622
1623 If the item being stored in or clobbered is a SUBREG of a hard register,
1624 the SUBREG will be passed. */
1625
1626 void
1627 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1628 {
1629 int i;
1630
1631 if (GET_CODE (x) == COND_EXEC)
1632 x = COND_EXEC_CODE (x);
1633
1634 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1635 {
1636 rtx dest = SET_DEST (x);
1637
1638 while ((GET_CODE (dest) == SUBREG
1639 && (!REG_P (SUBREG_REG (dest))
1640 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1641 || GET_CODE (dest) == ZERO_EXTRACT
1642 || GET_CODE (dest) == STRICT_LOW_PART)
1643 dest = XEXP (dest, 0);
1644
1645 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1646 each of whose first operand is a register. */
1647 if (GET_CODE (dest) == PARALLEL)
1648 {
1649 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1650 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1651 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1652 }
1653 else
1654 (*fun) (dest, x, data);
1655 }
1656
1657 else if (GET_CODE (x) == PARALLEL)
1658 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1659 note_stores (XVECEXP (x, 0, i), fun, data);
1660 }
1661 \f
1662 /* Like notes_stores, but call FUN for each expression that is being
1663 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1664 FUN for each expression, not any interior subexpressions. FUN receives a
1665 pointer to the expression and the DATA passed to this function.
1666
1667 Note that this is not quite the same test as that done in reg_referenced_p
1668 since that considers something as being referenced if it is being
1669 partially set, while we do not. */
1670
1671 void
1672 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1673 {
1674 rtx body = *pbody;
1675 int i;
1676
1677 switch (GET_CODE (body))
1678 {
1679 case COND_EXEC:
1680 (*fun) (&COND_EXEC_TEST (body), data);
1681 note_uses (&COND_EXEC_CODE (body), fun, data);
1682 return;
1683
1684 case PARALLEL:
1685 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1686 note_uses (&XVECEXP (body, 0, i), fun, data);
1687 return;
1688
1689 case SEQUENCE:
1690 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1691 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1692 return;
1693
1694 case USE:
1695 (*fun) (&XEXP (body, 0), data);
1696 return;
1697
1698 case ASM_OPERANDS:
1699 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1700 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1701 return;
1702
1703 case TRAP_IF:
1704 (*fun) (&TRAP_CONDITION (body), data);
1705 return;
1706
1707 case PREFETCH:
1708 (*fun) (&XEXP (body, 0), data);
1709 return;
1710
1711 case UNSPEC:
1712 case UNSPEC_VOLATILE:
1713 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1714 (*fun) (&XVECEXP (body, 0, i), data);
1715 return;
1716
1717 case CLOBBER:
1718 if (MEM_P (XEXP (body, 0)))
1719 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1720 return;
1721
1722 case SET:
1723 {
1724 rtx dest = SET_DEST (body);
1725
1726 /* For sets we replace everything in source plus registers in memory
1727 expression in store and operands of a ZERO_EXTRACT. */
1728 (*fun) (&SET_SRC (body), data);
1729
1730 if (GET_CODE (dest) == ZERO_EXTRACT)
1731 {
1732 (*fun) (&XEXP (dest, 1), data);
1733 (*fun) (&XEXP (dest, 2), data);
1734 }
1735
1736 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1737 dest = XEXP (dest, 0);
1738
1739 if (MEM_P (dest))
1740 (*fun) (&XEXP (dest, 0), data);
1741 }
1742 return;
1743
1744 default:
1745 /* All the other possibilities never store. */
1746 (*fun) (pbody, data);
1747 return;
1748 }
1749 }
1750 \f
1751 /* Return nonzero if X's old contents don't survive after INSN.
1752 This will be true if X is (cc0) or if X is a register and
1753 X dies in INSN or because INSN entirely sets X.
1754
1755 "Entirely set" means set directly and not through a SUBREG, or
1756 ZERO_EXTRACT, so no trace of the old contents remains.
1757 Likewise, REG_INC does not count.
1758
1759 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1760 but for this use that makes no difference, since regs don't overlap
1761 during their lifetimes. Therefore, this function may be used
1762 at any time after deaths have been computed.
1763
1764 If REG is a hard reg that occupies multiple machine registers, this
1765 function will only return 1 if each of those registers will be replaced
1766 by INSN. */
1767
1768 int
1769 dead_or_set_p (const_rtx insn, const_rtx x)
1770 {
1771 unsigned int regno, end_regno;
1772 unsigned int i;
1773
1774 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1775 if (GET_CODE (x) == CC0)
1776 return 1;
1777
1778 gcc_assert (REG_P (x));
1779
1780 regno = REGNO (x);
1781 end_regno = END_REGNO (x);
1782 for (i = regno; i < end_regno; i++)
1783 if (! dead_or_set_regno_p (insn, i))
1784 return 0;
1785
1786 return 1;
1787 }
1788
1789 /* Return TRUE iff DEST is a register or subreg of a register and
1790 doesn't change the number of words of the inner register, and any
1791 part of the register is TEST_REGNO. */
1792
1793 static bool
1794 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1795 {
1796 unsigned int regno, endregno;
1797
1798 if (GET_CODE (dest) == SUBREG
1799 && (((GET_MODE_SIZE (GET_MODE (dest))
1800 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1801 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1802 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1803 dest = SUBREG_REG (dest);
1804
1805 if (!REG_P (dest))
1806 return false;
1807
1808 regno = REGNO (dest);
1809 endregno = END_REGNO (dest);
1810 return (test_regno >= regno && test_regno < endregno);
1811 }
1812
1813 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1814 any member matches the covers_regno_no_parallel_p criteria. */
1815
1816 static bool
1817 covers_regno_p (const_rtx dest, unsigned int test_regno)
1818 {
1819 if (GET_CODE (dest) == PARALLEL)
1820 {
1821 /* Some targets place small structures in registers for return
1822 values of functions, and those registers are wrapped in
1823 PARALLELs that we may see as the destination of a SET. */
1824 int i;
1825
1826 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1827 {
1828 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1829 if (inner != NULL_RTX
1830 && covers_regno_no_parallel_p (inner, test_regno))
1831 return true;
1832 }
1833
1834 return false;
1835 }
1836 else
1837 return covers_regno_no_parallel_p (dest, test_regno);
1838 }
1839
1840 /* Utility function for dead_or_set_p to check an individual register. */
1841
1842 int
1843 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1844 {
1845 const_rtx pattern;
1846
1847 /* See if there is a death note for something that includes TEST_REGNO. */
1848 if (find_regno_note (insn, REG_DEAD, test_regno))
1849 return 1;
1850
1851 if (CALL_P (insn)
1852 && find_regno_fusage (insn, CLOBBER, test_regno))
1853 return 1;
1854
1855 pattern = PATTERN (insn);
1856
1857 /* If a COND_EXEC is not executed, the value survives. */
1858 if (GET_CODE (pattern) == COND_EXEC)
1859 return 0;
1860
1861 if (GET_CODE (pattern) == SET)
1862 return covers_regno_p (SET_DEST (pattern), test_regno);
1863 else if (GET_CODE (pattern) == PARALLEL)
1864 {
1865 int i;
1866
1867 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1868 {
1869 rtx body = XVECEXP (pattern, 0, i);
1870
1871 if (GET_CODE (body) == COND_EXEC)
1872 body = COND_EXEC_CODE (body);
1873
1874 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1875 && covers_regno_p (SET_DEST (body), test_regno))
1876 return 1;
1877 }
1878 }
1879
1880 return 0;
1881 }
1882
1883 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1884 If DATUM is nonzero, look for one whose datum is DATUM. */
1885
1886 rtx
1887 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1888 {
1889 rtx link;
1890
1891 gcc_checking_assert (insn);
1892
1893 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1894 if (! INSN_P (insn))
1895 return 0;
1896 if (datum == 0)
1897 {
1898 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1899 if (REG_NOTE_KIND (link) == kind)
1900 return link;
1901 return 0;
1902 }
1903
1904 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1905 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1906 return link;
1907 return 0;
1908 }
1909
1910 /* Return the reg-note of kind KIND in insn INSN which applies to register
1911 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1912 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1913 it might be the case that the note overlaps REGNO. */
1914
1915 rtx
1916 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1917 {
1918 rtx link;
1919
1920 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1921 if (! INSN_P (insn))
1922 return 0;
1923
1924 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1925 if (REG_NOTE_KIND (link) == kind
1926 /* Verify that it is a register, so that scratch and MEM won't cause a
1927 problem here. */
1928 && REG_P (XEXP (link, 0))
1929 && REGNO (XEXP (link, 0)) <= regno
1930 && END_REGNO (XEXP (link, 0)) > regno)
1931 return link;
1932 return 0;
1933 }
1934
1935 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1936 has such a note. */
1937
1938 rtx
1939 find_reg_equal_equiv_note (const_rtx insn)
1940 {
1941 rtx link;
1942
1943 if (!INSN_P (insn))
1944 return 0;
1945
1946 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1947 if (REG_NOTE_KIND (link) == REG_EQUAL
1948 || REG_NOTE_KIND (link) == REG_EQUIV)
1949 {
1950 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1951 insns that have multiple sets. Checking single_set to
1952 make sure of this is not the proper check, as explained
1953 in the comment in set_unique_reg_note.
1954
1955 This should be changed into an assert. */
1956 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1957 return 0;
1958 return link;
1959 }
1960 return NULL;
1961 }
1962
1963 /* Check whether INSN is a single_set whose source is known to be
1964 equivalent to a constant. Return that constant if so, otherwise
1965 return null. */
1966
1967 rtx
1968 find_constant_src (const rtx_insn *insn)
1969 {
1970 rtx note, set, x;
1971
1972 set = single_set (insn);
1973 if (set)
1974 {
1975 x = avoid_constant_pool_reference (SET_SRC (set));
1976 if (CONSTANT_P (x))
1977 return x;
1978 }
1979
1980 note = find_reg_equal_equiv_note (insn);
1981 if (note && CONSTANT_P (XEXP (note, 0)))
1982 return XEXP (note, 0);
1983
1984 return NULL_RTX;
1985 }
1986
1987 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1988 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1989
1990 int
1991 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1992 {
1993 /* If it's not a CALL_INSN, it can't possibly have a
1994 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1995 if (!CALL_P (insn))
1996 return 0;
1997
1998 gcc_assert (datum);
1999
2000 if (!REG_P (datum))
2001 {
2002 rtx link;
2003
2004 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2005 link;
2006 link = XEXP (link, 1))
2007 if (GET_CODE (XEXP (link, 0)) == code
2008 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2009 return 1;
2010 }
2011 else
2012 {
2013 unsigned int regno = REGNO (datum);
2014
2015 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2016 to pseudo registers, so don't bother checking. */
2017
2018 if (regno < FIRST_PSEUDO_REGISTER)
2019 {
2020 unsigned int end_regno = END_REGNO (datum);
2021 unsigned int i;
2022
2023 for (i = regno; i < end_regno; i++)
2024 if (find_regno_fusage (insn, code, i))
2025 return 1;
2026 }
2027 }
2028
2029 return 0;
2030 }
2031
2032 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2033 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2034
2035 int
2036 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2037 {
2038 rtx link;
2039
2040 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2041 to pseudo registers, so don't bother checking. */
2042
2043 if (regno >= FIRST_PSEUDO_REGISTER
2044 || !CALL_P (insn) )
2045 return 0;
2046
2047 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2048 {
2049 rtx op, reg;
2050
2051 if (GET_CODE (op = XEXP (link, 0)) == code
2052 && REG_P (reg = XEXP (op, 0))
2053 && REGNO (reg) <= regno
2054 && END_REGNO (reg) > regno)
2055 return 1;
2056 }
2057
2058 return 0;
2059 }
2060
2061 \f
2062 /* Return true if KIND is an integer REG_NOTE. */
2063
2064 static bool
2065 int_reg_note_p (enum reg_note kind)
2066 {
2067 return kind == REG_BR_PROB;
2068 }
2069
2070 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2071 stored as the pointer to the next register note. */
2072
2073 rtx
2074 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2075 {
2076 rtx note;
2077
2078 gcc_checking_assert (!int_reg_note_p (kind));
2079 switch (kind)
2080 {
2081 case REG_CC_SETTER:
2082 case REG_CC_USER:
2083 case REG_LABEL_TARGET:
2084 case REG_LABEL_OPERAND:
2085 case REG_TM:
2086 /* These types of register notes use an INSN_LIST rather than an
2087 EXPR_LIST, so that copying is done right and dumps look
2088 better. */
2089 note = alloc_INSN_LIST (datum, list);
2090 PUT_REG_NOTE_KIND (note, kind);
2091 break;
2092
2093 default:
2094 note = alloc_EXPR_LIST (kind, datum, list);
2095 break;
2096 }
2097
2098 return note;
2099 }
2100
2101 /* Add register note with kind KIND and datum DATUM to INSN. */
2102
2103 void
2104 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2105 {
2106 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2107 }
2108
2109 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2110
2111 void
2112 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2113 {
2114 gcc_checking_assert (int_reg_note_p (kind));
2115 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2116 datum, REG_NOTES (insn));
2117 }
2118
2119 /* Add a register note like NOTE to INSN. */
2120
2121 void
2122 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2123 {
2124 if (GET_CODE (note) == INT_LIST)
2125 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2126 else
2127 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2128 }
2129
2130 /* Remove register note NOTE from the REG_NOTES of INSN. */
2131
2132 void
2133 remove_note (rtx insn, const_rtx note)
2134 {
2135 rtx link;
2136
2137 if (note == NULL_RTX)
2138 return;
2139
2140 if (REG_NOTES (insn) == note)
2141 REG_NOTES (insn) = XEXP (note, 1);
2142 else
2143 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2144 if (XEXP (link, 1) == note)
2145 {
2146 XEXP (link, 1) = XEXP (note, 1);
2147 break;
2148 }
2149
2150 switch (REG_NOTE_KIND (note))
2151 {
2152 case REG_EQUAL:
2153 case REG_EQUIV:
2154 df_notes_rescan (as_a <rtx_insn *> (insn));
2155 break;
2156 default:
2157 break;
2158 }
2159 }
2160
2161 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2162
2163 void
2164 remove_reg_equal_equiv_notes (rtx_insn *insn)
2165 {
2166 rtx *loc;
2167
2168 loc = &REG_NOTES (insn);
2169 while (*loc)
2170 {
2171 enum reg_note kind = REG_NOTE_KIND (*loc);
2172 if (kind == REG_EQUAL || kind == REG_EQUIV)
2173 *loc = XEXP (*loc, 1);
2174 else
2175 loc = &XEXP (*loc, 1);
2176 }
2177 }
2178
2179 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2180
2181 void
2182 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2183 {
2184 df_ref eq_use;
2185
2186 if (!df)
2187 return;
2188
2189 /* This loop is a little tricky. We cannot just go down the chain because
2190 it is being modified by some actions in the loop. So we just iterate
2191 over the head. We plan to drain the list anyway. */
2192 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2193 {
2194 rtx_insn *insn = DF_REF_INSN (eq_use);
2195 rtx note = find_reg_equal_equiv_note (insn);
2196
2197 /* This assert is generally triggered when someone deletes a REG_EQUAL
2198 or REG_EQUIV note by hacking the list manually rather than calling
2199 remove_note. */
2200 gcc_assert (note);
2201
2202 remove_note (insn, note);
2203 }
2204 }
2205
2206 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2207 return 1 if it is found. A simple equality test is used to determine if
2208 NODE matches. */
2209
2210 bool
2211 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2212 {
2213 const_rtx x;
2214
2215 for (x = listp; x; x = XEXP (x, 1))
2216 if (node == XEXP (x, 0))
2217 return true;
2218
2219 return false;
2220 }
2221
2222 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2223 remove that entry from the list if it is found.
2224
2225 A simple equality test is used to determine if NODE matches. */
2226
2227 void
2228 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2229 {
2230 rtx_expr_list *temp = *listp;
2231 rtx prev = NULL_RTX;
2232
2233 while (temp)
2234 {
2235 if (node == temp->element ())
2236 {
2237 /* Splice the node out of the list. */
2238 if (prev)
2239 XEXP (prev, 1) = temp->next ();
2240 else
2241 *listp = temp->next ();
2242
2243 return;
2244 }
2245
2246 prev = temp;
2247 temp = temp->next ();
2248 }
2249 }
2250
2251 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2252 remove that entry from the list if it is found.
2253
2254 A simple equality test is used to determine if NODE matches. */
2255
2256 void
2257 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2258 {
2259 rtx_insn_list *temp = *listp;
2260 rtx prev = NULL;
2261
2262 while (temp)
2263 {
2264 if (node == temp->insn ())
2265 {
2266 /* Splice the node out of the list. */
2267 if (prev)
2268 XEXP (prev, 1) = temp->next ();
2269 else
2270 *listp = temp->next ();
2271
2272 return;
2273 }
2274
2275 prev = temp;
2276 temp = temp->next ();
2277 }
2278 }
2279 \f
2280 /* Nonzero if X contains any volatile instructions. These are instructions
2281 which may cause unpredictable machine state instructions, and thus no
2282 instructions or register uses should be moved or combined across them.
2283 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2284
2285 int
2286 volatile_insn_p (const_rtx x)
2287 {
2288 const RTX_CODE code = GET_CODE (x);
2289 switch (code)
2290 {
2291 case LABEL_REF:
2292 case SYMBOL_REF:
2293 case CONST:
2294 CASE_CONST_ANY:
2295 case CC0:
2296 case PC:
2297 case REG:
2298 case SCRATCH:
2299 case CLOBBER:
2300 case ADDR_VEC:
2301 case ADDR_DIFF_VEC:
2302 case CALL:
2303 case MEM:
2304 return 0;
2305
2306 case UNSPEC_VOLATILE:
2307 return 1;
2308
2309 case ASM_INPUT:
2310 case ASM_OPERANDS:
2311 if (MEM_VOLATILE_P (x))
2312 return 1;
2313
2314 default:
2315 break;
2316 }
2317
2318 /* Recursively scan the operands of this expression. */
2319
2320 {
2321 const char *const fmt = GET_RTX_FORMAT (code);
2322 int i;
2323
2324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2325 {
2326 if (fmt[i] == 'e')
2327 {
2328 if (volatile_insn_p (XEXP (x, i)))
2329 return 1;
2330 }
2331 else if (fmt[i] == 'E')
2332 {
2333 int j;
2334 for (j = 0; j < XVECLEN (x, i); j++)
2335 if (volatile_insn_p (XVECEXP (x, i, j)))
2336 return 1;
2337 }
2338 }
2339 }
2340 return 0;
2341 }
2342
2343 /* Nonzero if X contains any volatile memory references
2344 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2345
2346 int
2347 volatile_refs_p (const_rtx x)
2348 {
2349 const RTX_CODE code = GET_CODE (x);
2350 switch (code)
2351 {
2352 case LABEL_REF:
2353 case SYMBOL_REF:
2354 case CONST:
2355 CASE_CONST_ANY:
2356 case CC0:
2357 case PC:
2358 case REG:
2359 case SCRATCH:
2360 case CLOBBER:
2361 case ADDR_VEC:
2362 case ADDR_DIFF_VEC:
2363 return 0;
2364
2365 case UNSPEC_VOLATILE:
2366 return 1;
2367
2368 case MEM:
2369 case ASM_INPUT:
2370 case ASM_OPERANDS:
2371 if (MEM_VOLATILE_P (x))
2372 return 1;
2373
2374 default:
2375 break;
2376 }
2377
2378 /* Recursively scan the operands of this expression. */
2379
2380 {
2381 const char *const fmt = GET_RTX_FORMAT (code);
2382 int i;
2383
2384 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2385 {
2386 if (fmt[i] == 'e')
2387 {
2388 if (volatile_refs_p (XEXP (x, i)))
2389 return 1;
2390 }
2391 else if (fmt[i] == 'E')
2392 {
2393 int j;
2394 for (j = 0; j < XVECLEN (x, i); j++)
2395 if (volatile_refs_p (XVECEXP (x, i, j)))
2396 return 1;
2397 }
2398 }
2399 }
2400 return 0;
2401 }
2402
2403 /* Similar to above, except that it also rejects register pre- and post-
2404 incrementing. */
2405
2406 int
2407 side_effects_p (const_rtx x)
2408 {
2409 const RTX_CODE code = GET_CODE (x);
2410 switch (code)
2411 {
2412 case LABEL_REF:
2413 case SYMBOL_REF:
2414 case CONST:
2415 CASE_CONST_ANY:
2416 case CC0:
2417 case PC:
2418 case REG:
2419 case SCRATCH:
2420 case ADDR_VEC:
2421 case ADDR_DIFF_VEC:
2422 case VAR_LOCATION:
2423 return 0;
2424
2425 case CLOBBER:
2426 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2427 when some combination can't be done. If we see one, don't think
2428 that we can simplify the expression. */
2429 return (GET_MODE (x) != VOIDmode);
2430
2431 case PRE_INC:
2432 case PRE_DEC:
2433 case POST_INC:
2434 case POST_DEC:
2435 case PRE_MODIFY:
2436 case POST_MODIFY:
2437 case CALL:
2438 case UNSPEC_VOLATILE:
2439 return 1;
2440
2441 case MEM:
2442 case ASM_INPUT:
2443 case ASM_OPERANDS:
2444 if (MEM_VOLATILE_P (x))
2445 return 1;
2446
2447 default:
2448 break;
2449 }
2450
2451 /* Recursively scan the operands of this expression. */
2452
2453 {
2454 const char *fmt = GET_RTX_FORMAT (code);
2455 int i;
2456
2457 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2458 {
2459 if (fmt[i] == 'e')
2460 {
2461 if (side_effects_p (XEXP (x, i)))
2462 return 1;
2463 }
2464 else if (fmt[i] == 'E')
2465 {
2466 int j;
2467 for (j = 0; j < XVECLEN (x, i); j++)
2468 if (side_effects_p (XVECEXP (x, i, j)))
2469 return 1;
2470 }
2471 }
2472 }
2473 return 0;
2474 }
2475 \f
2476 /* Return nonzero if evaluating rtx X might cause a trap.
2477 FLAGS controls how to consider MEMs. A nonzero means the context
2478 of the access may have changed from the original, such that the
2479 address may have become invalid. */
2480
2481 int
2482 may_trap_p_1 (const_rtx x, unsigned flags)
2483 {
2484 int i;
2485 enum rtx_code code;
2486 const char *fmt;
2487
2488 /* We make no distinction currently, but this function is part of
2489 the internal target-hooks ABI so we keep the parameter as
2490 "unsigned flags". */
2491 bool code_changed = flags != 0;
2492
2493 if (x == 0)
2494 return 0;
2495 code = GET_CODE (x);
2496 switch (code)
2497 {
2498 /* Handle these cases quickly. */
2499 CASE_CONST_ANY:
2500 case SYMBOL_REF:
2501 case LABEL_REF:
2502 case CONST:
2503 case PC:
2504 case CC0:
2505 case REG:
2506 case SCRATCH:
2507 return 0;
2508
2509 case UNSPEC:
2510 return targetm.unspec_may_trap_p (x, flags);
2511
2512 case UNSPEC_VOLATILE:
2513 case ASM_INPUT:
2514 case TRAP_IF:
2515 return 1;
2516
2517 case ASM_OPERANDS:
2518 return MEM_VOLATILE_P (x);
2519
2520 /* Memory ref can trap unless it's a static var or a stack slot. */
2521 case MEM:
2522 /* Recognize specific pattern of stack checking probes. */
2523 if (flag_stack_check
2524 && MEM_VOLATILE_P (x)
2525 && XEXP (x, 0) == stack_pointer_rtx)
2526 return 1;
2527 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2528 reference; moving it out of context such as when moving code
2529 when optimizing, might cause its address to become invalid. */
2530 code_changed
2531 || !MEM_NOTRAP_P (x))
2532 {
2533 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2534 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2535 GET_MODE (x), code_changed);
2536 }
2537
2538 return 0;
2539
2540 /* Division by a non-constant might trap. */
2541 case DIV:
2542 case MOD:
2543 case UDIV:
2544 case UMOD:
2545 if (HONOR_SNANS (x))
2546 return 1;
2547 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2548 return flag_trapping_math;
2549 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2550 return 1;
2551 break;
2552
2553 case EXPR_LIST:
2554 /* An EXPR_LIST is used to represent a function call. This
2555 certainly may trap. */
2556 return 1;
2557
2558 case GE:
2559 case GT:
2560 case LE:
2561 case LT:
2562 case LTGT:
2563 case COMPARE:
2564 /* Some floating point comparisons may trap. */
2565 if (!flag_trapping_math)
2566 break;
2567 /* ??? There is no machine independent way to check for tests that trap
2568 when COMPARE is used, though many targets do make this distinction.
2569 For instance, sparc uses CCFPE for compares which generate exceptions
2570 and CCFP for compares which do not generate exceptions. */
2571 if (HONOR_NANS (x))
2572 return 1;
2573 /* But often the compare has some CC mode, so check operand
2574 modes as well. */
2575 if (HONOR_NANS (XEXP (x, 0))
2576 || HONOR_NANS (XEXP (x, 1)))
2577 return 1;
2578 break;
2579
2580 case EQ:
2581 case NE:
2582 if (HONOR_SNANS (x))
2583 return 1;
2584 /* Often comparison is CC mode, so check operand modes. */
2585 if (HONOR_SNANS (XEXP (x, 0))
2586 || HONOR_SNANS (XEXP (x, 1)))
2587 return 1;
2588 break;
2589
2590 case FIX:
2591 /* Conversion of floating point might trap. */
2592 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2593 return 1;
2594 break;
2595
2596 case NEG:
2597 case ABS:
2598 case SUBREG:
2599 /* These operations don't trap even with floating point. */
2600 break;
2601
2602 default:
2603 /* Any floating arithmetic may trap. */
2604 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2605 return 1;
2606 }
2607
2608 fmt = GET_RTX_FORMAT (code);
2609 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2610 {
2611 if (fmt[i] == 'e')
2612 {
2613 if (may_trap_p_1 (XEXP (x, i), flags))
2614 return 1;
2615 }
2616 else if (fmt[i] == 'E')
2617 {
2618 int j;
2619 for (j = 0; j < XVECLEN (x, i); j++)
2620 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2621 return 1;
2622 }
2623 }
2624 return 0;
2625 }
2626
2627 /* Return nonzero if evaluating rtx X might cause a trap. */
2628
2629 int
2630 may_trap_p (const_rtx x)
2631 {
2632 return may_trap_p_1 (x, 0);
2633 }
2634
2635 /* Same as above, but additionally return nonzero if evaluating rtx X might
2636 cause a fault. We define a fault for the purpose of this function as a
2637 erroneous execution condition that cannot be encountered during the normal
2638 execution of a valid program; the typical example is an unaligned memory
2639 access on a strict alignment machine. The compiler guarantees that it
2640 doesn't generate code that will fault from a valid program, but this
2641 guarantee doesn't mean anything for individual instructions. Consider
2642 the following example:
2643
2644 struct S { int d; union { char *cp; int *ip; }; };
2645
2646 int foo(struct S *s)
2647 {
2648 if (s->d == 1)
2649 return *s->ip;
2650 else
2651 return *s->cp;
2652 }
2653
2654 on a strict alignment machine. In a valid program, foo will never be
2655 invoked on a structure for which d is equal to 1 and the underlying
2656 unique field of the union not aligned on a 4-byte boundary, but the
2657 expression *s->ip might cause a fault if considered individually.
2658
2659 At the RTL level, potentially problematic expressions will almost always
2660 verify may_trap_p; for example, the above dereference can be emitted as
2661 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2662 However, suppose that foo is inlined in a caller that causes s->cp to
2663 point to a local character variable and guarantees that s->d is not set
2664 to 1; foo may have been effectively translated into pseudo-RTL as:
2665
2666 if ((reg:SI) == 1)
2667 (set (reg:SI) (mem:SI (%fp - 7)))
2668 else
2669 (set (reg:QI) (mem:QI (%fp - 7)))
2670
2671 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2672 memory reference to a stack slot, but it will certainly cause a fault
2673 on a strict alignment machine. */
2674
2675 int
2676 may_trap_or_fault_p (const_rtx x)
2677 {
2678 return may_trap_p_1 (x, 1);
2679 }
2680 \f
2681 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2682 i.e., an inequality. */
2683
2684 int
2685 inequality_comparisons_p (const_rtx x)
2686 {
2687 const char *fmt;
2688 int len, i;
2689 const enum rtx_code code = GET_CODE (x);
2690
2691 switch (code)
2692 {
2693 case REG:
2694 case SCRATCH:
2695 case PC:
2696 case CC0:
2697 CASE_CONST_ANY:
2698 case CONST:
2699 case LABEL_REF:
2700 case SYMBOL_REF:
2701 return 0;
2702
2703 case LT:
2704 case LTU:
2705 case GT:
2706 case GTU:
2707 case LE:
2708 case LEU:
2709 case GE:
2710 case GEU:
2711 return 1;
2712
2713 default:
2714 break;
2715 }
2716
2717 len = GET_RTX_LENGTH (code);
2718 fmt = GET_RTX_FORMAT (code);
2719
2720 for (i = 0; i < len; i++)
2721 {
2722 if (fmt[i] == 'e')
2723 {
2724 if (inequality_comparisons_p (XEXP (x, i)))
2725 return 1;
2726 }
2727 else if (fmt[i] == 'E')
2728 {
2729 int j;
2730 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2731 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2732 return 1;
2733 }
2734 }
2735
2736 return 0;
2737 }
2738 \f
2739 /* Replace any occurrence of FROM in X with TO. The function does
2740 not enter into CONST_DOUBLE for the replace.
2741
2742 Note that copying is not done so X must not be shared unless all copies
2743 are to be modified. */
2744
2745 rtx
2746 replace_rtx (rtx x, rtx from, rtx to)
2747 {
2748 int i, j;
2749 const char *fmt;
2750
2751 if (x == from)
2752 return to;
2753
2754 /* Allow this function to make replacements in EXPR_LISTs. */
2755 if (x == 0)
2756 return 0;
2757
2758 if (GET_CODE (x) == SUBREG)
2759 {
2760 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2761
2762 if (CONST_INT_P (new_rtx))
2763 {
2764 x = simplify_subreg (GET_MODE (x), new_rtx,
2765 GET_MODE (SUBREG_REG (x)),
2766 SUBREG_BYTE (x));
2767 gcc_assert (x);
2768 }
2769 else
2770 SUBREG_REG (x) = new_rtx;
2771
2772 return x;
2773 }
2774 else if (GET_CODE (x) == ZERO_EXTEND)
2775 {
2776 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2777
2778 if (CONST_INT_P (new_rtx))
2779 {
2780 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2781 new_rtx, GET_MODE (XEXP (x, 0)));
2782 gcc_assert (x);
2783 }
2784 else
2785 XEXP (x, 0) = new_rtx;
2786
2787 return x;
2788 }
2789
2790 fmt = GET_RTX_FORMAT (GET_CODE (x));
2791 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2792 {
2793 if (fmt[i] == 'e')
2794 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2795 else if (fmt[i] == 'E')
2796 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2797 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2798 }
2799
2800 return x;
2801 }
2802 \f
2803 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
2804 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
2805
2806 void
2807 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
2808 {
2809 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
2810 rtx x = *loc;
2811 if (JUMP_TABLE_DATA_P (x))
2812 {
2813 x = PATTERN (x);
2814 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
2815 int len = GET_NUM_ELEM (vec);
2816 for (int i = 0; i < len; ++i)
2817 {
2818 rtx ref = RTVEC_ELT (vec, i);
2819 if (XEXP (ref, 0) == old_label)
2820 {
2821 XEXP (ref, 0) = new_label;
2822 if (update_label_nuses)
2823 {
2824 ++LABEL_NUSES (new_label);
2825 --LABEL_NUSES (old_label);
2826 }
2827 }
2828 }
2829 return;
2830 }
2831
2832 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2833 field. This is not handled by the iterator because it doesn't
2834 handle unprinted ('0') fields. */
2835 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
2836 JUMP_LABEL (x) = new_label;
2837
2838 subrtx_ptr_iterator::array_type array;
2839 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
2840 {
2841 rtx *loc = *iter;
2842 if (rtx x = *loc)
2843 {
2844 if (GET_CODE (x) == SYMBOL_REF
2845 && CONSTANT_POOL_ADDRESS_P (x))
2846 {
2847 rtx c = get_pool_constant (x);
2848 if (rtx_referenced_p (old_label, c))
2849 {
2850 /* Create a copy of constant C; replace the label inside
2851 but do not update LABEL_NUSES because uses in constant pool
2852 are not counted. */
2853 rtx new_c = copy_rtx (c);
2854 replace_label (&new_c, old_label, new_label, false);
2855
2856 /* Add the new constant NEW_C to constant pool and replace
2857 the old reference to constant by new reference. */
2858 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
2859 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
2860 }
2861 }
2862
2863 if ((GET_CODE (x) == LABEL_REF
2864 || GET_CODE (x) == INSN_LIST)
2865 && XEXP (x, 0) == old_label)
2866 {
2867 XEXP (x, 0) = new_label;
2868 if (update_label_nuses)
2869 {
2870 ++LABEL_NUSES (new_label);
2871 --LABEL_NUSES (old_label);
2872 }
2873 }
2874 }
2875 }
2876 }
2877
2878 void
2879 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
2880 bool update_label_nuses)
2881 {
2882 rtx insn_as_rtx = insn;
2883 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
2884 gcc_checking_assert (insn_as_rtx == insn);
2885 }
2886
2887 /* Return true if X is referenced in BODY. */
2888
2889 bool
2890 rtx_referenced_p (const_rtx x, const_rtx body)
2891 {
2892 subrtx_iterator::array_type array;
2893 FOR_EACH_SUBRTX (iter, array, body, ALL)
2894 if (const_rtx y = *iter)
2895 {
2896 /* Check if a label_ref Y refers to label X. */
2897 if (GET_CODE (y) == LABEL_REF
2898 && LABEL_P (x)
2899 && LABEL_REF_LABEL (y) == x)
2900 return true;
2901
2902 if (rtx_equal_p (x, y))
2903 return true;
2904
2905 /* If Y is a reference to pool constant traverse the constant. */
2906 if (GET_CODE (y) == SYMBOL_REF
2907 && CONSTANT_POOL_ADDRESS_P (y))
2908 iter.substitute (get_pool_constant (y));
2909 }
2910 return false;
2911 }
2912
2913 /* If INSN is a tablejump return true and store the label (before jump table) to
2914 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2915
2916 bool
2917 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
2918 {
2919 rtx label;
2920 rtx_insn *table;
2921
2922 if (!JUMP_P (insn))
2923 return false;
2924
2925 label = JUMP_LABEL (insn);
2926 if (label != NULL_RTX && !ANY_RETURN_P (label)
2927 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
2928 && JUMP_TABLE_DATA_P (table))
2929 {
2930 if (labelp)
2931 *labelp = label;
2932 if (tablep)
2933 *tablep = as_a <rtx_jump_table_data *> (table);
2934 return true;
2935 }
2936 return false;
2937 }
2938
2939 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2940 constant that is not in the constant pool and not in the condition
2941 of an IF_THEN_ELSE. */
2942
2943 static int
2944 computed_jump_p_1 (const_rtx x)
2945 {
2946 const enum rtx_code code = GET_CODE (x);
2947 int i, j;
2948 const char *fmt;
2949
2950 switch (code)
2951 {
2952 case LABEL_REF:
2953 case PC:
2954 return 0;
2955
2956 case CONST:
2957 CASE_CONST_ANY:
2958 case SYMBOL_REF:
2959 case REG:
2960 return 1;
2961
2962 case MEM:
2963 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2964 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2965
2966 case IF_THEN_ELSE:
2967 return (computed_jump_p_1 (XEXP (x, 1))
2968 || computed_jump_p_1 (XEXP (x, 2)));
2969
2970 default:
2971 break;
2972 }
2973
2974 fmt = GET_RTX_FORMAT (code);
2975 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2976 {
2977 if (fmt[i] == 'e'
2978 && computed_jump_p_1 (XEXP (x, i)))
2979 return 1;
2980
2981 else if (fmt[i] == 'E')
2982 for (j = 0; j < XVECLEN (x, i); j++)
2983 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2984 return 1;
2985 }
2986
2987 return 0;
2988 }
2989
2990 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2991
2992 Tablejumps and casesi insns are not considered indirect jumps;
2993 we can recognize them by a (use (label_ref)). */
2994
2995 int
2996 computed_jump_p (const rtx_insn *insn)
2997 {
2998 int i;
2999 if (JUMP_P (insn))
3000 {
3001 rtx pat = PATTERN (insn);
3002
3003 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3004 if (JUMP_LABEL (insn) != NULL)
3005 return 0;
3006
3007 if (GET_CODE (pat) == PARALLEL)
3008 {
3009 int len = XVECLEN (pat, 0);
3010 int has_use_labelref = 0;
3011
3012 for (i = len - 1; i >= 0; i--)
3013 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3014 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3015 == LABEL_REF))
3016 {
3017 has_use_labelref = 1;
3018 break;
3019 }
3020
3021 if (! has_use_labelref)
3022 for (i = len - 1; i >= 0; i--)
3023 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3024 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3025 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3026 return 1;
3027 }
3028 else if (GET_CODE (pat) == SET
3029 && SET_DEST (pat) == pc_rtx
3030 && computed_jump_p_1 (SET_SRC (pat)))
3031 return 1;
3032 }
3033 return 0;
3034 }
3035
3036 \f
3037
3038 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3039 the equivalent add insn and pass the result to FN, using DATA as the
3040 final argument. */
3041
3042 static int
3043 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3044 {
3045 rtx x = XEXP (mem, 0);
3046 switch (GET_CODE (x))
3047 {
3048 case PRE_INC:
3049 case POST_INC:
3050 {
3051 int size = GET_MODE_SIZE (GET_MODE (mem));
3052 rtx r1 = XEXP (x, 0);
3053 rtx c = gen_int_mode (size, GET_MODE (r1));
3054 return fn (mem, x, r1, r1, c, data);
3055 }
3056
3057 case PRE_DEC:
3058 case POST_DEC:
3059 {
3060 int size = GET_MODE_SIZE (GET_MODE (mem));
3061 rtx r1 = XEXP (x, 0);
3062 rtx c = gen_int_mode (-size, GET_MODE (r1));
3063 return fn (mem, x, r1, r1, c, data);
3064 }
3065
3066 case PRE_MODIFY:
3067 case POST_MODIFY:
3068 {
3069 rtx r1 = XEXP (x, 0);
3070 rtx add = XEXP (x, 1);
3071 return fn (mem, x, r1, add, NULL, data);
3072 }
3073
3074 default:
3075 gcc_unreachable ();
3076 }
3077 }
3078
3079 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3080 For each such autoinc operation found, call FN, passing it
3081 the innermost enclosing MEM, the operation itself, the RTX modified
3082 by the operation, two RTXs (the second may be NULL) that, once
3083 added, represent the value to be held by the modified RTX
3084 afterwards, and DATA. FN is to return 0 to continue the
3085 traversal or any other value to have it returned to the caller of
3086 for_each_inc_dec. */
3087
3088 int
3089 for_each_inc_dec (rtx x,
3090 for_each_inc_dec_fn fn,
3091 void *data)
3092 {
3093 subrtx_var_iterator::array_type array;
3094 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3095 {
3096 rtx mem = *iter;
3097 if (mem
3098 && MEM_P (mem)
3099 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3100 {
3101 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3102 if (res != 0)
3103 return res;
3104 iter.skip_subrtxes ();
3105 }
3106 }
3107 return 0;
3108 }
3109
3110 \f
3111 /* Searches X for any reference to REGNO, returning the rtx of the
3112 reference found if any. Otherwise, returns NULL_RTX. */
3113
3114 rtx
3115 regno_use_in (unsigned int regno, rtx x)
3116 {
3117 const char *fmt;
3118 int i, j;
3119 rtx tem;
3120
3121 if (REG_P (x) && REGNO (x) == regno)
3122 return x;
3123
3124 fmt = GET_RTX_FORMAT (GET_CODE (x));
3125 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3126 {
3127 if (fmt[i] == 'e')
3128 {
3129 if ((tem = regno_use_in (regno, XEXP (x, i))))
3130 return tem;
3131 }
3132 else if (fmt[i] == 'E')
3133 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3134 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3135 return tem;
3136 }
3137
3138 return NULL_RTX;
3139 }
3140
3141 /* Return a value indicating whether OP, an operand of a commutative
3142 operation, is preferred as the first or second operand. The higher
3143 the value, the stronger the preference for being the first operand.
3144 We use negative values to indicate a preference for the first operand
3145 and positive values for the second operand. */
3146
3147 int
3148 commutative_operand_precedence (rtx op)
3149 {
3150 enum rtx_code code = GET_CODE (op);
3151
3152 /* Constants always come the second operand. Prefer "nice" constants. */
3153 if (code == CONST_INT)
3154 return -8;
3155 if (code == CONST_WIDE_INT)
3156 return -8;
3157 if (code == CONST_DOUBLE)
3158 return -7;
3159 if (code == CONST_FIXED)
3160 return -7;
3161 op = avoid_constant_pool_reference (op);
3162 code = GET_CODE (op);
3163
3164 switch (GET_RTX_CLASS (code))
3165 {
3166 case RTX_CONST_OBJ:
3167 if (code == CONST_INT)
3168 return -6;
3169 if (code == CONST_WIDE_INT)
3170 return -6;
3171 if (code == CONST_DOUBLE)
3172 return -5;
3173 if (code == CONST_FIXED)
3174 return -5;
3175 return -4;
3176
3177 case RTX_EXTRA:
3178 /* SUBREGs of objects should come second. */
3179 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3180 return -3;
3181 return 0;
3182
3183 case RTX_OBJ:
3184 /* Complex expressions should be the first, so decrease priority
3185 of objects. Prefer pointer objects over non pointer objects. */
3186 if ((REG_P (op) && REG_POINTER (op))
3187 || (MEM_P (op) && MEM_POINTER (op)))
3188 return -1;
3189 return -2;
3190
3191 case RTX_COMM_ARITH:
3192 /* Prefer operands that are themselves commutative to be first.
3193 This helps to make things linear. In particular,
3194 (and (and (reg) (reg)) (not (reg))) is canonical. */
3195 return 4;
3196
3197 case RTX_BIN_ARITH:
3198 /* If only one operand is a binary expression, it will be the first
3199 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3200 is canonical, although it will usually be further simplified. */
3201 return 2;
3202
3203 case RTX_UNARY:
3204 /* Then prefer NEG and NOT. */
3205 if (code == NEG || code == NOT)
3206 return 1;
3207
3208 default:
3209 return 0;
3210 }
3211 }
3212
3213 /* Return 1 iff it is necessary to swap operands of commutative operation
3214 in order to canonicalize expression. */
3215
3216 bool
3217 swap_commutative_operands_p (rtx x, rtx y)
3218 {
3219 return (commutative_operand_precedence (x)
3220 < commutative_operand_precedence (y));
3221 }
3222
3223 /* Return 1 if X is an autoincrement side effect and the register is
3224 not the stack pointer. */
3225 int
3226 auto_inc_p (const_rtx x)
3227 {
3228 switch (GET_CODE (x))
3229 {
3230 case PRE_INC:
3231 case POST_INC:
3232 case PRE_DEC:
3233 case POST_DEC:
3234 case PRE_MODIFY:
3235 case POST_MODIFY:
3236 /* There are no REG_INC notes for SP. */
3237 if (XEXP (x, 0) != stack_pointer_rtx)
3238 return 1;
3239 default:
3240 break;
3241 }
3242 return 0;
3243 }
3244
3245 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3246 int
3247 loc_mentioned_in_p (rtx *loc, const_rtx in)
3248 {
3249 enum rtx_code code;
3250 const char *fmt;
3251 int i, j;
3252
3253 if (!in)
3254 return 0;
3255
3256 code = GET_CODE (in);
3257 fmt = GET_RTX_FORMAT (code);
3258 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3259 {
3260 if (fmt[i] == 'e')
3261 {
3262 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3263 return 1;
3264 }
3265 else if (fmt[i] == 'E')
3266 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3267 if (loc == &XVECEXP (in, i, j)
3268 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3269 return 1;
3270 }
3271 return 0;
3272 }
3273
3274 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3275 and SUBREG_BYTE, return the bit offset where the subreg begins
3276 (counting from the least significant bit of the operand). */
3277
3278 unsigned int
3279 subreg_lsb_1 (machine_mode outer_mode,
3280 machine_mode inner_mode,
3281 unsigned int subreg_byte)
3282 {
3283 unsigned int bitpos;
3284 unsigned int byte;
3285 unsigned int word;
3286
3287 /* A paradoxical subreg begins at bit position 0. */
3288 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3289 return 0;
3290
3291 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3292 /* If the subreg crosses a word boundary ensure that
3293 it also begins and ends on a word boundary. */
3294 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3295 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3296 && (subreg_byte % UNITS_PER_WORD
3297 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3298
3299 if (WORDS_BIG_ENDIAN)
3300 word = (GET_MODE_SIZE (inner_mode)
3301 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3302 else
3303 word = subreg_byte / UNITS_PER_WORD;
3304 bitpos = word * BITS_PER_WORD;
3305
3306 if (BYTES_BIG_ENDIAN)
3307 byte = (GET_MODE_SIZE (inner_mode)
3308 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3309 else
3310 byte = subreg_byte % UNITS_PER_WORD;
3311 bitpos += byte * BITS_PER_UNIT;
3312
3313 return bitpos;
3314 }
3315
3316 /* Given a subreg X, return the bit offset where the subreg begins
3317 (counting from the least significant bit of the reg). */
3318
3319 unsigned int
3320 subreg_lsb (const_rtx x)
3321 {
3322 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3323 SUBREG_BYTE (x));
3324 }
3325
3326 /* Fill in information about a subreg of a hard register.
3327 xregno - A regno of an inner hard subreg_reg (or what will become one).
3328 xmode - The mode of xregno.
3329 offset - The byte offset.
3330 ymode - The mode of a top level SUBREG (or what may become one).
3331 info - Pointer to structure to fill in.
3332
3333 Rather than considering one particular inner register (and thus one
3334 particular "outer" register) in isolation, this function really uses
3335 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3336 function does not check whether adding INFO->offset to XREGNO gives
3337 a valid hard register; even if INFO->offset + XREGNO is out of range,
3338 there might be another register of the same type that is in range.
3339 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3340 register, since that can depend on things like whether the final
3341 register number is even or odd. Callers that want to check whether
3342 this particular subreg can be replaced by a simple (reg ...) should
3343 use simplify_subreg_regno. */
3344
3345 void
3346 subreg_get_info (unsigned int xregno, machine_mode xmode,
3347 unsigned int offset, machine_mode ymode,
3348 struct subreg_info *info)
3349 {
3350 int nregs_xmode, nregs_ymode;
3351 int mode_multiple, nregs_multiple;
3352 int offset_adj, y_offset, y_offset_adj;
3353 int regsize_xmode, regsize_ymode;
3354 bool rknown;
3355
3356 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3357
3358 rknown = false;
3359
3360 /* If there are holes in a non-scalar mode in registers, we expect
3361 that it is made up of its units concatenated together. */
3362 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3363 {
3364 machine_mode xmode_unit;
3365
3366 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3367 if (GET_MODE_INNER (xmode) == VOIDmode)
3368 xmode_unit = xmode;
3369 else
3370 xmode_unit = GET_MODE_INNER (xmode);
3371 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3372 gcc_assert (nregs_xmode
3373 == (GET_MODE_NUNITS (xmode)
3374 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3375 gcc_assert (hard_regno_nregs[xregno][xmode]
3376 == (hard_regno_nregs[xregno][xmode_unit]
3377 * GET_MODE_NUNITS (xmode)));
3378
3379 /* You can only ask for a SUBREG of a value with holes in the middle
3380 if you don't cross the holes. (Such a SUBREG should be done by
3381 picking a different register class, or doing it in memory if
3382 necessary.) An example of a value with holes is XCmode on 32-bit
3383 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3384 3 for each part, but in memory it's two 128-bit parts.
3385 Padding is assumed to be at the end (not necessarily the 'high part')
3386 of each unit. */
3387 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3388 < GET_MODE_NUNITS (xmode))
3389 && (offset / GET_MODE_SIZE (xmode_unit)
3390 != ((offset + GET_MODE_SIZE (ymode) - 1)
3391 / GET_MODE_SIZE (xmode_unit))))
3392 {
3393 info->representable_p = false;
3394 rknown = true;
3395 }
3396 }
3397 else
3398 nregs_xmode = hard_regno_nregs[xregno][xmode];
3399
3400 nregs_ymode = hard_regno_nregs[xregno][ymode];
3401
3402 /* Paradoxical subregs are otherwise valid. */
3403 if (!rknown
3404 && offset == 0
3405 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3406 {
3407 info->representable_p = true;
3408 /* If this is a big endian paradoxical subreg, which uses more
3409 actual hard registers than the original register, we must
3410 return a negative offset so that we find the proper highpart
3411 of the register. */
3412 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3413 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3414 info->offset = nregs_xmode - nregs_ymode;
3415 else
3416 info->offset = 0;
3417 info->nregs = nregs_ymode;
3418 return;
3419 }
3420
3421 /* If registers store different numbers of bits in the different
3422 modes, we cannot generally form this subreg. */
3423 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3424 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3425 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3426 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3427 {
3428 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3429 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3430 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3431 {
3432 info->representable_p = false;
3433 info->nregs
3434 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3435 info->offset = offset / regsize_xmode;
3436 return;
3437 }
3438 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3439 {
3440 info->representable_p = false;
3441 info->nregs
3442 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3443 info->offset = offset / regsize_xmode;
3444 return;
3445 }
3446 /* Quick exit for the simple and common case of extracting whole
3447 subregisters from a multiregister value. */
3448 /* ??? It would be better to integrate this into the code below,
3449 if we can generalize the concept enough and figure out how
3450 odd-sized modes can coexist with the other weird cases we support. */
3451 if (!rknown
3452 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3453 && regsize_xmode == regsize_ymode
3454 && (offset % regsize_ymode) == 0)
3455 {
3456 info->representable_p = true;
3457 info->nregs = nregs_ymode;
3458 info->offset = offset / regsize_ymode;
3459 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3460 return;
3461 }
3462 }
3463
3464 /* Lowpart subregs are otherwise valid. */
3465 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3466 {
3467 info->representable_p = true;
3468 rknown = true;
3469
3470 if (offset == 0 || nregs_xmode == nregs_ymode)
3471 {
3472 info->offset = 0;
3473 info->nregs = nregs_ymode;
3474 return;
3475 }
3476 }
3477
3478 /* This should always pass, otherwise we don't know how to verify
3479 the constraint. These conditions may be relaxed but
3480 subreg_regno_offset would need to be redesigned. */
3481 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3482 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3483
3484 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3485 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3486 {
3487 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3488 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3489 HOST_WIDE_INT off_low = offset & (ysize - 1);
3490 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3491 offset = (xsize - ysize - off_high) | off_low;
3492 }
3493 /* The XMODE value can be seen as a vector of NREGS_XMODE
3494 values. The subreg must represent a lowpart of given field.
3495 Compute what field it is. */
3496 offset_adj = offset;
3497 offset_adj -= subreg_lowpart_offset (ymode,
3498 mode_for_size (GET_MODE_BITSIZE (xmode)
3499 / nregs_xmode,
3500 MODE_INT, 0));
3501
3502 /* Size of ymode must not be greater than the size of xmode. */
3503 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3504 gcc_assert (mode_multiple != 0);
3505
3506 y_offset = offset / GET_MODE_SIZE (ymode);
3507 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3508 nregs_multiple = nregs_xmode / nregs_ymode;
3509
3510 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3511 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3512
3513 if (!rknown)
3514 {
3515 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3516 rknown = true;
3517 }
3518 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3519 info->nregs = nregs_ymode;
3520 }
3521
3522 /* This function returns the regno offset of a subreg expression.
3523 xregno - A regno of an inner hard subreg_reg (or what will become one).
3524 xmode - The mode of xregno.
3525 offset - The byte offset.
3526 ymode - The mode of a top level SUBREG (or what may become one).
3527 RETURN - The regno offset which would be used. */
3528 unsigned int
3529 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3530 unsigned int offset, machine_mode ymode)
3531 {
3532 struct subreg_info info;
3533 subreg_get_info (xregno, xmode, offset, ymode, &info);
3534 return info.offset;
3535 }
3536
3537 /* This function returns true when the offset is representable via
3538 subreg_offset in the given regno.
3539 xregno - A regno of an inner hard subreg_reg (or what will become one).
3540 xmode - The mode of xregno.
3541 offset - The byte offset.
3542 ymode - The mode of a top level SUBREG (or what may become one).
3543 RETURN - Whether the offset is representable. */
3544 bool
3545 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3546 unsigned int offset, machine_mode ymode)
3547 {
3548 struct subreg_info info;
3549 subreg_get_info (xregno, xmode, offset, ymode, &info);
3550 return info.representable_p;
3551 }
3552
3553 /* Return the number of a YMODE register to which
3554
3555 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3556
3557 can be simplified. Return -1 if the subreg can't be simplified.
3558
3559 XREGNO is a hard register number. */
3560
3561 int
3562 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3563 unsigned int offset, machine_mode ymode)
3564 {
3565 struct subreg_info info;
3566 unsigned int yregno;
3567
3568 #ifdef CANNOT_CHANGE_MODE_CLASS
3569 /* Give the backend a chance to disallow the mode change. */
3570 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3571 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3572 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3573 /* We can use mode change in LRA for some transformations. */
3574 && ! lra_in_progress)
3575 return -1;
3576 #endif
3577
3578 /* We shouldn't simplify stack-related registers. */
3579 if ((!reload_completed || frame_pointer_needed)
3580 && xregno == FRAME_POINTER_REGNUM)
3581 return -1;
3582
3583 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3584 && xregno == ARG_POINTER_REGNUM)
3585 return -1;
3586
3587 if (xregno == STACK_POINTER_REGNUM
3588 /* We should convert hard stack register in LRA if it is
3589 possible. */
3590 && ! lra_in_progress)
3591 return -1;
3592
3593 /* Try to get the register offset. */
3594 subreg_get_info (xregno, xmode, offset, ymode, &info);
3595 if (!info.representable_p)
3596 return -1;
3597
3598 /* Make sure that the offsetted register value is in range. */
3599 yregno = xregno + info.offset;
3600 if (!HARD_REGISTER_NUM_P (yregno))
3601 return -1;
3602
3603 /* See whether (reg:YMODE YREGNO) is valid.
3604
3605 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3606 This is a kludge to work around how complex FP arguments are passed
3607 on IA-64 and should be fixed. See PR target/49226. */
3608 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3609 && HARD_REGNO_MODE_OK (xregno, xmode))
3610 return -1;
3611
3612 return (int) yregno;
3613 }
3614
3615 /* Return the final regno that a subreg expression refers to. */
3616 unsigned int
3617 subreg_regno (const_rtx x)
3618 {
3619 unsigned int ret;
3620 rtx subreg = SUBREG_REG (x);
3621 int regno = REGNO (subreg);
3622
3623 ret = regno + subreg_regno_offset (regno,
3624 GET_MODE (subreg),
3625 SUBREG_BYTE (x),
3626 GET_MODE (x));
3627 return ret;
3628
3629 }
3630
3631 /* Return the number of registers that a subreg expression refers
3632 to. */
3633 unsigned int
3634 subreg_nregs (const_rtx x)
3635 {
3636 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3637 }
3638
3639 /* Return the number of registers that a subreg REG with REGNO
3640 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3641 changed so that the regno can be passed in. */
3642
3643 unsigned int
3644 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3645 {
3646 struct subreg_info info;
3647 rtx subreg = SUBREG_REG (x);
3648
3649 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3650 &info);
3651 return info.nregs;
3652 }
3653
3654
3655 struct parms_set_data
3656 {
3657 int nregs;
3658 HARD_REG_SET regs;
3659 };
3660
3661 /* Helper function for noticing stores to parameter registers. */
3662 static void
3663 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3664 {
3665 struct parms_set_data *const d = (struct parms_set_data *) data;
3666 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3667 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3668 {
3669 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3670 d->nregs--;
3671 }
3672 }
3673
3674 /* Look backward for first parameter to be loaded.
3675 Note that loads of all parameters will not necessarily be
3676 found if CSE has eliminated some of them (e.g., an argument
3677 to the outer function is passed down as a parameter).
3678 Do not skip BOUNDARY. */
3679 rtx_insn *
3680 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3681 {
3682 struct parms_set_data parm;
3683 rtx p;
3684 rtx_insn *before, *first_set;
3685
3686 /* Since different machines initialize their parameter registers
3687 in different orders, assume nothing. Collect the set of all
3688 parameter registers. */
3689 CLEAR_HARD_REG_SET (parm.regs);
3690 parm.nregs = 0;
3691 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3692 if (GET_CODE (XEXP (p, 0)) == USE
3693 && REG_P (XEXP (XEXP (p, 0), 0)))
3694 {
3695 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3696
3697 /* We only care about registers which can hold function
3698 arguments. */
3699 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3700 continue;
3701
3702 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3703 parm.nregs++;
3704 }
3705 before = call_insn;
3706 first_set = call_insn;
3707
3708 /* Search backward for the first set of a register in this set. */
3709 while (parm.nregs && before != boundary)
3710 {
3711 before = PREV_INSN (before);
3712
3713 /* It is possible that some loads got CSEed from one call to
3714 another. Stop in that case. */
3715 if (CALL_P (before))
3716 break;
3717
3718 /* Our caller needs either ensure that we will find all sets
3719 (in case code has not been optimized yet), or take care
3720 for possible labels in a way by setting boundary to preceding
3721 CODE_LABEL. */
3722 if (LABEL_P (before))
3723 {
3724 gcc_assert (before == boundary);
3725 break;
3726 }
3727
3728 if (INSN_P (before))
3729 {
3730 int nregs_old = parm.nregs;
3731 note_stores (PATTERN (before), parms_set, &parm);
3732 /* If we found something that did not set a parameter reg,
3733 we're done. Do not keep going, as that might result
3734 in hoisting an insn before the setting of a pseudo
3735 that is used by the hoisted insn. */
3736 if (nregs_old != parm.nregs)
3737 first_set = before;
3738 else
3739 break;
3740 }
3741 }
3742 return first_set;
3743 }
3744
3745 /* Return true if we should avoid inserting code between INSN and preceding
3746 call instruction. */
3747
3748 bool
3749 keep_with_call_p (const rtx_insn *insn)
3750 {
3751 rtx set;
3752
3753 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3754 {
3755 if (REG_P (SET_DEST (set))
3756 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3757 && fixed_regs[REGNO (SET_DEST (set))]
3758 && general_operand (SET_SRC (set), VOIDmode))
3759 return true;
3760 if (REG_P (SET_SRC (set))
3761 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3762 && REG_P (SET_DEST (set))
3763 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3764 return true;
3765 /* There may be a stack pop just after the call and before the store
3766 of the return register. Search for the actual store when deciding
3767 if we can break or not. */
3768 if (SET_DEST (set) == stack_pointer_rtx)
3769 {
3770 /* This CONST_CAST is okay because next_nonnote_insn just
3771 returns its argument and we assign it to a const_rtx
3772 variable. */
3773 const rtx_insn *i2
3774 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3775 if (i2 && keep_with_call_p (i2))
3776 return true;
3777 }
3778 }
3779 return false;
3780 }
3781
3782 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3783 to non-complex jumps. That is, direct unconditional, conditional,
3784 and tablejumps, but not computed jumps or returns. It also does
3785 not apply to the fallthru case of a conditional jump. */
3786
3787 bool
3788 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3789 {
3790 rtx tmp = JUMP_LABEL (jump_insn);
3791 rtx_jump_table_data *table;
3792
3793 if (label == tmp)
3794 return true;
3795
3796 if (tablejump_p (jump_insn, NULL, &table))
3797 {
3798 rtvec vec = table->get_labels ();
3799 int i, veclen = GET_NUM_ELEM (vec);
3800
3801 for (i = 0; i < veclen; ++i)
3802 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3803 return true;
3804 }
3805
3806 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3807 return true;
3808
3809 return false;
3810 }
3811
3812 \f
3813 /* Return an estimate of the cost of computing rtx X.
3814 One use is in cse, to decide which expression to keep in the hash table.
3815 Another is in rtl generation, to pick the cheapest way to multiply.
3816 Other uses like the latter are expected in the future.
3817
3818 X appears as operand OPNO in an expression with code OUTER_CODE.
3819 SPEED specifies whether costs optimized for speed or size should
3820 be returned. */
3821
3822 int
3823 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3824 {
3825 int i, j;
3826 enum rtx_code code;
3827 const char *fmt;
3828 int total;
3829 int factor;
3830
3831 if (x == 0)
3832 return 0;
3833
3834 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3835 many insns, taking N times as long. */
3836 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3837 if (factor == 0)
3838 factor = 1;
3839
3840 /* Compute the default costs of certain things.
3841 Note that targetm.rtx_costs can override the defaults. */
3842
3843 code = GET_CODE (x);
3844 switch (code)
3845 {
3846 case MULT:
3847 /* Multiplication has time-complexity O(N*N), where N is the
3848 number of units (translated from digits) when using
3849 schoolbook long multiplication. */
3850 total = factor * factor * COSTS_N_INSNS (5);
3851 break;
3852 case DIV:
3853 case UDIV:
3854 case MOD:
3855 case UMOD:
3856 /* Similarly, complexity for schoolbook long division. */
3857 total = factor * factor * COSTS_N_INSNS (7);
3858 break;
3859 case USE:
3860 /* Used in combine.c as a marker. */
3861 total = 0;
3862 break;
3863 case SET:
3864 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3865 the mode for the factor. */
3866 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3867 if (factor == 0)
3868 factor = 1;
3869 /* Pass through. */
3870 default:
3871 total = factor * COSTS_N_INSNS (1);
3872 }
3873
3874 switch (code)
3875 {
3876 case REG:
3877 return 0;
3878
3879 case SUBREG:
3880 total = 0;
3881 /* If we can't tie these modes, make this expensive. The larger
3882 the mode, the more expensive it is. */
3883 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3884 return COSTS_N_INSNS (2 + factor);
3885 break;
3886
3887 default:
3888 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3889 return total;
3890 break;
3891 }
3892
3893 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3894 which is already in total. */
3895
3896 fmt = GET_RTX_FORMAT (code);
3897 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3898 if (fmt[i] == 'e')
3899 total += rtx_cost (XEXP (x, i), code, i, speed);
3900 else if (fmt[i] == 'E')
3901 for (j = 0; j < XVECLEN (x, i); j++)
3902 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3903
3904 return total;
3905 }
3906
3907 /* Fill in the structure C with information about both speed and size rtx
3908 costs for X, which is operand OPNO in an expression with code OUTER. */
3909
3910 void
3911 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3912 struct full_rtx_costs *c)
3913 {
3914 c->speed = rtx_cost (x, outer, opno, true);
3915 c->size = rtx_cost (x, outer, opno, false);
3916 }
3917
3918 \f
3919 /* Return cost of address expression X.
3920 Expect that X is properly formed address reference.
3921
3922 SPEED parameter specify whether costs optimized for speed or size should
3923 be returned. */
3924
3925 int
3926 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
3927 {
3928 /* We may be asked for cost of various unusual addresses, such as operands
3929 of push instruction. It is not worthwhile to complicate writing
3930 of the target hook by such cases. */
3931
3932 if (!memory_address_addr_space_p (mode, x, as))
3933 return 1000;
3934
3935 return targetm.address_cost (x, mode, as, speed);
3936 }
3937
3938 /* If the target doesn't override, compute the cost as with arithmetic. */
3939
3940 int
3941 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
3942 {
3943 return rtx_cost (x, MEM, 0, speed);
3944 }
3945 \f
3946
3947 unsigned HOST_WIDE_INT
3948 nonzero_bits (const_rtx x, machine_mode mode)
3949 {
3950 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3951 }
3952
3953 unsigned int
3954 num_sign_bit_copies (const_rtx x, machine_mode mode)
3955 {
3956 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3957 }
3958
3959 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3960 It avoids exponential behavior in nonzero_bits1 when X has
3961 identical subexpressions on the first or the second level. */
3962
3963 static unsigned HOST_WIDE_INT
3964 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
3965 machine_mode known_mode,
3966 unsigned HOST_WIDE_INT known_ret)
3967 {
3968 if (x == known_x && mode == known_mode)
3969 return known_ret;
3970
3971 /* Try to find identical subexpressions. If found call
3972 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3973 precomputed value for the subexpression as KNOWN_RET. */
3974
3975 if (ARITHMETIC_P (x))
3976 {
3977 rtx x0 = XEXP (x, 0);
3978 rtx x1 = XEXP (x, 1);
3979
3980 /* Check the first level. */
3981 if (x0 == x1)
3982 return nonzero_bits1 (x, mode, x0, mode,
3983 cached_nonzero_bits (x0, mode, known_x,
3984 known_mode, known_ret));
3985
3986 /* Check the second level. */
3987 if (ARITHMETIC_P (x0)
3988 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3989 return nonzero_bits1 (x, mode, x1, mode,
3990 cached_nonzero_bits (x1, mode, known_x,
3991 known_mode, known_ret));
3992
3993 if (ARITHMETIC_P (x1)
3994 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3995 return nonzero_bits1 (x, mode, x0, mode,
3996 cached_nonzero_bits (x0, mode, known_x,
3997 known_mode, known_ret));
3998 }
3999
4000 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4001 }
4002
4003 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4004 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4005 is less useful. We can't allow both, because that results in exponential
4006 run time recursion. There is a nullstone testcase that triggered
4007 this. This macro avoids accidental uses of num_sign_bit_copies. */
4008 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4009
4010 /* Given an expression, X, compute which bits in X can be nonzero.
4011 We don't care about bits outside of those defined in MODE.
4012
4013 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4014 an arithmetic operation, we can do better. */
4015
4016 static unsigned HOST_WIDE_INT
4017 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4018 machine_mode known_mode,
4019 unsigned HOST_WIDE_INT known_ret)
4020 {
4021 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4022 unsigned HOST_WIDE_INT inner_nz;
4023 enum rtx_code code;
4024 machine_mode inner_mode;
4025 unsigned int mode_width = GET_MODE_PRECISION (mode);
4026
4027 /* For floating-point and vector values, assume all bits are needed. */
4028 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4029 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4030 return nonzero;
4031
4032 /* If X is wider than MODE, use its mode instead. */
4033 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4034 {
4035 mode = GET_MODE (x);
4036 nonzero = GET_MODE_MASK (mode);
4037 mode_width = GET_MODE_PRECISION (mode);
4038 }
4039
4040 if (mode_width > HOST_BITS_PER_WIDE_INT)
4041 /* Our only callers in this case look for single bit values. So
4042 just return the mode mask. Those tests will then be false. */
4043 return nonzero;
4044
4045 #ifndef WORD_REGISTER_OPERATIONS
4046 /* If MODE is wider than X, but both are a single word for both the host
4047 and target machines, we can compute this from which bits of the
4048 object might be nonzero in its own mode, taking into account the fact
4049 that on many CISC machines, accessing an object in a wider mode
4050 causes the high-order bits to become undefined. So they are
4051 not known to be zero. */
4052
4053 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
4054 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4055 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4056 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4057 {
4058 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4059 known_x, known_mode, known_ret);
4060 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4061 return nonzero;
4062 }
4063 #endif
4064
4065 code = GET_CODE (x);
4066 switch (code)
4067 {
4068 case REG:
4069 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4070 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4071 all the bits above ptr_mode are known to be zero. */
4072 /* As we do not know which address space the pointer is referring to,
4073 we can do this only if the target does not support different pointer
4074 or address modes depending on the address space. */
4075 if (target_default_pointer_address_modes_p ()
4076 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4077 && REG_POINTER (x))
4078 nonzero &= GET_MODE_MASK (ptr_mode);
4079 #endif
4080
4081 /* Include declared information about alignment of pointers. */
4082 /* ??? We don't properly preserve REG_POINTER changes across
4083 pointer-to-integer casts, so we can't trust it except for
4084 things that we know must be pointers. See execute/960116-1.c. */
4085 if ((x == stack_pointer_rtx
4086 || x == frame_pointer_rtx
4087 || x == arg_pointer_rtx)
4088 && REGNO_POINTER_ALIGN (REGNO (x)))
4089 {
4090 unsigned HOST_WIDE_INT alignment
4091 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4092
4093 #ifdef PUSH_ROUNDING
4094 /* If PUSH_ROUNDING is defined, it is possible for the
4095 stack to be momentarily aligned only to that amount,
4096 so we pick the least alignment. */
4097 if (x == stack_pointer_rtx && PUSH_ARGS)
4098 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4099 alignment);
4100 #endif
4101
4102 nonzero &= ~(alignment - 1);
4103 }
4104
4105 {
4106 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4107 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4108 known_mode, known_ret,
4109 &nonzero_for_hook);
4110
4111 if (new_rtx)
4112 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4113 known_mode, known_ret);
4114
4115 return nonzero_for_hook;
4116 }
4117
4118 case CONST_INT:
4119 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4120 /* If X is negative in MODE, sign-extend the value. */
4121 if (INTVAL (x) > 0
4122 && mode_width < BITS_PER_WORD
4123 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4124 != 0)
4125 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4126 #endif
4127
4128 return UINTVAL (x);
4129
4130 case MEM:
4131 #ifdef LOAD_EXTEND_OP
4132 /* In many, if not most, RISC machines, reading a byte from memory
4133 zeros the rest of the register. Noticing that fact saves a lot
4134 of extra zero-extends. */
4135 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4136 nonzero &= GET_MODE_MASK (GET_MODE (x));
4137 #endif
4138 break;
4139
4140 case EQ: case NE:
4141 case UNEQ: case LTGT:
4142 case GT: case GTU: case UNGT:
4143 case LT: case LTU: case UNLT:
4144 case GE: case GEU: case UNGE:
4145 case LE: case LEU: case UNLE:
4146 case UNORDERED: case ORDERED:
4147 /* If this produces an integer result, we know which bits are set.
4148 Code here used to clear bits outside the mode of X, but that is
4149 now done above. */
4150 /* Mind that MODE is the mode the caller wants to look at this
4151 operation in, and not the actual operation mode. We can wind
4152 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4153 that describes the results of a vector compare. */
4154 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4155 && mode_width <= HOST_BITS_PER_WIDE_INT)
4156 nonzero = STORE_FLAG_VALUE;
4157 break;
4158
4159 case NEG:
4160 #if 0
4161 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4162 and num_sign_bit_copies. */
4163 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4164 == GET_MODE_PRECISION (GET_MODE (x)))
4165 nonzero = 1;
4166 #endif
4167
4168 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4169 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4170 break;
4171
4172 case ABS:
4173 #if 0
4174 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4175 and num_sign_bit_copies. */
4176 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4177 == GET_MODE_PRECISION (GET_MODE (x)))
4178 nonzero = 1;
4179 #endif
4180 break;
4181
4182 case TRUNCATE:
4183 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4184 known_x, known_mode, known_ret)
4185 & GET_MODE_MASK (mode));
4186 break;
4187
4188 case ZERO_EXTEND:
4189 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4190 known_x, known_mode, known_ret);
4191 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4192 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4193 break;
4194
4195 case SIGN_EXTEND:
4196 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4197 Otherwise, show all the bits in the outer mode but not the inner
4198 may be nonzero. */
4199 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4200 known_x, known_mode, known_ret);
4201 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4202 {
4203 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4204 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4205 inner_nz |= (GET_MODE_MASK (mode)
4206 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4207 }
4208
4209 nonzero &= inner_nz;
4210 break;
4211
4212 case AND:
4213 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4214 known_x, known_mode, known_ret)
4215 & cached_nonzero_bits (XEXP (x, 1), mode,
4216 known_x, known_mode, known_ret);
4217 break;
4218
4219 case XOR: case IOR:
4220 case UMIN: case UMAX: case SMIN: case SMAX:
4221 {
4222 unsigned HOST_WIDE_INT nonzero0
4223 = cached_nonzero_bits (XEXP (x, 0), mode,
4224 known_x, known_mode, known_ret);
4225
4226 /* Don't call nonzero_bits for the second time if it cannot change
4227 anything. */
4228 if ((nonzero & nonzero0) != nonzero)
4229 nonzero &= nonzero0
4230 | cached_nonzero_bits (XEXP (x, 1), mode,
4231 known_x, known_mode, known_ret);
4232 }
4233 break;
4234
4235 case PLUS: case MINUS:
4236 case MULT:
4237 case DIV: case UDIV:
4238 case MOD: case UMOD:
4239 /* We can apply the rules of arithmetic to compute the number of
4240 high- and low-order zero bits of these operations. We start by
4241 computing the width (position of the highest-order nonzero bit)
4242 and the number of low-order zero bits for each value. */
4243 {
4244 unsigned HOST_WIDE_INT nz0
4245 = cached_nonzero_bits (XEXP (x, 0), mode,
4246 known_x, known_mode, known_ret);
4247 unsigned HOST_WIDE_INT nz1
4248 = cached_nonzero_bits (XEXP (x, 1), mode,
4249 known_x, known_mode, known_ret);
4250 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4251 int width0 = floor_log2 (nz0) + 1;
4252 int width1 = floor_log2 (nz1) + 1;
4253 int low0 = floor_log2 (nz0 & -nz0);
4254 int low1 = floor_log2 (nz1 & -nz1);
4255 unsigned HOST_WIDE_INT op0_maybe_minusp
4256 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4257 unsigned HOST_WIDE_INT op1_maybe_minusp
4258 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4259 unsigned int result_width = mode_width;
4260 int result_low = 0;
4261
4262 switch (code)
4263 {
4264 case PLUS:
4265 result_width = MAX (width0, width1) + 1;
4266 result_low = MIN (low0, low1);
4267 break;
4268 case MINUS:
4269 result_low = MIN (low0, low1);
4270 break;
4271 case MULT:
4272 result_width = width0 + width1;
4273 result_low = low0 + low1;
4274 break;
4275 case DIV:
4276 if (width1 == 0)
4277 break;
4278 if (!op0_maybe_minusp && !op1_maybe_minusp)
4279 result_width = width0;
4280 break;
4281 case UDIV:
4282 if (width1 == 0)
4283 break;
4284 result_width = width0;
4285 break;
4286 case MOD:
4287 if (width1 == 0)
4288 break;
4289 if (!op0_maybe_minusp && !op1_maybe_minusp)
4290 result_width = MIN (width0, width1);
4291 result_low = MIN (low0, low1);
4292 break;
4293 case UMOD:
4294 if (width1 == 0)
4295 break;
4296 result_width = MIN (width0, width1);
4297 result_low = MIN (low0, low1);
4298 break;
4299 default:
4300 gcc_unreachable ();
4301 }
4302
4303 if (result_width < mode_width)
4304 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4305
4306 if (result_low > 0)
4307 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4308 }
4309 break;
4310
4311 case ZERO_EXTRACT:
4312 if (CONST_INT_P (XEXP (x, 1))
4313 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4314 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4315 break;
4316
4317 case SUBREG:
4318 /* If this is a SUBREG formed for a promoted variable that has
4319 been zero-extended, we know that at least the high-order bits
4320 are zero, though others might be too. */
4321
4322 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4323 nonzero = GET_MODE_MASK (GET_MODE (x))
4324 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4325 known_x, known_mode, known_ret);
4326
4327 inner_mode = GET_MODE (SUBREG_REG (x));
4328 /* If the inner mode is a single word for both the host and target
4329 machines, we can compute this from which bits of the inner
4330 object might be nonzero. */
4331 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4332 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4333 {
4334 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4335 known_x, known_mode, known_ret);
4336
4337 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4338 /* If this is a typical RISC machine, we only have to worry
4339 about the way loads are extended. */
4340 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4341 ? val_signbit_known_set_p (inner_mode, nonzero)
4342 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4343 || !MEM_P (SUBREG_REG (x)))
4344 #endif
4345 {
4346 /* On many CISC machines, accessing an object in a wider mode
4347 causes the high-order bits to become undefined. So they are
4348 not known to be zero. */
4349 if (GET_MODE_PRECISION (GET_MODE (x))
4350 > GET_MODE_PRECISION (inner_mode))
4351 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4352 & ~GET_MODE_MASK (inner_mode));
4353 }
4354 }
4355 break;
4356
4357 case ASHIFTRT:
4358 case LSHIFTRT:
4359 case ASHIFT:
4360 case ROTATE:
4361 /* The nonzero bits are in two classes: any bits within MODE
4362 that aren't in GET_MODE (x) are always significant. The rest of the
4363 nonzero bits are those that are significant in the operand of
4364 the shift when shifted the appropriate number of bits. This
4365 shows that high-order bits are cleared by the right shift and
4366 low-order bits by left shifts. */
4367 if (CONST_INT_P (XEXP (x, 1))
4368 && INTVAL (XEXP (x, 1)) >= 0
4369 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4370 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4371 {
4372 machine_mode inner_mode = GET_MODE (x);
4373 unsigned int width = GET_MODE_PRECISION (inner_mode);
4374 int count = INTVAL (XEXP (x, 1));
4375 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4376 unsigned HOST_WIDE_INT op_nonzero
4377 = cached_nonzero_bits (XEXP (x, 0), mode,
4378 known_x, known_mode, known_ret);
4379 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4380 unsigned HOST_WIDE_INT outer = 0;
4381
4382 if (mode_width > width)
4383 outer = (op_nonzero & nonzero & ~mode_mask);
4384
4385 if (code == LSHIFTRT)
4386 inner >>= count;
4387 else if (code == ASHIFTRT)
4388 {
4389 inner >>= count;
4390
4391 /* If the sign bit may have been nonzero before the shift, we
4392 need to mark all the places it could have been copied to
4393 by the shift as possibly nonzero. */
4394 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4395 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4396 << (width - count);
4397 }
4398 else if (code == ASHIFT)
4399 inner <<= count;
4400 else
4401 inner = ((inner << (count % width)
4402 | (inner >> (width - (count % width)))) & mode_mask);
4403
4404 nonzero &= (outer | inner);
4405 }
4406 break;
4407
4408 case FFS:
4409 case POPCOUNT:
4410 /* This is at most the number of bits in the mode. */
4411 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4412 break;
4413
4414 case CLZ:
4415 /* If CLZ has a known value at zero, then the nonzero bits are
4416 that value, plus the number of bits in the mode minus one. */
4417 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4418 nonzero
4419 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4420 else
4421 nonzero = -1;
4422 break;
4423
4424 case CTZ:
4425 /* If CTZ has a known value at zero, then the nonzero bits are
4426 that value, plus the number of bits in the mode minus one. */
4427 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4428 nonzero
4429 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4430 else
4431 nonzero = -1;
4432 break;
4433
4434 case CLRSB:
4435 /* This is at most the number of bits in the mode minus 1. */
4436 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4437 break;
4438
4439 case PARITY:
4440 nonzero = 1;
4441 break;
4442
4443 case IF_THEN_ELSE:
4444 {
4445 unsigned HOST_WIDE_INT nonzero_true
4446 = cached_nonzero_bits (XEXP (x, 1), mode,
4447 known_x, known_mode, known_ret);
4448
4449 /* Don't call nonzero_bits for the second time if it cannot change
4450 anything. */
4451 if ((nonzero & nonzero_true) != nonzero)
4452 nonzero &= nonzero_true
4453 | cached_nonzero_bits (XEXP (x, 2), mode,
4454 known_x, known_mode, known_ret);
4455 }
4456 break;
4457
4458 default:
4459 break;
4460 }
4461
4462 return nonzero;
4463 }
4464
4465 /* See the macro definition above. */
4466 #undef cached_num_sign_bit_copies
4467
4468 \f
4469 /* The function cached_num_sign_bit_copies is a wrapper around
4470 num_sign_bit_copies1. It avoids exponential behavior in
4471 num_sign_bit_copies1 when X has identical subexpressions on the
4472 first or the second level. */
4473
4474 static unsigned int
4475 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4476 machine_mode known_mode,
4477 unsigned int known_ret)
4478 {
4479 if (x == known_x && mode == known_mode)
4480 return known_ret;
4481
4482 /* Try to find identical subexpressions. If found call
4483 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4484 the precomputed value for the subexpression as KNOWN_RET. */
4485
4486 if (ARITHMETIC_P (x))
4487 {
4488 rtx x0 = XEXP (x, 0);
4489 rtx x1 = XEXP (x, 1);
4490
4491 /* Check the first level. */
4492 if (x0 == x1)
4493 return
4494 num_sign_bit_copies1 (x, mode, x0, mode,
4495 cached_num_sign_bit_copies (x0, mode, known_x,
4496 known_mode,
4497 known_ret));
4498
4499 /* Check the second level. */
4500 if (ARITHMETIC_P (x0)
4501 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4502 return
4503 num_sign_bit_copies1 (x, mode, x1, mode,
4504 cached_num_sign_bit_copies (x1, mode, known_x,
4505 known_mode,
4506 known_ret));
4507
4508 if (ARITHMETIC_P (x1)
4509 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4510 return
4511 num_sign_bit_copies1 (x, mode, x0, mode,
4512 cached_num_sign_bit_copies (x0, mode, known_x,
4513 known_mode,
4514 known_ret));
4515 }
4516
4517 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4518 }
4519
4520 /* Return the number of bits at the high-order end of X that are known to
4521 be equal to the sign bit. X will be used in mode MODE; if MODE is
4522 VOIDmode, X will be used in its own mode. The returned value will always
4523 be between 1 and the number of bits in MODE. */
4524
4525 static unsigned int
4526 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4527 machine_mode known_mode,
4528 unsigned int known_ret)
4529 {
4530 enum rtx_code code = GET_CODE (x);
4531 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4532 int num0, num1, result;
4533 unsigned HOST_WIDE_INT nonzero;
4534
4535 /* If we weren't given a mode, use the mode of X. If the mode is still
4536 VOIDmode, we don't know anything. Likewise if one of the modes is
4537 floating-point. */
4538
4539 if (mode == VOIDmode)
4540 mode = GET_MODE (x);
4541
4542 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4543 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4544 return 1;
4545
4546 /* For a smaller object, just ignore the high bits. */
4547 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4548 {
4549 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4550 known_x, known_mode, known_ret);
4551 return MAX (1,
4552 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4553 }
4554
4555 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4556 {
4557 #ifndef WORD_REGISTER_OPERATIONS
4558 /* If this machine does not do all register operations on the entire
4559 register and MODE is wider than the mode of X, we can say nothing
4560 at all about the high-order bits. */
4561 return 1;
4562 #else
4563 /* Likewise on machines that do, if the mode of the object is smaller
4564 than a word and loads of that size don't sign extend, we can say
4565 nothing about the high order bits. */
4566 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4567 #ifdef LOAD_EXTEND_OP
4568 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4569 #endif
4570 )
4571 return 1;
4572 #endif
4573 }
4574
4575 switch (code)
4576 {
4577 case REG:
4578
4579 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4580 /* If pointers extend signed and this is a pointer in Pmode, say that
4581 all the bits above ptr_mode are known to be sign bit copies. */
4582 /* As we do not know which address space the pointer is referring to,
4583 we can do this only if the target does not support different pointer
4584 or address modes depending on the address space. */
4585 if (target_default_pointer_address_modes_p ()
4586 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4587 && mode == Pmode && REG_POINTER (x))
4588 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4589 #endif
4590
4591 {
4592 unsigned int copies_for_hook = 1, copies = 1;
4593 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4594 known_mode, known_ret,
4595 &copies_for_hook);
4596
4597 if (new_rtx)
4598 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4599 known_mode, known_ret);
4600
4601 if (copies > 1 || copies_for_hook > 1)
4602 return MAX (copies, copies_for_hook);
4603
4604 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4605 }
4606 break;
4607
4608 case MEM:
4609 #ifdef LOAD_EXTEND_OP
4610 /* Some RISC machines sign-extend all loads of smaller than a word. */
4611 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4612 return MAX (1, ((int) bitwidth
4613 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4614 #endif
4615 break;
4616
4617 case CONST_INT:
4618 /* If the constant is negative, take its 1's complement and remask.
4619 Then see how many zero bits we have. */
4620 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4621 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4622 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4623 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4624
4625 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4626
4627 case SUBREG:
4628 /* If this is a SUBREG for a promoted object that is sign-extended
4629 and we are looking at it in a wider mode, we know that at least the
4630 high-order bits are known to be sign bit copies. */
4631
4632 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4633 {
4634 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4635 known_x, known_mode, known_ret);
4636 return MAX ((int) bitwidth
4637 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4638 num0);
4639 }
4640
4641 /* For a smaller object, just ignore the high bits. */
4642 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4643 {
4644 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4645 known_x, known_mode, known_ret);
4646 return MAX (1, (num0
4647 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4648 - bitwidth)));
4649 }
4650
4651 #ifdef WORD_REGISTER_OPERATIONS
4652 #ifdef LOAD_EXTEND_OP
4653 /* For paradoxical SUBREGs on machines where all register operations
4654 affect the entire register, just look inside. Note that we are
4655 passing MODE to the recursive call, so the number of sign bit copies
4656 will remain relative to that mode, not the inner mode. */
4657
4658 /* This works only if loads sign extend. Otherwise, if we get a
4659 reload for the inner part, it may be loaded from the stack, and
4660 then we lose all sign bit copies that existed before the store
4661 to the stack. */
4662
4663 if (paradoxical_subreg_p (x)
4664 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4665 && MEM_P (SUBREG_REG (x)))
4666 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4667 known_x, known_mode, known_ret);
4668 #endif
4669 #endif
4670 break;
4671
4672 case SIGN_EXTRACT:
4673 if (CONST_INT_P (XEXP (x, 1)))
4674 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4675 break;
4676
4677 case SIGN_EXTEND:
4678 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4679 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4680 known_x, known_mode, known_ret));
4681
4682 case TRUNCATE:
4683 /* For a smaller object, just ignore the high bits. */
4684 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4685 known_x, known_mode, known_ret);
4686 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4687 - bitwidth)));
4688
4689 case NOT:
4690 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4691 known_x, known_mode, known_ret);
4692
4693 case ROTATE: case ROTATERT:
4694 /* If we are rotating left by a number of bits less than the number
4695 of sign bit copies, we can just subtract that amount from the
4696 number. */
4697 if (CONST_INT_P (XEXP (x, 1))
4698 && INTVAL (XEXP (x, 1)) >= 0
4699 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4700 {
4701 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4702 known_x, known_mode, known_ret);
4703 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4704 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4705 }
4706 break;
4707
4708 case NEG:
4709 /* In general, this subtracts one sign bit copy. But if the value
4710 is known to be positive, the number of sign bit copies is the
4711 same as that of the input. Finally, if the input has just one bit
4712 that might be nonzero, all the bits are copies of the sign bit. */
4713 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4714 known_x, known_mode, known_ret);
4715 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4716 return num0 > 1 ? num0 - 1 : 1;
4717
4718 nonzero = nonzero_bits (XEXP (x, 0), mode);
4719 if (nonzero == 1)
4720 return bitwidth;
4721
4722 if (num0 > 1
4723 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4724 num0--;
4725
4726 return num0;
4727
4728 case IOR: case AND: case XOR:
4729 case SMIN: case SMAX: case UMIN: case UMAX:
4730 /* Logical operations will preserve the number of sign-bit copies.
4731 MIN and MAX operations always return one of the operands. */
4732 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4733 known_x, known_mode, known_ret);
4734 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4735 known_x, known_mode, known_ret);
4736
4737 /* If num1 is clearing some of the top bits then regardless of
4738 the other term, we are guaranteed to have at least that many
4739 high-order zero bits. */
4740 if (code == AND
4741 && num1 > 1
4742 && bitwidth <= HOST_BITS_PER_WIDE_INT
4743 && CONST_INT_P (XEXP (x, 1))
4744 && (UINTVAL (XEXP (x, 1))
4745 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4746 return num1;
4747
4748 /* Similarly for IOR when setting high-order bits. */
4749 if (code == IOR
4750 && num1 > 1
4751 && bitwidth <= HOST_BITS_PER_WIDE_INT
4752 && CONST_INT_P (XEXP (x, 1))
4753 && (UINTVAL (XEXP (x, 1))
4754 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4755 return num1;
4756
4757 return MIN (num0, num1);
4758
4759 case PLUS: case MINUS:
4760 /* For addition and subtraction, we can have a 1-bit carry. However,
4761 if we are subtracting 1 from a positive number, there will not
4762 be such a carry. Furthermore, if the positive number is known to
4763 be 0 or 1, we know the result is either -1 or 0. */
4764
4765 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4766 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4767 {
4768 nonzero = nonzero_bits (XEXP (x, 0), mode);
4769 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4770 return (nonzero == 1 || nonzero == 0 ? bitwidth
4771 : bitwidth - floor_log2 (nonzero) - 1);
4772 }
4773
4774 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4775 known_x, known_mode, known_ret);
4776 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4777 known_x, known_mode, known_ret);
4778 result = MAX (1, MIN (num0, num1) - 1);
4779
4780 return result;
4781
4782 case MULT:
4783 /* The number of bits of the product is the sum of the number of
4784 bits of both terms. However, unless one of the terms if known
4785 to be positive, we must allow for an additional bit since negating
4786 a negative number can remove one sign bit copy. */
4787
4788 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4789 known_x, known_mode, known_ret);
4790 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4791 known_x, known_mode, known_ret);
4792
4793 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4794 if (result > 0
4795 && (bitwidth > HOST_BITS_PER_WIDE_INT
4796 || (((nonzero_bits (XEXP (x, 0), mode)
4797 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4798 && ((nonzero_bits (XEXP (x, 1), mode)
4799 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4800 != 0))))
4801 result--;
4802
4803 return MAX (1, result);
4804
4805 case UDIV:
4806 /* The result must be <= the first operand. If the first operand
4807 has the high bit set, we know nothing about the number of sign
4808 bit copies. */
4809 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4810 return 1;
4811 else if ((nonzero_bits (XEXP (x, 0), mode)
4812 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4813 return 1;
4814 else
4815 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4816 known_x, known_mode, known_ret);
4817
4818 case UMOD:
4819 /* The result must be <= the second operand. If the second operand
4820 has (or just might have) the high bit set, we know nothing about
4821 the number of sign bit copies. */
4822 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4823 return 1;
4824 else if ((nonzero_bits (XEXP (x, 1), mode)
4825 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4826 return 1;
4827 else
4828 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4829 known_x, known_mode, known_ret);
4830
4831 case DIV:
4832 /* Similar to unsigned division, except that we have to worry about
4833 the case where the divisor is negative, in which case we have
4834 to add 1. */
4835 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4836 known_x, known_mode, known_ret);
4837 if (result > 1
4838 && (bitwidth > HOST_BITS_PER_WIDE_INT
4839 || (nonzero_bits (XEXP (x, 1), mode)
4840 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4841 result--;
4842
4843 return result;
4844
4845 case MOD:
4846 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4847 known_x, known_mode, known_ret);
4848 if (result > 1
4849 && (bitwidth > HOST_BITS_PER_WIDE_INT
4850 || (nonzero_bits (XEXP (x, 1), mode)
4851 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4852 result--;
4853
4854 return result;
4855
4856 case ASHIFTRT:
4857 /* Shifts by a constant add to the number of bits equal to the
4858 sign bit. */
4859 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4860 known_x, known_mode, known_ret);
4861 if (CONST_INT_P (XEXP (x, 1))
4862 && INTVAL (XEXP (x, 1)) > 0
4863 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4864 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4865
4866 return num0;
4867
4868 case ASHIFT:
4869 /* Left shifts destroy copies. */
4870 if (!CONST_INT_P (XEXP (x, 1))
4871 || INTVAL (XEXP (x, 1)) < 0
4872 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4873 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4874 return 1;
4875
4876 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4877 known_x, known_mode, known_ret);
4878 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4879
4880 case IF_THEN_ELSE:
4881 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4882 known_x, known_mode, known_ret);
4883 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4884 known_x, known_mode, known_ret);
4885 return MIN (num0, num1);
4886
4887 case EQ: case NE: case GE: case GT: case LE: case LT:
4888 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4889 case GEU: case GTU: case LEU: case LTU:
4890 case UNORDERED: case ORDERED:
4891 /* If the constant is negative, take its 1's complement and remask.
4892 Then see how many zero bits we have. */
4893 nonzero = STORE_FLAG_VALUE;
4894 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4895 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4896 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4897
4898 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4899
4900 default:
4901 break;
4902 }
4903
4904 /* If we haven't been able to figure it out by one of the above rules,
4905 see if some of the high-order bits are known to be zero. If so,
4906 count those bits and return one less than that amount. If we can't
4907 safely compute the mask for this mode, always return BITWIDTH. */
4908
4909 bitwidth = GET_MODE_PRECISION (mode);
4910 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4911 return 1;
4912
4913 nonzero = nonzero_bits (x, mode);
4914 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4915 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4916 }
4917
4918 /* Calculate the rtx_cost of a single instruction. A return value of
4919 zero indicates an instruction pattern without a known cost. */
4920
4921 int
4922 insn_rtx_cost (rtx pat, bool speed)
4923 {
4924 int i, cost;
4925 rtx set;
4926
4927 /* Extract the single set rtx from the instruction pattern.
4928 We can't use single_set since we only have the pattern. */
4929 if (GET_CODE (pat) == SET)
4930 set = pat;
4931 else if (GET_CODE (pat) == PARALLEL)
4932 {
4933 set = NULL_RTX;
4934 for (i = 0; i < XVECLEN (pat, 0); i++)
4935 {
4936 rtx x = XVECEXP (pat, 0, i);
4937 if (GET_CODE (x) == SET)
4938 {
4939 if (set)
4940 return 0;
4941 set = x;
4942 }
4943 }
4944 if (!set)
4945 return 0;
4946 }
4947 else
4948 return 0;
4949
4950 cost = set_src_cost (SET_SRC (set), speed);
4951 return cost > 0 ? cost : COSTS_N_INSNS (1);
4952 }
4953
4954 /* Returns estimate on cost of computing SEQ. */
4955
4956 unsigned
4957 seq_cost (const rtx_insn *seq, bool speed)
4958 {
4959 unsigned cost = 0;
4960 rtx set;
4961
4962 for (; seq; seq = NEXT_INSN (seq))
4963 {
4964 set = single_set (seq);
4965 if (set)
4966 cost += set_rtx_cost (set, speed);
4967 else
4968 cost++;
4969 }
4970
4971 return cost;
4972 }
4973
4974 /* Given an insn INSN and condition COND, return the condition in a
4975 canonical form to simplify testing by callers. Specifically:
4976
4977 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4978 (2) Both operands will be machine operands; (cc0) will have been replaced.
4979 (3) If an operand is a constant, it will be the second operand.
4980 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4981 for GE, GEU, and LEU.
4982
4983 If the condition cannot be understood, or is an inequality floating-point
4984 comparison which needs to be reversed, 0 will be returned.
4985
4986 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4987
4988 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4989 insn used in locating the condition was found. If a replacement test
4990 of the condition is desired, it should be placed in front of that
4991 insn and we will be sure that the inputs are still valid.
4992
4993 If WANT_REG is nonzero, we wish the condition to be relative to that
4994 register, if possible. Therefore, do not canonicalize the condition
4995 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4996 to be a compare to a CC mode register.
4997
4998 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4999 and at INSN. */
5000
5001 rtx
5002 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5003 rtx_insn **earliest,
5004 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5005 {
5006 enum rtx_code code;
5007 rtx_insn *prev = insn;
5008 const_rtx set;
5009 rtx tem;
5010 rtx op0, op1;
5011 int reverse_code = 0;
5012 machine_mode mode;
5013 basic_block bb = BLOCK_FOR_INSN (insn);
5014
5015 code = GET_CODE (cond);
5016 mode = GET_MODE (cond);
5017 op0 = XEXP (cond, 0);
5018 op1 = XEXP (cond, 1);
5019
5020 if (reverse)
5021 code = reversed_comparison_code (cond, insn);
5022 if (code == UNKNOWN)
5023 return 0;
5024
5025 if (earliest)
5026 *earliest = insn;
5027
5028 /* If we are comparing a register with zero, see if the register is set
5029 in the previous insn to a COMPARE or a comparison operation. Perform
5030 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5031 in cse.c */
5032
5033 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5034 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5035 && op1 == CONST0_RTX (GET_MODE (op0))
5036 && op0 != want_reg)
5037 {
5038 /* Set nonzero when we find something of interest. */
5039 rtx x = 0;
5040
5041 /* If comparison with cc0, import actual comparison from compare
5042 insn. */
5043 if (op0 == cc0_rtx)
5044 {
5045 if ((prev = prev_nonnote_insn (prev)) == 0
5046 || !NONJUMP_INSN_P (prev)
5047 || (set = single_set (prev)) == 0
5048 || SET_DEST (set) != cc0_rtx)
5049 return 0;
5050
5051 op0 = SET_SRC (set);
5052 op1 = CONST0_RTX (GET_MODE (op0));
5053 if (earliest)
5054 *earliest = prev;
5055 }
5056
5057 /* If this is a COMPARE, pick up the two things being compared. */
5058 if (GET_CODE (op0) == COMPARE)
5059 {
5060 op1 = XEXP (op0, 1);
5061 op0 = XEXP (op0, 0);
5062 continue;
5063 }
5064 else if (!REG_P (op0))
5065 break;
5066
5067 /* Go back to the previous insn. Stop if it is not an INSN. We also
5068 stop if it isn't a single set or if it has a REG_INC note because
5069 we don't want to bother dealing with it. */
5070
5071 prev = prev_nonnote_nondebug_insn (prev);
5072
5073 if (prev == 0
5074 || !NONJUMP_INSN_P (prev)
5075 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5076 /* In cfglayout mode, there do not have to be labels at the
5077 beginning of a block, or jumps at the end, so the previous
5078 conditions would not stop us when we reach bb boundary. */
5079 || BLOCK_FOR_INSN (prev) != bb)
5080 break;
5081
5082 set = set_of (op0, prev);
5083
5084 if (set
5085 && (GET_CODE (set) != SET
5086 || !rtx_equal_p (SET_DEST (set), op0)))
5087 break;
5088
5089 /* If this is setting OP0, get what it sets it to if it looks
5090 relevant. */
5091 if (set)
5092 {
5093 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5094 #ifdef FLOAT_STORE_FLAG_VALUE
5095 REAL_VALUE_TYPE fsfv;
5096 #endif
5097
5098 /* ??? We may not combine comparisons done in a CCmode with
5099 comparisons not done in a CCmode. This is to aid targets
5100 like Alpha that have an IEEE compliant EQ instruction, and
5101 a non-IEEE compliant BEQ instruction. The use of CCmode is
5102 actually artificial, simply to prevent the combination, but
5103 should not affect other platforms.
5104
5105 However, we must allow VOIDmode comparisons to match either
5106 CCmode or non-CCmode comparison, because some ports have
5107 modeless comparisons inside branch patterns.
5108
5109 ??? This mode check should perhaps look more like the mode check
5110 in simplify_comparison in combine. */
5111 if (((GET_MODE_CLASS (mode) == MODE_CC)
5112 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5113 && mode != VOIDmode
5114 && inner_mode != VOIDmode)
5115 break;
5116 if (GET_CODE (SET_SRC (set)) == COMPARE
5117 || (((code == NE
5118 || (code == LT
5119 && val_signbit_known_set_p (inner_mode,
5120 STORE_FLAG_VALUE))
5121 #ifdef FLOAT_STORE_FLAG_VALUE
5122 || (code == LT
5123 && SCALAR_FLOAT_MODE_P (inner_mode)
5124 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5125 REAL_VALUE_NEGATIVE (fsfv)))
5126 #endif
5127 ))
5128 && COMPARISON_P (SET_SRC (set))))
5129 x = SET_SRC (set);
5130 else if (((code == EQ
5131 || (code == GE
5132 && val_signbit_known_set_p (inner_mode,
5133 STORE_FLAG_VALUE))
5134 #ifdef FLOAT_STORE_FLAG_VALUE
5135 || (code == GE
5136 && SCALAR_FLOAT_MODE_P (inner_mode)
5137 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5138 REAL_VALUE_NEGATIVE (fsfv)))
5139 #endif
5140 ))
5141 && COMPARISON_P (SET_SRC (set)))
5142 {
5143 reverse_code = 1;
5144 x = SET_SRC (set);
5145 }
5146 else if ((code == EQ || code == NE)
5147 && GET_CODE (SET_SRC (set)) == XOR)
5148 /* Handle sequences like:
5149
5150 (set op0 (xor X Y))
5151 ...(eq|ne op0 (const_int 0))...
5152
5153 in which case:
5154
5155 (eq op0 (const_int 0)) reduces to (eq X Y)
5156 (ne op0 (const_int 0)) reduces to (ne X Y)
5157
5158 This is the form used by MIPS16, for example. */
5159 x = SET_SRC (set);
5160 else
5161 break;
5162 }
5163
5164 else if (reg_set_p (op0, prev))
5165 /* If this sets OP0, but not directly, we have to give up. */
5166 break;
5167
5168 if (x)
5169 {
5170 /* If the caller is expecting the condition to be valid at INSN,
5171 make sure X doesn't change before INSN. */
5172 if (valid_at_insn_p)
5173 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5174 break;
5175 if (COMPARISON_P (x))
5176 code = GET_CODE (x);
5177 if (reverse_code)
5178 {
5179 code = reversed_comparison_code (x, prev);
5180 if (code == UNKNOWN)
5181 return 0;
5182 reverse_code = 0;
5183 }
5184
5185 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5186 if (earliest)
5187 *earliest = prev;
5188 }
5189 }
5190
5191 /* If constant is first, put it last. */
5192 if (CONSTANT_P (op0))
5193 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5194
5195 /* If OP0 is the result of a comparison, we weren't able to find what
5196 was really being compared, so fail. */
5197 if (!allow_cc_mode
5198 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5199 return 0;
5200
5201 /* Canonicalize any ordered comparison with integers involving equality
5202 if we can do computations in the relevant mode and we do not
5203 overflow. */
5204
5205 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5206 && CONST_INT_P (op1)
5207 && GET_MODE (op0) != VOIDmode
5208 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5209 {
5210 HOST_WIDE_INT const_val = INTVAL (op1);
5211 unsigned HOST_WIDE_INT uconst_val = const_val;
5212 unsigned HOST_WIDE_INT max_val
5213 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5214
5215 switch (code)
5216 {
5217 case LE:
5218 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5219 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5220 break;
5221
5222 /* When cross-compiling, const_val might be sign-extended from
5223 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5224 case GE:
5225 if ((const_val & max_val)
5226 != ((unsigned HOST_WIDE_INT) 1
5227 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5228 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5229 break;
5230
5231 case LEU:
5232 if (uconst_val < max_val)
5233 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5234 break;
5235
5236 case GEU:
5237 if (uconst_val != 0)
5238 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5239 break;
5240
5241 default:
5242 break;
5243 }
5244 }
5245
5246 /* Never return CC0; return zero instead. */
5247 if (CC0_P (op0))
5248 return 0;
5249
5250 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5251 }
5252
5253 /* Given a jump insn JUMP, return the condition that will cause it to branch
5254 to its JUMP_LABEL. If the condition cannot be understood, or is an
5255 inequality floating-point comparison which needs to be reversed, 0 will
5256 be returned.
5257
5258 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5259 insn used in locating the condition was found. If a replacement test
5260 of the condition is desired, it should be placed in front of that
5261 insn and we will be sure that the inputs are still valid. If EARLIEST
5262 is null, the returned condition will be valid at INSN.
5263
5264 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5265 compare CC mode register.
5266
5267 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5268
5269 rtx
5270 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5271 int valid_at_insn_p)
5272 {
5273 rtx cond;
5274 int reverse;
5275 rtx set;
5276
5277 /* If this is not a standard conditional jump, we can't parse it. */
5278 if (!JUMP_P (jump)
5279 || ! any_condjump_p (jump))
5280 return 0;
5281 set = pc_set (jump);
5282
5283 cond = XEXP (SET_SRC (set), 0);
5284
5285 /* If this branches to JUMP_LABEL when the condition is false, reverse
5286 the condition. */
5287 reverse
5288 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5289 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5290
5291 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5292 allow_cc_mode, valid_at_insn_p);
5293 }
5294
5295 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5296 TARGET_MODE_REP_EXTENDED.
5297
5298 Note that we assume that the property of
5299 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5300 narrower than mode B. I.e., if A is a mode narrower than B then in
5301 order to be able to operate on it in mode B, mode A needs to
5302 satisfy the requirements set by the representation of mode B. */
5303
5304 static void
5305 init_num_sign_bit_copies_in_rep (void)
5306 {
5307 machine_mode mode, in_mode;
5308
5309 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5310 in_mode = GET_MODE_WIDER_MODE (mode))
5311 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5312 mode = GET_MODE_WIDER_MODE (mode))
5313 {
5314 machine_mode i;
5315
5316 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5317 extends to the next widest mode. */
5318 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5319 || GET_MODE_WIDER_MODE (mode) == in_mode);
5320
5321 /* We are in in_mode. Count how many bits outside of mode
5322 have to be copies of the sign-bit. */
5323 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5324 {
5325 machine_mode wider = GET_MODE_WIDER_MODE (i);
5326
5327 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5328 /* We can only check sign-bit copies starting from the
5329 top-bit. In order to be able to check the bits we
5330 have already seen we pretend that subsequent bits
5331 have to be sign-bit copies too. */
5332 || num_sign_bit_copies_in_rep [in_mode][mode])
5333 num_sign_bit_copies_in_rep [in_mode][mode]
5334 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5335 }
5336 }
5337 }
5338
5339 /* Suppose that truncation from the machine mode of X to MODE is not a
5340 no-op. See if there is anything special about X so that we can
5341 assume it already contains a truncated value of MODE. */
5342
5343 bool
5344 truncated_to_mode (machine_mode mode, const_rtx x)
5345 {
5346 /* This register has already been used in MODE without explicit
5347 truncation. */
5348 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5349 return true;
5350
5351 /* See if we already satisfy the requirements of MODE. If yes we
5352 can just switch to MODE. */
5353 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5354 && (num_sign_bit_copies (x, GET_MODE (x))
5355 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5356 return true;
5357
5358 return false;
5359 }
5360 \f
5361 /* Return true if RTX code CODE has a single sequence of zero or more
5362 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5363 entry in that case. */
5364
5365 static bool
5366 setup_reg_subrtx_bounds (unsigned int code)
5367 {
5368 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5369 unsigned int i = 0;
5370 for (; format[i] != 'e'; ++i)
5371 {
5372 if (!format[i])
5373 /* No subrtxes. Leave start and count as 0. */
5374 return true;
5375 if (format[i] == 'E' || format[i] == 'V')
5376 return false;
5377 }
5378
5379 /* Record the sequence of 'e's. */
5380 rtx_all_subrtx_bounds[code].start = i;
5381 do
5382 ++i;
5383 while (format[i] == 'e');
5384 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5385 /* rtl-iter.h relies on this. */
5386 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5387
5388 for (; format[i]; ++i)
5389 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5390 return false;
5391
5392 return true;
5393 }
5394
5395 /* Initialize rtx_all_subrtx_bounds. */
5396 void
5397 init_rtlanal (void)
5398 {
5399 int i;
5400 for (i = 0; i < NUM_RTX_CODE; i++)
5401 {
5402 if (!setup_reg_subrtx_bounds (i))
5403 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5404 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5405 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5406 }
5407
5408 init_num_sign_bit_copies_in_rep ();
5409 }
5410 \f
5411 /* Check whether this is a constant pool constant. */
5412 bool
5413 constant_pool_constant_p (rtx x)
5414 {
5415 x = avoid_constant_pool_reference (x);
5416 return CONST_DOUBLE_P (x);
5417 }
5418 \f
5419 /* If M is a bitmask that selects a field of low-order bits within an item but
5420 not the entire word, return the length of the field. Return -1 otherwise.
5421 M is used in machine mode MODE. */
5422
5423 int
5424 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5425 {
5426 if (mode != VOIDmode)
5427 {
5428 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5429 return -1;
5430 m &= GET_MODE_MASK (mode);
5431 }
5432
5433 return exact_log2 (m + 1);
5434 }
5435
5436 /* Return the mode of MEM's address. */
5437
5438 machine_mode
5439 get_address_mode (rtx mem)
5440 {
5441 machine_mode mode;
5442
5443 gcc_assert (MEM_P (mem));
5444 mode = GET_MODE (XEXP (mem, 0));
5445 if (mode != VOIDmode)
5446 return mode;
5447 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5448 }
5449 \f
5450 /* Split up a CONST_DOUBLE or integer constant rtx
5451 into two rtx's for single words,
5452 storing in *FIRST the word that comes first in memory in the target
5453 and in *SECOND the other.
5454
5455 TODO: This function needs to be rewritten to work on any size
5456 integer. */
5457
5458 void
5459 split_double (rtx value, rtx *first, rtx *second)
5460 {
5461 if (CONST_INT_P (value))
5462 {
5463 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5464 {
5465 /* In this case the CONST_INT holds both target words.
5466 Extract the bits from it into two word-sized pieces.
5467 Sign extend each half to HOST_WIDE_INT. */
5468 unsigned HOST_WIDE_INT low, high;
5469 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5470 unsigned bits_per_word = BITS_PER_WORD;
5471
5472 /* Set sign_bit to the most significant bit of a word. */
5473 sign_bit = 1;
5474 sign_bit <<= bits_per_word - 1;
5475
5476 /* Set mask so that all bits of the word are set. We could
5477 have used 1 << BITS_PER_WORD instead of basing the
5478 calculation on sign_bit. However, on machines where
5479 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5480 compiler warning, even though the code would never be
5481 executed. */
5482 mask = sign_bit << 1;
5483 mask--;
5484
5485 /* Set sign_extend as any remaining bits. */
5486 sign_extend = ~mask;
5487
5488 /* Pick the lower word and sign-extend it. */
5489 low = INTVAL (value);
5490 low &= mask;
5491 if (low & sign_bit)
5492 low |= sign_extend;
5493
5494 /* Pick the higher word, shifted to the least significant
5495 bits, and sign-extend it. */
5496 high = INTVAL (value);
5497 high >>= bits_per_word - 1;
5498 high >>= 1;
5499 high &= mask;
5500 if (high & sign_bit)
5501 high |= sign_extend;
5502
5503 /* Store the words in the target machine order. */
5504 if (WORDS_BIG_ENDIAN)
5505 {
5506 *first = GEN_INT (high);
5507 *second = GEN_INT (low);
5508 }
5509 else
5510 {
5511 *first = GEN_INT (low);
5512 *second = GEN_INT (high);
5513 }
5514 }
5515 else
5516 {
5517 /* The rule for using CONST_INT for a wider mode
5518 is that we regard the value as signed.
5519 So sign-extend it. */
5520 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5521 if (WORDS_BIG_ENDIAN)
5522 {
5523 *first = high;
5524 *second = value;
5525 }
5526 else
5527 {
5528 *first = value;
5529 *second = high;
5530 }
5531 }
5532 }
5533 else if (GET_CODE (value) == CONST_WIDE_INT)
5534 {
5535 /* All of this is scary code and needs to be converted to
5536 properly work with any size integer. */
5537 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5538 if (WORDS_BIG_ENDIAN)
5539 {
5540 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5541 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5542 }
5543 else
5544 {
5545 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5546 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5547 }
5548 }
5549 else if (!CONST_DOUBLE_P (value))
5550 {
5551 if (WORDS_BIG_ENDIAN)
5552 {
5553 *first = const0_rtx;
5554 *second = value;
5555 }
5556 else
5557 {
5558 *first = value;
5559 *second = const0_rtx;
5560 }
5561 }
5562 else if (GET_MODE (value) == VOIDmode
5563 /* This is the old way we did CONST_DOUBLE integers. */
5564 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5565 {
5566 /* In an integer, the words are defined as most and least significant.
5567 So order them by the target's convention. */
5568 if (WORDS_BIG_ENDIAN)
5569 {
5570 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5571 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5572 }
5573 else
5574 {
5575 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5576 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5577 }
5578 }
5579 else
5580 {
5581 REAL_VALUE_TYPE r;
5582 long l[2];
5583 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5584
5585 /* Note, this converts the REAL_VALUE_TYPE to the target's
5586 format, splits up the floating point double and outputs
5587 exactly 32 bits of it into each of l[0] and l[1] --
5588 not necessarily BITS_PER_WORD bits. */
5589 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5590
5591 /* If 32 bits is an entire word for the target, but not for the host,
5592 then sign-extend on the host so that the number will look the same
5593 way on the host that it would on the target. See for instance
5594 simplify_unary_operation. The #if is needed to avoid compiler
5595 warnings. */
5596
5597 #if HOST_BITS_PER_LONG > 32
5598 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5599 {
5600 if (l[0] & ((long) 1 << 31))
5601 l[0] |= ((long) (-1) << 32);
5602 if (l[1] & ((long) 1 << 31))
5603 l[1] |= ((long) (-1) << 32);
5604 }
5605 #endif
5606
5607 *first = GEN_INT (l[0]);
5608 *second = GEN_INT (l[1]);
5609 }
5610 }
5611
5612 /* Return true if X is a sign_extract or zero_extract from the least
5613 significant bit. */
5614
5615 static bool
5616 lsb_bitfield_op_p (rtx x)
5617 {
5618 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5619 {
5620 machine_mode mode = GET_MODE (XEXP (x, 0));
5621 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5622 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5623
5624 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5625 }
5626 return false;
5627 }
5628
5629 /* Strip outer address "mutations" from LOC and return a pointer to the
5630 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5631 stripped expression there.
5632
5633 "Mutations" either convert between modes or apply some kind of
5634 extension, truncation or alignment. */
5635
5636 rtx *
5637 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5638 {
5639 for (;;)
5640 {
5641 enum rtx_code code = GET_CODE (*loc);
5642 if (GET_RTX_CLASS (code) == RTX_UNARY)
5643 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5644 used to convert between pointer sizes. */
5645 loc = &XEXP (*loc, 0);
5646 else if (lsb_bitfield_op_p (*loc))
5647 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5648 acts as a combined truncation and extension. */
5649 loc = &XEXP (*loc, 0);
5650 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5651 /* (and ... (const_int -X)) is used to align to X bytes. */
5652 loc = &XEXP (*loc, 0);
5653 else if (code == SUBREG
5654 && !OBJECT_P (SUBREG_REG (*loc))
5655 && subreg_lowpart_p (*loc))
5656 /* (subreg (operator ...) ...) inside and is used for mode
5657 conversion too. */
5658 loc = &SUBREG_REG (*loc);
5659 else
5660 return loc;
5661 if (outer_code)
5662 *outer_code = code;
5663 }
5664 }
5665
5666 /* Return true if CODE applies some kind of scale. The scaled value is
5667 is the first operand and the scale is the second. */
5668
5669 static bool
5670 binary_scale_code_p (enum rtx_code code)
5671 {
5672 return (code == MULT
5673 || code == ASHIFT
5674 /* Needed by ARM targets. */
5675 || code == ASHIFTRT
5676 || code == LSHIFTRT
5677 || code == ROTATE
5678 || code == ROTATERT);
5679 }
5680
5681 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5682 (see address_info). Return null otherwise. */
5683
5684 static rtx *
5685 get_base_term (rtx *inner)
5686 {
5687 if (GET_CODE (*inner) == LO_SUM)
5688 inner = strip_address_mutations (&XEXP (*inner, 0));
5689 if (REG_P (*inner)
5690 || MEM_P (*inner)
5691 || GET_CODE (*inner) == SUBREG
5692 || GET_CODE (*inner) == SCRATCH)
5693 return inner;
5694 return 0;
5695 }
5696
5697 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5698 (see address_info). Return null otherwise. */
5699
5700 static rtx *
5701 get_index_term (rtx *inner)
5702 {
5703 /* At present, only constant scales are allowed. */
5704 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5705 inner = strip_address_mutations (&XEXP (*inner, 0));
5706 if (REG_P (*inner)
5707 || MEM_P (*inner)
5708 || GET_CODE (*inner) == SUBREG
5709 || GET_CODE (*inner) == SCRATCH)
5710 return inner;
5711 return 0;
5712 }
5713
5714 /* Set the segment part of address INFO to LOC, given that INNER is the
5715 unmutated value. */
5716
5717 static void
5718 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5719 {
5720 gcc_assert (!info->segment);
5721 info->segment = loc;
5722 info->segment_term = inner;
5723 }
5724
5725 /* Set the base part of address INFO to LOC, given that INNER is the
5726 unmutated value. */
5727
5728 static void
5729 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5730 {
5731 gcc_assert (!info->base);
5732 info->base = loc;
5733 info->base_term = inner;
5734 }
5735
5736 /* Set the index part of address INFO to LOC, given that INNER is the
5737 unmutated value. */
5738
5739 static void
5740 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5741 {
5742 gcc_assert (!info->index);
5743 info->index = loc;
5744 info->index_term = inner;
5745 }
5746
5747 /* Set the displacement part of address INFO to LOC, given that INNER
5748 is the constant term. */
5749
5750 static void
5751 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5752 {
5753 gcc_assert (!info->disp);
5754 info->disp = loc;
5755 info->disp_term = inner;
5756 }
5757
5758 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5759 rest of INFO accordingly. */
5760
5761 static void
5762 decompose_incdec_address (struct address_info *info)
5763 {
5764 info->autoinc_p = true;
5765
5766 rtx *base = &XEXP (*info->inner, 0);
5767 set_address_base (info, base, base);
5768 gcc_checking_assert (info->base == info->base_term);
5769
5770 /* These addresses are only valid when the size of the addressed
5771 value is known. */
5772 gcc_checking_assert (info->mode != VOIDmode);
5773 }
5774
5775 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5776 of INFO accordingly. */
5777
5778 static void
5779 decompose_automod_address (struct address_info *info)
5780 {
5781 info->autoinc_p = true;
5782
5783 rtx *base = &XEXP (*info->inner, 0);
5784 set_address_base (info, base, base);
5785 gcc_checking_assert (info->base == info->base_term);
5786
5787 rtx plus = XEXP (*info->inner, 1);
5788 gcc_assert (GET_CODE (plus) == PLUS);
5789
5790 info->base_term2 = &XEXP (plus, 0);
5791 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5792
5793 rtx *step = &XEXP (plus, 1);
5794 rtx *inner_step = strip_address_mutations (step);
5795 if (CONSTANT_P (*inner_step))
5796 set_address_disp (info, step, inner_step);
5797 else
5798 set_address_index (info, step, inner_step);
5799 }
5800
5801 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
5802 values in [PTR, END). Return a pointer to the end of the used array. */
5803
5804 static rtx **
5805 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
5806 {
5807 rtx x = *loc;
5808 if (GET_CODE (x) == PLUS)
5809 {
5810 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
5811 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
5812 }
5813 else
5814 {
5815 gcc_assert (ptr != end);
5816 *ptr++ = loc;
5817 }
5818 return ptr;
5819 }
5820
5821 /* Evaluate the likelihood of X being a base or index value, returning
5822 positive if it is likely to be a base, negative if it is likely to be
5823 an index, and 0 if we can't tell. Make the magnitude of the return
5824 value reflect the amount of confidence we have in the answer.
5825
5826 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
5827
5828 static int
5829 baseness (rtx x, machine_mode mode, addr_space_t as,
5830 enum rtx_code outer_code, enum rtx_code index_code)
5831 {
5832 /* Believe *_POINTER unless the address shape requires otherwise. */
5833 if (REG_P (x) && REG_POINTER (x))
5834 return 2;
5835 if (MEM_P (x) && MEM_POINTER (x))
5836 return 2;
5837
5838 if (REG_P (x) && HARD_REGISTER_P (x))
5839 {
5840 /* X is a hard register. If it only fits one of the base
5841 or index classes, choose that interpretation. */
5842 int regno = REGNO (x);
5843 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
5844 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
5845 if (base_p != index_p)
5846 return base_p ? 1 : -1;
5847 }
5848 return 0;
5849 }
5850
5851 /* INFO->INNER describes a normal, non-automodified address.
5852 Fill in the rest of INFO accordingly. */
5853
5854 static void
5855 decompose_normal_address (struct address_info *info)
5856 {
5857 /* Treat the address as the sum of up to four values. */
5858 rtx *ops[4];
5859 size_t n_ops = extract_plus_operands (info->inner, ops,
5860 ops + ARRAY_SIZE (ops)) - ops;
5861
5862 /* If there is more than one component, any base component is in a PLUS. */
5863 if (n_ops > 1)
5864 info->base_outer_code = PLUS;
5865
5866 /* Try to classify each sum operand now. Leave those that could be
5867 either a base or an index in OPS. */
5868 rtx *inner_ops[4];
5869 size_t out = 0;
5870 for (size_t in = 0; in < n_ops; ++in)
5871 {
5872 rtx *loc = ops[in];
5873 rtx *inner = strip_address_mutations (loc);
5874 if (CONSTANT_P (*inner))
5875 set_address_disp (info, loc, inner);
5876 else if (GET_CODE (*inner) == UNSPEC)
5877 set_address_segment (info, loc, inner);
5878 else
5879 {
5880 /* The only other possibilities are a base or an index. */
5881 rtx *base_term = get_base_term (inner);
5882 rtx *index_term = get_index_term (inner);
5883 gcc_assert (base_term || index_term);
5884 if (!base_term)
5885 set_address_index (info, loc, index_term);
5886 else if (!index_term)
5887 set_address_base (info, loc, base_term);
5888 else
5889 {
5890 gcc_assert (base_term == index_term);
5891 ops[out] = loc;
5892 inner_ops[out] = base_term;
5893 ++out;
5894 }
5895 }
5896 }
5897
5898 /* Classify the remaining OPS members as bases and indexes. */
5899 if (out == 1)
5900 {
5901 /* If we haven't seen a base or an index yet, assume that this is
5902 the base. If we were confident that another term was the base
5903 or index, treat the remaining operand as the other kind. */
5904 if (!info->base)
5905 set_address_base (info, ops[0], inner_ops[0]);
5906 else
5907 set_address_index (info, ops[0], inner_ops[0]);
5908 }
5909 else if (out == 2)
5910 {
5911 /* In the event of a tie, assume the base comes first. */
5912 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
5913 GET_CODE (*ops[1]))
5914 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
5915 GET_CODE (*ops[0])))
5916 {
5917 set_address_base (info, ops[0], inner_ops[0]);
5918 set_address_index (info, ops[1], inner_ops[1]);
5919 }
5920 else
5921 {
5922 set_address_base (info, ops[1], inner_ops[1]);
5923 set_address_index (info, ops[0], inner_ops[0]);
5924 }
5925 }
5926 else
5927 gcc_assert (out == 0);
5928 }
5929
5930 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
5931 or VOIDmode if not known. AS is the address space associated with LOC.
5932 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
5933
5934 void
5935 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
5936 addr_space_t as, enum rtx_code outer_code)
5937 {
5938 memset (info, 0, sizeof (*info));
5939 info->mode = mode;
5940 info->as = as;
5941 info->addr_outer_code = outer_code;
5942 info->outer = loc;
5943 info->inner = strip_address_mutations (loc, &outer_code);
5944 info->base_outer_code = outer_code;
5945 switch (GET_CODE (*info->inner))
5946 {
5947 case PRE_DEC:
5948 case PRE_INC:
5949 case POST_DEC:
5950 case POST_INC:
5951 decompose_incdec_address (info);
5952 break;
5953
5954 case PRE_MODIFY:
5955 case POST_MODIFY:
5956 decompose_automod_address (info);
5957 break;
5958
5959 default:
5960 decompose_normal_address (info);
5961 break;
5962 }
5963 }
5964
5965 /* Describe address operand LOC in INFO. */
5966
5967 void
5968 decompose_lea_address (struct address_info *info, rtx *loc)
5969 {
5970 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
5971 }
5972
5973 /* Describe the address of MEM X in INFO. */
5974
5975 void
5976 decompose_mem_address (struct address_info *info, rtx x)
5977 {
5978 gcc_assert (MEM_P (x));
5979 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
5980 MEM_ADDR_SPACE (x), MEM);
5981 }
5982
5983 /* Update INFO after a change to the address it describes. */
5984
5985 void
5986 update_address (struct address_info *info)
5987 {
5988 decompose_address (info, info->outer, info->mode, info->as,
5989 info->addr_outer_code);
5990 }
5991
5992 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
5993 more complicated than that. */
5994
5995 HOST_WIDE_INT
5996 get_index_scale (const struct address_info *info)
5997 {
5998 rtx index = *info->index;
5999 if (GET_CODE (index) == MULT
6000 && CONST_INT_P (XEXP (index, 1))
6001 && info->index_term == &XEXP (index, 0))
6002 return INTVAL (XEXP (index, 1));
6003
6004 if (GET_CODE (index) == ASHIFT
6005 && CONST_INT_P (XEXP (index, 1))
6006 && info->index_term == &XEXP (index, 0))
6007 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6008
6009 if (info->index == info->index_term)
6010 return 1;
6011
6012 return 0;
6013 }
6014
6015 /* Return the "index code" of INFO, in the form required by
6016 ok_for_base_p_1. */
6017
6018 enum rtx_code
6019 get_index_code (const struct address_info *info)
6020 {
6021 if (info->index)
6022 return GET_CODE (*info->index);
6023
6024 if (info->disp)
6025 return GET_CODE (*info->disp);
6026
6027 return SCRATCH;
6028 }
6029
6030 /* Return true if X contains a thread-local symbol. */
6031
6032 bool
6033 tls_referenced_p (const_rtx x)
6034 {
6035 if (!targetm.have_tls)
6036 return false;
6037
6038 subrtx_iterator::array_type array;
6039 FOR_EACH_SUBRTX (iter, array, x, ALL)
6040 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6041 return true;
6042 return false;
6043 }