re PR rtl-optimization/89795 (wrong code with -O2 -fno-dce -fno-forward-propagate...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "memmodel.h"
31 #include "tm_p.h"
32 #include "insn-config.h"
33 #include "regs.h"
34 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
35 #include "recog.h"
36 #include "addresses.h"
37 #include "rtl-iter.h"
38 #include "hard-reg-set.h"
39
40 /* Forward declarations */
41 static void set_of_1 (rtx, const_rtx, void *);
42 static bool covers_regno_p (const_rtx, unsigned int);
43 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
44 static int computed_jump_p_1 (const_rtx);
45 static void parms_set (rtx, const_rtx, void *);
46
47 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, scalar_int_mode,
48 const_rtx, machine_mode,
49 unsigned HOST_WIDE_INT);
50 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, scalar_int_mode,
51 const_rtx, machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned int cached_num_sign_bit_copies (const_rtx, scalar_int_mode,
54 const_rtx, machine_mode,
55 unsigned int);
56 static unsigned int num_sign_bit_copies1 (const_rtx, scalar_int_mode,
57 const_rtx, machine_mode,
58 unsigned int);
59
60 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
61 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
62
63 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
64 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
65 SIGN_EXTEND then while narrowing we also have to enforce the
66 representation and sign-extend the value to mode DESTINATION_REP.
67
68 If the value is already sign-extended to DESTINATION_REP mode we
69 can just switch to DESTINATION mode on it. For each pair of
70 integral modes SOURCE and DESTINATION, when truncating from SOURCE
71 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
72 contains the number of high-order bits in SOURCE that have to be
73 copies of the sign-bit so that we can do this mode-switch to
74 DESTINATION. */
75
76 static unsigned int
77 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
78 \f
79 /* Store X into index I of ARRAY. ARRAY is known to have at least I
80 elements. Return the new base of ARRAY. */
81
82 template <typename T>
83 typename T::value_type *
84 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
85 value_type *base,
86 size_t i, value_type x)
87 {
88 if (base == array.stack)
89 {
90 if (i < LOCAL_ELEMS)
91 {
92 base[i] = x;
93 return base;
94 }
95 gcc_checking_assert (i == LOCAL_ELEMS);
96 /* A previous iteration might also have moved from the stack to the
97 heap, in which case the heap array will already be big enough. */
98 if (vec_safe_length (array.heap) <= i)
99 vec_safe_grow (array.heap, i + 1);
100 base = array.heap->address ();
101 memcpy (base, array.stack, sizeof (array.stack));
102 base[LOCAL_ELEMS] = x;
103 return base;
104 }
105 unsigned int length = array.heap->length ();
106 if (length > i)
107 {
108 gcc_checking_assert (base == array.heap->address ());
109 base[i] = x;
110 return base;
111 }
112 else
113 {
114 gcc_checking_assert (i == length);
115 vec_safe_push (array.heap, x);
116 return array.heap->address ();
117 }
118 }
119
120 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
121 number of elements added to the worklist. */
122
123 template <typename T>
124 size_t
125 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
126 value_type *base,
127 size_t end, rtx_type x)
128 {
129 enum rtx_code code = GET_CODE (x);
130 const char *format = GET_RTX_FORMAT (code);
131 size_t orig_end = end;
132 if (__builtin_expect (INSN_P (x), false))
133 {
134 /* Put the pattern at the top of the queue, since that's what
135 we're likely to want most. It also allows for the SEQUENCE
136 code below. */
137 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
138 if (format[i] == 'e')
139 {
140 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
141 if (__builtin_expect (end < LOCAL_ELEMS, true))
142 base[end++] = subx;
143 else
144 base = add_single_to_queue (array, base, end++, subx);
145 }
146 }
147 else
148 for (int i = 0; format[i]; ++i)
149 if (format[i] == 'e')
150 {
151 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
152 if (__builtin_expect (end < LOCAL_ELEMS, true))
153 base[end++] = subx;
154 else
155 base = add_single_to_queue (array, base, end++, subx);
156 }
157 else if (format[i] == 'E')
158 {
159 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
160 rtx *vec = x->u.fld[i].rt_rtvec->elem;
161 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
162 for (unsigned int j = 0; j < length; j++)
163 base[end++] = T::get_value (vec[j]);
164 else
165 for (unsigned int j = 0; j < length; j++)
166 base = add_single_to_queue (array, base, end++,
167 T::get_value (vec[j]));
168 if (code == SEQUENCE && end == length)
169 /* If the subrtxes of the sequence fill the entire array then
170 we know that no other parts of a containing insn are queued.
171 The caller is therefore iterating over the sequence as a
172 PATTERN (...), so we also want the patterns of the
173 subinstructions. */
174 for (unsigned int j = 0; j < length; j++)
175 {
176 typename T::rtx_type x = T::get_rtx (base[j]);
177 if (INSN_P (x))
178 base[j] = T::get_value (PATTERN (x));
179 }
180 }
181 return end - orig_end;
182 }
183
184 template <typename T>
185 void
186 generic_subrtx_iterator <T>::free_array (array_type &array)
187 {
188 vec_free (array.heap);
189 }
190
191 template <typename T>
192 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
193
194 template class generic_subrtx_iterator <const_rtx_accessor>;
195 template class generic_subrtx_iterator <rtx_var_accessor>;
196 template class generic_subrtx_iterator <rtx_ptr_accessor>;
197
198 /* Return 1 if the value of X is unstable
199 (would be different at a different point in the program).
200 The frame pointer, arg pointer, etc. are considered stable
201 (within one function) and so is anything marked `unchanging'. */
202
203 int
204 rtx_unstable_p (const_rtx x)
205 {
206 const RTX_CODE code = GET_CODE (x);
207 int i;
208 const char *fmt;
209
210 switch (code)
211 {
212 case MEM:
213 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
214
215 case CONST:
216 CASE_CONST_ANY:
217 case SYMBOL_REF:
218 case LABEL_REF:
219 return 0;
220
221 case REG:
222 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
223 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
224 /* The arg pointer varies if it is not a fixed register. */
225 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
226 return 0;
227 /* ??? When call-clobbered, the value is stable modulo the restore
228 that must happen after a call. This currently screws up local-alloc
229 into believing that the restore is not needed. */
230 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
231 return 0;
232 return 1;
233
234 case ASM_OPERANDS:
235 if (MEM_VOLATILE_P (x))
236 return 1;
237
238 /* Fall through. */
239
240 default:
241 break;
242 }
243
244 fmt = GET_RTX_FORMAT (code);
245 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
246 if (fmt[i] == 'e')
247 {
248 if (rtx_unstable_p (XEXP (x, i)))
249 return 1;
250 }
251 else if (fmt[i] == 'E')
252 {
253 int j;
254 for (j = 0; j < XVECLEN (x, i); j++)
255 if (rtx_unstable_p (XVECEXP (x, i, j)))
256 return 1;
257 }
258
259 return 0;
260 }
261
262 /* Return 1 if X has a value that can vary even between two
263 executions of the program. 0 means X can be compared reliably
264 against certain constants or near-constants.
265 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
266 zero, we are slightly more conservative.
267 The frame pointer and the arg pointer are considered constant. */
268
269 bool
270 rtx_varies_p (const_rtx x, bool for_alias)
271 {
272 RTX_CODE code;
273 int i;
274 const char *fmt;
275
276 if (!x)
277 return 0;
278
279 code = GET_CODE (x);
280 switch (code)
281 {
282 case MEM:
283 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
284
285 case CONST:
286 CASE_CONST_ANY:
287 case SYMBOL_REF:
288 case LABEL_REF:
289 return 0;
290
291 case REG:
292 /* Note that we have to test for the actual rtx used for the frame
293 and arg pointers and not just the register number in case we have
294 eliminated the frame and/or arg pointer and are using it
295 for pseudos. */
296 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
297 /* The arg pointer varies if it is not a fixed register. */
298 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
299 return 0;
300 if (x == pic_offset_table_rtx
301 /* ??? When call-clobbered, the value is stable modulo the restore
302 that must happen after a call. This currently screws up
303 local-alloc into believing that the restore is not needed, so we
304 must return 0 only if we are called from alias analysis. */
305 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
306 return 0;
307 return 1;
308
309 case LO_SUM:
310 /* The operand 0 of a LO_SUM is considered constant
311 (in fact it is related specifically to operand 1)
312 during alias analysis. */
313 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
314 || rtx_varies_p (XEXP (x, 1), for_alias);
315
316 case ASM_OPERANDS:
317 if (MEM_VOLATILE_P (x))
318 return 1;
319
320 /* Fall through. */
321
322 default:
323 break;
324 }
325
326 fmt = GET_RTX_FORMAT (code);
327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
328 if (fmt[i] == 'e')
329 {
330 if (rtx_varies_p (XEXP (x, i), for_alias))
331 return 1;
332 }
333 else if (fmt[i] == 'E')
334 {
335 int j;
336 for (j = 0; j < XVECLEN (x, i); j++)
337 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
338 return 1;
339 }
340
341 return 0;
342 }
343
344 /* Compute an approximation for the offset between the register
345 FROM and TO for the current function, as it was at the start
346 of the routine. */
347
348 static poly_int64
349 get_initial_register_offset (int from, int to)
350 {
351 static const struct elim_table_t
352 {
353 const int from;
354 const int to;
355 } table[] = ELIMINABLE_REGS;
356 poly_int64 offset1, offset2;
357 unsigned int i, j;
358
359 if (to == from)
360 return 0;
361
362 /* It is not safe to call INITIAL_ELIMINATION_OFFSET before the epilogue
363 is completed, but we need to give at least an estimate for the stack
364 pointer based on the frame size. */
365 if (!epilogue_completed)
366 {
367 offset1 = crtl->outgoing_args_size + get_frame_size ();
368 #if !STACK_GROWS_DOWNWARD
369 offset1 = - offset1;
370 #endif
371 if (to == STACK_POINTER_REGNUM)
372 return offset1;
373 else if (from == STACK_POINTER_REGNUM)
374 return - offset1;
375 else
376 return 0;
377 }
378
379 for (i = 0; i < ARRAY_SIZE (table); i++)
380 if (table[i].from == from)
381 {
382 if (table[i].to == to)
383 {
384 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
385 offset1);
386 return offset1;
387 }
388 for (j = 0; j < ARRAY_SIZE (table); j++)
389 {
390 if (table[j].to == to
391 && table[j].from == table[i].to)
392 {
393 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
394 offset1);
395 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
396 offset2);
397 return offset1 + offset2;
398 }
399 if (table[j].from == to
400 && table[j].to == table[i].to)
401 {
402 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
403 offset1);
404 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
405 offset2);
406 return offset1 - offset2;
407 }
408 }
409 }
410 else if (table[i].to == from)
411 {
412 if (table[i].from == to)
413 {
414 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
415 offset1);
416 return - offset1;
417 }
418 for (j = 0; j < ARRAY_SIZE (table); j++)
419 {
420 if (table[j].to == to
421 && table[j].from == table[i].from)
422 {
423 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
424 offset1);
425 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
426 offset2);
427 return - offset1 + offset2;
428 }
429 if (table[j].from == to
430 && table[j].to == table[i].from)
431 {
432 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
433 offset1);
434 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
435 offset2);
436 return - offset1 - offset2;
437 }
438 }
439 }
440
441 /* If the requested register combination was not found,
442 try a different more simple combination. */
443 if (from == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
445 else if (to == ARG_POINTER_REGNUM)
446 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
447 else if (from == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
449 else if (to == HARD_FRAME_POINTER_REGNUM)
450 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
451 else
452 return 0;
453 }
454
455 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
456 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
457 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
458 references on strict alignment machines. */
459
460 static int
461 rtx_addr_can_trap_p_1 (const_rtx x, poly_int64 offset, poly_int64 size,
462 machine_mode mode, bool unaligned_mems)
463 {
464 enum rtx_code code = GET_CODE (x);
465 gcc_checking_assert (mode == BLKmode || known_size_p (size));
466 poly_int64 const_x1;
467
468 /* The offset must be a multiple of the mode size if we are considering
469 unaligned memory references on strict alignment machines. */
470 if (STRICT_ALIGNMENT && unaligned_mems && mode != BLKmode)
471 {
472 poly_int64 actual_offset = offset;
473
474 #ifdef SPARC_STACK_BOUNDARY_HACK
475 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
476 the real alignment of %sp. However, when it does this, the
477 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
478 if (SPARC_STACK_BOUNDARY_HACK
479 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
480 actual_offset -= STACK_POINTER_OFFSET;
481 #endif
482
483 if (!multiple_p (actual_offset, GET_MODE_SIZE (mode)))
484 return 1;
485 }
486
487 switch (code)
488 {
489 case SYMBOL_REF:
490 if (SYMBOL_REF_WEAK (x))
491 return 1;
492 if (!CONSTANT_POOL_ADDRESS_P (x) && !SYMBOL_REF_FUNCTION_P (x))
493 {
494 tree decl;
495 poly_int64 decl_size;
496
497 if (maybe_lt (offset, 0))
498 return 1;
499 if (!known_size_p (size))
500 return maybe_ne (offset, 0);
501
502 /* If the size of the access or of the symbol is unknown,
503 assume the worst. */
504 decl = SYMBOL_REF_DECL (x);
505
506 /* Else check that the access is in bounds. TODO: restructure
507 expr_size/tree_expr_size/int_expr_size and just use the latter. */
508 if (!decl)
509 decl_size = -1;
510 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
511 {
512 if (!poly_int_tree_p (DECL_SIZE_UNIT (decl), &decl_size))
513 decl_size = -1;
514 }
515 else if (TREE_CODE (decl) == STRING_CST)
516 decl_size = TREE_STRING_LENGTH (decl);
517 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
518 decl_size = int_size_in_bytes (TREE_TYPE (decl));
519 else
520 decl_size = -1;
521
522 return (!known_size_p (decl_size) || known_eq (decl_size, 0)
523 ? maybe_ne (offset, 0)
524 : !known_subrange_p (offset, size, 0, decl_size));
525 }
526
527 return 0;
528
529 case LABEL_REF:
530 return 0;
531
532 case REG:
533 /* Stack references are assumed not to trap, but we need to deal with
534 nonsensical offsets. */
535 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
536 || x == stack_pointer_rtx
537 /* The arg pointer varies if it is not a fixed register. */
538 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
539 {
540 #ifdef RED_ZONE_SIZE
541 poly_int64 red_zone_size = RED_ZONE_SIZE;
542 #else
543 poly_int64 red_zone_size = 0;
544 #endif
545 poly_int64 stack_boundary = PREFERRED_STACK_BOUNDARY / BITS_PER_UNIT;
546 poly_int64 low_bound, high_bound;
547
548 if (!known_size_p (size))
549 return 1;
550
551 if (x == frame_pointer_rtx)
552 {
553 if (FRAME_GROWS_DOWNWARD)
554 {
555 high_bound = targetm.starting_frame_offset ();
556 low_bound = high_bound - get_frame_size ();
557 }
558 else
559 {
560 low_bound = targetm.starting_frame_offset ();
561 high_bound = low_bound + get_frame_size ();
562 }
563 }
564 else if (x == hard_frame_pointer_rtx)
565 {
566 poly_int64 sp_offset
567 = get_initial_register_offset (STACK_POINTER_REGNUM,
568 HARD_FRAME_POINTER_REGNUM);
569 poly_int64 ap_offset
570 = get_initial_register_offset (ARG_POINTER_REGNUM,
571 HARD_FRAME_POINTER_REGNUM);
572
573 #if STACK_GROWS_DOWNWARD
574 low_bound = sp_offset - red_zone_size - stack_boundary;
575 high_bound = ap_offset
576 + FIRST_PARM_OFFSET (current_function_decl)
577 #if !ARGS_GROW_DOWNWARD
578 + crtl->args.size
579 #endif
580 + stack_boundary;
581 #else
582 high_bound = sp_offset + red_zone_size + stack_boundary;
583 low_bound = ap_offset
584 + FIRST_PARM_OFFSET (current_function_decl)
585 #if ARGS_GROW_DOWNWARD
586 - crtl->args.size
587 #endif
588 - stack_boundary;
589 #endif
590 }
591 else if (x == stack_pointer_rtx)
592 {
593 poly_int64 ap_offset
594 = get_initial_register_offset (ARG_POINTER_REGNUM,
595 STACK_POINTER_REGNUM);
596
597 #if STACK_GROWS_DOWNWARD
598 low_bound = - red_zone_size - stack_boundary;
599 high_bound = ap_offset
600 + FIRST_PARM_OFFSET (current_function_decl)
601 #if !ARGS_GROW_DOWNWARD
602 + crtl->args.size
603 #endif
604 + stack_boundary;
605 #else
606 high_bound = red_zone_size + stack_boundary;
607 low_bound = ap_offset
608 + FIRST_PARM_OFFSET (current_function_decl)
609 #if ARGS_GROW_DOWNWARD
610 - crtl->args.size
611 #endif
612 - stack_boundary;
613 #endif
614 }
615 else
616 {
617 /* We assume that accesses are safe to at least the
618 next stack boundary.
619 Examples are varargs and __builtin_return_address. */
620 #if ARGS_GROW_DOWNWARD
621 high_bound = FIRST_PARM_OFFSET (current_function_decl)
622 + stack_boundary;
623 low_bound = FIRST_PARM_OFFSET (current_function_decl)
624 - crtl->args.size - stack_boundary;
625 #else
626 low_bound = FIRST_PARM_OFFSET (current_function_decl)
627 - stack_boundary;
628 high_bound = FIRST_PARM_OFFSET (current_function_decl)
629 + crtl->args.size + stack_boundary;
630 #endif
631 }
632
633 if (known_ge (offset, low_bound)
634 && known_le (offset, high_bound - size))
635 return 0;
636 return 1;
637 }
638 /* All of the virtual frame registers are stack references. */
639 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
640 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
641 return 0;
642 return 1;
643
644 case CONST:
645 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
646 mode, unaligned_mems);
647
648 case PLUS:
649 /* An address is assumed not to trap if:
650 - it is the pic register plus a const unspec without offset. */
651 if (XEXP (x, 0) == pic_offset_table_rtx
652 && GET_CODE (XEXP (x, 1)) == CONST
653 && GET_CODE (XEXP (XEXP (x, 1), 0)) == UNSPEC
654 && known_eq (offset, 0))
655 return 0;
656
657 /* - or it is an address that can't trap plus a constant integer. */
658 if (poly_int_rtx_p (XEXP (x, 1), &const_x1)
659 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + const_x1,
660 size, mode, unaligned_mems))
661 return 0;
662
663 return 1;
664
665 case LO_SUM:
666 case PRE_MODIFY:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
668 mode, unaligned_mems);
669
670 case PRE_DEC:
671 case PRE_INC:
672 case POST_DEC:
673 case POST_INC:
674 case POST_MODIFY:
675 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
676 mode, unaligned_mems);
677
678 default:
679 break;
680 }
681
682 /* If it isn't one of the case above, it can cause a trap. */
683 return 1;
684 }
685
686 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
687
688 int
689 rtx_addr_can_trap_p (const_rtx x)
690 {
691 return rtx_addr_can_trap_p_1 (x, 0, -1, BLKmode, false);
692 }
693
694 /* Return true if X contains a MEM subrtx. */
695
696 bool
697 contains_mem_rtx_p (rtx x)
698 {
699 subrtx_iterator::array_type array;
700 FOR_EACH_SUBRTX (iter, array, x, ALL)
701 if (MEM_P (*iter))
702 return true;
703
704 return false;
705 }
706
707 /* Return true if X is an address that is known to not be zero. */
708
709 bool
710 nonzero_address_p (const_rtx x)
711 {
712 const enum rtx_code code = GET_CODE (x);
713
714 switch (code)
715 {
716 case SYMBOL_REF:
717 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
718
719 case LABEL_REF:
720 return true;
721
722 case REG:
723 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
724 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
725 || x == stack_pointer_rtx
726 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
727 return true;
728 /* All of the virtual frame registers are stack references. */
729 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
730 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
731 return true;
732 return false;
733
734 case CONST:
735 return nonzero_address_p (XEXP (x, 0));
736
737 case PLUS:
738 /* Handle PIC references. */
739 if (XEXP (x, 0) == pic_offset_table_rtx
740 && CONSTANT_P (XEXP (x, 1)))
741 return true;
742 return false;
743
744 case PRE_MODIFY:
745 /* Similar to the above; allow positive offsets. Further, since
746 auto-inc is only allowed in memories, the register must be a
747 pointer. */
748 if (CONST_INT_P (XEXP (x, 1))
749 && INTVAL (XEXP (x, 1)) > 0)
750 return true;
751 return nonzero_address_p (XEXP (x, 0));
752
753 case PRE_INC:
754 /* Similarly. Further, the offset is always positive. */
755 return true;
756
757 case PRE_DEC:
758 case POST_DEC:
759 case POST_INC:
760 case POST_MODIFY:
761 return nonzero_address_p (XEXP (x, 0));
762
763 case LO_SUM:
764 return nonzero_address_p (XEXP (x, 1));
765
766 default:
767 break;
768 }
769
770 /* If it isn't one of the case above, might be zero. */
771 return false;
772 }
773
774 /* Return 1 if X refers to a memory location whose address
775 cannot be compared reliably with constant addresses,
776 or if X refers to a BLKmode memory object.
777 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
778 zero, we are slightly more conservative. */
779
780 bool
781 rtx_addr_varies_p (const_rtx x, bool for_alias)
782 {
783 enum rtx_code code;
784 int i;
785 const char *fmt;
786
787 if (x == 0)
788 return 0;
789
790 code = GET_CODE (x);
791 if (code == MEM)
792 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
793
794 fmt = GET_RTX_FORMAT (code);
795 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
796 if (fmt[i] == 'e')
797 {
798 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
799 return 1;
800 }
801 else if (fmt[i] == 'E')
802 {
803 int j;
804 for (j = 0; j < XVECLEN (x, i); j++)
805 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
806 return 1;
807 }
808 return 0;
809 }
810 \f
811 /* Return the CALL in X if there is one. */
812
813 rtx
814 get_call_rtx_from (const rtx_insn *insn)
815 {
816 rtx x = PATTERN (insn);
817 if (GET_CODE (x) == PARALLEL)
818 x = XVECEXP (x, 0, 0);
819 if (GET_CODE (x) == SET)
820 x = SET_SRC (x);
821 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
822 return x;
823 return NULL_RTX;
824 }
825 \f
826 /* Return the value of the integer term in X, if one is apparent;
827 otherwise return 0.
828 Only obvious integer terms are detected.
829 This is used in cse.c with the `related_value' field. */
830
831 HOST_WIDE_INT
832 get_integer_term (const_rtx x)
833 {
834 if (GET_CODE (x) == CONST)
835 x = XEXP (x, 0);
836
837 if (GET_CODE (x) == MINUS
838 && CONST_INT_P (XEXP (x, 1)))
839 return - INTVAL (XEXP (x, 1));
840 if (GET_CODE (x) == PLUS
841 && CONST_INT_P (XEXP (x, 1)))
842 return INTVAL (XEXP (x, 1));
843 return 0;
844 }
845
846 /* If X is a constant, return the value sans apparent integer term;
847 otherwise return 0.
848 Only obvious integer terms are detected. */
849
850 rtx
851 get_related_value (const_rtx x)
852 {
853 if (GET_CODE (x) != CONST)
854 return 0;
855 x = XEXP (x, 0);
856 if (GET_CODE (x) == PLUS
857 && CONST_INT_P (XEXP (x, 1)))
858 return XEXP (x, 0);
859 else if (GET_CODE (x) == MINUS
860 && CONST_INT_P (XEXP (x, 1)))
861 return XEXP (x, 0);
862 return 0;
863 }
864 \f
865 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
866 to somewhere in the same object or object_block as SYMBOL. */
867
868 bool
869 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
870 {
871 tree decl;
872
873 if (GET_CODE (symbol) != SYMBOL_REF)
874 return false;
875
876 if (offset == 0)
877 return true;
878
879 if (offset > 0)
880 {
881 if (CONSTANT_POOL_ADDRESS_P (symbol)
882 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
883 return true;
884
885 decl = SYMBOL_REF_DECL (symbol);
886 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
887 return true;
888 }
889
890 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
891 && SYMBOL_REF_BLOCK (symbol)
892 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
893 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
894 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
895 return true;
896
897 return false;
898 }
899
900 /* Split X into a base and a constant offset, storing them in *BASE_OUT
901 and *OFFSET_OUT respectively. */
902
903 void
904 split_const (rtx x, rtx *base_out, rtx *offset_out)
905 {
906 if (GET_CODE (x) == CONST)
907 {
908 x = XEXP (x, 0);
909 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
910 {
911 *base_out = XEXP (x, 0);
912 *offset_out = XEXP (x, 1);
913 return;
914 }
915 }
916 *base_out = x;
917 *offset_out = const0_rtx;
918 }
919
920 /* Express integer value X as some value Y plus a polynomial offset,
921 where Y is either const0_rtx, X or something within X (as opposed
922 to a new rtx). Return the Y and store the offset in *OFFSET_OUT. */
923
924 rtx
925 strip_offset (rtx x, poly_int64_pod *offset_out)
926 {
927 rtx base = const0_rtx;
928 rtx test = x;
929 if (GET_CODE (test) == CONST)
930 test = XEXP (test, 0);
931 if (GET_CODE (test) == PLUS)
932 {
933 base = XEXP (test, 0);
934 test = XEXP (test, 1);
935 }
936 if (poly_int_rtx_p (test, offset_out))
937 return base;
938 *offset_out = 0;
939 return x;
940 }
941
942 /* Return the argument size in REG_ARGS_SIZE note X. */
943
944 poly_int64
945 get_args_size (const_rtx x)
946 {
947 gcc_checking_assert (REG_NOTE_KIND (x) == REG_ARGS_SIZE);
948 return rtx_to_poly_int64 (XEXP (x, 0));
949 }
950 \f
951 /* Return the number of places FIND appears within X. If COUNT_DEST is
952 zero, we do not count occurrences inside the destination of a SET. */
953
954 int
955 count_occurrences (const_rtx x, const_rtx find, int count_dest)
956 {
957 int i, j;
958 enum rtx_code code;
959 const char *format_ptr;
960 int count;
961
962 if (x == find)
963 return 1;
964
965 code = GET_CODE (x);
966
967 switch (code)
968 {
969 case REG:
970 CASE_CONST_ANY:
971 case SYMBOL_REF:
972 case CODE_LABEL:
973 case PC:
974 case CC0:
975 return 0;
976
977 case EXPR_LIST:
978 count = count_occurrences (XEXP (x, 0), find, count_dest);
979 if (XEXP (x, 1))
980 count += count_occurrences (XEXP (x, 1), find, count_dest);
981 return count;
982
983 case MEM:
984 if (MEM_P (find) && rtx_equal_p (x, find))
985 return 1;
986 break;
987
988 case SET:
989 if (SET_DEST (x) == find && ! count_dest)
990 return count_occurrences (SET_SRC (x), find, count_dest);
991 break;
992
993 default:
994 break;
995 }
996
997 format_ptr = GET_RTX_FORMAT (code);
998 count = 0;
999
1000 for (i = 0; i < GET_RTX_LENGTH (code); i++)
1001 {
1002 switch (*format_ptr++)
1003 {
1004 case 'e':
1005 count += count_occurrences (XEXP (x, i), find, count_dest);
1006 break;
1007
1008 case 'E':
1009 for (j = 0; j < XVECLEN (x, i); j++)
1010 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
1011 break;
1012 }
1013 }
1014 return count;
1015 }
1016
1017 \f
1018 /* Return TRUE if OP is a register or subreg of a register that
1019 holds an unsigned quantity. Otherwise, return FALSE. */
1020
1021 bool
1022 unsigned_reg_p (rtx op)
1023 {
1024 if (REG_P (op)
1025 && REG_EXPR (op)
1026 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1027 return true;
1028
1029 if (GET_CODE (op) == SUBREG
1030 && SUBREG_PROMOTED_SIGN (op))
1031 return true;
1032
1033 return false;
1034 }
1035
1036 \f
1037 /* Nonzero if register REG appears somewhere within IN.
1038 Also works if REG is not a register; in this case it checks
1039 for a subexpression of IN that is Lisp "equal" to REG. */
1040
1041 int
1042 reg_mentioned_p (const_rtx reg, const_rtx in)
1043 {
1044 const char *fmt;
1045 int i;
1046 enum rtx_code code;
1047
1048 if (in == 0)
1049 return 0;
1050
1051 if (reg == in)
1052 return 1;
1053
1054 if (GET_CODE (in) == LABEL_REF)
1055 return reg == label_ref_label (in);
1056
1057 code = GET_CODE (in);
1058
1059 switch (code)
1060 {
1061 /* Compare registers by number. */
1062 case REG:
1063 return REG_P (reg) && REGNO (in) == REGNO (reg);
1064
1065 /* These codes have no constituent expressions
1066 and are unique. */
1067 case SCRATCH:
1068 case CC0:
1069 case PC:
1070 return 0;
1071
1072 CASE_CONST_ANY:
1073 /* These are kept unique for a given value. */
1074 return 0;
1075
1076 default:
1077 break;
1078 }
1079
1080 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1081 return 1;
1082
1083 fmt = GET_RTX_FORMAT (code);
1084
1085 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1086 {
1087 if (fmt[i] == 'E')
1088 {
1089 int j;
1090 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1091 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1092 return 1;
1093 }
1094 else if (fmt[i] == 'e'
1095 && reg_mentioned_p (reg, XEXP (in, i)))
1096 return 1;
1097 }
1098 return 0;
1099 }
1100 \f
1101 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1102 no CODE_LABEL insn. */
1103
1104 int
1105 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1106 {
1107 rtx_insn *p;
1108 if (beg == end)
1109 return 0;
1110 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1111 if (LABEL_P (p))
1112 return 0;
1113 return 1;
1114 }
1115
1116 /* Nonzero if register REG is used in an insn between
1117 FROM_INSN and TO_INSN (exclusive of those two). */
1118
1119 int
1120 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1121 const rtx_insn *to_insn)
1122 {
1123 rtx_insn *insn;
1124
1125 if (from_insn == to_insn)
1126 return 0;
1127
1128 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1129 if (NONDEBUG_INSN_P (insn)
1130 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1131 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1132 return 1;
1133 return 0;
1134 }
1135 \f
1136 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1137 is entirely replaced by a new value and the only use is as a SET_DEST,
1138 we do not consider it a reference. */
1139
1140 int
1141 reg_referenced_p (const_rtx x, const_rtx body)
1142 {
1143 int i;
1144
1145 switch (GET_CODE (body))
1146 {
1147 case SET:
1148 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1149 return 1;
1150
1151 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1152 of a REG that occupies all of the REG, the insn references X if
1153 it is mentioned in the destination. */
1154 if (GET_CODE (SET_DEST (body)) != CC0
1155 && GET_CODE (SET_DEST (body)) != PC
1156 && !REG_P (SET_DEST (body))
1157 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1158 && REG_P (SUBREG_REG (SET_DEST (body)))
1159 && !read_modify_subreg_p (SET_DEST (body)))
1160 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1161 return 1;
1162 return 0;
1163
1164 case ASM_OPERANDS:
1165 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1166 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1167 return 1;
1168 return 0;
1169
1170 case CALL:
1171 case USE:
1172 case IF_THEN_ELSE:
1173 return reg_overlap_mentioned_p (x, body);
1174
1175 case TRAP_IF:
1176 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1177
1178 case PREFETCH:
1179 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1180
1181 case UNSPEC:
1182 case UNSPEC_VOLATILE:
1183 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1184 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1185 return 1;
1186 return 0;
1187
1188 case PARALLEL:
1189 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1190 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1191 return 1;
1192 return 0;
1193
1194 case CLOBBER:
1195 if (MEM_P (XEXP (body, 0)))
1196 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1197 return 1;
1198 return 0;
1199
1200 case CLOBBER_HIGH:
1201 gcc_assert (REG_P (XEXP (body, 0)));
1202 return 0;
1203
1204 case COND_EXEC:
1205 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1206 return 1;
1207 return reg_referenced_p (x, COND_EXEC_CODE (body));
1208
1209 default:
1210 return 0;
1211 }
1212 }
1213 \f
1214 /* Nonzero if register REG is set or clobbered in an insn between
1215 FROM_INSN and TO_INSN (exclusive of those two). */
1216
1217 int
1218 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1219 const rtx_insn *to_insn)
1220 {
1221 const rtx_insn *insn;
1222
1223 if (from_insn == to_insn)
1224 return 0;
1225
1226 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1227 if (INSN_P (insn) && reg_set_p (reg, insn))
1228 return 1;
1229 return 0;
1230 }
1231
1232 /* Return true if REG is set or clobbered inside INSN. */
1233
1234 int
1235 reg_set_p (const_rtx reg, const_rtx insn)
1236 {
1237 /* After delay slot handling, call and branch insns might be in a
1238 sequence. Check all the elements there. */
1239 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1240 {
1241 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1242 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1243 return true;
1244
1245 return false;
1246 }
1247
1248 /* We can be passed an insn or part of one. If we are passed an insn,
1249 check if a side-effect of the insn clobbers REG. */
1250 if (INSN_P (insn)
1251 && (FIND_REG_INC_NOTE (insn, reg)
1252 || (CALL_P (insn)
1253 && ((REG_P (reg)
1254 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1255 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1256 GET_MODE (reg), REGNO (reg)))
1257 || MEM_P (reg)
1258 || find_reg_fusage (insn, CLOBBER, reg)))))
1259 return true;
1260
1261 /* There are no REG_INC notes for SP autoinc. */
1262 if (reg == stack_pointer_rtx && INSN_P (insn))
1263 {
1264 subrtx_var_iterator::array_type array;
1265 FOR_EACH_SUBRTX_VAR (iter, array, PATTERN (insn), NONCONST)
1266 {
1267 rtx mem = *iter;
1268 if (mem
1269 && MEM_P (mem)
1270 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
1271 {
1272 if (XEXP (XEXP (mem, 0), 0) == stack_pointer_rtx)
1273 return true;
1274 iter.skip_subrtxes ();
1275 }
1276 }
1277 }
1278
1279 return set_of (reg, insn) != NULL_RTX;
1280 }
1281
1282 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1283 only if none of them are modified between START and END. Return 1 if
1284 X contains a MEM; this routine does use memory aliasing. */
1285
1286 int
1287 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1288 {
1289 const enum rtx_code code = GET_CODE (x);
1290 const char *fmt;
1291 int i, j;
1292 rtx_insn *insn;
1293
1294 if (start == end)
1295 return 0;
1296
1297 switch (code)
1298 {
1299 CASE_CONST_ANY:
1300 case CONST:
1301 case SYMBOL_REF:
1302 case LABEL_REF:
1303 return 0;
1304
1305 case PC:
1306 case CC0:
1307 return 1;
1308
1309 case MEM:
1310 if (modified_between_p (XEXP (x, 0), start, end))
1311 return 1;
1312 if (MEM_READONLY_P (x))
1313 return 0;
1314 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1315 if (memory_modified_in_insn_p (x, insn))
1316 return 1;
1317 return 0;
1318
1319 case REG:
1320 return reg_set_between_p (x, start, end);
1321
1322 default:
1323 break;
1324 }
1325
1326 fmt = GET_RTX_FORMAT (code);
1327 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1328 {
1329 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1330 return 1;
1331
1332 else if (fmt[i] == 'E')
1333 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1334 if (modified_between_p (XVECEXP (x, i, j), start, end))
1335 return 1;
1336 }
1337
1338 return 0;
1339 }
1340
1341 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1342 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1343 does use memory aliasing. */
1344
1345 int
1346 modified_in_p (const_rtx x, const_rtx insn)
1347 {
1348 const enum rtx_code code = GET_CODE (x);
1349 const char *fmt;
1350 int i, j;
1351
1352 switch (code)
1353 {
1354 CASE_CONST_ANY:
1355 case CONST:
1356 case SYMBOL_REF:
1357 case LABEL_REF:
1358 return 0;
1359
1360 case PC:
1361 case CC0:
1362 return 1;
1363
1364 case MEM:
1365 if (modified_in_p (XEXP (x, 0), insn))
1366 return 1;
1367 if (MEM_READONLY_P (x))
1368 return 0;
1369 if (memory_modified_in_insn_p (x, insn))
1370 return 1;
1371 return 0;
1372
1373 case REG:
1374 return reg_set_p (x, insn);
1375
1376 default:
1377 break;
1378 }
1379
1380 fmt = GET_RTX_FORMAT (code);
1381 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1382 {
1383 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1384 return 1;
1385
1386 else if (fmt[i] == 'E')
1387 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1388 if (modified_in_p (XVECEXP (x, i, j), insn))
1389 return 1;
1390 }
1391
1392 return 0;
1393 }
1394
1395 /* Return true if X is a SUBREG and if storing a value to X would
1396 preserve some of its SUBREG_REG. For example, on a normal 32-bit
1397 target, using a SUBREG to store to one half of a DImode REG would
1398 preserve the other half. */
1399
1400 bool
1401 read_modify_subreg_p (const_rtx x)
1402 {
1403 if (GET_CODE (x) != SUBREG)
1404 return false;
1405 poly_uint64 isize = GET_MODE_SIZE (GET_MODE (SUBREG_REG (x)));
1406 poly_uint64 osize = GET_MODE_SIZE (GET_MODE (x));
1407 poly_uint64 regsize = REGMODE_NATURAL_SIZE (GET_MODE (SUBREG_REG (x)));
1408 /* The inner and outer modes of a subreg must be ordered, so that we
1409 can tell whether they're paradoxical or partial. */
1410 gcc_checking_assert (ordered_p (isize, osize));
1411 return (maybe_gt (isize, osize) && maybe_gt (isize, regsize));
1412 }
1413 \f
1414 /* Helper function for set_of. */
1415 struct set_of_data
1416 {
1417 const_rtx found;
1418 const_rtx pat;
1419 };
1420
1421 static void
1422 set_of_1 (rtx x, const_rtx pat, void *data1)
1423 {
1424 struct set_of_data *const data = (struct set_of_data *) (data1);
1425 if (rtx_equal_p (x, data->pat)
1426 || (GET_CODE (pat) == CLOBBER_HIGH
1427 && REGNO(data->pat) == REGNO(XEXP (pat, 0))
1428 && reg_is_clobbered_by_clobber_high (data->pat, XEXP (pat, 0)))
1429 || (GET_CODE (pat) != CLOBBER_HIGH && !MEM_P (x)
1430 && reg_overlap_mentioned_p (data->pat, x)))
1431 data->found = pat;
1432 }
1433
1434 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1435 (either directly or via STRICT_LOW_PART and similar modifiers). */
1436 const_rtx
1437 set_of (const_rtx pat, const_rtx insn)
1438 {
1439 struct set_of_data data;
1440 data.found = NULL_RTX;
1441 data.pat = pat;
1442 note_pattern_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1443 return data.found;
1444 }
1445
1446 /* Add all hard register in X to *PSET. */
1447 void
1448 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1449 {
1450 subrtx_iterator::array_type array;
1451 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1452 {
1453 const_rtx x = *iter;
1454 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1455 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1456 }
1457 }
1458
1459 /* This function, called through note_stores, collects sets and
1460 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1461 by DATA. */
1462 void
1463 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1464 {
1465 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1466 if (REG_P (x) && HARD_REGISTER_P (x))
1467 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1468 }
1469
1470 /* Examine INSN, and compute the set of hard registers written by it.
1471 Store it in *PSET. Should only be called after reload. */
1472 void
1473 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1474 {
1475 rtx link;
1476
1477 CLEAR_HARD_REG_SET (*pset);
1478 note_stores (insn, record_hard_reg_sets, pset);
1479 if (CALL_P (insn) && implicit)
1480 *pset |= call_used_or_fixed_regs;
1481 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1482 if (REG_NOTE_KIND (link) == REG_INC)
1483 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1484 }
1485
1486 /* Like record_hard_reg_sets, but called through note_uses. */
1487 void
1488 record_hard_reg_uses (rtx *px, void *data)
1489 {
1490 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1491 }
1492 \f
1493 /* Given an INSN, return a SET expression if this insn has only a single SET.
1494 It may also have CLOBBERs, USEs, or SET whose output
1495 will not be used, which we ignore. */
1496
1497 rtx
1498 single_set_2 (const rtx_insn *insn, const_rtx pat)
1499 {
1500 rtx set = NULL;
1501 int set_verified = 1;
1502 int i;
1503
1504 if (GET_CODE (pat) == PARALLEL)
1505 {
1506 for (i = 0; i < XVECLEN (pat, 0); i++)
1507 {
1508 rtx sub = XVECEXP (pat, 0, i);
1509 switch (GET_CODE (sub))
1510 {
1511 case USE:
1512 case CLOBBER:
1513 case CLOBBER_HIGH:
1514 break;
1515
1516 case SET:
1517 /* We can consider insns having multiple sets, where all
1518 but one are dead as single set insns. In common case
1519 only single set is present in the pattern so we want
1520 to avoid checking for REG_UNUSED notes unless necessary.
1521
1522 When we reach set first time, we just expect this is
1523 the single set we are looking for and only when more
1524 sets are found in the insn, we check them. */
1525 if (!set_verified)
1526 {
1527 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1528 && !side_effects_p (set))
1529 set = NULL;
1530 else
1531 set_verified = 1;
1532 }
1533 if (!set)
1534 set = sub, set_verified = 0;
1535 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1536 || side_effects_p (sub))
1537 return NULL_RTX;
1538 break;
1539
1540 default:
1541 return NULL_RTX;
1542 }
1543 }
1544 }
1545 return set;
1546 }
1547
1548 /* Given an INSN, return nonzero if it has more than one SET, else return
1549 zero. */
1550
1551 int
1552 multiple_sets (const_rtx insn)
1553 {
1554 int found;
1555 int i;
1556
1557 /* INSN must be an insn. */
1558 if (! INSN_P (insn))
1559 return 0;
1560
1561 /* Only a PARALLEL can have multiple SETs. */
1562 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1563 {
1564 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1565 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1566 {
1567 /* If we have already found a SET, then return now. */
1568 if (found)
1569 return 1;
1570 else
1571 found = 1;
1572 }
1573 }
1574
1575 /* Either zero or one SET. */
1576 return 0;
1577 }
1578 \f
1579 /* Return nonzero if the destination of SET equals the source
1580 and there are no side effects. */
1581
1582 int
1583 set_noop_p (const_rtx set)
1584 {
1585 rtx src = SET_SRC (set);
1586 rtx dst = SET_DEST (set);
1587
1588 if (dst == pc_rtx && src == pc_rtx)
1589 return 1;
1590
1591 if (MEM_P (dst) && MEM_P (src))
1592 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1593
1594 if (GET_CODE (dst) == ZERO_EXTRACT)
1595 return rtx_equal_p (XEXP (dst, 0), src)
1596 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1597 && !side_effects_p (src);
1598
1599 if (GET_CODE (dst) == STRICT_LOW_PART)
1600 dst = XEXP (dst, 0);
1601
1602 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1603 {
1604 if (maybe_ne (SUBREG_BYTE (src), SUBREG_BYTE (dst)))
1605 return 0;
1606 src = SUBREG_REG (src);
1607 dst = SUBREG_REG (dst);
1608 }
1609
1610 /* It is a NOOP if destination overlaps with selected src vector
1611 elements. */
1612 if (GET_CODE (src) == VEC_SELECT
1613 && REG_P (XEXP (src, 0)) && REG_P (dst)
1614 && HARD_REGISTER_P (XEXP (src, 0))
1615 && HARD_REGISTER_P (dst))
1616 {
1617 int i;
1618 rtx par = XEXP (src, 1);
1619 rtx src0 = XEXP (src, 0);
1620 poly_int64 c0 = rtx_to_poly_int64 (XVECEXP (par, 0, 0));
1621 poly_int64 offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1622
1623 for (i = 1; i < XVECLEN (par, 0); i++)
1624 if (maybe_ne (rtx_to_poly_int64 (XVECEXP (par, 0, i)), c0 + i))
1625 return 0;
1626 return
1627 REG_CAN_CHANGE_MODE_P (REGNO (dst), GET_MODE (src0), GET_MODE (dst))
1628 && simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1629 offset, GET_MODE (dst)) == (int) REGNO (dst);
1630 }
1631
1632 return (REG_P (src) && REG_P (dst)
1633 && REGNO (src) == REGNO (dst));
1634 }
1635 \f
1636 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1637 value to itself. */
1638
1639 int
1640 noop_move_p (const rtx_insn *insn)
1641 {
1642 rtx pat = PATTERN (insn);
1643
1644 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1645 return 1;
1646
1647 /* Insns carrying these notes are useful later on. */
1648 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1649 return 0;
1650
1651 /* Check the code to be executed for COND_EXEC. */
1652 if (GET_CODE (pat) == COND_EXEC)
1653 pat = COND_EXEC_CODE (pat);
1654
1655 if (GET_CODE (pat) == SET && set_noop_p (pat))
1656 return 1;
1657
1658 if (GET_CODE (pat) == PARALLEL)
1659 {
1660 int i;
1661 /* If nothing but SETs of registers to themselves,
1662 this insn can also be deleted. */
1663 for (i = 0; i < XVECLEN (pat, 0); i++)
1664 {
1665 rtx tem = XVECEXP (pat, 0, i);
1666
1667 if (GET_CODE (tem) == USE
1668 || GET_CODE (tem) == CLOBBER
1669 || GET_CODE (tem) == CLOBBER_HIGH)
1670 continue;
1671
1672 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1673 return 0;
1674 }
1675
1676 return 1;
1677 }
1678 return 0;
1679 }
1680 \f
1681
1682 /* Return nonzero if register in range [REGNO, ENDREGNO)
1683 appears either explicitly or implicitly in X
1684 other than being stored into.
1685
1686 References contained within the substructure at LOC do not count.
1687 LOC may be zero, meaning don't ignore anything. */
1688
1689 bool
1690 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1691 rtx *loc)
1692 {
1693 int i;
1694 unsigned int x_regno;
1695 RTX_CODE code;
1696 const char *fmt;
1697
1698 repeat:
1699 /* The contents of a REG_NONNEG note is always zero, so we must come here
1700 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1701 if (x == 0)
1702 return false;
1703
1704 code = GET_CODE (x);
1705
1706 switch (code)
1707 {
1708 case REG:
1709 x_regno = REGNO (x);
1710
1711 /* If we modifying the stack, frame, or argument pointer, it will
1712 clobber a virtual register. In fact, we could be more precise,
1713 but it isn't worth it. */
1714 if ((x_regno == STACK_POINTER_REGNUM
1715 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1716 && x_regno == ARG_POINTER_REGNUM)
1717 || x_regno == FRAME_POINTER_REGNUM)
1718 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1719 return true;
1720
1721 return endregno > x_regno && regno < END_REGNO (x);
1722
1723 case SUBREG:
1724 /* If this is a SUBREG of a hard reg, we can see exactly which
1725 registers are being modified. Otherwise, handle normally. */
1726 if (REG_P (SUBREG_REG (x))
1727 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1728 {
1729 unsigned int inner_regno = subreg_regno (x);
1730 unsigned int inner_endregno
1731 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1732 ? subreg_nregs (x) : 1);
1733
1734 return endregno > inner_regno && regno < inner_endregno;
1735 }
1736 break;
1737
1738 case CLOBBER:
1739 case SET:
1740 if (&SET_DEST (x) != loc
1741 /* Note setting a SUBREG counts as referring to the REG it is in for
1742 a pseudo but not for hard registers since we can
1743 treat each word individually. */
1744 && ((GET_CODE (SET_DEST (x)) == SUBREG
1745 && loc != &SUBREG_REG (SET_DEST (x))
1746 && REG_P (SUBREG_REG (SET_DEST (x)))
1747 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1748 && refers_to_regno_p (regno, endregno,
1749 SUBREG_REG (SET_DEST (x)), loc))
1750 || (!REG_P (SET_DEST (x))
1751 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1752 return true;
1753
1754 if (code == CLOBBER || loc == &SET_SRC (x))
1755 return false;
1756 x = SET_SRC (x);
1757 goto repeat;
1758
1759 default:
1760 break;
1761 }
1762
1763 /* X does not match, so try its subexpressions. */
1764
1765 fmt = GET_RTX_FORMAT (code);
1766 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1767 {
1768 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1769 {
1770 if (i == 0)
1771 {
1772 x = XEXP (x, 0);
1773 goto repeat;
1774 }
1775 else
1776 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1777 return true;
1778 }
1779 else if (fmt[i] == 'E')
1780 {
1781 int j;
1782 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1783 if (loc != &XVECEXP (x, i, j)
1784 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1785 return true;
1786 }
1787 }
1788 return false;
1789 }
1790
1791 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1792 we check if any register number in X conflicts with the relevant register
1793 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1794 contains a MEM (we don't bother checking for memory addresses that can't
1795 conflict because we expect this to be a rare case. */
1796
1797 int
1798 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1799 {
1800 unsigned int regno, endregno;
1801
1802 /* If either argument is a constant, then modifying X cannot
1803 affect IN. Here we look at IN, we can profitably combine
1804 CONSTANT_P (x) with the switch statement below. */
1805 if (CONSTANT_P (in))
1806 return 0;
1807
1808 recurse:
1809 switch (GET_CODE (x))
1810 {
1811 case CLOBBER:
1812 case STRICT_LOW_PART:
1813 case ZERO_EXTRACT:
1814 case SIGN_EXTRACT:
1815 /* Overly conservative. */
1816 x = XEXP (x, 0);
1817 goto recurse;
1818
1819 case SUBREG:
1820 regno = REGNO (SUBREG_REG (x));
1821 if (regno < FIRST_PSEUDO_REGISTER)
1822 regno = subreg_regno (x);
1823 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1824 ? subreg_nregs (x) : 1);
1825 goto do_reg;
1826
1827 case REG:
1828 regno = REGNO (x);
1829 endregno = END_REGNO (x);
1830 do_reg:
1831 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1832
1833 case MEM:
1834 {
1835 const char *fmt;
1836 int i;
1837
1838 if (MEM_P (in))
1839 return 1;
1840
1841 fmt = GET_RTX_FORMAT (GET_CODE (in));
1842 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1843 if (fmt[i] == 'e')
1844 {
1845 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1846 return 1;
1847 }
1848 else if (fmt[i] == 'E')
1849 {
1850 int j;
1851 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1852 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1853 return 1;
1854 }
1855
1856 return 0;
1857 }
1858
1859 case SCRATCH:
1860 case PC:
1861 case CC0:
1862 return reg_mentioned_p (x, in);
1863
1864 case PARALLEL:
1865 {
1866 int i;
1867
1868 /* If any register in here refers to it we return true. */
1869 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1870 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1871 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1872 return 1;
1873 return 0;
1874 }
1875
1876 default:
1877 gcc_assert (CONSTANT_P (x));
1878 return 0;
1879 }
1880 }
1881 \f
1882 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1883 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1884 ignored by note_stores, but passed to FUN.
1885
1886 FUN receives three arguments:
1887 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1888 2. the SET or CLOBBER rtx that does the store,
1889 3. the pointer DATA provided to note_stores.
1890
1891 If the item being stored in or clobbered is a SUBREG of a hard register,
1892 the SUBREG will be passed. */
1893
1894 void
1895 note_pattern_stores (const_rtx x,
1896 void (*fun) (rtx, const_rtx, void *), void *data)
1897 {
1898 int i;
1899
1900 if (GET_CODE (x) == COND_EXEC)
1901 x = COND_EXEC_CODE (x);
1902
1903 if (GET_CODE (x) == SET
1904 || GET_CODE (x) == CLOBBER
1905 || GET_CODE (x) == CLOBBER_HIGH)
1906 {
1907 rtx dest = SET_DEST (x);
1908
1909 while ((GET_CODE (dest) == SUBREG
1910 && (!REG_P (SUBREG_REG (dest))
1911 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1912 || GET_CODE (dest) == ZERO_EXTRACT
1913 || GET_CODE (dest) == STRICT_LOW_PART)
1914 dest = XEXP (dest, 0);
1915
1916 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1917 each of whose first operand is a register. */
1918 if (GET_CODE (dest) == PARALLEL)
1919 {
1920 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1921 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1922 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1923 }
1924 else
1925 (*fun) (dest, x, data);
1926 }
1927
1928 else if (GET_CODE (x) == PARALLEL)
1929 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1930 note_pattern_stores (XVECEXP (x, 0, i), fun, data);
1931 }
1932
1933 /* Same, but for an instruction. If the instruction is a call, include
1934 any CLOBBERs in its CALL_INSN_FUNCTION_USAGE. */
1935
1936 void
1937 note_stores (const rtx_insn *insn,
1938 void (*fun) (rtx, const_rtx, void *), void *data)
1939 {
1940 if (CALL_P (insn))
1941 for (rtx link = CALL_INSN_FUNCTION_USAGE (insn);
1942 link; link = XEXP (link, 1))
1943 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
1944 note_pattern_stores (XEXP (link, 0), fun, data);
1945 note_pattern_stores (PATTERN (insn), fun, data);
1946 }
1947 \f
1948 /* Like notes_stores, but call FUN for each expression that is being
1949 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1950 FUN for each expression, not any interior subexpressions. FUN receives a
1951 pointer to the expression and the DATA passed to this function.
1952
1953 Note that this is not quite the same test as that done in reg_referenced_p
1954 since that considers something as being referenced if it is being
1955 partially set, while we do not. */
1956
1957 void
1958 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1959 {
1960 rtx body = *pbody;
1961 int i;
1962
1963 switch (GET_CODE (body))
1964 {
1965 case COND_EXEC:
1966 (*fun) (&COND_EXEC_TEST (body), data);
1967 note_uses (&COND_EXEC_CODE (body), fun, data);
1968 return;
1969
1970 case PARALLEL:
1971 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1972 note_uses (&XVECEXP (body, 0, i), fun, data);
1973 return;
1974
1975 case SEQUENCE:
1976 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1977 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1978 return;
1979
1980 case USE:
1981 (*fun) (&XEXP (body, 0), data);
1982 return;
1983
1984 case ASM_OPERANDS:
1985 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1986 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1987 return;
1988
1989 case TRAP_IF:
1990 (*fun) (&TRAP_CONDITION (body), data);
1991 return;
1992
1993 case PREFETCH:
1994 (*fun) (&XEXP (body, 0), data);
1995 return;
1996
1997 case UNSPEC:
1998 case UNSPEC_VOLATILE:
1999 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
2000 (*fun) (&XVECEXP (body, 0, i), data);
2001 return;
2002
2003 case CLOBBER:
2004 if (MEM_P (XEXP (body, 0)))
2005 (*fun) (&XEXP (XEXP (body, 0), 0), data);
2006 return;
2007
2008 case SET:
2009 {
2010 rtx dest = SET_DEST (body);
2011
2012 /* For sets we replace everything in source plus registers in memory
2013 expression in store and operands of a ZERO_EXTRACT. */
2014 (*fun) (&SET_SRC (body), data);
2015
2016 if (GET_CODE (dest) == ZERO_EXTRACT)
2017 {
2018 (*fun) (&XEXP (dest, 1), data);
2019 (*fun) (&XEXP (dest, 2), data);
2020 }
2021
2022 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
2023 dest = XEXP (dest, 0);
2024
2025 if (MEM_P (dest))
2026 (*fun) (&XEXP (dest, 0), data);
2027 }
2028 return;
2029
2030 default:
2031 /* All the other possibilities never store. */
2032 (*fun) (pbody, data);
2033 return;
2034 }
2035 }
2036 \f
2037 /* Return nonzero if X's old contents don't survive after INSN.
2038 This will be true if X is (cc0) or if X is a register and
2039 X dies in INSN or because INSN entirely sets X.
2040
2041 "Entirely set" means set directly and not through a SUBREG, or
2042 ZERO_EXTRACT, so no trace of the old contents remains.
2043 Likewise, REG_INC does not count.
2044
2045 REG may be a hard or pseudo reg. Renumbering is not taken into account,
2046 but for this use that makes no difference, since regs don't overlap
2047 during their lifetimes. Therefore, this function may be used
2048 at any time after deaths have been computed.
2049
2050 If REG is a hard reg that occupies multiple machine registers, this
2051 function will only return 1 if each of those registers will be replaced
2052 by INSN. */
2053
2054 int
2055 dead_or_set_p (const rtx_insn *insn, const_rtx x)
2056 {
2057 unsigned int regno, end_regno;
2058 unsigned int i;
2059
2060 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
2061 if (GET_CODE (x) == CC0)
2062 return 1;
2063
2064 gcc_assert (REG_P (x));
2065
2066 regno = REGNO (x);
2067 end_regno = END_REGNO (x);
2068 for (i = regno; i < end_regno; i++)
2069 if (! dead_or_set_regno_p (insn, i))
2070 return 0;
2071
2072 return 1;
2073 }
2074
2075 /* Return TRUE iff DEST is a register or subreg of a register, is a
2076 complete rather than read-modify-write destination, and contains
2077 register TEST_REGNO. */
2078
2079 static bool
2080 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2081 {
2082 unsigned int regno, endregno;
2083
2084 if (GET_CODE (dest) == SUBREG && !read_modify_subreg_p (dest))
2085 dest = SUBREG_REG (dest);
2086
2087 if (!REG_P (dest))
2088 return false;
2089
2090 regno = REGNO (dest);
2091 endregno = END_REGNO (dest);
2092 return (test_regno >= regno && test_regno < endregno);
2093 }
2094
2095 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2096 any member matches the covers_regno_no_parallel_p criteria. */
2097
2098 static bool
2099 covers_regno_p (const_rtx dest, unsigned int test_regno)
2100 {
2101 if (GET_CODE (dest) == PARALLEL)
2102 {
2103 /* Some targets place small structures in registers for return
2104 values of functions, and those registers are wrapped in
2105 PARALLELs that we may see as the destination of a SET. */
2106 int i;
2107
2108 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2109 {
2110 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2111 if (inner != NULL_RTX
2112 && covers_regno_no_parallel_p (inner, test_regno))
2113 return true;
2114 }
2115
2116 return false;
2117 }
2118 else
2119 return covers_regno_no_parallel_p (dest, test_regno);
2120 }
2121
2122 /* Utility function for dead_or_set_p to check an individual register. */
2123
2124 int
2125 dead_or_set_regno_p (const rtx_insn *insn, unsigned int test_regno)
2126 {
2127 const_rtx pattern;
2128
2129 /* See if there is a death note for something that includes TEST_REGNO. */
2130 if (find_regno_note (insn, REG_DEAD, test_regno))
2131 return 1;
2132
2133 if (CALL_P (insn)
2134 && find_regno_fusage (insn, CLOBBER, test_regno))
2135 return 1;
2136
2137 pattern = PATTERN (insn);
2138
2139 /* If a COND_EXEC is not executed, the value survives. */
2140 if (GET_CODE (pattern) == COND_EXEC)
2141 return 0;
2142
2143 if (GET_CODE (pattern) == SET || GET_CODE (pattern) == CLOBBER)
2144 return covers_regno_p (SET_DEST (pattern), test_regno);
2145 else if (GET_CODE (pattern) == PARALLEL)
2146 {
2147 int i;
2148
2149 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2150 {
2151 rtx body = XVECEXP (pattern, 0, i);
2152
2153 if (GET_CODE (body) == COND_EXEC)
2154 body = COND_EXEC_CODE (body);
2155
2156 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2157 && covers_regno_p (SET_DEST (body), test_regno))
2158 return 1;
2159 }
2160 }
2161
2162 return 0;
2163 }
2164
2165 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2166 If DATUM is nonzero, look for one whose datum is DATUM. */
2167
2168 rtx
2169 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2170 {
2171 rtx link;
2172
2173 gcc_checking_assert (insn);
2174
2175 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2176 if (! INSN_P (insn))
2177 return 0;
2178 if (datum == 0)
2179 {
2180 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2181 if (REG_NOTE_KIND (link) == kind)
2182 return link;
2183 return 0;
2184 }
2185
2186 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2187 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2188 return link;
2189 return 0;
2190 }
2191
2192 /* Return the reg-note of kind KIND in insn INSN which applies to register
2193 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2194 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2195 it might be the case that the note overlaps REGNO. */
2196
2197 rtx
2198 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2199 {
2200 rtx link;
2201
2202 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2203 if (! INSN_P (insn))
2204 return 0;
2205
2206 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2207 if (REG_NOTE_KIND (link) == kind
2208 /* Verify that it is a register, so that scratch and MEM won't cause a
2209 problem here. */
2210 && REG_P (XEXP (link, 0))
2211 && REGNO (XEXP (link, 0)) <= regno
2212 && END_REGNO (XEXP (link, 0)) > regno)
2213 return link;
2214 return 0;
2215 }
2216
2217 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2218 has such a note. */
2219
2220 rtx
2221 find_reg_equal_equiv_note (const_rtx insn)
2222 {
2223 rtx link;
2224
2225 if (!INSN_P (insn))
2226 return 0;
2227
2228 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2229 if (REG_NOTE_KIND (link) == REG_EQUAL
2230 || REG_NOTE_KIND (link) == REG_EQUIV)
2231 {
2232 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2233 insns that have multiple sets. Checking single_set to
2234 make sure of this is not the proper check, as explained
2235 in the comment in set_unique_reg_note.
2236
2237 This should be changed into an assert. */
2238 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2239 return 0;
2240 return link;
2241 }
2242 return NULL;
2243 }
2244
2245 /* Check whether INSN is a single_set whose source is known to be
2246 equivalent to a constant. Return that constant if so, otherwise
2247 return null. */
2248
2249 rtx
2250 find_constant_src (const rtx_insn *insn)
2251 {
2252 rtx note, set, x;
2253
2254 set = single_set (insn);
2255 if (set)
2256 {
2257 x = avoid_constant_pool_reference (SET_SRC (set));
2258 if (CONSTANT_P (x))
2259 return x;
2260 }
2261
2262 note = find_reg_equal_equiv_note (insn);
2263 if (note && CONSTANT_P (XEXP (note, 0)))
2264 return XEXP (note, 0);
2265
2266 return NULL_RTX;
2267 }
2268
2269 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2270 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2271
2272 int
2273 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2274 {
2275 /* If it's not a CALL_INSN, it can't possibly have a
2276 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2277 if (!CALL_P (insn))
2278 return 0;
2279
2280 gcc_assert (datum);
2281
2282 if (!REG_P (datum))
2283 {
2284 rtx link;
2285
2286 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2287 link;
2288 link = XEXP (link, 1))
2289 if (GET_CODE (XEXP (link, 0)) == code
2290 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2291 return 1;
2292 }
2293 else
2294 {
2295 unsigned int regno = REGNO (datum);
2296
2297 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2298 to pseudo registers, so don't bother checking. */
2299
2300 if (regno < FIRST_PSEUDO_REGISTER)
2301 {
2302 unsigned int end_regno = END_REGNO (datum);
2303 unsigned int i;
2304
2305 for (i = regno; i < end_regno; i++)
2306 if (find_regno_fusage (insn, code, i))
2307 return 1;
2308 }
2309 }
2310
2311 return 0;
2312 }
2313
2314 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2315 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2316
2317 int
2318 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2319 {
2320 rtx link;
2321
2322 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2323 to pseudo registers, so don't bother checking. */
2324
2325 if (regno >= FIRST_PSEUDO_REGISTER
2326 || !CALL_P (insn) )
2327 return 0;
2328
2329 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2330 {
2331 rtx op, reg;
2332
2333 if (GET_CODE (op = XEXP (link, 0)) == code
2334 && REG_P (reg = XEXP (op, 0))
2335 && REGNO (reg) <= regno
2336 && END_REGNO (reg) > regno)
2337 return 1;
2338 }
2339
2340 return 0;
2341 }
2342
2343 \f
2344 /* Return true if KIND is an integer REG_NOTE. */
2345
2346 static bool
2347 int_reg_note_p (enum reg_note kind)
2348 {
2349 return kind == REG_BR_PROB;
2350 }
2351
2352 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2353 stored as the pointer to the next register note. */
2354
2355 rtx
2356 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2357 {
2358 rtx note;
2359
2360 gcc_checking_assert (!int_reg_note_p (kind));
2361 switch (kind)
2362 {
2363 case REG_CC_SETTER:
2364 case REG_CC_USER:
2365 case REG_LABEL_TARGET:
2366 case REG_LABEL_OPERAND:
2367 case REG_TM:
2368 /* These types of register notes use an INSN_LIST rather than an
2369 EXPR_LIST, so that copying is done right and dumps look
2370 better. */
2371 note = alloc_INSN_LIST (datum, list);
2372 PUT_REG_NOTE_KIND (note, kind);
2373 break;
2374
2375 default:
2376 note = alloc_EXPR_LIST (kind, datum, list);
2377 break;
2378 }
2379
2380 return note;
2381 }
2382
2383 /* Add register note with kind KIND and datum DATUM to INSN. */
2384
2385 void
2386 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2387 {
2388 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2389 }
2390
2391 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2392
2393 void
2394 add_int_reg_note (rtx_insn *insn, enum reg_note kind, int datum)
2395 {
2396 gcc_checking_assert (int_reg_note_p (kind));
2397 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2398 datum, REG_NOTES (insn));
2399 }
2400
2401 /* Add a REG_ARGS_SIZE note to INSN with value VALUE. */
2402
2403 void
2404 add_args_size_note (rtx_insn *insn, poly_int64 value)
2405 {
2406 gcc_checking_assert (!find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX));
2407 add_reg_note (insn, REG_ARGS_SIZE, gen_int_mode (value, Pmode));
2408 }
2409
2410 /* Add a register note like NOTE to INSN. */
2411
2412 void
2413 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2414 {
2415 if (GET_CODE (note) == INT_LIST)
2416 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2417 else
2418 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2419 }
2420
2421 /* Duplicate NOTE and return the copy. */
2422 rtx
2423 duplicate_reg_note (rtx note)
2424 {
2425 reg_note kind = REG_NOTE_KIND (note);
2426
2427 if (GET_CODE (note) == INT_LIST)
2428 return gen_rtx_INT_LIST ((machine_mode) kind, XINT (note, 0), NULL_RTX);
2429 else if (GET_CODE (note) == EXPR_LIST)
2430 return alloc_reg_note (kind, copy_insn_1 (XEXP (note, 0)), NULL_RTX);
2431 else
2432 return alloc_reg_note (kind, XEXP (note, 0), NULL_RTX);
2433 }
2434
2435 /* Remove register note NOTE from the REG_NOTES of INSN. */
2436
2437 void
2438 remove_note (rtx_insn *insn, const_rtx note)
2439 {
2440 rtx link;
2441
2442 if (note == NULL_RTX)
2443 return;
2444
2445 if (REG_NOTES (insn) == note)
2446 REG_NOTES (insn) = XEXP (note, 1);
2447 else
2448 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2449 if (XEXP (link, 1) == note)
2450 {
2451 XEXP (link, 1) = XEXP (note, 1);
2452 break;
2453 }
2454
2455 switch (REG_NOTE_KIND (note))
2456 {
2457 case REG_EQUAL:
2458 case REG_EQUIV:
2459 df_notes_rescan (insn);
2460 break;
2461 default:
2462 break;
2463 }
2464 }
2465
2466 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes.
2467 Return true if any note has been removed. */
2468
2469 bool
2470 remove_reg_equal_equiv_notes (rtx_insn *insn)
2471 {
2472 rtx *loc;
2473 bool ret = false;
2474
2475 loc = &REG_NOTES (insn);
2476 while (*loc)
2477 {
2478 enum reg_note kind = REG_NOTE_KIND (*loc);
2479 if (kind == REG_EQUAL || kind == REG_EQUIV)
2480 {
2481 *loc = XEXP (*loc, 1);
2482 ret = true;
2483 }
2484 else
2485 loc = &XEXP (*loc, 1);
2486 }
2487 return ret;
2488 }
2489
2490 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2491
2492 void
2493 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2494 {
2495 df_ref eq_use;
2496
2497 if (!df)
2498 return;
2499
2500 /* This loop is a little tricky. We cannot just go down the chain because
2501 it is being modified by some actions in the loop. So we just iterate
2502 over the head. We plan to drain the list anyway. */
2503 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2504 {
2505 rtx_insn *insn = DF_REF_INSN (eq_use);
2506 rtx note = find_reg_equal_equiv_note (insn);
2507
2508 /* This assert is generally triggered when someone deletes a REG_EQUAL
2509 or REG_EQUIV note by hacking the list manually rather than calling
2510 remove_note. */
2511 gcc_assert (note);
2512
2513 remove_note (insn, note);
2514 }
2515 }
2516
2517 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2518 return 1 if it is found. A simple equality test is used to determine if
2519 NODE matches. */
2520
2521 bool
2522 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2523 {
2524 const_rtx x;
2525
2526 for (x = listp; x; x = XEXP (x, 1))
2527 if (node == XEXP (x, 0))
2528 return true;
2529
2530 return false;
2531 }
2532
2533 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2534 remove that entry from the list if it is found.
2535
2536 A simple equality test is used to determine if NODE matches. */
2537
2538 void
2539 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2540 {
2541 rtx_expr_list *temp = *listp;
2542 rtx_expr_list *prev = NULL;
2543
2544 while (temp)
2545 {
2546 if (node == temp->element ())
2547 {
2548 /* Splice the node out of the list. */
2549 if (prev)
2550 XEXP (prev, 1) = temp->next ();
2551 else
2552 *listp = temp->next ();
2553
2554 return;
2555 }
2556
2557 prev = temp;
2558 temp = temp->next ();
2559 }
2560 }
2561
2562 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2563 remove that entry from the list if it is found.
2564
2565 A simple equality test is used to determine if NODE matches. */
2566
2567 void
2568 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2569 {
2570 rtx_insn_list *temp = *listp;
2571 rtx_insn_list *prev = NULL;
2572
2573 while (temp)
2574 {
2575 if (node == temp->insn ())
2576 {
2577 /* Splice the node out of the list. */
2578 if (prev)
2579 XEXP (prev, 1) = temp->next ();
2580 else
2581 *listp = temp->next ();
2582
2583 return;
2584 }
2585
2586 prev = temp;
2587 temp = temp->next ();
2588 }
2589 }
2590 \f
2591 /* Nonzero if X contains any volatile instructions. These are instructions
2592 which may cause unpredictable machine state instructions, and thus no
2593 instructions or register uses should be moved or combined across them.
2594 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2595
2596 int
2597 volatile_insn_p (const_rtx x)
2598 {
2599 const RTX_CODE code = GET_CODE (x);
2600 switch (code)
2601 {
2602 case LABEL_REF:
2603 case SYMBOL_REF:
2604 case CONST:
2605 CASE_CONST_ANY:
2606 case CC0:
2607 case PC:
2608 case REG:
2609 case SCRATCH:
2610 case CLOBBER:
2611 case ADDR_VEC:
2612 case ADDR_DIFF_VEC:
2613 case CALL:
2614 case MEM:
2615 return 0;
2616
2617 case UNSPEC_VOLATILE:
2618 return 1;
2619
2620 case ASM_INPUT:
2621 case ASM_OPERANDS:
2622 if (MEM_VOLATILE_P (x))
2623 return 1;
2624
2625 default:
2626 break;
2627 }
2628
2629 /* Recursively scan the operands of this expression. */
2630
2631 {
2632 const char *const fmt = GET_RTX_FORMAT (code);
2633 int i;
2634
2635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2636 {
2637 if (fmt[i] == 'e')
2638 {
2639 if (volatile_insn_p (XEXP (x, i)))
2640 return 1;
2641 }
2642 else if (fmt[i] == 'E')
2643 {
2644 int j;
2645 for (j = 0; j < XVECLEN (x, i); j++)
2646 if (volatile_insn_p (XVECEXP (x, i, j)))
2647 return 1;
2648 }
2649 }
2650 }
2651 return 0;
2652 }
2653
2654 /* Nonzero if X contains any volatile memory references
2655 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2656
2657 int
2658 volatile_refs_p (const_rtx x)
2659 {
2660 const RTX_CODE code = GET_CODE (x);
2661 switch (code)
2662 {
2663 case LABEL_REF:
2664 case SYMBOL_REF:
2665 case CONST:
2666 CASE_CONST_ANY:
2667 case CC0:
2668 case PC:
2669 case REG:
2670 case SCRATCH:
2671 case CLOBBER:
2672 case ADDR_VEC:
2673 case ADDR_DIFF_VEC:
2674 return 0;
2675
2676 case UNSPEC_VOLATILE:
2677 return 1;
2678
2679 case MEM:
2680 case ASM_INPUT:
2681 case ASM_OPERANDS:
2682 if (MEM_VOLATILE_P (x))
2683 return 1;
2684
2685 default:
2686 break;
2687 }
2688
2689 /* Recursively scan the operands of this expression. */
2690
2691 {
2692 const char *const fmt = GET_RTX_FORMAT (code);
2693 int i;
2694
2695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2696 {
2697 if (fmt[i] == 'e')
2698 {
2699 if (volatile_refs_p (XEXP (x, i)))
2700 return 1;
2701 }
2702 else if (fmt[i] == 'E')
2703 {
2704 int j;
2705 for (j = 0; j < XVECLEN (x, i); j++)
2706 if (volatile_refs_p (XVECEXP (x, i, j)))
2707 return 1;
2708 }
2709 }
2710 }
2711 return 0;
2712 }
2713
2714 /* Similar to above, except that it also rejects register pre- and post-
2715 incrementing. */
2716
2717 int
2718 side_effects_p (const_rtx x)
2719 {
2720 const RTX_CODE code = GET_CODE (x);
2721 switch (code)
2722 {
2723 case LABEL_REF:
2724 case SYMBOL_REF:
2725 case CONST:
2726 CASE_CONST_ANY:
2727 case CC0:
2728 case PC:
2729 case REG:
2730 case SCRATCH:
2731 case ADDR_VEC:
2732 case ADDR_DIFF_VEC:
2733 case VAR_LOCATION:
2734 return 0;
2735
2736 case CLOBBER:
2737 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2738 when some combination can't be done. If we see one, don't think
2739 that we can simplify the expression. */
2740 return (GET_MODE (x) != VOIDmode);
2741
2742 case PRE_INC:
2743 case PRE_DEC:
2744 case POST_INC:
2745 case POST_DEC:
2746 case PRE_MODIFY:
2747 case POST_MODIFY:
2748 case CALL:
2749 case UNSPEC_VOLATILE:
2750 return 1;
2751
2752 case MEM:
2753 case ASM_INPUT:
2754 case ASM_OPERANDS:
2755 if (MEM_VOLATILE_P (x))
2756 return 1;
2757
2758 default:
2759 break;
2760 }
2761
2762 /* Recursively scan the operands of this expression. */
2763
2764 {
2765 const char *fmt = GET_RTX_FORMAT (code);
2766 int i;
2767
2768 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2769 {
2770 if (fmt[i] == 'e')
2771 {
2772 if (side_effects_p (XEXP (x, i)))
2773 return 1;
2774 }
2775 else if (fmt[i] == 'E')
2776 {
2777 int j;
2778 for (j = 0; j < XVECLEN (x, i); j++)
2779 if (side_effects_p (XVECEXP (x, i, j)))
2780 return 1;
2781 }
2782 }
2783 }
2784 return 0;
2785 }
2786 \f
2787 /* Return nonzero if evaluating rtx X might cause a trap.
2788 FLAGS controls how to consider MEMs. A nonzero means the context
2789 of the access may have changed from the original, such that the
2790 address may have become invalid. */
2791
2792 int
2793 may_trap_p_1 (const_rtx x, unsigned flags)
2794 {
2795 int i;
2796 enum rtx_code code;
2797 const char *fmt;
2798
2799 /* We make no distinction currently, but this function is part of
2800 the internal target-hooks ABI so we keep the parameter as
2801 "unsigned flags". */
2802 bool code_changed = flags != 0;
2803
2804 if (x == 0)
2805 return 0;
2806 code = GET_CODE (x);
2807 switch (code)
2808 {
2809 /* Handle these cases quickly. */
2810 CASE_CONST_ANY:
2811 case SYMBOL_REF:
2812 case LABEL_REF:
2813 case CONST:
2814 case PC:
2815 case CC0:
2816 case REG:
2817 case SCRATCH:
2818 return 0;
2819
2820 case UNSPEC:
2821 return targetm.unspec_may_trap_p (x, flags);
2822
2823 case UNSPEC_VOLATILE:
2824 case ASM_INPUT:
2825 case TRAP_IF:
2826 return 1;
2827
2828 case ASM_OPERANDS:
2829 return MEM_VOLATILE_P (x);
2830
2831 /* Memory ref can trap unless it's a static var or a stack slot. */
2832 case MEM:
2833 /* Recognize specific pattern of stack checking probes. */
2834 if (flag_stack_check
2835 && MEM_VOLATILE_P (x)
2836 && XEXP (x, 0) == stack_pointer_rtx)
2837 return 1;
2838 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2839 reference; moving it out of context such as when moving code
2840 when optimizing, might cause its address to become invalid. */
2841 code_changed
2842 || !MEM_NOTRAP_P (x))
2843 {
2844 poly_int64 size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : -1;
2845 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2846 GET_MODE (x), code_changed);
2847 }
2848
2849 return 0;
2850
2851 /* Division by a non-constant might trap. */
2852 case DIV:
2853 case MOD:
2854 case UDIV:
2855 case UMOD:
2856 if (HONOR_SNANS (x))
2857 return 1;
2858 if (FLOAT_MODE_P (GET_MODE (x)))
2859 return flag_trapping_math;
2860 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2861 return 1;
2862 if (GET_CODE (XEXP (x, 1)) == CONST_VECTOR)
2863 {
2864 /* For CONST_VECTOR, return 1 if any element is or might be zero. */
2865 unsigned int n_elts;
2866 rtx op = XEXP (x, 1);
2867 if (!GET_MODE_NUNITS (GET_MODE (op)).is_constant (&n_elts))
2868 {
2869 if (!CONST_VECTOR_DUPLICATE_P (op))
2870 return 1;
2871 for (unsigned i = 0; i < (unsigned int) XVECLEN (op, 0); i++)
2872 if (CONST_VECTOR_ENCODED_ELT (op, i) == const0_rtx)
2873 return 1;
2874 }
2875 else
2876 for (unsigned i = 0; i < n_elts; i++)
2877 if (CONST_VECTOR_ELT (op, i) == const0_rtx)
2878 return 1;
2879 }
2880 break;
2881
2882 case EXPR_LIST:
2883 /* An EXPR_LIST is used to represent a function call. This
2884 certainly may trap. */
2885 return 1;
2886
2887 case GE:
2888 case GT:
2889 case LE:
2890 case LT:
2891 case LTGT:
2892 case COMPARE:
2893 /* Some floating point comparisons may trap. */
2894 if (!flag_trapping_math)
2895 break;
2896 /* ??? There is no machine independent way to check for tests that trap
2897 when COMPARE is used, though many targets do make this distinction.
2898 For instance, sparc uses CCFPE for compares which generate exceptions
2899 and CCFP for compares which do not generate exceptions. */
2900 if (HONOR_NANS (x))
2901 return 1;
2902 /* But often the compare has some CC mode, so check operand
2903 modes as well. */
2904 if (HONOR_NANS (XEXP (x, 0))
2905 || HONOR_NANS (XEXP (x, 1)))
2906 return 1;
2907 break;
2908
2909 case EQ:
2910 case NE:
2911 if (HONOR_SNANS (x))
2912 return 1;
2913 /* Often comparison is CC mode, so check operand modes. */
2914 if (HONOR_SNANS (XEXP (x, 0))
2915 || HONOR_SNANS (XEXP (x, 1)))
2916 return 1;
2917 break;
2918
2919 case FIX:
2920 /* Conversion of floating point might trap. */
2921 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2922 return 1;
2923 break;
2924
2925 case NEG:
2926 case ABS:
2927 case SUBREG:
2928 case VEC_MERGE:
2929 case VEC_SELECT:
2930 case VEC_CONCAT:
2931 case VEC_DUPLICATE:
2932 /* These operations don't trap even with floating point. */
2933 break;
2934
2935 default:
2936 /* Any floating arithmetic may trap. */
2937 if (FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2938 return 1;
2939 }
2940
2941 fmt = GET_RTX_FORMAT (code);
2942 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2943 {
2944 if (fmt[i] == 'e')
2945 {
2946 if (may_trap_p_1 (XEXP (x, i), flags))
2947 return 1;
2948 }
2949 else if (fmt[i] == 'E')
2950 {
2951 int j;
2952 for (j = 0; j < XVECLEN (x, i); j++)
2953 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2954 return 1;
2955 }
2956 }
2957 return 0;
2958 }
2959
2960 /* Return nonzero if evaluating rtx X might cause a trap. */
2961
2962 int
2963 may_trap_p (const_rtx x)
2964 {
2965 return may_trap_p_1 (x, 0);
2966 }
2967
2968 /* Same as above, but additionally return nonzero if evaluating rtx X might
2969 cause a fault. We define a fault for the purpose of this function as a
2970 erroneous execution condition that cannot be encountered during the normal
2971 execution of a valid program; the typical example is an unaligned memory
2972 access on a strict alignment machine. The compiler guarantees that it
2973 doesn't generate code that will fault from a valid program, but this
2974 guarantee doesn't mean anything for individual instructions. Consider
2975 the following example:
2976
2977 struct S { int d; union { char *cp; int *ip; }; };
2978
2979 int foo(struct S *s)
2980 {
2981 if (s->d == 1)
2982 return *s->ip;
2983 else
2984 return *s->cp;
2985 }
2986
2987 on a strict alignment machine. In a valid program, foo will never be
2988 invoked on a structure for which d is equal to 1 and the underlying
2989 unique field of the union not aligned on a 4-byte boundary, but the
2990 expression *s->ip might cause a fault if considered individually.
2991
2992 At the RTL level, potentially problematic expressions will almost always
2993 verify may_trap_p; for example, the above dereference can be emitted as
2994 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2995 However, suppose that foo is inlined in a caller that causes s->cp to
2996 point to a local character variable and guarantees that s->d is not set
2997 to 1; foo may have been effectively translated into pseudo-RTL as:
2998
2999 if ((reg:SI) == 1)
3000 (set (reg:SI) (mem:SI (%fp - 7)))
3001 else
3002 (set (reg:QI) (mem:QI (%fp - 7)))
3003
3004 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
3005 memory reference to a stack slot, but it will certainly cause a fault
3006 on a strict alignment machine. */
3007
3008 int
3009 may_trap_or_fault_p (const_rtx x)
3010 {
3011 return may_trap_p_1 (x, 1);
3012 }
3013 \f
3014 /* Return nonzero if X contains a comparison that is not either EQ or NE,
3015 i.e., an inequality. */
3016
3017 int
3018 inequality_comparisons_p (const_rtx x)
3019 {
3020 const char *fmt;
3021 int len, i;
3022 const enum rtx_code code = GET_CODE (x);
3023
3024 switch (code)
3025 {
3026 case REG:
3027 case SCRATCH:
3028 case PC:
3029 case CC0:
3030 CASE_CONST_ANY:
3031 case CONST:
3032 case LABEL_REF:
3033 case SYMBOL_REF:
3034 return 0;
3035
3036 case LT:
3037 case LTU:
3038 case GT:
3039 case GTU:
3040 case LE:
3041 case LEU:
3042 case GE:
3043 case GEU:
3044 return 1;
3045
3046 default:
3047 break;
3048 }
3049
3050 len = GET_RTX_LENGTH (code);
3051 fmt = GET_RTX_FORMAT (code);
3052
3053 for (i = 0; i < len; i++)
3054 {
3055 if (fmt[i] == 'e')
3056 {
3057 if (inequality_comparisons_p (XEXP (x, i)))
3058 return 1;
3059 }
3060 else if (fmt[i] == 'E')
3061 {
3062 int j;
3063 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3064 if (inequality_comparisons_p (XVECEXP (x, i, j)))
3065 return 1;
3066 }
3067 }
3068
3069 return 0;
3070 }
3071 \f
3072 /* Replace any occurrence of FROM in X with TO. The function does
3073 not enter into CONST_DOUBLE for the replace.
3074
3075 Note that copying is not done so X must not be shared unless all copies
3076 are to be modified.
3077
3078 ALL_REGS is true if we want to replace all REGs equal to FROM, not just
3079 those pointer-equal ones. */
3080
3081 rtx
3082 replace_rtx (rtx x, rtx from, rtx to, bool all_regs)
3083 {
3084 int i, j;
3085 const char *fmt;
3086
3087 if (x == from)
3088 return to;
3089
3090 /* Allow this function to make replacements in EXPR_LISTs. */
3091 if (x == 0)
3092 return 0;
3093
3094 if (all_regs
3095 && REG_P (x)
3096 && REG_P (from)
3097 && REGNO (x) == REGNO (from))
3098 {
3099 gcc_assert (GET_MODE (x) == GET_MODE (from));
3100 return to;
3101 }
3102 else if (GET_CODE (x) == SUBREG)
3103 {
3104 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to, all_regs);
3105
3106 if (CONST_INT_P (new_rtx))
3107 {
3108 x = simplify_subreg (GET_MODE (x), new_rtx,
3109 GET_MODE (SUBREG_REG (x)),
3110 SUBREG_BYTE (x));
3111 gcc_assert (x);
3112 }
3113 else
3114 SUBREG_REG (x) = new_rtx;
3115
3116 return x;
3117 }
3118 else if (GET_CODE (x) == ZERO_EXTEND)
3119 {
3120 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to, all_regs);
3121
3122 if (CONST_INT_P (new_rtx))
3123 {
3124 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
3125 new_rtx, GET_MODE (XEXP (x, 0)));
3126 gcc_assert (x);
3127 }
3128 else
3129 XEXP (x, 0) = new_rtx;
3130
3131 return x;
3132 }
3133
3134 fmt = GET_RTX_FORMAT (GET_CODE (x));
3135 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3136 {
3137 if (fmt[i] == 'e')
3138 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to, all_regs);
3139 else if (fmt[i] == 'E')
3140 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3141 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j),
3142 from, to, all_regs);
3143 }
3144
3145 return x;
3146 }
3147 \f
3148 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3149 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3150
3151 void
3152 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3153 {
3154 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3155 rtx x = *loc;
3156 if (JUMP_TABLE_DATA_P (x))
3157 {
3158 x = PATTERN (x);
3159 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3160 int len = GET_NUM_ELEM (vec);
3161 for (int i = 0; i < len; ++i)
3162 {
3163 rtx ref = RTVEC_ELT (vec, i);
3164 if (XEXP (ref, 0) == old_label)
3165 {
3166 XEXP (ref, 0) = new_label;
3167 if (update_label_nuses)
3168 {
3169 ++LABEL_NUSES (new_label);
3170 --LABEL_NUSES (old_label);
3171 }
3172 }
3173 }
3174 return;
3175 }
3176
3177 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3178 field. This is not handled by the iterator because it doesn't
3179 handle unprinted ('0') fields. */
3180 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3181 JUMP_LABEL (x) = new_label;
3182
3183 subrtx_ptr_iterator::array_type array;
3184 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3185 {
3186 rtx *loc = *iter;
3187 if (rtx x = *loc)
3188 {
3189 if (GET_CODE (x) == SYMBOL_REF
3190 && CONSTANT_POOL_ADDRESS_P (x))
3191 {
3192 rtx c = get_pool_constant (x);
3193 if (rtx_referenced_p (old_label, c))
3194 {
3195 /* Create a copy of constant C; replace the label inside
3196 but do not update LABEL_NUSES because uses in constant pool
3197 are not counted. */
3198 rtx new_c = copy_rtx (c);
3199 replace_label (&new_c, old_label, new_label, false);
3200
3201 /* Add the new constant NEW_C to constant pool and replace
3202 the old reference to constant by new reference. */
3203 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3204 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3205 }
3206 }
3207
3208 if ((GET_CODE (x) == LABEL_REF
3209 || GET_CODE (x) == INSN_LIST)
3210 && XEXP (x, 0) == old_label)
3211 {
3212 XEXP (x, 0) = new_label;
3213 if (update_label_nuses)
3214 {
3215 ++LABEL_NUSES (new_label);
3216 --LABEL_NUSES (old_label);
3217 }
3218 }
3219 }
3220 }
3221 }
3222
3223 void
3224 replace_label_in_insn (rtx_insn *insn, rtx_insn *old_label,
3225 rtx_insn *new_label, bool update_label_nuses)
3226 {
3227 rtx insn_as_rtx = insn;
3228 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3229 gcc_checking_assert (insn_as_rtx == insn);
3230 }
3231
3232 /* Return true if X is referenced in BODY. */
3233
3234 bool
3235 rtx_referenced_p (const_rtx x, const_rtx body)
3236 {
3237 subrtx_iterator::array_type array;
3238 FOR_EACH_SUBRTX (iter, array, body, ALL)
3239 if (const_rtx y = *iter)
3240 {
3241 /* Check if a label_ref Y refers to label X. */
3242 if (GET_CODE (y) == LABEL_REF
3243 && LABEL_P (x)
3244 && label_ref_label (y) == x)
3245 return true;
3246
3247 if (rtx_equal_p (x, y))
3248 return true;
3249
3250 /* If Y is a reference to pool constant traverse the constant. */
3251 if (GET_CODE (y) == SYMBOL_REF
3252 && CONSTANT_POOL_ADDRESS_P (y))
3253 iter.substitute (get_pool_constant (y));
3254 }
3255 return false;
3256 }
3257
3258 /* If INSN is a tablejump return true and store the label (before jump table) to
3259 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3260
3261 bool
3262 tablejump_p (const rtx_insn *insn, rtx_insn **labelp,
3263 rtx_jump_table_data **tablep)
3264 {
3265 if (!JUMP_P (insn))
3266 return false;
3267
3268 rtx target = JUMP_LABEL (insn);
3269 if (target == NULL_RTX || ANY_RETURN_P (target))
3270 return false;
3271
3272 rtx_insn *label = as_a<rtx_insn *> (target);
3273 rtx_insn *table = next_insn (label);
3274 if (table == NULL_RTX || !JUMP_TABLE_DATA_P (table))
3275 return false;
3276
3277 if (labelp)
3278 *labelp = label;
3279 if (tablep)
3280 *tablep = as_a <rtx_jump_table_data *> (table);
3281 return true;
3282 }
3283
3284 /* For INSN known to satisfy tablejump_p, determine if it actually is a
3285 CASESI. Return the insn pattern if so, NULL_RTX otherwise. */
3286
3287 rtx
3288 tablejump_casesi_pattern (const rtx_insn *insn)
3289 {
3290 rtx tmp;
3291
3292 if ((tmp = single_set (insn)) != NULL
3293 && SET_DEST (tmp) == pc_rtx
3294 && GET_CODE (SET_SRC (tmp)) == IF_THEN_ELSE
3295 && GET_CODE (XEXP (SET_SRC (tmp), 2)) == LABEL_REF)
3296 return tmp;
3297
3298 return NULL_RTX;
3299 }
3300
3301 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3302 constant that is not in the constant pool and not in the condition
3303 of an IF_THEN_ELSE. */
3304
3305 static int
3306 computed_jump_p_1 (const_rtx x)
3307 {
3308 const enum rtx_code code = GET_CODE (x);
3309 int i, j;
3310 const char *fmt;
3311
3312 switch (code)
3313 {
3314 case LABEL_REF:
3315 case PC:
3316 return 0;
3317
3318 case CONST:
3319 CASE_CONST_ANY:
3320 case SYMBOL_REF:
3321 case REG:
3322 return 1;
3323
3324 case MEM:
3325 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3326 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3327
3328 case IF_THEN_ELSE:
3329 return (computed_jump_p_1 (XEXP (x, 1))
3330 || computed_jump_p_1 (XEXP (x, 2)));
3331
3332 default:
3333 break;
3334 }
3335
3336 fmt = GET_RTX_FORMAT (code);
3337 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3338 {
3339 if (fmt[i] == 'e'
3340 && computed_jump_p_1 (XEXP (x, i)))
3341 return 1;
3342
3343 else if (fmt[i] == 'E')
3344 for (j = 0; j < XVECLEN (x, i); j++)
3345 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3346 return 1;
3347 }
3348
3349 return 0;
3350 }
3351
3352 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3353
3354 Tablejumps and casesi insns are not considered indirect jumps;
3355 we can recognize them by a (use (label_ref)). */
3356
3357 int
3358 computed_jump_p (const rtx_insn *insn)
3359 {
3360 int i;
3361 if (JUMP_P (insn))
3362 {
3363 rtx pat = PATTERN (insn);
3364
3365 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3366 if (JUMP_LABEL (insn) != NULL)
3367 return 0;
3368
3369 if (GET_CODE (pat) == PARALLEL)
3370 {
3371 int len = XVECLEN (pat, 0);
3372 int has_use_labelref = 0;
3373
3374 for (i = len - 1; i >= 0; i--)
3375 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3376 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3377 == LABEL_REF))
3378 {
3379 has_use_labelref = 1;
3380 break;
3381 }
3382
3383 if (! has_use_labelref)
3384 for (i = len - 1; i >= 0; i--)
3385 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3386 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3387 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3388 return 1;
3389 }
3390 else if (GET_CODE (pat) == SET
3391 && SET_DEST (pat) == pc_rtx
3392 && computed_jump_p_1 (SET_SRC (pat)))
3393 return 1;
3394 }
3395 return 0;
3396 }
3397
3398 \f
3399
3400 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3401 the equivalent add insn and pass the result to FN, using DATA as the
3402 final argument. */
3403
3404 static int
3405 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3406 {
3407 rtx x = XEXP (mem, 0);
3408 switch (GET_CODE (x))
3409 {
3410 case PRE_INC:
3411 case POST_INC:
3412 {
3413 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3414 rtx r1 = XEXP (x, 0);
3415 rtx c = gen_int_mode (size, GET_MODE (r1));
3416 return fn (mem, x, r1, r1, c, data);
3417 }
3418
3419 case PRE_DEC:
3420 case POST_DEC:
3421 {
3422 poly_int64 size = GET_MODE_SIZE (GET_MODE (mem));
3423 rtx r1 = XEXP (x, 0);
3424 rtx c = gen_int_mode (-size, GET_MODE (r1));
3425 return fn (mem, x, r1, r1, c, data);
3426 }
3427
3428 case PRE_MODIFY:
3429 case POST_MODIFY:
3430 {
3431 rtx r1 = XEXP (x, 0);
3432 rtx add = XEXP (x, 1);
3433 return fn (mem, x, r1, add, NULL, data);
3434 }
3435
3436 default:
3437 gcc_unreachable ();
3438 }
3439 }
3440
3441 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3442 For each such autoinc operation found, call FN, passing it
3443 the innermost enclosing MEM, the operation itself, the RTX modified
3444 by the operation, two RTXs (the second may be NULL) that, once
3445 added, represent the value to be held by the modified RTX
3446 afterwards, and DATA. FN is to return 0 to continue the
3447 traversal or any other value to have it returned to the caller of
3448 for_each_inc_dec. */
3449
3450 int
3451 for_each_inc_dec (rtx x,
3452 for_each_inc_dec_fn fn,
3453 void *data)
3454 {
3455 subrtx_var_iterator::array_type array;
3456 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3457 {
3458 rtx mem = *iter;
3459 if (mem
3460 && MEM_P (mem)
3461 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3462 {
3463 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3464 if (res != 0)
3465 return res;
3466 iter.skip_subrtxes ();
3467 }
3468 }
3469 return 0;
3470 }
3471
3472 \f
3473 /* Searches X for any reference to REGNO, returning the rtx of the
3474 reference found if any. Otherwise, returns NULL_RTX. */
3475
3476 rtx
3477 regno_use_in (unsigned int regno, rtx x)
3478 {
3479 const char *fmt;
3480 int i, j;
3481 rtx tem;
3482
3483 if (REG_P (x) && REGNO (x) == regno)
3484 return x;
3485
3486 fmt = GET_RTX_FORMAT (GET_CODE (x));
3487 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3488 {
3489 if (fmt[i] == 'e')
3490 {
3491 if ((tem = regno_use_in (regno, XEXP (x, i))))
3492 return tem;
3493 }
3494 else if (fmt[i] == 'E')
3495 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3496 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3497 return tem;
3498 }
3499
3500 return NULL_RTX;
3501 }
3502
3503 /* Return a value indicating whether OP, an operand of a commutative
3504 operation, is preferred as the first or second operand. The more
3505 positive the value, the stronger the preference for being the first
3506 operand. */
3507
3508 int
3509 commutative_operand_precedence (rtx op)
3510 {
3511 enum rtx_code code = GET_CODE (op);
3512
3513 /* Constants always become the second operand. Prefer "nice" constants. */
3514 if (code == CONST_INT)
3515 return -10;
3516 if (code == CONST_WIDE_INT)
3517 return -9;
3518 if (code == CONST_POLY_INT)
3519 return -8;
3520 if (code == CONST_DOUBLE)
3521 return -8;
3522 if (code == CONST_FIXED)
3523 return -8;
3524 op = avoid_constant_pool_reference (op);
3525 code = GET_CODE (op);
3526
3527 switch (GET_RTX_CLASS (code))
3528 {
3529 case RTX_CONST_OBJ:
3530 if (code == CONST_INT)
3531 return -7;
3532 if (code == CONST_WIDE_INT)
3533 return -6;
3534 if (code == CONST_POLY_INT)
3535 return -5;
3536 if (code == CONST_DOUBLE)
3537 return -5;
3538 if (code == CONST_FIXED)
3539 return -5;
3540 return -4;
3541
3542 case RTX_EXTRA:
3543 /* SUBREGs of objects should come second. */
3544 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3545 return -3;
3546 return 0;
3547
3548 case RTX_OBJ:
3549 /* Complex expressions should be the first, so decrease priority
3550 of objects. Prefer pointer objects over non pointer objects. */
3551 if ((REG_P (op) && REG_POINTER (op))
3552 || (MEM_P (op) && MEM_POINTER (op)))
3553 return -1;
3554 return -2;
3555
3556 case RTX_COMM_ARITH:
3557 /* Prefer operands that are themselves commutative to be first.
3558 This helps to make things linear. In particular,
3559 (and (and (reg) (reg)) (not (reg))) is canonical. */
3560 return 4;
3561
3562 case RTX_BIN_ARITH:
3563 /* If only one operand is a binary expression, it will be the first
3564 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3565 is canonical, although it will usually be further simplified. */
3566 return 2;
3567
3568 case RTX_UNARY:
3569 /* Then prefer NEG and NOT. */
3570 if (code == NEG || code == NOT)
3571 return 1;
3572 /* FALLTHRU */
3573
3574 default:
3575 return 0;
3576 }
3577 }
3578
3579 /* Return 1 iff it is necessary to swap operands of commutative operation
3580 in order to canonicalize expression. */
3581
3582 bool
3583 swap_commutative_operands_p (rtx x, rtx y)
3584 {
3585 return (commutative_operand_precedence (x)
3586 < commutative_operand_precedence (y));
3587 }
3588
3589 /* Return 1 if X is an autoincrement side effect and the register is
3590 not the stack pointer. */
3591 int
3592 auto_inc_p (const_rtx x)
3593 {
3594 switch (GET_CODE (x))
3595 {
3596 case PRE_INC:
3597 case POST_INC:
3598 case PRE_DEC:
3599 case POST_DEC:
3600 case PRE_MODIFY:
3601 case POST_MODIFY:
3602 /* There are no REG_INC notes for SP. */
3603 if (XEXP (x, 0) != stack_pointer_rtx)
3604 return 1;
3605 default:
3606 break;
3607 }
3608 return 0;
3609 }
3610
3611 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3612 int
3613 loc_mentioned_in_p (rtx *loc, const_rtx in)
3614 {
3615 enum rtx_code code;
3616 const char *fmt;
3617 int i, j;
3618
3619 if (!in)
3620 return 0;
3621
3622 code = GET_CODE (in);
3623 fmt = GET_RTX_FORMAT (code);
3624 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3625 {
3626 if (fmt[i] == 'e')
3627 {
3628 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3629 return 1;
3630 }
3631 else if (fmt[i] == 'E')
3632 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3633 if (loc == &XVECEXP (in, i, j)
3634 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3635 return 1;
3636 }
3637 return 0;
3638 }
3639
3640 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3641 and SUBREG_BYTE, return the bit offset where the subreg begins
3642 (counting from the least significant bit of the operand). */
3643
3644 poly_uint64
3645 subreg_lsb_1 (machine_mode outer_mode,
3646 machine_mode inner_mode,
3647 poly_uint64 subreg_byte)
3648 {
3649 poly_uint64 subreg_end, trailing_bytes, byte_pos;
3650
3651 /* A paradoxical subreg begins at bit position 0. */
3652 if (paradoxical_subreg_p (outer_mode, inner_mode))
3653 return 0;
3654
3655 subreg_end = subreg_byte + GET_MODE_SIZE (outer_mode);
3656 trailing_bytes = GET_MODE_SIZE (inner_mode) - subreg_end;
3657 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3658 byte_pos = trailing_bytes;
3659 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3660 byte_pos = subreg_byte;
3661 else
3662 {
3663 /* When bytes and words have opposite endianness, we must be able
3664 to split offsets into words and bytes at compile time. */
3665 poly_uint64 leading_word_part
3666 = force_align_down (subreg_byte, UNITS_PER_WORD);
3667 poly_uint64 trailing_word_part
3668 = force_align_down (trailing_bytes, UNITS_PER_WORD);
3669 /* If the subreg crosses a word boundary ensure that
3670 it also begins and ends on a word boundary. */
3671 gcc_assert (known_le (subreg_end - leading_word_part,
3672 (unsigned int) UNITS_PER_WORD)
3673 || (known_eq (leading_word_part, subreg_byte)
3674 && known_eq (trailing_word_part, trailing_bytes)));
3675 if (WORDS_BIG_ENDIAN)
3676 byte_pos = trailing_word_part + (subreg_byte - leading_word_part);
3677 else
3678 byte_pos = leading_word_part + (trailing_bytes - trailing_word_part);
3679 }
3680
3681 return byte_pos * BITS_PER_UNIT;
3682 }
3683
3684 /* Given a subreg X, return the bit offset where the subreg begins
3685 (counting from the least significant bit of the reg). */
3686
3687 poly_uint64
3688 subreg_lsb (const_rtx x)
3689 {
3690 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3691 SUBREG_BYTE (x));
3692 }
3693
3694 /* Return the subreg byte offset for a subreg whose outer value has
3695 OUTER_BYTES bytes, whose inner value has INNER_BYTES bytes, and where
3696 there are LSB_SHIFT *bits* between the lsb of the outer value and the
3697 lsb of the inner value. This is the inverse of the calculation
3698 performed by subreg_lsb_1 (which converts byte offsets to bit shifts). */
3699
3700 poly_uint64
3701 subreg_size_offset_from_lsb (poly_uint64 outer_bytes, poly_uint64 inner_bytes,
3702 poly_uint64 lsb_shift)
3703 {
3704 /* A paradoxical subreg begins at bit position 0. */
3705 gcc_checking_assert (ordered_p (outer_bytes, inner_bytes));
3706 if (maybe_gt (outer_bytes, inner_bytes))
3707 {
3708 gcc_checking_assert (known_eq (lsb_shift, 0U));
3709 return 0;
3710 }
3711
3712 poly_uint64 lower_bytes = exact_div (lsb_shift, BITS_PER_UNIT);
3713 poly_uint64 upper_bytes = inner_bytes - (lower_bytes + outer_bytes);
3714 if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
3715 return upper_bytes;
3716 else if (!WORDS_BIG_ENDIAN && !BYTES_BIG_ENDIAN)
3717 return lower_bytes;
3718 else
3719 {
3720 /* When bytes and words have opposite endianness, we must be able
3721 to split offsets into words and bytes at compile time. */
3722 poly_uint64 lower_word_part = force_align_down (lower_bytes,
3723 UNITS_PER_WORD);
3724 poly_uint64 upper_word_part = force_align_down (upper_bytes,
3725 UNITS_PER_WORD);
3726 if (WORDS_BIG_ENDIAN)
3727 return upper_word_part + (lower_bytes - lower_word_part);
3728 else
3729 return lower_word_part + (upper_bytes - upper_word_part);
3730 }
3731 }
3732
3733 /* Fill in information about a subreg of a hard register.
3734 xregno - A regno of an inner hard subreg_reg (or what will become one).
3735 xmode - The mode of xregno.
3736 offset - The byte offset.
3737 ymode - The mode of a top level SUBREG (or what may become one).
3738 info - Pointer to structure to fill in.
3739
3740 Rather than considering one particular inner register (and thus one
3741 particular "outer" register) in isolation, this function really uses
3742 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3743 function does not check whether adding INFO->offset to XREGNO gives
3744 a valid hard register; even if INFO->offset + XREGNO is out of range,
3745 there might be another register of the same type that is in range.
3746 Likewise it doesn't check whether targetm.hard_regno_mode_ok accepts
3747 the new register, since that can depend on things like whether the final
3748 register number is even or odd. Callers that want to check whether
3749 this particular subreg can be replaced by a simple (reg ...) should
3750 use simplify_subreg_regno. */
3751
3752 void
3753 subreg_get_info (unsigned int xregno, machine_mode xmode,
3754 poly_uint64 offset, machine_mode ymode,
3755 struct subreg_info *info)
3756 {
3757 unsigned int nregs_xmode, nregs_ymode;
3758
3759 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3760
3761 poly_uint64 xsize = GET_MODE_SIZE (xmode);
3762 poly_uint64 ysize = GET_MODE_SIZE (ymode);
3763
3764 bool rknown = false;
3765
3766 /* If the register representation of a non-scalar mode has holes in it,
3767 we expect the scalar units to be concatenated together, with the holes
3768 distributed evenly among the scalar units. Each scalar unit must occupy
3769 at least one register. */
3770 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3771 {
3772 /* As a consequence, we must be dealing with a constant number of
3773 scalars, and thus a constant offset and number of units. */
3774 HOST_WIDE_INT coffset = offset.to_constant ();
3775 HOST_WIDE_INT cysize = ysize.to_constant ();
3776 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3777 unsigned int nunits = GET_MODE_NUNITS (xmode).to_constant ();
3778 scalar_mode xmode_unit = GET_MODE_INNER (xmode);
3779 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3780 gcc_assert (nregs_xmode
3781 == (nunits
3782 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3783 gcc_assert (hard_regno_nregs (xregno, xmode)
3784 == hard_regno_nregs (xregno, xmode_unit) * nunits);
3785
3786 /* You can only ask for a SUBREG of a value with holes in the middle
3787 if you don't cross the holes. (Such a SUBREG should be done by
3788 picking a different register class, or doing it in memory if
3789 necessary.) An example of a value with holes is XCmode on 32-bit
3790 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3791 3 for each part, but in memory it's two 128-bit parts.
3792 Padding is assumed to be at the end (not necessarily the 'high part')
3793 of each unit. */
3794 if ((coffset / GET_MODE_SIZE (xmode_unit) + 1 < nunits)
3795 && (coffset / GET_MODE_SIZE (xmode_unit)
3796 != ((coffset + cysize - 1) / GET_MODE_SIZE (xmode_unit))))
3797 {
3798 info->representable_p = false;
3799 rknown = true;
3800 }
3801 }
3802 else
3803 nregs_xmode = hard_regno_nregs (xregno, xmode);
3804
3805 nregs_ymode = hard_regno_nregs (xregno, ymode);
3806
3807 /* Subreg sizes must be ordered, so that we can tell whether they are
3808 partial, paradoxical or complete. */
3809 gcc_checking_assert (ordered_p (xsize, ysize));
3810
3811 /* Paradoxical subregs are otherwise valid. */
3812 if (!rknown && known_eq (offset, 0U) && maybe_gt (ysize, xsize))
3813 {
3814 info->representable_p = true;
3815 /* If this is a big endian paradoxical subreg, which uses more
3816 actual hard registers than the original register, we must
3817 return a negative offset so that we find the proper highpart
3818 of the register.
3819
3820 We assume that the ordering of registers within a multi-register
3821 value has a consistent endianness: if bytes and register words
3822 have different endianness, the hard registers that make up a
3823 multi-register value must be at least word-sized. */
3824 if (REG_WORDS_BIG_ENDIAN)
3825 info->offset = (int) nregs_xmode - (int) nregs_ymode;
3826 else
3827 info->offset = 0;
3828 info->nregs = nregs_ymode;
3829 return;
3830 }
3831
3832 /* If registers store different numbers of bits in the different
3833 modes, we cannot generally form this subreg. */
3834 poly_uint64 regsize_xmode, regsize_ymode;
3835 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3836 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3837 && multiple_p (xsize, nregs_xmode, &regsize_xmode)
3838 && multiple_p (ysize, nregs_ymode, &regsize_ymode))
3839 {
3840 if (!rknown
3841 && ((nregs_ymode > 1 && maybe_gt (regsize_xmode, regsize_ymode))
3842 || (nregs_xmode > 1 && maybe_gt (regsize_ymode, regsize_xmode))))
3843 {
3844 info->representable_p = false;
3845 if (!can_div_away_from_zero_p (ysize, regsize_xmode, &info->nregs)
3846 || !can_div_trunc_p (offset, regsize_xmode, &info->offset))
3847 /* Checked by validate_subreg. We must know at compile time
3848 which inner registers are being accessed. */
3849 gcc_unreachable ();
3850 return;
3851 }
3852 /* It's not valid to extract a subreg of mode YMODE at OFFSET that
3853 would go outside of XMODE. */
3854 if (!rknown && maybe_gt (ysize + offset, xsize))
3855 {
3856 info->representable_p = false;
3857 info->nregs = nregs_ymode;
3858 if (!can_div_trunc_p (offset, regsize_xmode, &info->offset))
3859 /* Checked by validate_subreg. We must know at compile time
3860 which inner registers are being accessed. */
3861 gcc_unreachable ();
3862 return;
3863 }
3864 /* Quick exit for the simple and common case of extracting whole
3865 subregisters from a multiregister value. */
3866 /* ??? It would be better to integrate this into the code below,
3867 if we can generalize the concept enough and figure out how
3868 odd-sized modes can coexist with the other weird cases we support. */
3869 HOST_WIDE_INT count;
3870 if (!rknown
3871 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3872 && known_eq (regsize_xmode, regsize_ymode)
3873 && constant_multiple_p (offset, regsize_ymode, &count))
3874 {
3875 info->representable_p = true;
3876 info->nregs = nregs_ymode;
3877 info->offset = count;
3878 gcc_assert (info->offset + info->nregs <= (int) nregs_xmode);
3879 return;
3880 }
3881 }
3882
3883 /* Lowpart subregs are otherwise valid. */
3884 if (!rknown && known_eq (offset, subreg_lowpart_offset (ymode, xmode)))
3885 {
3886 info->representable_p = true;
3887 rknown = true;
3888
3889 if (known_eq (offset, 0U) || nregs_xmode == nregs_ymode)
3890 {
3891 info->offset = 0;
3892 info->nregs = nregs_ymode;
3893 return;
3894 }
3895 }
3896
3897 /* Set NUM_BLOCKS to the number of independently-representable YMODE
3898 values there are in (reg:XMODE XREGNO). We can view the register
3899 as consisting of this number of independent "blocks", where each
3900 block occupies NREGS_YMODE registers and contains exactly one
3901 representable YMODE value. */
3902 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3903 unsigned int num_blocks = nregs_xmode / nregs_ymode;
3904
3905 /* Calculate the number of bytes in each block. This must always
3906 be exact, otherwise we don't know how to verify the constraint.
3907 These conditions may be relaxed but subreg_regno_offset would
3908 need to be redesigned. */
3909 poly_uint64 bytes_per_block = exact_div (xsize, num_blocks);
3910
3911 /* Get the number of the first block that contains the subreg and the byte
3912 offset of the subreg from the start of that block. */
3913 unsigned int block_number;
3914 poly_uint64 subblock_offset;
3915 if (!can_div_trunc_p (offset, bytes_per_block, &block_number,
3916 &subblock_offset))
3917 /* Checked by validate_subreg. We must know at compile time which
3918 inner registers are being accessed. */
3919 gcc_unreachable ();
3920
3921 if (!rknown)
3922 {
3923 /* Only the lowpart of each block is representable. */
3924 info->representable_p
3925 = known_eq (subblock_offset,
3926 subreg_size_lowpart_offset (ysize, bytes_per_block));
3927 rknown = true;
3928 }
3929
3930 /* We assume that the ordering of registers within a multi-register
3931 value has a consistent endianness: if bytes and register words
3932 have different endianness, the hard registers that make up a
3933 multi-register value must be at least word-sized. */
3934 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN)
3935 /* The block number we calculated above followed memory endianness.
3936 Convert it to register endianness by counting back from the end.
3937 (Note that, because of the assumption above, each block must be
3938 at least word-sized.) */
3939 info->offset = (num_blocks - block_number - 1) * nregs_ymode;
3940 else
3941 info->offset = block_number * nregs_ymode;
3942 info->nregs = nregs_ymode;
3943 }
3944
3945 /* This function returns the regno offset of a subreg expression.
3946 xregno - A regno of an inner hard subreg_reg (or what will become one).
3947 xmode - The mode of xregno.
3948 offset - The byte offset.
3949 ymode - The mode of a top level SUBREG (or what may become one).
3950 RETURN - The regno offset which would be used. */
3951 unsigned int
3952 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3953 poly_uint64 offset, machine_mode ymode)
3954 {
3955 struct subreg_info info;
3956 subreg_get_info (xregno, xmode, offset, ymode, &info);
3957 return info.offset;
3958 }
3959
3960 /* This function returns true when the offset is representable via
3961 subreg_offset in the given regno.
3962 xregno - A regno of an inner hard subreg_reg (or what will become one).
3963 xmode - The mode of xregno.
3964 offset - The byte offset.
3965 ymode - The mode of a top level SUBREG (or what may become one).
3966 RETURN - Whether the offset is representable. */
3967 bool
3968 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3969 poly_uint64 offset, machine_mode ymode)
3970 {
3971 struct subreg_info info;
3972 subreg_get_info (xregno, xmode, offset, ymode, &info);
3973 return info.representable_p;
3974 }
3975
3976 /* Return the number of a YMODE register to which
3977
3978 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3979
3980 can be simplified. Return -1 if the subreg can't be simplified.
3981
3982 XREGNO is a hard register number. */
3983
3984 int
3985 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3986 poly_uint64 offset, machine_mode ymode)
3987 {
3988 struct subreg_info info;
3989 unsigned int yregno;
3990
3991 /* Give the backend a chance to disallow the mode change. */
3992 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3993 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3994 && !REG_CAN_CHANGE_MODE_P (xregno, xmode, ymode)
3995 /* We can use mode change in LRA for some transformations. */
3996 && ! lra_in_progress)
3997 return -1;
3998
3999 /* We shouldn't simplify stack-related registers. */
4000 if ((!reload_completed || frame_pointer_needed)
4001 && xregno == FRAME_POINTER_REGNUM)
4002 return -1;
4003
4004 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
4005 && xregno == ARG_POINTER_REGNUM)
4006 return -1;
4007
4008 if (xregno == STACK_POINTER_REGNUM
4009 /* We should convert hard stack register in LRA if it is
4010 possible. */
4011 && ! lra_in_progress)
4012 return -1;
4013
4014 /* Try to get the register offset. */
4015 subreg_get_info (xregno, xmode, offset, ymode, &info);
4016 if (!info.representable_p)
4017 return -1;
4018
4019 /* Make sure that the offsetted register value is in range. */
4020 yregno = xregno + info.offset;
4021 if (!HARD_REGISTER_NUM_P (yregno))
4022 return -1;
4023
4024 /* See whether (reg:YMODE YREGNO) is valid.
4025
4026 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
4027 This is a kludge to work around how complex FP arguments are passed
4028 on IA-64 and should be fixed. See PR target/49226. */
4029 if (!targetm.hard_regno_mode_ok (yregno, ymode)
4030 && targetm.hard_regno_mode_ok (xregno, xmode))
4031 return -1;
4032
4033 return (int) yregno;
4034 }
4035
4036 /* Return the final regno that a subreg expression refers to. */
4037 unsigned int
4038 subreg_regno (const_rtx x)
4039 {
4040 unsigned int ret;
4041 rtx subreg = SUBREG_REG (x);
4042 int regno = REGNO (subreg);
4043
4044 ret = regno + subreg_regno_offset (regno,
4045 GET_MODE (subreg),
4046 SUBREG_BYTE (x),
4047 GET_MODE (x));
4048 return ret;
4049
4050 }
4051
4052 /* Return the number of registers that a subreg expression refers
4053 to. */
4054 unsigned int
4055 subreg_nregs (const_rtx x)
4056 {
4057 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
4058 }
4059
4060 /* Return the number of registers that a subreg REG with REGNO
4061 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
4062 changed so that the regno can be passed in. */
4063
4064 unsigned int
4065 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
4066 {
4067 struct subreg_info info;
4068 rtx subreg = SUBREG_REG (x);
4069
4070 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
4071 &info);
4072 return info.nregs;
4073 }
4074
4075 struct parms_set_data
4076 {
4077 int nregs;
4078 HARD_REG_SET regs;
4079 };
4080
4081 /* Helper function for noticing stores to parameter registers. */
4082 static void
4083 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
4084 {
4085 struct parms_set_data *const d = (struct parms_set_data *) data;
4086 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
4087 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
4088 {
4089 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
4090 d->nregs--;
4091 }
4092 }
4093
4094 /* Look backward for first parameter to be loaded.
4095 Note that loads of all parameters will not necessarily be
4096 found if CSE has eliminated some of them (e.g., an argument
4097 to the outer function is passed down as a parameter).
4098 Do not skip BOUNDARY. */
4099 rtx_insn *
4100 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
4101 {
4102 struct parms_set_data parm;
4103 rtx p;
4104 rtx_insn *before, *first_set;
4105
4106 /* Since different machines initialize their parameter registers
4107 in different orders, assume nothing. Collect the set of all
4108 parameter registers. */
4109 CLEAR_HARD_REG_SET (parm.regs);
4110 parm.nregs = 0;
4111 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
4112 if (GET_CODE (XEXP (p, 0)) == USE
4113 && REG_P (XEXP (XEXP (p, 0), 0))
4114 && !STATIC_CHAIN_REG_P (XEXP (XEXP (p, 0), 0)))
4115 {
4116 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
4117
4118 /* We only care about registers which can hold function
4119 arguments. */
4120 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
4121 continue;
4122
4123 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
4124 parm.nregs++;
4125 }
4126 before = call_insn;
4127 first_set = call_insn;
4128
4129 /* Search backward for the first set of a register in this set. */
4130 while (parm.nregs && before != boundary)
4131 {
4132 before = PREV_INSN (before);
4133
4134 /* It is possible that some loads got CSEed from one call to
4135 another. Stop in that case. */
4136 if (CALL_P (before))
4137 break;
4138
4139 /* Our caller needs either ensure that we will find all sets
4140 (in case code has not been optimized yet), or take care
4141 for possible labels in a way by setting boundary to preceding
4142 CODE_LABEL. */
4143 if (LABEL_P (before))
4144 {
4145 gcc_assert (before == boundary);
4146 break;
4147 }
4148
4149 if (INSN_P (before))
4150 {
4151 int nregs_old = parm.nregs;
4152 note_stores (before, parms_set, &parm);
4153 /* If we found something that did not set a parameter reg,
4154 we're done. Do not keep going, as that might result
4155 in hoisting an insn before the setting of a pseudo
4156 that is used by the hoisted insn. */
4157 if (nregs_old != parm.nregs)
4158 first_set = before;
4159 else
4160 break;
4161 }
4162 }
4163 return first_set;
4164 }
4165
4166 /* Return true if we should avoid inserting code between INSN and preceding
4167 call instruction. */
4168
4169 bool
4170 keep_with_call_p (const rtx_insn *insn)
4171 {
4172 rtx set;
4173
4174 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
4175 {
4176 if (REG_P (SET_DEST (set))
4177 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
4178 && fixed_regs[REGNO (SET_DEST (set))]
4179 && general_operand (SET_SRC (set), VOIDmode))
4180 return true;
4181 if (REG_P (SET_SRC (set))
4182 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
4183 && REG_P (SET_DEST (set))
4184 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
4185 return true;
4186 /* There may be a stack pop just after the call and before the store
4187 of the return register. Search for the actual store when deciding
4188 if we can break or not. */
4189 if (SET_DEST (set) == stack_pointer_rtx)
4190 {
4191 /* This CONST_CAST is okay because next_nonnote_insn just
4192 returns its argument and we assign it to a const_rtx
4193 variable. */
4194 const rtx_insn *i2
4195 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
4196 if (i2 && keep_with_call_p (i2))
4197 return true;
4198 }
4199 }
4200 return false;
4201 }
4202
4203 /* Return true if LABEL is a target of JUMP_INSN. This applies only
4204 to non-complex jumps. That is, direct unconditional, conditional,
4205 and tablejumps, but not computed jumps or returns. It also does
4206 not apply to the fallthru case of a conditional jump. */
4207
4208 bool
4209 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4210 {
4211 rtx tmp = JUMP_LABEL (jump_insn);
4212 rtx_jump_table_data *table;
4213
4214 if (label == tmp)
4215 return true;
4216
4217 if (tablejump_p (jump_insn, NULL, &table))
4218 {
4219 rtvec vec = table->get_labels ();
4220 int i, veclen = GET_NUM_ELEM (vec);
4221
4222 for (i = 0; i < veclen; ++i)
4223 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4224 return true;
4225 }
4226
4227 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4228 return true;
4229
4230 return false;
4231 }
4232
4233 \f
4234 /* Return an estimate of the cost of computing rtx X.
4235 One use is in cse, to decide which expression to keep in the hash table.
4236 Another is in rtl generation, to pick the cheapest way to multiply.
4237 Other uses like the latter are expected in the future.
4238
4239 X appears as operand OPNO in an expression with code OUTER_CODE.
4240 SPEED specifies whether costs optimized for speed or size should
4241 be returned. */
4242
4243 int
4244 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4245 int opno, bool speed)
4246 {
4247 int i, j;
4248 enum rtx_code code;
4249 const char *fmt;
4250 int total;
4251 int factor;
4252
4253 if (x == 0)
4254 return 0;
4255
4256 if (GET_MODE (x) != VOIDmode)
4257 mode = GET_MODE (x);
4258
4259 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4260 many insns, taking N times as long. */
4261 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4262 if (factor == 0)
4263 factor = 1;
4264
4265 /* Compute the default costs of certain things.
4266 Note that targetm.rtx_costs can override the defaults. */
4267
4268 code = GET_CODE (x);
4269 switch (code)
4270 {
4271 case MULT:
4272 /* Multiplication has time-complexity O(N*N), where N is the
4273 number of units (translated from digits) when using
4274 schoolbook long multiplication. */
4275 total = factor * factor * COSTS_N_INSNS (5);
4276 break;
4277 case DIV:
4278 case UDIV:
4279 case MOD:
4280 case UMOD:
4281 /* Similarly, complexity for schoolbook long division. */
4282 total = factor * factor * COSTS_N_INSNS (7);
4283 break;
4284 case USE:
4285 /* Used in combine.c as a marker. */
4286 total = 0;
4287 break;
4288 case SET:
4289 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4290 the mode for the factor. */
4291 mode = GET_MODE (SET_DEST (x));
4292 factor = estimated_poly_value (GET_MODE_SIZE (mode)) / UNITS_PER_WORD;
4293 if (factor == 0)
4294 factor = 1;
4295 /* FALLTHRU */
4296 default:
4297 total = factor * COSTS_N_INSNS (1);
4298 }
4299
4300 switch (code)
4301 {
4302 case REG:
4303 return 0;
4304
4305 case SUBREG:
4306 total = 0;
4307 /* If we can't tie these modes, make this expensive. The larger
4308 the mode, the more expensive it is. */
4309 if (!targetm.modes_tieable_p (mode, GET_MODE (SUBREG_REG (x))))
4310 return COSTS_N_INSNS (2 + factor);
4311 break;
4312
4313 case TRUNCATE:
4314 if (targetm.modes_tieable_p (mode, GET_MODE (XEXP (x, 0))))
4315 {
4316 total = 0;
4317 break;
4318 }
4319 /* FALLTHRU */
4320 default:
4321 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4322 return total;
4323 break;
4324 }
4325
4326 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4327 which is already in total. */
4328
4329 fmt = GET_RTX_FORMAT (code);
4330 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4331 if (fmt[i] == 'e')
4332 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4333 else if (fmt[i] == 'E')
4334 for (j = 0; j < XVECLEN (x, i); j++)
4335 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4336
4337 return total;
4338 }
4339
4340 /* Fill in the structure C with information about both speed and size rtx
4341 costs for X, which is operand OPNO in an expression with code OUTER. */
4342
4343 void
4344 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4345 struct full_rtx_costs *c)
4346 {
4347 c->speed = rtx_cost (x, mode, outer, opno, true);
4348 c->size = rtx_cost (x, mode, outer, opno, false);
4349 }
4350
4351 \f
4352 /* Return cost of address expression X.
4353 Expect that X is properly formed address reference.
4354
4355 SPEED parameter specify whether costs optimized for speed or size should
4356 be returned. */
4357
4358 int
4359 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4360 {
4361 /* We may be asked for cost of various unusual addresses, such as operands
4362 of push instruction. It is not worthwhile to complicate writing
4363 of the target hook by such cases. */
4364
4365 if (!memory_address_addr_space_p (mode, x, as))
4366 return 1000;
4367
4368 return targetm.address_cost (x, mode, as, speed);
4369 }
4370
4371 /* If the target doesn't override, compute the cost as with arithmetic. */
4372
4373 int
4374 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4375 {
4376 return rtx_cost (x, Pmode, MEM, 0, speed);
4377 }
4378 \f
4379
4380 unsigned HOST_WIDE_INT
4381 nonzero_bits (const_rtx x, machine_mode mode)
4382 {
4383 if (mode == VOIDmode)
4384 mode = GET_MODE (x);
4385 scalar_int_mode int_mode;
4386 if (!is_a <scalar_int_mode> (mode, &int_mode))
4387 return GET_MODE_MASK (mode);
4388 return cached_nonzero_bits (x, int_mode, NULL_RTX, VOIDmode, 0);
4389 }
4390
4391 unsigned int
4392 num_sign_bit_copies (const_rtx x, machine_mode mode)
4393 {
4394 if (mode == VOIDmode)
4395 mode = GET_MODE (x);
4396 scalar_int_mode int_mode;
4397 if (!is_a <scalar_int_mode> (mode, &int_mode))
4398 return 1;
4399 return cached_num_sign_bit_copies (x, int_mode, NULL_RTX, VOIDmode, 0);
4400 }
4401
4402 /* Return true if nonzero_bits1 might recurse into both operands
4403 of X. */
4404
4405 static inline bool
4406 nonzero_bits_binary_arith_p (const_rtx x)
4407 {
4408 if (!ARITHMETIC_P (x))
4409 return false;
4410 switch (GET_CODE (x))
4411 {
4412 case AND:
4413 case XOR:
4414 case IOR:
4415 case UMIN:
4416 case UMAX:
4417 case SMIN:
4418 case SMAX:
4419 case PLUS:
4420 case MINUS:
4421 case MULT:
4422 case DIV:
4423 case UDIV:
4424 case MOD:
4425 case UMOD:
4426 return true;
4427 default:
4428 return false;
4429 }
4430 }
4431
4432 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4433 It avoids exponential behavior in nonzero_bits1 when X has
4434 identical subexpressions on the first or the second level. */
4435
4436 static unsigned HOST_WIDE_INT
4437 cached_nonzero_bits (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4438 machine_mode known_mode,
4439 unsigned HOST_WIDE_INT known_ret)
4440 {
4441 if (x == known_x && mode == known_mode)
4442 return known_ret;
4443
4444 /* Try to find identical subexpressions. If found call
4445 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4446 precomputed value for the subexpression as KNOWN_RET. */
4447
4448 if (nonzero_bits_binary_arith_p (x))
4449 {
4450 rtx x0 = XEXP (x, 0);
4451 rtx x1 = XEXP (x, 1);
4452
4453 /* Check the first level. */
4454 if (x0 == x1)
4455 return nonzero_bits1 (x, mode, x0, mode,
4456 cached_nonzero_bits (x0, mode, known_x,
4457 known_mode, known_ret));
4458
4459 /* Check the second level. */
4460 if (nonzero_bits_binary_arith_p (x0)
4461 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4462 return nonzero_bits1 (x, mode, x1, mode,
4463 cached_nonzero_bits (x1, mode, known_x,
4464 known_mode, known_ret));
4465
4466 if (nonzero_bits_binary_arith_p (x1)
4467 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4468 return nonzero_bits1 (x, mode, x0, mode,
4469 cached_nonzero_bits (x0, mode, known_x,
4470 known_mode, known_ret));
4471 }
4472
4473 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4474 }
4475
4476 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4477 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4478 is less useful. We can't allow both, because that results in exponential
4479 run time recursion. There is a nullstone testcase that triggered
4480 this. This macro avoids accidental uses of num_sign_bit_copies. */
4481 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4482
4483 /* Given an expression, X, compute which bits in X can be nonzero.
4484 We don't care about bits outside of those defined in MODE.
4485
4486 For most X this is simply GET_MODE_MASK (GET_MODE (X)), but if X is
4487 an arithmetic operation, we can do better. */
4488
4489 static unsigned HOST_WIDE_INT
4490 nonzero_bits1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
4491 machine_mode known_mode,
4492 unsigned HOST_WIDE_INT known_ret)
4493 {
4494 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4495 unsigned HOST_WIDE_INT inner_nz;
4496 enum rtx_code code = GET_CODE (x);
4497 machine_mode inner_mode;
4498 unsigned int inner_width;
4499 scalar_int_mode xmode;
4500
4501 unsigned int mode_width = GET_MODE_PRECISION (mode);
4502
4503 if (CONST_INT_P (x))
4504 {
4505 if (SHORT_IMMEDIATES_SIGN_EXTEND
4506 && INTVAL (x) > 0
4507 && mode_width < BITS_PER_WORD
4508 && (UINTVAL (x) & (HOST_WIDE_INT_1U << (mode_width - 1))) != 0)
4509 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4510
4511 return UINTVAL (x);
4512 }
4513
4514 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
4515 return nonzero;
4516 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
4517
4518 /* If X is wider than MODE, use its mode instead. */
4519 if (xmode_width > mode_width)
4520 {
4521 mode = xmode;
4522 nonzero = GET_MODE_MASK (mode);
4523 mode_width = xmode_width;
4524 }
4525
4526 if (mode_width > HOST_BITS_PER_WIDE_INT)
4527 /* Our only callers in this case look for single bit values. So
4528 just return the mode mask. Those tests will then be false. */
4529 return nonzero;
4530
4531 /* If MODE is wider than X, but both are a single word for both the host
4532 and target machines, we can compute this from which bits of the object
4533 might be nonzero in its own mode, taking into account the fact that, on
4534 CISC machines, accessing an object in a wider mode generally causes the
4535 high-order bits to become undefined, so they are not known to be zero.
4536 We extend this reasoning to RISC machines for operations that might not
4537 operate on the full registers. */
4538 if (mode_width > xmode_width
4539 && xmode_width <= BITS_PER_WORD
4540 && xmode_width <= HOST_BITS_PER_WIDE_INT
4541 && !(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
4542 {
4543 nonzero &= cached_nonzero_bits (x, xmode,
4544 known_x, known_mode, known_ret);
4545 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode);
4546 return nonzero;
4547 }
4548
4549 /* Please keep nonzero_bits_binary_arith_p above in sync with
4550 the code in the switch below. */
4551 switch (code)
4552 {
4553 case REG:
4554 #if defined(POINTERS_EXTEND_UNSIGNED)
4555 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4556 all the bits above ptr_mode are known to be zero. */
4557 /* As we do not know which address space the pointer is referring to,
4558 we can do this only if the target does not support different pointer
4559 or address modes depending on the address space. */
4560 if (target_default_pointer_address_modes_p ()
4561 && POINTERS_EXTEND_UNSIGNED
4562 && xmode == Pmode
4563 && REG_POINTER (x)
4564 && !targetm.have_ptr_extend ())
4565 nonzero &= GET_MODE_MASK (ptr_mode);
4566 #endif
4567
4568 /* Include declared information about alignment of pointers. */
4569 /* ??? We don't properly preserve REG_POINTER changes across
4570 pointer-to-integer casts, so we can't trust it except for
4571 things that we know must be pointers. See execute/960116-1.c. */
4572 if ((x == stack_pointer_rtx
4573 || x == frame_pointer_rtx
4574 || x == arg_pointer_rtx)
4575 && REGNO_POINTER_ALIGN (REGNO (x)))
4576 {
4577 unsigned HOST_WIDE_INT alignment
4578 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4579
4580 #ifdef PUSH_ROUNDING
4581 /* If PUSH_ROUNDING is defined, it is possible for the
4582 stack to be momentarily aligned only to that amount,
4583 so we pick the least alignment. */
4584 if (x == stack_pointer_rtx && PUSH_ARGS)
4585 {
4586 poly_uint64 rounded_1 = PUSH_ROUNDING (poly_int64 (1));
4587 alignment = MIN (known_alignment (rounded_1), alignment);
4588 }
4589 #endif
4590
4591 nonzero &= ~(alignment - 1);
4592 }
4593
4594 {
4595 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4596 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, xmode, mode,
4597 &nonzero_for_hook);
4598
4599 if (new_rtx)
4600 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4601 known_mode, known_ret);
4602
4603 return nonzero_for_hook;
4604 }
4605
4606 case MEM:
4607 /* In many, if not most, RISC machines, reading a byte from memory
4608 zeros the rest of the register. Noticing that fact saves a lot
4609 of extra zero-extends. */
4610 if (load_extend_op (xmode) == ZERO_EXTEND)
4611 nonzero &= GET_MODE_MASK (xmode);
4612 break;
4613
4614 case EQ: case NE:
4615 case UNEQ: case LTGT:
4616 case GT: case GTU: case UNGT:
4617 case LT: case LTU: case UNLT:
4618 case GE: case GEU: case UNGE:
4619 case LE: case LEU: case UNLE:
4620 case UNORDERED: case ORDERED:
4621 /* If this produces an integer result, we know which bits are set.
4622 Code here used to clear bits outside the mode of X, but that is
4623 now done above. */
4624 /* Mind that MODE is the mode the caller wants to look at this
4625 operation in, and not the actual operation mode. We can wind
4626 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4627 that describes the results of a vector compare. */
4628 if (GET_MODE_CLASS (xmode) == MODE_INT
4629 && mode_width <= HOST_BITS_PER_WIDE_INT)
4630 nonzero = STORE_FLAG_VALUE;
4631 break;
4632
4633 case NEG:
4634 #if 0
4635 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4636 and num_sign_bit_copies. */
4637 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4638 nonzero = 1;
4639 #endif
4640
4641 if (xmode_width < mode_width)
4642 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (xmode));
4643 break;
4644
4645 case ABS:
4646 #if 0
4647 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4648 and num_sign_bit_copies. */
4649 if (num_sign_bit_copies (XEXP (x, 0), xmode) == xmode_width)
4650 nonzero = 1;
4651 #endif
4652 break;
4653
4654 case TRUNCATE:
4655 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4656 known_x, known_mode, known_ret)
4657 & GET_MODE_MASK (mode));
4658 break;
4659
4660 case ZERO_EXTEND:
4661 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4662 known_x, known_mode, known_ret);
4663 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4664 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4665 break;
4666
4667 case SIGN_EXTEND:
4668 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4669 Otherwise, show all the bits in the outer mode but not the inner
4670 may be nonzero. */
4671 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4672 known_x, known_mode, known_ret);
4673 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4674 {
4675 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4676 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4677 inner_nz |= (GET_MODE_MASK (mode)
4678 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4679 }
4680
4681 nonzero &= inner_nz;
4682 break;
4683
4684 case AND:
4685 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4686 known_x, known_mode, known_ret)
4687 & cached_nonzero_bits (XEXP (x, 1), mode,
4688 known_x, known_mode, known_ret);
4689 break;
4690
4691 case XOR: case IOR:
4692 case UMIN: case UMAX: case SMIN: case SMAX:
4693 {
4694 unsigned HOST_WIDE_INT nonzero0
4695 = cached_nonzero_bits (XEXP (x, 0), mode,
4696 known_x, known_mode, known_ret);
4697
4698 /* Don't call nonzero_bits for the second time if it cannot change
4699 anything. */
4700 if ((nonzero & nonzero0) != nonzero)
4701 nonzero &= nonzero0
4702 | cached_nonzero_bits (XEXP (x, 1), mode,
4703 known_x, known_mode, known_ret);
4704 }
4705 break;
4706
4707 case PLUS: case MINUS:
4708 case MULT:
4709 case DIV: case UDIV:
4710 case MOD: case UMOD:
4711 /* We can apply the rules of arithmetic to compute the number of
4712 high- and low-order zero bits of these operations. We start by
4713 computing the width (position of the highest-order nonzero bit)
4714 and the number of low-order zero bits for each value. */
4715 {
4716 unsigned HOST_WIDE_INT nz0
4717 = cached_nonzero_bits (XEXP (x, 0), mode,
4718 known_x, known_mode, known_ret);
4719 unsigned HOST_WIDE_INT nz1
4720 = cached_nonzero_bits (XEXP (x, 1), mode,
4721 known_x, known_mode, known_ret);
4722 int sign_index = xmode_width - 1;
4723 int width0 = floor_log2 (nz0) + 1;
4724 int width1 = floor_log2 (nz1) + 1;
4725 int low0 = ctz_or_zero (nz0);
4726 int low1 = ctz_or_zero (nz1);
4727 unsigned HOST_WIDE_INT op0_maybe_minusp
4728 = nz0 & (HOST_WIDE_INT_1U << sign_index);
4729 unsigned HOST_WIDE_INT op1_maybe_minusp
4730 = nz1 & (HOST_WIDE_INT_1U << sign_index);
4731 unsigned int result_width = mode_width;
4732 int result_low = 0;
4733
4734 switch (code)
4735 {
4736 case PLUS:
4737 result_width = MAX (width0, width1) + 1;
4738 result_low = MIN (low0, low1);
4739 break;
4740 case MINUS:
4741 result_low = MIN (low0, low1);
4742 break;
4743 case MULT:
4744 result_width = width0 + width1;
4745 result_low = low0 + low1;
4746 break;
4747 case DIV:
4748 if (width1 == 0)
4749 break;
4750 if (!op0_maybe_minusp && !op1_maybe_minusp)
4751 result_width = width0;
4752 break;
4753 case UDIV:
4754 if (width1 == 0)
4755 break;
4756 result_width = width0;
4757 break;
4758 case MOD:
4759 if (width1 == 0)
4760 break;
4761 if (!op0_maybe_minusp && !op1_maybe_minusp)
4762 result_width = MIN (width0, width1);
4763 result_low = MIN (low0, low1);
4764 break;
4765 case UMOD:
4766 if (width1 == 0)
4767 break;
4768 result_width = MIN (width0, width1);
4769 result_low = MIN (low0, low1);
4770 break;
4771 default:
4772 gcc_unreachable ();
4773 }
4774
4775 if (result_width < mode_width)
4776 nonzero &= (HOST_WIDE_INT_1U << result_width) - 1;
4777
4778 if (result_low > 0)
4779 nonzero &= ~((HOST_WIDE_INT_1U << result_low) - 1);
4780 }
4781 break;
4782
4783 case ZERO_EXTRACT:
4784 if (CONST_INT_P (XEXP (x, 1))
4785 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4786 nonzero &= (HOST_WIDE_INT_1U << INTVAL (XEXP (x, 1))) - 1;
4787 break;
4788
4789 case SUBREG:
4790 /* If this is a SUBREG formed for a promoted variable that has
4791 been zero-extended, we know that at least the high-order bits
4792 are zero, though others might be too. */
4793 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4794 nonzero = GET_MODE_MASK (xmode)
4795 & cached_nonzero_bits (SUBREG_REG (x), xmode,
4796 known_x, known_mode, known_ret);
4797
4798 /* If the inner mode is a single word for both the host and target
4799 machines, we can compute this from which bits of the inner
4800 object might be nonzero. */
4801 inner_mode = GET_MODE (SUBREG_REG (x));
4802 if (GET_MODE_PRECISION (inner_mode).is_constant (&inner_width)
4803 && inner_width <= BITS_PER_WORD
4804 && inner_width <= HOST_BITS_PER_WIDE_INT)
4805 {
4806 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4807 known_x, known_mode, known_ret);
4808
4809 /* On a typical CISC machine, accessing an object in a wider mode
4810 causes the high-order bits to become undefined. So they are
4811 not known to be zero.
4812
4813 On a typical RISC machine, we only have to worry about the way
4814 loads are extended. Otherwise, if we get a reload for the inner
4815 part, it may be loaded from the stack, and then we may lose all
4816 the zero bits that existed before the store to the stack. */
4817 rtx_code extend_op;
4818 if ((!WORD_REGISTER_OPERATIONS
4819 || ((extend_op = load_extend_op (inner_mode)) == SIGN_EXTEND
4820 ? val_signbit_known_set_p (inner_mode, nonzero)
4821 : extend_op != ZERO_EXTEND)
4822 || !MEM_P (SUBREG_REG (x)))
4823 && xmode_width > inner_width)
4824 nonzero
4825 |= (GET_MODE_MASK (GET_MODE (x)) & ~GET_MODE_MASK (inner_mode));
4826 }
4827 break;
4828
4829 case ASHIFT:
4830 case ASHIFTRT:
4831 case LSHIFTRT:
4832 case ROTATE:
4833 case ROTATERT:
4834 /* The nonzero bits are in two classes: any bits within MODE
4835 that aren't in xmode are always significant. The rest of the
4836 nonzero bits are those that are significant in the operand of
4837 the shift when shifted the appropriate number of bits. This
4838 shows that high-order bits are cleared by the right shift and
4839 low-order bits by left shifts. */
4840 if (CONST_INT_P (XEXP (x, 1))
4841 && INTVAL (XEXP (x, 1)) >= 0
4842 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4843 && INTVAL (XEXP (x, 1)) < xmode_width)
4844 {
4845 int count = INTVAL (XEXP (x, 1));
4846 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (xmode);
4847 unsigned HOST_WIDE_INT op_nonzero
4848 = cached_nonzero_bits (XEXP (x, 0), mode,
4849 known_x, known_mode, known_ret);
4850 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4851 unsigned HOST_WIDE_INT outer = 0;
4852
4853 if (mode_width > xmode_width)
4854 outer = (op_nonzero & nonzero & ~mode_mask);
4855
4856 switch (code)
4857 {
4858 case ASHIFT:
4859 inner <<= count;
4860 break;
4861
4862 case LSHIFTRT:
4863 inner >>= count;
4864 break;
4865
4866 case ASHIFTRT:
4867 inner >>= count;
4868
4869 /* If the sign bit may have been nonzero before the shift, we
4870 need to mark all the places it could have been copied to
4871 by the shift as possibly nonzero. */
4872 if (inner & (HOST_WIDE_INT_1U << (xmode_width - 1 - count)))
4873 inner |= (((HOST_WIDE_INT_1U << count) - 1)
4874 << (xmode_width - count));
4875 break;
4876
4877 case ROTATE:
4878 inner = (inner << (count % xmode_width)
4879 | (inner >> (xmode_width - (count % xmode_width))))
4880 & mode_mask;
4881 break;
4882
4883 case ROTATERT:
4884 inner = (inner >> (count % xmode_width)
4885 | (inner << (xmode_width - (count % xmode_width))))
4886 & mode_mask;
4887 break;
4888
4889 default:
4890 gcc_unreachable ();
4891 }
4892
4893 nonzero &= (outer | inner);
4894 }
4895 break;
4896
4897 case FFS:
4898 case POPCOUNT:
4899 /* This is at most the number of bits in the mode. */
4900 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4901 break;
4902
4903 case CLZ:
4904 /* If CLZ has a known value at zero, then the nonzero bits are
4905 that value, plus the number of bits in the mode minus one. */
4906 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4907 nonzero
4908 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4909 else
4910 nonzero = -1;
4911 break;
4912
4913 case CTZ:
4914 /* If CTZ has a known value at zero, then the nonzero bits are
4915 that value, plus the number of bits in the mode minus one. */
4916 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4917 nonzero
4918 |= (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4919 else
4920 nonzero = -1;
4921 break;
4922
4923 case CLRSB:
4924 /* This is at most the number of bits in the mode minus 1. */
4925 nonzero = (HOST_WIDE_INT_1U << (floor_log2 (mode_width))) - 1;
4926 break;
4927
4928 case PARITY:
4929 nonzero = 1;
4930 break;
4931
4932 case IF_THEN_ELSE:
4933 {
4934 unsigned HOST_WIDE_INT nonzero_true
4935 = cached_nonzero_bits (XEXP (x, 1), mode,
4936 known_x, known_mode, known_ret);
4937
4938 /* Don't call nonzero_bits for the second time if it cannot change
4939 anything. */
4940 if ((nonzero & nonzero_true) != nonzero)
4941 nonzero &= nonzero_true
4942 | cached_nonzero_bits (XEXP (x, 2), mode,
4943 known_x, known_mode, known_ret);
4944 }
4945 break;
4946
4947 default:
4948 break;
4949 }
4950
4951 return nonzero;
4952 }
4953
4954 /* See the macro definition above. */
4955 #undef cached_num_sign_bit_copies
4956
4957 \f
4958 /* Return true if num_sign_bit_copies1 might recurse into both operands
4959 of X. */
4960
4961 static inline bool
4962 num_sign_bit_copies_binary_arith_p (const_rtx x)
4963 {
4964 if (!ARITHMETIC_P (x))
4965 return false;
4966 switch (GET_CODE (x))
4967 {
4968 case IOR:
4969 case AND:
4970 case XOR:
4971 case SMIN:
4972 case SMAX:
4973 case UMIN:
4974 case UMAX:
4975 case PLUS:
4976 case MINUS:
4977 case MULT:
4978 return true;
4979 default:
4980 return false;
4981 }
4982 }
4983
4984 /* The function cached_num_sign_bit_copies is a wrapper around
4985 num_sign_bit_copies1. It avoids exponential behavior in
4986 num_sign_bit_copies1 when X has identical subexpressions on the
4987 first or the second level. */
4988
4989 static unsigned int
4990 cached_num_sign_bit_copies (const_rtx x, scalar_int_mode mode,
4991 const_rtx known_x, machine_mode known_mode,
4992 unsigned int known_ret)
4993 {
4994 if (x == known_x && mode == known_mode)
4995 return known_ret;
4996
4997 /* Try to find identical subexpressions. If found call
4998 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4999 the precomputed value for the subexpression as KNOWN_RET. */
5000
5001 if (num_sign_bit_copies_binary_arith_p (x))
5002 {
5003 rtx x0 = XEXP (x, 0);
5004 rtx x1 = XEXP (x, 1);
5005
5006 /* Check the first level. */
5007 if (x0 == x1)
5008 return
5009 num_sign_bit_copies1 (x, mode, x0, mode,
5010 cached_num_sign_bit_copies (x0, mode, known_x,
5011 known_mode,
5012 known_ret));
5013
5014 /* Check the second level. */
5015 if (num_sign_bit_copies_binary_arith_p (x0)
5016 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
5017 return
5018 num_sign_bit_copies1 (x, mode, x1, mode,
5019 cached_num_sign_bit_copies (x1, mode, known_x,
5020 known_mode,
5021 known_ret));
5022
5023 if (num_sign_bit_copies_binary_arith_p (x1)
5024 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
5025 return
5026 num_sign_bit_copies1 (x, mode, x0, mode,
5027 cached_num_sign_bit_copies (x0, mode, known_x,
5028 known_mode,
5029 known_ret));
5030 }
5031
5032 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
5033 }
5034
5035 /* Return the number of bits at the high-order end of X that are known to
5036 be equal to the sign bit. X will be used in mode MODE. The returned
5037 value will always be between 1 and the number of bits in MODE. */
5038
5039 static unsigned int
5040 num_sign_bit_copies1 (const_rtx x, scalar_int_mode mode, const_rtx known_x,
5041 machine_mode known_mode,
5042 unsigned int known_ret)
5043 {
5044 enum rtx_code code = GET_CODE (x);
5045 unsigned int bitwidth = GET_MODE_PRECISION (mode);
5046 int num0, num1, result;
5047 unsigned HOST_WIDE_INT nonzero;
5048
5049 if (CONST_INT_P (x))
5050 {
5051 /* If the constant is negative, take its 1's complement and remask.
5052 Then see how many zero bits we have. */
5053 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
5054 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5055 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5056 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5057
5058 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5059 }
5060
5061 scalar_int_mode xmode, inner_mode;
5062 if (!is_a <scalar_int_mode> (GET_MODE (x), &xmode))
5063 return 1;
5064
5065 unsigned int xmode_width = GET_MODE_PRECISION (xmode);
5066
5067 /* For a smaller mode, just ignore the high bits. */
5068 if (bitwidth < xmode_width)
5069 {
5070 num0 = cached_num_sign_bit_copies (x, xmode,
5071 known_x, known_mode, known_ret);
5072 return MAX (1, num0 - (int) (xmode_width - bitwidth));
5073 }
5074
5075 if (bitwidth > xmode_width)
5076 {
5077 /* If this machine does not do all register operations on the entire
5078 register and MODE is wider than the mode of X, we can say nothing
5079 at all about the high-order bits. We extend this reasoning to RISC
5080 machines for operations that might not operate on full registers. */
5081 if (!(WORD_REGISTER_OPERATIONS && word_register_operation_p (x)))
5082 return 1;
5083
5084 /* Likewise on machines that do, if the mode of the object is smaller
5085 than a word and loads of that size don't sign extend, we can say
5086 nothing about the high order bits. */
5087 if (xmode_width < BITS_PER_WORD
5088 && load_extend_op (xmode) != SIGN_EXTEND)
5089 return 1;
5090 }
5091
5092 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
5093 the code in the switch below. */
5094 switch (code)
5095 {
5096 case REG:
5097
5098 #if defined(POINTERS_EXTEND_UNSIGNED)
5099 /* If pointers extend signed and this is a pointer in Pmode, say that
5100 all the bits above ptr_mode are known to be sign bit copies. */
5101 /* As we do not know which address space the pointer is referring to,
5102 we can do this only if the target does not support different pointer
5103 or address modes depending on the address space. */
5104 if (target_default_pointer_address_modes_p ()
5105 && ! POINTERS_EXTEND_UNSIGNED && xmode == Pmode
5106 && mode == Pmode && REG_POINTER (x)
5107 && !targetm.have_ptr_extend ())
5108 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
5109 #endif
5110
5111 {
5112 unsigned int copies_for_hook = 1, copies = 1;
5113 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, xmode, mode,
5114 &copies_for_hook);
5115
5116 if (new_rtx)
5117 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
5118 known_mode, known_ret);
5119
5120 if (copies > 1 || copies_for_hook > 1)
5121 return MAX (copies, copies_for_hook);
5122
5123 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
5124 }
5125 break;
5126
5127 case MEM:
5128 /* Some RISC machines sign-extend all loads of smaller than a word. */
5129 if (load_extend_op (xmode) == SIGN_EXTEND)
5130 return MAX (1, ((int) bitwidth - (int) xmode_width + 1));
5131 break;
5132
5133 case SUBREG:
5134 /* If this is a SUBREG for a promoted object that is sign-extended
5135 and we are looking at it in a wider mode, we know that at least the
5136 high-order bits are known to be sign bit copies. */
5137
5138 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
5139 {
5140 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5141 known_x, known_mode, known_ret);
5142 return MAX ((int) bitwidth - (int) xmode_width + 1, num0);
5143 }
5144
5145 if (is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (x)), &inner_mode))
5146 {
5147 /* For a smaller object, just ignore the high bits. */
5148 if (bitwidth <= GET_MODE_PRECISION (inner_mode))
5149 {
5150 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), inner_mode,
5151 known_x, known_mode,
5152 known_ret);
5153 return MAX (1, num0 - (int) (GET_MODE_PRECISION (inner_mode)
5154 - bitwidth));
5155 }
5156
5157 /* For paradoxical SUBREGs on machines where all register operations
5158 affect the entire register, just look inside. Note that we are
5159 passing MODE to the recursive call, so the number of sign bit
5160 copies will remain relative to that mode, not the inner mode.
5161
5162 This works only if loads sign extend. Otherwise, if we get a
5163 reload for the inner part, it may be loaded from the stack, and
5164 then we lose all sign bit copies that existed before the store
5165 to the stack. */
5166 if (WORD_REGISTER_OPERATIONS
5167 && load_extend_op (inner_mode) == SIGN_EXTEND
5168 && paradoxical_subreg_p (x)
5169 && MEM_P (SUBREG_REG (x)))
5170 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
5171 known_x, known_mode, known_ret);
5172 }
5173 break;
5174
5175 case SIGN_EXTRACT:
5176 if (CONST_INT_P (XEXP (x, 1)))
5177 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
5178 break;
5179
5180 case SIGN_EXTEND:
5181 if (is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
5182 return (bitwidth - GET_MODE_PRECISION (inner_mode)
5183 + cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5184 known_x, known_mode, known_ret));
5185 break;
5186
5187 case TRUNCATE:
5188 /* For a smaller object, just ignore the high bits. */
5189 inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
5190 num0 = cached_num_sign_bit_copies (XEXP (x, 0), inner_mode,
5191 known_x, known_mode, known_ret);
5192 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (inner_mode)
5193 - bitwidth)));
5194
5195 case NOT:
5196 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5197 known_x, known_mode, known_ret);
5198
5199 case ROTATE: case ROTATERT:
5200 /* If we are rotating left by a number of bits less than the number
5201 of sign bit copies, we can just subtract that amount from the
5202 number. */
5203 if (CONST_INT_P (XEXP (x, 1))
5204 && INTVAL (XEXP (x, 1)) >= 0
5205 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
5206 {
5207 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5208 known_x, known_mode, known_ret);
5209 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
5210 : (int) bitwidth - INTVAL (XEXP (x, 1))));
5211 }
5212 break;
5213
5214 case NEG:
5215 /* In general, this subtracts one sign bit copy. But if the value
5216 is known to be positive, the number of sign bit copies is the
5217 same as that of the input. Finally, if the input has just one bit
5218 that might be nonzero, all the bits are copies of the sign bit. */
5219 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5220 known_x, known_mode, known_ret);
5221 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5222 return num0 > 1 ? num0 - 1 : 1;
5223
5224 nonzero = nonzero_bits (XEXP (x, 0), mode);
5225 if (nonzero == 1)
5226 return bitwidth;
5227
5228 if (num0 > 1
5229 && ((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero))
5230 num0--;
5231
5232 return num0;
5233
5234 case IOR: case AND: case XOR:
5235 case SMIN: case SMAX: case UMIN: case UMAX:
5236 /* Logical operations will preserve the number of sign-bit copies.
5237 MIN and MAX operations always return one of the operands. */
5238 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5239 known_x, known_mode, known_ret);
5240 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5241 known_x, known_mode, known_ret);
5242
5243 /* If num1 is clearing some of the top bits then regardless of
5244 the other term, we are guaranteed to have at least that many
5245 high-order zero bits. */
5246 if (code == AND
5247 && num1 > 1
5248 && bitwidth <= HOST_BITS_PER_WIDE_INT
5249 && CONST_INT_P (XEXP (x, 1))
5250 && (UINTVAL (XEXP (x, 1))
5251 & (HOST_WIDE_INT_1U << (bitwidth - 1))) == 0)
5252 return num1;
5253
5254 /* Similarly for IOR when setting high-order bits. */
5255 if (code == IOR
5256 && num1 > 1
5257 && bitwidth <= HOST_BITS_PER_WIDE_INT
5258 && CONST_INT_P (XEXP (x, 1))
5259 && (UINTVAL (XEXP (x, 1))
5260 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5261 return num1;
5262
5263 return MIN (num0, num1);
5264
5265 case PLUS: case MINUS:
5266 /* For addition and subtraction, we can have a 1-bit carry. However,
5267 if we are subtracting 1 from a positive number, there will not
5268 be such a carry. Furthermore, if the positive number is known to
5269 be 0 or 1, we know the result is either -1 or 0. */
5270
5271 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5272 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5273 {
5274 nonzero = nonzero_bits (XEXP (x, 0), mode);
5275 if (((HOST_WIDE_INT_1U << (bitwidth - 1)) & nonzero) == 0)
5276 return (nonzero == 1 || nonzero == 0 ? bitwidth
5277 : bitwidth - floor_log2 (nonzero) - 1);
5278 }
5279
5280 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5281 known_x, known_mode, known_ret);
5282 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5283 known_x, known_mode, known_ret);
5284 result = MAX (1, MIN (num0, num1) - 1);
5285
5286 return result;
5287
5288 case MULT:
5289 /* The number of bits of the product is the sum of the number of
5290 bits of both terms. However, unless one of the terms if known
5291 to be positive, we must allow for an additional bit since negating
5292 a negative number can remove one sign bit copy. */
5293
5294 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5295 known_x, known_mode, known_ret);
5296 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5297 known_x, known_mode, known_ret);
5298
5299 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5300 if (result > 0
5301 && (bitwidth > HOST_BITS_PER_WIDE_INT
5302 || (((nonzero_bits (XEXP (x, 0), mode)
5303 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5304 && ((nonzero_bits (XEXP (x, 1), mode)
5305 & (HOST_WIDE_INT_1U << (bitwidth - 1)))
5306 != 0))))
5307 result--;
5308
5309 return MAX (1, result);
5310
5311 case UDIV:
5312 /* The result must be <= the first operand. If the first operand
5313 has the high bit set, we know nothing about the number of sign
5314 bit copies. */
5315 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5316 return 1;
5317 else if ((nonzero_bits (XEXP (x, 0), mode)
5318 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5319 return 1;
5320 else
5321 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5322 known_x, known_mode, known_ret);
5323
5324 case UMOD:
5325 /* The result must be <= the second operand. If the second operand
5326 has (or just might have) the high bit set, we know nothing about
5327 the number of sign bit copies. */
5328 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5329 return 1;
5330 else if ((nonzero_bits (XEXP (x, 1), mode)
5331 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5332 return 1;
5333 else
5334 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5335 known_x, known_mode, known_ret);
5336
5337 case DIV:
5338 /* Similar to unsigned division, except that we have to worry about
5339 the case where the divisor is negative, in which case we have
5340 to add 1. */
5341 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5342 known_x, known_mode, known_ret);
5343 if (result > 1
5344 && (bitwidth > HOST_BITS_PER_WIDE_INT
5345 || (nonzero_bits (XEXP (x, 1), mode)
5346 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5347 result--;
5348
5349 return result;
5350
5351 case MOD:
5352 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5353 known_x, known_mode, known_ret);
5354 if (result > 1
5355 && (bitwidth > HOST_BITS_PER_WIDE_INT
5356 || (nonzero_bits (XEXP (x, 1), mode)
5357 & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0))
5358 result--;
5359
5360 return result;
5361
5362 case ASHIFTRT:
5363 /* Shifts by a constant add to the number of bits equal to the
5364 sign bit. */
5365 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5366 known_x, known_mode, known_ret);
5367 if (CONST_INT_P (XEXP (x, 1))
5368 && INTVAL (XEXP (x, 1)) > 0
5369 && INTVAL (XEXP (x, 1)) < xmode_width)
5370 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5371
5372 return num0;
5373
5374 case ASHIFT:
5375 /* Left shifts destroy copies. */
5376 if (!CONST_INT_P (XEXP (x, 1))
5377 || INTVAL (XEXP (x, 1)) < 0
5378 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5379 || INTVAL (XEXP (x, 1)) >= xmode_width)
5380 return 1;
5381
5382 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5383 known_x, known_mode, known_ret);
5384 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5385
5386 case IF_THEN_ELSE:
5387 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5388 known_x, known_mode, known_ret);
5389 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5390 known_x, known_mode, known_ret);
5391 return MIN (num0, num1);
5392
5393 case EQ: case NE: case GE: case GT: case LE: case LT:
5394 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5395 case GEU: case GTU: case LEU: case LTU:
5396 case UNORDERED: case ORDERED:
5397 /* If the constant is negative, take its 1's complement and remask.
5398 Then see how many zero bits we have. */
5399 nonzero = STORE_FLAG_VALUE;
5400 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5401 && (nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))) != 0)
5402 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5403
5404 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5405
5406 default:
5407 break;
5408 }
5409
5410 /* If we haven't been able to figure it out by one of the above rules,
5411 see if some of the high-order bits are known to be zero. If so,
5412 count those bits and return one less than that amount. If we can't
5413 safely compute the mask for this mode, always return BITWIDTH. */
5414
5415 bitwidth = GET_MODE_PRECISION (mode);
5416 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5417 return 1;
5418
5419 nonzero = nonzero_bits (x, mode);
5420 return nonzero & (HOST_WIDE_INT_1U << (bitwidth - 1))
5421 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5422 }
5423
5424 /* Calculate the rtx_cost of a single instruction pattern. A return value of
5425 zero indicates an instruction pattern without a known cost. */
5426
5427 int
5428 pattern_cost (rtx pat, bool speed)
5429 {
5430 int i, cost;
5431 rtx set;
5432
5433 /* Extract the single set rtx from the instruction pattern. We
5434 can't use single_set since we only have the pattern. We also
5435 consider PARALLELs of a normal set and a single comparison. In
5436 that case we use the cost of the non-comparison SET operation,
5437 which is most-likely to be the real cost of this operation. */
5438 if (GET_CODE (pat) == SET)
5439 set = pat;
5440 else if (GET_CODE (pat) == PARALLEL)
5441 {
5442 set = NULL_RTX;
5443 rtx comparison = NULL_RTX;
5444
5445 for (i = 0; i < XVECLEN (pat, 0); i++)
5446 {
5447 rtx x = XVECEXP (pat, 0, i);
5448 if (GET_CODE (x) == SET)
5449 {
5450 if (GET_CODE (SET_SRC (x)) == COMPARE)
5451 {
5452 if (comparison)
5453 return 0;
5454 comparison = x;
5455 }
5456 else
5457 {
5458 if (set)
5459 return 0;
5460 set = x;
5461 }
5462 }
5463 }
5464
5465 if (!set && comparison)
5466 set = comparison;
5467
5468 if (!set)
5469 return 0;
5470 }
5471 else
5472 return 0;
5473
5474 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5475 return cost > 0 ? cost : COSTS_N_INSNS (1);
5476 }
5477
5478 /* Calculate the cost of a single instruction. A return value of zero
5479 indicates an instruction pattern without a known cost. */
5480
5481 int
5482 insn_cost (rtx_insn *insn, bool speed)
5483 {
5484 if (targetm.insn_cost)
5485 return targetm.insn_cost (insn, speed);
5486
5487 return pattern_cost (PATTERN (insn), speed);
5488 }
5489
5490 /* Returns estimate on cost of computing SEQ. */
5491
5492 unsigned
5493 seq_cost (const rtx_insn *seq, bool speed)
5494 {
5495 unsigned cost = 0;
5496 rtx set;
5497
5498 for (; seq; seq = NEXT_INSN (seq))
5499 {
5500 set = single_set (seq);
5501 if (set)
5502 cost += set_rtx_cost (set, speed);
5503 else if (NONDEBUG_INSN_P (seq))
5504 {
5505 int this_cost = insn_cost (CONST_CAST_RTX_INSN (seq), speed);
5506 if (this_cost > 0)
5507 cost += this_cost;
5508 else
5509 cost++;
5510 }
5511 }
5512
5513 return cost;
5514 }
5515
5516 /* Given an insn INSN and condition COND, return the condition in a
5517 canonical form to simplify testing by callers. Specifically:
5518
5519 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5520 (2) Both operands will be machine operands; (cc0) will have been replaced.
5521 (3) If an operand is a constant, it will be the second operand.
5522 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5523 for GE, GEU, and LEU.
5524
5525 If the condition cannot be understood, or is an inequality floating-point
5526 comparison which needs to be reversed, 0 will be returned.
5527
5528 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5529
5530 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5531 insn used in locating the condition was found. If a replacement test
5532 of the condition is desired, it should be placed in front of that
5533 insn and we will be sure that the inputs are still valid.
5534
5535 If WANT_REG is nonzero, we wish the condition to be relative to that
5536 register, if possible. Therefore, do not canonicalize the condition
5537 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5538 to be a compare to a CC mode register.
5539
5540 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5541 and at INSN. */
5542
5543 rtx
5544 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5545 rtx_insn **earliest,
5546 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5547 {
5548 enum rtx_code code;
5549 rtx_insn *prev = insn;
5550 const_rtx set;
5551 rtx tem;
5552 rtx op0, op1;
5553 int reverse_code = 0;
5554 machine_mode mode;
5555 basic_block bb = BLOCK_FOR_INSN (insn);
5556
5557 code = GET_CODE (cond);
5558 mode = GET_MODE (cond);
5559 op0 = XEXP (cond, 0);
5560 op1 = XEXP (cond, 1);
5561
5562 if (reverse)
5563 code = reversed_comparison_code (cond, insn);
5564 if (code == UNKNOWN)
5565 return 0;
5566
5567 if (earliest)
5568 *earliest = insn;
5569
5570 /* If we are comparing a register with zero, see if the register is set
5571 in the previous insn to a COMPARE or a comparison operation. Perform
5572 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5573 in cse.c */
5574
5575 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5576 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5577 && op1 == CONST0_RTX (GET_MODE (op0))
5578 && op0 != want_reg)
5579 {
5580 /* Set nonzero when we find something of interest. */
5581 rtx x = 0;
5582
5583 /* If comparison with cc0, import actual comparison from compare
5584 insn. */
5585 if (op0 == cc0_rtx)
5586 {
5587 if ((prev = prev_nonnote_insn (prev)) == 0
5588 || !NONJUMP_INSN_P (prev)
5589 || (set = single_set (prev)) == 0
5590 || SET_DEST (set) != cc0_rtx)
5591 return 0;
5592
5593 op0 = SET_SRC (set);
5594 op1 = CONST0_RTX (GET_MODE (op0));
5595 if (earliest)
5596 *earliest = prev;
5597 }
5598
5599 /* If this is a COMPARE, pick up the two things being compared. */
5600 if (GET_CODE (op0) == COMPARE)
5601 {
5602 op1 = XEXP (op0, 1);
5603 op0 = XEXP (op0, 0);
5604 continue;
5605 }
5606 else if (!REG_P (op0))
5607 break;
5608
5609 /* Go back to the previous insn. Stop if it is not an INSN. We also
5610 stop if it isn't a single set or if it has a REG_INC note because
5611 we don't want to bother dealing with it. */
5612
5613 prev = prev_nonnote_nondebug_insn (prev);
5614
5615 if (prev == 0
5616 || !NONJUMP_INSN_P (prev)
5617 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5618 /* In cfglayout mode, there do not have to be labels at the
5619 beginning of a block, or jumps at the end, so the previous
5620 conditions would not stop us when we reach bb boundary. */
5621 || BLOCK_FOR_INSN (prev) != bb)
5622 break;
5623
5624 set = set_of (op0, prev);
5625
5626 if (set
5627 && (GET_CODE (set) != SET
5628 || !rtx_equal_p (SET_DEST (set), op0)))
5629 break;
5630
5631 /* If this is setting OP0, get what it sets it to if it looks
5632 relevant. */
5633 if (set)
5634 {
5635 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5636 #ifdef FLOAT_STORE_FLAG_VALUE
5637 REAL_VALUE_TYPE fsfv;
5638 #endif
5639
5640 /* ??? We may not combine comparisons done in a CCmode with
5641 comparisons not done in a CCmode. This is to aid targets
5642 like Alpha that have an IEEE compliant EQ instruction, and
5643 a non-IEEE compliant BEQ instruction. The use of CCmode is
5644 actually artificial, simply to prevent the combination, but
5645 should not affect other platforms.
5646
5647 However, we must allow VOIDmode comparisons to match either
5648 CCmode or non-CCmode comparison, because some ports have
5649 modeless comparisons inside branch patterns.
5650
5651 ??? This mode check should perhaps look more like the mode check
5652 in simplify_comparison in combine. */
5653 if (((GET_MODE_CLASS (mode) == MODE_CC)
5654 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5655 && mode != VOIDmode
5656 && inner_mode != VOIDmode)
5657 break;
5658 if (GET_CODE (SET_SRC (set)) == COMPARE
5659 || (((code == NE
5660 || (code == LT
5661 && val_signbit_known_set_p (inner_mode,
5662 STORE_FLAG_VALUE))
5663 #ifdef FLOAT_STORE_FLAG_VALUE
5664 || (code == LT
5665 && SCALAR_FLOAT_MODE_P (inner_mode)
5666 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5667 REAL_VALUE_NEGATIVE (fsfv)))
5668 #endif
5669 ))
5670 && COMPARISON_P (SET_SRC (set))))
5671 x = SET_SRC (set);
5672 else if (((code == EQ
5673 || (code == GE
5674 && val_signbit_known_set_p (inner_mode,
5675 STORE_FLAG_VALUE))
5676 #ifdef FLOAT_STORE_FLAG_VALUE
5677 || (code == GE
5678 && SCALAR_FLOAT_MODE_P (inner_mode)
5679 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5680 REAL_VALUE_NEGATIVE (fsfv)))
5681 #endif
5682 ))
5683 && COMPARISON_P (SET_SRC (set)))
5684 {
5685 reverse_code = 1;
5686 x = SET_SRC (set);
5687 }
5688 else if ((code == EQ || code == NE)
5689 && GET_CODE (SET_SRC (set)) == XOR)
5690 /* Handle sequences like:
5691
5692 (set op0 (xor X Y))
5693 ...(eq|ne op0 (const_int 0))...
5694
5695 in which case:
5696
5697 (eq op0 (const_int 0)) reduces to (eq X Y)
5698 (ne op0 (const_int 0)) reduces to (ne X Y)
5699
5700 This is the form used by MIPS16, for example. */
5701 x = SET_SRC (set);
5702 else
5703 break;
5704 }
5705
5706 else if (reg_set_p (op0, prev))
5707 /* If this sets OP0, but not directly, we have to give up. */
5708 break;
5709
5710 if (x)
5711 {
5712 /* If the caller is expecting the condition to be valid at INSN,
5713 make sure X doesn't change before INSN. */
5714 if (valid_at_insn_p)
5715 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5716 break;
5717 if (COMPARISON_P (x))
5718 code = GET_CODE (x);
5719 if (reverse_code)
5720 {
5721 code = reversed_comparison_code (x, prev);
5722 if (code == UNKNOWN)
5723 return 0;
5724 reverse_code = 0;
5725 }
5726
5727 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5728 if (earliest)
5729 *earliest = prev;
5730 }
5731 }
5732
5733 /* If constant is first, put it last. */
5734 if (CONSTANT_P (op0))
5735 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5736
5737 /* If OP0 is the result of a comparison, we weren't able to find what
5738 was really being compared, so fail. */
5739 if (!allow_cc_mode
5740 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5741 return 0;
5742
5743 /* Canonicalize any ordered comparison with integers involving equality
5744 if we can do computations in the relevant mode and we do not
5745 overflow. */
5746
5747 scalar_int_mode op0_mode;
5748 if (CONST_INT_P (op1)
5749 && is_a <scalar_int_mode> (GET_MODE (op0), &op0_mode)
5750 && GET_MODE_PRECISION (op0_mode) <= HOST_BITS_PER_WIDE_INT)
5751 {
5752 HOST_WIDE_INT const_val = INTVAL (op1);
5753 unsigned HOST_WIDE_INT uconst_val = const_val;
5754 unsigned HOST_WIDE_INT max_val
5755 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (op0_mode);
5756
5757 switch (code)
5758 {
5759 case LE:
5760 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5761 code = LT, op1 = gen_int_mode (const_val + 1, op0_mode);
5762 break;
5763
5764 /* When cross-compiling, const_val might be sign-extended from
5765 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5766 case GE:
5767 if ((const_val & max_val)
5768 != (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (op0_mode) - 1)))
5769 code = GT, op1 = gen_int_mode (const_val - 1, op0_mode);
5770 break;
5771
5772 case LEU:
5773 if (uconst_val < max_val)
5774 code = LTU, op1 = gen_int_mode (uconst_val + 1, op0_mode);
5775 break;
5776
5777 case GEU:
5778 if (uconst_val != 0)
5779 code = GTU, op1 = gen_int_mode (uconst_val - 1, op0_mode);
5780 break;
5781
5782 default:
5783 break;
5784 }
5785 }
5786
5787 /* Never return CC0; return zero instead. */
5788 if (CC0_P (op0))
5789 return 0;
5790
5791 /* We promised to return a comparison. */
5792 rtx ret = gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5793 if (COMPARISON_P (ret))
5794 return ret;
5795 return 0;
5796 }
5797
5798 /* Given a jump insn JUMP, return the condition that will cause it to branch
5799 to its JUMP_LABEL. If the condition cannot be understood, or is an
5800 inequality floating-point comparison which needs to be reversed, 0 will
5801 be returned.
5802
5803 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5804 insn used in locating the condition was found. If a replacement test
5805 of the condition is desired, it should be placed in front of that
5806 insn and we will be sure that the inputs are still valid. If EARLIEST
5807 is null, the returned condition will be valid at INSN.
5808
5809 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5810 compare CC mode register.
5811
5812 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5813
5814 rtx
5815 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5816 int valid_at_insn_p)
5817 {
5818 rtx cond;
5819 int reverse;
5820 rtx set;
5821
5822 /* If this is not a standard conditional jump, we can't parse it. */
5823 if (!JUMP_P (jump)
5824 || ! any_condjump_p (jump))
5825 return 0;
5826 set = pc_set (jump);
5827
5828 cond = XEXP (SET_SRC (set), 0);
5829
5830 /* If this branches to JUMP_LABEL when the condition is false, reverse
5831 the condition. */
5832 reverse
5833 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5834 && label_ref_label (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5835
5836 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5837 allow_cc_mode, valid_at_insn_p);
5838 }
5839
5840 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5841 TARGET_MODE_REP_EXTENDED.
5842
5843 Note that we assume that the property of
5844 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5845 narrower than mode B. I.e., if A is a mode narrower than B then in
5846 order to be able to operate on it in mode B, mode A needs to
5847 satisfy the requirements set by the representation of mode B. */
5848
5849 static void
5850 init_num_sign_bit_copies_in_rep (void)
5851 {
5852 opt_scalar_int_mode in_mode_iter;
5853 scalar_int_mode mode;
5854
5855 FOR_EACH_MODE_IN_CLASS (in_mode_iter, MODE_INT)
5856 FOR_EACH_MODE_UNTIL (mode, in_mode_iter.require ())
5857 {
5858 scalar_int_mode in_mode = in_mode_iter.require ();
5859 scalar_int_mode i;
5860
5861 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5862 extends to the next widest mode. */
5863 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5864 || GET_MODE_WIDER_MODE (mode).require () == in_mode);
5865
5866 /* We are in in_mode. Count how many bits outside of mode
5867 have to be copies of the sign-bit. */
5868 FOR_EACH_MODE (i, mode, in_mode)
5869 {
5870 /* This must always exist (for the last iteration it will be
5871 IN_MODE). */
5872 scalar_int_mode wider = GET_MODE_WIDER_MODE (i).require ();
5873
5874 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5875 /* We can only check sign-bit copies starting from the
5876 top-bit. In order to be able to check the bits we
5877 have already seen we pretend that subsequent bits
5878 have to be sign-bit copies too. */
5879 || num_sign_bit_copies_in_rep [in_mode][mode])
5880 num_sign_bit_copies_in_rep [in_mode][mode]
5881 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5882 }
5883 }
5884 }
5885
5886 /* Suppose that truncation from the machine mode of X to MODE is not a
5887 no-op. See if there is anything special about X so that we can
5888 assume it already contains a truncated value of MODE. */
5889
5890 bool
5891 truncated_to_mode (machine_mode mode, const_rtx x)
5892 {
5893 /* This register has already been used in MODE without explicit
5894 truncation. */
5895 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5896 return true;
5897
5898 /* See if we already satisfy the requirements of MODE. If yes we
5899 can just switch to MODE. */
5900 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5901 && (num_sign_bit_copies (x, GET_MODE (x))
5902 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5903 return true;
5904
5905 return false;
5906 }
5907 \f
5908 /* Return true if RTX code CODE has a single sequence of zero or more
5909 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5910 entry in that case. */
5911
5912 static bool
5913 setup_reg_subrtx_bounds (unsigned int code)
5914 {
5915 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5916 unsigned int i = 0;
5917 for (; format[i] != 'e'; ++i)
5918 {
5919 if (!format[i])
5920 /* No subrtxes. Leave start and count as 0. */
5921 return true;
5922 if (format[i] == 'E' || format[i] == 'V')
5923 return false;
5924 }
5925
5926 /* Record the sequence of 'e's. */
5927 rtx_all_subrtx_bounds[code].start = i;
5928 do
5929 ++i;
5930 while (format[i] == 'e');
5931 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5932 /* rtl-iter.h relies on this. */
5933 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5934
5935 for (; format[i]; ++i)
5936 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5937 return false;
5938
5939 return true;
5940 }
5941
5942 /* Initialize rtx_all_subrtx_bounds. */
5943 void
5944 init_rtlanal (void)
5945 {
5946 int i;
5947 for (i = 0; i < NUM_RTX_CODE; i++)
5948 {
5949 if (!setup_reg_subrtx_bounds (i))
5950 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5951 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5952 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5953 }
5954
5955 init_num_sign_bit_copies_in_rep ();
5956 }
5957 \f
5958 /* Check whether this is a constant pool constant. */
5959 bool
5960 constant_pool_constant_p (rtx x)
5961 {
5962 x = avoid_constant_pool_reference (x);
5963 return CONST_DOUBLE_P (x);
5964 }
5965 \f
5966 /* If M is a bitmask that selects a field of low-order bits within an item but
5967 not the entire word, return the length of the field. Return -1 otherwise.
5968 M is used in machine mode MODE. */
5969
5970 int
5971 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5972 {
5973 if (mode != VOIDmode)
5974 {
5975 if (!HWI_COMPUTABLE_MODE_P (mode))
5976 return -1;
5977 m &= GET_MODE_MASK (mode);
5978 }
5979
5980 return exact_log2 (m + 1);
5981 }
5982
5983 /* Return the mode of MEM's address. */
5984
5985 scalar_int_mode
5986 get_address_mode (rtx mem)
5987 {
5988 machine_mode mode;
5989
5990 gcc_assert (MEM_P (mem));
5991 mode = GET_MODE (XEXP (mem, 0));
5992 if (mode != VOIDmode)
5993 return as_a <scalar_int_mode> (mode);
5994 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5995 }
5996 \f
5997 /* Split up a CONST_DOUBLE or integer constant rtx
5998 into two rtx's for single words,
5999 storing in *FIRST the word that comes first in memory in the target
6000 and in *SECOND the other.
6001
6002 TODO: This function needs to be rewritten to work on any size
6003 integer. */
6004
6005 void
6006 split_double (rtx value, rtx *first, rtx *second)
6007 {
6008 if (CONST_INT_P (value))
6009 {
6010 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
6011 {
6012 /* In this case the CONST_INT holds both target words.
6013 Extract the bits from it into two word-sized pieces.
6014 Sign extend each half to HOST_WIDE_INT. */
6015 unsigned HOST_WIDE_INT low, high;
6016 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
6017 unsigned bits_per_word = BITS_PER_WORD;
6018
6019 /* Set sign_bit to the most significant bit of a word. */
6020 sign_bit = 1;
6021 sign_bit <<= bits_per_word - 1;
6022
6023 /* Set mask so that all bits of the word are set. We could
6024 have used 1 << BITS_PER_WORD instead of basing the
6025 calculation on sign_bit. However, on machines where
6026 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
6027 compiler warning, even though the code would never be
6028 executed. */
6029 mask = sign_bit << 1;
6030 mask--;
6031
6032 /* Set sign_extend as any remaining bits. */
6033 sign_extend = ~mask;
6034
6035 /* Pick the lower word and sign-extend it. */
6036 low = INTVAL (value);
6037 low &= mask;
6038 if (low & sign_bit)
6039 low |= sign_extend;
6040
6041 /* Pick the higher word, shifted to the least significant
6042 bits, and sign-extend it. */
6043 high = INTVAL (value);
6044 high >>= bits_per_word - 1;
6045 high >>= 1;
6046 high &= mask;
6047 if (high & sign_bit)
6048 high |= sign_extend;
6049
6050 /* Store the words in the target machine order. */
6051 if (WORDS_BIG_ENDIAN)
6052 {
6053 *first = GEN_INT (high);
6054 *second = GEN_INT (low);
6055 }
6056 else
6057 {
6058 *first = GEN_INT (low);
6059 *second = GEN_INT (high);
6060 }
6061 }
6062 else
6063 {
6064 /* The rule for using CONST_INT for a wider mode
6065 is that we regard the value as signed.
6066 So sign-extend it. */
6067 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
6068 if (WORDS_BIG_ENDIAN)
6069 {
6070 *first = high;
6071 *second = value;
6072 }
6073 else
6074 {
6075 *first = value;
6076 *second = high;
6077 }
6078 }
6079 }
6080 else if (GET_CODE (value) == CONST_WIDE_INT)
6081 {
6082 /* All of this is scary code and needs to be converted to
6083 properly work with any size integer. */
6084 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
6085 if (WORDS_BIG_ENDIAN)
6086 {
6087 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6088 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6089 }
6090 else
6091 {
6092 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
6093 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
6094 }
6095 }
6096 else if (!CONST_DOUBLE_P (value))
6097 {
6098 if (WORDS_BIG_ENDIAN)
6099 {
6100 *first = const0_rtx;
6101 *second = value;
6102 }
6103 else
6104 {
6105 *first = value;
6106 *second = const0_rtx;
6107 }
6108 }
6109 else if (GET_MODE (value) == VOIDmode
6110 /* This is the old way we did CONST_DOUBLE integers. */
6111 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
6112 {
6113 /* In an integer, the words are defined as most and least significant.
6114 So order them by the target's convention. */
6115 if (WORDS_BIG_ENDIAN)
6116 {
6117 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
6118 *second = GEN_INT (CONST_DOUBLE_LOW (value));
6119 }
6120 else
6121 {
6122 *first = GEN_INT (CONST_DOUBLE_LOW (value));
6123 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
6124 }
6125 }
6126 else
6127 {
6128 long l[2];
6129
6130 /* Note, this converts the REAL_VALUE_TYPE to the target's
6131 format, splits up the floating point double and outputs
6132 exactly 32 bits of it into each of l[0] and l[1] --
6133 not necessarily BITS_PER_WORD bits. */
6134 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
6135
6136 /* If 32 bits is an entire word for the target, but not for the host,
6137 then sign-extend on the host so that the number will look the same
6138 way on the host that it would on the target. See for instance
6139 simplify_unary_operation. The #if is needed to avoid compiler
6140 warnings. */
6141
6142 #if HOST_BITS_PER_LONG > 32
6143 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
6144 {
6145 if (l[0] & ((long) 1 << 31))
6146 l[0] |= ((unsigned long) (-1) << 32);
6147 if (l[1] & ((long) 1 << 31))
6148 l[1] |= ((unsigned long) (-1) << 32);
6149 }
6150 #endif
6151
6152 *first = GEN_INT (l[0]);
6153 *second = GEN_INT (l[1]);
6154 }
6155 }
6156
6157 /* Return true if X is a sign_extract or zero_extract from the least
6158 significant bit. */
6159
6160 static bool
6161 lsb_bitfield_op_p (rtx x)
6162 {
6163 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
6164 {
6165 machine_mode mode = GET_MODE (XEXP (x, 0));
6166 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
6167 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
6168 poly_int64 remaining_bits = GET_MODE_PRECISION (mode) - len;
6169
6170 return known_eq (pos, BITS_BIG_ENDIAN ? remaining_bits : 0);
6171 }
6172 return false;
6173 }
6174
6175 /* Strip outer address "mutations" from LOC and return a pointer to the
6176 inner value. If OUTER_CODE is nonnull, store the code of the innermost
6177 stripped expression there.
6178
6179 "Mutations" either convert between modes or apply some kind of
6180 extension, truncation or alignment. */
6181
6182 rtx *
6183 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
6184 {
6185 for (;;)
6186 {
6187 enum rtx_code code = GET_CODE (*loc);
6188 if (GET_RTX_CLASS (code) == RTX_UNARY)
6189 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
6190 used to convert between pointer sizes. */
6191 loc = &XEXP (*loc, 0);
6192 else if (lsb_bitfield_op_p (*loc))
6193 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
6194 acts as a combined truncation and extension. */
6195 loc = &XEXP (*loc, 0);
6196 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
6197 /* (and ... (const_int -X)) is used to align to X bytes. */
6198 loc = &XEXP (*loc, 0);
6199 else if (code == SUBREG
6200 && !OBJECT_P (SUBREG_REG (*loc))
6201 && subreg_lowpart_p (*loc))
6202 /* (subreg (operator ...) ...) inside and is used for mode
6203 conversion too. */
6204 loc = &SUBREG_REG (*loc);
6205 else
6206 return loc;
6207 if (outer_code)
6208 *outer_code = code;
6209 }
6210 }
6211
6212 /* Return true if CODE applies some kind of scale. The scaled value is
6213 is the first operand and the scale is the second. */
6214
6215 static bool
6216 binary_scale_code_p (enum rtx_code code)
6217 {
6218 return (code == MULT
6219 || code == ASHIFT
6220 /* Needed by ARM targets. */
6221 || code == ASHIFTRT
6222 || code == LSHIFTRT
6223 || code == ROTATE
6224 || code == ROTATERT);
6225 }
6226
6227 /* If *INNER can be interpreted as a base, return a pointer to the inner term
6228 (see address_info). Return null otherwise. */
6229
6230 static rtx *
6231 get_base_term (rtx *inner)
6232 {
6233 if (GET_CODE (*inner) == LO_SUM)
6234 inner = strip_address_mutations (&XEXP (*inner, 0));
6235 if (REG_P (*inner)
6236 || MEM_P (*inner)
6237 || GET_CODE (*inner) == SUBREG
6238 || GET_CODE (*inner) == SCRATCH)
6239 return inner;
6240 return 0;
6241 }
6242
6243 /* If *INNER can be interpreted as an index, return a pointer to the inner term
6244 (see address_info). Return null otherwise. */
6245
6246 static rtx *
6247 get_index_term (rtx *inner)
6248 {
6249 /* At present, only constant scales are allowed. */
6250 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
6251 inner = strip_address_mutations (&XEXP (*inner, 0));
6252 if (REG_P (*inner)
6253 || MEM_P (*inner)
6254 || GET_CODE (*inner) == SUBREG
6255 || GET_CODE (*inner) == SCRATCH)
6256 return inner;
6257 return 0;
6258 }
6259
6260 /* Set the segment part of address INFO to LOC, given that INNER is the
6261 unmutated value. */
6262
6263 static void
6264 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
6265 {
6266 gcc_assert (!info->segment);
6267 info->segment = loc;
6268 info->segment_term = inner;
6269 }
6270
6271 /* Set the base part of address INFO to LOC, given that INNER is the
6272 unmutated value. */
6273
6274 static void
6275 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6276 {
6277 gcc_assert (!info->base);
6278 info->base = loc;
6279 info->base_term = inner;
6280 }
6281
6282 /* Set the index part of address INFO to LOC, given that INNER is the
6283 unmutated value. */
6284
6285 static void
6286 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6287 {
6288 gcc_assert (!info->index);
6289 info->index = loc;
6290 info->index_term = inner;
6291 }
6292
6293 /* Set the displacement part of address INFO to LOC, given that INNER
6294 is the constant term. */
6295
6296 static void
6297 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6298 {
6299 gcc_assert (!info->disp);
6300 info->disp = loc;
6301 info->disp_term = inner;
6302 }
6303
6304 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6305 rest of INFO accordingly. */
6306
6307 static void
6308 decompose_incdec_address (struct address_info *info)
6309 {
6310 info->autoinc_p = true;
6311
6312 rtx *base = &XEXP (*info->inner, 0);
6313 set_address_base (info, base, base);
6314 gcc_checking_assert (info->base == info->base_term);
6315
6316 /* These addresses are only valid when the size of the addressed
6317 value is known. */
6318 gcc_checking_assert (info->mode != VOIDmode);
6319 }
6320
6321 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6322 of INFO accordingly. */
6323
6324 static void
6325 decompose_automod_address (struct address_info *info)
6326 {
6327 info->autoinc_p = true;
6328
6329 rtx *base = &XEXP (*info->inner, 0);
6330 set_address_base (info, base, base);
6331 gcc_checking_assert (info->base == info->base_term);
6332
6333 rtx plus = XEXP (*info->inner, 1);
6334 gcc_assert (GET_CODE (plus) == PLUS);
6335
6336 info->base_term2 = &XEXP (plus, 0);
6337 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6338
6339 rtx *step = &XEXP (plus, 1);
6340 rtx *inner_step = strip_address_mutations (step);
6341 if (CONSTANT_P (*inner_step))
6342 set_address_disp (info, step, inner_step);
6343 else
6344 set_address_index (info, step, inner_step);
6345 }
6346
6347 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6348 values in [PTR, END). Return a pointer to the end of the used array. */
6349
6350 static rtx **
6351 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6352 {
6353 rtx x = *loc;
6354 if (GET_CODE (x) == PLUS)
6355 {
6356 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6357 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6358 }
6359 else
6360 {
6361 gcc_assert (ptr != end);
6362 *ptr++ = loc;
6363 }
6364 return ptr;
6365 }
6366
6367 /* Evaluate the likelihood of X being a base or index value, returning
6368 positive if it is likely to be a base, negative if it is likely to be
6369 an index, and 0 if we can't tell. Make the magnitude of the return
6370 value reflect the amount of confidence we have in the answer.
6371
6372 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6373
6374 static int
6375 baseness (rtx x, machine_mode mode, addr_space_t as,
6376 enum rtx_code outer_code, enum rtx_code index_code)
6377 {
6378 /* Believe *_POINTER unless the address shape requires otherwise. */
6379 if (REG_P (x) && REG_POINTER (x))
6380 return 2;
6381 if (MEM_P (x) && MEM_POINTER (x))
6382 return 2;
6383
6384 if (REG_P (x) && HARD_REGISTER_P (x))
6385 {
6386 /* X is a hard register. If it only fits one of the base
6387 or index classes, choose that interpretation. */
6388 int regno = REGNO (x);
6389 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6390 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6391 if (base_p != index_p)
6392 return base_p ? 1 : -1;
6393 }
6394 return 0;
6395 }
6396
6397 /* INFO->INNER describes a normal, non-automodified address.
6398 Fill in the rest of INFO accordingly. */
6399
6400 static void
6401 decompose_normal_address (struct address_info *info)
6402 {
6403 /* Treat the address as the sum of up to four values. */
6404 rtx *ops[4];
6405 size_t n_ops = extract_plus_operands (info->inner, ops,
6406 ops + ARRAY_SIZE (ops)) - ops;
6407
6408 /* If there is more than one component, any base component is in a PLUS. */
6409 if (n_ops > 1)
6410 info->base_outer_code = PLUS;
6411
6412 /* Try to classify each sum operand now. Leave those that could be
6413 either a base or an index in OPS. */
6414 rtx *inner_ops[4];
6415 size_t out = 0;
6416 for (size_t in = 0; in < n_ops; ++in)
6417 {
6418 rtx *loc = ops[in];
6419 rtx *inner = strip_address_mutations (loc);
6420 if (CONSTANT_P (*inner))
6421 set_address_disp (info, loc, inner);
6422 else if (GET_CODE (*inner) == UNSPEC)
6423 set_address_segment (info, loc, inner);
6424 else
6425 {
6426 /* The only other possibilities are a base or an index. */
6427 rtx *base_term = get_base_term (inner);
6428 rtx *index_term = get_index_term (inner);
6429 gcc_assert (base_term || index_term);
6430 if (!base_term)
6431 set_address_index (info, loc, index_term);
6432 else if (!index_term)
6433 set_address_base (info, loc, base_term);
6434 else
6435 {
6436 gcc_assert (base_term == index_term);
6437 ops[out] = loc;
6438 inner_ops[out] = base_term;
6439 ++out;
6440 }
6441 }
6442 }
6443
6444 /* Classify the remaining OPS members as bases and indexes. */
6445 if (out == 1)
6446 {
6447 /* If we haven't seen a base or an index yet, assume that this is
6448 the base. If we were confident that another term was the base
6449 or index, treat the remaining operand as the other kind. */
6450 if (!info->base)
6451 set_address_base (info, ops[0], inner_ops[0]);
6452 else
6453 set_address_index (info, ops[0], inner_ops[0]);
6454 }
6455 else if (out == 2)
6456 {
6457 /* In the event of a tie, assume the base comes first. */
6458 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6459 GET_CODE (*ops[1]))
6460 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6461 GET_CODE (*ops[0])))
6462 {
6463 set_address_base (info, ops[0], inner_ops[0]);
6464 set_address_index (info, ops[1], inner_ops[1]);
6465 }
6466 else
6467 {
6468 set_address_base (info, ops[1], inner_ops[1]);
6469 set_address_index (info, ops[0], inner_ops[0]);
6470 }
6471 }
6472 else
6473 gcc_assert (out == 0);
6474 }
6475
6476 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6477 or VOIDmode if not known. AS is the address space associated with LOC.
6478 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6479
6480 void
6481 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6482 addr_space_t as, enum rtx_code outer_code)
6483 {
6484 memset (info, 0, sizeof (*info));
6485 info->mode = mode;
6486 info->as = as;
6487 info->addr_outer_code = outer_code;
6488 info->outer = loc;
6489 info->inner = strip_address_mutations (loc, &outer_code);
6490 info->base_outer_code = outer_code;
6491 switch (GET_CODE (*info->inner))
6492 {
6493 case PRE_DEC:
6494 case PRE_INC:
6495 case POST_DEC:
6496 case POST_INC:
6497 decompose_incdec_address (info);
6498 break;
6499
6500 case PRE_MODIFY:
6501 case POST_MODIFY:
6502 decompose_automod_address (info);
6503 break;
6504
6505 default:
6506 decompose_normal_address (info);
6507 break;
6508 }
6509 }
6510
6511 /* Describe address operand LOC in INFO. */
6512
6513 void
6514 decompose_lea_address (struct address_info *info, rtx *loc)
6515 {
6516 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6517 }
6518
6519 /* Describe the address of MEM X in INFO. */
6520
6521 void
6522 decompose_mem_address (struct address_info *info, rtx x)
6523 {
6524 gcc_assert (MEM_P (x));
6525 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6526 MEM_ADDR_SPACE (x), MEM);
6527 }
6528
6529 /* Update INFO after a change to the address it describes. */
6530
6531 void
6532 update_address (struct address_info *info)
6533 {
6534 decompose_address (info, info->outer, info->mode, info->as,
6535 info->addr_outer_code);
6536 }
6537
6538 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6539 more complicated than that. */
6540
6541 HOST_WIDE_INT
6542 get_index_scale (const struct address_info *info)
6543 {
6544 rtx index = *info->index;
6545 if (GET_CODE (index) == MULT
6546 && CONST_INT_P (XEXP (index, 1))
6547 && info->index_term == &XEXP (index, 0))
6548 return INTVAL (XEXP (index, 1));
6549
6550 if (GET_CODE (index) == ASHIFT
6551 && CONST_INT_P (XEXP (index, 1))
6552 && info->index_term == &XEXP (index, 0))
6553 return HOST_WIDE_INT_1 << INTVAL (XEXP (index, 1));
6554
6555 if (info->index == info->index_term)
6556 return 1;
6557
6558 return 0;
6559 }
6560
6561 /* Return the "index code" of INFO, in the form required by
6562 ok_for_base_p_1. */
6563
6564 enum rtx_code
6565 get_index_code (const struct address_info *info)
6566 {
6567 if (info->index)
6568 return GET_CODE (*info->index);
6569
6570 if (info->disp)
6571 return GET_CODE (*info->disp);
6572
6573 return SCRATCH;
6574 }
6575
6576 /* Return true if RTL X contains a SYMBOL_REF. */
6577
6578 bool
6579 contains_symbol_ref_p (const_rtx x)
6580 {
6581 subrtx_iterator::array_type array;
6582 FOR_EACH_SUBRTX (iter, array, x, ALL)
6583 if (SYMBOL_REF_P (*iter))
6584 return true;
6585
6586 return false;
6587 }
6588
6589 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6590
6591 bool
6592 contains_symbolic_reference_p (const_rtx x)
6593 {
6594 subrtx_iterator::array_type array;
6595 FOR_EACH_SUBRTX (iter, array, x, ALL)
6596 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6597 return true;
6598
6599 return false;
6600 }
6601
6602 /* Return true if RTL X contains a constant pool address. */
6603
6604 bool
6605 contains_constant_pool_address_p (const_rtx x)
6606 {
6607 subrtx_iterator::array_type array;
6608 FOR_EACH_SUBRTX (iter, array, x, ALL)
6609 if (SYMBOL_REF_P (*iter) && CONSTANT_POOL_ADDRESS_P (*iter))
6610 return true;
6611
6612 return false;
6613 }
6614
6615
6616 /* Return true if X contains a thread-local symbol. */
6617
6618 bool
6619 tls_referenced_p (const_rtx x)
6620 {
6621 if (!targetm.have_tls)
6622 return false;
6623
6624 subrtx_iterator::array_type array;
6625 FOR_EACH_SUBRTX (iter, array, x, ALL)
6626 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6627 return true;
6628 return false;
6629 }
6630
6631 /* Return true if reg REGNO with mode REG_MODE would be clobbered by the
6632 clobber_high operand in CLOBBER_HIGH_OP. */
6633
6634 bool
6635 reg_is_clobbered_by_clobber_high (unsigned int regno, machine_mode reg_mode,
6636 const_rtx clobber_high_op)
6637 {
6638 unsigned int clobber_regno = REGNO (clobber_high_op);
6639 machine_mode clobber_mode = GET_MODE (clobber_high_op);
6640 unsigned char regno_nregs = hard_regno_nregs (regno, reg_mode);
6641
6642 /* Clobber high should always span exactly one register. */
6643 gcc_assert (REG_NREGS (clobber_high_op) == 1);
6644
6645 /* Clobber high needs to match with one of the registers in X. */
6646 if (clobber_regno < regno || clobber_regno >= regno + regno_nregs)
6647 return false;
6648
6649 gcc_assert (reg_mode != BLKmode && clobber_mode != BLKmode);
6650
6651 if (reg_mode == VOIDmode)
6652 return clobber_mode != VOIDmode;
6653
6654 /* Clobber high will clobber if its size might be greater than the size of
6655 register regno. */
6656 return maybe_gt (exact_div (GET_MODE_SIZE (reg_mode), regno_nregs),
6657 GET_MODE_SIZE (clobber_mode));
6658 }