target.h (unspec_may_trap_p): New target hook.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
267 {
268 enum rtx_code code = GET_CODE (x);
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
274
275 case LABEL_REF:
276 return 0;
277
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
290
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
293
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
301 {
302 HOST_WIDE_INT offset;
303
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
308
309 offset = INTVAL (XEXP (x, 1));
310
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
320
321 return offset % GET_MODE_SIZE (mode) != 0;
322 }
323
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
327
328 return 1;
329
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
333
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
340
341 default:
342 break;
343 }
344
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
347 }
348
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350
351 int
352 rtx_addr_can_trap_p (const_rtx x)
353 {
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 }
356
357 /* Return true if X is an address that is known to not be zero. */
358
359 bool
360 nonzero_address_p (const_rtx x)
361 {
362 const enum rtx_code code = GET_CODE (x);
363
364 switch (code)
365 {
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
368
369 case LABEL_REF:
370 return true;
371
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
383
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
386
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
395
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
404
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
408
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
414
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
417
418 default:
419 break;
420 }
421
422 /* If it isn't one of the case above, might be zero. */
423 return false;
424 }
425
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
431
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
434 {
435 enum rtx_code code;
436 int i;
437 const char *fmt;
438
439 if (x == 0)
440 return 0;
441
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
445
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
449 {
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
452 }
453 else if (fmt[i] == 'E')
454 {
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
459 }
460 return 0;
461 }
462 \f
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
467
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
470 {
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
473
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
481 }
482
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
486
487 rtx
488 get_related_value (const_rtx x)
489 {
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
500 }
501 \f
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
504
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
507 {
508 tree decl;
509
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
512
513 if (offset == 0)
514 return true;
515
516 if (offset > 0)
517 {
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
521
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
525 }
526
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
533
534 return false;
535 }
536
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
539
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
542 {
543 if (GET_CODE (x) == CONST)
544 {
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
547 {
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
551 }
552 }
553 *base_out = x;
554 *offset_out = const0_rtx;
555 }
556 \f
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
559
560 int
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
562 {
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
567
568 if (x == find)
569 return 1;
570
571 code = GET_CODE (x);
572
573 switch (code)
574 {
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
585
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
591
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
596
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
601
602 default:
603 break;
604 }
605
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
608
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
610 {
611 switch (*format_ptr++)
612 {
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
616
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
621 }
622 }
623 return count;
624 }
625
626 \f
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
630
631 int
632 reg_mentioned_p (const_rtx reg, const_rtx in)
633 {
634 const char *fmt;
635 int i;
636 enum rtx_code code;
637
638 if (in == 0)
639 return 0;
640
641 if (reg == in)
642 return 1;
643
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
646
647 code = GET_CODE (in);
648
649 switch (code)
650 {
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
654
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
661
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
668
669 default:
670 break;
671 }
672
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
675
676 fmt = GET_RTX_FORMAT (code);
677
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 if (fmt[i] == 'E')
681 {
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
686 }
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
690 }
691 return 0;
692 }
693 \f
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
696
697 int
698 no_labels_between_p (const_rtx beg, const_rtx end)
699 {
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
707 }
708
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
711
712 int
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
714 {
715 rtx insn;
716
717 if (from_insn == to_insn)
718 return 0;
719
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
726 }
727 \f
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
731
732 int
733 reg_referenced_p (const_rtx x, const_rtx body)
734 {
735 int i;
736
737 switch (GET_CODE (body))
738 {
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
742
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
758
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
764
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
769
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
772
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
775
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
782
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
788
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
794
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
799
800 default:
801 return 0;
802 }
803 }
804 \f
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
807
808 int
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
810 {
811 const_rtx insn;
812
813 if (from_insn == to_insn)
814 return 0;
815
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
820 }
821
822 /* Internals of reg_set_between_p. */
823 int
824 reg_set_p (const_rtx reg, const_rtx insn)
825 {
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
838
839 return set_of (reg, insn) != NULL_RTX;
840 }
841
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
845
846 int
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
848 {
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
853
854 if (start == end)
855 return 0;
856
857 switch (code)
858 {
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
867
868 case PC:
869 case CC0:
870 return 1;
871
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
882
883 case REG:
884 return reg_set_between_p (x, start, end);
885
886 default:
887 break;
888 }
889
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 {
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
895
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
900 }
901
902 return 0;
903 }
904
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
908
909 int
910 modified_in_p (const_rtx x, const_rtx insn)
911 {
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
915
916 switch (code)
917 {
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
926
927 case PC:
928 case CC0:
929 return 1;
930
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
940
941 case REG:
942 return reg_set_p (x, insn);
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950 {
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
953
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
958 }
959
960 return 0;
961 }
962 \f
963 /* Helper function for set_of. */
964 struct set_of_data
965 {
966 const_rtx found;
967 const_rtx pat;
968 };
969
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
972 {
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
977 }
978
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
983 {
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
989 }
990 \f
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
994
995 rtx
996 single_set_2 (const_rtx insn, const_rtx pat)
997 {
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1001
1002 if (GET_CODE (pat) == PARALLEL)
1003 {
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1005 {
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1008 {
1009 case USE:
1010 case CLOBBER:
1011 break;
1012
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1018
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1023 {
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1029 }
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1036
1037 default:
1038 return NULL_RTX;
1039 }
1040 }
1041 }
1042 return set;
1043 }
1044
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1047
1048 int
1049 multiple_sets (const_rtx insn)
1050 {
1051 int found;
1052 int i;
1053
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1057
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1060 {
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 {
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1069 }
1070 }
1071
1072 /* Either zero or one SET. */
1073 return 0;
1074 }
1075 \f
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1078
1079 int
1080 set_noop_p (const_rtx set)
1081 {
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1084
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1087
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1090
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1095
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1098
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1100 {
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1105 }
1106
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1109 }
1110 \f
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1113
1114 int
1115 noop_move_p (const_rtx insn)
1116 {
1117 rtx pat = PATTERN (insn);
1118
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1121
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1125
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1130
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1133
1134 if (GET_CODE (pat) == PARALLEL)
1135 {
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1140 {
1141 rtx tem = XVECEXP (pat, 0, i);
1142
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1146
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1149 }
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155 \f
1156
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1163
1164 rtx
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1166 {
1167 rtx p;
1168
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1172 {
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1175
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1177 {
1178 rtx src = SET_SRC (set);
1179
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1182
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1189 {
1190 *pinsn = p;
1191 return src;
1192 }
1193 }
1194
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1198 }
1199
1200 return x;
1201 }
1202 \f
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1206
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1209
1210 int
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1213 {
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1218
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1224
1225 code = GET_CODE (x);
1226
1227 switch (code)
1228 {
1229 case REG:
1230 x_regno = REGNO (x);
1231
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1242
1243 return endregno > x_regno && regno < END_REGNO (x);
1244
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1250 {
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1255
1256 return endregno > inner_regno && regno < inner_endregno;
1257 }
1258 break;
1259
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1275
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1280
1281 default:
1282 break;
1283 }
1284
1285 /* X does not match, so try its subexpressions. */
1286
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1289 {
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1291 {
1292 if (i == 0)
1293 {
1294 x = XEXP (x, 0);
1295 goto repeat;
1296 }
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1300 }
1301 else if (fmt[i] == 'E')
1302 {
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1318
1319 int
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1321 {
1322 unsigned int regno, endregno;
1323
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1329
1330 recurse:
1331 switch (GET_CODE (x))
1332 {
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1339
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1347
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1353
1354 case MEM:
1355 {
1356 const char *fmt;
1357 int i;
1358
1359 if (MEM_P (in))
1360 return 1;
1361
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1365 {
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1368 }
1369 else if (fmt[i] == 'E')
1370 {
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1375 }
1376
1377 return 0;
1378 }
1379
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1384
1385 case PARALLEL:
1386 {
1387 int i;
1388
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1395 }
1396
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1400 }
1401 }
1402 \f
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1406
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1411
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1414
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1417 {
1418 int i;
1419
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1422
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1424 {
1425 rtx dest = SET_DEST (x);
1426
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1433
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1437 {
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1441 }
1442 else
1443 (*fun) (dest, x, data);
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1449 }
1450 \f
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1455
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1459
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1462 {
1463 rtx body = *pbody;
1464 int i;
1465
1466 switch (GET_CODE (body))
1467 {
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1472
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1477
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1482
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1486
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1491
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1495
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1499
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1505
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1510
1511 case SET:
1512 {
1513 rtx dest = SET_DEST (body);
1514
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1518
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1520 {
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1523 }
1524
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1527
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1530 }
1531 return;
1532
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1537 }
1538 }
1539 \f
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1543
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1547
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1552
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1556
1557 int
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1559 {
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1562
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1566
1567 gcc_assert (REG_P (x));
1568
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1574
1575 return 1;
1576 }
1577
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1581
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1584 {
1585 unsigned int regno, endregno;
1586
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1593
1594 if (!REG_P (dest))
1595 return false;
1596
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1600 }
1601
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1604
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1607 {
1608 if (GET_CODE (dest) == PARALLEL)
1609 {
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1614
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1616 {
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1621 }
1622
1623 return false;
1624 }
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1627 }
1628
1629 /* Utility function for dead_or_set_p to check an individual register. */
1630
1631 int
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1633 {
1634 const_rtx pattern;
1635
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1639
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1643
1644 pattern = PATTERN (insn);
1645
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1648
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1652 {
1653 int i;
1654
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1656 {
1657 rtx body = XVECEXP (pattern, 0, i);
1658
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1661
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1673
1674 rtx
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1676 {
1677 rtx link;
1678
1679 gcc_assert (insn);
1680
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1685 {
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1690 }
1691
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1696 }
1697
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1702
1703 rtx
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1705 {
1706 rtx link;
1707
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1711
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1721 }
1722
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1725
1726 rtx
1727 find_reg_equal_equiv_note (const_rtx insn)
1728 {
1729 rtx link;
1730
1731 if (!INSN_P (insn))
1732 return 0;
1733
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1737 {
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1742
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1747 }
1748 return NULL;
1749 }
1750
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1754
1755 rtx
1756 find_constant_src (const_rtx insn)
1757 {
1758 rtx note, set, x;
1759
1760 set = single_set (insn);
1761 if (set)
1762 {
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1766 }
1767
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1771
1772 return NULL_RTX;
1773 }
1774
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1777
1778 int
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1780 {
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1785
1786 gcc_assert (datum);
1787
1788 if (!REG_P (datum))
1789 {
1790 rtx link;
1791
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1798 }
1799 else
1800 {
1801 unsigned int regno = REGNO (datum);
1802
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1805
1806 if (regno < FIRST_PSEUDO_REGISTER)
1807 {
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1810
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1822
1823 int
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1825 {
1826 rtx link;
1827
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1830
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1834
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1836 {
1837 rtx op, reg;
1838
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /* Return true if INSN is a call to a pure function. */
1850
1851 int
1852 pure_call_p (const_rtx insn)
1853 {
1854 const_rtx link;
1855
1856 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1857 return 0;
1858
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1861 {
1862 rtx u, m;
1863
1864 if (GET_CODE (u = XEXP (link, 0)) == USE
1865 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1866 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1867 return 1;
1868 }
1869
1870 return 0;
1871 }
1872 \f
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1874
1875 void
1876 remove_note (rtx insn, const_rtx note)
1877 {
1878 rtx link;
1879
1880 if (note == NULL_RTX)
1881 return;
1882
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1888 {
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1891 }
1892
1893 switch (REG_NOTE_KIND (note))
1894 {
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1908 {
1909 rtx *loc;
1910
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1913 {
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1919 }
1920 }
1921
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1925
1926 int
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1928 {
1929 const_rtx x;
1930
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1934
1935 return 0;
1936 }
1937
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1940
1941 A simple equality test is used to determine if NODE matches. */
1942
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1945 {
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1948
1949 while (temp)
1950 {
1951 if (node == XEXP (temp, 0))
1952 {
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1958
1959 return;
1960 }
1961
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1964 }
1965 }
1966 \f
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1971
1972 int
1973 volatile_insn_p (const_rtx x)
1974 {
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1977 {
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1995
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
1999
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2004
2005 default:
2006 break;
2007 }
2008
2009 /* Recursively scan the operands of this expression. */
2010
2011 {
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2014
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2016 {
2017 if (fmt[i] == 'e')
2018 {
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2021 }
2022 else if (fmt[i] == 'E')
2023 {
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 }
2031 return 0;
2032 }
2033
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2036
2037 int
2038 volatile_refs_p (const_rtx x)
2039 {
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2042 {
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2058
2059 case UNSPEC_VOLATILE:
2060 return 1;
2061
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2067
2068 default:
2069 break;
2070 }
2071
2072 /* Recursively scan the operands of this expression. */
2073
2074 {
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2077
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2079 {
2080 if (fmt[i] == 'e')
2081 {
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2084 }
2085 else if (fmt[i] == 'E')
2086 {
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2091 }
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2099
2100 int
2101 side_effects_p (const_rtx x)
2102 {
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2120
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2126
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2137
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2143
2144 default:
2145 break;
2146 }
2147
2148 /* Recursively scan the operands of this expression. */
2149
2150 {
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2153
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155 {
2156 if (fmt[i] == 'e')
2157 {
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2160 }
2161 else if (fmt[i] == 'E')
2162 {
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2167 }
2168 }
2169 }
2170 return 0;
2171 }
2172 \f
2173 enum may_trap_p_flags
2174 {
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2177 };
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2184
2185 int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2187 {
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2192
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2197 {
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2211
2212 case UNSPEC:
2213 case UNSPEC_VOLATILE:
2214 return targetm.unspec_may_trap_p (x, flags);
2215
2216 case ASM_INPUT:
2217 case TRAP_IF:
2218 return 1;
2219
2220 case ASM_OPERANDS:
2221 return MEM_VOLATILE_P (x);
2222
2223 /* Memory ref can trap unless it's a static var or a stack slot. */
2224 case MEM:
2225 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2226 reference; moving it out of condition might cause its address
2227 become invalid. */
2228 !(flags & MTP_AFTER_MOVE)
2229 && MEM_NOTRAP_P (x)
2230 && (!STRICT_ALIGNMENT || !unaligned_mems))
2231 return 0;
2232 return
2233 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2234
2235 /* Division by a non-constant might trap. */
2236 case DIV:
2237 case MOD:
2238 case UDIV:
2239 case UMOD:
2240 if (HONOR_SNANS (GET_MODE (x)))
2241 return 1;
2242 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2243 return flag_trapping_math;
2244 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2245 return 1;
2246 break;
2247
2248 case EXPR_LIST:
2249 /* An EXPR_LIST is used to represent a function call. This
2250 certainly may trap. */
2251 return 1;
2252
2253 case GE:
2254 case GT:
2255 case LE:
2256 case LT:
2257 case LTGT:
2258 case COMPARE:
2259 /* Some floating point comparisons may trap. */
2260 if (!flag_trapping_math)
2261 break;
2262 /* ??? There is no machine independent way to check for tests that trap
2263 when COMPARE is used, though many targets do make this distinction.
2264 For instance, sparc uses CCFPE for compares which generate exceptions
2265 and CCFP for compares which do not generate exceptions. */
2266 if (HONOR_NANS (GET_MODE (x)))
2267 return 1;
2268 /* But often the compare has some CC mode, so check operand
2269 modes as well. */
2270 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2271 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2272 return 1;
2273 break;
2274
2275 case EQ:
2276 case NE:
2277 if (HONOR_SNANS (GET_MODE (x)))
2278 return 1;
2279 /* Often comparison is CC mode, so check operand modes. */
2280 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2281 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2282 return 1;
2283 break;
2284
2285 case FIX:
2286 /* Conversion of floating point might trap. */
2287 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2288 return 1;
2289 break;
2290
2291 case NEG:
2292 case ABS:
2293 case SUBREG:
2294 /* These operations don't trap even with floating point. */
2295 break;
2296
2297 default:
2298 /* Any floating arithmetic may trap. */
2299 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2300 && flag_trapping_math)
2301 return 1;
2302 }
2303
2304 fmt = GET_RTX_FORMAT (code);
2305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2306 {
2307 if (fmt[i] == 'e')
2308 {
2309 if (may_trap_p_1 (XEXP (x, i), flags))
2310 return 1;
2311 }
2312 else if (fmt[i] == 'E')
2313 {
2314 int j;
2315 for (j = 0; j < XVECLEN (x, i); j++)
2316 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2317 return 1;
2318 }
2319 }
2320 return 0;
2321 }
2322
2323 /* Return nonzero if evaluating rtx X might cause a trap. */
2324
2325 int
2326 may_trap_p (const_rtx x)
2327 {
2328 return may_trap_p_1 (x, 0);
2329 }
2330
2331 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2332 is moved from its current location by some optimization. */
2333
2334 int
2335 may_trap_after_code_motion_p (const_rtx x)
2336 {
2337 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2338 }
2339
2340 /* Same as above, but additionally return nonzero if evaluating rtx X might
2341 cause a fault. We define a fault for the purpose of this function as a
2342 erroneous execution condition that cannot be encountered during the normal
2343 execution of a valid program; the typical example is an unaligned memory
2344 access on a strict alignment machine. The compiler guarantees that it
2345 doesn't generate code that will fault from a valid program, but this
2346 guarantee doesn't mean anything for individual instructions. Consider
2347 the following example:
2348
2349 struct S { int d; union { char *cp; int *ip; }; };
2350
2351 int foo(struct S *s)
2352 {
2353 if (s->d == 1)
2354 return *s->ip;
2355 else
2356 return *s->cp;
2357 }
2358
2359 on a strict alignment machine. In a valid program, foo will never be
2360 invoked on a structure for which d is equal to 1 and the underlying
2361 unique field of the union not aligned on a 4-byte boundary, but the
2362 expression *s->ip might cause a fault if considered individually.
2363
2364 At the RTL level, potentially problematic expressions will almost always
2365 verify may_trap_p; for example, the above dereference can be emitted as
2366 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2367 However, suppose that foo is inlined in a caller that causes s->cp to
2368 point to a local character variable and guarantees that s->d is not set
2369 to 1; foo may have been effectively translated into pseudo-RTL as:
2370
2371 if ((reg:SI) == 1)
2372 (set (reg:SI) (mem:SI (%fp - 7)))
2373 else
2374 (set (reg:QI) (mem:QI (%fp - 7)))
2375
2376 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2377 memory reference to a stack slot, but it will certainly cause a fault
2378 on a strict alignment machine. */
2379
2380 int
2381 may_trap_or_fault_p (const_rtx x)
2382 {
2383 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2384 }
2385 \f
2386 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2387 i.e., an inequality. */
2388
2389 int
2390 inequality_comparisons_p (const_rtx x)
2391 {
2392 const char *fmt;
2393 int len, i;
2394 const enum rtx_code code = GET_CODE (x);
2395
2396 switch (code)
2397 {
2398 case REG:
2399 case SCRATCH:
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_FIXED:
2405 case CONST_VECTOR:
2406 case CONST:
2407 case LABEL_REF:
2408 case SYMBOL_REF:
2409 return 0;
2410
2411 case LT:
2412 case LTU:
2413 case GT:
2414 case GTU:
2415 case LE:
2416 case LEU:
2417 case GE:
2418 case GEU:
2419 return 1;
2420
2421 default:
2422 break;
2423 }
2424
2425 len = GET_RTX_LENGTH (code);
2426 fmt = GET_RTX_FORMAT (code);
2427
2428 for (i = 0; i < len; i++)
2429 {
2430 if (fmt[i] == 'e')
2431 {
2432 if (inequality_comparisons_p (XEXP (x, i)))
2433 return 1;
2434 }
2435 else if (fmt[i] == 'E')
2436 {
2437 int j;
2438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2439 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2440 return 1;
2441 }
2442 }
2443
2444 return 0;
2445 }
2446 \f
2447 /* Replace any occurrence of FROM in X with TO. The function does
2448 not enter into CONST_DOUBLE for the replace.
2449
2450 Note that copying is not done so X must not be shared unless all copies
2451 are to be modified. */
2452
2453 rtx
2454 replace_rtx (rtx x, rtx from, rtx to)
2455 {
2456 int i, j;
2457 const char *fmt;
2458
2459 /* The following prevents loops occurrence when we change MEM in
2460 CONST_DOUBLE onto the same CONST_DOUBLE. */
2461 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2462 return x;
2463
2464 if (x == from)
2465 return to;
2466
2467 /* Allow this function to make replacements in EXPR_LISTs. */
2468 if (x == 0)
2469 return 0;
2470
2471 if (GET_CODE (x) == SUBREG)
2472 {
2473 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2474
2475 if (GET_CODE (new) == CONST_INT)
2476 {
2477 x = simplify_subreg (GET_MODE (x), new,
2478 GET_MODE (SUBREG_REG (x)),
2479 SUBREG_BYTE (x));
2480 gcc_assert (x);
2481 }
2482 else
2483 SUBREG_REG (x) = new;
2484
2485 return x;
2486 }
2487 else if (GET_CODE (x) == ZERO_EXTEND)
2488 {
2489 rtx new = replace_rtx (XEXP (x, 0), from, to);
2490
2491 if (GET_CODE (new) == CONST_INT)
2492 {
2493 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2494 new, GET_MODE (XEXP (x, 0)));
2495 gcc_assert (x);
2496 }
2497 else
2498 XEXP (x, 0) = new;
2499
2500 return x;
2501 }
2502
2503 fmt = GET_RTX_FORMAT (GET_CODE (x));
2504 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2505 {
2506 if (fmt[i] == 'e')
2507 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2508 else if (fmt[i] == 'E')
2509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2510 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2511 }
2512
2513 return x;
2514 }
2515 \f
2516 /* Replace occurrences of the old label in *X with the new one.
2517 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2518
2519 int
2520 replace_label (rtx *x, void *data)
2521 {
2522 rtx l = *x;
2523 rtx old_label = ((replace_label_data *) data)->r1;
2524 rtx new_label = ((replace_label_data *) data)->r2;
2525 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2526
2527 if (l == NULL_RTX)
2528 return 0;
2529
2530 if (GET_CODE (l) == SYMBOL_REF
2531 && CONSTANT_POOL_ADDRESS_P (l))
2532 {
2533 rtx c = get_pool_constant (l);
2534 if (rtx_referenced_p (old_label, c))
2535 {
2536 rtx new_c, new_l;
2537 replace_label_data *d = (replace_label_data *) data;
2538
2539 /* Create a copy of constant C; replace the label inside
2540 but do not update LABEL_NUSES because uses in constant pool
2541 are not counted. */
2542 new_c = copy_rtx (c);
2543 d->update_label_nuses = false;
2544 for_each_rtx (&new_c, replace_label, data);
2545 d->update_label_nuses = update_label_nuses;
2546
2547 /* Add the new constant NEW_C to constant pool and replace
2548 the old reference to constant by new reference. */
2549 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2550 *x = replace_rtx (l, l, new_l);
2551 }
2552 return 0;
2553 }
2554
2555 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2556 field. This is not handled by for_each_rtx because it doesn't
2557 handle unprinted ('0') fields. */
2558 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2559 JUMP_LABEL (l) = new_label;
2560
2561 if ((GET_CODE (l) == LABEL_REF
2562 || GET_CODE (l) == INSN_LIST)
2563 && XEXP (l, 0) == old_label)
2564 {
2565 XEXP (l, 0) = new_label;
2566 if (update_label_nuses)
2567 {
2568 ++LABEL_NUSES (new_label);
2569 --LABEL_NUSES (old_label);
2570 }
2571 return 0;
2572 }
2573
2574 return 0;
2575 }
2576
2577 /* When *BODY is equal to X or X is directly referenced by *BODY
2578 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2579 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2580
2581 static int
2582 rtx_referenced_p_1 (rtx *body, void *x)
2583 {
2584 rtx y = (rtx) x;
2585
2586 if (*body == NULL_RTX)
2587 return y == NULL_RTX;
2588
2589 /* Return true if a label_ref *BODY refers to label Y. */
2590 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2591 return XEXP (*body, 0) == y;
2592
2593 /* If *BODY is a reference to pool constant traverse the constant. */
2594 if (GET_CODE (*body) == SYMBOL_REF
2595 && CONSTANT_POOL_ADDRESS_P (*body))
2596 return rtx_referenced_p (y, get_pool_constant (*body));
2597
2598 /* By default, compare the RTL expressions. */
2599 return rtx_equal_p (*body, y);
2600 }
2601
2602 /* Return true if X is referenced in BODY. */
2603
2604 int
2605 rtx_referenced_p (rtx x, rtx body)
2606 {
2607 return for_each_rtx (&body, rtx_referenced_p_1, x);
2608 }
2609
2610 /* If INSN is a tablejump return true and store the label (before jump table) to
2611 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2612
2613 bool
2614 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2615 {
2616 rtx label, table;
2617
2618 if (JUMP_P (insn)
2619 && (label = JUMP_LABEL (insn)) != NULL_RTX
2620 && (table = next_active_insn (label)) != NULL_RTX
2621 && JUMP_P (table)
2622 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2623 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2624 {
2625 if (labelp)
2626 *labelp = label;
2627 if (tablep)
2628 *tablep = table;
2629 return true;
2630 }
2631 return false;
2632 }
2633
2634 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2635 constant that is not in the constant pool and not in the condition
2636 of an IF_THEN_ELSE. */
2637
2638 static int
2639 computed_jump_p_1 (const_rtx x)
2640 {
2641 const enum rtx_code code = GET_CODE (x);
2642 int i, j;
2643 const char *fmt;
2644
2645 switch (code)
2646 {
2647 case LABEL_REF:
2648 case PC:
2649 return 0;
2650
2651 case CONST:
2652 case CONST_INT:
2653 case CONST_DOUBLE:
2654 case CONST_FIXED:
2655 case CONST_VECTOR:
2656 case SYMBOL_REF:
2657 case REG:
2658 return 1;
2659
2660 case MEM:
2661 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2662 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2663
2664 case IF_THEN_ELSE:
2665 return (computed_jump_p_1 (XEXP (x, 1))
2666 || computed_jump_p_1 (XEXP (x, 2)));
2667
2668 default:
2669 break;
2670 }
2671
2672 fmt = GET_RTX_FORMAT (code);
2673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2674 {
2675 if (fmt[i] == 'e'
2676 && computed_jump_p_1 (XEXP (x, i)))
2677 return 1;
2678
2679 else if (fmt[i] == 'E')
2680 for (j = 0; j < XVECLEN (x, i); j++)
2681 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2682 return 1;
2683 }
2684
2685 return 0;
2686 }
2687
2688 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2689
2690 Tablejumps and casesi insns are not considered indirect jumps;
2691 we can recognize them by a (use (label_ref)). */
2692
2693 int
2694 computed_jump_p (const_rtx insn)
2695 {
2696 int i;
2697 if (JUMP_P (insn))
2698 {
2699 rtx pat = PATTERN (insn);
2700
2701 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2702 if (JUMP_LABEL (insn) != NULL)
2703 return 0;
2704
2705 if (GET_CODE (pat) == PARALLEL)
2706 {
2707 int len = XVECLEN (pat, 0);
2708 int has_use_labelref = 0;
2709
2710 for (i = len - 1; i >= 0; i--)
2711 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2712 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2713 == LABEL_REF))
2714 has_use_labelref = 1;
2715
2716 if (! has_use_labelref)
2717 for (i = len - 1; i >= 0; i--)
2718 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2719 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2720 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2721 return 1;
2722 }
2723 else if (GET_CODE (pat) == SET
2724 && SET_DEST (pat) == pc_rtx
2725 && computed_jump_p_1 (SET_SRC (pat)))
2726 return 1;
2727 }
2728 return 0;
2729 }
2730
2731 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2732 calls. Processes the subexpressions of EXP and passes them to F. */
2733 static int
2734 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2735 {
2736 int result, i, j;
2737 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2738 rtx *x;
2739
2740 for (; format[n] != '\0'; n++)
2741 {
2742 switch (format[n])
2743 {
2744 case 'e':
2745 /* Call F on X. */
2746 x = &XEXP (exp, n);
2747 result = (*f) (x, data);
2748 if (result == -1)
2749 /* Do not traverse sub-expressions. */
2750 continue;
2751 else if (result != 0)
2752 /* Stop the traversal. */
2753 return result;
2754
2755 if (*x == NULL_RTX)
2756 /* There are no sub-expressions. */
2757 continue;
2758
2759 i = non_rtx_starting_operands[GET_CODE (*x)];
2760 if (i >= 0)
2761 {
2762 result = for_each_rtx_1 (*x, i, f, data);
2763 if (result != 0)
2764 return result;
2765 }
2766 break;
2767
2768 case 'V':
2769 case 'E':
2770 if (XVEC (exp, n) == 0)
2771 continue;
2772 for (j = 0; j < XVECLEN (exp, n); ++j)
2773 {
2774 /* Call F on X. */
2775 x = &XVECEXP (exp, n, j);
2776 result = (*f) (x, data);
2777 if (result == -1)
2778 /* Do not traverse sub-expressions. */
2779 continue;
2780 else if (result != 0)
2781 /* Stop the traversal. */
2782 return result;
2783
2784 if (*x == NULL_RTX)
2785 /* There are no sub-expressions. */
2786 continue;
2787
2788 i = non_rtx_starting_operands[GET_CODE (*x)];
2789 if (i >= 0)
2790 {
2791 result = for_each_rtx_1 (*x, i, f, data);
2792 if (result != 0)
2793 return result;
2794 }
2795 }
2796 break;
2797
2798 default:
2799 /* Nothing to do. */
2800 break;
2801 }
2802 }
2803
2804 return 0;
2805 }
2806
2807 /* Traverse X via depth-first search, calling F for each
2808 sub-expression (including X itself). F is also passed the DATA.
2809 If F returns -1, do not traverse sub-expressions, but continue
2810 traversing the rest of the tree. If F ever returns any other
2811 nonzero value, stop the traversal, and return the value returned
2812 by F. Otherwise, return 0. This function does not traverse inside
2813 tree structure that contains RTX_EXPRs, or into sub-expressions
2814 whose format code is `0' since it is not known whether or not those
2815 codes are actually RTL.
2816
2817 This routine is very general, and could (should?) be used to
2818 implement many of the other routines in this file. */
2819
2820 int
2821 for_each_rtx (rtx *x, rtx_function f, void *data)
2822 {
2823 int result;
2824 int i;
2825
2826 /* Call F on X. */
2827 result = (*f) (x, data);
2828 if (result == -1)
2829 /* Do not traverse sub-expressions. */
2830 return 0;
2831 else if (result != 0)
2832 /* Stop the traversal. */
2833 return result;
2834
2835 if (*x == NULL_RTX)
2836 /* There are no sub-expressions. */
2837 return 0;
2838
2839 i = non_rtx_starting_operands[GET_CODE (*x)];
2840 if (i < 0)
2841 return 0;
2842
2843 return for_each_rtx_1 (*x, i, f, data);
2844 }
2845
2846
2847 /* Searches X for any reference to REGNO, returning the rtx of the
2848 reference found if any. Otherwise, returns NULL_RTX. */
2849
2850 rtx
2851 regno_use_in (unsigned int regno, rtx x)
2852 {
2853 const char *fmt;
2854 int i, j;
2855 rtx tem;
2856
2857 if (REG_P (x) && REGNO (x) == regno)
2858 return x;
2859
2860 fmt = GET_RTX_FORMAT (GET_CODE (x));
2861 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2862 {
2863 if (fmt[i] == 'e')
2864 {
2865 if ((tem = regno_use_in (regno, XEXP (x, i))))
2866 return tem;
2867 }
2868 else if (fmt[i] == 'E')
2869 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2870 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2871 return tem;
2872 }
2873
2874 return NULL_RTX;
2875 }
2876
2877 /* Return a value indicating whether OP, an operand of a commutative
2878 operation, is preferred as the first or second operand. The higher
2879 the value, the stronger the preference for being the first operand.
2880 We use negative values to indicate a preference for the first operand
2881 and positive values for the second operand. */
2882
2883 int
2884 commutative_operand_precedence (rtx op)
2885 {
2886 enum rtx_code code = GET_CODE (op);
2887
2888 /* Constants always come the second operand. Prefer "nice" constants. */
2889 if (code == CONST_INT)
2890 return -8;
2891 if (code == CONST_DOUBLE)
2892 return -7;
2893 if (code == CONST_FIXED)
2894 return -7;
2895 op = avoid_constant_pool_reference (op);
2896 code = GET_CODE (op);
2897
2898 switch (GET_RTX_CLASS (code))
2899 {
2900 case RTX_CONST_OBJ:
2901 if (code == CONST_INT)
2902 return -6;
2903 if (code == CONST_DOUBLE)
2904 return -5;
2905 if (code == CONST_FIXED)
2906 return -5;
2907 return -4;
2908
2909 case RTX_EXTRA:
2910 /* SUBREGs of objects should come second. */
2911 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2912 return -3;
2913 return 0;
2914
2915 case RTX_OBJ:
2916 /* Complex expressions should be the first, so decrease priority
2917 of objects. Prefer pointer objects over non pointer objects. */
2918 if ((REG_P (op) && REG_POINTER (op))
2919 || (MEM_P (op) && MEM_POINTER (op)))
2920 return -1;
2921 return -2;
2922
2923 case RTX_COMM_ARITH:
2924 /* Prefer operands that are themselves commutative to be first.
2925 This helps to make things linear. In particular,
2926 (and (and (reg) (reg)) (not (reg))) is canonical. */
2927 return 4;
2928
2929 case RTX_BIN_ARITH:
2930 /* If only one operand is a binary expression, it will be the first
2931 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2932 is canonical, although it will usually be further simplified. */
2933 return 2;
2934
2935 case RTX_UNARY:
2936 /* Then prefer NEG and NOT. */
2937 if (code == NEG || code == NOT)
2938 return 1;
2939
2940 default:
2941 return 0;
2942 }
2943 }
2944
2945 /* Return 1 iff it is necessary to swap operands of commutative operation
2946 in order to canonicalize expression. */
2947
2948 bool
2949 swap_commutative_operands_p (rtx x, rtx y)
2950 {
2951 return (commutative_operand_precedence (x)
2952 < commutative_operand_precedence (y));
2953 }
2954
2955 /* Return 1 if X is an autoincrement side effect and the register is
2956 not the stack pointer. */
2957 int
2958 auto_inc_p (const_rtx x)
2959 {
2960 switch (GET_CODE (x))
2961 {
2962 case PRE_INC:
2963 case POST_INC:
2964 case PRE_DEC:
2965 case POST_DEC:
2966 case PRE_MODIFY:
2967 case POST_MODIFY:
2968 /* There are no REG_INC notes for SP. */
2969 if (XEXP (x, 0) != stack_pointer_rtx)
2970 return 1;
2971 default:
2972 break;
2973 }
2974 return 0;
2975 }
2976
2977 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2978 int
2979 loc_mentioned_in_p (rtx *loc, const_rtx in)
2980 {
2981 enum rtx_code code;
2982 const char *fmt;
2983 int i, j;
2984
2985 if (!in)
2986 return 0;
2987
2988 code = GET_CODE (in);
2989 fmt = GET_RTX_FORMAT (code);
2990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2991 {
2992 if (loc == &in->u.fld[i].rt_rtx)
2993 return 1;
2994 if (fmt[i] == 'e')
2995 {
2996 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2997 return 1;
2998 }
2999 else if (fmt[i] == 'E')
3000 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3001 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3002 return 1;
3003 }
3004 return 0;
3005 }
3006
3007 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3008 and SUBREG_BYTE, return the bit offset where the subreg begins
3009 (counting from the least significant bit of the operand). */
3010
3011 unsigned int
3012 subreg_lsb_1 (enum machine_mode outer_mode,
3013 enum machine_mode inner_mode,
3014 unsigned int subreg_byte)
3015 {
3016 unsigned int bitpos;
3017 unsigned int byte;
3018 unsigned int word;
3019
3020 /* A paradoxical subreg begins at bit position 0. */
3021 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3022 return 0;
3023
3024 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3025 /* If the subreg crosses a word boundary ensure that
3026 it also begins and ends on a word boundary. */
3027 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3028 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3029 && (subreg_byte % UNITS_PER_WORD
3030 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3031
3032 if (WORDS_BIG_ENDIAN)
3033 word = (GET_MODE_SIZE (inner_mode)
3034 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3035 else
3036 word = subreg_byte / UNITS_PER_WORD;
3037 bitpos = word * BITS_PER_WORD;
3038
3039 if (BYTES_BIG_ENDIAN)
3040 byte = (GET_MODE_SIZE (inner_mode)
3041 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3042 else
3043 byte = subreg_byte % UNITS_PER_WORD;
3044 bitpos += byte * BITS_PER_UNIT;
3045
3046 return bitpos;
3047 }
3048
3049 /* Given a subreg X, return the bit offset where the subreg begins
3050 (counting from the least significant bit of the reg). */
3051
3052 unsigned int
3053 subreg_lsb (const_rtx x)
3054 {
3055 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3056 SUBREG_BYTE (x));
3057 }
3058
3059 /* Fill in information about a subreg of a hard register.
3060 xregno - A regno of an inner hard subreg_reg (or what will become one).
3061 xmode - The mode of xregno.
3062 offset - The byte offset.
3063 ymode - The mode of a top level SUBREG (or what may become one).
3064 info - Pointer to structure to fill in. */
3065 static void
3066 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3067 unsigned int offset, enum machine_mode ymode,
3068 struct subreg_info *info)
3069 {
3070 int nregs_xmode, nregs_ymode;
3071 int mode_multiple, nregs_multiple;
3072 int offset_adj, y_offset, y_offset_adj;
3073 int regsize_xmode, regsize_ymode;
3074 bool rknown;
3075
3076 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3077
3078 rknown = false;
3079
3080 /* If there are holes in a non-scalar mode in registers, we expect
3081 that it is made up of its units concatenated together. */
3082 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3083 {
3084 enum machine_mode xmode_unit;
3085
3086 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3087 if (GET_MODE_INNER (xmode) == VOIDmode)
3088 xmode_unit = xmode;
3089 else
3090 xmode_unit = GET_MODE_INNER (xmode);
3091 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3092 gcc_assert (nregs_xmode
3093 == (GET_MODE_NUNITS (xmode)
3094 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3095 gcc_assert (hard_regno_nregs[xregno][xmode]
3096 == (hard_regno_nregs[xregno][xmode_unit]
3097 * GET_MODE_NUNITS (xmode)));
3098
3099 /* You can only ask for a SUBREG of a value with holes in the middle
3100 if you don't cross the holes. (Such a SUBREG should be done by
3101 picking a different register class, or doing it in memory if
3102 necessary.) An example of a value with holes is XCmode on 32-bit
3103 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3104 3 for each part, but in memory it's two 128-bit parts.
3105 Padding is assumed to be at the end (not necessarily the 'high part')
3106 of each unit. */
3107 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3108 < GET_MODE_NUNITS (xmode))
3109 && (offset / GET_MODE_SIZE (xmode_unit)
3110 != ((offset + GET_MODE_SIZE (ymode) - 1)
3111 / GET_MODE_SIZE (xmode_unit))))
3112 {
3113 info->representable_p = false;
3114 rknown = true;
3115 }
3116 }
3117 else
3118 nregs_xmode = hard_regno_nregs[xregno][xmode];
3119
3120 nregs_ymode = hard_regno_nregs[xregno][ymode];
3121
3122 /* Paradoxical subregs are otherwise valid. */
3123 if (!rknown
3124 && offset == 0
3125 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3126 {
3127 info->representable_p = true;
3128 /* If this is a big endian paradoxical subreg, which uses more
3129 actual hard registers than the original register, we must
3130 return a negative offset so that we find the proper highpart
3131 of the register. */
3132 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3133 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3134 info->offset = nregs_xmode - nregs_ymode;
3135 else
3136 info->offset = 0;
3137 info->nregs = nregs_ymode;
3138 return;
3139 }
3140
3141 /* If registers store different numbers of bits in the different
3142 modes, we cannot generally form this subreg. */
3143 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3144 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3145 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3146 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3147 {
3148 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3149 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3150 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3151 {
3152 info->representable_p = false;
3153 info->nregs
3154 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3155 info->offset = offset / regsize_xmode;
3156 return;
3157 }
3158 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3159 {
3160 info->representable_p = false;
3161 info->nregs
3162 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3163 info->offset = offset / regsize_xmode;
3164 return;
3165 }
3166 }
3167
3168 /* Lowpart subregs are otherwise valid. */
3169 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3170 {
3171 info->representable_p = true;
3172 rknown = true;
3173
3174 if (offset == 0 || nregs_xmode == nregs_ymode)
3175 {
3176 info->offset = 0;
3177 info->nregs = nregs_ymode;
3178 return;
3179 }
3180 }
3181
3182 /* This should always pass, otherwise we don't know how to verify
3183 the constraint. These conditions may be relaxed but
3184 subreg_regno_offset would need to be redesigned. */
3185 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3186 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3187
3188 /* The XMODE value can be seen as a vector of NREGS_XMODE
3189 values. The subreg must represent a lowpart of given field.
3190 Compute what field it is. */
3191 offset_adj = offset;
3192 offset_adj -= subreg_lowpart_offset (ymode,
3193 mode_for_size (GET_MODE_BITSIZE (xmode)
3194 / nregs_xmode,
3195 MODE_INT, 0));
3196
3197 /* Size of ymode must not be greater than the size of xmode. */
3198 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3199 gcc_assert (mode_multiple != 0);
3200
3201 y_offset = offset / GET_MODE_SIZE (ymode);
3202 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3203 nregs_multiple = nregs_xmode / nregs_ymode;
3204
3205 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3206 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3207
3208 if (!rknown)
3209 {
3210 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3211 rknown = true;
3212 }
3213 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3214 info->nregs = nregs_ymode;
3215 }
3216
3217 /* This function returns the regno offset of a subreg expression.
3218 xregno - A regno of an inner hard subreg_reg (or what will become one).
3219 xmode - The mode of xregno.
3220 offset - The byte offset.
3221 ymode - The mode of a top level SUBREG (or what may become one).
3222 RETURN - The regno offset which would be used. */
3223 unsigned int
3224 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3225 unsigned int offset, enum machine_mode ymode)
3226 {
3227 struct subreg_info info;
3228 subreg_get_info (xregno, xmode, offset, ymode, &info);
3229 return info.offset;
3230 }
3231
3232 /* This function returns true when the offset is representable via
3233 subreg_offset in the given regno.
3234 xregno - A regno of an inner hard subreg_reg (or what will become one).
3235 xmode - The mode of xregno.
3236 offset - The byte offset.
3237 ymode - The mode of a top level SUBREG (or what may become one).
3238 RETURN - Whether the offset is representable. */
3239 bool
3240 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3241 unsigned int offset, enum machine_mode ymode)
3242 {
3243 struct subreg_info info;
3244 subreg_get_info (xregno, xmode, offset, ymode, &info);
3245 return info.representable_p;
3246 }
3247
3248 /* Return the final regno that a subreg expression refers to. */
3249 unsigned int
3250 subreg_regno (const_rtx x)
3251 {
3252 unsigned int ret;
3253 rtx subreg = SUBREG_REG (x);
3254 int regno = REGNO (subreg);
3255
3256 ret = regno + subreg_regno_offset (regno,
3257 GET_MODE (subreg),
3258 SUBREG_BYTE (x),
3259 GET_MODE (x));
3260 return ret;
3261
3262 }
3263
3264 /* Return the number of registers that a subreg expression refers
3265 to. */
3266 unsigned int
3267 subreg_nregs (const_rtx x)
3268 {
3269 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3270 }
3271
3272 /* Return the number of registers that a subreg REG with REGNO
3273 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3274 changed so that the regno can be passed in. */
3275
3276 unsigned int
3277 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3278 {
3279 struct subreg_info info;
3280 rtx subreg = SUBREG_REG (x);
3281
3282 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3283 &info);
3284 return info.nregs;
3285 }
3286
3287
3288 struct parms_set_data
3289 {
3290 int nregs;
3291 HARD_REG_SET regs;
3292 };
3293
3294 /* Helper function for noticing stores to parameter registers. */
3295 static void
3296 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3297 {
3298 struct parms_set_data *d = data;
3299 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3300 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3301 {
3302 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3303 d->nregs--;
3304 }
3305 }
3306
3307 /* Look backward for first parameter to be loaded.
3308 Note that loads of all parameters will not necessarily be
3309 found if CSE has eliminated some of them (e.g., an argument
3310 to the outer function is passed down as a parameter).
3311 Do not skip BOUNDARY. */
3312 rtx
3313 find_first_parameter_load (rtx call_insn, rtx boundary)
3314 {
3315 struct parms_set_data parm;
3316 rtx p, before, first_set;
3317
3318 /* Since different machines initialize their parameter registers
3319 in different orders, assume nothing. Collect the set of all
3320 parameter registers. */
3321 CLEAR_HARD_REG_SET (parm.regs);
3322 parm.nregs = 0;
3323 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3324 if (GET_CODE (XEXP (p, 0)) == USE
3325 && REG_P (XEXP (XEXP (p, 0), 0)))
3326 {
3327 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3328
3329 /* We only care about registers which can hold function
3330 arguments. */
3331 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3332 continue;
3333
3334 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3335 parm.nregs++;
3336 }
3337 before = call_insn;
3338 first_set = call_insn;
3339
3340 /* Search backward for the first set of a register in this set. */
3341 while (parm.nregs && before != boundary)
3342 {
3343 before = PREV_INSN (before);
3344
3345 /* It is possible that some loads got CSEed from one call to
3346 another. Stop in that case. */
3347 if (CALL_P (before))
3348 break;
3349
3350 /* Our caller needs either ensure that we will find all sets
3351 (in case code has not been optimized yet), or take care
3352 for possible labels in a way by setting boundary to preceding
3353 CODE_LABEL. */
3354 if (LABEL_P (before))
3355 {
3356 gcc_assert (before == boundary);
3357 break;
3358 }
3359
3360 if (INSN_P (before))
3361 {
3362 int nregs_old = parm.nregs;
3363 note_stores (PATTERN (before), parms_set, &parm);
3364 /* If we found something that did not set a parameter reg,
3365 we're done. Do not keep going, as that might result
3366 in hoisting an insn before the setting of a pseudo
3367 that is used by the hoisted insn. */
3368 if (nregs_old != parm.nregs)
3369 first_set = before;
3370 else
3371 break;
3372 }
3373 }
3374 return first_set;
3375 }
3376
3377 /* Return true if we should avoid inserting code between INSN and preceding
3378 call instruction. */
3379
3380 bool
3381 keep_with_call_p (const_rtx insn)
3382 {
3383 rtx set;
3384
3385 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3386 {
3387 if (REG_P (SET_DEST (set))
3388 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3389 && fixed_regs[REGNO (SET_DEST (set))]
3390 && general_operand (SET_SRC (set), VOIDmode))
3391 return true;
3392 if (REG_P (SET_SRC (set))
3393 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3394 && REG_P (SET_DEST (set))
3395 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3396 return true;
3397 /* There may be a stack pop just after the call and before the store
3398 of the return register. Search for the actual store when deciding
3399 if we can break or not. */
3400 if (SET_DEST (set) == stack_pointer_rtx)
3401 {
3402 /* This CONST_CAST is okay because next_nonnote_insn just
3403 returns it's argument and we assign it to a const_rtx
3404 variable. */
3405 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3406 if (i2 && keep_with_call_p (i2))
3407 return true;
3408 }
3409 }
3410 return false;
3411 }
3412
3413 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3414 to non-complex jumps. That is, direct unconditional, conditional,
3415 and tablejumps, but not computed jumps or returns. It also does
3416 not apply to the fallthru case of a conditional jump. */
3417
3418 bool
3419 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3420 {
3421 rtx tmp = JUMP_LABEL (jump_insn);
3422
3423 if (label == tmp)
3424 return true;
3425
3426 if (tablejump_p (jump_insn, NULL, &tmp))
3427 {
3428 rtvec vec = XVEC (PATTERN (tmp),
3429 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3430 int i, veclen = GET_NUM_ELEM (vec);
3431
3432 for (i = 0; i < veclen; ++i)
3433 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3434 return true;
3435 }
3436
3437 return false;
3438 }
3439
3440 \f
3441 /* Return an estimate of the cost of computing rtx X.
3442 One use is in cse, to decide which expression to keep in the hash table.
3443 Another is in rtl generation, to pick the cheapest way to multiply.
3444 Other uses like the latter are expected in the future. */
3445
3446 int
3447 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3448 {
3449 int i, j;
3450 enum rtx_code code;
3451 const char *fmt;
3452 int total;
3453
3454 if (x == 0)
3455 return 0;
3456
3457 /* Compute the default costs of certain things.
3458 Note that targetm.rtx_costs can override the defaults. */
3459
3460 code = GET_CODE (x);
3461 switch (code)
3462 {
3463 case MULT:
3464 total = COSTS_N_INSNS (5);
3465 break;
3466 case DIV:
3467 case UDIV:
3468 case MOD:
3469 case UMOD:
3470 total = COSTS_N_INSNS (7);
3471 break;
3472 case USE:
3473 /* Used in combine.c as a marker. */
3474 total = 0;
3475 break;
3476 default:
3477 total = COSTS_N_INSNS (1);
3478 }
3479
3480 switch (code)
3481 {
3482 case REG:
3483 return 0;
3484
3485 case SUBREG:
3486 total = 0;
3487 /* If we can't tie these modes, make this expensive. The larger
3488 the mode, the more expensive it is. */
3489 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3490 return COSTS_N_INSNS (2
3491 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3492 break;
3493
3494 default:
3495 if (targetm.rtx_costs (x, code, outer_code, &total))
3496 return total;
3497 break;
3498 }
3499
3500 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3501 which is already in total. */
3502
3503 fmt = GET_RTX_FORMAT (code);
3504 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3505 if (fmt[i] == 'e')
3506 total += rtx_cost (XEXP (x, i), code);
3507 else if (fmt[i] == 'E')
3508 for (j = 0; j < XVECLEN (x, i); j++)
3509 total += rtx_cost (XVECEXP (x, i, j), code);
3510
3511 return total;
3512 }
3513 \f
3514 /* Return cost of address expression X.
3515 Expect that X is properly formed address reference. */
3516
3517 int
3518 address_cost (rtx x, enum machine_mode mode)
3519 {
3520 /* We may be asked for cost of various unusual addresses, such as operands
3521 of push instruction. It is not worthwhile to complicate writing
3522 of the target hook by such cases. */
3523
3524 if (!memory_address_p (mode, x))
3525 return 1000;
3526
3527 return targetm.address_cost (x);
3528 }
3529
3530 /* If the target doesn't override, compute the cost as with arithmetic. */
3531
3532 int
3533 default_address_cost (rtx x)
3534 {
3535 return rtx_cost (x, MEM);
3536 }
3537 \f
3538
3539 unsigned HOST_WIDE_INT
3540 nonzero_bits (const_rtx x, enum machine_mode mode)
3541 {
3542 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3543 }
3544
3545 unsigned int
3546 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3547 {
3548 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3549 }
3550
3551 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3552 It avoids exponential behavior in nonzero_bits1 when X has
3553 identical subexpressions on the first or the second level. */
3554
3555 static unsigned HOST_WIDE_INT
3556 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3557 enum machine_mode known_mode,
3558 unsigned HOST_WIDE_INT known_ret)
3559 {
3560 if (x == known_x && mode == known_mode)
3561 return known_ret;
3562
3563 /* Try to find identical subexpressions. If found call
3564 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3565 precomputed value for the subexpression as KNOWN_RET. */
3566
3567 if (ARITHMETIC_P (x))
3568 {
3569 rtx x0 = XEXP (x, 0);
3570 rtx x1 = XEXP (x, 1);
3571
3572 /* Check the first level. */
3573 if (x0 == x1)
3574 return nonzero_bits1 (x, mode, x0, mode,
3575 cached_nonzero_bits (x0, mode, known_x,
3576 known_mode, known_ret));
3577
3578 /* Check the second level. */
3579 if (ARITHMETIC_P (x0)
3580 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3581 return nonzero_bits1 (x, mode, x1, mode,
3582 cached_nonzero_bits (x1, mode, known_x,
3583 known_mode, known_ret));
3584
3585 if (ARITHMETIC_P (x1)
3586 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3587 return nonzero_bits1 (x, mode, x0, mode,
3588 cached_nonzero_bits (x0, mode, known_x,
3589 known_mode, known_ret));
3590 }
3591
3592 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3593 }
3594
3595 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3596 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3597 is less useful. We can't allow both, because that results in exponential
3598 run time recursion. There is a nullstone testcase that triggered
3599 this. This macro avoids accidental uses of num_sign_bit_copies. */
3600 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3601
3602 /* Given an expression, X, compute which bits in X can be nonzero.
3603 We don't care about bits outside of those defined in MODE.
3604
3605 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3606 an arithmetic operation, we can do better. */
3607
3608 static unsigned HOST_WIDE_INT
3609 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3610 enum machine_mode known_mode,
3611 unsigned HOST_WIDE_INT known_ret)
3612 {
3613 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3614 unsigned HOST_WIDE_INT inner_nz;
3615 enum rtx_code code;
3616 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3617
3618 /* For floating-point values, assume all bits are needed. */
3619 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3620 return nonzero;
3621
3622 /* If X is wider than MODE, use its mode instead. */
3623 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3624 {
3625 mode = GET_MODE (x);
3626 nonzero = GET_MODE_MASK (mode);
3627 mode_width = GET_MODE_BITSIZE (mode);
3628 }
3629
3630 if (mode_width > HOST_BITS_PER_WIDE_INT)
3631 /* Our only callers in this case look for single bit values. So
3632 just return the mode mask. Those tests will then be false. */
3633 return nonzero;
3634
3635 #ifndef WORD_REGISTER_OPERATIONS
3636 /* If MODE is wider than X, but both are a single word for both the host
3637 and target machines, we can compute this from which bits of the
3638 object might be nonzero in its own mode, taking into account the fact
3639 that on many CISC machines, accessing an object in a wider mode
3640 causes the high-order bits to become undefined. So they are
3641 not known to be zero. */
3642
3643 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3644 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3645 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3646 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3647 {
3648 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3649 known_x, known_mode, known_ret);
3650 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3651 return nonzero;
3652 }
3653 #endif
3654
3655 code = GET_CODE (x);
3656 switch (code)
3657 {
3658 case REG:
3659 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3660 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3661 all the bits above ptr_mode are known to be zero. */
3662 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3663 && REG_POINTER (x))
3664 nonzero &= GET_MODE_MASK (ptr_mode);
3665 #endif
3666
3667 /* Include declared information about alignment of pointers. */
3668 /* ??? We don't properly preserve REG_POINTER changes across
3669 pointer-to-integer casts, so we can't trust it except for
3670 things that we know must be pointers. See execute/960116-1.c. */
3671 if ((x == stack_pointer_rtx
3672 || x == frame_pointer_rtx
3673 || x == arg_pointer_rtx)
3674 && REGNO_POINTER_ALIGN (REGNO (x)))
3675 {
3676 unsigned HOST_WIDE_INT alignment
3677 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3678
3679 #ifdef PUSH_ROUNDING
3680 /* If PUSH_ROUNDING is defined, it is possible for the
3681 stack to be momentarily aligned only to that amount,
3682 so we pick the least alignment. */
3683 if (x == stack_pointer_rtx && PUSH_ARGS)
3684 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3685 alignment);
3686 #endif
3687
3688 nonzero &= ~(alignment - 1);
3689 }
3690
3691 {
3692 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3693 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3694 known_mode, known_ret,
3695 &nonzero_for_hook);
3696
3697 if (new)
3698 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3699 known_mode, known_ret);
3700
3701 return nonzero_for_hook;
3702 }
3703
3704 case CONST_INT:
3705 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3706 /* If X is negative in MODE, sign-extend the value. */
3707 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3708 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3709 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3710 #endif
3711
3712 return INTVAL (x);
3713
3714 case MEM:
3715 #ifdef LOAD_EXTEND_OP
3716 /* In many, if not most, RISC machines, reading a byte from memory
3717 zeros the rest of the register. Noticing that fact saves a lot
3718 of extra zero-extends. */
3719 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3720 nonzero &= GET_MODE_MASK (GET_MODE (x));
3721 #endif
3722 break;
3723
3724 case EQ: case NE:
3725 case UNEQ: case LTGT:
3726 case GT: case GTU: case UNGT:
3727 case LT: case LTU: case UNLT:
3728 case GE: case GEU: case UNGE:
3729 case LE: case LEU: case UNLE:
3730 case UNORDERED: case ORDERED:
3731 /* If this produces an integer result, we know which bits are set.
3732 Code here used to clear bits outside the mode of X, but that is
3733 now done above. */
3734 /* Mind that MODE is the mode the caller wants to look at this
3735 operation in, and not the actual operation mode. We can wind
3736 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3737 that describes the results of a vector compare. */
3738 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3739 && mode_width <= HOST_BITS_PER_WIDE_INT)
3740 nonzero = STORE_FLAG_VALUE;
3741 break;
3742
3743 case NEG:
3744 #if 0
3745 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3746 and num_sign_bit_copies. */
3747 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3748 == GET_MODE_BITSIZE (GET_MODE (x)))
3749 nonzero = 1;
3750 #endif
3751
3752 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3753 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3754 break;
3755
3756 case ABS:
3757 #if 0
3758 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3759 and num_sign_bit_copies. */
3760 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3761 == GET_MODE_BITSIZE (GET_MODE (x)))
3762 nonzero = 1;
3763 #endif
3764 break;
3765
3766 case TRUNCATE:
3767 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3768 known_x, known_mode, known_ret)
3769 & GET_MODE_MASK (mode));
3770 break;
3771
3772 case ZERO_EXTEND:
3773 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3774 known_x, known_mode, known_ret);
3775 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3776 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3777 break;
3778
3779 case SIGN_EXTEND:
3780 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3781 Otherwise, show all the bits in the outer mode but not the inner
3782 may be nonzero. */
3783 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3784 known_x, known_mode, known_ret);
3785 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3786 {
3787 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3788 if (inner_nz
3789 & (((HOST_WIDE_INT) 1
3790 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3791 inner_nz |= (GET_MODE_MASK (mode)
3792 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3793 }
3794
3795 nonzero &= inner_nz;
3796 break;
3797
3798 case AND:
3799 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3800 known_x, known_mode, known_ret)
3801 & cached_nonzero_bits (XEXP (x, 1), mode,
3802 known_x, known_mode, known_ret);
3803 break;
3804
3805 case XOR: case IOR:
3806 case UMIN: case UMAX: case SMIN: case SMAX:
3807 {
3808 unsigned HOST_WIDE_INT nonzero0 =
3809 cached_nonzero_bits (XEXP (x, 0), mode,
3810 known_x, known_mode, known_ret);
3811
3812 /* Don't call nonzero_bits for the second time if it cannot change
3813 anything. */
3814 if ((nonzero & nonzero0) != nonzero)
3815 nonzero &= nonzero0
3816 | cached_nonzero_bits (XEXP (x, 1), mode,
3817 known_x, known_mode, known_ret);
3818 }
3819 break;
3820
3821 case PLUS: case MINUS:
3822 case MULT:
3823 case DIV: case UDIV:
3824 case MOD: case UMOD:
3825 /* We can apply the rules of arithmetic to compute the number of
3826 high- and low-order zero bits of these operations. We start by
3827 computing the width (position of the highest-order nonzero bit)
3828 and the number of low-order zero bits for each value. */
3829 {
3830 unsigned HOST_WIDE_INT nz0 =
3831 cached_nonzero_bits (XEXP (x, 0), mode,
3832 known_x, known_mode, known_ret);
3833 unsigned HOST_WIDE_INT nz1 =
3834 cached_nonzero_bits (XEXP (x, 1), mode,
3835 known_x, known_mode, known_ret);
3836 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3837 int width0 = floor_log2 (nz0) + 1;
3838 int width1 = floor_log2 (nz1) + 1;
3839 int low0 = floor_log2 (nz0 & -nz0);
3840 int low1 = floor_log2 (nz1 & -nz1);
3841 HOST_WIDE_INT op0_maybe_minusp
3842 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3843 HOST_WIDE_INT op1_maybe_minusp
3844 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3845 unsigned int result_width = mode_width;
3846 int result_low = 0;
3847
3848 switch (code)
3849 {
3850 case PLUS:
3851 result_width = MAX (width0, width1) + 1;
3852 result_low = MIN (low0, low1);
3853 break;
3854 case MINUS:
3855 result_low = MIN (low0, low1);
3856 break;
3857 case MULT:
3858 result_width = width0 + width1;
3859 result_low = low0 + low1;
3860 break;
3861 case DIV:
3862 if (width1 == 0)
3863 break;
3864 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3865 result_width = width0;
3866 break;
3867 case UDIV:
3868 if (width1 == 0)
3869 break;
3870 result_width = width0;
3871 break;
3872 case MOD:
3873 if (width1 == 0)
3874 break;
3875 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3876 result_width = MIN (width0, width1);
3877 result_low = MIN (low0, low1);
3878 break;
3879 case UMOD:
3880 if (width1 == 0)
3881 break;
3882 result_width = MIN (width0, width1);
3883 result_low = MIN (low0, low1);
3884 break;
3885 default:
3886 gcc_unreachable ();
3887 }
3888
3889 if (result_width < mode_width)
3890 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3891
3892 if (result_low > 0)
3893 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3894
3895 #ifdef POINTERS_EXTEND_UNSIGNED
3896 /* If pointers extend unsigned and this is an addition or subtraction
3897 to a pointer in Pmode, all the bits above ptr_mode are known to be
3898 zero. */
3899 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3900 && (code == PLUS || code == MINUS)
3901 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3902 nonzero &= GET_MODE_MASK (ptr_mode);
3903 #endif
3904 }
3905 break;
3906
3907 case ZERO_EXTRACT:
3908 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3909 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3910 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3911 break;
3912
3913 case SUBREG:
3914 /* If this is a SUBREG formed for a promoted variable that has
3915 been zero-extended, we know that at least the high-order bits
3916 are zero, though others might be too. */
3917
3918 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3919 nonzero = GET_MODE_MASK (GET_MODE (x))
3920 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3921 known_x, known_mode, known_ret);
3922
3923 /* If the inner mode is a single word for both the host and target
3924 machines, we can compute this from which bits of the inner
3925 object might be nonzero. */
3926 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3927 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3928 <= HOST_BITS_PER_WIDE_INT))
3929 {
3930 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3931 known_x, known_mode, known_ret);
3932
3933 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3934 /* If this is a typical RISC machine, we only have to worry
3935 about the way loads are extended. */
3936 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3937 ? (((nonzero
3938 & (((unsigned HOST_WIDE_INT) 1
3939 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3940 != 0))
3941 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3942 || !MEM_P (SUBREG_REG (x)))
3943 #endif
3944 {
3945 /* On many CISC machines, accessing an object in a wider mode
3946 causes the high-order bits to become undefined. So they are
3947 not known to be zero. */
3948 if (GET_MODE_SIZE (GET_MODE (x))
3949 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3950 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3951 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3952 }
3953 }
3954 break;
3955
3956 case ASHIFTRT:
3957 case LSHIFTRT:
3958 case ASHIFT:
3959 case ROTATE:
3960 /* The nonzero bits are in two classes: any bits within MODE
3961 that aren't in GET_MODE (x) are always significant. The rest of the
3962 nonzero bits are those that are significant in the operand of
3963 the shift when shifted the appropriate number of bits. This
3964 shows that high-order bits are cleared by the right shift and
3965 low-order bits by left shifts. */
3966 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3967 && INTVAL (XEXP (x, 1)) >= 0
3968 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3969 {
3970 enum machine_mode inner_mode = GET_MODE (x);
3971 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3972 int count = INTVAL (XEXP (x, 1));
3973 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3974 unsigned HOST_WIDE_INT op_nonzero =
3975 cached_nonzero_bits (XEXP (x, 0), mode,
3976 known_x, known_mode, known_ret);
3977 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3978 unsigned HOST_WIDE_INT outer = 0;
3979
3980 if (mode_width > width)
3981 outer = (op_nonzero & nonzero & ~mode_mask);
3982
3983 if (code == LSHIFTRT)
3984 inner >>= count;
3985 else if (code == ASHIFTRT)
3986 {
3987 inner >>= count;
3988
3989 /* If the sign bit may have been nonzero before the shift, we
3990 need to mark all the places it could have been copied to
3991 by the shift as possibly nonzero. */
3992 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3993 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3994 }
3995 else if (code == ASHIFT)
3996 inner <<= count;
3997 else
3998 inner = ((inner << (count % width)
3999 | (inner >> (width - (count % width)))) & mode_mask);
4000
4001 nonzero &= (outer | inner);
4002 }
4003 break;
4004
4005 case FFS:
4006 case POPCOUNT:
4007 /* This is at most the number of bits in the mode. */
4008 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4009 break;
4010
4011 case CLZ:
4012 /* If CLZ has a known value at zero, then the nonzero bits are
4013 that value, plus the number of bits in the mode minus one. */
4014 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4015 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4016 else
4017 nonzero = -1;
4018 break;
4019
4020 case CTZ:
4021 /* If CTZ has a known value at zero, then the nonzero bits are
4022 that value, plus the number of bits in the mode minus one. */
4023 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4024 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4025 else
4026 nonzero = -1;
4027 break;
4028
4029 case PARITY:
4030 nonzero = 1;
4031 break;
4032
4033 case IF_THEN_ELSE:
4034 {
4035 unsigned HOST_WIDE_INT nonzero_true =
4036 cached_nonzero_bits (XEXP (x, 1), mode,
4037 known_x, known_mode, known_ret);
4038
4039 /* Don't call nonzero_bits for the second time if it cannot change
4040 anything. */
4041 if ((nonzero & nonzero_true) != nonzero)
4042 nonzero &= nonzero_true
4043 | cached_nonzero_bits (XEXP (x, 2), mode,
4044 known_x, known_mode, known_ret);
4045 }
4046 break;
4047
4048 default:
4049 break;
4050 }
4051
4052 return nonzero;
4053 }
4054
4055 /* See the macro definition above. */
4056 #undef cached_num_sign_bit_copies
4057
4058 \f
4059 /* The function cached_num_sign_bit_copies is a wrapper around
4060 num_sign_bit_copies1. It avoids exponential behavior in
4061 num_sign_bit_copies1 when X has identical subexpressions on the
4062 first or the second level. */
4063
4064 static unsigned int
4065 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4066 enum machine_mode known_mode,
4067 unsigned int known_ret)
4068 {
4069 if (x == known_x && mode == known_mode)
4070 return known_ret;
4071
4072 /* Try to find identical subexpressions. If found call
4073 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4074 the precomputed value for the subexpression as KNOWN_RET. */
4075
4076 if (ARITHMETIC_P (x))
4077 {
4078 rtx x0 = XEXP (x, 0);
4079 rtx x1 = XEXP (x, 1);
4080
4081 /* Check the first level. */
4082 if (x0 == x1)
4083 return
4084 num_sign_bit_copies1 (x, mode, x0, mode,
4085 cached_num_sign_bit_copies (x0, mode, known_x,
4086 known_mode,
4087 known_ret));
4088
4089 /* Check the second level. */
4090 if (ARITHMETIC_P (x0)
4091 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4092 return
4093 num_sign_bit_copies1 (x, mode, x1, mode,
4094 cached_num_sign_bit_copies (x1, mode, known_x,
4095 known_mode,
4096 known_ret));
4097
4098 if (ARITHMETIC_P (x1)
4099 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4100 return
4101 num_sign_bit_copies1 (x, mode, x0, mode,
4102 cached_num_sign_bit_copies (x0, mode, known_x,
4103 known_mode,
4104 known_ret));
4105 }
4106
4107 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4108 }
4109
4110 /* Return the number of bits at the high-order end of X that are known to
4111 be equal to the sign bit. X will be used in mode MODE; if MODE is
4112 VOIDmode, X will be used in its own mode. The returned value will always
4113 be between 1 and the number of bits in MODE. */
4114
4115 static unsigned int
4116 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4117 enum machine_mode known_mode,
4118 unsigned int known_ret)
4119 {
4120 enum rtx_code code = GET_CODE (x);
4121 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4122 int num0, num1, result;
4123 unsigned HOST_WIDE_INT nonzero;
4124
4125 /* If we weren't given a mode, use the mode of X. If the mode is still
4126 VOIDmode, we don't know anything. Likewise if one of the modes is
4127 floating-point. */
4128
4129 if (mode == VOIDmode)
4130 mode = GET_MODE (x);
4131
4132 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4133 return 1;
4134
4135 /* For a smaller object, just ignore the high bits. */
4136 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4137 {
4138 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4139 known_x, known_mode, known_ret);
4140 return MAX (1,
4141 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4142 }
4143
4144 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4145 {
4146 #ifndef WORD_REGISTER_OPERATIONS
4147 /* If this machine does not do all register operations on the entire
4148 register and MODE is wider than the mode of X, we can say nothing
4149 at all about the high-order bits. */
4150 return 1;
4151 #else
4152 /* Likewise on machines that do, if the mode of the object is smaller
4153 than a word and loads of that size don't sign extend, we can say
4154 nothing about the high order bits. */
4155 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4156 #ifdef LOAD_EXTEND_OP
4157 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4158 #endif
4159 )
4160 return 1;
4161 #endif
4162 }
4163
4164 switch (code)
4165 {
4166 case REG:
4167
4168 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4169 /* If pointers extend signed and this is a pointer in Pmode, say that
4170 all the bits above ptr_mode are known to be sign bit copies. */
4171 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4172 && REG_POINTER (x))
4173 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4174 #endif
4175
4176 {
4177 unsigned int copies_for_hook = 1, copies = 1;
4178 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4179 known_mode, known_ret,
4180 &copies_for_hook);
4181
4182 if (new)
4183 copies = cached_num_sign_bit_copies (new, mode, known_x,
4184 known_mode, known_ret);
4185
4186 if (copies > 1 || copies_for_hook > 1)
4187 return MAX (copies, copies_for_hook);
4188
4189 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4190 }
4191 break;
4192
4193 case MEM:
4194 #ifdef LOAD_EXTEND_OP
4195 /* Some RISC machines sign-extend all loads of smaller than a word. */
4196 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4197 return MAX (1, ((int) bitwidth
4198 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4199 #endif
4200 break;
4201
4202 case CONST_INT:
4203 /* If the constant is negative, take its 1's complement and remask.
4204 Then see how many zero bits we have. */
4205 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4206 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4207 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4208 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4209
4210 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4211
4212 case SUBREG:
4213 /* If this is a SUBREG for a promoted object that is sign-extended
4214 and we are looking at it in a wider mode, we know that at least the
4215 high-order bits are known to be sign bit copies. */
4216
4217 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4218 {
4219 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4220 known_x, known_mode, known_ret);
4221 return MAX ((int) bitwidth
4222 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4223 num0);
4224 }
4225
4226 /* For a smaller object, just ignore the high bits. */
4227 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4228 {
4229 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4230 known_x, known_mode, known_ret);
4231 return MAX (1, (num0
4232 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4233 - bitwidth)));
4234 }
4235
4236 #ifdef WORD_REGISTER_OPERATIONS
4237 #ifdef LOAD_EXTEND_OP
4238 /* For paradoxical SUBREGs on machines where all register operations
4239 affect the entire register, just look inside. Note that we are
4240 passing MODE to the recursive call, so the number of sign bit copies
4241 will remain relative to that mode, not the inner mode. */
4242
4243 /* This works only if loads sign extend. Otherwise, if we get a
4244 reload for the inner part, it may be loaded from the stack, and
4245 then we lose all sign bit copies that existed before the store
4246 to the stack. */
4247
4248 if ((GET_MODE_SIZE (GET_MODE (x))
4249 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4250 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4251 && MEM_P (SUBREG_REG (x)))
4252 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4253 known_x, known_mode, known_ret);
4254 #endif
4255 #endif
4256 break;
4257
4258 case SIGN_EXTRACT:
4259 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4260 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4261 break;
4262
4263 case SIGN_EXTEND:
4264 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4265 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4266 known_x, known_mode, known_ret));
4267
4268 case TRUNCATE:
4269 /* For a smaller object, just ignore the high bits. */
4270 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4271 known_x, known_mode, known_ret);
4272 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4273 - bitwidth)));
4274
4275 case NOT:
4276 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4277 known_x, known_mode, known_ret);
4278
4279 case ROTATE: case ROTATERT:
4280 /* If we are rotating left by a number of bits less than the number
4281 of sign bit copies, we can just subtract that amount from the
4282 number. */
4283 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4284 && INTVAL (XEXP (x, 1)) >= 0
4285 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4286 {
4287 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4288 known_x, known_mode, known_ret);
4289 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4290 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4291 }
4292 break;
4293
4294 case NEG:
4295 /* In general, this subtracts one sign bit copy. But if the value
4296 is known to be positive, the number of sign bit copies is the
4297 same as that of the input. Finally, if the input has just one bit
4298 that might be nonzero, all the bits are copies of the sign bit. */
4299 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4300 known_x, known_mode, known_ret);
4301 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4302 return num0 > 1 ? num0 - 1 : 1;
4303
4304 nonzero = nonzero_bits (XEXP (x, 0), mode);
4305 if (nonzero == 1)
4306 return bitwidth;
4307
4308 if (num0 > 1
4309 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4310 num0--;
4311
4312 return num0;
4313
4314 case IOR: case AND: case XOR:
4315 case SMIN: case SMAX: case UMIN: case UMAX:
4316 /* Logical operations will preserve the number of sign-bit copies.
4317 MIN and MAX operations always return one of the operands. */
4318 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4319 known_x, known_mode, known_ret);
4320 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4321 known_x, known_mode, known_ret);
4322
4323 /* If num1 is clearing some of the top bits then regardless of
4324 the other term, we are guaranteed to have at least that many
4325 high-order zero bits. */
4326 if (code == AND
4327 && num1 > 1
4328 && bitwidth <= HOST_BITS_PER_WIDE_INT
4329 && GET_CODE (XEXP (x, 1)) == CONST_INT
4330 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4331 return num1;
4332
4333 /* Similarly for IOR when setting high-order bits. */
4334 if (code == IOR
4335 && num1 > 1
4336 && bitwidth <= HOST_BITS_PER_WIDE_INT
4337 && GET_CODE (XEXP (x, 1)) == CONST_INT
4338 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4339 return num1;
4340
4341 return MIN (num0, num1);
4342
4343 case PLUS: case MINUS:
4344 /* For addition and subtraction, we can have a 1-bit carry. However,
4345 if we are subtracting 1 from a positive number, there will not
4346 be such a carry. Furthermore, if the positive number is known to
4347 be 0 or 1, we know the result is either -1 or 0. */
4348
4349 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4350 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4351 {
4352 nonzero = nonzero_bits (XEXP (x, 0), mode);
4353 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4354 return (nonzero == 1 || nonzero == 0 ? bitwidth
4355 : bitwidth - floor_log2 (nonzero) - 1);
4356 }
4357
4358 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4359 known_x, known_mode, known_ret);
4360 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4361 known_x, known_mode, known_ret);
4362 result = MAX (1, MIN (num0, num1) - 1);
4363
4364 #ifdef POINTERS_EXTEND_UNSIGNED
4365 /* If pointers extend signed and this is an addition or subtraction
4366 to a pointer in Pmode, all the bits above ptr_mode are known to be
4367 sign bit copies. */
4368 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4369 && (code == PLUS || code == MINUS)
4370 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4371 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4372 - GET_MODE_BITSIZE (ptr_mode) + 1),
4373 result);
4374 #endif
4375 return result;
4376
4377 case MULT:
4378 /* The number of bits of the product is the sum of the number of
4379 bits of both terms. However, unless one of the terms if known
4380 to be positive, we must allow for an additional bit since negating
4381 a negative number can remove one sign bit copy. */
4382
4383 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4384 known_x, known_mode, known_ret);
4385 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4386 known_x, known_mode, known_ret);
4387
4388 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4389 if (result > 0
4390 && (bitwidth > HOST_BITS_PER_WIDE_INT
4391 || (((nonzero_bits (XEXP (x, 0), mode)
4392 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4393 && ((nonzero_bits (XEXP (x, 1), mode)
4394 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4395 result--;
4396
4397 return MAX (1, result);
4398
4399 case UDIV:
4400 /* The result must be <= the first operand. If the first operand
4401 has the high bit set, we know nothing about the number of sign
4402 bit copies. */
4403 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4404 return 1;
4405 else if ((nonzero_bits (XEXP (x, 0), mode)
4406 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4407 return 1;
4408 else
4409 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4410 known_x, known_mode, known_ret);
4411
4412 case UMOD:
4413 /* The result must be <= the second operand. */
4414 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4415 known_x, known_mode, known_ret);
4416
4417 case DIV:
4418 /* Similar to unsigned division, except that we have to worry about
4419 the case where the divisor is negative, in which case we have
4420 to add 1. */
4421 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret);
4423 if (result > 1
4424 && (bitwidth > HOST_BITS_PER_WIDE_INT
4425 || (nonzero_bits (XEXP (x, 1), mode)
4426 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4427 result--;
4428
4429 return result;
4430
4431 case MOD:
4432 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4433 known_x, known_mode, known_ret);
4434 if (result > 1
4435 && (bitwidth > HOST_BITS_PER_WIDE_INT
4436 || (nonzero_bits (XEXP (x, 1), mode)
4437 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4438 result--;
4439
4440 return result;
4441
4442 case ASHIFTRT:
4443 /* Shifts by a constant add to the number of bits equal to the
4444 sign bit. */
4445 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4446 known_x, known_mode, known_ret);
4447 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4448 && INTVAL (XEXP (x, 1)) > 0)
4449 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4450
4451 return num0;
4452
4453 case ASHIFT:
4454 /* Left shifts destroy copies. */
4455 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4456 || INTVAL (XEXP (x, 1)) < 0
4457 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4458 return 1;
4459
4460 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4461 known_x, known_mode, known_ret);
4462 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4463
4464 case IF_THEN_ELSE:
4465 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4466 known_x, known_mode, known_ret);
4467 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4468 known_x, known_mode, known_ret);
4469 return MIN (num0, num1);
4470
4471 case EQ: case NE: case GE: case GT: case LE: case LT:
4472 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4473 case GEU: case GTU: case LEU: case LTU:
4474 case UNORDERED: case ORDERED:
4475 /* If the constant is negative, take its 1's complement and remask.
4476 Then see how many zero bits we have. */
4477 nonzero = STORE_FLAG_VALUE;
4478 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4479 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4480 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4481
4482 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4483
4484 default:
4485 break;
4486 }
4487
4488 /* If we haven't been able to figure it out by one of the above rules,
4489 see if some of the high-order bits are known to be zero. If so,
4490 count those bits and return one less than that amount. If we can't
4491 safely compute the mask for this mode, always return BITWIDTH. */
4492
4493 bitwidth = GET_MODE_BITSIZE (mode);
4494 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4495 return 1;
4496
4497 nonzero = nonzero_bits (x, mode);
4498 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4499 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4500 }
4501
4502 /* Calculate the rtx_cost of a single instruction. A return value of
4503 zero indicates an instruction pattern without a known cost. */
4504
4505 int
4506 insn_rtx_cost (rtx pat)
4507 {
4508 int i, cost;
4509 rtx set;
4510
4511 /* Extract the single set rtx from the instruction pattern.
4512 We can't use single_set since we only have the pattern. */
4513 if (GET_CODE (pat) == SET)
4514 set = pat;
4515 else if (GET_CODE (pat) == PARALLEL)
4516 {
4517 set = NULL_RTX;
4518 for (i = 0; i < XVECLEN (pat, 0); i++)
4519 {
4520 rtx x = XVECEXP (pat, 0, i);
4521 if (GET_CODE (x) == SET)
4522 {
4523 if (set)
4524 return 0;
4525 set = x;
4526 }
4527 }
4528 if (!set)
4529 return 0;
4530 }
4531 else
4532 return 0;
4533
4534 cost = rtx_cost (SET_SRC (set), SET);
4535 return cost > 0 ? cost : COSTS_N_INSNS (1);
4536 }
4537
4538 /* Given an insn INSN and condition COND, return the condition in a
4539 canonical form to simplify testing by callers. Specifically:
4540
4541 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4542 (2) Both operands will be machine operands; (cc0) will have been replaced.
4543 (3) If an operand is a constant, it will be the second operand.
4544 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4545 for GE, GEU, and LEU.
4546
4547 If the condition cannot be understood, or is an inequality floating-point
4548 comparison which needs to be reversed, 0 will be returned.
4549
4550 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4551
4552 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4553 insn used in locating the condition was found. If a replacement test
4554 of the condition is desired, it should be placed in front of that
4555 insn and we will be sure that the inputs are still valid.
4556
4557 If WANT_REG is nonzero, we wish the condition to be relative to that
4558 register, if possible. Therefore, do not canonicalize the condition
4559 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4560 to be a compare to a CC mode register.
4561
4562 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4563 and at INSN. */
4564
4565 rtx
4566 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4567 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4568 {
4569 enum rtx_code code;
4570 rtx prev = insn;
4571 const_rtx set;
4572 rtx tem;
4573 rtx op0, op1;
4574 int reverse_code = 0;
4575 enum machine_mode mode;
4576 basic_block bb = BLOCK_FOR_INSN (insn);
4577
4578 code = GET_CODE (cond);
4579 mode = GET_MODE (cond);
4580 op0 = XEXP (cond, 0);
4581 op1 = XEXP (cond, 1);
4582
4583 if (reverse)
4584 code = reversed_comparison_code (cond, insn);
4585 if (code == UNKNOWN)
4586 return 0;
4587
4588 if (earliest)
4589 *earliest = insn;
4590
4591 /* If we are comparing a register with zero, see if the register is set
4592 in the previous insn to a COMPARE or a comparison operation. Perform
4593 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4594 in cse.c */
4595
4596 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4597 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4598 && op1 == CONST0_RTX (GET_MODE (op0))
4599 && op0 != want_reg)
4600 {
4601 /* Set nonzero when we find something of interest. */
4602 rtx x = 0;
4603
4604 #ifdef HAVE_cc0
4605 /* If comparison with cc0, import actual comparison from compare
4606 insn. */
4607 if (op0 == cc0_rtx)
4608 {
4609 if ((prev = prev_nonnote_insn (prev)) == 0
4610 || !NONJUMP_INSN_P (prev)
4611 || (set = single_set (prev)) == 0
4612 || SET_DEST (set) != cc0_rtx)
4613 return 0;
4614
4615 op0 = SET_SRC (set);
4616 op1 = CONST0_RTX (GET_MODE (op0));
4617 if (earliest)
4618 *earliest = prev;
4619 }
4620 #endif
4621
4622 /* If this is a COMPARE, pick up the two things being compared. */
4623 if (GET_CODE (op0) == COMPARE)
4624 {
4625 op1 = XEXP (op0, 1);
4626 op0 = XEXP (op0, 0);
4627 continue;
4628 }
4629 else if (!REG_P (op0))
4630 break;
4631
4632 /* Go back to the previous insn. Stop if it is not an INSN. We also
4633 stop if it isn't a single set or if it has a REG_INC note because
4634 we don't want to bother dealing with it. */
4635
4636 if ((prev = prev_nonnote_insn (prev)) == 0
4637 || !NONJUMP_INSN_P (prev)
4638 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4639 /* In cfglayout mode, there do not have to be labels at the
4640 beginning of a block, or jumps at the end, so the previous
4641 conditions would not stop us when we reach bb boundary. */
4642 || BLOCK_FOR_INSN (prev) != bb)
4643 break;
4644
4645 set = set_of (op0, prev);
4646
4647 if (set
4648 && (GET_CODE (set) != SET
4649 || !rtx_equal_p (SET_DEST (set), op0)))
4650 break;
4651
4652 /* If this is setting OP0, get what it sets it to if it looks
4653 relevant. */
4654 if (set)
4655 {
4656 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4657 #ifdef FLOAT_STORE_FLAG_VALUE
4658 REAL_VALUE_TYPE fsfv;
4659 #endif
4660
4661 /* ??? We may not combine comparisons done in a CCmode with
4662 comparisons not done in a CCmode. This is to aid targets
4663 like Alpha that have an IEEE compliant EQ instruction, and
4664 a non-IEEE compliant BEQ instruction. The use of CCmode is
4665 actually artificial, simply to prevent the combination, but
4666 should not affect other platforms.
4667
4668 However, we must allow VOIDmode comparisons to match either
4669 CCmode or non-CCmode comparison, because some ports have
4670 modeless comparisons inside branch patterns.
4671
4672 ??? This mode check should perhaps look more like the mode check
4673 in simplify_comparison in combine. */
4674
4675 if ((GET_CODE (SET_SRC (set)) == COMPARE
4676 || (((code == NE
4677 || (code == LT
4678 && GET_MODE_CLASS (inner_mode) == MODE_INT
4679 && (GET_MODE_BITSIZE (inner_mode)
4680 <= HOST_BITS_PER_WIDE_INT)
4681 && (STORE_FLAG_VALUE
4682 & ((HOST_WIDE_INT) 1
4683 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4684 #ifdef FLOAT_STORE_FLAG_VALUE
4685 || (code == LT
4686 && SCALAR_FLOAT_MODE_P (inner_mode)
4687 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4688 REAL_VALUE_NEGATIVE (fsfv)))
4689 #endif
4690 ))
4691 && COMPARISON_P (SET_SRC (set))))
4692 && (((GET_MODE_CLASS (mode) == MODE_CC)
4693 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4694 || mode == VOIDmode || inner_mode == VOIDmode))
4695 x = SET_SRC (set);
4696 else if (((code == EQ
4697 || (code == GE
4698 && (GET_MODE_BITSIZE (inner_mode)
4699 <= HOST_BITS_PER_WIDE_INT)
4700 && GET_MODE_CLASS (inner_mode) == MODE_INT
4701 && (STORE_FLAG_VALUE
4702 & ((HOST_WIDE_INT) 1
4703 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4704 #ifdef FLOAT_STORE_FLAG_VALUE
4705 || (code == GE
4706 && SCALAR_FLOAT_MODE_P (inner_mode)
4707 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4708 REAL_VALUE_NEGATIVE (fsfv)))
4709 #endif
4710 ))
4711 && COMPARISON_P (SET_SRC (set))
4712 && (((GET_MODE_CLASS (mode) == MODE_CC)
4713 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4714 || mode == VOIDmode || inner_mode == VOIDmode))
4715
4716 {
4717 reverse_code = 1;
4718 x = SET_SRC (set);
4719 }
4720 else
4721 break;
4722 }
4723
4724 else if (reg_set_p (op0, prev))
4725 /* If this sets OP0, but not directly, we have to give up. */
4726 break;
4727
4728 if (x)
4729 {
4730 /* If the caller is expecting the condition to be valid at INSN,
4731 make sure X doesn't change before INSN. */
4732 if (valid_at_insn_p)
4733 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4734 break;
4735 if (COMPARISON_P (x))
4736 code = GET_CODE (x);
4737 if (reverse_code)
4738 {
4739 code = reversed_comparison_code (x, prev);
4740 if (code == UNKNOWN)
4741 return 0;
4742 reverse_code = 0;
4743 }
4744
4745 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4746 if (earliest)
4747 *earliest = prev;
4748 }
4749 }
4750
4751 /* If constant is first, put it last. */
4752 if (CONSTANT_P (op0))
4753 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4754
4755 /* If OP0 is the result of a comparison, we weren't able to find what
4756 was really being compared, so fail. */
4757 if (!allow_cc_mode
4758 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4759 return 0;
4760
4761 /* Canonicalize any ordered comparison with integers involving equality
4762 if we can do computations in the relevant mode and we do not
4763 overflow. */
4764
4765 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4766 && GET_CODE (op1) == CONST_INT
4767 && GET_MODE (op0) != VOIDmode
4768 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4769 {
4770 HOST_WIDE_INT const_val = INTVAL (op1);
4771 unsigned HOST_WIDE_INT uconst_val = const_val;
4772 unsigned HOST_WIDE_INT max_val
4773 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4774
4775 switch (code)
4776 {
4777 case LE:
4778 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4779 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4780 break;
4781
4782 /* When cross-compiling, const_val might be sign-extended from
4783 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4784 case GE:
4785 if ((HOST_WIDE_INT) (const_val & max_val)
4786 != (((HOST_WIDE_INT) 1
4787 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4788 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4789 break;
4790
4791 case LEU:
4792 if (uconst_val < max_val)
4793 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4794 break;
4795
4796 case GEU:
4797 if (uconst_val != 0)
4798 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4799 break;
4800
4801 default:
4802 break;
4803 }
4804 }
4805
4806 /* Never return CC0; return zero instead. */
4807 if (CC0_P (op0))
4808 return 0;
4809
4810 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4811 }
4812
4813 /* Given a jump insn JUMP, return the condition that will cause it to branch
4814 to its JUMP_LABEL. If the condition cannot be understood, or is an
4815 inequality floating-point comparison which needs to be reversed, 0 will
4816 be returned.
4817
4818 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4819 insn used in locating the condition was found. If a replacement test
4820 of the condition is desired, it should be placed in front of that
4821 insn and we will be sure that the inputs are still valid. If EARLIEST
4822 is null, the returned condition will be valid at INSN.
4823
4824 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4825 compare CC mode register.
4826
4827 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4828
4829 rtx
4830 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4831 {
4832 rtx cond;
4833 int reverse;
4834 rtx set;
4835
4836 /* If this is not a standard conditional jump, we can't parse it. */
4837 if (!JUMP_P (jump)
4838 || ! any_condjump_p (jump))
4839 return 0;
4840 set = pc_set (jump);
4841
4842 cond = XEXP (SET_SRC (set), 0);
4843
4844 /* If this branches to JUMP_LABEL when the condition is false, reverse
4845 the condition. */
4846 reverse
4847 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4848 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4849
4850 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4851 allow_cc_mode, valid_at_insn_p);
4852 }
4853
4854 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4855 TARGET_MODE_REP_EXTENDED.
4856
4857 Note that we assume that the property of
4858 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4859 narrower than mode B. I.e., if A is a mode narrower than B then in
4860 order to be able to operate on it in mode B, mode A needs to
4861 satisfy the requirements set by the representation of mode B. */
4862
4863 static void
4864 init_num_sign_bit_copies_in_rep (void)
4865 {
4866 enum machine_mode mode, in_mode;
4867
4868 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4869 in_mode = GET_MODE_WIDER_MODE (mode))
4870 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4871 mode = GET_MODE_WIDER_MODE (mode))
4872 {
4873 enum machine_mode i;
4874
4875 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4876 extends to the next widest mode. */
4877 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4878 || GET_MODE_WIDER_MODE (mode) == in_mode);
4879
4880 /* We are in in_mode. Count how many bits outside of mode
4881 have to be copies of the sign-bit. */
4882 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4883 {
4884 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4885
4886 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4887 /* We can only check sign-bit copies starting from the
4888 top-bit. In order to be able to check the bits we
4889 have already seen we pretend that subsequent bits
4890 have to be sign-bit copies too. */
4891 || num_sign_bit_copies_in_rep [in_mode][mode])
4892 num_sign_bit_copies_in_rep [in_mode][mode]
4893 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4894 }
4895 }
4896 }
4897
4898 /* Suppose that truncation from the machine mode of X to MODE is not a
4899 no-op. See if there is anything special about X so that we can
4900 assume it already contains a truncated value of MODE. */
4901
4902 bool
4903 truncated_to_mode (enum machine_mode mode, const_rtx x)
4904 {
4905 /* This register has already been used in MODE without explicit
4906 truncation. */
4907 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4908 return true;
4909
4910 /* See if we already satisfy the requirements of MODE. If yes we
4911 can just switch to MODE. */
4912 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4913 && (num_sign_bit_copies (x, GET_MODE (x))
4914 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4915 return true;
4916
4917 return false;
4918 }
4919 \f
4920 /* Initialize non_rtx_starting_operands, which is used to speed up
4921 for_each_rtx. */
4922 void
4923 init_rtlanal (void)
4924 {
4925 int i;
4926 for (i = 0; i < NUM_RTX_CODE; i++)
4927 {
4928 const char *format = GET_RTX_FORMAT (i);
4929 const char *first = strpbrk (format, "eEV");
4930 non_rtx_starting_operands[i] = first ? first - format : -1;
4931 }
4932
4933 init_num_sign_bit_copies_in_rep ();
4934 }
4935 \f
4936 /* Check whether this is a constant pool constant. */
4937 bool
4938 constant_pool_constant_p (rtx x)
4939 {
4940 x = avoid_constant_pool_reference (x);
4941 return GET_CODE (x) == CONST_DOUBLE;
4942 }
4943