re PR target/40457 (use stm and ldm to access consecutive memory words)
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42
43 /* Forward declarations */
44 static void set_of_1 (rtx, const_rtx, void *);
45 static bool covers_regno_p (const_rtx, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
47 static int rtx_referenced_p_1 (rtx *, void *);
48 static int computed_jump_p_1 (const_rtx);
49 static void parms_set (rtx, const_rtx, void *);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
52 const_rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
55 const_rtx, enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
61 enum machine_mode, unsigned int);
62
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands[NUM_RTX_CODE];
66
67 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
68 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
69 SIGN_EXTEND then while narrowing we also have to enforce the
70 representation and sign-extend the value to mode DESTINATION_REP.
71
72 If the value is already sign-extended to DESTINATION_REP mode we
73 can just switch to DESTINATION mode on it. For each pair of
74 integral modes SOURCE and DESTINATION, when truncating from SOURCE
75 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
76 contains the number of high-order bits in SOURCE that have to be
77 copies of the sign-bit so that we can do this mode-switch to
78 DESTINATION. */
79
80 static unsigned int
81 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
82 \f
83 /* Return 1 if the value of X is unstable
84 (would be different at a different point in the program).
85 The frame pointer, arg pointer, etc. are considered stable
86 (within one function) and so is anything marked `unchanging'. */
87
88 int
89 rtx_unstable_p (const_rtx x)
90 {
91 const RTX_CODE code = GET_CODE (x);
92 int i;
93 const char *fmt;
94
95 switch (code)
96 {
97 case MEM:
98 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
99
100 case CONST:
101 case CONST_INT:
102 case CONST_DOUBLE:
103 case CONST_FIXED:
104 case CONST_VECTOR:
105 case SYMBOL_REF:
106 case LABEL_REF:
107 return 0;
108
109 case REG:
110 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
111 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
112 /* The arg pointer varies if it is not a fixed register. */
113 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
114 return 0;
115 /* ??? When call-clobbered, the value is stable modulo the restore
116 that must happen after a call. This currently screws up local-alloc
117 into believing that the restore is not needed. */
118 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
119 return 0;
120 return 1;
121
122 case ASM_OPERANDS:
123 if (MEM_VOLATILE_P (x))
124 return 1;
125
126 /* Fall through. */
127
128 default:
129 break;
130 }
131
132 fmt = GET_RTX_FORMAT (code);
133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
134 if (fmt[i] == 'e')
135 {
136 if (rtx_unstable_p (XEXP (x, i)))
137 return 1;
138 }
139 else if (fmt[i] == 'E')
140 {
141 int j;
142 for (j = 0; j < XVECLEN (x, i); j++)
143 if (rtx_unstable_p (XVECEXP (x, i, j)))
144 return 1;
145 }
146
147 return 0;
148 }
149
150 /* Return 1 if X has a value that can vary even between two
151 executions of the program. 0 means X can be compared reliably
152 against certain constants or near-constants.
153 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
154 zero, we are slightly more conservative.
155 The frame pointer and the arg pointer are considered constant. */
156
157 bool
158 rtx_varies_p (const_rtx x, bool for_alias)
159 {
160 RTX_CODE code;
161 int i;
162 const char *fmt;
163
164 if (!x)
165 return 0;
166
167 code = GET_CODE (x);
168 switch (code)
169 {
170 case MEM:
171 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
172
173 case CONST:
174 case CONST_INT:
175 case CONST_DOUBLE:
176 case CONST_FIXED:
177 case CONST_VECTOR:
178 case SYMBOL_REF:
179 case LABEL_REF:
180 return 0;
181
182 case REG:
183 /* Note that we have to test for the actual rtx used for the frame
184 and arg pointers and not just the register number in case we have
185 eliminated the frame and/or arg pointer and are using it
186 for pseudos. */
187 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
188 /* The arg pointer varies if it is not a fixed register. */
189 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
190 return 0;
191 if (x == pic_offset_table_rtx
192 /* ??? When call-clobbered, the value is stable modulo the restore
193 that must happen after a call. This currently screws up
194 local-alloc into believing that the restore is not needed, so we
195 must return 0 only if we are called from alias analysis. */
196 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
197 return 0;
198 return 1;
199
200 case LO_SUM:
201 /* The operand 0 of a LO_SUM is considered constant
202 (in fact it is related specifically to operand 1)
203 during alias analysis. */
204 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
205 || rtx_varies_p (XEXP (x, 1), for_alias);
206
207 case ASM_OPERANDS:
208 if (MEM_VOLATILE_P (x))
209 return 1;
210
211 /* Fall through. */
212
213 default:
214 break;
215 }
216
217 fmt = GET_RTX_FORMAT (code);
218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
219 if (fmt[i] == 'e')
220 {
221 if (rtx_varies_p (XEXP (x, i), for_alias))
222 return 1;
223 }
224 else if (fmt[i] == 'E')
225 {
226 int j;
227 for (j = 0; j < XVECLEN (x, i); j++)
228 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
229 return 1;
230 }
231
232 return 0;
233 }
234
235 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
236 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
237 whether nonzero is returned for unaligned memory accesses on strict
238 alignment machines. */
239
240 static int
241 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
242 enum machine_mode mode, bool unaligned_mems)
243 {
244 enum rtx_code code = GET_CODE (x);
245
246 if (STRICT_ALIGNMENT
247 && unaligned_mems
248 && GET_MODE_SIZE (mode) != 0)
249 {
250 HOST_WIDE_INT actual_offset = offset;
251 #ifdef SPARC_STACK_BOUNDARY_HACK
252 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
253 the real alignment of %sp. However, when it does this, the
254 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
255 if (SPARC_STACK_BOUNDARY_HACK
256 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
257 actual_offset -= STACK_POINTER_OFFSET;
258 #endif
259
260 if (actual_offset % GET_MODE_SIZE (mode) != 0)
261 return 1;
262 }
263
264 switch (code)
265 {
266 case SYMBOL_REF:
267 if (SYMBOL_REF_WEAK (x))
268 return 1;
269 if (!CONSTANT_POOL_ADDRESS_P (x))
270 {
271 tree decl;
272 HOST_WIDE_INT decl_size;
273
274 if (offset < 0)
275 return 1;
276 if (size == 0)
277 size = GET_MODE_SIZE (mode);
278 if (size == 0)
279 return offset != 0;
280
281 /* If the size of the access or of the symbol is unknown,
282 assume the worst. */
283 decl = SYMBOL_REF_DECL (x);
284
285 /* Else check that the access is in bounds. TODO: restructure
286 expr_size/tree_expr_size/int_expr_size and just use the latter. */
287 if (!decl)
288 decl_size = -1;
289 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
290 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
291 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
292 : -1);
293 else if (TREE_CODE (decl) == STRING_CST)
294 decl_size = TREE_STRING_LENGTH (decl);
295 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
296 decl_size = int_size_in_bytes (TREE_TYPE (decl));
297 else
298 decl_size = -1;
299
300 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
301 }
302
303 return 0;
304
305 case LABEL_REF:
306 return 0;
307
308 case REG:
309 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
310 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
311 || x == stack_pointer_rtx
312 /* The arg pointer varies if it is not a fixed register. */
313 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
314 return 0;
315 /* All of the virtual frame registers are stack references. */
316 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
317 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
318 return 0;
319 return 1;
320
321 case CONST:
322 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
323 mode, unaligned_mems);
324
325 case PLUS:
326 /* An address is assumed not to trap if:
327 - it is the pic register plus a constant. */
328 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
329 return 0;
330
331 /* - or it is an address that can't trap plus a constant integer,
332 with the proper remainder modulo the mode size if we are
333 considering unaligned memory references. */
334 if (CONST_INT_P (XEXP (x, 1))
335 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
336 size, mode, unaligned_mems))
337 return 0;
338
339 return 1;
340
341 case LO_SUM:
342 case PRE_MODIFY:
343 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
344 mode, unaligned_mems);
345
346 case PRE_DEC:
347 case PRE_INC:
348 case POST_DEC:
349 case POST_INC:
350 case POST_MODIFY:
351 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
352 mode, unaligned_mems);
353
354 default:
355 break;
356 }
357
358 /* If it isn't one of the case above, it can cause a trap. */
359 return 1;
360 }
361
362 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
363
364 int
365 rtx_addr_can_trap_p (const_rtx x)
366 {
367 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
368 }
369
370 /* Return true if X is an address that is known to not be zero. */
371
372 bool
373 nonzero_address_p (const_rtx x)
374 {
375 const enum rtx_code code = GET_CODE (x);
376
377 switch (code)
378 {
379 case SYMBOL_REF:
380 return !SYMBOL_REF_WEAK (x);
381
382 case LABEL_REF:
383 return true;
384
385 case REG:
386 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
387 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
388 || x == stack_pointer_rtx
389 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
390 return true;
391 /* All of the virtual frame registers are stack references. */
392 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
393 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
394 return true;
395 return false;
396
397 case CONST:
398 return nonzero_address_p (XEXP (x, 0));
399
400 case PLUS:
401 if (CONST_INT_P (XEXP (x, 1)))
402 return nonzero_address_p (XEXP (x, 0));
403 /* Handle PIC references. */
404 else if (XEXP (x, 0) == pic_offset_table_rtx
405 && CONSTANT_P (XEXP (x, 1)))
406 return true;
407 return false;
408
409 case PRE_MODIFY:
410 /* Similar to the above; allow positive offsets. Further, since
411 auto-inc is only allowed in memories, the register must be a
412 pointer. */
413 if (CONST_INT_P (XEXP (x, 1))
414 && INTVAL (XEXP (x, 1)) > 0)
415 return true;
416 return nonzero_address_p (XEXP (x, 0));
417
418 case PRE_INC:
419 /* Similarly. Further, the offset is always positive. */
420 return true;
421
422 case PRE_DEC:
423 case POST_DEC:
424 case POST_INC:
425 case POST_MODIFY:
426 return nonzero_address_p (XEXP (x, 0));
427
428 case LO_SUM:
429 return nonzero_address_p (XEXP (x, 1));
430
431 default:
432 break;
433 }
434
435 /* If it isn't one of the case above, might be zero. */
436 return false;
437 }
438
439 /* Return 1 if X refers to a memory location whose address
440 cannot be compared reliably with constant addresses,
441 or if X refers to a BLKmode memory object.
442 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
443 zero, we are slightly more conservative. */
444
445 bool
446 rtx_addr_varies_p (const_rtx x, bool for_alias)
447 {
448 enum rtx_code code;
449 int i;
450 const char *fmt;
451
452 if (x == 0)
453 return 0;
454
455 code = GET_CODE (x);
456 if (code == MEM)
457 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
458
459 fmt = GET_RTX_FORMAT (code);
460 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
461 if (fmt[i] == 'e')
462 {
463 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
464 return 1;
465 }
466 else if (fmt[i] == 'E')
467 {
468 int j;
469 for (j = 0; j < XVECLEN (x, i); j++)
470 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
471 return 1;
472 }
473 return 0;
474 }
475 \f
476 /* Return the value of the integer term in X, if one is apparent;
477 otherwise return 0.
478 Only obvious integer terms are detected.
479 This is used in cse.c with the `related_value' field. */
480
481 HOST_WIDE_INT
482 get_integer_term (const_rtx x)
483 {
484 if (GET_CODE (x) == CONST)
485 x = XEXP (x, 0);
486
487 if (GET_CODE (x) == MINUS
488 && CONST_INT_P (XEXP (x, 1)))
489 return - INTVAL (XEXP (x, 1));
490 if (GET_CODE (x) == PLUS
491 && CONST_INT_P (XEXP (x, 1)))
492 return INTVAL (XEXP (x, 1));
493 return 0;
494 }
495
496 /* If X is a constant, return the value sans apparent integer term;
497 otherwise return 0.
498 Only obvious integer terms are detected. */
499
500 rtx
501 get_related_value (const_rtx x)
502 {
503 if (GET_CODE (x) != CONST)
504 return 0;
505 x = XEXP (x, 0);
506 if (GET_CODE (x) == PLUS
507 && CONST_INT_P (XEXP (x, 1)))
508 return XEXP (x, 0);
509 else if (GET_CODE (x) == MINUS
510 && CONST_INT_P (XEXP (x, 1)))
511 return XEXP (x, 0);
512 return 0;
513 }
514 \f
515 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
516 to somewhere in the same object or object_block as SYMBOL. */
517
518 bool
519 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
520 {
521 tree decl;
522
523 if (GET_CODE (symbol) != SYMBOL_REF)
524 return false;
525
526 if (offset == 0)
527 return true;
528
529 if (offset > 0)
530 {
531 if (CONSTANT_POOL_ADDRESS_P (symbol)
532 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
533 return true;
534
535 decl = SYMBOL_REF_DECL (symbol);
536 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
537 return true;
538 }
539
540 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
541 && SYMBOL_REF_BLOCK (symbol)
542 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
543 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
544 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
545 return true;
546
547 return false;
548 }
549
550 /* Split X into a base and a constant offset, storing them in *BASE_OUT
551 and *OFFSET_OUT respectively. */
552
553 void
554 split_const (rtx x, rtx *base_out, rtx *offset_out)
555 {
556 if (GET_CODE (x) == CONST)
557 {
558 x = XEXP (x, 0);
559 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
560 {
561 *base_out = XEXP (x, 0);
562 *offset_out = XEXP (x, 1);
563 return;
564 }
565 }
566 *base_out = x;
567 *offset_out = const0_rtx;
568 }
569 \f
570 /* Return the number of places FIND appears within X. If COUNT_DEST is
571 zero, we do not count occurrences inside the destination of a SET. */
572
573 int
574 count_occurrences (const_rtx x, const_rtx find, int count_dest)
575 {
576 int i, j;
577 enum rtx_code code;
578 const char *format_ptr;
579 int count;
580
581 if (x == find)
582 return 1;
583
584 code = GET_CODE (x);
585
586 switch (code)
587 {
588 case REG:
589 case CONST_INT:
590 case CONST_DOUBLE:
591 case CONST_FIXED:
592 case CONST_VECTOR:
593 case SYMBOL_REF:
594 case CODE_LABEL:
595 case PC:
596 case CC0:
597 return 0;
598
599 case EXPR_LIST:
600 count = count_occurrences (XEXP (x, 0), find, count_dest);
601 if (XEXP (x, 1))
602 count += count_occurrences (XEXP (x, 1), find, count_dest);
603 return count;
604
605 case MEM:
606 if (MEM_P (find) && rtx_equal_p (x, find))
607 return 1;
608 break;
609
610 case SET:
611 if (SET_DEST (x) == find && ! count_dest)
612 return count_occurrences (SET_SRC (x), find, count_dest);
613 break;
614
615 default:
616 break;
617 }
618
619 format_ptr = GET_RTX_FORMAT (code);
620 count = 0;
621
622 for (i = 0; i < GET_RTX_LENGTH (code); i++)
623 {
624 switch (*format_ptr++)
625 {
626 case 'e':
627 count += count_occurrences (XEXP (x, i), find, count_dest);
628 break;
629
630 case 'E':
631 for (j = 0; j < XVECLEN (x, i); j++)
632 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
633 break;
634 }
635 }
636 return count;
637 }
638
639 \f
640 /* Nonzero if register REG appears somewhere within IN.
641 Also works if REG is not a register; in this case it checks
642 for a subexpression of IN that is Lisp "equal" to REG. */
643
644 int
645 reg_mentioned_p (const_rtx reg, const_rtx in)
646 {
647 const char *fmt;
648 int i;
649 enum rtx_code code;
650
651 if (in == 0)
652 return 0;
653
654 if (reg == in)
655 return 1;
656
657 if (GET_CODE (in) == LABEL_REF)
658 return reg == XEXP (in, 0);
659
660 code = GET_CODE (in);
661
662 switch (code)
663 {
664 /* Compare registers by number. */
665 case REG:
666 return REG_P (reg) && REGNO (in) == REGNO (reg);
667
668 /* These codes have no constituent expressions
669 and are unique. */
670 case SCRATCH:
671 case CC0:
672 case PC:
673 return 0;
674
675 case CONST_INT:
676 case CONST_VECTOR:
677 case CONST_DOUBLE:
678 case CONST_FIXED:
679 /* These are kept unique for a given value. */
680 return 0;
681
682 default:
683 break;
684 }
685
686 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
687 return 1;
688
689 fmt = GET_RTX_FORMAT (code);
690
691 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
692 {
693 if (fmt[i] == 'E')
694 {
695 int j;
696 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
697 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
698 return 1;
699 }
700 else if (fmt[i] == 'e'
701 && reg_mentioned_p (reg, XEXP (in, i)))
702 return 1;
703 }
704 return 0;
705 }
706 \f
707 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
708 no CODE_LABEL insn. */
709
710 int
711 no_labels_between_p (const_rtx beg, const_rtx end)
712 {
713 rtx p;
714 if (beg == end)
715 return 0;
716 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
717 if (LABEL_P (p))
718 return 0;
719 return 1;
720 }
721
722 /* Nonzero if register REG is used in an insn between
723 FROM_INSN and TO_INSN (exclusive of those two). */
724
725 int
726 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
727 {
728 rtx insn;
729
730 if (from_insn == to_insn)
731 return 0;
732
733 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
734 if (NONDEBUG_INSN_P (insn)
735 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
736 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
737 return 1;
738 return 0;
739 }
740 \f
741 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
742 is entirely replaced by a new value and the only use is as a SET_DEST,
743 we do not consider it a reference. */
744
745 int
746 reg_referenced_p (const_rtx x, const_rtx body)
747 {
748 int i;
749
750 switch (GET_CODE (body))
751 {
752 case SET:
753 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
754 return 1;
755
756 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
757 of a REG that occupies all of the REG, the insn references X if
758 it is mentioned in the destination. */
759 if (GET_CODE (SET_DEST (body)) != CC0
760 && GET_CODE (SET_DEST (body)) != PC
761 && !REG_P (SET_DEST (body))
762 && ! (GET_CODE (SET_DEST (body)) == SUBREG
763 && REG_P (SUBREG_REG (SET_DEST (body)))
764 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
765 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
766 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
767 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
768 && reg_overlap_mentioned_p (x, SET_DEST (body)))
769 return 1;
770 return 0;
771
772 case ASM_OPERANDS:
773 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
774 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
775 return 1;
776 return 0;
777
778 case CALL:
779 case USE:
780 case IF_THEN_ELSE:
781 return reg_overlap_mentioned_p (x, body);
782
783 case TRAP_IF:
784 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
785
786 case PREFETCH:
787 return reg_overlap_mentioned_p (x, XEXP (body, 0));
788
789 case UNSPEC:
790 case UNSPEC_VOLATILE:
791 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
792 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
793 return 1;
794 return 0;
795
796 case PARALLEL:
797 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
798 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
799 return 1;
800 return 0;
801
802 case CLOBBER:
803 if (MEM_P (XEXP (body, 0)))
804 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
805 return 1;
806 return 0;
807
808 case COND_EXEC:
809 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
810 return 1;
811 return reg_referenced_p (x, COND_EXEC_CODE (body));
812
813 default:
814 return 0;
815 }
816 }
817 \f
818 /* Nonzero if register REG is set or clobbered in an insn between
819 FROM_INSN and TO_INSN (exclusive of those two). */
820
821 int
822 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
823 {
824 const_rtx insn;
825
826 if (from_insn == to_insn)
827 return 0;
828
829 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
830 if (INSN_P (insn) && reg_set_p (reg, insn))
831 return 1;
832 return 0;
833 }
834
835 /* Internals of reg_set_between_p. */
836 int
837 reg_set_p (const_rtx reg, const_rtx insn)
838 {
839 /* We can be passed an insn or part of one. If we are passed an insn,
840 check if a side-effect of the insn clobbers REG. */
841 if (INSN_P (insn)
842 && (FIND_REG_INC_NOTE (insn, reg)
843 || (CALL_P (insn)
844 && ((REG_P (reg)
845 && REGNO (reg) < FIRST_PSEUDO_REGISTER
846 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
847 GET_MODE (reg), REGNO (reg)))
848 || MEM_P (reg)
849 || find_reg_fusage (insn, CLOBBER, reg)))))
850 return 1;
851
852 return set_of (reg, insn) != NULL_RTX;
853 }
854
855 /* Similar to reg_set_between_p, but check all registers in X. Return 0
856 only if none of them are modified between START and END. Return 1 if
857 X contains a MEM; this routine does use memory aliasing. */
858
859 int
860 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
861 {
862 const enum rtx_code code = GET_CODE (x);
863 const char *fmt;
864 int i, j;
865 rtx insn;
866
867 if (start == end)
868 return 0;
869
870 switch (code)
871 {
872 case CONST_INT:
873 case CONST_DOUBLE:
874 case CONST_FIXED:
875 case CONST_VECTOR:
876 case CONST:
877 case SYMBOL_REF:
878 case LABEL_REF:
879 return 0;
880
881 case PC:
882 case CC0:
883 return 1;
884
885 case MEM:
886 if (modified_between_p (XEXP (x, 0), start, end))
887 return 1;
888 if (MEM_READONLY_P (x))
889 return 0;
890 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
891 if (memory_modified_in_insn_p (x, insn))
892 return 1;
893 return 0;
894 break;
895
896 case REG:
897 return reg_set_between_p (x, start, end);
898
899 default:
900 break;
901 }
902
903 fmt = GET_RTX_FORMAT (code);
904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
905 {
906 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
907 return 1;
908
909 else if (fmt[i] == 'E')
910 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
911 if (modified_between_p (XVECEXP (x, i, j), start, end))
912 return 1;
913 }
914
915 return 0;
916 }
917
918 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
919 of them are modified in INSN. Return 1 if X contains a MEM; this routine
920 does use memory aliasing. */
921
922 int
923 modified_in_p (const_rtx x, const_rtx insn)
924 {
925 const enum rtx_code code = GET_CODE (x);
926 const char *fmt;
927 int i, j;
928
929 switch (code)
930 {
931 case CONST_INT:
932 case CONST_DOUBLE:
933 case CONST_FIXED:
934 case CONST_VECTOR:
935 case CONST:
936 case SYMBOL_REF:
937 case LABEL_REF:
938 return 0;
939
940 case PC:
941 case CC0:
942 return 1;
943
944 case MEM:
945 if (modified_in_p (XEXP (x, 0), insn))
946 return 1;
947 if (MEM_READONLY_P (x))
948 return 0;
949 if (memory_modified_in_insn_p (x, insn))
950 return 1;
951 return 0;
952 break;
953
954 case REG:
955 return reg_set_p (x, insn);
956
957 default:
958 break;
959 }
960
961 fmt = GET_RTX_FORMAT (code);
962 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
963 {
964 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
965 return 1;
966
967 else if (fmt[i] == 'E')
968 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
969 if (modified_in_p (XVECEXP (x, i, j), insn))
970 return 1;
971 }
972
973 return 0;
974 }
975 \f
976 /* Helper function for set_of. */
977 struct set_of_data
978 {
979 const_rtx found;
980 const_rtx pat;
981 };
982
983 static void
984 set_of_1 (rtx x, const_rtx pat, void *data1)
985 {
986 struct set_of_data *const data = (struct set_of_data *) (data1);
987 if (rtx_equal_p (x, data->pat)
988 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
989 data->found = pat;
990 }
991
992 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
993 (either directly or via STRICT_LOW_PART and similar modifiers). */
994 const_rtx
995 set_of (const_rtx pat, const_rtx insn)
996 {
997 struct set_of_data data;
998 data.found = NULL_RTX;
999 data.pat = pat;
1000 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1001 return data.found;
1002 }
1003 \f
1004 /* Given an INSN, return a SET expression if this insn has only a single SET.
1005 It may also have CLOBBERs, USEs, or SET whose output
1006 will not be used, which we ignore. */
1007
1008 rtx
1009 single_set_2 (const_rtx insn, const_rtx pat)
1010 {
1011 rtx set = NULL;
1012 int set_verified = 1;
1013 int i;
1014
1015 if (GET_CODE (pat) == PARALLEL)
1016 {
1017 for (i = 0; i < XVECLEN (pat, 0); i++)
1018 {
1019 rtx sub = XVECEXP (pat, 0, i);
1020 switch (GET_CODE (sub))
1021 {
1022 case USE:
1023 case CLOBBER:
1024 break;
1025
1026 case SET:
1027 /* We can consider insns having multiple sets, where all
1028 but one are dead as single set insns. In common case
1029 only single set is present in the pattern so we want
1030 to avoid checking for REG_UNUSED notes unless necessary.
1031
1032 When we reach set first time, we just expect this is
1033 the single set we are looking for and only when more
1034 sets are found in the insn, we check them. */
1035 if (!set_verified)
1036 {
1037 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1038 && !side_effects_p (set))
1039 set = NULL;
1040 else
1041 set_verified = 1;
1042 }
1043 if (!set)
1044 set = sub, set_verified = 0;
1045 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1046 || side_effects_p (sub))
1047 return NULL_RTX;
1048 break;
1049
1050 default:
1051 return NULL_RTX;
1052 }
1053 }
1054 }
1055 return set;
1056 }
1057
1058 /* Given an INSN, return nonzero if it has more than one SET, else return
1059 zero. */
1060
1061 int
1062 multiple_sets (const_rtx insn)
1063 {
1064 int found;
1065 int i;
1066
1067 /* INSN must be an insn. */
1068 if (! INSN_P (insn))
1069 return 0;
1070
1071 /* Only a PARALLEL can have multiple SETs. */
1072 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1073 {
1074 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1075 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1076 {
1077 /* If we have already found a SET, then return now. */
1078 if (found)
1079 return 1;
1080 else
1081 found = 1;
1082 }
1083 }
1084
1085 /* Either zero or one SET. */
1086 return 0;
1087 }
1088 \f
1089 /* Return nonzero if the destination of SET equals the source
1090 and there are no side effects. */
1091
1092 int
1093 set_noop_p (const_rtx set)
1094 {
1095 rtx src = SET_SRC (set);
1096 rtx dst = SET_DEST (set);
1097
1098 if (dst == pc_rtx && src == pc_rtx)
1099 return 1;
1100
1101 if (MEM_P (dst) && MEM_P (src))
1102 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1103
1104 if (GET_CODE (dst) == ZERO_EXTRACT)
1105 return rtx_equal_p (XEXP (dst, 0), src)
1106 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1107 && !side_effects_p (src);
1108
1109 if (GET_CODE (dst) == STRICT_LOW_PART)
1110 dst = XEXP (dst, 0);
1111
1112 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1113 {
1114 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1115 return 0;
1116 src = SUBREG_REG (src);
1117 dst = SUBREG_REG (dst);
1118 }
1119
1120 return (REG_P (src) && REG_P (dst)
1121 && REGNO (src) == REGNO (dst));
1122 }
1123 \f
1124 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1125 value to itself. */
1126
1127 int
1128 noop_move_p (const_rtx insn)
1129 {
1130 rtx pat = PATTERN (insn);
1131
1132 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1133 return 1;
1134
1135 /* Insns carrying these notes are useful later on. */
1136 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1137 return 0;
1138
1139 if (GET_CODE (pat) == SET && set_noop_p (pat))
1140 return 1;
1141
1142 if (GET_CODE (pat) == PARALLEL)
1143 {
1144 int i;
1145 /* If nothing but SETs of registers to themselves,
1146 this insn can also be deleted. */
1147 for (i = 0; i < XVECLEN (pat, 0); i++)
1148 {
1149 rtx tem = XVECEXP (pat, 0, i);
1150
1151 if (GET_CODE (tem) == USE
1152 || GET_CODE (tem) == CLOBBER)
1153 continue;
1154
1155 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1156 return 0;
1157 }
1158
1159 return 1;
1160 }
1161 return 0;
1162 }
1163 \f
1164
1165 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1166 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1167 If the object was modified, if we hit a partial assignment to X, or hit a
1168 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1169 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1170 be the src. */
1171
1172 rtx
1173 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1174 {
1175 rtx p;
1176
1177 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1178 p = PREV_INSN (p))
1179 if (INSN_P (p))
1180 {
1181 rtx set = single_set (p);
1182 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1183
1184 if (set && rtx_equal_p (x, SET_DEST (set)))
1185 {
1186 rtx src = SET_SRC (set);
1187
1188 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1189 src = XEXP (note, 0);
1190
1191 if ((valid_to == NULL_RTX
1192 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1193 /* Reject hard registers because we don't usually want
1194 to use them; we'd rather use a pseudo. */
1195 && (! (REG_P (src)
1196 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1197 {
1198 *pinsn = p;
1199 return src;
1200 }
1201 }
1202
1203 /* If set in non-simple way, we don't have a value. */
1204 if (reg_set_p (x, p))
1205 break;
1206 }
1207
1208 return x;
1209 }
1210 \f
1211 /* Return nonzero if register in range [REGNO, ENDREGNO)
1212 appears either explicitly or implicitly in X
1213 other than being stored into.
1214
1215 References contained within the substructure at LOC do not count.
1216 LOC may be zero, meaning don't ignore anything. */
1217
1218 int
1219 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1220 rtx *loc)
1221 {
1222 int i;
1223 unsigned int x_regno;
1224 RTX_CODE code;
1225 const char *fmt;
1226
1227 repeat:
1228 /* The contents of a REG_NONNEG note is always zero, so we must come here
1229 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1230 if (x == 0)
1231 return 0;
1232
1233 code = GET_CODE (x);
1234
1235 switch (code)
1236 {
1237 case REG:
1238 x_regno = REGNO (x);
1239
1240 /* If we modifying the stack, frame, or argument pointer, it will
1241 clobber a virtual register. In fact, we could be more precise,
1242 but it isn't worth it. */
1243 if ((x_regno == STACK_POINTER_REGNUM
1244 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1245 || x_regno == ARG_POINTER_REGNUM
1246 #endif
1247 || x_regno == FRAME_POINTER_REGNUM)
1248 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1249 return 1;
1250
1251 return endregno > x_regno && regno < END_REGNO (x);
1252
1253 case SUBREG:
1254 /* If this is a SUBREG of a hard reg, we can see exactly which
1255 registers are being modified. Otherwise, handle normally. */
1256 if (REG_P (SUBREG_REG (x))
1257 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1258 {
1259 unsigned int inner_regno = subreg_regno (x);
1260 unsigned int inner_endregno
1261 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1262 ? subreg_nregs (x) : 1);
1263
1264 return endregno > inner_regno && regno < inner_endregno;
1265 }
1266 break;
1267
1268 case CLOBBER:
1269 case SET:
1270 if (&SET_DEST (x) != loc
1271 /* Note setting a SUBREG counts as referring to the REG it is in for
1272 a pseudo but not for hard registers since we can
1273 treat each word individually. */
1274 && ((GET_CODE (SET_DEST (x)) == SUBREG
1275 && loc != &SUBREG_REG (SET_DEST (x))
1276 && REG_P (SUBREG_REG (SET_DEST (x)))
1277 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1278 && refers_to_regno_p (regno, endregno,
1279 SUBREG_REG (SET_DEST (x)), loc))
1280 || (!REG_P (SET_DEST (x))
1281 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1282 return 1;
1283
1284 if (code == CLOBBER || loc == &SET_SRC (x))
1285 return 0;
1286 x = SET_SRC (x);
1287 goto repeat;
1288
1289 default:
1290 break;
1291 }
1292
1293 /* X does not match, so try its subexpressions. */
1294
1295 fmt = GET_RTX_FORMAT (code);
1296 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1297 {
1298 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1299 {
1300 if (i == 0)
1301 {
1302 x = XEXP (x, 0);
1303 goto repeat;
1304 }
1305 else
1306 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1307 return 1;
1308 }
1309 else if (fmt[i] == 'E')
1310 {
1311 int j;
1312 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1313 if (loc != &XVECEXP (x, i, j)
1314 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1315 return 1;
1316 }
1317 }
1318 return 0;
1319 }
1320
1321 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1322 we check if any register number in X conflicts with the relevant register
1323 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1324 contains a MEM (we don't bother checking for memory addresses that can't
1325 conflict because we expect this to be a rare case. */
1326
1327 int
1328 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1329 {
1330 unsigned int regno, endregno;
1331
1332 /* If either argument is a constant, then modifying X can not
1333 affect IN. Here we look at IN, we can profitably combine
1334 CONSTANT_P (x) with the switch statement below. */
1335 if (CONSTANT_P (in))
1336 return 0;
1337
1338 recurse:
1339 switch (GET_CODE (x))
1340 {
1341 case STRICT_LOW_PART:
1342 case ZERO_EXTRACT:
1343 case SIGN_EXTRACT:
1344 /* Overly conservative. */
1345 x = XEXP (x, 0);
1346 goto recurse;
1347
1348 case SUBREG:
1349 regno = REGNO (SUBREG_REG (x));
1350 if (regno < FIRST_PSEUDO_REGISTER)
1351 regno = subreg_regno (x);
1352 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1353 ? subreg_nregs (x) : 1);
1354 goto do_reg;
1355
1356 case REG:
1357 regno = REGNO (x);
1358 endregno = END_REGNO (x);
1359 do_reg:
1360 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1361
1362 case MEM:
1363 {
1364 const char *fmt;
1365 int i;
1366
1367 if (MEM_P (in))
1368 return 1;
1369
1370 fmt = GET_RTX_FORMAT (GET_CODE (in));
1371 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1372 if (fmt[i] == 'e')
1373 {
1374 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1375 return 1;
1376 }
1377 else if (fmt[i] == 'E')
1378 {
1379 int j;
1380 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1381 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1382 return 1;
1383 }
1384
1385 return 0;
1386 }
1387
1388 case SCRATCH:
1389 case PC:
1390 case CC0:
1391 return reg_mentioned_p (x, in);
1392
1393 case PARALLEL:
1394 {
1395 int i;
1396
1397 /* If any register in here refers to it we return true. */
1398 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1399 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1400 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1401 return 1;
1402 return 0;
1403 }
1404
1405 default:
1406 gcc_assert (CONSTANT_P (x));
1407 return 0;
1408 }
1409 }
1410 \f
1411 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1412 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1413 ignored by note_stores, but passed to FUN.
1414
1415 FUN receives three arguments:
1416 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1417 2. the SET or CLOBBER rtx that does the store,
1418 3. the pointer DATA provided to note_stores.
1419
1420 If the item being stored in or clobbered is a SUBREG of a hard register,
1421 the SUBREG will be passed. */
1422
1423 void
1424 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1425 {
1426 int i;
1427
1428 if (GET_CODE (x) == COND_EXEC)
1429 x = COND_EXEC_CODE (x);
1430
1431 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1432 {
1433 rtx dest = SET_DEST (x);
1434
1435 while ((GET_CODE (dest) == SUBREG
1436 && (!REG_P (SUBREG_REG (dest))
1437 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1438 || GET_CODE (dest) == ZERO_EXTRACT
1439 || GET_CODE (dest) == STRICT_LOW_PART)
1440 dest = XEXP (dest, 0);
1441
1442 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1443 each of whose first operand is a register. */
1444 if (GET_CODE (dest) == PARALLEL)
1445 {
1446 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1447 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1448 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1449 }
1450 else
1451 (*fun) (dest, x, data);
1452 }
1453
1454 else if (GET_CODE (x) == PARALLEL)
1455 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1456 note_stores (XVECEXP (x, 0, i), fun, data);
1457 }
1458 \f
1459 /* Like notes_stores, but call FUN for each expression that is being
1460 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1461 FUN for each expression, not any interior subexpressions. FUN receives a
1462 pointer to the expression and the DATA passed to this function.
1463
1464 Note that this is not quite the same test as that done in reg_referenced_p
1465 since that considers something as being referenced if it is being
1466 partially set, while we do not. */
1467
1468 void
1469 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1470 {
1471 rtx body = *pbody;
1472 int i;
1473
1474 switch (GET_CODE (body))
1475 {
1476 case COND_EXEC:
1477 (*fun) (&COND_EXEC_TEST (body), data);
1478 note_uses (&COND_EXEC_CODE (body), fun, data);
1479 return;
1480
1481 case PARALLEL:
1482 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1483 note_uses (&XVECEXP (body, 0, i), fun, data);
1484 return;
1485
1486 case SEQUENCE:
1487 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1488 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1489 return;
1490
1491 case USE:
1492 (*fun) (&XEXP (body, 0), data);
1493 return;
1494
1495 case ASM_OPERANDS:
1496 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1497 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1498 return;
1499
1500 case TRAP_IF:
1501 (*fun) (&TRAP_CONDITION (body), data);
1502 return;
1503
1504 case PREFETCH:
1505 (*fun) (&XEXP (body, 0), data);
1506 return;
1507
1508 case UNSPEC:
1509 case UNSPEC_VOLATILE:
1510 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1511 (*fun) (&XVECEXP (body, 0, i), data);
1512 return;
1513
1514 case CLOBBER:
1515 if (MEM_P (XEXP (body, 0)))
1516 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1517 return;
1518
1519 case SET:
1520 {
1521 rtx dest = SET_DEST (body);
1522
1523 /* For sets we replace everything in source plus registers in memory
1524 expression in store and operands of a ZERO_EXTRACT. */
1525 (*fun) (&SET_SRC (body), data);
1526
1527 if (GET_CODE (dest) == ZERO_EXTRACT)
1528 {
1529 (*fun) (&XEXP (dest, 1), data);
1530 (*fun) (&XEXP (dest, 2), data);
1531 }
1532
1533 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1534 dest = XEXP (dest, 0);
1535
1536 if (MEM_P (dest))
1537 (*fun) (&XEXP (dest, 0), data);
1538 }
1539 return;
1540
1541 default:
1542 /* All the other possibilities never store. */
1543 (*fun) (pbody, data);
1544 return;
1545 }
1546 }
1547 \f
1548 /* Return nonzero if X's old contents don't survive after INSN.
1549 This will be true if X is (cc0) or if X is a register and
1550 X dies in INSN or because INSN entirely sets X.
1551
1552 "Entirely set" means set directly and not through a SUBREG, or
1553 ZERO_EXTRACT, so no trace of the old contents remains.
1554 Likewise, REG_INC does not count.
1555
1556 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1557 but for this use that makes no difference, since regs don't overlap
1558 during their lifetimes. Therefore, this function may be used
1559 at any time after deaths have been computed.
1560
1561 If REG is a hard reg that occupies multiple machine registers, this
1562 function will only return 1 if each of those registers will be replaced
1563 by INSN. */
1564
1565 int
1566 dead_or_set_p (const_rtx insn, const_rtx x)
1567 {
1568 unsigned int regno, end_regno;
1569 unsigned int i;
1570
1571 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1572 if (GET_CODE (x) == CC0)
1573 return 1;
1574
1575 gcc_assert (REG_P (x));
1576
1577 regno = REGNO (x);
1578 end_regno = END_REGNO (x);
1579 for (i = regno; i < end_regno; i++)
1580 if (! dead_or_set_regno_p (insn, i))
1581 return 0;
1582
1583 return 1;
1584 }
1585
1586 /* Return TRUE iff DEST is a register or subreg of a register and
1587 doesn't change the number of words of the inner register, and any
1588 part of the register is TEST_REGNO. */
1589
1590 static bool
1591 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1592 {
1593 unsigned int regno, endregno;
1594
1595 if (GET_CODE (dest) == SUBREG
1596 && (((GET_MODE_SIZE (GET_MODE (dest))
1597 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1598 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1599 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1600 dest = SUBREG_REG (dest);
1601
1602 if (!REG_P (dest))
1603 return false;
1604
1605 regno = REGNO (dest);
1606 endregno = END_REGNO (dest);
1607 return (test_regno >= regno && test_regno < endregno);
1608 }
1609
1610 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1611 any member matches the covers_regno_no_parallel_p criteria. */
1612
1613 static bool
1614 covers_regno_p (const_rtx dest, unsigned int test_regno)
1615 {
1616 if (GET_CODE (dest) == PARALLEL)
1617 {
1618 /* Some targets place small structures in registers for return
1619 values of functions, and those registers are wrapped in
1620 PARALLELs that we may see as the destination of a SET. */
1621 int i;
1622
1623 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1624 {
1625 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1626 if (inner != NULL_RTX
1627 && covers_regno_no_parallel_p (inner, test_regno))
1628 return true;
1629 }
1630
1631 return false;
1632 }
1633 else
1634 return covers_regno_no_parallel_p (dest, test_regno);
1635 }
1636
1637 /* Utility function for dead_or_set_p to check an individual register. */
1638
1639 int
1640 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1641 {
1642 const_rtx pattern;
1643
1644 /* See if there is a death note for something that includes TEST_REGNO. */
1645 if (find_regno_note (insn, REG_DEAD, test_regno))
1646 return 1;
1647
1648 if (CALL_P (insn)
1649 && find_regno_fusage (insn, CLOBBER, test_regno))
1650 return 1;
1651
1652 pattern = PATTERN (insn);
1653
1654 if (GET_CODE (pattern) == COND_EXEC)
1655 pattern = COND_EXEC_CODE (pattern);
1656
1657 if (GET_CODE (pattern) == SET)
1658 return covers_regno_p (SET_DEST (pattern), test_regno);
1659 else if (GET_CODE (pattern) == PARALLEL)
1660 {
1661 int i;
1662
1663 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1664 {
1665 rtx body = XVECEXP (pattern, 0, i);
1666
1667 if (GET_CODE (body) == COND_EXEC)
1668 body = COND_EXEC_CODE (body);
1669
1670 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1671 && covers_regno_p (SET_DEST (body), test_regno))
1672 return 1;
1673 }
1674 }
1675
1676 return 0;
1677 }
1678
1679 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1680 If DATUM is nonzero, look for one whose datum is DATUM. */
1681
1682 rtx
1683 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1684 {
1685 rtx link;
1686
1687 gcc_checking_assert (insn);
1688
1689 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1690 if (! INSN_P (insn))
1691 return 0;
1692 if (datum == 0)
1693 {
1694 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1695 if (REG_NOTE_KIND (link) == kind)
1696 return link;
1697 return 0;
1698 }
1699
1700 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1701 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1702 return link;
1703 return 0;
1704 }
1705
1706 /* Return the reg-note of kind KIND in insn INSN which applies to register
1707 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1708 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1709 it might be the case that the note overlaps REGNO. */
1710
1711 rtx
1712 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1713 {
1714 rtx link;
1715
1716 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1717 if (! INSN_P (insn))
1718 return 0;
1719
1720 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1721 if (REG_NOTE_KIND (link) == kind
1722 /* Verify that it is a register, so that scratch and MEM won't cause a
1723 problem here. */
1724 && REG_P (XEXP (link, 0))
1725 && REGNO (XEXP (link, 0)) <= regno
1726 && END_REGNO (XEXP (link, 0)) > regno)
1727 return link;
1728 return 0;
1729 }
1730
1731 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1732 has such a note. */
1733
1734 rtx
1735 find_reg_equal_equiv_note (const_rtx insn)
1736 {
1737 rtx link;
1738
1739 if (!INSN_P (insn))
1740 return 0;
1741
1742 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1743 if (REG_NOTE_KIND (link) == REG_EQUAL
1744 || REG_NOTE_KIND (link) == REG_EQUIV)
1745 {
1746 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1747 insns that have multiple sets. Checking single_set to
1748 make sure of this is not the proper check, as explained
1749 in the comment in set_unique_reg_note.
1750
1751 This should be changed into an assert. */
1752 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1753 return 0;
1754 return link;
1755 }
1756 return NULL;
1757 }
1758
1759 /* Check whether INSN is a single_set whose source is known to be
1760 equivalent to a constant. Return that constant if so, otherwise
1761 return null. */
1762
1763 rtx
1764 find_constant_src (const_rtx insn)
1765 {
1766 rtx note, set, x;
1767
1768 set = single_set (insn);
1769 if (set)
1770 {
1771 x = avoid_constant_pool_reference (SET_SRC (set));
1772 if (CONSTANT_P (x))
1773 return x;
1774 }
1775
1776 note = find_reg_equal_equiv_note (insn);
1777 if (note && CONSTANT_P (XEXP (note, 0)))
1778 return XEXP (note, 0);
1779
1780 return NULL_RTX;
1781 }
1782
1783 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1784 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1785
1786 int
1787 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1788 {
1789 /* If it's not a CALL_INSN, it can't possibly have a
1790 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1791 if (!CALL_P (insn))
1792 return 0;
1793
1794 gcc_assert (datum);
1795
1796 if (!REG_P (datum))
1797 {
1798 rtx link;
1799
1800 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1801 link;
1802 link = XEXP (link, 1))
1803 if (GET_CODE (XEXP (link, 0)) == code
1804 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1805 return 1;
1806 }
1807 else
1808 {
1809 unsigned int regno = REGNO (datum);
1810
1811 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1812 to pseudo registers, so don't bother checking. */
1813
1814 if (regno < FIRST_PSEUDO_REGISTER)
1815 {
1816 unsigned int end_regno = END_HARD_REGNO (datum);
1817 unsigned int i;
1818
1819 for (i = regno; i < end_regno; i++)
1820 if (find_regno_fusage (insn, code, i))
1821 return 1;
1822 }
1823 }
1824
1825 return 0;
1826 }
1827
1828 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1829 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1830
1831 int
1832 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1833 {
1834 rtx link;
1835
1836 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1837 to pseudo registers, so don't bother checking. */
1838
1839 if (regno >= FIRST_PSEUDO_REGISTER
1840 || !CALL_P (insn) )
1841 return 0;
1842
1843 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1844 {
1845 rtx op, reg;
1846
1847 if (GET_CODE (op = XEXP (link, 0)) == code
1848 && REG_P (reg = XEXP (op, 0))
1849 && REGNO (reg) <= regno
1850 && END_HARD_REGNO (reg) > regno)
1851 return 1;
1852 }
1853
1854 return 0;
1855 }
1856
1857 \f
1858 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1859 stored as the pointer to the next register note. */
1860
1861 rtx
1862 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1863 {
1864 rtx note;
1865
1866 switch (kind)
1867 {
1868 case REG_CC_SETTER:
1869 case REG_CC_USER:
1870 case REG_LABEL_TARGET:
1871 case REG_LABEL_OPERAND:
1872 /* These types of register notes use an INSN_LIST rather than an
1873 EXPR_LIST, so that copying is done right and dumps look
1874 better. */
1875 note = alloc_INSN_LIST (datum, list);
1876 PUT_REG_NOTE_KIND (note, kind);
1877 break;
1878
1879 default:
1880 note = alloc_EXPR_LIST (kind, datum, list);
1881 break;
1882 }
1883
1884 return note;
1885 }
1886
1887 /* Add register note with kind KIND and datum DATUM to INSN. */
1888
1889 void
1890 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1891 {
1892 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1893 }
1894
1895 /* Remove register note NOTE from the REG_NOTES of INSN. */
1896
1897 void
1898 remove_note (rtx insn, const_rtx note)
1899 {
1900 rtx link;
1901
1902 if (note == NULL_RTX)
1903 return;
1904
1905 if (REG_NOTES (insn) == note)
1906 REG_NOTES (insn) = XEXP (note, 1);
1907 else
1908 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1909 if (XEXP (link, 1) == note)
1910 {
1911 XEXP (link, 1) = XEXP (note, 1);
1912 break;
1913 }
1914
1915 switch (REG_NOTE_KIND (note))
1916 {
1917 case REG_EQUAL:
1918 case REG_EQUIV:
1919 df_notes_rescan (insn);
1920 break;
1921 default:
1922 break;
1923 }
1924 }
1925
1926 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1927
1928 void
1929 remove_reg_equal_equiv_notes (rtx insn)
1930 {
1931 rtx *loc;
1932
1933 loc = &REG_NOTES (insn);
1934 while (*loc)
1935 {
1936 enum reg_note kind = REG_NOTE_KIND (*loc);
1937 if (kind == REG_EQUAL || kind == REG_EQUIV)
1938 *loc = XEXP (*loc, 1);
1939 else
1940 loc = &XEXP (*loc, 1);
1941 }
1942 }
1943
1944 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1945 return 1 if it is found. A simple equality test is used to determine if
1946 NODE matches. */
1947
1948 int
1949 in_expr_list_p (const_rtx listp, const_rtx node)
1950 {
1951 const_rtx x;
1952
1953 for (x = listp; x; x = XEXP (x, 1))
1954 if (node == XEXP (x, 0))
1955 return 1;
1956
1957 return 0;
1958 }
1959
1960 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1961 remove that entry from the list if it is found.
1962
1963 A simple equality test is used to determine if NODE matches. */
1964
1965 void
1966 remove_node_from_expr_list (const_rtx node, rtx *listp)
1967 {
1968 rtx temp = *listp;
1969 rtx prev = NULL_RTX;
1970
1971 while (temp)
1972 {
1973 if (node == XEXP (temp, 0))
1974 {
1975 /* Splice the node out of the list. */
1976 if (prev)
1977 XEXP (prev, 1) = XEXP (temp, 1);
1978 else
1979 *listp = XEXP (temp, 1);
1980
1981 return;
1982 }
1983
1984 prev = temp;
1985 temp = XEXP (temp, 1);
1986 }
1987 }
1988 \f
1989 /* Nonzero if X contains any volatile instructions. These are instructions
1990 which may cause unpredictable machine state instructions, and thus no
1991 instructions should be moved or combined across them. This includes
1992 only volatile asms and UNSPEC_VOLATILE instructions. */
1993
1994 int
1995 volatile_insn_p (const_rtx x)
1996 {
1997 const RTX_CODE code = GET_CODE (x);
1998 switch (code)
1999 {
2000 case LABEL_REF:
2001 case SYMBOL_REF:
2002 case CONST_INT:
2003 case CONST:
2004 case CONST_DOUBLE:
2005 case CONST_FIXED:
2006 case CONST_VECTOR:
2007 case CC0:
2008 case PC:
2009 case REG:
2010 case SCRATCH:
2011 case CLOBBER:
2012 case ADDR_VEC:
2013 case ADDR_DIFF_VEC:
2014 case CALL:
2015 case MEM:
2016 return 0;
2017
2018 case UNSPEC_VOLATILE:
2019 /* case TRAP_IF: This isn't clear yet. */
2020 return 1;
2021
2022 case ASM_INPUT:
2023 case ASM_OPERANDS:
2024 if (MEM_VOLATILE_P (x))
2025 return 1;
2026
2027 default:
2028 break;
2029 }
2030
2031 /* Recursively scan the operands of this expression. */
2032
2033 {
2034 const char *const fmt = GET_RTX_FORMAT (code);
2035 int i;
2036
2037 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2038 {
2039 if (fmt[i] == 'e')
2040 {
2041 if (volatile_insn_p (XEXP (x, i)))
2042 return 1;
2043 }
2044 else if (fmt[i] == 'E')
2045 {
2046 int j;
2047 for (j = 0; j < XVECLEN (x, i); j++)
2048 if (volatile_insn_p (XVECEXP (x, i, j)))
2049 return 1;
2050 }
2051 }
2052 }
2053 return 0;
2054 }
2055
2056 /* Nonzero if X contains any volatile memory references
2057 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2058
2059 int
2060 volatile_refs_p (const_rtx x)
2061 {
2062 const RTX_CODE code = GET_CODE (x);
2063 switch (code)
2064 {
2065 case LABEL_REF:
2066 case SYMBOL_REF:
2067 case CONST_INT:
2068 case CONST:
2069 case CONST_DOUBLE:
2070 case CONST_FIXED:
2071 case CONST_VECTOR:
2072 case CC0:
2073 case PC:
2074 case REG:
2075 case SCRATCH:
2076 case CLOBBER:
2077 case ADDR_VEC:
2078 case ADDR_DIFF_VEC:
2079 return 0;
2080
2081 case UNSPEC_VOLATILE:
2082 return 1;
2083
2084 case MEM:
2085 case ASM_INPUT:
2086 case ASM_OPERANDS:
2087 if (MEM_VOLATILE_P (x))
2088 return 1;
2089
2090 default:
2091 break;
2092 }
2093
2094 /* Recursively scan the operands of this expression. */
2095
2096 {
2097 const char *const fmt = GET_RTX_FORMAT (code);
2098 int i;
2099
2100 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2101 {
2102 if (fmt[i] == 'e')
2103 {
2104 if (volatile_refs_p (XEXP (x, i)))
2105 return 1;
2106 }
2107 else if (fmt[i] == 'E')
2108 {
2109 int j;
2110 for (j = 0; j < XVECLEN (x, i); j++)
2111 if (volatile_refs_p (XVECEXP (x, i, j)))
2112 return 1;
2113 }
2114 }
2115 }
2116 return 0;
2117 }
2118
2119 /* Similar to above, except that it also rejects register pre- and post-
2120 incrementing. */
2121
2122 int
2123 side_effects_p (const_rtx x)
2124 {
2125 const RTX_CODE code = GET_CODE (x);
2126 switch (code)
2127 {
2128 case LABEL_REF:
2129 case SYMBOL_REF:
2130 case CONST_INT:
2131 case CONST:
2132 case CONST_DOUBLE:
2133 case CONST_FIXED:
2134 case CONST_VECTOR:
2135 case CC0:
2136 case PC:
2137 case REG:
2138 case SCRATCH:
2139 case ADDR_VEC:
2140 case ADDR_DIFF_VEC:
2141 case VAR_LOCATION:
2142 return 0;
2143
2144 case CLOBBER:
2145 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2146 when some combination can't be done. If we see one, don't think
2147 that we can simplify the expression. */
2148 return (GET_MODE (x) != VOIDmode);
2149
2150 case PRE_INC:
2151 case PRE_DEC:
2152 case POST_INC:
2153 case POST_DEC:
2154 case PRE_MODIFY:
2155 case POST_MODIFY:
2156 case CALL:
2157 case UNSPEC_VOLATILE:
2158 /* case TRAP_IF: This isn't clear yet. */
2159 return 1;
2160
2161 case MEM:
2162 case ASM_INPUT:
2163 case ASM_OPERANDS:
2164 if (MEM_VOLATILE_P (x))
2165 return 1;
2166
2167 default:
2168 break;
2169 }
2170
2171 /* Recursively scan the operands of this expression. */
2172
2173 {
2174 const char *fmt = GET_RTX_FORMAT (code);
2175 int i;
2176
2177 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2178 {
2179 if (fmt[i] == 'e')
2180 {
2181 if (side_effects_p (XEXP (x, i)))
2182 return 1;
2183 }
2184 else if (fmt[i] == 'E')
2185 {
2186 int j;
2187 for (j = 0; j < XVECLEN (x, i); j++)
2188 if (side_effects_p (XVECEXP (x, i, j)))
2189 return 1;
2190 }
2191 }
2192 }
2193 return 0;
2194 }
2195 \f
2196 /* Return nonzero if evaluating rtx X might cause a trap.
2197 FLAGS controls how to consider MEMs. A nonzero means the context
2198 of the access may have changed from the original, such that the
2199 address may have become invalid. */
2200
2201 int
2202 may_trap_p_1 (const_rtx x, unsigned flags)
2203 {
2204 int i;
2205 enum rtx_code code;
2206 const char *fmt;
2207
2208 /* We make no distinction currently, but this function is part of
2209 the internal target-hooks ABI so we keep the parameter as
2210 "unsigned flags". */
2211 bool code_changed = flags != 0;
2212
2213 if (x == 0)
2214 return 0;
2215 code = GET_CODE (x);
2216 switch (code)
2217 {
2218 /* Handle these cases quickly. */
2219 case CONST_INT:
2220 case CONST_DOUBLE:
2221 case CONST_FIXED:
2222 case CONST_VECTOR:
2223 case SYMBOL_REF:
2224 case LABEL_REF:
2225 case CONST:
2226 case PC:
2227 case CC0:
2228 case REG:
2229 case SCRATCH:
2230 return 0;
2231
2232 case UNSPEC:
2233 case UNSPEC_VOLATILE:
2234 return targetm.unspec_may_trap_p (x, flags);
2235
2236 case ASM_INPUT:
2237 case TRAP_IF:
2238 return 1;
2239
2240 case ASM_OPERANDS:
2241 return MEM_VOLATILE_P (x);
2242
2243 /* Memory ref can trap unless it's a static var or a stack slot. */
2244 case MEM:
2245 /* Recognize specific pattern of stack checking probes. */
2246 if (flag_stack_check
2247 && MEM_VOLATILE_P (x)
2248 && XEXP (x, 0) == stack_pointer_rtx)
2249 return 1;
2250 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2251 reference; moving it out of context such as when moving code
2252 when optimizing, might cause its address to become invalid. */
2253 code_changed
2254 || !MEM_NOTRAP_P (x))
2255 {
2256 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2257 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2258 GET_MODE (x), code_changed);
2259 }
2260
2261 return 0;
2262
2263 /* Division by a non-constant might trap. */
2264 case DIV:
2265 case MOD:
2266 case UDIV:
2267 case UMOD:
2268 if (HONOR_SNANS (GET_MODE (x)))
2269 return 1;
2270 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2271 return flag_trapping_math;
2272 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2273 return 1;
2274 break;
2275
2276 case EXPR_LIST:
2277 /* An EXPR_LIST is used to represent a function call. This
2278 certainly may trap. */
2279 return 1;
2280
2281 case GE:
2282 case GT:
2283 case LE:
2284 case LT:
2285 case LTGT:
2286 case COMPARE:
2287 /* Some floating point comparisons may trap. */
2288 if (!flag_trapping_math)
2289 break;
2290 /* ??? There is no machine independent way to check for tests that trap
2291 when COMPARE is used, though many targets do make this distinction.
2292 For instance, sparc uses CCFPE for compares which generate exceptions
2293 and CCFP for compares which do not generate exceptions. */
2294 if (HONOR_NANS (GET_MODE (x)))
2295 return 1;
2296 /* But often the compare has some CC mode, so check operand
2297 modes as well. */
2298 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2299 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2300 return 1;
2301 break;
2302
2303 case EQ:
2304 case NE:
2305 if (HONOR_SNANS (GET_MODE (x)))
2306 return 1;
2307 /* Often comparison is CC mode, so check operand modes. */
2308 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2309 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2310 return 1;
2311 break;
2312
2313 case FIX:
2314 /* Conversion of floating point might trap. */
2315 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2316 return 1;
2317 break;
2318
2319 case NEG:
2320 case ABS:
2321 case SUBREG:
2322 /* These operations don't trap even with floating point. */
2323 break;
2324
2325 default:
2326 /* Any floating arithmetic may trap. */
2327 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2328 && flag_trapping_math)
2329 return 1;
2330 }
2331
2332 fmt = GET_RTX_FORMAT (code);
2333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2334 {
2335 if (fmt[i] == 'e')
2336 {
2337 if (may_trap_p_1 (XEXP (x, i), flags))
2338 return 1;
2339 }
2340 else if (fmt[i] == 'E')
2341 {
2342 int j;
2343 for (j = 0; j < XVECLEN (x, i); j++)
2344 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2345 return 1;
2346 }
2347 }
2348 return 0;
2349 }
2350
2351 /* Return nonzero if evaluating rtx X might cause a trap. */
2352
2353 int
2354 may_trap_p (const_rtx x)
2355 {
2356 return may_trap_p_1 (x, 0);
2357 }
2358
2359 /* Same as above, but additionally return nonzero if evaluating rtx X might
2360 cause a fault. We define a fault for the purpose of this function as a
2361 erroneous execution condition that cannot be encountered during the normal
2362 execution of a valid program; the typical example is an unaligned memory
2363 access on a strict alignment machine. The compiler guarantees that it
2364 doesn't generate code that will fault from a valid program, but this
2365 guarantee doesn't mean anything for individual instructions. Consider
2366 the following example:
2367
2368 struct S { int d; union { char *cp; int *ip; }; };
2369
2370 int foo(struct S *s)
2371 {
2372 if (s->d == 1)
2373 return *s->ip;
2374 else
2375 return *s->cp;
2376 }
2377
2378 on a strict alignment machine. In a valid program, foo will never be
2379 invoked on a structure for which d is equal to 1 and the underlying
2380 unique field of the union not aligned on a 4-byte boundary, but the
2381 expression *s->ip might cause a fault if considered individually.
2382
2383 At the RTL level, potentially problematic expressions will almost always
2384 verify may_trap_p; for example, the above dereference can be emitted as
2385 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2386 However, suppose that foo is inlined in a caller that causes s->cp to
2387 point to a local character variable and guarantees that s->d is not set
2388 to 1; foo may have been effectively translated into pseudo-RTL as:
2389
2390 if ((reg:SI) == 1)
2391 (set (reg:SI) (mem:SI (%fp - 7)))
2392 else
2393 (set (reg:QI) (mem:QI (%fp - 7)))
2394
2395 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2396 memory reference to a stack slot, but it will certainly cause a fault
2397 on a strict alignment machine. */
2398
2399 int
2400 may_trap_or_fault_p (const_rtx x)
2401 {
2402 return may_trap_p_1 (x, 1);
2403 }
2404 \f
2405 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2406 i.e., an inequality. */
2407
2408 int
2409 inequality_comparisons_p (const_rtx x)
2410 {
2411 const char *fmt;
2412 int len, i;
2413 const enum rtx_code code = GET_CODE (x);
2414
2415 switch (code)
2416 {
2417 case REG:
2418 case SCRATCH:
2419 case PC:
2420 case CC0:
2421 case CONST_INT:
2422 case CONST_DOUBLE:
2423 case CONST_FIXED:
2424 case CONST_VECTOR:
2425 case CONST:
2426 case LABEL_REF:
2427 case SYMBOL_REF:
2428 return 0;
2429
2430 case LT:
2431 case LTU:
2432 case GT:
2433 case GTU:
2434 case LE:
2435 case LEU:
2436 case GE:
2437 case GEU:
2438 return 1;
2439
2440 default:
2441 break;
2442 }
2443
2444 len = GET_RTX_LENGTH (code);
2445 fmt = GET_RTX_FORMAT (code);
2446
2447 for (i = 0; i < len; i++)
2448 {
2449 if (fmt[i] == 'e')
2450 {
2451 if (inequality_comparisons_p (XEXP (x, i)))
2452 return 1;
2453 }
2454 else if (fmt[i] == 'E')
2455 {
2456 int j;
2457 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2458 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2459 return 1;
2460 }
2461 }
2462
2463 return 0;
2464 }
2465 \f
2466 /* Replace any occurrence of FROM in X with TO. The function does
2467 not enter into CONST_DOUBLE for the replace.
2468
2469 Note that copying is not done so X must not be shared unless all copies
2470 are to be modified. */
2471
2472 rtx
2473 replace_rtx (rtx x, rtx from, rtx to)
2474 {
2475 int i, j;
2476 const char *fmt;
2477
2478 /* The following prevents loops occurrence when we change MEM in
2479 CONST_DOUBLE onto the same CONST_DOUBLE. */
2480 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2481 return x;
2482
2483 if (x == from)
2484 return to;
2485
2486 /* Allow this function to make replacements in EXPR_LISTs. */
2487 if (x == 0)
2488 return 0;
2489
2490 if (GET_CODE (x) == SUBREG)
2491 {
2492 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2493
2494 if (CONST_INT_P (new_rtx))
2495 {
2496 x = simplify_subreg (GET_MODE (x), new_rtx,
2497 GET_MODE (SUBREG_REG (x)),
2498 SUBREG_BYTE (x));
2499 gcc_assert (x);
2500 }
2501 else
2502 SUBREG_REG (x) = new_rtx;
2503
2504 return x;
2505 }
2506 else if (GET_CODE (x) == ZERO_EXTEND)
2507 {
2508 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2509
2510 if (CONST_INT_P (new_rtx))
2511 {
2512 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2513 new_rtx, GET_MODE (XEXP (x, 0)));
2514 gcc_assert (x);
2515 }
2516 else
2517 XEXP (x, 0) = new_rtx;
2518
2519 return x;
2520 }
2521
2522 fmt = GET_RTX_FORMAT (GET_CODE (x));
2523 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2524 {
2525 if (fmt[i] == 'e')
2526 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2527 else if (fmt[i] == 'E')
2528 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2529 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2530 }
2531
2532 return x;
2533 }
2534 \f
2535 /* Replace occurrences of the old label in *X with the new one.
2536 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2537
2538 int
2539 replace_label (rtx *x, void *data)
2540 {
2541 rtx l = *x;
2542 rtx old_label = ((replace_label_data *) data)->r1;
2543 rtx new_label = ((replace_label_data *) data)->r2;
2544 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2545
2546 if (l == NULL_RTX)
2547 return 0;
2548
2549 if (GET_CODE (l) == SYMBOL_REF
2550 && CONSTANT_POOL_ADDRESS_P (l))
2551 {
2552 rtx c = get_pool_constant (l);
2553 if (rtx_referenced_p (old_label, c))
2554 {
2555 rtx new_c, new_l;
2556 replace_label_data *d = (replace_label_data *) data;
2557
2558 /* Create a copy of constant C; replace the label inside
2559 but do not update LABEL_NUSES because uses in constant pool
2560 are not counted. */
2561 new_c = copy_rtx (c);
2562 d->update_label_nuses = false;
2563 for_each_rtx (&new_c, replace_label, data);
2564 d->update_label_nuses = update_label_nuses;
2565
2566 /* Add the new constant NEW_C to constant pool and replace
2567 the old reference to constant by new reference. */
2568 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2569 *x = replace_rtx (l, l, new_l);
2570 }
2571 return 0;
2572 }
2573
2574 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2575 field. This is not handled by for_each_rtx because it doesn't
2576 handle unprinted ('0') fields. */
2577 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2578 JUMP_LABEL (l) = new_label;
2579
2580 if ((GET_CODE (l) == LABEL_REF
2581 || GET_CODE (l) == INSN_LIST)
2582 && XEXP (l, 0) == old_label)
2583 {
2584 XEXP (l, 0) = new_label;
2585 if (update_label_nuses)
2586 {
2587 ++LABEL_NUSES (new_label);
2588 --LABEL_NUSES (old_label);
2589 }
2590 return 0;
2591 }
2592
2593 return 0;
2594 }
2595
2596 /* When *BODY is equal to X or X is directly referenced by *BODY
2597 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2598 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2599
2600 static int
2601 rtx_referenced_p_1 (rtx *body, void *x)
2602 {
2603 rtx y = (rtx) x;
2604
2605 if (*body == NULL_RTX)
2606 return y == NULL_RTX;
2607
2608 /* Return true if a label_ref *BODY refers to label Y. */
2609 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2610 return XEXP (*body, 0) == y;
2611
2612 /* If *BODY is a reference to pool constant traverse the constant. */
2613 if (GET_CODE (*body) == SYMBOL_REF
2614 && CONSTANT_POOL_ADDRESS_P (*body))
2615 return rtx_referenced_p (y, get_pool_constant (*body));
2616
2617 /* By default, compare the RTL expressions. */
2618 return rtx_equal_p (*body, y);
2619 }
2620
2621 /* Return true if X is referenced in BODY. */
2622
2623 int
2624 rtx_referenced_p (rtx x, rtx body)
2625 {
2626 return for_each_rtx (&body, rtx_referenced_p_1, x);
2627 }
2628
2629 /* If INSN is a tablejump return true and store the label (before jump table) to
2630 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2631
2632 bool
2633 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2634 {
2635 rtx label, table;
2636
2637 if (JUMP_P (insn)
2638 && (label = JUMP_LABEL (insn)) != NULL_RTX
2639 && (table = next_active_insn (label)) != NULL_RTX
2640 && JUMP_TABLE_DATA_P (table))
2641 {
2642 if (labelp)
2643 *labelp = label;
2644 if (tablep)
2645 *tablep = table;
2646 return true;
2647 }
2648 return false;
2649 }
2650
2651 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2652 constant that is not in the constant pool and not in the condition
2653 of an IF_THEN_ELSE. */
2654
2655 static int
2656 computed_jump_p_1 (const_rtx x)
2657 {
2658 const enum rtx_code code = GET_CODE (x);
2659 int i, j;
2660 const char *fmt;
2661
2662 switch (code)
2663 {
2664 case LABEL_REF:
2665 case PC:
2666 return 0;
2667
2668 case CONST:
2669 case CONST_INT:
2670 case CONST_DOUBLE:
2671 case CONST_FIXED:
2672 case CONST_VECTOR:
2673 case SYMBOL_REF:
2674 case REG:
2675 return 1;
2676
2677 case MEM:
2678 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2679 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2680
2681 case IF_THEN_ELSE:
2682 return (computed_jump_p_1 (XEXP (x, 1))
2683 || computed_jump_p_1 (XEXP (x, 2)));
2684
2685 default:
2686 break;
2687 }
2688
2689 fmt = GET_RTX_FORMAT (code);
2690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2691 {
2692 if (fmt[i] == 'e'
2693 && computed_jump_p_1 (XEXP (x, i)))
2694 return 1;
2695
2696 else if (fmt[i] == 'E')
2697 for (j = 0; j < XVECLEN (x, i); j++)
2698 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2699 return 1;
2700 }
2701
2702 return 0;
2703 }
2704
2705 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2706
2707 Tablejumps and casesi insns are not considered indirect jumps;
2708 we can recognize them by a (use (label_ref)). */
2709
2710 int
2711 computed_jump_p (const_rtx insn)
2712 {
2713 int i;
2714 if (JUMP_P (insn))
2715 {
2716 rtx pat = PATTERN (insn);
2717
2718 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2719 if (JUMP_LABEL (insn) != NULL)
2720 return 0;
2721
2722 if (GET_CODE (pat) == PARALLEL)
2723 {
2724 int len = XVECLEN (pat, 0);
2725 int has_use_labelref = 0;
2726
2727 for (i = len - 1; i >= 0; i--)
2728 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2729 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2730 == LABEL_REF))
2731 has_use_labelref = 1;
2732
2733 if (! has_use_labelref)
2734 for (i = len - 1; i >= 0; i--)
2735 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2736 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2737 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2738 return 1;
2739 }
2740 else if (GET_CODE (pat) == SET
2741 && SET_DEST (pat) == pc_rtx
2742 && computed_jump_p_1 (SET_SRC (pat)))
2743 return 1;
2744 }
2745 return 0;
2746 }
2747
2748 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2749 calls. Processes the subexpressions of EXP and passes them to F. */
2750 static int
2751 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2752 {
2753 int result, i, j;
2754 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2755 rtx *x;
2756
2757 for (; format[n] != '\0'; n++)
2758 {
2759 switch (format[n])
2760 {
2761 case 'e':
2762 /* Call F on X. */
2763 x = &XEXP (exp, n);
2764 result = (*f) (x, data);
2765 if (result == -1)
2766 /* Do not traverse sub-expressions. */
2767 continue;
2768 else if (result != 0)
2769 /* Stop the traversal. */
2770 return result;
2771
2772 if (*x == NULL_RTX)
2773 /* There are no sub-expressions. */
2774 continue;
2775
2776 i = non_rtx_starting_operands[GET_CODE (*x)];
2777 if (i >= 0)
2778 {
2779 result = for_each_rtx_1 (*x, i, f, data);
2780 if (result != 0)
2781 return result;
2782 }
2783 break;
2784
2785 case 'V':
2786 case 'E':
2787 if (XVEC (exp, n) == 0)
2788 continue;
2789 for (j = 0; j < XVECLEN (exp, n); ++j)
2790 {
2791 /* Call F on X. */
2792 x = &XVECEXP (exp, n, j);
2793 result = (*f) (x, data);
2794 if (result == -1)
2795 /* Do not traverse sub-expressions. */
2796 continue;
2797 else if (result != 0)
2798 /* Stop the traversal. */
2799 return result;
2800
2801 if (*x == NULL_RTX)
2802 /* There are no sub-expressions. */
2803 continue;
2804
2805 i = non_rtx_starting_operands[GET_CODE (*x)];
2806 if (i >= 0)
2807 {
2808 result = for_each_rtx_1 (*x, i, f, data);
2809 if (result != 0)
2810 return result;
2811 }
2812 }
2813 break;
2814
2815 default:
2816 /* Nothing to do. */
2817 break;
2818 }
2819 }
2820
2821 return 0;
2822 }
2823
2824 /* Traverse X via depth-first search, calling F for each
2825 sub-expression (including X itself). F is also passed the DATA.
2826 If F returns -1, do not traverse sub-expressions, but continue
2827 traversing the rest of the tree. If F ever returns any other
2828 nonzero value, stop the traversal, and return the value returned
2829 by F. Otherwise, return 0. This function does not traverse inside
2830 tree structure that contains RTX_EXPRs, or into sub-expressions
2831 whose format code is `0' since it is not known whether or not those
2832 codes are actually RTL.
2833
2834 This routine is very general, and could (should?) be used to
2835 implement many of the other routines in this file. */
2836
2837 int
2838 for_each_rtx (rtx *x, rtx_function f, void *data)
2839 {
2840 int result;
2841 int i;
2842
2843 /* Call F on X. */
2844 result = (*f) (x, data);
2845 if (result == -1)
2846 /* Do not traverse sub-expressions. */
2847 return 0;
2848 else if (result != 0)
2849 /* Stop the traversal. */
2850 return result;
2851
2852 if (*x == NULL_RTX)
2853 /* There are no sub-expressions. */
2854 return 0;
2855
2856 i = non_rtx_starting_operands[GET_CODE (*x)];
2857 if (i < 0)
2858 return 0;
2859
2860 return for_each_rtx_1 (*x, i, f, data);
2861 }
2862
2863
2864 /* Searches X for any reference to REGNO, returning the rtx of the
2865 reference found if any. Otherwise, returns NULL_RTX. */
2866
2867 rtx
2868 regno_use_in (unsigned int regno, rtx x)
2869 {
2870 const char *fmt;
2871 int i, j;
2872 rtx tem;
2873
2874 if (REG_P (x) && REGNO (x) == regno)
2875 return x;
2876
2877 fmt = GET_RTX_FORMAT (GET_CODE (x));
2878 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2879 {
2880 if (fmt[i] == 'e')
2881 {
2882 if ((tem = regno_use_in (regno, XEXP (x, i))))
2883 return tem;
2884 }
2885 else if (fmt[i] == 'E')
2886 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2887 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2888 return tem;
2889 }
2890
2891 return NULL_RTX;
2892 }
2893
2894 /* Return a value indicating whether OP, an operand of a commutative
2895 operation, is preferred as the first or second operand. The higher
2896 the value, the stronger the preference for being the first operand.
2897 We use negative values to indicate a preference for the first operand
2898 and positive values for the second operand. */
2899
2900 int
2901 commutative_operand_precedence (rtx op)
2902 {
2903 enum rtx_code code = GET_CODE (op);
2904
2905 /* Constants always come the second operand. Prefer "nice" constants. */
2906 if (code == CONST_INT)
2907 return -8;
2908 if (code == CONST_DOUBLE)
2909 return -7;
2910 if (code == CONST_FIXED)
2911 return -7;
2912 op = avoid_constant_pool_reference (op);
2913 code = GET_CODE (op);
2914
2915 switch (GET_RTX_CLASS (code))
2916 {
2917 case RTX_CONST_OBJ:
2918 if (code == CONST_INT)
2919 return -6;
2920 if (code == CONST_DOUBLE)
2921 return -5;
2922 if (code == CONST_FIXED)
2923 return -5;
2924 return -4;
2925
2926 case RTX_EXTRA:
2927 /* SUBREGs of objects should come second. */
2928 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2929 return -3;
2930 return 0;
2931
2932 case RTX_OBJ:
2933 /* Complex expressions should be the first, so decrease priority
2934 of objects. Prefer pointer objects over non pointer objects. */
2935 if ((REG_P (op) && REG_POINTER (op))
2936 || (MEM_P (op) && MEM_POINTER (op)))
2937 return -1;
2938 return -2;
2939
2940 case RTX_COMM_ARITH:
2941 /* Prefer operands that are themselves commutative to be first.
2942 This helps to make things linear. In particular,
2943 (and (and (reg) (reg)) (not (reg))) is canonical. */
2944 return 4;
2945
2946 case RTX_BIN_ARITH:
2947 /* If only one operand is a binary expression, it will be the first
2948 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2949 is canonical, although it will usually be further simplified. */
2950 return 2;
2951
2952 case RTX_UNARY:
2953 /* Then prefer NEG and NOT. */
2954 if (code == NEG || code == NOT)
2955 return 1;
2956
2957 default:
2958 return 0;
2959 }
2960 }
2961
2962 /* Return 1 iff it is necessary to swap operands of commutative operation
2963 in order to canonicalize expression. */
2964
2965 bool
2966 swap_commutative_operands_p (rtx x, rtx y)
2967 {
2968 return (commutative_operand_precedence (x)
2969 < commutative_operand_precedence (y));
2970 }
2971
2972 /* Return 1 if X is an autoincrement side effect and the register is
2973 not the stack pointer. */
2974 int
2975 auto_inc_p (const_rtx x)
2976 {
2977 switch (GET_CODE (x))
2978 {
2979 case PRE_INC:
2980 case POST_INC:
2981 case PRE_DEC:
2982 case POST_DEC:
2983 case PRE_MODIFY:
2984 case POST_MODIFY:
2985 /* There are no REG_INC notes for SP. */
2986 if (XEXP (x, 0) != stack_pointer_rtx)
2987 return 1;
2988 default:
2989 break;
2990 }
2991 return 0;
2992 }
2993
2994 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2995 int
2996 loc_mentioned_in_p (rtx *loc, const_rtx in)
2997 {
2998 enum rtx_code code;
2999 const char *fmt;
3000 int i, j;
3001
3002 if (!in)
3003 return 0;
3004
3005 code = GET_CODE (in);
3006 fmt = GET_RTX_FORMAT (code);
3007 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3008 {
3009 if (fmt[i] == 'e')
3010 {
3011 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3012 return 1;
3013 }
3014 else if (fmt[i] == 'E')
3015 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3016 if (loc == &XVECEXP (in, i, j)
3017 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3018 return 1;
3019 }
3020 return 0;
3021 }
3022
3023 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3024 and SUBREG_BYTE, return the bit offset where the subreg begins
3025 (counting from the least significant bit of the operand). */
3026
3027 unsigned int
3028 subreg_lsb_1 (enum machine_mode outer_mode,
3029 enum machine_mode inner_mode,
3030 unsigned int subreg_byte)
3031 {
3032 unsigned int bitpos;
3033 unsigned int byte;
3034 unsigned int word;
3035
3036 /* A paradoxical subreg begins at bit position 0. */
3037 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3038 return 0;
3039
3040 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3041 /* If the subreg crosses a word boundary ensure that
3042 it also begins and ends on a word boundary. */
3043 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3044 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3045 && (subreg_byte % UNITS_PER_WORD
3046 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3047
3048 if (WORDS_BIG_ENDIAN)
3049 word = (GET_MODE_SIZE (inner_mode)
3050 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3051 else
3052 word = subreg_byte / UNITS_PER_WORD;
3053 bitpos = word * BITS_PER_WORD;
3054
3055 if (BYTES_BIG_ENDIAN)
3056 byte = (GET_MODE_SIZE (inner_mode)
3057 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3058 else
3059 byte = subreg_byte % UNITS_PER_WORD;
3060 bitpos += byte * BITS_PER_UNIT;
3061
3062 return bitpos;
3063 }
3064
3065 /* Given a subreg X, return the bit offset where the subreg begins
3066 (counting from the least significant bit of the reg). */
3067
3068 unsigned int
3069 subreg_lsb (const_rtx x)
3070 {
3071 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3072 SUBREG_BYTE (x));
3073 }
3074
3075 /* Fill in information about a subreg of a hard register.
3076 xregno - A regno of an inner hard subreg_reg (or what will become one).
3077 xmode - The mode of xregno.
3078 offset - The byte offset.
3079 ymode - The mode of a top level SUBREG (or what may become one).
3080 info - Pointer to structure to fill in. */
3081 void
3082 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3083 unsigned int offset, enum machine_mode ymode,
3084 struct subreg_info *info)
3085 {
3086 int nregs_xmode, nregs_ymode;
3087 int mode_multiple, nregs_multiple;
3088 int offset_adj, y_offset, y_offset_adj;
3089 int regsize_xmode, regsize_ymode;
3090 bool rknown;
3091
3092 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3093
3094 rknown = false;
3095
3096 /* If there are holes in a non-scalar mode in registers, we expect
3097 that it is made up of its units concatenated together. */
3098 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3099 {
3100 enum machine_mode xmode_unit;
3101
3102 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3103 if (GET_MODE_INNER (xmode) == VOIDmode)
3104 xmode_unit = xmode;
3105 else
3106 xmode_unit = GET_MODE_INNER (xmode);
3107 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3108 gcc_assert (nregs_xmode
3109 == (GET_MODE_NUNITS (xmode)
3110 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3111 gcc_assert (hard_regno_nregs[xregno][xmode]
3112 == (hard_regno_nregs[xregno][xmode_unit]
3113 * GET_MODE_NUNITS (xmode)));
3114
3115 /* You can only ask for a SUBREG of a value with holes in the middle
3116 if you don't cross the holes. (Such a SUBREG should be done by
3117 picking a different register class, or doing it in memory if
3118 necessary.) An example of a value with holes is XCmode on 32-bit
3119 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3120 3 for each part, but in memory it's two 128-bit parts.
3121 Padding is assumed to be at the end (not necessarily the 'high part')
3122 of each unit. */
3123 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3124 < GET_MODE_NUNITS (xmode))
3125 && (offset / GET_MODE_SIZE (xmode_unit)
3126 != ((offset + GET_MODE_SIZE (ymode) - 1)
3127 / GET_MODE_SIZE (xmode_unit))))
3128 {
3129 info->representable_p = false;
3130 rknown = true;
3131 }
3132 }
3133 else
3134 nregs_xmode = hard_regno_nregs[xregno][xmode];
3135
3136 nregs_ymode = hard_regno_nregs[xregno][ymode];
3137
3138 /* Paradoxical subregs are otherwise valid. */
3139 if (!rknown
3140 && offset == 0
3141 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3142 {
3143 info->representable_p = true;
3144 /* If this is a big endian paradoxical subreg, which uses more
3145 actual hard registers than the original register, we must
3146 return a negative offset so that we find the proper highpart
3147 of the register. */
3148 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3149 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3150 info->offset = nregs_xmode - nregs_ymode;
3151 else
3152 info->offset = 0;
3153 info->nregs = nregs_ymode;
3154 return;
3155 }
3156
3157 /* If registers store different numbers of bits in the different
3158 modes, we cannot generally form this subreg. */
3159 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3160 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3161 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3162 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3163 {
3164 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3165 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3166 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3167 {
3168 info->representable_p = false;
3169 info->nregs
3170 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3171 info->offset = offset / regsize_xmode;
3172 return;
3173 }
3174 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3175 {
3176 info->representable_p = false;
3177 info->nregs
3178 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3179 info->offset = offset / regsize_xmode;
3180 return;
3181 }
3182 }
3183
3184 /* Lowpart subregs are otherwise valid. */
3185 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3186 {
3187 info->representable_p = true;
3188 rknown = true;
3189
3190 if (offset == 0 || nregs_xmode == nregs_ymode)
3191 {
3192 info->offset = 0;
3193 info->nregs = nregs_ymode;
3194 return;
3195 }
3196 }
3197
3198 /* This should always pass, otherwise we don't know how to verify
3199 the constraint. These conditions may be relaxed but
3200 subreg_regno_offset would need to be redesigned. */
3201 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3202 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3203
3204 /* The XMODE value can be seen as a vector of NREGS_XMODE
3205 values. The subreg must represent a lowpart of given field.
3206 Compute what field it is. */
3207 offset_adj = offset;
3208 offset_adj -= subreg_lowpart_offset (ymode,
3209 mode_for_size (GET_MODE_BITSIZE (xmode)
3210 / nregs_xmode,
3211 MODE_INT, 0));
3212
3213 /* Size of ymode must not be greater than the size of xmode. */
3214 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3215 gcc_assert (mode_multiple != 0);
3216
3217 y_offset = offset / GET_MODE_SIZE (ymode);
3218 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3219 nregs_multiple = nregs_xmode / nregs_ymode;
3220
3221 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3222 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3223
3224 if (!rknown)
3225 {
3226 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3227 rknown = true;
3228 }
3229 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3230 info->nregs = nregs_ymode;
3231 }
3232
3233 /* This function returns the regno offset of a subreg expression.
3234 xregno - A regno of an inner hard subreg_reg (or what will become one).
3235 xmode - The mode of xregno.
3236 offset - The byte offset.
3237 ymode - The mode of a top level SUBREG (or what may become one).
3238 RETURN - The regno offset which would be used. */
3239 unsigned int
3240 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3241 unsigned int offset, enum machine_mode ymode)
3242 {
3243 struct subreg_info info;
3244 subreg_get_info (xregno, xmode, offset, ymode, &info);
3245 return info.offset;
3246 }
3247
3248 /* This function returns true when the offset is representable via
3249 subreg_offset in the given regno.
3250 xregno - A regno of an inner hard subreg_reg (or what will become one).
3251 xmode - The mode of xregno.
3252 offset - The byte offset.
3253 ymode - The mode of a top level SUBREG (or what may become one).
3254 RETURN - Whether the offset is representable. */
3255 bool
3256 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3257 unsigned int offset, enum machine_mode ymode)
3258 {
3259 struct subreg_info info;
3260 subreg_get_info (xregno, xmode, offset, ymode, &info);
3261 return info.representable_p;
3262 }
3263
3264 /* Return the number of a YMODE register to which
3265
3266 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3267
3268 can be simplified. Return -1 if the subreg can't be simplified.
3269
3270 XREGNO is a hard register number. */
3271
3272 int
3273 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3274 unsigned int offset, enum machine_mode ymode)
3275 {
3276 struct subreg_info info;
3277 unsigned int yregno;
3278
3279 #ifdef CANNOT_CHANGE_MODE_CLASS
3280 /* Give the backend a chance to disallow the mode change. */
3281 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3282 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3283 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3284 return -1;
3285 #endif
3286
3287 /* We shouldn't simplify stack-related registers. */
3288 if ((!reload_completed || frame_pointer_needed)
3289 && xregno == FRAME_POINTER_REGNUM)
3290 return -1;
3291
3292 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3293 && xregno == ARG_POINTER_REGNUM)
3294 return -1;
3295
3296 if (xregno == STACK_POINTER_REGNUM)
3297 return -1;
3298
3299 /* Try to get the register offset. */
3300 subreg_get_info (xregno, xmode, offset, ymode, &info);
3301 if (!info.representable_p)
3302 return -1;
3303
3304 /* Make sure that the offsetted register value is in range. */
3305 yregno = xregno + info.offset;
3306 if (!HARD_REGISTER_NUM_P (yregno))
3307 return -1;
3308
3309 /* See whether (reg:YMODE YREGNO) is valid.
3310
3311 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3312 This is a kludge to work around how float/complex arguments are passed
3313 on 32-bit SPARC and should be fixed. */
3314 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3315 && HARD_REGNO_MODE_OK (xregno, xmode))
3316 return -1;
3317
3318 return (int) yregno;
3319 }
3320
3321 /* Return the final regno that a subreg expression refers to. */
3322 unsigned int
3323 subreg_regno (const_rtx x)
3324 {
3325 unsigned int ret;
3326 rtx subreg = SUBREG_REG (x);
3327 int regno = REGNO (subreg);
3328
3329 ret = regno + subreg_regno_offset (regno,
3330 GET_MODE (subreg),
3331 SUBREG_BYTE (x),
3332 GET_MODE (x));
3333 return ret;
3334
3335 }
3336
3337 /* Return the number of registers that a subreg expression refers
3338 to. */
3339 unsigned int
3340 subreg_nregs (const_rtx x)
3341 {
3342 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3343 }
3344
3345 /* Return the number of registers that a subreg REG with REGNO
3346 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3347 changed so that the regno can be passed in. */
3348
3349 unsigned int
3350 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3351 {
3352 struct subreg_info info;
3353 rtx subreg = SUBREG_REG (x);
3354
3355 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3356 &info);
3357 return info.nregs;
3358 }
3359
3360
3361 struct parms_set_data
3362 {
3363 int nregs;
3364 HARD_REG_SET regs;
3365 };
3366
3367 /* Helper function for noticing stores to parameter registers. */
3368 static void
3369 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3370 {
3371 struct parms_set_data *const d = (struct parms_set_data *) data;
3372 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3373 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3374 {
3375 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3376 d->nregs--;
3377 }
3378 }
3379
3380 /* Look backward for first parameter to be loaded.
3381 Note that loads of all parameters will not necessarily be
3382 found if CSE has eliminated some of them (e.g., an argument
3383 to the outer function is passed down as a parameter).
3384 Do not skip BOUNDARY. */
3385 rtx
3386 find_first_parameter_load (rtx call_insn, rtx boundary)
3387 {
3388 struct parms_set_data parm;
3389 rtx p, before, first_set;
3390
3391 /* Since different machines initialize their parameter registers
3392 in different orders, assume nothing. Collect the set of all
3393 parameter registers. */
3394 CLEAR_HARD_REG_SET (parm.regs);
3395 parm.nregs = 0;
3396 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3397 if (GET_CODE (XEXP (p, 0)) == USE
3398 && REG_P (XEXP (XEXP (p, 0), 0)))
3399 {
3400 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3401
3402 /* We only care about registers which can hold function
3403 arguments. */
3404 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3405 continue;
3406
3407 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3408 parm.nregs++;
3409 }
3410 before = call_insn;
3411 first_set = call_insn;
3412
3413 /* Search backward for the first set of a register in this set. */
3414 while (parm.nregs && before != boundary)
3415 {
3416 before = PREV_INSN (before);
3417
3418 /* It is possible that some loads got CSEed from one call to
3419 another. Stop in that case. */
3420 if (CALL_P (before))
3421 break;
3422
3423 /* Our caller needs either ensure that we will find all sets
3424 (in case code has not been optimized yet), or take care
3425 for possible labels in a way by setting boundary to preceding
3426 CODE_LABEL. */
3427 if (LABEL_P (before))
3428 {
3429 gcc_assert (before == boundary);
3430 break;
3431 }
3432
3433 if (INSN_P (before))
3434 {
3435 int nregs_old = parm.nregs;
3436 note_stores (PATTERN (before), parms_set, &parm);
3437 /* If we found something that did not set a parameter reg,
3438 we're done. Do not keep going, as that might result
3439 in hoisting an insn before the setting of a pseudo
3440 that is used by the hoisted insn. */
3441 if (nregs_old != parm.nregs)
3442 first_set = before;
3443 else
3444 break;
3445 }
3446 }
3447 return first_set;
3448 }
3449
3450 /* Return true if we should avoid inserting code between INSN and preceding
3451 call instruction. */
3452
3453 bool
3454 keep_with_call_p (const_rtx insn)
3455 {
3456 rtx set;
3457
3458 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3459 {
3460 if (REG_P (SET_DEST (set))
3461 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3462 && fixed_regs[REGNO (SET_DEST (set))]
3463 && general_operand (SET_SRC (set), VOIDmode))
3464 return true;
3465 if (REG_P (SET_SRC (set))
3466 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3467 && REG_P (SET_DEST (set))
3468 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3469 return true;
3470 /* There may be a stack pop just after the call and before the store
3471 of the return register. Search for the actual store when deciding
3472 if we can break or not. */
3473 if (SET_DEST (set) == stack_pointer_rtx)
3474 {
3475 /* This CONST_CAST is okay because next_nonnote_insn just
3476 returns its argument and we assign it to a const_rtx
3477 variable. */
3478 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3479 if (i2 && keep_with_call_p (i2))
3480 return true;
3481 }
3482 }
3483 return false;
3484 }
3485
3486 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3487 to non-complex jumps. That is, direct unconditional, conditional,
3488 and tablejumps, but not computed jumps or returns. It also does
3489 not apply to the fallthru case of a conditional jump. */
3490
3491 bool
3492 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3493 {
3494 rtx tmp = JUMP_LABEL (jump_insn);
3495
3496 if (label == tmp)
3497 return true;
3498
3499 if (tablejump_p (jump_insn, NULL, &tmp))
3500 {
3501 rtvec vec = XVEC (PATTERN (tmp),
3502 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3503 int i, veclen = GET_NUM_ELEM (vec);
3504
3505 for (i = 0; i < veclen; ++i)
3506 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3507 return true;
3508 }
3509
3510 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3511 return true;
3512
3513 return false;
3514 }
3515
3516 \f
3517 /* Return an estimate of the cost of computing rtx X.
3518 One use is in cse, to decide which expression to keep in the hash table.
3519 Another is in rtl generation, to pick the cheapest way to multiply.
3520 Other uses like the latter are expected in the future.
3521
3522 SPEED parameter specify whether costs optimized for speed or size should
3523 be returned. */
3524
3525 int
3526 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3527 {
3528 int i, j;
3529 enum rtx_code code;
3530 const char *fmt;
3531 int total;
3532
3533 if (x == 0)
3534 return 0;
3535
3536 /* Compute the default costs of certain things.
3537 Note that targetm.rtx_costs can override the defaults. */
3538
3539 code = GET_CODE (x);
3540 switch (code)
3541 {
3542 case MULT:
3543 total = COSTS_N_INSNS (5);
3544 break;
3545 case DIV:
3546 case UDIV:
3547 case MOD:
3548 case UMOD:
3549 total = COSTS_N_INSNS (7);
3550 break;
3551 case USE:
3552 /* Used in combine.c as a marker. */
3553 total = 0;
3554 break;
3555 default:
3556 total = COSTS_N_INSNS (1);
3557 }
3558
3559 switch (code)
3560 {
3561 case REG:
3562 return 0;
3563
3564 case SUBREG:
3565 total = 0;
3566 /* If we can't tie these modes, make this expensive. The larger
3567 the mode, the more expensive it is. */
3568 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3569 return COSTS_N_INSNS (2
3570 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3571 break;
3572
3573 default:
3574 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3575 return total;
3576 break;
3577 }
3578
3579 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3580 which is already in total. */
3581
3582 fmt = GET_RTX_FORMAT (code);
3583 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3584 if (fmt[i] == 'e')
3585 total += rtx_cost (XEXP (x, i), code, speed);
3586 else if (fmt[i] == 'E')
3587 for (j = 0; j < XVECLEN (x, i); j++)
3588 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3589
3590 return total;
3591 }
3592
3593 /* Fill in the structure C with information about both speed and size rtx
3594 costs for X, with outer code OUTER. */
3595
3596 void
3597 get_full_rtx_cost (rtx x, enum rtx_code outer, struct full_rtx_costs *c)
3598 {
3599 c->speed = rtx_cost (x, outer, true);
3600 c->size = rtx_cost (x, outer, false);
3601 }
3602
3603 \f
3604 /* Return cost of address expression X.
3605 Expect that X is properly formed address reference.
3606
3607 SPEED parameter specify whether costs optimized for speed or size should
3608 be returned. */
3609
3610 int
3611 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3612 {
3613 /* We may be asked for cost of various unusual addresses, such as operands
3614 of push instruction. It is not worthwhile to complicate writing
3615 of the target hook by such cases. */
3616
3617 if (!memory_address_addr_space_p (mode, x, as))
3618 return 1000;
3619
3620 return targetm.address_cost (x, speed);
3621 }
3622
3623 /* If the target doesn't override, compute the cost as with arithmetic. */
3624
3625 int
3626 default_address_cost (rtx x, bool speed)
3627 {
3628 return rtx_cost (x, MEM, speed);
3629 }
3630 \f
3631
3632 unsigned HOST_WIDE_INT
3633 nonzero_bits (const_rtx x, enum machine_mode mode)
3634 {
3635 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3636 }
3637
3638 unsigned int
3639 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3640 {
3641 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3642 }
3643
3644 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3645 It avoids exponential behavior in nonzero_bits1 when X has
3646 identical subexpressions on the first or the second level. */
3647
3648 static unsigned HOST_WIDE_INT
3649 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3650 enum machine_mode known_mode,
3651 unsigned HOST_WIDE_INT known_ret)
3652 {
3653 if (x == known_x && mode == known_mode)
3654 return known_ret;
3655
3656 /* Try to find identical subexpressions. If found call
3657 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3658 precomputed value for the subexpression as KNOWN_RET. */
3659
3660 if (ARITHMETIC_P (x))
3661 {
3662 rtx x0 = XEXP (x, 0);
3663 rtx x1 = XEXP (x, 1);
3664
3665 /* Check the first level. */
3666 if (x0 == x1)
3667 return nonzero_bits1 (x, mode, x0, mode,
3668 cached_nonzero_bits (x0, mode, known_x,
3669 known_mode, known_ret));
3670
3671 /* Check the second level. */
3672 if (ARITHMETIC_P (x0)
3673 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3674 return nonzero_bits1 (x, mode, x1, mode,
3675 cached_nonzero_bits (x1, mode, known_x,
3676 known_mode, known_ret));
3677
3678 if (ARITHMETIC_P (x1)
3679 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3680 return nonzero_bits1 (x, mode, x0, mode,
3681 cached_nonzero_bits (x0, mode, known_x,
3682 known_mode, known_ret));
3683 }
3684
3685 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3686 }
3687
3688 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3689 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3690 is less useful. We can't allow both, because that results in exponential
3691 run time recursion. There is a nullstone testcase that triggered
3692 this. This macro avoids accidental uses of num_sign_bit_copies. */
3693 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3694
3695 /* Given an expression, X, compute which bits in X can be nonzero.
3696 We don't care about bits outside of those defined in MODE.
3697
3698 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3699 an arithmetic operation, we can do better. */
3700
3701 static unsigned HOST_WIDE_INT
3702 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3703 enum machine_mode known_mode,
3704 unsigned HOST_WIDE_INT known_ret)
3705 {
3706 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3707 unsigned HOST_WIDE_INT inner_nz;
3708 enum rtx_code code;
3709 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3710
3711 /* For floating-point and vector values, assume all bits are needed. */
3712 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3713 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3714 return nonzero;
3715
3716 /* If X is wider than MODE, use its mode instead. */
3717 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3718 {
3719 mode = GET_MODE (x);
3720 nonzero = GET_MODE_MASK (mode);
3721 mode_width = GET_MODE_BITSIZE (mode);
3722 }
3723
3724 if (mode_width > HOST_BITS_PER_WIDE_INT)
3725 /* Our only callers in this case look for single bit values. So
3726 just return the mode mask. Those tests will then be false. */
3727 return nonzero;
3728
3729 #ifndef WORD_REGISTER_OPERATIONS
3730 /* If MODE is wider than X, but both are a single word for both the host
3731 and target machines, we can compute this from which bits of the
3732 object might be nonzero in its own mode, taking into account the fact
3733 that on many CISC machines, accessing an object in a wider mode
3734 causes the high-order bits to become undefined. So they are
3735 not known to be zero. */
3736
3737 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3738 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3739 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3740 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3741 {
3742 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3743 known_x, known_mode, known_ret);
3744 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3745 return nonzero;
3746 }
3747 #endif
3748
3749 code = GET_CODE (x);
3750 switch (code)
3751 {
3752 case REG:
3753 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3754 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3755 all the bits above ptr_mode are known to be zero. */
3756 /* As we do not know which address space the pointer is refering to,
3757 we can do this only if the target does not support different pointer
3758 or address modes depending on the address space. */
3759 if (target_default_pointer_address_modes_p ()
3760 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3761 && REG_POINTER (x))
3762 nonzero &= GET_MODE_MASK (ptr_mode);
3763 #endif
3764
3765 /* Include declared information about alignment of pointers. */
3766 /* ??? We don't properly preserve REG_POINTER changes across
3767 pointer-to-integer casts, so we can't trust it except for
3768 things that we know must be pointers. See execute/960116-1.c. */
3769 if ((x == stack_pointer_rtx
3770 || x == frame_pointer_rtx
3771 || x == arg_pointer_rtx)
3772 && REGNO_POINTER_ALIGN (REGNO (x)))
3773 {
3774 unsigned HOST_WIDE_INT alignment
3775 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3776
3777 #ifdef PUSH_ROUNDING
3778 /* If PUSH_ROUNDING is defined, it is possible for the
3779 stack to be momentarily aligned only to that amount,
3780 so we pick the least alignment. */
3781 if (x == stack_pointer_rtx && PUSH_ARGS)
3782 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3783 alignment);
3784 #endif
3785
3786 nonzero &= ~(alignment - 1);
3787 }
3788
3789 {
3790 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3791 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3792 known_mode, known_ret,
3793 &nonzero_for_hook);
3794
3795 if (new_rtx)
3796 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3797 known_mode, known_ret);
3798
3799 return nonzero_for_hook;
3800 }
3801
3802 case CONST_INT:
3803 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3804 /* If X is negative in MODE, sign-extend the value. */
3805 if (INTVAL (x) > 0
3806 && mode_width < BITS_PER_WORD
3807 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3808 != 0)
3809 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3810 #endif
3811
3812 return UINTVAL (x);
3813
3814 case MEM:
3815 #ifdef LOAD_EXTEND_OP
3816 /* In many, if not most, RISC machines, reading a byte from memory
3817 zeros the rest of the register. Noticing that fact saves a lot
3818 of extra zero-extends. */
3819 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3820 nonzero &= GET_MODE_MASK (GET_MODE (x));
3821 #endif
3822 break;
3823
3824 case EQ: case NE:
3825 case UNEQ: case LTGT:
3826 case GT: case GTU: case UNGT:
3827 case LT: case LTU: case UNLT:
3828 case GE: case GEU: case UNGE:
3829 case LE: case LEU: case UNLE:
3830 case UNORDERED: case ORDERED:
3831 /* If this produces an integer result, we know which bits are set.
3832 Code here used to clear bits outside the mode of X, but that is
3833 now done above. */
3834 /* Mind that MODE is the mode the caller wants to look at this
3835 operation in, and not the actual operation mode. We can wind
3836 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3837 that describes the results of a vector compare. */
3838 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3839 && mode_width <= HOST_BITS_PER_WIDE_INT)
3840 nonzero = STORE_FLAG_VALUE;
3841 break;
3842
3843 case NEG:
3844 #if 0
3845 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3846 and num_sign_bit_copies. */
3847 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3848 == GET_MODE_BITSIZE (GET_MODE (x)))
3849 nonzero = 1;
3850 #endif
3851
3852 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3853 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3854 break;
3855
3856 case ABS:
3857 #if 0
3858 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3859 and num_sign_bit_copies. */
3860 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3861 == GET_MODE_BITSIZE (GET_MODE (x)))
3862 nonzero = 1;
3863 #endif
3864 break;
3865
3866 case TRUNCATE:
3867 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3868 known_x, known_mode, known_ret)
3869 & GET_MODE_MASK (mode));
3870 break;
3871
3872 case ZERO_EXTEND:
3873 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3874 known_x, known_mode, known_ret);
3875 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3876 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3877 break;
3878
3879 case SIGN_EXTEND:
3880 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3881 Otherwise, show all the bits in the outer mode but not the inner
3882 may be nonzero. */
3883 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3884 known_x, known_mode, known_ret);
3885 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3886 {
3887 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3888 if (inner_nz
3889 & (((unsigned HOST_WIDE_INT) 1
3890 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3891 inner_nz |= (GET_MODE_MASK (mode)
3892 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3893 }
3894
3895 nonzero &= inner_nz;
3896 break;
3897
3898 case AND:
3899 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3900 known_x, known_mode, known_ret)
3901 & cached_nonzero_bits (XEXP (x, 1), mode,
3902 known_x, known_mode, known_ret);
3903 break;
3904
3905 case XOR: case IOR:
3906 case UMIN: case UMAX: case SMIN: case SMAX:
3907 {
3908 unsigned HOST_WIDE_INT nonzero0
3909 = cached_nonzero_bits (XEXP (x, 0), mode,
3910 known_x, known_mode, known_ret);
3911
3912 /* Don't call nonzero_bits for the second time if it cannot change
3913 anything. */
3914 if ((nonzero & nonzero0) != nonzero)
3915 nonzero &= nonzero0
3916 | cached_nonzero_bits (XEXP (x, 1), mode,
3917 known_x, known_mode, known_ret);
3918 }
3919 break;
3920
3921 case PLUS: case MINUS:
3922 case MULT:
3923 case DIV: case UDIV:
3924 case MOD: case UMOD:
3925 /* We can apply the rules of arithmetic to compute the number of
3926 high- and low-order zero bits of these operations. We start by
3927 computing the width (position of the highest-order nonzero bit)
3928 and the number of low-order zero bits for each value. */
3929 {
3930 unsigned HOST_WIDE_INT nz0
3931 = cached_nonzero_bits (XEXP (x, 0), mode,
3932 known_x, known_mode, known_ret);
3933 unsigned HOST_WIDE_INT nz1
3934 = cached_nonzero_bits (XEXP (x, 1), mode,
3935 known_x, known_mode, known_ret);
3936 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3937 int width0 = floor_log2 (nz0) + 1;
3938 int width1 = floor_log2 (nz1) + 1;
3939 int low0 = floor_log2 (nz0 & -nz0);
3940 int low1 = floor_log2 (nz1 & -nz1);
3941 unsigned HOST_WIDE_INT op0_maybe_minusp
3942 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3943 unsigned HOST_WIDE_INT op1_maybe_minusp
3944 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
3945 unsigned int result_width = mode_width;
3946 int result_low = 0;
3947
3948 switch (code)
3949 {
3950 case PLUS:
3951 result_width = MAX (width0, width1) + 1;
3952 result_low = MIN (low0, low1);
3953 break;
3954 case MINUS:
3955 result_low = MIN (low0, low1);
3956 break;
3957 case MULT:
3958 result_width = width0 + width1;
3959 result_low = low0 + low1;
3960 break;
3961 case DIV:
3962 if (width1 == 0)
3963 break;
3964 if (!op0_maybe_minusp && !op1_maybe_minusp)
3965 result_width = width0;
3966 break;
3967 case UDIV:
3968 if (width1 == 0)
3969 break;
3970 result_width = width0;
3971 break;
3972 case MOD:
3973 if (width1 == 0)
3974 break;
3975 if (!op0_maybe_minusp && !op1_maybe_minusp)
3976 result_width = MIN (width0, width1);
3977 result_low = MIN (low0, low1);
3978 break;
3979 case UMOD:
3980 if (width1 == 0)
3981 break;
3982 result_width = MIN (width0, width1);
3983 result_low = MIN (low0, low1);
3984 break;
3985 default:
3986 gcc_unreachable ();
3987 }
3988
3989 if (result_width < mode_width)
3990 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
3991
3992 if (result_low > 0)
3993 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
3994
3995 #ifdef POINTERS_EXTEND_UNSIGNED
3996 /* If pointers extend unsigned and this is an addition or subtraction
3997 to a pointer in Pmode, all the bits above ptr_mode are known to be
3998 zero. */
3999 /* As we do not know which address space the pointer is refering to,
4000 we can do this only if the target does not support different pointer
4001 or address modes depending on the address space. */
4002 if (target_default_pointer_address_modes_p ()
4003 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4004 && (code == PLUS || code == MINUS)
4005 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4006 nonzero &= GET_MODE_MASK (ptr_mode);
4007 #endif
4008 }
4009 break;
4010
4011 case ZERO_EXTRACT:
4012 if (CONST_INT_P (XEXP (x, 1))
4013 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4014 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4015 break;
4016
4017 case SUBREG:
4018 /* If this is a SUBREG formed for a promoted variable that has
4019 been zero-extended, we know that at least the high-order bits
4020 are zero, though others might be too. */
4021
4022 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4023 nonzero = GET_MODE_MASK (GET_MODE (x))
4024 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4025 known_x, known_mode, known_ret);
4026
4027 /* If the inner mode is a single word for both the host and target
4028 machines, we can compute this from which bits of the inner
4029 object might be nonzero. */
4030 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4031 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4032 <= HOST_BITS_PER_WIDE_INT))
4033 {
4034 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4035 known_x, known_mode, known_ret);
4036
4037 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4038 /* If this is a typical RISC machine, we only have to worry
4039 about the way loads are extended. */
4040 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4041 ? (((nonzero
4042 & (((unsigned HOST_WIDE_INT) 1
4043 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4044 != 0))
4045 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4046 || !MEM_P (SUBREG_REG (x)))
4047 #endif
4048 {
4049 /* On many CISC machines, accessing an object in a wider mode
4050 causes the high-order bits to become undefined. So they are
4051 not known to be zero. */
4052 if (GET_MODE_SIZE (GET_MODE (x))
4053 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4054 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4055 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4056 }
4057 }
4058 break;
4059
4060 case ASHIFTRT:
4061 case LSHIFTRT:
4062 case ASHIFT:
4063 case ROTATE:
4064 /* The nonzero bits are in two classes: any bits within MODE
4065 that aren't in GET_MODE (x) are always significant. The rest of the
4066 nonzero bits are those that are significant in the operand of
4067 the shift when shifted the appropriate number of bits. This
4068 shows that high-order bits are cleared by the right shift and
4069 low-order bits by left shifts. */
4070 if (CONST_INT_P (XEXP (x, 1))
4071 && INTVAL (XEXP (x, 1)) >= 0
4072 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4073 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4074 {
4075 enum machine_mode inner_mode = GET_MODE (x);
4076 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4077 int count = INTVAL (XEXP (x, 1));
4078 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4079 unsigned HOST_WIDE_INT op_nonzero
4080 = cached_nonzero_bits (XEXP (x, 0), mode,
4081 known_x, known_mode, known_ret);
4082 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4083 unsigned HOST_WIDE_INT outer = 0;
4084
4085 if (mode_width > width)
4086 outer = (op_nonzero & nonzero & ~mode_mask);
4087
4088 if (code == LSHIFTRT)
4089 inner >>= count;
4090 else if (code == ASHIFTRT)
4091 {
4092 inner >>= count;
4093
4094 /* If the sign bit may have been nonzero before the shift, we
4095 need to mark all the places it could have been copied to
4096 by the shift as possibly nonzero. */
4097 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4098 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4099 << (width - count);
4100 }
4101 else if (code == ASHIFT)
4102 inner <<= count;
4103 else
4104 inner = ((inner << (count % width)
4105 | (inner >> (width - (count % width)))) & mode_mask);
4106
4107 nonzero &= (outer | inner);
4108 }
4109 break;
4110
4111 case FFS:
4112 case POPCOUNT:
4113 /* This is at most the number of bits in the mode. */
4114 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4115 break;
4116
4117 case CLZ:
4118 /* If CLZ has a known value at zero, then the nonzero bits are
4119 that value, plus the number of bits in the mode minus one. */
4120 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4121 nonzero
4122 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4123 else
4124 nonzero = -1;
4125 break;
4126
4127 case CTZ:
4128 /* If CTZ has a known value at zero, then the nonzero bits are
4129 that value, plus the number of bits in the mode minus one. */
4130 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4131 nonzero
4132 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4133 else
4134 nonzero = -1;
4135 break;
4136
4137 case PARITY:
4138 nonzero = 1;
4139 break;
4140
4141 case IF_THEN_ELSE:
4142 {
4143 unsigned HOST_WIDE_INT nonzero_true
4144 = cached_nonzero_bits (XEXP (x, 1), mode,
4145 known_x, known_mode, known_ret);
4146
4147 /* Don't call nonzero_bits for the second time if it cannot change
4148 anything. */
4149 if ((nonzero & nonzero_true) != nonzero)
4150 nonzero &= nonzero_true
4151 | cached_nonzero_bits (XEXP (x, 2), mode,
4152 known_x, known_mode, known_ret);
4153 }
4154 break;
4155
4156 default:
4157 break;
4158 }
4159
4160 return nonzero;
4161 }
4162
4163 /* See the macro definition above. */
4164 #undef cached_num_sign_bit_copies
4165
4166 \f
4167 /* The function cached_num_sign_bit_copies is a wrapper around
4168 num_sign_bit_copies1. It avoids exponential behavior in
4169 num_sign_bit_copies1 when X has identical subexpressions on the
4170 first or the second level. */
4171
4172 static unsigned int
4173 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4174 enum machine_mode known_mode,
4175 unsigned int known_ret)
4176 {
4177 if (x == known_x && mode == known_mode)
4178 return known_ret;
4179
4180 /* Try to find identical subexpressions. If found call
4181 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4182 the precomputed value for the subexpression as KNOWN_RET. */
4183
4184 if (ARITHMETIC_P (x))
4185 {
4186 rtx x0 = XEXP (x, 0);
4187 rtx x1 = XEXP (x, 1);
4188
4189 /* Check the first level. */
4190 if (x0 == x1)
4191 return
4192 num_sign_bit_copies1 (x, mode, x0, mode,
4193 cached_num_sign_bit_copies (x0, mode, known_x,
4194 known_mode,
4195 known_ret));
4196
4197 /* Check the second level. */
4198 if (ARITHMETIC_P (x0)
4199 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4200 return
4201 num_sign_bit_copies1 (x, mode, x1, mode,
4202 cached_num_sign_bit_copies (x1, mode, known_x,
4203 known_mode,
4204 known_ret));
4205
4206 if (ARITHMETIC_P (x1)
4207 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4208 return
4209 num_sign_bit_copies1 (x, mode, x0, mode,
4210 cached_num_sign_bit_copies (x0, mode, known_x,
4211 known_mode,
4212 known_ret));
4213 }
4214
4215 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4216 }
4217
4218 /* Return the number of bits at the high-order end of X that are known to
4219 be equal to the sign bit. X will be used in mode MODE; if MODE is
4220 VOIDmode, X will be used in its own mode. The returned value will always
4221 be between 1 and the number of bits in MODE. */
4222
4223 static unsigned int
4224 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4225 enum machine_mode known_mode,
4226 unsigned int known_ret)
4227 {
4228 enum rtx_code code = GET_CODE (x);
4229 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4230 int num0, num1, result;
4231 unsigned HOST_WIDE_INT nonzero;
4232
4233 /* If we weren't given a mode, use the mode of X. If the mode is still
4234 VOIDmode, we don't know anything. Likewise if one of the modes is
4235 floating-point. */
4236
4237 if (mode == VOIDmode)
4238 mode = GET_MODE (x);
4239
4240 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4241 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4242 return 1;
4243
4244 /* For a smaller object, just ignore the high bits. */
4245 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4246 {
4247 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4248 known_x, known_mode, known_ret);
4249 return MAX (1,
4250 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4251 }
4252
4253 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4254 {
4255 #ifndef WORD_REGISTER_OPERATIONS
4256 /* If this machine does not do all register operations on the entire
4257 register and MODE is wider than the mode of X, we can say nothing
4258 at all about the high-order bits. */
4259 return 1;
4260 #else
4261 /* Likewise on machines that do, if the mode of the object is smaller
4262 than a word and loads of that size don't sign extend, we can say
4263 nothing about the high order bits. */
4264 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4265 #ifdef LOAD_EXTEND_OP
4266 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4267 #endif
4268 )
4269 return 1;
4270 #endif
4271 }
4272
4273 switch (code)
4274 {
4275 case REG:
4276
4277 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4278 /* If pointers extend signed and this is a pointer in Pmode, say that
4279 all the bits above ptr_mode are known to be sign bit copies. */
4280 /* As we do not know which address space the pointer is refering to,
4281 we can do this only if the target does not support different pointer
4282 or address modes depending on the address space. */
4283 if (target_default_pointer_address_modes_p ()
4284 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4285 && mode == Pmode && REG_POINTER (x))
4286 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4287 #endif
4288
4289 {
4290 unsigned int copies_for_hook = 1, copies = 1;
4291 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4292 known_mode, known_ret,
4293 &copies_for_hook);
4294
4295 if (new_rtx)
4296 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4297 known_mode, known_ret);
4298
4299 if (copies > 1 || copies_for_hook > 1)
4300 return MAX (copies, copies_for_hook);
4301
4302 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4303 }
4304 break;
4305
4306 case MEM:
4307 #ifdef LOAD_EXTEND_OP
4308 /* Some RISC machines sign-extend all loads of smaller than a word. */
4309 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4310 return MAX (1, ((int) bitwidth
4311 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4312 #endif
4313 break;
4314
4315 case CONST_INT:
4316 /* If the constant is negative, take its 1's complement and remask.
4317 Then see how many zero bits we have. */
4318 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4319 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4320 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4321 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4322
4323 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4324
4325 case SUBREG:
4326 /* If this is a SUBREG for a promoted object that is sign-extended
4327 and we are looking at it in a wider mode, we know that at least the
4328 high-order bits are known to be sign bit copies. */
4329
4330 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4331 {
4332 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4333 known_x, known_mode, known_ret);
4334 return MAX ((int) bitwidth
4335 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4336 num0);
4337 }
4338
4339 /* For a smaller object, just ignore the high bits. */
4340 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4341 {
4342 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4343 known_x, known_mode, known_ret);
4344 return MAX (1, (num0
4345 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4346 - bitwidth)));
4347 }
4348
4349 #ifdef WORD_REGISTER_OPERATIONS
4350 #ifdef LOAD_EXTEND_OP
4351 /* For paradoxical SUBREGs on machines where all register operations
4352 affect the entire register, just look inside. Note that we are
4353 passing MODE to the recursive call, so the number of sign bit copies
4354 will remain relative to that mode, not the inner mode. */
4355
4356 /* This works only if loads sign extend. Otherwise, if we get a
4357 reload for the inner part, it may be loaded from the stack, and
4358 then we lose all sign bit copies that existed before the store
4359 to the stack. */
4360
4361 if ((GET_MODE_SIZE (GET_MODE (x))
4362 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4363 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4364 && MEM_P (SUBREG_REG (x)))
4365 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4366 known_x, known_mode, known_ret);
4367 #endif
4368 #endif
4369 break;
4370
4371 case SIGN_EXTRACT:
4372 if (CONST_INT_P (XEXP (x, 1)))
4373 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4374 break;
4375
4376 case SIGN_EXTEND:
4377 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4378 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4379 known_x, known_mode, known_ret));
4380
4381 case TRUNCATE:
4382 /* For a smaller object, just ignore the high bits. */
4383 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4384 known_x, known_mode, known_ret);
4385 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4386 - bitwidth)));
4387
4388 case NOT:
4389 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4390 known_x, known_mode, known_ret);
4391
4392 case ROTATE: case ROTATERT:
4393 /* If we are rotating left by a number of bits less than the number
4394 of sign bit copies, we can just subtract that amount from the
4395 number. */
4396 if (CONST_INT_P (XEXP (x, 1))
4397 && INTVAL (XEXP (x, 1)) >= 0
4398 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4399 {
4400 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4401 known_x, known_mode, known_ret);
4402 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4403 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4404 }
4405 break;
4406
4407 case NEG:
4408 /* In general, this subtracts one sign bit copy. But if the value
4409 is known to be positive, the number of sign bit copies is the
4410 same as that of the input. Finally, if the input has just one bit
4411 that might be nonzero, all the bits are copies of the sign bit. */
4412 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4413 known_x, known_mode, known_ret);
4414 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4415 return num0 > 1 ? num0 - 1 : 1;
4416
4417 nonzero = nonzero_bits (XEXP (x, 0), mode);
4418 if (nonzero == 1)
4419 return bitwidth;
4420
4421 if (num0 > 1
4422 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4423 num0--;
4424
4425 return num0;
4426
4427 case IOR: case AND: case XOR:
4428 case SMIN: case SMAX: case UMIN: case UMAX:
4429 /* Logical operations will preserve the number of sign-bit copies.
4430 MIN and MAX operations always return one of the operands. */
4431 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4432 known_x, known_mode, known_ret);
4433 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4434 known_x, known_mode, known_ret);
4435
4436 /* If num1 is clearing some of the top bits then regardless of
4437 the other term, we are guaranteed to have at least that many
4438 high-order zero bits. */
4439 if (code == AND
4440 && num1 > 1
4441 && bitwidth <= HOST_BITS_PER_WIDE_INT
4442 && CONST_INT_P (XEXP (x, 1))
4443 && (UINTVAL (XEXP (x, 1))
4444 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4445 return num1;
4446
4447 /* Similarly for IOR when setting high-order bits. */
4448 if (code == IOR
4449 && num1 > 1
4450 && bitwidth <= HOST_BITS_PER_WIDE_INT
4451 && CONST_INT_P (XEXP (x, 1))
4452 && (UINTVAL (XEXP (x, 1))
4453 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4454 return num1;
4455
4456 return MIN (num0, num1);
4457
4458 case PLUS: case MINUS:
4459 /* For addition and subtraction, we can have a 1-bit carry. However,
4460 if we are subtracting 1 from a positive number, there will not
4461 be such a carry. Furthermore, if the positive number is known to
4462 be 0 or 1, we know the result is either -1 or 0. */
4463
4464 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4465 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4466 {
4467 nonzero = nonzero_bits (XEXP (x, 0), mode);
4468 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4469 return (nonzero == 1 || nonzero == 0 ? bitwidth
4470 : bitwidth - floor_log2 (nonzero) - 1);
4471 }
4472
4473 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4474 known_x, known_mode, known_ret);
4475 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4476 known_x, known_mode, known_ret);
4477 result = MAX (1, MIN (num0, num1) - 1);
4478
4479 #ifdef POINTERS_EXTEND_UNSIGNED
4480 /* If pointers extend signed and this is an addition or subtraction
4481 to a pointer in Pmode, all the bits above ptr_mode are known to be
4482 sign bit copies. */
4483 /* As we do not know which address space the pointer is refering to,
4484 we can do this only if the target does not support different pointer
4485 or address modes depending on the address space. */
4486 if (target_default_pointer_address_modes_p ()
4487 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4488 && (code == PLUS || code == MINUS)
4489 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4490 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4491 - GET_MODE_BITSIZE (ptr_mode) + 1),
4492 result);
4493 #endif
4494 return result;
4495
4496 case MULT:
4497 /* The number of bits of the product is the sum of the number of
4498 bits of both terms. However, unless one of the terms if known
4499 to be positive, we must allow for an additional bit since negating
4500 a negative number can remove one sign bit copy. */
4501
4502 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4503 known_x, known_mode, known_ret);
4504 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4505 known_x, known_mode, known_ret);
4506
4507 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4508 if (result > 0
4509 && (bitwidth > HOST_BITS_PER_WIDE_INT
4510 || (((nonzero_bits (XEXP (x, 0), mode)
4511 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4512 && ((nonzero_bits (XEXP (x, 1), mode)
4513 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4514 != 0))))
4515 result--;
4516
4517 return MAX (1, result);
4518
4519 case UDIV:
4520 /* The result must be <= the first operand. If the first operand
4521 has the high bit set, we know nothing about the number of sign
4522 bit copies. */
4523 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4524 return 1;
4525 else if ((nonzero_bits (XEXP (x, 0), mode)
4526 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4527 return 1;
4528 else
4529 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4530 known_x, known_mode, known_ret);
4531
4532 case UMOD:
4533 /* The result must be <= the second operand. If the second operand
4534 has (or just might have) the high bit set, we know nothing about
4535 the number of sign bit copies. */
4536 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4537 return 1;
4538 else if ((nonzero_bits (XEXP (x, 1), mode)
4539 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4540 return 1;
4541 else
4542 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4543 known_x, known_mode, known_ret);
4544
4545 case DIV:
4546 /* Similar to unsigned division, except that we have to worry about
4547 the case where the divisor is negative, in which case we have
4548 to add 1. */
4549 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4550 known_x, known_mode, known_ret);
4551 if (result > 1
4552 && (bitwidth > HOST_BITS_PER_WIDE_INT
4553 || (nonzero_bits (XEXP (x, 1), mode)
4554 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4555 result--;
4556
4557 return result;
4558
4559 case MOD:
4560 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4561 known_x, known_mode, known_ret);
4562 if (result > 1
4563 && (bitwidth > HOST_BITS_PER_WIDE_INT
4564 || (nonzero_bits (XEXP (x, 1), mode)
4565 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4566 result--;
4567
4568 return result;
4569
4570 case ASHIFTRT:
4571 /* Shifts by a constant add to the number of bits equal to the
4572 sign bit. */
4573 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4574 known_x, known_mode, known_ret);
4575 if (CONST_INT_P (XEXP (x, 1))
4576 && INTVAL (XEXP (x, 1)) > 0
4577 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4578 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4579
4580 return num0;
4581
4582 case ASHIFT:
4583 /* Left shifts destroy copies. */
4584 if (!CONST_INT_P (XEXP (x, 1))
4585 || INTVAL (XEXP (x, 1)) < 0
4586 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4587 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4588 return 1;
4589
4590 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4591 known_x, known_mode, known_ret);
4592 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4593
4594 case IF_THEN_ELSE:
4595 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4596 known_x, known_mode, known_ret);
4597 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4598 known_x, known_mode, known_ret);
4599 return MIN (num0, num1);
4600
4601 case EQ: case NE: case GE: case GT: case LE: case LT:
4602 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4603 case GEU: case GTU: case LEU: case LTU:
4604 case UNORDERED: case ORDERED:
4605 /* If the constant is negative, take its 1's complement and remask.
4606 Then see how many zero bits we have. */
4607 nonzero = STORE_FLAG_VALUE;
4608 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4609 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4610 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4611
4612 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4613
4614 default:
4615 break;
4616 }
4617
4618 /* If we haven't been able to figure it out by one of the above rules,
4619 see if some of the high-order bits are known to be zero. If so,
4620 count those bits and return one less than that amount. If we can't
4621 safely compute the mask for this mode, always return BITWIDTH. */
4622
4623 bitwidth = GET_MODE_BITSIZE (mode);
4624 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4625 return 1;
4626
4627 nonzero = nonzero_bits (x, mode);
4628 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4629 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4630 }
4631
4632 /* Calculate the rtx_cost of a single instruction. A return value of
4633 zero indicates an instruction pattern without a known cost. */
4634
4635 int
4636 insn_rtx_cost (rtx pat, bool speed)
4637 {
4638 int i, cost;
4639 rtx set;
4640
4641 /* Extract the single set rtx from the instruction pattern.
4642 We can't use single_set since we only have the pattern. */
4643 if (GET_CODE (pat) == SET)
4644 set = pat;
4645 else if (GET_CODE (pat) == PARALLEL)
4646 {
4647 set = NULL_RTX;
4648 for (i = 0; i < XVECLEN (pat, 0); i++)
4649 {
4650 rtx x = XVECEXP (pat, 0, i);
4651 if (GET_CODE (x) == SET)
4652 {
4653 if (set)
4654 return 0;
4655 set = x;
4656 }
4657 }
4658 if (!set)
4659 return 0;
4660 }
4661 else
4662 return 0;
4663
4664 cost = rtx_cost (SET_SRC (set), SET, speed);
4665 return cost > 0 ? cost : COSTS_N_INSNS (1);
4666 }
4667
4668 /* Given an insn INSN and condition COND, return the condition in a
4669 canonical form to simplify testing by callers. Specifically:
4670
4671 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4672 (2) Both operands will be machine operands; (cc0) will have been replaced.
4673 (3) If an operand is a constant, it will be the second operand.
4674 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4675 for GE, GEU, and LEU.
4676
4677 If the condition cannot be understood, or is an inequality floating-point
4678 comparison which needs to be reversed, 0 will be returned.
4679
4680 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4681
4682 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4683 insn used in locating the condition was found. If a replacement test
4684 of the condition is desired, it should be placed in front of that
4685 insn and we will be sure that the inputs are still valid.
4686
4687 If WANT_REG is nonzero, we wish the condition to be relative to that
4688 register, if possible. Therefore, do not canonicalize the condition
4689 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4690 to be a compare to a CC mode register.
4691
4692 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4693 and at INSN. */
4694
4695 rtx
4696 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4697 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4698 {
4699 enum rtx_code code;
4700 rtx prev = insn;
4701 const_rtx set;
4702 rtx tem;
4703 rtx op0, op1;
4704 int reverse_code = 0;
4705 enum machine_mode mode;
4706 basic_block bb = BLOCK_FOR_INSN (insn);
4707
4708 code = GET_CODE (cond);
4709 mode = GET_MODE (cond);
4710 op0 = XEXP (cond, 0);
4711 op1 = XEXP (cond, 1);
4712
4713 if (reverse)
4714 code = reversed_comparison_code (cond, insn);
4715 if (code == UNKNOWN)
4716 return 0;
4717
4718 if (earliest)
4719 *earliest = insn;
4720
4721 /* If we are comparing a register with zero, see if the register is set
4722 in the previous insn to a COMPARE or a comparison operation. Perform
4723 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4724 in cse.c */
4725
4726 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4727 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4728 && op1 == CONST0_RTX (GET_MODE (op0))
4729 && op0 != want_reg)
4730 {
4731 /* Set nonzero when we find something of interest. */
4732 rtx x = 0;
4733
4734 #ifdef HAVE_cc0
4735 /* If comparison with cc0, import actual comparison from compare
4736 insn. */
4737 if (op0 == cc0_rtx)
4738 {
4739 if ((prev = prev_nonnote_insn (prev)) == 0
4740 || !NONJUMP_INSN_P (prev)
4741 || (set = single_set (prev)) == 0
4742 || SET_DEST (set) != cc0_rtx)
4743 return 0;
4744
4745 op0 = SET_SRC (set);
4746 op1 = CONST0_RTX (GET_MODE (op0));
4747 if (earliest)
4748 *earliest = prev;
4749 }
4750 #endif
4751
4752 /* If this is a COMPARE, pick up the two things being compared. */
4753 if (GET_CODE (op0) == COMPARE)
4754 {
4755 op1 = XEXP (op0, 1);
4756 op0 = XEXP (op0, 0);
4757 continue;
4758 }
4759 else if (!REG_P (op0))
4760 break;
4761
4762 /* Go back to the previous insn. Stop if it is not an INSN. We also
4763 stop if it isn't a single set or if it has a REG_INC note because
4764 we don't want to bother dealing with it. */
4765
4766 prev = prev_nonnote_nondebug_insn (prev);
4767
4768 if (prev == 0
4769 || !NONJUMP_INSN_P (prev)
4770 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4771 /* In cfglayout mode, there do not have to be labels at the
4772 beginning of a block, or jumps at the end, so the previous
4773 conditions would not stop us when we reach bb boundary. */
4774 || BLOCK_FOR_INSN (prev) != bb)
4775 break;
4776
4777 set = set_of (op0, prev);
4778
4779 if (set
4780 && (GET_CODE (set) != SET
4781 || !rtx_equal_p (SET_DEST (set), op0)))
4782 break;
4783
4784 /* If this is setting OP0, get what it sets it to if it looks
4785 relevant. */
4786 if (set)
4787 {
4788 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4789 #ifdef FLOAT_STORE_FLAG_VALUE
4790 REAL_VALUE_TYPE fsfv;
4791 #endif
4792
4793 /* ??? We may not combine comparisons done in a CCmode with
4794 comparisons not done in a CCmode. This is to aid targets
4795 like Alpha that have an IEEE compliant EQ instruction, and
4796 a non-IEEE compliant BEQ instruction. The use of CCmode is
4797 actually artificial, simply to prevent the combination, but
4798 should not affect other platforms.
4799
4800 However, we must allow VOIDmode comparisons to match either
4801 CCmode or non-CCmode comparison, because some ports have
4802 modeless comparisons inside branch patterns.
4803
4804 ??? This mode check should perhaps look more like the mode check
4805 in simplify_comparison in combine. */
4806
4807 if ((GET_CODE (SET_SRC (set)) == COMPARE
4808 || (((code == NE
4809 || (code == LT
4810 && GET_MODE_CLASS (inner_mode) == MODE_INT
4811 && (GET_MODE_BITSIZE (inner_mode)
4812 <= HOST_BITS_PER_WIDE_INT)
4813 && (STORE_FLAG_VALUE
4814 & ((unsigned HOST_WIDE_INT) 1
4815 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4816 #ifdef FLOAT_STORE_FLAG_VALUE
4817 || (code == LT
4818 && SCALAR_FLOAT_MODE_P (inner_mode)
4819 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4820 REAL_VALUE_NEGATIVE (fsfv)))
4821 #endif
4822 ))
4823 && COMPARISON_P (SET_SRC (set))))
4824 && (((GET_MODE_CLASS (mode) == MODE_CC)
4825 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4826 || mode == VOIDmode || inner_mode == VOIDmode))
4827 x = SET_SRC (set);
4828 else if (((code == EQ
4829 || (code == GE
4830 && (GET_MODE_BITSIZE (inner_mode)
4831 <= HOST_BITS_PER_WIDE_INT)
4832 && GET_MODE_CLASS (inner_mode) == MODE_INT
4833 && (STORE_FLAG_VALUE
4834 & ((unsigned HOST_WIDE_INT) 1
4835 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4836 #ifdef FLOAT_STORE_FLAG_VALUE
4837 || (code == GE
4838 && SCALAR_FLOAT_MODE_P (inner_mode)
4839 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4840 REAL_VALUE_NEGATIVE (fsfv)))
4841 #endif
4842 ))
4843 && COMPARISON_P (SET_SRC (set))
4844 && (((GET_MODE_CLASS (mode) == MODE_CC)
4845 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4846 || mode == VOIDmode || inner_mode == VOIDmode))
4847
4848 {
4849 reverse_code = 1;
4850 x = SET_SRC (set);
4851 }
4852 else
4853 break;
4854 }
4855
4856 else if (reg_set_p (op0, prev))
4857 /* If this sets OP0, but not directly, we have to give up. */
4858 break;
4859
4860 if (x)
4861 {
4862 /* If the caller is expecting the condition to be valid at INSN,
4863 make sure X doesn't change before INSN. */
4864 if (valid_at_insn_p)
4865 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4866 break;
4867 if (COMPARISON_P (x))
4868 code = GET_CODE (x);
4869 if (reverse_code)
4870 {
4871 code = reversed_comparison_code (x, prev);
4872 if (code == UNKNOWN)
4873 return 0;
4874 reverse_code = 0;
4875 }
4876
4877 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4878 if (earliest)
4879 *earliest = prev;
4880 }
4881 }
4882
4883 /* If constant is first, put it last. */
4884 if (CONSTANT_P (op0))
4885 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4886
4887 /* If OP0 is the result of a comparison, we weren't able to find what
4888 was really being compared, so fail. */
4889 if (!allow_cc_mode
4890 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4891 return 0;
4892
4893 /* Canonicalize any ordered comparison with integers involving equality
4894 if we can do computations in the relevant mode and we do not
4895 overflow. */
4896
4897 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4898 && CONST_INT_P (op1)
4899 && GET_MODE (op0) != VOIDmode
4900 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4901 {
4902 HOST_WIDE_INT const_val = INTVAL (op1);
4903 unsigned HOST_WIDE_INT uconst_val = const_val;
4904 unsigned HOST_WIDE_INT max_val
4905 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4906
4907 switch (code)
4908 {
4909 case LE:
4910 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4911 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4912 break;
4913
4914 /* When cross-compiling, const_val might be sign-extended from
4915 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4916 case GE:
4917 if ((const_val & max_val)
4918 != ((unsigned HOST_WIDE_INT) 1
4919 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1)))
4920 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4921 break;
4922
4923 case LEU:
4924 if (uconst_val < max_val)
4925 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4926 break;
4927
4928 case GEU:
4929 if (uconst_val != 0)
4930 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4931 break;
4932
4933 default:
4934 break;
4935 }
4936 }
4937
4938 /* Never return CC0; return zero instead. */
4939 if (CC0_P (op0))
4940 return 0;
4941
4942 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4943 }
4944
4945 /* Given a jump insn JUMP, return the condition that will cause it to branch
4946 to its JUMP_LABEL. If the condition cannot be understood, or is an
4947 inequality floating-point comparison which needs to be reversed, 0 will
4948 be returned.
4949
4950 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4951 insn used in locating the condition was found. If a replacement test
4952 of the condition is desired, it should be placed in front of that
4953 insn and we will be sure that the inputs are still valid. If EARLIEST
4954 is null, the returned condition will be valid at INSN.
4955
4956 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4957 compare CC mode register.
4958
4959 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4960
4961 rtx
4962 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4963 {
4964 rtx cond;
4965 int reverse;
4966 rtx set;
4967
4968 /* If this is not a standard conditional jump, we can't parse it. */
4969 if (!JUMP_P (jump)
4970 || ! any_condjump_p (jump))
4971 return 0;
4972 set = pc_set (jump);
4973
4974 cond = XEXP (SET_SRC (set), 0);
4975
4976 /* If this branches to JUMP_LABEL when the condition is false, reverse
4977 the condition. */
4978 reverse
4979 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4980 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4981
4982 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4983 allow_cc_mode, valid_at_insn_p);
4984 }
4985
4986 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4987 TARGET_MODE_REP_EXTENDED.
4988
4989 Note that we assume that the property of
4990 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4991 narrower than mode B. I.e., if A is a mode narrower than B then in
4992 order to be able to operate on it in mode B, mode A needs to
4993 satisfy the requirements set by the representation of mode B. */
4994
4995 static void
4996 init_num_sign_bit_copies_in_rep (void)
4997 {
4998 enum machine_mode mode, in_mode;
4999
5000 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5001 in_mode = GET_MODE_WIDER_MODE (mode))
5002 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5003 mode = GET_MODE_WIDER_MODE (mode))
5004 {
5005 enum machine_mode i;
5006
5007 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5008 extends to the next widest mode. */
5009 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5010 || GET_MODE_WIDER_MODE (mode) == in_mode);
5011
5012 /* We are in in_mode. Count how many bits outside of mode
5013 have to be copies of the sign-bit. */
5014 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5015 {
5016 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5017
5018 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5019 /* We can only check sign-bit copies starting from the
5020 top-bit. In order to be able to check the bits we
5021 have already seen we pretend that subsequent bits
5022 have to be sign-bit copies too. */
5023 || num_sign_bit_copies_in_rep [in_mode][mode])
5024 num_sign_bit_copies_in_rep [in_mode][mode]
5025 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5026 }
5027 }
5028 }
5029
5030 /* Suppose that truncation from the machine mode of X to MODE is not a
5031 no-op. See if there is anything special about X so that we can
5032 assume it already contains a truncated value of MODE. */
5033
5034 bool
5035 truncated_to_mode (enum machine_mode mode, const_rtx x)
5036 {
5037 /* This register has already been used in MODE without explicit
5038 truncation. */
5039 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5040 return true;
5041
5042 /* See if we already satisfy the requirements of MODE. If yes we
5043 can just switch to MODE. */
5044 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5045 && (num_sign_bit_copies (x, GET_MODE (x))
5046 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5047 return true;
5048
5049 return false;
5050 }
5051 \f
5052 /* Initialize non_rtx_starting_operands, which is used to speed up
5053 for_each_rtx. */
5054 void
5055 init_rtlanal (void)
5056 {
5057 int i;
5058 for (i = 0; i < NUM_RTX_CODE; i++)
5059 {
5060 const char *format = GET_RTX_FORMAT (i);
5061 const char *first = strpbrk (format, "eEV");
5062 non_rtx_starting_operands[i] = first ? first - format : -1;
5063 }
5064
5065 init_num_sign_bit_copies_in_rep ();
5066 }
5067 \f
5068 /* Check whether this is a constant pool constant. */
5069 bool
5070 constant_pool_constant_p (rtx x)
5071 {
5072 x = avoid_constant_pool_reference (x);
5073 return GET_CODE (x) == CONST_DOUBLE;
5074 }
5075 \f
5076 /* If M is a bitmask that selects a field of low-order bits within an item but
5077 not the entire word, return the length of the field. Return -1 otherwise.
5078 M is used in machine mode MODE. */
5079
5080 int
5081 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5082 {
5083 if (mode != VOIDmode)
5084 {
5085 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5086 return -1;
5087 m &= GET_MODE_MASK (mode);
5088 }
5089
5090 return exact_log2 (m + 1);
5091 }