rtlanal.c (insns_safe_to_move_p): Remove.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40
41 /* Forward declarations */
42 static void set_of_1 (rtx, rtx, void *);
43 static bool covers_regno_p (rtx, unsigned int);
44 static bool covers_regno_no_parallel_p (rtx, unsigned int);
45 static int rtx_referenced_p_1 (rtx *, void *);
46 static int computed_jump_p_1 (rtx);
47 static void parms_set (rtx, rtx, void *);
48
49 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
50 rtx, enum machine_mode,
51 unsigned HOST_WIDE_INT);
52 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
53 enum machine_mode,
54 unsigned HOST_WIDE_INT);
55 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
56 enum machine_mode,
57 unsigned int);
58 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
59 enum machine_mode, unsigned int);
60
61 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
62 -1 if a code has no such operand. */
63 static int non_rtx_starting_operands[NUM_RTX_CODE];
64
65 /* Bit flags that specify the machine subtype we are compiling for.
66 Bits are tested using macros TARGET_... defined in the tm.h file
67 and set by `-m...' switches. Must be defined in rtlanal.c. */
68
69 int target_flags;
70 \f
71 /* Return 1 if the value of X is unstable
72 (would be different at a different point in the program).
73 The frame pointer, arg pointer, etc. are considered stable
74 (within one function) and so is anything marked `unchanging'. */
75
76 int
77 rtx_unstable_p (rtx x)
78 {
79 RTX_CODE code = GET_CODE (x);
80 int i;
81 const char *fmt;
82
83 switch (code)
84 {
85 case MEM:
86 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
87
88 case CONST:
89 case CONST_INT:
90 case CONST_DOUBLE:
91 case CONST_VECTOR:
92 case SYMBOL_REF:
93 case LABEL_REF:
94 return 0;
95
96 case REG:
97 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
98 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
99 /* The arg pointer varies if it is not a fixed register. */
100 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
101 return 0;
102 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
103 /* ??? When call-clobbered, the value is stable modulo the restore
104 that must happen after a call. This currently screws up local-alloc
105 into believing that the restore is not needed. */
106 if (x == pic_offset_table_rtx)
107 return 0;
108 #endif
109 return 1;
110
111 case ASM_OPERANDS:
112 if (MEM_VOLATILE_P (x))
113 return 1;
114
115 /* Fall through. */
116
117 default:
118 break;
119 }
120
121 fmt = GET_RTX_FORMAT (code);
122 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
123 if (fmt[i] == 'e')
124 {
125 if (rtx_unstable_p (XEXP (x, i)))
126 return 1;
127 }
128 else if (fmt[i] == 'E')
129 {
130 int j;
131 for (j = 0; j < XVECLEN (x, i); j++)
132 if (rtx_unstable_p (XVECEXP (x, i, j)))
133 return 1;
134 }
135
136 return 0;
137 }
138
139 /* Return 1 if X has a value that can vary even between two
140 executions of the program. 0 means X can be compared reliably
141 against certain constants or near-constants.
142 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
143 zero, we are slightly more conservative.
144 The frame pointer and the arg pointer are considered constant. */
145
146 int
147 rtx_varies_p (rtx x, int for_alias)
148 {
149 RTX_CODE code;
150 int i;
151 const char *fmt;
152
153 if (!x)
154 return 0;
155
156 code = GET_CODE (x);
157 switch (code)
158 {
159 case MEM:
160 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
161
162 case CONST:
163 case CONST_INT:
164 case CONST_DOUBLE:
165 case CONST_VECTOR:
166 case SYMBOL_REF:
167 case LABEL_REF:
168 return 0;
169
170 case REG:
171 /* Note that we have to test for the actual rtx used for the frame
172 and arg pointers and not just the register number in case we have
173 eliminated the frame and/or arg pointer and are using it
174 for pseudos. */
175 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
176 /* The arg pointer varies if it is not a fixed register. */
177 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
178 return 0;
179 if (x == pic_offset_table_rtx
180 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
181 /* ??? When call-clobbered, the value is stable modulo the restore
182 that must happen after a call. This currently screws up
183 local-alloc into believing that the restore is not needed, so we
184 must return 0 only if we are called from alias analysis. */
185 && for_alias
186 #endif
187 )
188 return 0;
189 return 1;
190
191 case LO_SUM:
192 /* The operand 0 of a LO_SUM is considered constant
193 (in fact it is related specifically to operand 1)
194 during alias analysis. */
195 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
196 || rtx_varies_p (XEXP (x, 1), for_alias);
197
198 case ASM_OPERANDS:
199 if (MEM_VOLATILE_P (x))
200 return 1;
201
202 /* Fall through. */
203
204 default:
205 break;
206 }
207
208 fmt = GET_RTX_FORMAT (code);
209 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
210 if (fmt[i] == 'e')
211 {
212 if (rtx_varies_p (XEXP (x, i), for_alias))
213 return 1;
214 }
215 else if (fmt[i] == 'E')
216 {
217 int j;
218 for (j = 0; j < XVECLEN (x, i); j++)
219 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
220 return 1;
221 }
222
223 return 0;
224 }
225
226 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
227 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
228 whether nonzero is returned for unaligned memory accesses on strict
229 alignment machines. */
230
231 static int
232 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
233 {
234 enum rtx_code code = GET_CODE (x);
235
236 switch (code)
237 {
238 case SYMBOL_REF:
239 return SYMBOL_REF_WEAK (x);
240
241 case LABEL_REF:
242 return 0;
243
244 case REG:
245 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
246 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
247 || x == stack_pointer_rtx
248 /* The arg pointer varies if it is not a fixed register. */
249 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
250 return 0;
251 /* All of the virtual frame registers are stack references. */
252 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
253 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
254 return 0;
255 return 1;
256
257 case CONST:
258 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
259
260 case PLUS:
261 /* An address is assumed not to trap if:
262 - it is an address that can't trap plus a constant integer,
263 with the proper remainder modulo the mode size if we are
264 considering unaligned memory references. */
265 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
266 && GET_CODE (XEXP (x, 1)) == CONST_INT)
267 {
268 HOST_WIDE_INT offset;
269
270 if (!STRICT_ALIGNMENT
271 || !unaligned_mems
272 || GET_MODE_SIZE (mode) == 0)
273 return 0;
274
275 offset = INTVAL (XEXP (x, 1));
276
277 #ifdef SPARC_STACK_BOUNDARY_HACK
278 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
279 the real alignment of %sp. However, when it does this, the
280 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
281 if (SPARC_STACK_BOUNDARY_HACK
282 && (XEXP (x, 0) == stack_pointer_rtx
283 || XEXP (x, 0) == hard_frame_pointer_rtx))
284 offset -= STACK_POINTER_OFFSET;
285 #endif
286
287 return offset % GET_MODE_SIZE (mode) != 0;
288 }
289
290 /* - or it is the pic register plus a constant. */
291 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
292 return 0;
293
294 return 1;
295
296 case LO_SUM:
297 case PRE_MODIFY:
298 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
299
300 case PRE_DEC:
301 case PRE_INC:
302 case POST_DEC:
303 case POST_INC:
304 case POST_MODIFY:
305 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
306
307 default:
308 break;
309 }
310
311 /* If it isn't one of the case above, it can cause a trap. */
312 return 1;
313 }
314
315 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
316
317 int
318 rtx_addr_can_trap_p (rtx x)
319 {
320 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
321 }
322
323 /* Return true if X is an address that is known to not be zero. */
324
325 bool
326 nonzero_address_p (rtx x)
327 {
328 enum rtx_code code = GET_CODE (x);
329
330 switch (code)
331 {
332 case SYMBOL_REF:
333 return !SYMBOL_REF_WEAK (x);
334
335 case LABEL_REF:
336 return true;
337
338 case REG:
339 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
340 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
341 || x == stack_pointer_rtx
342 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
343 return true;
344 /* All of the virtual frame registers are stack references. */
345 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
346 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
347 return true;
348 return false;
349
350 case CONST:
351 return nonzero_address_p (XEXP (x, 0));
352
353 case PLUS:
354 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
355 {
356 /* Pointers aren't allowed to wrap. If we've got a register
357 that is known to be a pointer, and a positive offset, then
358 the composite can't be zero. */
359 if (INTVAL (XEXP (x, 1)) > 0
360 && REG_P (XEXP (x, 0))
361 && REG_POINTER (XEXP (x, 0)))
362 return true;
363
364 return nonzero_address_p (XEXP (x, 0));
365 }
366 /* Handle PIC references. */
367 else if (XEXP (x, 0) == pic_offset_table_rtx
368 && CONSTANT_P (XEXP (x, 1)))
369 return true;
370 return false;
371
372 case PRE_MODIFY:
373 /* Similar to the above; allow positive offsets. Further, since
374 auto-inc is only allowed in memories, the register must be a
375 pointer. */
376 if (GET_CODE (XEXP (x, 1)) == CONST_INT
377 && INTVAL (XEXP (x, 1)) > 0)
378 return true;
379 return nonzero_address_p (XEXP (x, 0));
380
381 case PRE_INC:
382 /* Similarly. Further, the offset is always positive. */
383 return true;
384
385 case PRE_DEC:
386 case POST_DEC:
387 case POST_INC:
388 case POST_MODIFY:
389 return nonzero_address_p (XEXP (x, 0));
390
391 case LO_SUM:
392 return nonzero_address_p (XEXP (x, 1));
393
394 default:
395 break;
396 }
397
398 /* If it isn't one of the case above, might be zero. */
399 return false;
400 }
401
402 /* Return 1 if X refers to a memory location whose address
403 cannot be compared reliably with constant addresses,
404 or if X refers to a BLKmode memory object.
405 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
406 zero, we are slightly more conservative. */
407
408 int
409 rtx_addr_varies_p (rtx x, int for_alias)
410 {
411 enum rtx_code code;
412 int i;
413 const char *fmt;
414
415 if (x == 0)
416 return 0;
417
418 code = GET_CODE (x);
419 if (code == MEM)
420 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
421
422 fmt = GET_RTX_FORMAT (code);
423 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
424 if (fmt[i] == 'e')
425 {
426 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
427 return 1;
428 }
429 else if (fmt[i] == 'E')
430 {
431 int j;
432 for (j = 0; j < XVECLEN (x, i); j++)
433 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
434 return 1;
435 }
436 return 0;
437 }
438 \f
439 /* Return the value of the integer term in X, if one is apparent;
440 otherwise return 0.
441 Only obvious integer terms are detected.
442 This is used in cse.c with the `related_value' field. */
443
444 HOST_WIDE_INT
445 get_integer_term (rtx x)
446 {
447 if (GET_CODE (x) == CONST)
448 x = XEXP (x, 0);
449
450 if (GET_CODE (x) == MINUS
451 && GET_CODE (XEXP (x, 1)) == CONST_INT)
452 return - INTVAL (XEXP (x, 1));
453 if (GET_CODE (x) == PLUS
454 && GET_CODE (XEXP (x, 1)) == CONST_INT)
455 return INTVAL (XEXP (x, 1));
456 return 0;
457 }
458
459 /* If X is a constant, return the value sans apparent integer term;
460 otherwise return 0.
461 Only obvious integer terms are detected. */
462
463 rtx
464 get_related_value (rtx x)
465 {
466 if (GET_CODE (x) != CONST)
467 return 0;
468 x = XEXP (x, 0);
469 if (GET_CODE (x) == PLUS
470 && GET_CODE (XEXP (x, 1)) == CONST_INT)
471 return XEXP (x, 0);
472 else if (GET_CODE (x) == MINUS
473 && GET_CODE (XEXP (x, 1)) == CONST_INT)
474 return XEXP (x, 0);
475 return 0;
476 }
477 \f
478 /* Return the number of places FIND appears within X. If COUNT_DEST is
479 zero, we do not count occurrences inside the destination of a SET. */
480
481 int
482 count_occurrences (rtx x, rtx find, int count_dest)
483 {
484 int i, j;
485 enum rtx_code code;
486 const char *format_ptr;
487 int count;
488
489 if (x == find)
490 return 1;
491
492 code = GET_CODE (x);
493
494 switch (code)
495 {
496 case REG:
497 case CONST_INT:
498 case CONST_DOUBLE:
499 case CONST_VECTOR:
500 case SYMBOL_REF:
501 case CODE_LABEL:
502 case PC:
503 case CC0:
504 return 0;
505
506 case MEM:
507 if (MEM_P (find) && rtx_equal_p (x, find))
508 return 1;
509 break;
510
511 case SET:
512 if (SET_DEST (x) == find && ! count_dest)
513 return count_occurrences (SET_SRC (x), find, count_dest);
514 break;
515
516 default:
517 break;
518 }
519
520 format_ptr = GET_RTX_FORMAT (code);
521 count = 0;
522
523 for (i = 0; i < GET_RTX_LENGTH (code); i++)
524 {
525 switch (*format_ptr++)
526 {
527 case 'e':
528 count += count_occurrences (XEXP (x, i), find, count_dest);
529 break;
530
531 case 'E':
532 for (j = 0; j < XVECLEN (x, i); j++)
533 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
534 break;
535 }
536 }
537 return count;
538 }
539 \f
540 /* Nonzero if register REG appears somewhere within IN.
541 Also works if REG is not a register; in this case it checks
542 for a subexpression of IN that is Lisp "equal" to REG. */
543
544 int
545 reg_mentioned_p (rtx reg, rtx in)
546 {
547 const char *fmt;
548 int i;
549 enum rtx_code code;
550
551 if (in == 0)
552 return 0;
553
554 if (reg == in)
555 return 1;
556
557 if (GET_CODE (in) == LABEL_REF)
558 return reg == XEXP (in, 0);
559
560 code = GET_CODE (in);
561
562 switch (code)
563 {
564 /* Compare registers by number. */
565 case REG:
566 return REG_P (reg) && REGNO (in) == REGNO (reg);
567
568 /* These codes have no constituent expressions
569 and are unique. */
570 case SCRATCH:
571 case CC0:
572 case PC:
573 return 0;
574
575 case CONST_INT:
576 case CONST_VECTOR:
577 case CONST_DOUBLE:
578 /* These are kept unique for a given value. */
579 return 0;
580
581 default:
582 break;
583 }
584
585 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
586 return 1;
587
588 fmt = GET_RTX_FORMAT (code);
589
590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
591 {
592 if (fmt[i] == 'E')
593 {
594 int j;
595 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
596 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
597 return 1;
598 }
599 else if (fmt[i] == 'e'
600 && reg_mentioned_p (reg, XEXP (in, i)))
601 return 1;
602 }
603 return 0;
604 }
605 \f
606 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
607 no CODE_LABEL insn. */
608
609 int
610 no_labels_between_p (rtx beg, rtx end)
611 {
612 rtx p;
613 if (beg == end)
614 return 0;
615 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
616 if (LABEL_P (p))
617 return 0;
618 return 1;
619 }
620
621 /* Nonzero if register REG is used in an insn between
622 FROM_INSN and TO_INSN (exclusive of those two). */
623
624 int
625 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
626 {
627 rtx insn;
628
629 if (from_insn == to_insn)
630 return 0;
631
632 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
633 if (INSN_P (insn)
634 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
635 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
636 return 1;
637 return 0;
638 }
639 \f
640 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
641 is entirely replaced by a new value and the only use is as a SET_DEST,
642 we do not consider it a reference. */
643
644 int
645 reg_referenced_p (rtx x, rtx body)
646 {
647 int i;
648
649 switch (GET_CODE (body))
650 {
651 case SET:
652 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
653 return 1;
654
655 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
656 of a REG that occupies all of the REG, the insn references X if
657 it is mentioned in the destination. */
658 if (GET_CODE (SET_DEST (body)) != CC0
659 && GET_CODE (SET_DEST (body)) != PC
660 && !REG_P (SET_DEST (body))
661 && ! (GET_CODE (SET_DEST (body)) == SUBREG
662 && REG_P (SUBREG_REG (SET_DEST (body)))
663 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
664 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
665 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
666 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
667 && reg_overlap_mentioned_p (x, SET_DEST (body)))
668 return 1;
669 return 0;
670
671 case ASM_OPERANDS:
672 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
673 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
674 return 1;
675 return 0;
676
677 case CALL:
678 case USE:
679 case IF_THEN_ELSE:
680 return reg_overlap_mentioned_p (x, body);
681
682 case TRAP_IF:
683 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
684
685 case PREFETCH:
686 return reg_overlap_mentioned_p (x, XEXP (body, 0));
687
688 case UNSPEC:
689 case UNSPEC_VOLATILE:
690 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
691 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
692 return 1;
693 return 0;
694
695 case PARALLEL:
696 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
697 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
698 return 1;
699 return 0;
700
701 case CLOBBER:
702 if (MEM_P (XEXP (body, 0)))
703 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
704 return 1;
705 return 0;
706
707 case COND_EXEC:
708 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
709 return 1;
710 return reg_referenced_p (x, COND_EXEC_CODE (body));
711
712 default:
713 return 0;
714 }
715 }
716 \f
717 /* Nonzero if register REG is set or clobbered in an insn between
718 FROM_INSN and TO_INSN (exclusive of those two). */
719
720 int
721 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
722 {
723 rtx insn;
724
725 if (from_insn == to_insn)
726 return 0;
727
728 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
729 if (INSN_P (insn) && reg_set_p (reg, insn))
730 return 1;
731 return 0;
732 }
733
734 /* Internals of reg_set_between_p. */
735 int
736 reg_set_p (rtx reg, rtx insn)
737 {
738 /* We can be passed an insn or part of one. If we are passed an insn,
739 check if a side-effect of the insn clobbers REG. */
740 if (INSN_P (insn)
741 && (FIND_REG_INC_NOTE (insn, reg)
742 || (CALL_P (insn)
743 && ((REG_P (reg)
744 && REGNO (reg) < FIRST_PSEUDO_REGISTER
745 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
746 REGNO (reg)))
747 || MEM_P (reg)
748 || find_reg_fusage (insn, CLOBBER, reg)))))
749 return 1;
750
751 return set_of (reg, insn) != NULL_RTX;
752 }
753
754 /* Similar to reg_set_between_p, but check all registers in X. Return 0
755 only if none of them are modified between START and END. Return 1 if
756 X contains a MEM; this routine does usememory aliasing. */
757
758 int
759 modified_between_p (rtx x, rtx start, rtx end)
760 {
761 enum rtx_code code = GET_CODE (x);
762 const char *fmt;
763 int i, j;
764 rtx insn;
765
766 if (start == end)
767 return 0;
768
769 switch (code)
770 {
771 case CONST_INT:
772 case CONST_DOUBLE:
773 case CONST_VECTOR:
774 case CONST:
775 case SYMBOL_REF:
776 case LABEL_REF:
777 return 0;
778
779 case PC:
780 case CC0:
781 return 1;
782
783 case MEM:
784 if (modified_between_p (XEXP (x, 0), start, end))
785 return 1;
786 if (MEM_READONLY_P (x))
787 return 0;
788 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
789 if (memory_modified_in_insn_p (x, insn))
790 return 1;
791 return 0;
792 break;
793
794 case REG:
795 return reg_set_between_p (x, start, end);
796
797 default:
798 break;
799 }
800
801 fmt = GET_RTX_FORMAT (code);
802 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
803 {
804 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
805 return 1;
806
807 else if (fmt[i] == 'E')
808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
809 if (modified_between_p (XVECEXP (x, i, j), start, end))
810 return 1;
811 }
812
813 return 0;
814 }
815
816 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
817 of them are modified in INSN. Return 1 if X contains a MEM; this routine
818 does use memory aliasing. */
819
820 int
821 modified_in_p (rtx x, rtx insn)
822 {
823 enum rtx_code code = GET_CODE (x);
824 const char *fmt;
825 int i, j;
826
827 switch (code)
828 {
829 case CONST_INT:
830 case CONST_DOUBLE:
831 case CONST_VECTOR:
832 case CONST:
833 case SYMBOL_REF:
834 case LABEL_REF:
835 return 0;
836
837 case PC:
838 case CC0:
839 return 1;
840
841 case MEM:
842 if (modified_in_p (XEXP (x, 0), insn))
843 return 1;
844 if (MEM_READONLY_P (x))
845 return 0;
846 if (memory_modified_in_insn_p (x, insn))
847 return 1;
848 return 0;
849 break;
850
851 case REG:
852 return reg_set_p (x, insn);
853
854 default:
855 break;
856 }
857
858 fmt = GET_RTX_FORMAT (code);
859 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
860 {
861 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
862 return 1;
863
864 else if (fmt[i] == 'E')
865 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
866 if (modified_in_p (XVECEXP (x, i, j), insn))
867 return 1;
868 }
869
870 return 0;
871 }
872 \f
873 /* Helper function for set_of. */
874 struct set_of_data
875 {
876 rtx found;
877 rtx pat;
878 };
879
880 static void
881 set_of_1 (rtx x, rtx pat, void *data1)
882 {
883 struct set_of_data *data = (struct set_of_data *) (data1);
884 if (rtx_equal_p (x, data->pat)
885 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
886 data->found = pat;
887 }
888
889 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
890 (either directly or via STRICT_LOW_PART and similar modifiers). */
891 rtx
892 set_of (rtx pat, rtx insn)
893 {
894 struct set_of_data data;
895 data.found = NULL_RTX;
896 data.pat = pat;
897 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
898 return data.found;
899 }
900 \f
901 /* Given an INSN, return a SET expression if this insn has only a single SET.
902 It may also have CLOBBERs, USEs, or SET whose output
903 will not be used, which we ignore. */
904
905 rtx
906 single_set_2 (rtx insn, rtx pat)
907 {
908 rtx set = NULL;
909 int set_verified = 1;
910 int i;
911
912 if (GET_CODE (pat) == PARALLEL)
913 {
914 for (i = 0; i < XVECLEN (pat, 0); i++)
915 {
916 rtx sub = XVECEXP (pat, 0, i);
917 switch (GET_CODE (sub))
918 {
919 case USE:
920 case CLOBBER:
921 break;
922
923 case SET:
924 /* We can consider insns having multiple sets, where all
925 but one are dead as single set insns. In common case
926 only single set is present in the pattern so we want
927 to avoid checking for REG_UNUSED notes unless necessary.
928
929 When we reach set first time, we just expect this is
930 the single set we are looking for and only when more
931 sets are found in the insn, we check them. */
932 if (!set_verified)
933 {
934 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
935 && !side_effects_p (set))
936 set = NULL;
937 else
938 set_verified = 1;
939 }
940 if (!set)
941 set = sub, set_verified = 0;
942 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
943 || side_effects_p (sub))
944 return NULL_RTX;
945 break;
946
947 default:
948 return NULL_RTX;
949 }
950 }
951 }
952 return set;
953 }
954
955 /* Given an INSN, return nonzero if it has more than one SET, else return
956 zero. */
957
958 int
959 multiple_sets (rtx insn)
960 {
961 int found;
962 int i;
963
964 /* INSN must be an insn. */
965 if (! INSN_P (insn))
966 return 0;
967
968 /* Only a PARALLEL can have multiple SETs. */
969 if (GET_CODE (PATTERN (insn)) == PARALLEL)
970 {
971 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
972 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
973 {
974 /* If we have already found a SET, then return now. */
975 if (found)
976 return 1;
977 else
978 found = 1;
979 }
980 }
981
982 /* Either zero or one SET. */
983 return 0;
984 }
985 \f
986 /* Return nonzero if the destination of SET equals the source
987 and there are no side effects. */
988
989 int
990 set_noop_p (rtx set)
991 {
992 rtx src = SET_SRC (set);
993 rtx dst = SET_DEST (set);
994
995 if (dst == pc_rtx && src == pc_rtx)
996 return 1;
997
998 if (MEM_P (dst) && MEM_P (src))
999 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1000
1001 if (GET_CODE (dst) == ZERO_EXTRACT)
1002 return rtx_equal_p (XEXP (dst, 0), src)
1003 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1004 && !side_effects_p (src);
1005
1006 if (GET_CODE (dst) == STRICT_LOW_PART)
1007 dst = XEXP (dst, 0);
1008
1009 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1010 {
1011 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1012 return 0;
1013 src = SUBREG_REG (src);
1014 dst = SUBREG_REG (dst);
1015 }
1016
1017 return (REG_P (src) && REG_P (dst)
1018 && REGNO (src) == REGNO (dst));
1019 }
1020 \f
1021 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1022 value to itself. */
1023
1024 int
1025 noop_move_p (rtx insn)
1026 {
1027 rtx pat = PATTERN (insn);
1028
1029 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1030 return 1;
1031
1032 /* Insns carrying these notes are useful later on. */
1033 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1034 return 0;
1035
1036 /* For now treat an insn with a REG_RETVAL note as a
1037 a special insn which should not be considered a no-op. */
1038 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1039 return 0;
1040
1041 if (GET_CODE (pat) == SET && set_noop_p (pat))
1042 return 1;
1043
1044 if (GET_CODE (pat) == PARALLEL)
1045 {
1046 int i;
1047 /* If nothing but SETs of registers to themselves,
1048 this insn can also be deleted. */
1049 for (i = 0; i < XVECLEN (pat, 0); i++)
1050 {
1051 rtx tem = XVECEXP (pat, 0, i);
1052
1053 if (GET_CODE (tem) == USE
1054 || GET_CODE (tem) == CLOBBER)
1055 continue;
1056
1057 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1058 return 0;
1059 }
1060
1061 return 1;
1062 }
1063 return 0;
1064 }
1065 \f
1066
1067 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1068 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1069 If the object was modified, if we hit a partial assignment to X, or hit a
1070 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1071 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1072 be the src. */
1073
1074 rtx
1075 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1076 {
1077 rtx p;
1078
1079 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1080 p = PREV_INSN (p))
1081 if (INSN_P (p))
1082 {
1083 rtx set = single_set (p);
1084 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1085
1086 if (set && rtx_equal_p (x, SET_DEST (set)))
1087 {
1088 rtx src = SET_SRC (set);
1089
1090 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1091 src = XEXP (note, 0);
1092
1093 if ((valid_to == NULL_RTX
1094 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1095 /* Reject hard registers because we don't usually want
1096 to use them; we'd rather use a pseudo. */
1097 && (! (REG_P (src)
1098 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1099 {
1100 *pinsn = p;
1101 return src;
1102 }
1103 }
1104
1105 /* If set in non-simple way, we don't have a value. */
1106 if (reg_set_p (x, p))
1107 break;
1108 }
1109
1110 return x;
1111 }
1112 \f
1113 /* Return nonzero if register in range [REGNO, ENDREGNO)
1114 appears either explicitly or implicitly in X
1115 other than being stored into.
1116
1117 References contained within the substructure at LOC do not count.
1118 LOC may be zero, meaning don't ignore anything. */
1119
1120 int
1121 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1122 rtx *loc)
1123 {
1124 int i;
1125 unsigned int x_regno;
1126 RTX_CODE code;
1127 const char *fmt;
1128
1129 repeat:
1130 /* The contents of a REG_NONNEG note is always zero, so we must come here
1131 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1132 if (x == 0)
1133 return 0;
1134
1135 code = GET_CODE (x);
1136
1137 switch (code)
1138 {
1139 case REG:
1140 x_regno = REGNO (x);
1141
1142 /* If we modifying the stack, frame, or argument pointer, it will
1143 clobber a virtual register. In fact, we could be more precise,
1144 but it isn't worth it. */
1145 if ((x_regno == STACK_POINTER_REGNUM
1146 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1147 || x_regno == ARG_POINTER_REGNUM
1148 #endif
1149 || x_regno == FRAME_POINTER_REGNUM)
1150 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1151 return 1;
1152
1153 return (endregno > x_regno
1154 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1155 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1156 : 1));
1157
1158 case SUBREG:
1159 /* If this is a SUBREG of a hard reg, we can see exactly which
1160 registers are being modified. Otherwise, handle normally. */
1161 if (REG_P (SUBREG_REG (x))
1162 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1163 {
1164 unsigned int inner_regno = subreg_regno (x);
1165 unsigned int inner_endregno
1166 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1167 ? hard_regno_nregs[inner_regno][GET_MODE (x)] : 1);
1168
1169 return endregno > inner_regno && regno < inner_endregno;
1170 }
1171 break;
1172
1173 case CLOBBER:
1174 case SET:
1175 if (&SET_DEST (x) != loc
1176 /* Note setting a SUBREG counts as referring to the REG it is in for
1177 a pseudo but not for hard registers since we can
1178 treat each word individually. */
1179 && ((GET_CODE (SET_DEST (x)) == SUBREG
1180 && loc != &SUBREG_REG (SET_DEST (x))
1181 && REG_P (SUBREG_REG (SET_DEST (x)))
1182 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1183 && refers_to_regno_p (regno, endregno,
1184 SUBREG_REG (SET_DEST (x)), loc))
1185 || (!REG_P (SET_DEST (x))
1186 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1187 return 1;
1188
1189 if (code == CLOBBER || loc == &SET_SRC (x))
1190 return 0;
1191 x = SET_SRC (x);
1192 goto repeat;
1193
1194 default:
1195 break;
1196 }
1197
1198 /* X does not match, so try its subexpressions. */
1199
1200 fmt = GET_RTX_FORMAT (code);
1201 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1202 {
1203 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1204 {
1205 if (i == 0)
1206 {
1207 x = XEXP (x, 0);
1208 goto repeat;
1209 }
1210 else
1211 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1212 return 1;
1213 }
1214 else if (fmt[i] == 'E')
1215 {
1216 int j;
1217 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1218 if (loc != &XVECEXP (x, i, j)
1219 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1220 return 1;
1221 }
1222 }
1223 return 0;
1224 }
1225
1226 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1227 we check if any register number in X conflicts with the relevant register
1228 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1229 contains a MEM (we don't bother checking for memory addresses that can't
1230 conflict because we expect this to be a rare case. */
1231
1232 int
1233 reg_overlap_mentioned_p (rtx x, rtx in)
1234 {
1235 unsigned int regno, endregno;
1236
1237 /* If either argument is a constant, then modifying X can not
1238 affect IN. Here we look at IN, we can profitably combine
1239 CONSTANT_P (x) with the switch statement below. */
1240 if (CONSTANT_P (in))
1241 return 0;
1242
1243 recurse:
1244 switch (GET_CODE (x))
1245 {
1246 case STRICT_LOW_PART:
1247 case ZERO_EXTRACT:
1248 case SIGN_EXTRACT:
1249 /* Overly conservative. */
1250 x = XEXP (x, 0);
1251 goto recurse;
1252
1253 case SUBREG:
1254 regno = REGNO (SUBREG_REG (x));
1255 if (regno < FIRST_PSEUDO_REGISTER)
1256 regno = subreg_regno (x);
1257 goto do_reg;
1258
1259 case REG:
1260 regno = REGNO (x);
1261 do_reg:
1262 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1263 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1264 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1265
1266 case MEM:
1267 {
1268 const char *fmt;
1269 int i;
1270
1271 if (MEM_P (in))
1272 return 1;
1273
1274 fmt = GET_RTX_FORMAT (GET_CODE (in));
1275 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1276 if (fmt[i] == 'e')
1277 {
1278 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1279 return 1;
1280 }
1281 else if (fmt[i] == 'E')
1282 {
1283 int j;
1284 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1285 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1286 return 1;
1287 }
1288
1289 return 0;
1290 }
1291
1292 case SCRATCH:
1293 case PC:
1294 case CC0:
1295 return reg_mentioned_p (x, in);
1296
1297 case PARALLEL:
1298 {
1299 int i;
1300
1301 /* If any register in here refers to it we return true. */
1302 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1303 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1304 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1305 return 1;
1306 return 0;
1307 }
1308
1309 default:
1310 gcc_assert (CONSTANT_P (x));
1311 return 0;
1312 }
1313 }
1314 \f
1315 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1316 (X would be the pattern of an insn).
1317 FUN receives two arguments:
1318 the REG, MEM, CC0 or PC being stored in or clobbered,
1319 the SET or CLOBBER rtx that does the store.
1320
1321 If the item being stored in or clobbered is a SUBREG of a hard register,
1322 the SUBREG will be passed. */
1323
1324 void
1325 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1326 {
1327 int i;
1328
1329 if (GET_CODE (x) == COND_EXEC)
1330 x = COND_EXEC_CODE (x);
1331
1332 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1333 {
1334 rtx dest = SET_DEST (x);
1335
1336 while ((GET_CODE (dest) == SUBREG
1337 && (!REG_P (SUBREG_REG (dest))
1338 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1339 || GET_CODE (dest) == ZERO_EXTRACT
1340 || GET_CODE (dest) == STRICT_LOW_PART)
1341 dest = XEXP (dest, 0);
1342
1343 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1344 each of whose first operand is a register. */
1345 if (GET_CODE (dest) == PARALLEL)
1346 {
1347 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1348 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1349 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1350 }
1351 else
1352 (*fun) (dest, x, data);
1353 }
1354
1355 else if (GET_CODE (x) == PARALLEL)
1356 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1357 note_stores (XVECEXP (x, 0, i), fun, data);
1358 }
1359 \f
1360 /* Like notes_stores, but call FUN for each expression that is being
1361 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1362 FUN for each expression, not any interior subexpressions. FUN receives a
1363 pointer to the expression and the DATA passed to this function.
1364
1365 Note that this is not quite the same test as that done in reg_referenced_p
1366 since that considers something as being referenced if it is being
1367 partially set, while we do not. */
1368
1369 void
1370 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1371 {
1372 rtx body = *pbody;
1373 int i;
1374
1375 switch (GET_CODE (body))
1376 {
1377 case COND_EXEC:
1378 (*fun) (&COND_EXEC_TEST (body), data);
1379 note_uses (&COND_EXEC_CODE (body), fun, data);
1380 return;
1381
1382 case PARALLEL:
1383 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1384 note_uses (&XVECEXP (body, 0, i), fun, data);
1385 return;
1386
1387 case USE:
1388 (*fun) (&XEXP (body, 0), data);
1389 return;
1390
1391 case ASM_OPERANDS:
1392 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1393 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1394 return;
1395
1396 case TRAP_IF:
1397 (*fun) (&TRAP_CONDITION (body), data);
1398 return;
1399
1400 case PREFETCH:
1401 (*fun) (&XEXP (body, 0), data);
1402 return;
1403
1404 case UNSPEC:
1405 case UNSPEC_VOLATILE:
1406 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1407 (*fun) (&XVECEXP (body, 0, i), data);
1408 return;
1409
1410 case CLOBBER:
1411 if (MEM_P (XEXP (body, 0)))
1412 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1413 return;
1414
1415 case SET:
1416 {
1417 rtx dest = SET_DEST (body);
1418
1419 /* For sets we replace everything in source plus registers in memory
1420 expression in store and operands of a ZERO_EXTRACT. */
1421 (*fun) (&SET_SRC (body), data);
1422
1423 if (GET_CODE (dest) == ZERO_EXTRACT)
1424 {
1425 (*fun) (&XEXP (dest, 1), data);
1426 (*fun) (&XEXP (dest, 2), data);
1427 }
1428
1429 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1430 dest = XEXP (dest, 0);
1431
1432 if (MEM_P (dest))
1433 (*fun) (&XEXP (dest, 0), data);
1434 }
1435 return;
1436
1437 default:
1438 /* All the other possibilities never store. */
1439 (*fun) (pbody, data);
1440 return;
1441 }
1442 }
1443 \f
1444 /* Return nonzero if X's old contents don't survive after INSN.
1445 This will be true if X is (cc0) or if X is a register and
1446 X dies in INSN or because INSN entirely sets X.
1447
1448 "Entirely set" means set directly and not through a SUBREG, or
1449 ZERO_EXTRACT, so no trace of the old contents remains.
1450 Likewise, REG_INC does not count.
1451
1452 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1453 but for this use that makes no difference, since regs don't overlap
1454 during their lifetimes. Therefore, this function may be used
1455 at any time after deaths have been computed (in flow.c).
1456
1457 If REG is a hard reg that occupies multiple machine registers, this
1458 function will only return 1 if each of those registers will be replaced
1459 by INSN. */
1460
1461 int
1462 dead_or_set_p (rtx insn, rtx x)
1463 {
1464 unsigned int regno, last_regno;
1465 unsigned int i;
1466
1467 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1468 if (GET_CODE (x) == CC0)
1469 return 1;
1470
1471 gcc_assert (REG_P (x));
1472
1473 regno = REGNO (x);
1474 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1475 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1476
1477 for (i = regno; i <= last_regno; i++)
1478 if (! dead_or_set_regno_p (insn, i))
1479 return 0;
1480
1481 return 1;
1482 }
1483
1484 /* Return TRUE iff DEST is a register or subreg of a register and
1485 doesn't change the number of words of the inner register, and any
1486 part of the register is TEST_REGNO. */
1487
1488 static bool
1489 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1490 {
1491 unsigned int regno, endregno;
1492
1493 if (GET_CODE (dest) == SUBREG
1494 && (((GET_MODE_SIZE (GET_MODE (dest))
1495 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1496 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1497 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1498 dest = SUBREG_REG (dest);
1499
1500 if (!REG_P (dest))
1501 return false;
1502
1503 regno = REGNO (dest);
1504 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1505 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1506 return (test_regno >= regno && test_regno < endregno);
1507 }
1508
1509 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1510 any member matches the covers_regno_no_parallel_p criteria. */
1511
1512 static bool
1513 covers_regno_p (rtx dest, unsigned int test_regno)
1514 {
1515 if (GET_CODE (dest) == PARALLEL)
1516 {
1517 /* Some targets place small structures in registers for return
1518 values of functions, and those registers are wrapped in
1519 PARALLELs that we may see as the destination of a SET. */
1520 int i;
1521
1522 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1523 {
1524 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1525 if (inner != NULL_RTX
1526 && covers_regno_no_parallel_p (inner, test_regno))
1527 return true;
1528 }
1529
1530 return false;
1531 }
1532 else
1533 return covers_regno_no_parallel_p (dest, test_regno);
1534 }
1535
1536 /* Utility function for dead_or_set_p to check an individual register. Also
1537 called from flow.c. */
1538
1539 int
1540 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1541 {
1542 rtx pattern;
1543
1544 /* See if there is a death note for something that includes TEST_REGNO. */
1545 if (find_regno_note (insn, REG_DEAD, test_regno))
1546 return 1;
1547
1548 if (CALL_P (insn)
1549 && find_regno_fusage (insn, CLOBBER, test_regno))
1550 return 1;
1551
1552 pattern = PATTERN (insn);
1553
1554 if (GET_CODE (pattern) == COND_EXEC)
1555 pattern = COND_EXEC_CODE (pattern);
1556
1557 if (GET_CODE (pattern) == SET)
1558 return covers_regno_p (SET_DEST (pattern), test_regno);
1559 else if (GET_CODE (pattern) == PARALLEL)
1560 {
1561 int i;
1562
1563 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1564 {
1565 rtx body = XVECEXP (pattern, 0, i);
1566
1567 if (GET_CODE (body) == COND_EXEC)
1568 body = COND_EXEC_CODE (body);
1569
1570 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1571 && covers_regno_p (SET_DEST (body), test_regno))
1572 return 1;
1573 }
1574 }
1575
1576 return 0;
1577 }
1578
1579 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1580 If DATUM is nonzero, look for one whose datum is DATUM. */
1581
1582 rtx
1583 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1584 {
1585 rtx link;
1586
1587 gcc_assert (insn);
1588
1589 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1590 if (! INSN_P (insn))
1591 return 0;
1592 if (datum == 0)
1593 {
1594 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1595 if (REG_NOTE_KIND (link) == kind)
1596 return link;
1597 return 0;
1598 }
1599
1600 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1601 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1602 return link;
1603 return 0;
1604 }
1605
1606 /* Return the reg-note of kind KIND in insn INSN which applies to register
1607 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1608 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1609 it might be the case that the note overlaps REGNO. */
1610
1611 rtx
1612 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1613 {
1614 rtx link;
1615
1616 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1617 if (! INSN_P (insn))
1618 return 0;
1619
1620 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1621 if (REG_NOTE_KIND (link) == kind
1622 /* Verify that it is a register, so that scratch and MEM won't cause a
1623 problem here. */
1624 && REG_P (XEXP (link, 0))
1625 && REGNO (XEXP (link, 0)) <= regno
1626 && ((REGNO (XEXP (link, 0))
1627 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1628 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1629 [GET_MODE (XEXP (link, 0))]))
1630 > regno))
1631 return link;
1632 return 0;
1633 }
1634
1635 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1636 has such a note. */
1637
1638 rtx
1639 find_reg_equal_equiv_note (rtx insn)
1640 {
1641 rtx link;
1642
1643 if (!INSN_P (insn))
1644 return 0;
1645 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1646 if (REG_NOTE_KIND (link) == REG_EQUAL
1647 || REG_NOTE_KIND (link) == REG_EQUIV)
1648 {
1649 if (single_set (insn) == 0)
1650 return 0;
1651 return link;
1652 }
1653 return NULL;
1654 }
1655
1656 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1657 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1658
1659 int
1660 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1661 {
1662 /* If it's not a CALL_INSN, it can't possibly have a
1663 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1664 if (!CALL_P (insn))
1665 return 0;
1666
1667 gcc_assert (datum);
1668
1669 if (!REG_P (datum))
1670 {
1671 rtx link;
1672
1673 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1674 link;
1675 link = XEXP (link, 1))
1676 if (GET_CODE (XEXP (link, 0)) == code
1677 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1678 return 1;
1679 }
1680 else
1681 {
1682 unsigned int regno = REGNO (datum);
1683
1684 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1685 to pseudo registers, so don't bother checking. */
1686
1687 if (regno < FIRST_PSEUDO_REGISTER)
1688 {
1689 unsigned int end_regno
1690 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1691 unsigned int i;
1692
1693 for (i = regno; i < end_regno; i++)
1694 if (find_regno_fusage (insn, code, i))
1695 return 1;
1696 }
1697 }
1698
1699 return 0;
1700 }
1701
1702 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1703 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1704
1705 int
1706 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1707 {
1708 rtx link;
1709
1710 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1711 to pseudo registers, so don't bother checking. */
1712
1713 if (regno >= FIRST_PSEUDO_REGISTER
1714 || !CALL_P (insn) )
1715 return 0;
1716
1717 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1718 {
1719 unsigned int regnote;
1720 rtx op, reg;
1721
1722 if (GET_CODE (op = XEXP (link, 0)) == code
1723 && REG_P (reg = XEXP (op, 0))
1724 && (regnote = REGNO (reg)) <= regno
1725 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1726 return 1;
1727 }
1728
1729 return 0;
1730 }
1731
1732 /* Return true if INSN is a call to a pure function. */
1733
1734 int
1735 pure_call_p (rtx insn)
1736 {
1737 rtx link;
1738
1739 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1740 return 0;
1741
1742 /* Look for the note that differentiates const and pure functions. */
1743 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1744 {
1745 rtx u, m;
1746
1747 if (GET_CODE (u = XEXP (link, 0)) == USE
1748 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1749 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1750 return 1;
1751 }
1752
1753 return 0;
1754 }
1755 \f
1756 /* Remove register note NOTE from the REG_NOTES of INSN. */
1757
1758 void
1759 remove_note (rtx insn, rtx note)
1760 {
1761 rtx link;
1762
1763 if (note == NULL_RTX)
1764 return;
1765
1766 if (REG_NOTES (insn) == note)
1767 {
1768 REG_NOTES (insn) = XEXP (note, 1);
1769 return;
1770 }
1771
1772 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1773 if (XEXP (link, 1) == note)
1774 {
1775 XEXP (link, 1) = XEXP (note, 1);
1776 return;
1777 }
1778
1779 gcc_unreachable ();
1780 }
1781
1782 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1783 return 1 if it is found. A simple equality test is used to determine if
1784 NODE matches. */
1785
1786 int
1787 in_expr_list_p (rtx listp, rtx node)
1788 {
1789 rtx x;
1790
1791 for (x = listp; x; x = XEXP (x, 1))
1792 if (node == XEXP (x, 0))
1793 return 1;
1794
1795 return 0;
1796 }
1797
1798 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1799 remove that entry from the list if it is found.
1800
1801 A simple equality test is used to determine if NODE matches. */
1802
1803 void
1804 remove_node_from_expr_list (rtx node, rtx *listp)
1805 {
1806 rtx temp = *listp;
1807 rtx prev = NULL_RTX;
1808
1809 while (temp)
1810 {
1811 if (node == XEXP (temp, 0))
1812 {
1813 /* Splice the node out of the list. */
1814 if (prev)
1815 XEXP (prev, 1) = XEXP (temp, 1);
1816 else
1817 *listp = XEXP (temp, 1);
1818
1819 return;
1820 }
1821
1822 prev = temp;
1823 temp = XEXP (temp, 1);
1824 }
1825 }
1826 \f
1827 /* Nonzero if X contains any volatile instructions. These are instructions
1828 which may cause unpredictable machine state instructions, and thus no
1829 instructions should be moved or combined across them. This includes
1830 only volatile asms and UNSPEC_VOLATILE instructions. */
1831
1832 int
1833 volatile_insn_p (rtx x)
1834 {
1835 RTX_CODE code;
1836
1837 code = GET_CODE (x);
1838 switch (code)
1839 {
1840 case LABEL_REF:
1841 case SYMBOL_REF:
1842 case CONST_INT:
1843 case CONST:
1844 case CONST_DOUBLE:
1845 case CONST_VECTOR:
1846 case CC0:
1847 case PC:
1848 case REG:
1849 case SCRATCH:
1850 case CLOBBER:
1851 case ADDR_VEC:
1852 case ADDR_DIFF_VEC:
1853 case CALL:
1854 case MEM:
1855 return 0;
1856
1857 case UNSPEC_VOLATILE:
1858 /* case TRAP_IF: This isn't clear yet. */
1859 return 1;
1860
1861 case ASM_INPUT:
1862 case ASM_OPERANDS:
1863 if (MEM_VOLATILE_P (x))
1864 return 1;
1865
1866 default:
1867 break;
1868 }
1869
1870 /* Recursively scan the operands of this expression. */
1871
1872 {
1873 const char *fmt = GET_RTX_FORMAT (code);
1874 int i;
1875
1876 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1877 {
1878 if (fmt[i] == 'e')
1879 {
1880 if (volatile_insn_p (XEXP (x, i)))
1881 return 1;
1882 }
1883 else if (fmt[i] == 'E')
1884 {
1885 int j;
1886 for (j = 0; j < XVECLEN (x, i); j++)
1887 if (volatile_insn_p (XVECEXP (x, i, j)))
1888 return 1;
1889 }
1890 }
1891 }
1892 return 0;
1893 }
1894
1895 /* Nonzero if X contains any volatile memory references
1896 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1897
1898 int
1899 volatile_refs_p (rtx x)
1900 {
1901 RTX_CODE code;
1902
1903 code = GET_CODE (x);
1904 switch (code)
1905 {
1906 case LABEL_REF:
1907 case SYMBOL_REF:
1908 case CONST_INT:
1909 case CONST:
1910 case CONST_DOUBLE:
1911 case CONST_VECTOR:
1912 case CC0:
1913 case PC:
1914 case REG:
1915 case SCRATCH:
1916 case CLOBBER:
1917 case ADDR_VEC:
1918 case ADDR_DIFF_VEC:
1919 return 0;
1920
1921 case UNSPEC_VOLATILE:
1922 return 1;
1923
1924 case MEM:
1925 case ASM_INPUT:
1926 case ASM_OPERANDS:
1927 if (MEM_VOLATILE_P (x))
1928 return 1;
1929
1930 default:
1931 break;
1932 }
1933
1934 /* Recursively scan the operands of this expression. */
1935
1936 {
1937 const char *fmt = GET_RTX_FORMAT (code);
1938 int i;
1939
1940 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1941 {
1942 if (fmt[i] == 'e')
1943 {
1944 if (volatile_refs_p (XEXP (x, i)))
1945 return 1;
1946 }
1947 else if (fmt[i] == 'E')
1948 {
1949 int j;
1950 for (j = 0; j < XVECLEN (x, i); j++)
1951 if (volatile_refs_p (XVECEXP (x, i, j)))
1952 return 1;
1953 }
1954 }
1955 }
1956 return 0;
1957 }
1958
1959 /* Similar to above, except that it also rejects register pre- and post-
1960 incrementing. */
1961
1962 int
1963 side_effects_p (rtx x)
1964 {
1965 RTX_CODE code;
1966
1967 code = GET_CODE (x);
1968 switch (code)
1969 {
1970 case LABEL_REF:
1971 case SYMBOL_REF:
1972 case CONST_INT:
1973 case CONST:
1974 case CONST_DOUBLE:
1975 case CONST_VECTOR:
1976 case CC0:
1977 case PC:
1978 case REG:
1979 case SCRATCH:
1980 case ADDR_VEC:
1981 case ADDR_DIFF_VEC:
1982 return 0;
1983
1984 case CLOBBER:
1985 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
1986 when some combination can't be done. If we see one, don't think
1987 that we can simplify the expression. */
1988 return (GET_MODE (x) != VOIDmode);
1989
1990 case PRE_INC:
1991 case PRE_DEC:
1992 case POST_INC:
1993 case POST_DEC:
1994 case PRE_MODIFY:
1995 case POST_MODIFY:
1996 case CALL:
1997 case UNSPEC_VOLATILE:
1998 /* case TRAP_IF: This isn't clear yet. */
1999 return 1;
2000
2001 case MEM:
2002 case ASM_INPUT:
2003 case ASM_OPERANDS:
2004 if (MEM_VOLATILE_P (x))
2005 return 1;
2006
2007 default:
2008 break;
2009 }
2010
2011 /* Recursively scan the operands of this expression. */
2012
2013 {
2014 const char *fmt = GET_RTX_FORMAT (code);
2015 int i;
2016
2017 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2018 {
2019 if (fmt[i] == 'e')
2020 {
2021 if (side_effects_p (XEXP (x, i)))
2022 return 1;
2023 }
2024 else if (fmt[i] == 'E')
2025 {
2026 int j;
2027 for (j = 0; j < XVECLEN (x, i); j++)
2028 if (side_effects_p (XVECEXP (x, i, j)))
2029 return 1;
2030 }
2031 }
2032 }
2033 return 0;
2034 }
2035 \f
2036 enum may_trap_p_flags
2037 {
2038 MTP_UNALIGNED_MEMS = 1,
2039 MTP_AFTER_MOVE = 2
2040 };
2041 /* Return nonzero if evaluating rtx X might cause a trap.
2042 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2043 unaligned memory accesses on strict alignment machines. If
2044 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2045 cannot trap at its current location, but it might become trapping if moved
2046 elsewhere. */
2047
2048 static int
2049 may_trap_p_1 (rtx x, unsigned flags)
2050 {
2051 int i;
2052 enum rtx_code code;
2053 const char *fmt;
2054 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2055
2056 if (x == 0)
2057 return 0;
2058 code = GET_CODE (x);
2059 switch (code)
2060 {
2061 /* Handle these cases quickly. */
2062 case CONST_INT:
2063 case CONST_DOUBLE:
2064 case CONST_VECTOR:
2065 case SYMBOL_REF:
2066 case LABEL_REF:
2067 case CONST:
2068 case PC:
2069 case CC0:
2070 case REG:
2071 case SCRATCH:
2072 return 0;
2073
2074 case ASM_INPUT:
2075 case UNSPEC_VOLATILE:
2076 case TRAP_IF:
2077 return 1;
2078
2079 case ASM_OPERANDS:
2080 return MEM_VOLATILE_P (x);
2081
2082 /* Memory ref can trap unless it's a static var or a stack slot. */
2083 case MEM:
2084 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2085 reference; moving it out of condition might cause its address
2086 become invalid. */
2087 !(flags & MTP_AFTER_MOVE)
2088 && MEM_NOTRAP_P (x)
2089 && (!STRICT_ALIGNMENT || !unaligned_mems))
2090 return 0;
2091 return
2092 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2093
2094 /* Division by a non-constant might trap. */
2095 case DIV:
2096 case MOD:
2097 case UDIV:
2098 case UMOD:
2099 if (HONOR_SNANS (GET_MODE (x)))
2100 return 1;
2101 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2102 return flag_trapping_math;
2103 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2104 return 1;
2105 break;
2106
2107 case EXPR_LIST:
2108 /* An EXPR_LIST is used to represent a function call. This
2109 certainly may trap. */
2110 return 1;
2111
2112 case GE:
2113 case GT:
2114 case LE:
2115 case LT:
2116 case LTGT:
2117 case COMPARE:
2118 /* Some floating point comparisons may trap. */
2119 if (!flag_trapping_math)
2120 break;
2121 /* ??? There is no machine independent way to check for tests that trap
2122 when COMPARE is used, though many targets do make this distinction.
2123 For instance, sparc uses CCFPE for compares which generate exceptions
2124 and CCFP for compares which do not generate exceptions. */
2125 if (HONOR_NANS (GET_MODE (x)))
2126 return 1;
2127 /* But often the compare has some CC mode, so check operand
2128 modes as well. */
2129 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2130 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2131 return 1;
2132 break;
2133
2134 case EQ:
2135 case NE:
2136 if (HONOR_SNANS (GET_MODE (x)))
2137 return 1;
2138 /* Often comparison is CC mode, so check operand modes. */
2139 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2140 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2141 return 1;
2142 break;
2143
2144 case FIX:
2145 /* Conversion of floating point might trap. */
2146 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2147 return 1;
2148 break;
2149
2150 case NEG:
2151 case ABS:
2152 case SUBREG:
2153 /* These operations don't trap even with floating point. */
2154 break;
2155
2156 default:
2157 /* Any floating arithmetic may trap. */
2158 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2159 && flag_trapping_math)
2160 return 1;
2161 }
2162
2163 fmt = GET_RTX_FORMAT (code);
2164 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2165 {
2166 if (fmt[i] == 'e')
2167 {
2168 if (may_trap_p_1 (XEXP (x, i), flags))
2169 return 1;
2170 }
2171 else if (fmt[i] == 'E')
2172 {
2173 int j;
2174 for (j = 0; j < XVECLEN (x, i); j++)
2175 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2176 return 1;
2177 }
2178 }
2179 return 0;
2180 }
2181
2182 /* Return nonzero if evaluating rtx X might cause a trap. */
2183
2184 int
2185 may_trap_p (rtx x)
2186 {
2187 return may_trap_p_1 (x, 0);
2188 }
2189
2190 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2191 is moved from its current location by some optimization. */
2192
2193 int
2194 may_trap_after_code_motion_p (rtx x)
2195 {
2196 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2197 }
2198
2199 /* Same as above, but additionally return non-zero if evaluating rtx X might
2200 cause a fault. We define a fault for the purpose of this function as a
2201 erroneous execution condition that cannot be encountered during the normal
2202 execution of a valid program; the typical example is an unaligned memory
2203 access on a strict alignment machine. The compiler guarantees that it
2204 doesn't generate code that will fault from a valid program, but this
2205 guarantee doesn't mean anything for individual instructions. Consider
2206 the following example:
2207
2208 struct S { int d; union { char *cp; int *ip; }; };
2209
2210 int foo(struct S *s)
2211 {
2212 if (s->d == 1)
2213 return *s->ip;
2214 else
2215 return *s->cp;
2216 }
2217
2218 on a strict alignment machine. In a valid program, foo will never be
2219 invoked on a structure for which d is equal to 1 and the underlying
2220 unique field of the union not aligned on a 4-byte boundary, but the
2221 expression *s->ip might cause a fault if considered individually.
2222
2223 At the RTL level, potentially problematic expressions will almost always
2224 verify may_trap_p; for example, the above dereference can be emitted as
2225 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2226 However, suppose that foo is inlined in a caller that causes s->cp to
2227 point to a local character variable and guarantees that s->d is not set
2228 to 1; foo may have been effectively translated into pseudo-RTL as:
2229
2230 if ((reg:SI) == 1)
2231 (set (reg:SI) (mem:SI (%fp - 7)))
2232 else
2233 (set (reg:QI) (mem:QI (%fp - 7)))
2234
2235 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2236 memory reference to a stack slot, but it will certainly cause a fault
2237 on a strict alignment machine. */
2238
2239 int
2240 may_trap_or_fault_p (rtx x)
2241 {
2242 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2243 }
2244 \f
2245 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2246 i.e., an inequality. */
2247
2248 int
2249 inequality_comparisons_p (rtx x)
2250 {
2251 const char *fmt;
2252 int len, i;
2253 enum rtx_code code = GET_CODE (x);
2254
2255 switch (code)
2256 {
2257 case REG:
2258 case SCRATCH:
2259 case PC:
2260 case CC0:
2261 case CONST_INT:
2262 case CONST_DOUBLE:
2263 case CONST_VECTOR:
2264 case CONST:
2265 case LABEL_REF:
2266 case SYMBOL_REF:
2267 return 0;
2268
2269 case LT:
2270 case LTU:
2271 case GT:
2272 case GTU:
2273 case LE:
2274 case LEU:
2275 case GE:
2276 case GEU:
2277 return 1;
2278
2279 default:
2280 break;
2281 }
2282
2283 len = GET_RTX_LENGTH (code);
2284 fmt = GET_RTX_FORMAT (code);
2285
2286 for (i = 0; i < len; i++)
2287 {
2288 if (fmt[i] == 'e')
2289 {
2290 if (inequality_comparisons_p (XEXP (x, i)))
2291 return 1;
2292 }
2293 else if (fmt[i] == 'E')
2294 {
2295 int j;
2296 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2297 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2298 return 1;
2299 }
2300 }
2301
2302 return 0;
2303 }
2304 \f
2305 /* Replace any occurrence of FROM in X with TO. The function does
2306 not enter into CONST_DOUBLE for the replace.
2307
2308 Note that copying is not done so X must not be shared unless all copies
2309 are to be modified. */
2310
2311 rtx
2312 replace_rtx (rtx x, rtx from, rtx to)
2313 {
2314 int i, j;
2315 const char *fmt;
2316
2317 /* The following prevents loops occurrence when we change MEM in
2318 CONST_DOUBLE onto the same CONST_DOUBLE. */
2319 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2320 return x;
2321
2322 if (x == from)
2323 return to;
2324
2325 /* Allow this function to make replacements in EXPR_LISTs. */
2326 if (x == 0)
2327 return 0;
2328
2329 if (GET_CODE (x) == SUBREG)
2330 {
2331 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2332
2333 if (GET_CODE (new) == CONST_INT)
2334 {
2335 x = simplify_subreg (GET_MODE (x), new,
2336 GET_MODE (SUBREG_REG (x)),
2337 SUBREG_BYTE (x));
2338 gcc_assert (x);
2339 }
2340 else
2341 SUBREG_REG (x) = new;
2342
2343 return x;
2344 }
2345 else if (GET_CODE (x) == ZERO_EXTEND)
2346 {
2347 rtx new = replace_rtx (XEXP (x, 0), from, to);
2348
2349 if (GET_CODE (new) == CONST_INT)
2350 {
2351 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2352 new, GET_MODE (XEXP (x, 0)));
2353 gcc_assert (x);
2354 }
2355 else
2356 XEXP (x, 0) = new;
2357
2358 return x;
2359 }
2360
2361 fmt = GET_RTX_FORMAT (GET_CODE (x));
2362 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2363 {
2364 if (fmt[i] == 'e')
2365 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2366 else if (fmt[i] == 'E')
2367 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2368 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2369 }
2370
2371 return x;
2372 }
2373 \f
2374 /* Throughout the rtx X, replace many registers according to REG_MAP.
2375 Return the replacement for X (which may be X with altered contents).
2376 REG_MAP[R] is the replacement for register R, or 0 for don't replace.
2377 NREGS is the length of REG_MAP; regs >= NREGS are not mapped.
2378
2379 We only support REG_MAP entries of REG or SUBREG. Also, hard registers
2380 should not be mapped to pseudos or vice versa since validate_change
2381 is not called.
2382
2383 If REPLACE_DEST is 1, replacements are also done in destinations;
2384 otherwise, only sources are replaced. */
2385
2386 rtx
2387 replace_regs (rtx x, rtx *reg_map, unsigned int nregs, int replace_dest)
2388 {
2389 enum rtx_code code;
2390 int i;
2391 const char *fmt;
2392
2393 if (x == 0)
2394 return x;
2395
2396 code = GET_CODE (x);
2397 switch (code)
2398 {
2399 case SCRATCH:
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_VECTOR:
2405 case CONST:
2406 case SYMBOL_REF:
2407 case LABEL_REF:
2408 return x;
2409
2410 case REG:
2411 /* Verify that the register has an entry before trying to access it. */
2412 if (REGNO (x) < nregs && reg_map[REGNO (x)] != 0)
2413 {
2414 /* SUBREGs can't be shared. Always return a copy to ensure that if
2415 this replacement occurs more than once then each instance will
2416 get distinct rtx. */
2417 if (GET_CODE (reg_map[REGNO (x)]) == SUBREG)
2418 return copy_rtx (reg_map[REGNO (x)]);
2419 return reg_map[REGNO (x)];
2420 }
2421 return x;
2422
2423 case SUBREG:
2424 /* Prevent making nested SUBREGs. */
2425 if (REG_P (SUBREG_REG (x)) && REGNO (SUBREG_REG (x)) < nregs
2426 && reg_map[REGNO (SUBREG_REG (x))] != 0
2427 && GET_CODE (reg_map[REGNO (SUBREG_REG (x))]) == SUBREG)
2428 {
2429 rtx map_val = reg_map[REGNO (SUBREG_REG (x))];
2430 return simplify_gen_subreg (GET_MODE (x), map_val,
2431 GET_MODE (SUBREG_REG (x)),
2432 SUBREG_BYTE (x));
2433 }
2434 break;
2435
2436 case SET:
2437 if (replace_dest)
2438 SET_DEST (x) = replace_regs (SET_DEST (x), reg_map, nregs, 0);
2439
2440 else if (MEM_P (SET_DEST (x))
2441 || GET_CODE (SET_DEST (x)) == STRICT_LOW_PART)
2442 /* Even if we are not to replace destinations, replace register if it
2443 is CONTAINED in destination (destination is memory or
2444 STRICT_LOW_PART). */
2445 XEXP (SET_DEST (x), 0) = replace_regs (XEXP (SET_DEST (x), 0),
2446 reg_map, nregs, 0);
2447 else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT)
2448 /* Similarly, for ZERO_EXTRACT we replace all operands. */
2449 break;
2450
2451 SET_SRC (x) = replace_regs (SET_SRC (x), reg_map, nregs, 0);
2452 return x;
2453
2454 default:
2455 break;
2456 }
2457
2458 fmt = GET_RTX_FORMAT (code);
2459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2460 {
2461 if (fmt[i] == 'e')
2462 XEXP (x, i) = replace_regs (XEXP (x, i), reg_map, nregs, replace_dest);
2463 else if (fmt[i] == 'E')
2464 {
2465 int j;
2466 for (j = 0; j < XVECLEN (x, i); j++)
2467 XVECEXP (x, i, j) = replace_regs (XVECEXP (x, i, j), reg_map,
2468 nregs, replace_dest);
2469 }
2470 }
2471 return x;
2472 }
2473
2474 /* Replace occurrences of the old label in *X with the new one.
2475 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2476
2477 int
2478 replace_label (rtx *x, void *data)
2479 {
2480 rtx l = *x;
2481 rtx old_label = ((replace_label_data *) data)->r1;
2482 rtx new_label = ((replace_label_data *) data)->r2;
2483 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2484
2485 if (l == NULL_RTX)
2486 return 0;
2487
2488 if (GET_CODE (l) == SYMBOL_REF
2489 && CONSTANT_POOL_ADDRESS_P (l))
2490 {
2491 rtx c = get_pool_constant (l);
2492 if (rtx_referenced_p (old_label, c))
2493 {
2494 rtx new_c, new_l;
2495 replace_label_data *d = (replace_label_data *) data;
2496
2497 /* Create a copy of constant C; replace the label inside
2498 but do not update LABEL_NUSES because uses in constant pool
2499 are not counted. */
2500 new_c = copy_rtx (c);
2501 d->update_label_nuses = false;
2502 for_each_rtx (&new_c, replace_label, data);
2503 d->update_label_nuses = update_label_nuses;
2504
2505 /* Add the new constant NEW_C to constant pool and replace
2506 the old reference to constant by new reference. */
2507 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2508 *x = replace_rtx (l, l, new_l);
2509 }
2510 return 0;
2511 }
2512
2513 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2514 field. This is not handled by for_each_rtx because it doesn't
2515 handle unprinted ('0') fields. */
2516 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2517 JUMP_LABEL (l) = new_label;
2518
2519 if ((GET_CODE (l) == LABEL_REF
2520 || GET_CODE (l) == INSN_LIST)
2521 && XEXP (l, 0) == old_label)
2522 {
2523 XEXP (l, 0) = new_label;
2524 if (update_label_nuses)
2525 {
2526 ++LABEL_NUSES (new_label);
2527 --LABEL_NUSES (old_label);
2528 }
2529 return 0;
2530 }
2531
2532 return 0;
2533 }
2534
2535 /* When *BODY is equal to X or X is directly referenced by *BODY
2536 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2537 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2538
2539 static int
2540 rtx_referenced_p_1 (rtx *body, void *x)
2541 {
2542 rtx y = (rtx) x;
2543
2544 if (*body == NULL_RTX)
2545 return y == NULL_RTX;
2546
2547 /* Return true if a label_ref *BODY refers to label Y. */
2548 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2549 return XEXP (*body, 0) == y;
2550
2551 /* If *BODY is a reference to pool constant traverse the constant. */
2552 if (GET_CODE (*body) == SYMBOL_REF
2553 && CONSTANT_POOL_ADDRESS_P (*body))
2554 return rtx_referenced_p (y, get_pool_constant (*body));
2555
2556 /* By default, compare the RTL expressions. */
2557 return rtx_equal_p (*body, y);
2558 }
2559
2560 /* Return true if X is referenced in BODY. */
2561
2562 int
2563 rtx_referenced_p (rtx x, rtx body)
2564 {
2565 return for_each_rtx (&body, rtx_referenced_p_1, x);
2566 }
2567
2568 /* If INSN is a tablejump return true and store the label (before jump table) to
2569 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2570
2571 bool
2572 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2573 {
2574 rtx label, table;
2575
2576 if (JUMP_P (insn)
2577 && (label = JUMP_LABEL (insn)) != NULL_RTX
2578 && (table = next_active_insn (label)) != NULL_RTX
2579 && JUMP_P (table)
2580 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2581 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2582 {
2583 if (labelp)
2584 *labelp = label;
2585 if (tablep)
2586 *tablep = table;
2587 return true;
2588 }
2589 return false;
2590 }
2591
2592 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2593 constant that is not in the constant pool and not in the condition
2594 of an IF_THEN_ELSE. */
2595
2596 static int
2597 computed_jump_p_1 (rtx x)
2598 {
2599 enum rtx_code code = GET_CODE (x);
2600 int i, j;
2601 const char *fmt;
2602
2603 switch (code)
2604 {
2605 case LABEL_REF:
2606 case PC:
2607 return 0;
2608
2609 case CONST:
2610 case CONST_INT:
2611 case CONST_DOUBLE:
2612 case CONST_VECTOR:
2613 case SYMBOL_REF:
2614 case REG:
2615 return 1;
2616
2617 case MEM:
2618 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2620
2621 case IF_THEN_ELSE:
2622 return (computed_jump_p_1 (XEXP (x, 1))
2623 || computed_jump_p_1 (XEXP (x, 2)));
2624
2625 default:
2626 break;
2627 }
2628
2629 fmt = GET_RTX_FORMAT (code);
2630 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2631 {
2632 if (fmt[i] == 'e'
2633 && computed_jump_p_1 (XEXP (x, i)))
2634 return 1;
2635
2636 else if (fmt[i] == 'E')
2637 for (j = 0; j < XVECLEN (x, i); j++)
2638 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2639 return 1;
2640 }
2641
2642 return 0;
2643 }
2644
2645 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2646
2647 Tablejumps and casesi insns are not considered indirect jumps;
2648 we can recognize them by a (use (label_ref)). */
2649
2650 int
2651 computed_jump_p (rtx insn)
2652 {
2653 int i;
2654 if (JUMP_P (insn))
2655 {
2656 rtx pat = PATTERN (insn);
2657
2658 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2659 return 0;
2660 else if (GET_CODE (pat) == PARALLEL)
2661 {
2662 int len = XVECLEN (pat, 0);
2663 int has_use_labelref = 0;
2664
2665 for (i = len - 1; i >= 0; i--)
2666 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2667 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2668 == LABEL_REF))
2669 has_use_labelref = 1;
2670
2671 if (! has_use_labelref)
2672 for (i = len - 1; i >= 0; i--)
2673 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2674 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2675 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2676 return 1;
2677 }
2678 else if (GET_CODE (pat) == SET
2679 && SET_DEST (pat) == pc_rtx
2680 && computed_jump_p_1 (SET_SRC (pat)))
2681 return 1;
2682 }
2683 return 0;
2684 }
2685
2686 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2687 calls. Processes the subexpressions of EXP and passes them to F. */
2688 static int
2689 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2690 {
2691 int result, i, j;
2692 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2693 rtx *x;
2694
2695 for (; format[n] != '\0'; n++)
2696 {
2697 switch (format[n])
2698 {
2699 case 'e':
2700 /* Call F on X. */
2701 x = &XEXP (exp, n);
2702 result = (*f) (x, data);
2703 if (result == -1)
2704 /* Do not traverse sub-expressions. */
2705 continue;
2706 else if (result != 0)
2707 /* Stop the traversal. */
2708 return result;
2709
2710 if (*x == NULL_RTX)
2711 /* There are no sub-expressions. */
2712 continue;
2713
2714 i = non_rtx_starting_operands[GET_CODE (*x)];
2715 if (i >= 0)
2716 {
2717 result = for_each_rtx_1 (*x, i, f, data);
2718 if (result != 0)
2719 return result;
2720 }
2721 break;
2722
2723 case 'V':
2724 case 'E':
2725 if (XVEC (exp, n) == 0)
2726 continue;
2727 for (j = 0; j < XVECLEN (exp, n); ++j)
2728 {
2729 /* Call F on X. */
2730 x = &XVECEXP (exp, n, j);
2731 result = (*f) (x, data);
2732 if (result == -1)
2733 /* Do not traverse sub-expressions. */
2734 continue;
2735 else if (result != 0)
2736 /* Stop the traversal. */
2737 return result;
2738
2739 if (*x == NULL_RTX)
2740 /* There are no sub-expressions. */
2741 continue;
2742
2743 i = non_rtx_starting_operands[GET_CODE (*x)];
2744 if (i >= 0)
2745 {
2746 result = for_each_rtx_1 (*x, i, f, data);
2747 if (result != 0)
2748 return result;
2749 }
2750 }
2751 break;
2752
2753 default:
2754 /* Nothing to do. */
2755 break;
2756 }
2757 }
2758
2759 return 0;
2760 }
2761
2762 /* Traverse X via depth-first search, calling F for each
2763 sub-expression (including X itself). F is also passed the DATA.
2764 If F returns -1, do not traverse sub-expressions, but continue
2765 traversing the rest of the tree. If F ever returns any other
2766 nonzero value, stop the traversal, and return the value returned
2767 by F. Otherwise, return 0. This function does not traverse inside
2768 tree structure that contains RTX_EXPRs, or into sub-expressions
2769 whose format code is `0' since it is not known whether or not those
2770 codes are actually RTL.
2771
2772 This routine is very general, and could (should?) be used to
2773 implement many of the other routines in this file. */
2774
2775 int
2776 for_each_rtx (rtx *x, rtx_function f, void *data)
2777 {
2778 int result;
2779 int i;
2780
2781 /* Call F on X. */
2782 result = (*f) (x, data);
2783 if (result == -1)
2784 /* Do not traverse sub-expressions. */
2785 return 0;
2786 else if (result != 0)
2787 /* Stop the traversal. */
2788 return result;
2789
2790 if (*x == NULL_RTX)
2791 /* There are no sub-expressions. */
2792 return 0;
2793
2794 i = non_rtx_starting_operands[GET_CODE (*x)];
2795 if (i < 0)
2796 return 0;
2797
2798 return for_each_rtx_1 (*x, i, f, data);
2799 }
2800
2801
2802 /* Searches X for any reference to REGNO, returning the rtx of the
2803 reference found if any. Otherwise, returns NULL_RTX. */
2804
2805 rtx
2806 regno_use_in (unsigned int regno, rtx x)
2807 {
2808 const char *fmt;
2809 int i, j;
2810 rtx tem;
2811
2812 if (REG_P (x) && REGNO (x) == regno)
2813 return x;
2814
2815 fmt = GET_RTX_FORMAT (GET_CODE (x));
2816 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2817 {
2818 if (fmt[i] == 'e')
2819 {
2820 if ((tem = regno_use_in (regno, XEXP (x, i))))
2821 return tem;
2822 }
2823 else if (fmt[i] == 'E')
2824 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2825 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2826 return tem;
2827 }
2828
2829 return NULL_RTX;
2830 }
2831
2832 /* Return a value indicating whether OP, an operand of a commutative
2833 operation, is preferred as the first or second operand. The higher
2834 the value, the stronger the preference for being the first operand.
2835 We use negative values to indicate a preference for the first operand
2836 and positive values for the second operand. */
2837
2838 int
2839 commutative_operand_precedence (rtx op)
2840 {
2841 enum rtx_code code = GET_CODE (op);
2842
2843 /* Constants always come the second operand. Prefer "nice" constants. */
2844 if (code == CONST_INT)
2845 return -7;
2846 if (code == CONST_DOUBLE)
2847 return -6;
2848 op = avoid_constant_pool_reference (op);
2849 code = GET_CODE (op);
2850
2851 switch (GET_RTX_CLASS (code))
2852 {
2853 case RTX_CONST_OBJ:
2854 if (code == CONST_INT)
2855 return -5;
2856 if (code == CONST_DOUBLE)
2857 return -4;
2858 return -3;
2859
2860 case RTX_EXTRA:
2861 /* SUBREGs of objects should come second. */
2862 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2863 return -2;
2864
2865 if (!CONSTANT_P (op))
2866 return 0;
2867 else
2868 /* As for RTX_CONST_OBJ. */
2869 return -3;
2870
2871 case RTX_OBJ:
2872 /* Complex expressions should be the first, so decrease priority
2873 of objects. */
2874 return -1;
2875
2876 case RTX_COMM_ARITH:
2877 /* Prefer operands that are themselves commutative to be first.
2878 This helps to make things linear. In particular,
2879 (and (and (reg) (reg)) (not (reg))) is canonical. */
2880 return 4;
2881
2882 case RTX_BIN_ARITH:
2883 /* If only one operand is a binary expression, it will be the first
2884 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2885 is canonical, although it will usually be further simplified. */
2886 return 2;
2887
2888 case RTX_UNARY:
2889 /* Then prefer NEG and NOT. */
2890 if (code == NEG || code == NOT)
2891 return 1;
2892
2893 default:
2894 return 0;
2895 }
2896 }
2897
2898 /* Return 1 iff it is necessary to swap operands of commutative operation
2899 in order to canonicalize expression. */
2900
2901 int
2902 swap_commutative_operands_p (rtx x, rtx y)
2903 {
2904 return (commutative_operand_precedence (x)
2905 < commutative_operand_precedence (y));
2906 }
2907
2908 /* Return 1 if X is an autoincrement side effect and the register is
2909 not the stack pointer. */
2910 int
2911 auto_inc_p (rtx x)
2912 {
2913 switch (GET_CODE (x))
2914 {
2915 case PRE_INC:
2916 case POST_INC:
2917 case PRE_DEC:
2918 case POST_DEC:
2919 case PRE_MODIFY:
2920 case POST_MODIFY:
2921 /* There are no REG_INC notes for SP. */
2922 if (XEXP (x, 0) != stack_pointer_rtx)
2923 return 1;
2924 default:
2925 break;
2926 }
2927 return 0;
2928 }
2929
2930 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2931 int
2932 loc_mentioned_in_p (rtx *loc, rtx in)
2933 {
2934 enum rtx_code code = GET_CODE (in);
2935 const char *fmt = GET_RTX_FORMAT (code);
2936 int i, j;
2937
2938 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2939 {
2940 if (loc == &in->u.fld[i].rt_rtx)
2941 return 1;
2942 if (fmt[i] == 'e')
2943 {
2944 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2945 return 1;
2946 }
2947 else if (fmt[i] == 'E')
2948 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2949 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2950 return 1;
2951 }
2952 return 0;
2953 }
2954
2955 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2956 and SUBREG_BYTE, return the bit offset where the subreg begins
2957 (counting from the least significant bit of the operand). */
2958
2959 unsigned int
2960 subreg_lsb_1 (enum machine_mode outer_mode,
2961 enum machine_mode inner_mode,
2962 unsigned int subreg_byte)
2963 {
2964 unsigned int bitpos;
2965 unsigned int byte;
2966 unsigned int word;
2967
2968 /* A paradoxical subreg begins at bit position 0. */
2969 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2970 return 0;
2971
2972 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2973 /* If the subreg crosses a word boundary ensure that
2974 it also begins and ends on a word boundary. */
2975 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2976 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2977 && (subreg_byte % UNITS_PER_WORD
2978 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2979
2980 if (WORDS_BIG_ENDIAN)
2981 word = (GET_MODE_SIZE (inner_mode)
2982 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2983 else
2984 word = subreg_byte / UNITS_PER_WORD;
2985 bitpos = word * BITS_PER_WORD;
2986
2987 if (BYTES_BIG_ENDIAN)
2988 byte = (GET_MODE_SIZE (inner_mode)
2989 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2990 else
2991 byte = subreg_byte % UNITS_PER_WORD;
2992 bitpos += byte * BITS_PER_UNIT;
2993
2994 return bitpos;
2995 }
2996
2997 /* Given a subreg X, return the bit offset where the subreg begins
2998 (counting from the least significant bit of the reg). */
2999
3000 unsigned int
3001 subreg_lsb (rtx x)
3002 {
3003 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3004 SUBREG_BYTE (x));
3005 }
3006
3007 /* This function returns the regno offset of a subreg expression.
3008 xregno - A regno of an inner hard subreg_reg (or what will become one).
3009 xmode - The mode of xregno.
3010 offset - The byte offset.
3011 ymode - The mode of a top level SUBREG (or what may become one).
3012 RETURN - The regno offset which would be used. */
3013 unsigned int
3014 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3015 unsigned int offset, enum machine_mode ymode)
3016 {
3017 int nregs_xmode, nregs_ymode, nregs_xmode_unit_int;
3018 int mode_multiple, nregs_multiple;
3019 int y_offset;
3020 enum machine_mode xmode_unit, xmode_unit_int;
3021
3022 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3023
3024 if (GET_MODE_INNER (xmode) == VOIDmode)
3025 xmode_unit = xmode;
3026 else
3027 xmode_unit = GET_MODE_INNER (xmode);
3028
3029 if (FLOAT_MODE_P (xmode_unit))
3030 {
3031 xmode_unit_int = int_mode_for_mode (xmode_unit);
3032 if (xmode_unit_int == BLKmode)
3033 /* It's probably bad to be here; a port should have an integer mode
3034 that's the same size as anything of which it takes a SUBREG. */
3035 xmode_unit_int = xmode_unit;
3036 }
3037 else
3038 xmode_unit_int = xmode_unit;
3039
3040 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3041
3042 /* Adjust nregs_xmode to allow for 'holes'. */
3043 if (nregs_xmode_unit_int != hard_regno_nregs[xregno][xmode_unit])
3044 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3045 else
3046 nregs_xmode = hard_regno_nregs[xregno][xmode];
3047
3048 nregs_ymode = hard_regno_nregs[xregno][ymode];
3049
3050 /* If this is a big endian paradoxical subreg, which uses more actual
3051 hard registers than the original register, we must return a negative
3052 offset so that we find the proper highpart of the register. */
3053 if (offset == 0
3054 && nregs_ymode > nregs_xmode
3055 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3056 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3057 return nregs_xmode - nregs_ymode;
3058
3059 if (offset == 0 || nregs_xmode == nregs_ymode)
3060 return 0;
3061
3062 /* Size of ymode must not be greater than the size of xmode. */
3063 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3064 gcc_assert (mode_multiple != 0);
3065
3066 y_offset = offset / GET_MODE_SIZE (ymode);
3067 nregs_multiple = nregs_xmode / nregs_ymode;
3068 return (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3069 }
3070
3071 /* This function returns true when the offset is representable via
3072 subreg_offset in the given regno.
3073 xregno - A regno of an inner hard subreg_reg (or what will become one).
3074 xmode - The mode of xregno.
3075 offset - The byte offset.
3076 ymode - The mode of a top level SUBREG (or what may become one).
3077 RETURN - Whether the offset is representable. */
3078 bool
3079 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3080 unsigned int offset, enum machine_mode ymode)
3081 {
3082 int nregs_xmode, nregs_ymode, nregs_xmode_unit, nregs_xmode_unit_int;
3083 int mode_multiple, nregs_multiple;
3084 int y_offset;
3085 enum machine_mode xmode_unit, xmode_unit_int;
3086
3087 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3088
3089 if (GET_MODE_INNER (xmode) == VOIDmode)
3090 xmode_unit = xmode;
3091 else
3092 xmode_unit = GET_MODE_INNER (xmode);
3093
3094 if (FLOAT_MODE_P (xmode_unit))
3095 {
3096 xmode_unit_int = int_mode_for_mode (xmode_unit);
3097 if (xmode_unit_int == BLKmode)
3098 /* It's probably bad to be here; a port should have an integer mode
3099 that's the same size as anything of which it takes a SUBREG. */
3100 xmode_unit_int = xmode_unit;
3101 }
3102 else
3103 xmode_unit_int = xmode_unit;
3104
3105 nregs_xmode_unit = hard_regno_nregs[xregno][xmode_unit];
3106 nregs_xmode_unit_int = hard_regno_nregs[xregno][xmode_unit_int];
3107
3108 /* If there are holes in a non-scalar mode in registers, we expect
3109 that it is made up of its units concatenated together. */
3110 if (nregs_xmode_unit != nregs_xmode_unit_int)
3111 {
3112 gcc_assert (nregs_xmode_unit * GET_MODE_NUNITS (xmode)
3113 == hard_regno_nregs[xregno][xmode]);
3114
3115 /* You can only ask for a SUBREG of a value with holes in the middle
3116 if you don't cross the holes. (Such a SUBREG should be done by
3117 picking a different register class, or doing it in memory if
3118 necessary.) An example of a value with holes is XCmode on 32-bit
3119 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3120 3 for each part, but in memory it's two 128-bit parts.
3121 Padding is assumed to be at the end (not necessarily the 'high part')
3122 of each unit. */
3123 if (nregs_xmode_unit != nregs_xmode_unit_int
3124 && (offset / GET_MODE_SIZE (xmode_unit_int) + 1
3125 < GET_MODE_NUNITS (xmode))
3126 && (offset / GET_MODE_SIZE (xmode_unit_int)
3127 != ((offset + GET_MODE_SIZE (ymode) - 1)
3128 / GET_MODE_SIZE (xmode_unit_int))))
3129 return false;
3130
3131 nregs_xmode = nregs_xmode_unit_int * GET_MODE_NUNITS (xmode);
3132 }
3133 else
3134 nregs_xmode = hard_regno_nregs[xregno][xmode];
3135
3136 nregs_ymode = hard_regno_nregs[xregno][ymode];
3137
3138 /* Paradoxical subregs are otherwise valid. */
3139 if (offset == 0
3140 && nregs_ymode > nregs_xmode
3141 && (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3142 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN))
3143 return true;
3144
3145 /* Lowpart subregs are otherwise valid. */
3146 if (offset == subreg_lowpart_offset (ymode, xmode))
3147 return true;
3148
3149 /* This should always pass, otherwise we don't know how to verify
3150 the constraint. These conditions may be relaxed but
3151 subreg_regno_offset would need to be redesigned. */
3152 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3153 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3154
3155 /* The XMODE value can be seen as a vector of NREGS_XMODE
3156 values. The subreg must represent a lowpart of given field.
3157 Compute what field it is. */
3158 offset -= subreg_lowpart_offset (ymode,
3159 mode_for_size (GET_MODE_BITSIZE (xmode)
3160 / nregs_xmode,
3161 MODE_INT, 0));
3162
3163 /* Size of ymode must not be greater than the size of xmode. */
3164 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3165 gcc_assert (mode_multiple != 0);
3166
3167 y_offset = offset / GET_MODE_SIZE (ymode);
3168 nregs_multiple = nregs_xmode / nregs_ymode;
3169
3170 gcc_assert ((offset % GET_MODE_SIZE (ymode)) == 0);
3171 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3172
3173 return (!(y_offset % (mode_multiple / nregs_multiple)));
3174 }
3175
3176 /* Return the final regno that a subreg expression refers to. */
3177 unsigned int
3178 subreg_regno (rtx x)
3179 {
3180 unsigned int ret;
3181 rtx subreg = SUBREG_REG (x);
3182 int regno = REGNO (subreg);
3183
3184 ret = regno + subreg_regno_offset (regno,
3185 GET_MODE (subreg),
3186 SUBREG_BYTE (x),
3187 GET_MODE (x));
3188 return ret;
3189
3190 }
3191 struct parms_set_data
3192 {
3193 int nregs;
3194 HARD_REG_SET regs;
3195 };
3196
3197 /* Helper function for noticing stores to parameter registers. */
3198 static void
3199 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3200 {
3201 struct parms_set_data *d = data;
3202 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3203 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3204 {
3205 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3206 d->nregs--;
3207 }
3208 }
3209
3210 /* Look backward for first parameter to be loaded.
3211 Note that loads of all parameters will not necessarily be
3212 found if CSE has eliminated some of them (e.g., an argument
3213 to the outer function is passed down as a parameter).
3214 Do not skip BOUNDARY. */
3215 rtx
3216 find_first_parameter_load (rtx call_insn, rtx boundary)
3217 {
3218 struct parms_set_data parm;
3219 rtx p, before, first_set;
3220
3221 /* Since different machines initialize their parameter registers
3222 in different orders, assume nothing. Collect the set of all
3223 parameter registers. */
3224 CLEAR_HARD_REG_SET (parm.regs);
3225 parm.nregs = 0;
3226 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3227 if (GET_CODE (XEXP (p, 0)) == USE
3228 && REG_P (XEXP (XEXP (p, 0), 0)))
3229 {
3230 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3231
3232 /* We only care about registers which can hold function
3233 arguments. */
3234 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3235 continue;
3236
3237 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3238 parm.nregs++;
3239 }
3240 before = call_insn;
3241 first_set = call_insn;
3242
3243 /* Search backward for the first set of a register in this set. */
3244 while (parm.nregs && before != boundary)
3245 {
3246 before = PREV_INSN (before);
3247
3248 /* It is possible that some loads got CSEed from one call to
3249 another. Stop in that case. */
3250 if (CALL_P (before))
3251 break;
3252
3253 /* Our caller needs either ensure that we will find all sets
3254 (in case code has not been optimized yet), or take care
3255 for possible labels in a way by setting boundary to preceding
3256 CODE_LABEL. */
3257 if (LABEL_P (before))
3258 {
3259 gcc_assert (before == boundary);
3260 break;
3261 }
3262
3263 if (INSN_P (before))
3264 {
3265 int nregs_old = parm.nregs;
3266 note_stores (PATTERN (before), parms_set, &parm);
3267 /* If we found something that did not set a parameter reg,
3268 we're done. Do not keep going, as that might result
3269 in hoisting an insn before the setting of a pseudo
3270 that is used by the hoisted insn. */
3271 if (nregs_old != parm.nregs)
3272 first_set = before;
3273 else
3274 break;
3275 }
3276 }
3277 return first_set;
3278 }
3279
3280 /* Return true if we should avoid inserting code between INSN and preceding
3281 call instruction. */
3282
3283 bool
3284 keep_with_call_p (rtx insn)
3285 {
3286 rtx set;
3287
3288 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3289 {
3290 if (REG_P (SET_DEST (set))
3291 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3292 && fixed_regs[REGNO (SET_DEST (set))]
3293 && general_operand (SET_SRC (set), VOIDmode))
3294 return true;
3295 if (REG_P (SET_SRC (set))
3296 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3297 && REG_P (SET_DEST (set))
3298 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3299 return true;
3300 /* There may be a stack pop just after the call and before the store
3301 of the return register. Search for the actual store when deciding
3302 if we can break or not. */
3303 if (SET_DEST (set) == stack_pointer_rtx)
3304 {
3305 rtx i2 = next_nonnote_insn (insn);
3306 if (i2 && keep_with_call_p (i2))
3307 return true;
3308 }
3309 }
3310 return false;
3311 }
3312
3313 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3314 to non-complex jumps. That is, direct unconditional, conditional,
3315 and tablejumps, but not computed jumps or returns. It also does
3316 not apply to the fallthru case of a conditional jump. */
3317
3318 bool
3319 label_is_jump_target_p (rtx label, rtx jump_insn)
3320 {
3321 rtx tmp = JUMP_LABEL (jump_insn);
3322
3323 if (label == tmp)
3324 return true;
3325
3326 if (tablejump_p (jump_insn, NULL, &tmp))
3327 {
3328 rtvec vec = XVEC (PATTERN (tmp),
3329 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3330 int i, veclen = GET_NUM_ELEM (vec);
3331
3332 for (i = 0; i < veclen; ++i)
3333 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3334 return true;
3335 }
3336
3337 return false;
3338 }
3339
3340 \f
3341 /* Return an estimate of the cost of computing rtx X.
3342 One use is in cse, to decide which expression to keep in the hash table.
3343 Another is in rtl generation, to pick the cheapest way to multiply.
3344 Other uses like the latter are expected in the future. */
3345
3346 int
3347 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3348 {
3349 int i, j;
3350 enum rtx_code code;
3351 const char *fmt;
3352 int total;
3353
3354 if (x == 0)
3355 return 0;
3356
3357 /* Compute the default costs of certain things.
3358 Note that targetm.rtx_costs can override the defaults. */
3359
3360 code = GET_CODE (x);
3361 switch (code)
3362 {
3363 case MULT:
3364 total = COSTS_N_INSNS (5);
3365 break;
3366 case DIV:
3367 case UDIV:
3368 case MOD:
3369 case UMOD:
3370 total = COSTS_N_INSNS (7);
3371 break;
3372 case USE:
3373 /* Used in loop.c and combine.c as a marker. */
3374 total = 0;
3375 break;
3376 default:
3377 total = COSTS_N_INSNS (1);
3378 }
3379
3380 switch (code)
3381 {
3382 case REG:
3383 return 0;
3384
3385 case SUBREG:
3386 total = 0;
3387 /* If we can't tie these modes, make this expensive. The larger
3388 the mode, the more expensive it is. */
3389 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3390 return COSTS_N_INSNS (2
3391 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3392 break;
3393
3394 default:
3395 if (targetm.rtx_costs (x, code, outer_code, &total))
3396 return total;
3397 break;
3398 }
3399
3400 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3401 which is already in total. */
3402
3403 fmt = GET_RTX_FORMAT (code);
3404 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3405 if (fmt[i] == 'e')
3406 total += rtx_cost (XEXP (x, i), code);
3407 else if (fmt[i] == 'E')
3408 for (j = 0; j < XVECLEN (x, i); j++)
3409 total += rtx_cost (XVECEXP (x, i, j), code);
3410
3411 return total;
3412 }
3413 \f
3414 /* Return cost of address expression X.
3415 Expect that X is properly formed address reference. */
3416
3417 int
3418 address_cost (rtx x, enum machine_mode mode)
3419 {
3420 /* We may be asked for cost of various unusual addresses, such as operands
3421 of push instruction. It is not worthwhile to complicate writing
3422 of the target hook by such cases. */
3423
3424 if (!memory_address_p (mode, x))
3425 return 1000;
3426
3427 return targetm.address_cost (x);
3428 }
3429
3430 /* If the target doesn't override, compute the cost as with arithmetic. */
3431
3432 int
3433 default_address_cost (rtx x)
3434 {
3435 return rtx_cost (x, MEM);
3436 }
3437 \f
3438
3439 unsigned HOST_WIDE_INT
3440 nonzero_bits (rtx x, enum machine_mode mode)
3441 {
3442 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3443 }
3444
3445 unsigned int
3446 num_sign_bit_copies (rtx x, enum machine_mode mode)
3447 {
3448 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3449 }
3450
3451 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3452 It avoids exponential behavior in nonzero_bits1 when X has
3453 identical subexpressions on the first or the second level. */
3454
3455 static unsigned HOST_WIDE_INT
3456 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3457 enum machine_mode known_mode,
3458 unsigned HOST_WIDE_INT known_ret)
3459 {
3460 if (x == known_x && mode == known_mode)
3461 return known_ret;
3462
3463 /* Try to find identical subexpressions. If found call
3464 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3465 precomputed value for the subexpression as KNOWN_RET. */
3466
3467 if (ARITHMETIC_P (x))
3468 {
3469 rtx x0 = XEXP (x, 0);
3470 rtx x1 = XEXP (x, 1);
3471
3472 /* Check the first level. */
3473 if (x0 == x1)
3474 return nonzero_bits1 (x, mode, x0, mode,
3475 cached_nonzero_bits (x0, mode, known_x,
3476 known_mode, known_ret));
3477
3478 /* Check the second level. */
3479 if (ARITHMETIC_P (x0)
3480 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3481 return nonzero_bits1 (x, mode, x1, mode,
3482 cached_nonzero_bits (x1, mode, known_x,
3483 known_mode, known_ret));
3484
3485 if (ARITHMETIC_P (x1)
3486 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3487 return nonzero_bits1 (x, mode, x0, mode,
3488 cached_nonzero_bits (x0, mode, known_x,
3489 known_mode, known_ret));
3490 }
3491
3492 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3493 }
3494
3495 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3496 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3497 is less useful. We can't allow both, because that results in exponential
3498 run time recursion. There is a nullstone testcase that triggered
3499 this. This macro avoids accidental uses of num_sign_bit_copies. */
3500 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3501
3502 /* Given an expression, X, compute which bits in X can be nonzero.
3503 We don't care about bits outside of those defined in MODE.
3504
3505 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3506 an arithmetic operation, we can do better. */
3507
3508 static unsigned HOST_WIDE_INT
3509 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3510 enum machine_mode known_mode,
3511 unsigned HOST_WIDE_INT known_ret)
3512 {
3513 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3514 unsigned HOST_WIDE_INT inner_nz;
3515 enum rtx_code code;
3516 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3517
3518 /* For floating-point values, assume all bits are needed. */
3519 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3520 return nonzero;
3521
3522 /* If X is wider than MODE, use its mode instead. */
3523 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3524 {
3525 mode = GET_MODE (x);
3526 nonzero = GET_MODE_MASK (mode);
3527 mode_width = GET_MODE_BITSIZE (mode);
3528 }
3529
3530 if (mode_width > HOST_BITS_PER_WIDE_INT)
3531 /* Our only callers in this case look for single bit values. So
3532 just return the mode mask. Those tests will then be false. */
3533 return nonzero;
3534
3535 #ifndef WORD_REGISTER_OPERATIONS
3536 /* If MODE is wider than X, but both are a single word for both the host
3537 and target machines, we can compute this from which bits of the
3538 object might be nonzero in its own mode, taking into account the fact
3539 that on many CISC machines, accessing an object in a wider mode
3540 causes the high-order bits to become undefined. So they are
3541 not known to be zero. */
3542
3543 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3544 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3545 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3546 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3547 {
3548 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3549 known_x, known_mode, known_ret);
3550 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3551 return nonzero;
3552 }
3553 #endif
3554
3555 code = GET_CODE (x);
3556 switch (code)
3557 {
3558 case REG:
3559 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3560 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3561 all the bits above ptr_mode are known to be zero. */
3562 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3563 && REG_POINTER (x))
3564 nonzero &= GET_MODE_MASK (ptr_mode);
3565 #endif
3566
3567 /* Include declared information about alignment of pointers. */
3568 /* ??? We don't properly preserve REG_POINTER changes across
3569 pointer-to-integer casts, so we can't trust it except for
3570 things that we know must be pointers. See execute/960116-1.c. */
3571 if ((x == stack_pointer_rtx
3572 || x == frame_pointer_rtx
3573 || x == arg_pointer_rtx)
3574 && REGNO_POINTER_ALIGN (REGNO (x)))
3575 {
3576 unsigned HOST_WIDE_INT alignment
3577 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3578
3579 #ifdef PUSH_ROUNDING
3580 /* If PUSH_ROUNDING is defined, it is possible for the
3581 stack to be momentarily aligned only to that amount,
3582 so we pick the least alignment. */
3583 if (x == stack_pointer_rtx && PUSH_ARGS)
3584 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3585 alignment);
3586 #endif
3587
3588 nonzero &= ~(alignment - 1);
3589 }
3590
3591 {
3592 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3593 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3594 known_mode, known_ret,
3595 &nonzero_for_hook);
3596
3597 if (new)
3598 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3599 known_mode, known_ret);
3600
3601 return nonzero_for_hook;
3602 }
3603
3604 case CONST_INT:
3605 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3606 /* If X is negative in MODE, sign-extend the value. */
3607 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3608 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3609 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3610 #endif
3611
3612 return INTVAL (x);
3613
3614 case MEM:
3615 #ifdef LOAD_EXTEND_OP
3616 /* In many, if not most, RISC machines, reading a byte from memory
3617 zeros the rest of the register. Noticing that fact saves a lot
3618 of extra zero-extends. */
3619 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3620 nonzero &= GET_MODE_MASK (GET_MODE (x));
3621 #endif
3622 break;
3623
3624 case EQ: case NE:
3625 case UNEQ: case LTGT:
3626 case GT: case GTU: case UNGT:
3627 case LT: case LTU: case UNLT:
3628 case GE: case GEU: case UNGE:
3629 case LE: case LEU: case UNLE:
3630 case UNORDERED: case ORDERED:
3631 /* If this produces an integer result, we know which bits are set.
3632 Code here used to clear bits outside the mode of X, but that is
3633 now done above. */
3634 /* Mind that MODE is the mode the caller wants to look at this
3635 operation in, and not the actual operation mode. We can wind
3636 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3637 that describes the results of a vector compare. */
3638 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3639 && mode_width <= HOST_BITS_PER_WIDE_INT)
3640 nonzero = STORE_FLAG_VALUE;
3641 break;
3642
3643 case NEG:
3644 #if 0
3645 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3646 and num_sign_bit_copies. */
3647 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3648 == GET_MODE_BITSIZE (GET_MODE (x)))
3649 nonzero = 1;
3650 #endif
3651
3652 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3653 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3654 break;
3655
3656 case ABS:
3657 #if 0
3658 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3659 and num_sign_bit_copies. */
3660 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3661 == GET_MODE_BITSIZE (GET_MODE (x)))
3662 nonzero = 1;
3663 #endif
3664 break;
3665
3666 case TRUNCATE:
3667 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3668 known_x, known_mode, known_ret)
3669 & GET_MODE_MASK (mode));
3670 break;
3671
3672 case ZERO_EXTEND:
3673 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3674 known_x, known_mode, known_ret);
3675 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3676 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3677 break;
3678
3679 case SIGN_EXTEND:
3680 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3681 Otherwise, show all the bits in the outer mode but not the inner
3682 may be nonzero. */
3683 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3684 known_x, known_mode, known_ret);
3685 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3686 {
3687 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3688 if (inner_nz
3689 & (((HOST_WIDE_INT) 1
3690 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3691 inner_nz |= (GET_MODE_MASK (mode)
3692 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3693 }
3694
3695 nonzero &= inner_nz;
3696 break;
3697
3698 case AND:
3699 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3700 known_x, known_mode, known_ret)
3701 & cached_nonzero_bits (XEXP (x, 1), mode,
3702 known_x, known_mode, known_ret);
3703 break;
3704
3705 case XOR: case IOR:
3706 case UMIN: case UMAX: case SMIN: case SMAX:
3707 {
3708 unsigned HOST_WIDE_INT nonzero0 =
3709 cached_nonzero_bits (XEXP (x, 0), mode,
3710 known_x, known_mode, known_ret);
3711
3712 /* Don't call nonzero_bits for the second time if it cannot change
3713 anything. */
3714 if ((nonzero & nonzero0) != nonzero)
3715 nonzero &= nonzero0
3716 | cached_nonzero_bits (XEXP (x, 1), mode,
3717 known_x, known_mode, known_ret);
3718 }
3719 break;
3720
3721 case PLUS: case MINUS:
3722 case MULT:
3723 case DIV: case UDIV:
3724 case MOD: case UMOD:
3725 /* We can apply the rules of arithmetic to compute the number of
3726 high- and low-order zero bits of these operations. We start by
3727 computing the width (position of the highest-order nonzero bit)
3728 and the number of low-order zero bits for each value. */
3729 {
3730 unsigned HOST_WIDE_INT nz0 =
3731 cached_nonzero_bits (XEXP (x, 0), mode,
3732 known_x, known_mode, known_ret);
3733 unsigned HOST_WIDE_INT nz1 =
3734 cached_nonzero_bits (XEXP (x, 1), mode,
3735 known_x, known_mode, known_ret);
3736 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3737 int width0 = floor_log2 (nz0) + 1;
3738 int width1 = floor_log2 (nz1) + 1;
3739 int low0 = floor_log2 (nz0 & -nz0);
3740 int low1 = floor_log2 (nz1 & -nz1);
3741 HOST_WIDE_INT op0_maybe_minusp
3742 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3743 HOST_WIDE_INT op1_maybe_minusp
3744 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3745 unsigned int result_width = mode_width;
3746 int result_low = 0;
3747
3748 switch (code)
3749 {
3750 case PLUS:
3751 result_width = MAX (width0, width1) + 1;
3752 result_low = MIN (low0, low1);
3753 break;
3754 case MINUS:
3755 result_low = MIN (low0, low1);
3756 break;
3757 case MULT:
3758 result_width = width0 + width1;
3759 result_low = low0 + low1;
3760 break;
3761 case DIV:
3762 if (width1 == 0)
3763 break;
3764 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3765 result_width = width0;
3766 break;
3767 case UDIV:
3768 if (width1 == 0)
3769 break;
3770 result_width = width0;
3771 break;
3772 case MOD:
3773 if (width1 == 0)
3774 break;
3775 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3776 result_width = MIN (width0, width1);
3777 result_low = MIN (low0, low1);
3778 break;
3779 case UMOD:
3780 if (width1 == 0)
3781 break;
3782 result_width = MIN (width0, width1);
3783 result_low = MIN (low0, low1);
3784 break;
3785 default:
3786 gcc_unreachable ();
3787 }
3788
3789 if (result_width < mode_width)
3790 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3791
3792 if (result_low > 0)
3793 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3794
3795 #ifdef POINTERS_EXTEND_UNSIGNED
3796 /* If pointers extend unsigned and this is an addition or subtraction
3797 to a pointer in Pmode, all the bits above ptr_mode are known to be
3798 zero. */
3799 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3800 && (code == PLUS || code == MINUS)
3801 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3802 nonzero &= GET_MODE_MASK (ptr_mode);
3803 #endif
3804 }
3805 break;
3806
3807 case ZERO_EXTRACT:
3808 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3809 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3810 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3811 break;
3812
3813 case SUBREG:
3814 /* If this is a SUBREG formed for a promoted variable that has
3815 been zero-extended, we know that at least the high-order bits
3816 are zero, though others might be too. */
3817
3818 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3819 nonzero = GET_MODE_MASK (GET_MODE (x))
3820 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3821 known_x, known_mode, known_ret);
3822
3823 /* If the inner mode is a single word for both the host and target
3824 machines, we can compute this from which bits of the inner
3825 object might be nonzero. */
3826 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3827 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3828 <= HOST_BITS_PER_WIDE_INT))
3829 {
3830 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3831 known_x, known_mode, known_ret);
3832
3833 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3834 /* If this is a typical RISC machine, we only have to worry
3835 about the way loads are extended. */
3836 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3837 ? (((nonzero
3838 & (((unsigned HOST_WIDE_INT) 1
3839 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3840 != 0))
3841 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3842 || !MEM_P (SUBREG_REG (x)))
3843 #endif
3844 {
3845 /* On many CISC machines, accessing an object in a wider mode
3846 causes the high-order bits to become undefined. So they are
3847 not known to be zero. */
3848 if (GET_MODE_SIZE (GET_MODE (x))
3849 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3850 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3851 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3852 }
3853 }
3854 break;
3855
3856 case ASHIFTRT:
3857 case LSHIFTRT:
3858 case ASHIFT:
3859 case ROTATE:
3860 /* The nonzero bits are in two classes: any bits within MODE
3861 that aren't in GET_MODE (x) are always significant. The rest of the
3862 nonzero bits are those that are significant in the operand of
3863 the shift when shifted the appropriate number of bits. This
3864 shows that high-order bits are cleared by the right shift and
3865 low-order bits by left shifts. */
3866 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3867 && INTVAL (XEXP (x, 1)) >= 0
3868 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3869 {
3870 enum machine_mode inner_mode = GET_MODE (x);
3871 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3872 int count = INTVAL (XEXP (x, 1));
3873 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3874 unsigned HOST_WIDE_INT op_nonzero =
3875 cached_nonzero_bits (XEXP (x, 0), mode,
3876 known_x, known_mode, known_ret);
3877 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3878 unsigned HOST_WIDE_INT outer = 0;
3879
3880 if (mode_width > width)
3881 outer = (op_nonzero & nonzero & ~mode_mask);
3882
3883 if (code == LSHIFTRT)
3884 inner >>= count;
3885 else if (code == ASHIFTRT)
3886 {
3887 inner >>= count;
3888
3889 /* If the sign bit may have been nonzero before the shift, we
3890 need to mark all the places it could have been copied to
3891 by the shift as possibly nonzero. */
3892 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3893 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3894 }
3895 else if (code == ASHIFT)
3896 inner <<= count;
3897 else
3898 inner = ((inner << (count % width)
3899 | (inner >> (width - (count % width)))) & mode_mask);
3900
3901 nonzero &= (outer | inner);
3902 }
3903 break;
3904
3905 case FFS:
3906 case POPCOUNT:
3907 /* This is at most the number of bits in the mode. */
3908 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3909 break;
3910
3911 case CLZ:
3912 /* If CLZ has a known value at zero, then the nonzero bits are
3913 that value, plus the number of bits in the mode minus one. */
3914 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3915 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3916 else
3917 nonzero = -1;
3918 break;
3919
3920 case CTZ:
3921 /* If CTZ has a known value at zero, then the nonzero bits are
3922 that value, plus the number of bits in the mode minus one. */
3923 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3924 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3925 else
3926 nonzero = -1;
3927 break;
3928
3929 case PARITY:
3930 nonzero = 1;
3931 break;
3932
3933 case IF_THEN_ELSE:
3934 {
3935 unsigned HOST_WIDE_INT nonzero_true =
3936 cached_nonzero_bits (XEXP (x, 1), mode,
3937 known_x, known_mode, known_ret);
3938
3939 /* Don't call nonzero_bits for the second time if it cannot change
3940 anything. */
3941 if ((nonzero & nonzero_true) != nonzero)
3942 nonzero &= nonzero_true
3943 | cached_nonzero_bits (XEXP (x, 2), mode,
3944 known_x, known_mode, known_ret);
3945 }
3946 break;
3947
3948 default:
3949 break;
3950 }
3951
3952 return nonzero;
3953 }
3954
3955 /* See the macro definition above. */
3956 #undef cached_num_sign_bit_copies
3957
3958 \f
3959 /* The function cached_num_sign_bit_copies is a wrapper around
3960 num_sign_bit_copies1. It avoids exponential behavior in
3961 num_sign_bit_copies1 when X has identical subexpressions on the
3962 first or the second level. */
3963
3964 static unsigned int
3965 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3966 enum machine_mode known_mode,
3967 unsigned int known_ret)
3968 {
3969 if (x == known_x && mode == known_mode)
3970 return known_ret;
3971
3972 /* Try to find identical subexpressions. If found call
3973 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3974 the precomputed value for the subexpression as KNOWN_RET. */
3975
3976 if (ARITHMETIC_P (x))
3977 {
3978 rtx x0 = XEXP (x, 0);
3979 rtx x1 = XEXP (x, 1);
3980
3981 /* Check the first level. */
3982 if (x0 == x1)
3983 return
3984 num_sign_bit_copies1 (x, mode, x0, mode,
3985 cached_num_sign_bit_copies (x0, mode, known_x,
3986 known_mode,
3987 known_ret));
3988
3989 /* Check the second level. */
3990 if (ARITHMETIC_P (x0)
3991 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3992 return
3993 num_sign_bit_copies1 (x, mode, x1, mode,
3994 cached_num_sign_bit_copies (x1, mode, known_x,
3995 known_mode,
3996 known_ret));
3997
3998 if (ARITHMETIC_P (x1)
3999 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4000 return
4001 num_sign_bit_copies1 (x, mode, x0, mode,
4002 cached_num_sign_bit_copies (x0, mode, known_x,
4003 known_mode,
4004 known_ret));
4005 }
4006
4007 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4008 }
4009
4010 /* Return the number of bits at the high-order end of X that are known to
4011 be equal to the sign bit. X will be used in mode MODE; if MODE is
4012 VOIDmode, X will be used in its own mode. The returned value will always
4013 be between 1 and the number of bits in MODE. */
4014
4015 static unsigned int
4016 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4017 enum machine_mode known_mode,
4018 unsigned int known_ret)
4019 {
4020 enum rtx_code code = GET_CODE (x);
4021 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4022 int num0, num1, result;
4023 unsigned HOST_WIDE_INT nonzero;
4024
4025 /* If we weren't given a mode, use the mode of X. If the mode is still
4026 VOIDmode, we don't know anything. Likewise if one of the modes is
4027 floating-point. */
4028
4029 if (mode == VOIDmode)
4030 mode = GET_MODE (x);
4031
4032 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4033 return 1;
4034
4035 /* For a smaller object, just ignore the high bits. */
4036 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4037 {
4038 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4039 known_x, known_mode, known_ret);
4040 return MAX (1,
4041 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4042 }
4043
4044 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4045 {
4046 #ifndef WORD_REGISTER_OPERATIONS
4047 /* If this machine does not do all register operations on the entire
4048 register and MODE is wider than the mode of X, we can say nothing
4049 at all about the high-order bits. */
4050 return 1;
4051 #else
4052 /* Likewise on machines that do, if the mode of the object is smaller
4053 than a word and loads of that size don't sign extend, we can say
4054 nothing about the high order bits. */
4055 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4056 #ifdef LOAD_EXTEND_OP
4057 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4058 #endif
4059 )
4060 return 1;
4061 #endif
4062 }
4063
4064 switch (code)
4065 {
4066 case REG:
4067
4068 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4069 /* If pointers extend signed and this is a pointer in Pmode, say that
4070 all the bits above ptr_mode are known to be sign bit copies. */
4071 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4072 && REG_POINTER (x))
4073 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4074 #endif
4075
4076 {
4077 unsigned int copies_for_hook = 1, copies = 1;
4078 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4079 known_mode, known_ret,
4080 &copies_for_hook);
4081
4082 if (new)
4083 copies = cached_num_sign_bit_copies (new, mode, known_x,
4084 known_mode, known_ret);
4085
4086 if (copies > 1 || copies_for_hook > 1)
4087 return MAX (copies, copies_for_hook);
4088
4089 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4090 }
4091 break;
4092
4093 case MEM:
4094 #ifdef LOAD_EXTEND_OP
4095 /* Some RISC machines sign-extend all loads of smaller than a word. */
4096 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4097 return MAX (1, ((int) bitwidth
4098 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4099 #endif
4100 break;
4101
4102 case CONST_INT:
4103 /* If the constant is negative, take its 1's complement and remask.
4104 Then see how many zero bits we have. */
4105 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4106 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4107 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4108 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4109
4110 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4111
4112 case SUBREG:
4113 /* If this is a SUBREG for a promoted object that is sign-extended
4114 and we are looking at it in a wider mode, we know that at least the
4115 high-order bits are known to be sign bit copies. */
4116
4117 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4118 {
4119 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4120 known_x, known_mode, known_ret);
4121 return MAX ((int) bitwidth
4122 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4123 num0);
4124 }
4125
4126 /* For a smaller object, just ignore the high bits. */
4127 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4128 {
4129 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4130 known_x, known_mode, known_ret);
4131 return MAX (1, (num0
4132 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4133 - bitwidth)));
4134 }
4135
4136 #ifdef WORD_REGISTER_OPERATIONS
4137 #ifdef LOAD_EXTEND_OP
4138 /* For paradoxical SUBREGs on machines where all register operations
4139 affect the entire register, just look inside. Note that we are
4140 passing MODE to the recursive call, so the number of sign bit copies
4141 will remain relative to that mode, not the inner mode. */
4142
4143 /* This works only if loads sign extend. Otherwise, if we get a
4144 reload for the inner part, it may be loaded from the stack, and
4145 then we lose all sign bit copies that existed before the store
4146 to the stack. */
4147
4148 if ((GET_MODE_SIZE (GET_MODE (x))
4149 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4150 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4151 && MEM_P (SUBREG_REG (x)))
4152 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4153 known_x, known_mode, known_ret);
4154 #endif
4155 #endif
4156 break;
4157
4158 case SIGN_EXTRACT:
4159 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4160 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4161 break;
4162
4163 case SIGN_EXTEND:
4164 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4165 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4166 known_x, known_mode, known_ret));
4167
4168 case TRUNCATE:
4169 /* For a smaller object, just ignore the high bits. */
4170 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4171 known_x, known_mode, known_ret);
4172 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4173 - bitwidth)));
4174
4175 case NOT:
4176 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4177 known_x, known_mode, known_ret);
4178
4179 case ROTATE: case ROTATERT:
4180 /* If we are rotating left by a number of bits less than the number
4181 of sign bit copies, we can just subtract that amount from the
4182 number. */
4183 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4184 && INTVAL (XEXP (x, 1)) >= 0
4185 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4186 {
4187 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4188 known_x, known_mode, known_ret);
4189 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4190 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4191 }
4192 break;
4193
4194 case NEG:
4195 /* In general, this subtracts one sign bit copy. But if the value
4196 is known to be positive, the number of sign bit copies is the
4197 same as that of the input. Finally, if the input has just one bit
4198 that might be nonzero, all the bits are copies of the sign bit. */
4199 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4200 known_x, known_mode, known_ret);
4201 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4202 return num0 > 1 ? num0 - 1 : 1;
4203
4204 nonzero = nonzero_bits (XEXP (x, 0), mode);
4205 if (nonzero == 1)
4206 return bitwidth;
4207
4208 if (num0 > 1
4209 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4210 num0--;
4211
4212 return num0;
4213
4214 case IOR: case AND: case XOR:
4215 case SMIN: case SMAX: case UMIN: case UMAX:
4216 /* Logical operations will preserve the number of sign-bit copies.
4217 MIN and MAX operations always return one of the operands. */
4218 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4219 known_x, known_mode, known_ret);
4220 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4221 known_x, known_mode, known_ret);
4222 return MIN (num0, num1);
4223
4224 case PLUS: case MINUS:
4225 /* For addition and subtraction, we can have a 1-bit carry. However,
4226 if we are subtracting 1 from a positive number, there will not
4227 be such a carry. Furthermore, if the positive number is known to
4228 be 0 or 1, we know the result is either -1 or 0. */
4229
4230 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4231 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4232 {
4233 nonzero = nonzero_bits (XEXP (x, 0), mode);
4234 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4235 return (nonzero == 1 || nonzero == 0 ? bitwidth
4236 : bitwidth - floor_log2 (nonzero) - 1);
4237 }
4238
4239 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4240 known_x, known_mode, known_ret);
4241 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4242 known_x, known_mode, known_ret);
4243 result = MAX (1, MIN (num0, num1) - 1);
4244
4245 #ifdef POINTERS_EXTEND_UNSIGNED
4246 /* If pointers extend signed and this is an addition or subtraction
4247 to a pointer in Pmode, all the bits above ptr_mode are known to be
4248 sign bit copies. */
4249 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4250 && (code == PLUS || code == MINUS)
4251 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4252 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4253 - GET_MODE_BITSIZE (ptr_mode) + 1),
4254 result);
4255 #endif
4256 return result;
4257
4258 case MULT:
4259 /* The number of bits of the product is the sum of the number of
4260 bits of both terms. However, unless one of the terms if known
4261 to be positive, we must allow for an additional bit since negating
4262 a negative number can remove one sign bit copy. */
4263
4264 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4265 known_x, known_mode, known_ret);
4266 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4267 known_x, known_mode, known_ret);
4268
4269 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4270 if (result > 0
4271 && (bitwidth > HOST_BITS_PER_WIDE_INT
4272 || (((nonzero_bits (XEXP (x, 0), mode)
4273 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4274 && ((nonzero_bits (XEXP (x, 1), mode)
4275 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4276 result--;
4277
4278 return MAX (1, result);
4279
4280 case UDIV:
4281 /* The result must be <= the first operand. If the first operand
4282 has the high bit set, we know nothing about the number of sign
4283 bit copies. */
4284 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4285 return 1;
4286 else if ((nonzero_bits (XEXP (x, 0), mode)
4287 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4288 return 1;
4289 else
4290 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4291 known_x, known_mode, known_ret);
4292
4293 case UMOD:
4294 /* The result must be <= the second operand. */
4295 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4296 known_x, known_mode, known_ret);
4297
4298 case DIV:
4299 /* Similar to unsigned division, except that we have to worry about
4300 the case where the divisor is negative, in which case we have
4301 to add 1. */
4302 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4303 known_x, known_mode, known_ret);
4304 if (result > 1
4305 && (bitwidth > HOST_BITS_PER_WIDE_INT
4306 || (nonzero_bits (XEXP (x, 1), mode)
4307 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4308 result--;
4309
4310 return result;
4311
4312 case MOD:
4313 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4314 known_x, known_mode, known_ret);
4315 if (result > 1
4316 && (bitwidth > HOST_BITS_PER_WIDE_INT
4317 || (nonzero_bits (XEXP (x, 1), mode)
4318 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4319 result--;
4320
4321 return result;
4322
4323 case ASHIFTRT:
4324 /* Shifts by a constant add to the number of bits equal to the
4325 sign bit. */
4326 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4327 known_x, known_mode, known_ret);
4328 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4329 && INTVAL (XEXP (x, 1)) > 0)
4330 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4331
4332 return num0;
4333
4334 case ASHIFT:
4335 /* Left shifts destroy copies. */
4336 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4337 || INTVAL (XEXP (x, 1)) < 0
4338 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4339 return 1;
4340
4341 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4342 known_x, known_mode, known_ret);
4343 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4344
4345 case IF_THEN_ELSE:
4346 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4347 known_x, known_mode, known_ret);
4348 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4349 known_x, known_mode, known_ret);
4350 return MIN (num0, num1);
4351
4352 case EQ: case NE: case GE: case GT: case LE: case LT:
4353 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4354 case GEU: case GTU: case LEU: case LTU:
4355 case UNORDERED: case ORDERED:
4356 /* If the constant is negative, take its 1's complement and remask.
4357 Then see how many zero bits we have. */
4358 nonzero = STORE_FLAG_VALUE;
4359 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4360 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4361 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4362
4363 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4364
4365 default:
4366 break;
4367 }
4368
4369 /* If we haven't been able to figure it out by one of the above rules,
4370 see if some of the high-order bits are known to be zero. If so,
4371 count those bits and return one less than that amount. If we can't
4372 safely compute the mask for this mode, always return BITWIDTH. */
4373
4374 bitwidth = GET_MODE_BITSIZE (mode);
4375 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4376 return 1;
4377
4378 nonzero = nonzero_bits (x, mode);
4379 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4380 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4381 }
4382
4383 /* Calculate the rtx_cost of a single instruction. A return value of
4384 zero indicates an instruction pattern without a known cost. */
4385
4386 int
4387 insn_rtx_cost (rtx pat)
4388 {
4389 int i, cost;
4390 rtx set;
4391
4392 /* Extract the single set rtx from the instruction pattern.
4393 We can't use single_set since we only have the pattern. */
4394 if (GET_CODE (pat) == SET)
4395 set = pat;
4396 else if (GET_CODE (pat) == PARALLEL)
4397 {
4398 set = NULL_RTX;
4399 for (i = 0; i < XVECLEN (pat, 0); i++)
4400 {
4401 rtx x = XVECEXP (pat, 0, i);
4402 if (GET_CODE (x) == SET)
4403 {
4404 if (set)
4405 return 0;
4406 set = x;
4407 }
4408 }
4409 if (!set)
4410 return 0;
4411 }
4412 else
4413 return 0;
4414
4415 cost = rtx_cost (SET_SRC (set), SET);
4416 return cost > 0 ? cost : COSTS_N_INSNS (1);
4417 }
4418
4419 /* Given an insn INSN and condition COND, return the condition in a
4420 canonical form to simplify testing by callers. Specifically:
4421
4422 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4423 (2) Both operands will be machine operands; (cc0) will have been replaced.
4424 (3) If an operand is a constant, it will be the second operand.
4425 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4426 for GE, GEU, and LEU.
4427
4428 If the condition cannot be understood, or is an inequality floating-point
4429 comparison which needs to be reversed, 0 will be returned.
4430
4431 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4432
4433 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4434 insn used in locating the condition was found. If a replacement test
4435 of the condition is desired, it should be placed in front of that
4436 insn and we will be sure that the inputs are still valid.
4437
4438 If WANT_REG is nonzero, we wish the condition to be relative to that
4439 register, if possible. Therefore, do not canonicalize the condition
4440 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4441 to be a compare to a CC mode register.
4442
4443 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4444 and at INSN. */
4445
4446 rtx
4447 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4448 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4449 {
4450 enum rtx_code code;
4451 rtx prev = insn;
4452 rtx set;
4453 rtx tem;
4454 rtx op0, op1;
4455 int reverse_code = 0;
4456 enum machine_mode mode;
4457 basic_block bb = BLOCK_FOR_INSN (insn);
4458
4459 code = GET_CODE (cond);
4460 mode = GET_MODE (cond);
4461 op0 = XEXP (cond, 0);
4462 op1 = XEXP (cond, 1);
4463
4464 if (reverse)
4465 code = reversed_comparison_code (cond, insn);
4466 if (code == UNKNOWN)
4467 return 0;
4468
4469 if (earliest)
4470 *earliest = insn;
4471
4472 /* If we are comparing a register with zero, see if the register is set
4473 in the previous insn to a COMPARE or a comparison operation. Perform
4474 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4475 in cse.c */
4476
4477 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4478 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4479 && op1 == CONST0_RTX (GET_MODE (op0))
4480 && op0 != want_reg)
4481 {
4482 /* Set nonzero when we find something of interest. */
4483 rtx x = 0;
4484
4485 #ifdef HAVE_cc0
4486 /* If comparison with cc0, import actual comparison from compare
4487 insn. */
4488 if (op0 == cc0_rtx)
4489 {
4490 if ((prev = prev_nonnote_insn (prev)) == 0
4491 || !NONJUMP_INSN_P (prev)
4492 || (set = single_set (prev)) == 0
4493 || SET_DEST (set) != cc0_rtx)
4494 return 0;
4495
4496 op0 = SET_SRC (set);
4497 op1 = CONST0_RTX (GET_MODE (op0));
4498 if (earliest)
4499 *earliest = prev;
4500 }
4501 #endif
4502
4503 /* If this is a COMPARE, pick up the two things being compared. */
4504 if (GET_CODE (op0) == COMPARE)
4505 {
4506 op1 = XEXP (op0, 1);
4507 op0 = XEXP (op0, 0);
4508 continue;
4509 }
4510 else if (!REG_P (op0))
4511 break;
4512
4513 /* Go back to the previous insn. Stop if it is not an INSN. We also
4514 stop if it isn't a single set or if it has a REG_INC note because
4515 we don't want to bother dealing with it. */
4516
4517 if ((prev = prev_nonnote_insn (prev)) == 0
4518 || !NONJUMP_INSN_P (prev)
4519 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4520 /* In cfglayout mode, there do not have to be labels at the
4521 beginning of a block, or jumps at the end, so the previous
4522 conditions would not stop us when we reach bb boundary. */
4523 || BLOCK_FOR_INSN (prev) != bb)
4524 break;
4525
4526 set = set_of (op0, prev);
4527
4528 if (set
4529 && (GET_CODE (set) != SET
4530 || !rtx_equal_p (SET_DEST (set), op0)))
4531 break;
4532
4533 /* If this is setting OP0, get what it sets it to if it looks
4534 relevant. */
4535 if (set)
4536 {
4537 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4538 #ifdef FLOAT_STORE_FLAG_VALUE
4539 REAL_VALUE_TYPE fsfv;
4540 #endif
4541
4542 /* ??? We may not combine comparisons done in a CCmode with
4543 comparisons not done in a CCmode. This is to aid targets
4544 like Alpha that have an IEEE compliant EQ instruction, and
4545 a non-IEEE compliant BEQ instruction. The use of CCmode is
4546 actually artificial, simply to prevent the combination, but
4547 should not affect other platforms.
4548
4549 However, we must allow VOIDmode comparisons to match either
4550 CCmode or non-CCmode comparison, because some ports have
4551 modeless comparisons inside branch patterns.
4552
4553 ??? This mode check should perhaps look more like the mode check
4554 in simplify_comparison in combine. */
4555
4556 if ((GET_CODE (SET_SRC (set)) == COMPARE
4557 || (((code == NE
4558 || (code == LT
4559 && GET_MODE_CLASS (inner_mode) == MODE_INT
4560 && (GET_MODE_BITSIZE (inner_mode)
4561 <= HOST_BITS_PER_WIDE_INT)
4562 && (STORE_FLAG_VALUE
4563 & ((HOST_WIDE_INT) 1
4564 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4565 #ifdef FLOAT_STORE_FLAG_VALUE
4566 || (code == LT
4567 && SCALAR_FLOAT_MODE_P (inner_mode)
4568 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4569 REAL_VALUE_NEGATIVE (fsfv)))
4570 #endif
4571 ))
4572 && COMPARISON_P (SET_SRC (set))))
4573 && (((GET_MODE_CLASS (mode) == MODE_CC)
4574 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4575 || mode == VOIDmode || inner_mode == VOIDmode))
4576 x = SET_SRC (set);
4577 else if (((code == EQ
4578 || (code == GE
4579 && (GET_MODE_BITSIZE (inner_mode)
4580 <= HOST_BITS_PER_WIDE_INT)
4581 && GET_MODE_CLASS (inner_mode) == MODE_INT
4582 && (STORE_FLAG_VALUE
4583 & ((HOST_WIDE_INT) 1
4584 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4585 #ifdef FLOAT_STORE_FLAG_VALUE
4586 || (code == GE
4587 && SCALAR_FLOAT_MODE_P (inner_mode)
4588 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4589 REAL_VALUE_NEGATIVE (fsfv)))
4590 #endif
4591 ))
4592 && COMPARISON_P (SET_SRC (set))
4593 && (((GET_MODE_CLASS (mode) == MODE_CC)
4594 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4595 || mode == VOIDmode || inner_mode == VOIDmode))
4596
4597 {
4598 reverse_code = 1;
4599 x = SET_SRC (set);
4600 }
4601 else
4602 break;
4603 }
4604
4605 else if (reg_set_p (op0, prev))
4606 /* If this sets OP0, but not directly, we have to give up. */
4607 break;
4608
4609 if (x)
4610 {
4611 /* If the caller is expecting the condition to be valid at INSN,
4612 make sure X doesn't change before INSN. */
4613 if (valid_at_insn_p)
4614 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4615 break;
4616 if (COMPARISON_P (x))
4617 code = GET_CODE (x);
4618 if (reverse_code)
4619 {
4620 code = reversed_comparison_code (x, prev);
4621 if (code == UNKNOWN)
4622 return 0;
4623 reverse_code = 0;
4624 }
4625
4626 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4627 if (earliest)
4628 *earliest = prev;
4629 }
4630 }
4631
4632 /* If constant is first, put it last. */
4633 if (CONSTANT_P (op0))
4634 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4635
4636 /* If OP0 is the result of a comparison, we weren't able to find what
4637 was really being compared, so fail. */
4638 if (!allow_cc_mode
4639 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4640 return 0;
4641
4642 /* Canonicalize any ordered comparison with integers involving equality
4643 if we can do computations in the relevant mode and we do not
4644 overflow. */
4645
4646 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4647 && GET_CODE (op1) == CONST_INT
4648 && GET_MODE (op0) != VOIDmode
4649 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4650 {
4651 HOST_WIDE_INT const_val = INTVAL (op1);
4652 unsigned HOST_WIDE_INT uconst_val = const_val;
4653 unsigned HOST_WIDE_INT max_val
4654 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4655
4656 switch (code)
4657 {
4658 case LE:
4659 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4660 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4661 break;
4662
4663 /* When cross-compiling, const_val might be sign-extended from
4664 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4665 case GE:
4666 if ((HOST_WIDE_INT) (const_val & max_val)
4667 != (((HOST_WIDE_INT) 1
4668 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4669 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4670 break;
4671
4672 case LEU:
4673 if (uconst_val < max_val)
4674 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4675 break;
4676
4677 case GEU:
4678 if (uconst_val != 0)
4679 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4680 break;
4681
4682 default:
4683 break;
4684 }
4685 }
4686
4687 /* Never return CC0; return zero instead. */
4688 if (CC0_P (op0))
4689 return 0;
4690
4691 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4692 }
4693
4694 /* Given a jump insn JUMP, return the condition that will cause it to branch
4695 to its JUMP_LABEL. If the condition cannot be understood, or is an
4696 inequality floating-point comparison which needs to be reversed, 0 will
4697 be returned.
4698
4699 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4700 insn used in locating the condition was found. If a replacement test
4701 of the condition is desired, it should be placed in front of that
4702 insn and we will be sure that the inputs are still valid. If EARLIEST
4703 is null, the returned condition will be valid at INSN.
4704
4705 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4706 compare CC mode register.
4707
4708 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4709
4710 rtx
4711 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4712 {
4713 rtx cond;
4714 int reverse;
4715 rtx set;
4716
4717 /* If this is not a standard conditional jump, we can't parse it. */
4718 if (!JUMP_P (jump)
4719 || ! any_condjump_p (jump))
4720 return 0;
4721 set = pc_set (jump);
4722
4723 cond = XEXP (SET_SRC (set), 0);
4724
4725 /* If this branches to JUMP_LABEL when the condition is false, reverse
4726 the condition. */
4727 reverse
4728 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4729 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4730
4731 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4732 allow_cc_mode, valid_at_insn_p);
4733 }
4734
4735 /* Suppose that truncation from the machine mode of X to MODE is not a
4736 no-op. See if there is anything special about X so that we can
4737 assume it already contains a truncated value of MODE. */
4738
4739 bool
4740 truncated_to_mode (enum machine_mode mode, rtx x)
4741 {
4742 return REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x);
4743 }
4744
4745 \f
4746 /* Initialize non_rtx_starting_operands, which is used to speed up
4747 for_each_rtx. */
4748 void
4749 init_rtlanal (void)
4750 {
4751 int i;
4752 for (i = 0; i < NUM_RTX_CODE; i++)
4753 {
4754 const char *format = GET_RTX_FORMAT (i);
4755 const char *first = strpbrk (format, "eEV");
4756 non_rtx_starting_operands[i] = first ? first - format : -1;
4757 }
4758 }
4759 \f
4760 /* Check whether this is a constant pool constant. */
4761 bool
4762 constant_pool_constant_p (rtx x)
4763 {
4764 x = avoid_constant_pool_reference (x);
4765 return GET_CODE (x) == CONST_DOUBLE;
4766 }
4767