PR middle-end/PR28690
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
267 {
268 enum rtx_code code = GET_CODE (x);
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
274
275 case LABEL_REF:
276 return 0;
277
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
290
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
293
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
301 {
302 HOST_WIDE_INT offset;
303
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
308
309 offset = INTVAL (XEXP (x, 1));
310
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
320
321 return offset % GET_MODE_SIZE (mode) != 0;
322 }
323
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
327
328 return 1;
329
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
333
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
340
341 default:
342 break;
343 }
344
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
347 }
348
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350
351 int
352 rtx_addr_can_trap_p (const_rtx x)
353 {
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 }
356
357 /* Return true if X is an address that is known to not be zero. */
358
359 bool
360 nonzero_address_p (const_rtx x)
361 {
362 const enum rtx_code code = GET_CODE (x);
363
364 switch (code)
365 {
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
368
369 case LABEL_REF:
370 return true;
371
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
383
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
386
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
395
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
404
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
408
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
414
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
417
418 default:
419 break;
420 }
421
422 /* If it isn't one of the case above, might be zero. */
423 return false;
424 }
425
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
431
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
434 {
435 enum rtx_code code;
436 int i;
437 const char *fmt;
438
439 if (x == 0)
440 return 0;
441
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
445
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
449 {
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
452 }
453 else if (fmt[i] == 'E')
454 {
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
459 }
460 return 0;
461 }
462 \f
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
467
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
470 {
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
473
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
481 }
482
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
486
487 rtx
488 get_related_value (const_rtx x)
489 {
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
500 }
501 \f
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
504
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
507 {
508 tree decl;
509
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
512
513 if (offset == 0)
514 return true;
515
516 if (offset > 0)
517 {
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
521
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
525 }
526
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
533
534 return false;
535 }
536
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
539
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
542 {
543 if (GET_CODE (x) == CONST)
544 {
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
547 {
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
551 }
552 }
553 *base_out = x;
554 *offset_out = const0_rtx;
555 }
556 \f
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
559
560 int
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
562 {
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
567
568 if (x == find)
569 return 1;
570
571 code = GET_CODE (x);
572
573 switch (code)
574 {
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
585
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
591
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
596
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
601
602 default:
603 break;
604 }
605
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
608
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
610 {
611 switch (*format_ptr++)
612 {
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
616
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
621 }
622 }
623 return count;
624 }
625
626 \f
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
630
631 int
632 reg_mentioned_p (const_rtx reg, const_rtx in)
633 {
634 const char *fmt;
635 int i;
636 enum rtx_code code;
637
638 if (in == 0)
639 return 0;
640
641 if (reg == in)
642 return 1;
643
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
646
647 code = GET_CODE (in);
648
649 switch (code)
650 {
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
654
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
661
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
668
669 default:
670 break;
671 }
672
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
675
676 fmt = GET_RTX_FORMAT (code);
677
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 if (fmt[i] == 'E')
681 {
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
686 }
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
690 }
691 return 0;
692 }
693 \f
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
696
697 int
698 no_labels_between_p (const_rtx beg, const_rtx end)
699 {
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
707 }
708
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
711
712 int
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
714 {
715 rtx insn;
716
717 if (from_insn == to_insn)
718 return 0;
719
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
726 }
727 \f
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
731
732 int
733 reg_referenced_p (const_rtx x, const_rtx body)
734 {
735 int i;
736
737 switch (GET_CODE (body))
738 {
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
742
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
758
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
764
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
769
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
772
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
775
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
782
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
788
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
794
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
799
800 default:
801 return 0;
802 }
803 }
804 \f
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
807
808 int
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
810 {
811 const_rtx insn;
812
813 if (from_insn == to_insn)
814 return 0;
815
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
820 }
821
822 /* Internals of reg_set_between_p. */
823 int
824 reg_set_p (const_rtx reg, const_rtx insn)
825 {
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
838
839 return set_of (reg, insn) != NULL_RTX;
840 }
841
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
845
846 int
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
848 {
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
853
854 if (start == end)
855 return 0;
856
857 switch (code)
858 {
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
867
868 case PC:
869 case CC0:
870 return 1;
871
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
882
883 case REG:
884 return reg_set_between_p (x, start, end);
885
886 default:
887 break;
888 }
889
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 {
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
895
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
900 }
901
902 return 0;
903 }
904
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
908
909 int
910 modified_in_p (const_rtx x, const_rtx insn)
911 {
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
915
916 switch (code)
917 {
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
926
927 case PC:
928 case CC0:
929 return 1;
930
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
940
941 case REG:
942 return reg_set_p (x, insn);
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950 {
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
953
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
958 }
959
960 return 0;
961 }
962 \f
963 /* Helper function for set_of. */
964 struct set_of_data
965 {
966 const_rtx found;
967 const_rtx pat;
968 };
969
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
972 {
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
977 }
978
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
983 {
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
989 }
990 \f
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
994
995 rtx
996 single_set_2 (const_rtx insn, const_rtx pat)
997 {
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1001
1002 if (GET_CODE (pat) == PARALLEL)
1003 {
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1005 {
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1008 {
1009 case USE:
1010 case CLOBBER:
1011 break;
1012
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1018
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1023 {
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1029 }
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1036
1037 default:
1038 return NULL_RTX;
1039 }
1040 }
1041 }
1042 return set;
1043 }
1044
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1047
1048 int
1049 multiple_sets (const_rtx insn)
1050 {
1051 int found;
1052 int i;
1053
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1057
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1060 {
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 {
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1069 }
1070 }
1071
1072 /* Either zero or one SET. */
1073 return 0;
1074 }
1075 \f
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1078
1079 int
1080 set_noop_p (const_rtx set)
1081 {
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1084
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1087
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1090
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1095
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1098
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1100 {
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1105 }
1106
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1109 }
1110 \f
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1113
1114 int
1115 noop_move_p (const_rtx insn)
1116 {
1117 rtx pat = PATTERN (insn);
1118
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1121
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1125
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1130
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1133
1134 if (GET_CODE (pat) == PARALLEL)
1135 {
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1140 {
1141 rtx tem = XVECEXP (pat, 0, i);
1142
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1146
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1149 }
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155 \f
1156
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1163
1164 rtx
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1166 {
1167 rtx p;
1168
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1172 {
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1175
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1177 {
1178 rtx src = SET_SRC (set);
1179
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1182
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1189 {
1190 *pinsn = p;
1191 return src;
1192 }
1193 }
1194
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1198 }
1199
1200 return x;
1201 }
1202 \f
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1206
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1209
1210 int
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1213 {
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1218
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1224
1225 code = GET_CODE (x);
1226
1227 switch (code)
1228 {
1229 case REG:
1230 x_regno = REGNO (x);
1231
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1242
1243 return endregno > x_regno && regno < END_REGNO (x);
1244
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1250 {
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1255
1256 return endregno > inner_regno && regno < inner_endregno;
1257 }
1258 break;
1259
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1275
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1280
1281 default:
1282 break;
1283 }
1284
1285 /* X does not match, so try its subexpressions. */
1286
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1289 {
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1291 {
1292 if (i == 0)
1293 {
1294 x = XEXP (x, 0);
1295 goto repeat;
1296 }
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1300 }
1301 else if (fmt[i] == 'E')
1302 {
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1318
1319 int
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1321 {
1322 unsigned int regno, endregno;
1323
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1329
1330 recurse:
1331 switch (GET_CODE (x))
1332 {
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1339
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1347
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1353
1354 case MEM:
1355 {
1356 const char *fmt;
1357 int i;
1358
1359 if (MEM_P (in))
1360 return 1;
1361
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1365 {
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1368 }
1369 else if (fmt[i] == 'E')
1370 {
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1375 }
1376
1377 return 0;
1378 }
1379
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1384
1385 case PARALLEL:
1386 {
1387 int i;
1388
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1395 }
1396
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1400 }
1401 }
1402 \f
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1406
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1411
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1414
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1417 {
1418 int i;
1419
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1422
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1424 {
1425 rtx dest = SET_DEST (x);
1426
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1433
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1437 {
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1441 }
1442 else
1443 (*fun) (dest, x, data);
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1449 }
1450 \f
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1455
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1459
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1462 {
1463 rtx body = *pbody;
1464 int i;
1465
1466 switch (GET_CODE (body))
1467 {
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1472
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1477
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1482
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1486
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1491
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1495
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1499
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1505
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1510
1511 case SET:
1512 {
1513 rtx dest = SET_DEST (body);
1514
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1518
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1520 {
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1523 }
1524
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1527
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1530 }
1531 return;
1532
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1537 }
1538 }
1539 \f
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1543
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1547
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1552
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1556
1557 int
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1559 {
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1562
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1566
1567 gcc_assert (REG_P (x));
1568
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1574
1575 return 1;
1576 }
1577
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1581
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1584 {
1585 unsigned int regno, endregno;
1586
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1593
1594 if (!REG_P (dest))
1595 return false;
1596
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1600 }
1601
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1604
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1607 {
1608 if (GET_CODE (dest) == PARALLEL)
1609 {
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1614
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1616 {
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1621 }
1622
1623 return false;
1624 }
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1627 }
1628
1629 /* Utility function for dead_or_set_p to check an individual register. */
1630
1631 int
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1633 {
1634 const_rtx pattern;
1635
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1639
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1643
1644 pattern = PATTERN (insn);
1645
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1648
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1652 {
1653 int i;
1654
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1656 {
1657 rtx body = XVECEXP (pattern, 0, i);
1658
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1661
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1673
1674 rtx
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1676 {
1677 rtx link;
1678
1679 gcc_assert (insn);
1680
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1685 {
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1690 }
1691
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1696 }
1697
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1702
1703 rtx
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1705 {
1706 rtx link;
1707
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1711
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1721 }
1722
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1725
1726 rtx
1727 find_reg_equal_equiv_note (const_rtx insn)
1728 {
1729 rtx link;
1730
1731 if (!INSN_P (insn))
1732 return 0;
1733
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1737 {
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1742
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1747 }
1748 return NULL;
1749 }
1750
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1754
1755 rtx
1756 find_constant_src (const_rtx insn)
1757 {
1758 rtx note, set, x;
1759
1760 set = single_set (insn);
1761 if (set)
1762 {
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1766 }
1767
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1771
1772 return NULL_RTX;
1773 }
1774
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1777
1778 int
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1780 {
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1785
1786 gcc_assert (datum);
1787
1788 if (!REG_P (datum))
1789 {
1790 rtx link;
1791
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1798 }
1799 else
1800 {
1801 unsigned int regno = REGNO (datum);
1802
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1805
1806 if (regno < FIRST_PSEUDO_REGISTER)
1807 {
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1810
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1822
1823 int
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1825 {
1826 rtx link;
1827
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1830
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1834
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1836 {
1837 rtx op, reg;
1838
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /* Return true if INSN is a call to a pure function. */
1850
1851 int
1852 pure_call_p (const_rtx insn)
1853 {
1854 const_rtx link;
1855
1856 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1857 return 0;
1858
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1861 {
1862 rtx u, m;
1863
1864 if (GET_CODE (u = XEXP (link, 0)) == USE
1865 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1866 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1867 return 1;
1868 }
1869
1870 return 0;
1871 }
1872 \f
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1874
1875 void
1876 remove_note (rtx insn, const_rtx note)
1877 {
1878 rtx link;
1879
1880 if (note == NULL_RTX)
1881 return;
1882
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1888 {
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1891 }
1892
1893 switch (REG_NOTE_KIND (note))
1894 {
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1908 {
1909 rtx *loc;
1910
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1913 {
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1919 }
1920 }
1921
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1925
1926 int
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1928 {
1929 const_rtx x;
1930
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1934
1935 return 0;
1936 }
1937
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1940
1941 A simple equality test is used to determine if NODE matches. */
1942
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1945 {
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1948
1949 while (temp)
1950 {
1951 if (node == XEXP (temp, 0))
1952 {
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1958
1959 return;
1960 }
1961
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1964 }
1965 }
1966 \f
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1971
1972 int
1973 volatile_insn_p (const_rtx x)
1974 {
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1977 {
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1995
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
1999
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2004
2005 default:
2006 break;
2007 }
2008
2009 /* Recursively scan the operands of this expression. */
2010
2011 {
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2014
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2016 {
2017 if (fmt[i] == 'e')
2018 {
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2021 }
2022 else if (fmt[i] == 'E')
2023 {
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 }
2031 return 0;
2032 }
2033
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2036
2037 int
2038 volatile_refs_p (const_rtx x)
2039 {
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2042 {
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2058
2059 case UNSPEC_VOLATILE:
2060 return 1;
2061
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2067
2068 default:
2069 break;
2070 }
2071
2072 /* Recursively scan the operands of this expression. */
2073
2074 {
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2077
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2079 {
2080 if (fmt[i] == 'e')
2081 {
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2084 }
2085 else if (fmt[i] == 'E')
2086 {
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2091 }
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2099
2100 int
2101 side_effects_p (const_rtx x)
2102 {
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2120
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2126
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2137
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2143
2144 default:
2145 break;
2146 }
2147
2148 /* Recursively scan the operands of this expression. */
2149
2150 {
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2153
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155 {
2156 if (fmt[i] == 'e')
2157 {
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2160 }
2161 else if (fmt[i] == 'E')
2162 {
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2167 }
2168 }
2169 }
2170 return 0;
2171 }
2172 \f
2173 enum may_trap_p_flags
2174 {
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2177 };
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2184
2185 int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2187 {
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2192
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2197 {
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2211
2212 case UNSPEC:
2213 case UNSPEC_VOLATILE:
2214 return targetm.unspec_may_trap_p (x, flags);
2215
2216 case ASM_INPUT:
2217 case TRAP_IF:
2218 return 1;
2219
2220 case ASM_OPERANDS:
2221 return MEM_VOLATILE_P (x);
2222
2223 /* Memory ref can trap unless it's a static var or a stack slot. */
2224 case MEM:
2225 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2226 reference; moving it out of condition might cause its address
2227 become invalid. */
2228 !(flags & MTP_AFTER_MOVE)
2229 && MEM_NOTRAP_P (x)
2230 && (!STRICT_ALIGNMENT || !unaligned_mems))
2231 return 0;
2232 return
2233 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2234
2235 /* Division by a non-constant might trap. */
2236 case DIV:
2237 case MOD:
2238 case UDIV:
2239 case UMOD:
2240 if (HONOR_SNANS (GET_MODE (x)))
2241 return 1;
2242 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2243 return flag_trapping_math;
2244 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2245 return 1;
2246 break;
2247
2248 case EXPR_LIST:
2249 /* An EXPR_LIST is used to represent a function call. This
2250 certainly may trap. */
2251 return 1;
2252
2253 case GE:
2254 case GT:
2255 case LE:
2256 case LT:
2257 case LTGT:
2258 case COMPARE:
2259 /* Some floating point comparisons may trap. */
2260 if (!flag_trapping_math)
2261 break;
2262 /* ??? There is no machine independent way to check for tests that trap
2263 when COMPARE is used, though many targets do make this distinction.
2264 For instance, sparc uses CCFPE for compares which generate exceptions
2265 and CCFP for compares which do not generate exceptions. */
2266 if (HONOR_NANS (GET_MODE (x)))
2267 return 1;
2268 /* But often the compare has some CC mode, so check operand
2269 modes as well. */
2270 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2271 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2272 return 1;
2273 break;
2274
2275 case EQ:
2276 case NE:
2277 if (HONOR_SNANS (GET_MODE (x)))
2278 return 1;
2279 /* Often comparison is CC mode, so check operand modes. */
2280 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2281 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2282 return 1;
2283 break;
2284
2285 case FIX:
2286 /* Conversion of floating point might trap. */
2287 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2288 return 1;
2289 break;
2290
2291 case NEG:
2292 case ABS:
2293 case SUBREG:
2294 /* These operations don't trap even with floating point. */
2295 break;
2296
2297 default:
2298 /* Any floating arithmetic may trap. */
2299 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2300 && flag_trapping_math)
2301 return 1;
2302 }
2303
2304 fmt = GET_RTX_FORMAT (code);
2305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2306 {
2307 if (fmt[i] == 'e')
2308 {
2309 if (may_trap_p_1 (XEXP (x, i), flags))
2310 return 1;
2311 }
2312 else if (fmt[i] == 'E')
2313 {
2314 int j;
2315 for (j = 0; j < XVECLEN (x, i); j++)
2316 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2317 return 1;
2318 }
2319 }
2320 return 0;
2321 }
2322
2323 /* Return nonzero if evaluating rtx X might cause a trap. */
2324
2325 int
2326 may_trap_p (const_rtx x)
2327 {
2328 return may_trap_p_1 (x, 0);
2329 }
2330
2331 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2332 is moved from its current location by some optimization. */
2333
2334 int
2335 may_trap_after_code_motion_p (const_rtx x)
2336 {
2337 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2338 }
2339
2340 /* Same as above, but additionally return nonzero if evaluating rtx X might
2341 cause a fault. We define a fault for the purpose of this function as a
2342 erroneous execution condition that cannot be encountered during the normal
2343 execution of a valid program; the typical example is an unaligned memory
2344 access on a strict alignment machine. The compiler guarantees that it
2345 doesn't generate code that will fault from a valid program, but this
2346 guarantee doesn't mean anything for individual instructions. Consider
2347 the following example:
2348
2349 struct S { int d; union { char *cp; int *ip; }; };
2350
2351 int foo(struct S *s)
2352 {
2353 if (s->d == 1)
2354 return *s->ip;
2355 else
2356 return *s->cp;
2357 }
2358
2359 on a strict alignment machine. In a valid program, foo will never be
2360 invoked on a structure for which d is equal to 1 and the underlying
2361 unique field of the union not aligned on a 4-byte boundary, but the
2362 expression *s->ip might cause a fault if considered individually.
2363
2364 At the RTL level, potentially problematic expressions will almost always
2365 verify may_trap_p; for example, the above dereference can be emitted as
2366 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2367 However, suppose that foo is inlined in a caller that causes s->cp to
2368 point to a local character variable and guarantees that s->d is not set
2369 to 1; foo may have been effectively translated into pseudo-RTL as:
2370
2371 if ((reg:SI) == 1)
2372 (set (reg:SI) (mem:SI (%fp - 7)))
2373 else
2374 (set (reg:QI) (mem:QI (%fp - 7)))
2375
2376 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2377 memory reference to a stack slot, but it will certainly cause a fault
2378 on a strict alignment machine. */
2379
2380 int
2381 may_trap_or_fault_p (const_rtx x)
2382 {
2383 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2384 }
2385 \f
2386 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2387 i.e., an inequality. */
2388
2389 int
2390 inequality_comparisons_p (const_rtx x)
2391 {
2392 const char *fmt;
2393 int len, i;
2394 const enum rtx_code code = GET_CODE (x);
2395
2396 switch (code)
2397 {
2398 case REG:
2399 case SCRATCH:
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_FIXED:
2405 case CONST_VECTOR:
2406 case CONST:
2407 case LABEL_REF:
2408 case SYMBOL_REF:
2409 return 0;
2410
2411 case LT:
2412 case LTU:
2413 case GT:
2414 case GTU:
2415 case LE:
2416 case LEU:
2417 case GE:
2418 case GEU:
2419 return 1;
2420
2421 default:
2422 break;
2423 }
2424
2425 len = GET_RTX_LENGTH (code);
2426 fmt = GET_RTX_FORMAT (code);
2427
2428 for (i = 0; i < len; i++)
2429 {
2430 if (fmt[i] == 'e')
2431 {
2432 if (inequality_comparisons_p (XEXP (x, i)))
2433 return 1;
2434 }
2435 else if (fmt[i] == 'E')
2436 {
2437 int j;
2438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2439 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2440 return 1;
2441 }
2442 }
2443
2444 return 0;
2445 }
2446 \f
2447 /* Replace any occurrence of FROM in X with TO. The function does
2448 not enter into CONST_DOUBLE for the replace.
2449
2450 Note that copying is not done so X must not be shared unless all copies
2451 are to be modified. */
2452
2453 rtx
2454 replace_rtx (rtx x, rtx from, rtx to)
2455 {
2456 int i, j;
2457 const char *fmt;
2458
2459 /* The following prevents loops occurrence when we change MEM in
2460 CONST_DOUBLE onto the same CONST_DOUBLE. */
2461 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2462 return x;
2463
2464 if (x == from)
2465 return to;
2466
2467 /* Allow this function to make replacements in EXPR_LISTs. */
2468 if (x == 0)
2469 return 0;
2470
2471 if (GET_CODE (x) == SUBREG)
2472 {
2473 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2474
2475 if (GET_CODE (new) == CONST_INT)
2476 {
2477 x = simplify_subreg (GET_MODE (x), new,
2478 GET_MODE (SUBREG_REG (x)),
2479 SUBREG_BYTE (x));
2480 gcc_assert (x);
2481 }
2482 else
2483 SUBREG_REG (x) = new;
2484
2485 return x;
2486 }
2487 else if (GET_CODE (x) == ZERO_EXTEND)
2488 {
2489 rtx new = replace_rtx (XEXP (x, 0), from, to);
2490
2491 if (GET_CODE (new) == CONST_INT)
2492 {
2493 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2494 new, GET_MODE (XEXP (x, 0)));
2495 gcc_assert (x);
2496 }
2497 else
2498 XEXP (x, 0) = new;
2499
2500 return x;
2501 }
2502
2503 fmt = GET_RTX_FORMAT (GET_CODE (x));
2504 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2505 {
2506 if (fmt[i] == 'e')
2507 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2508 else if (fmt[i] == 'E')
2509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2510 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2511 }
2512
2513 return x;
2514 }
2515 \f
2516 /* Replace occurrences of the old label in *X with the new one.
2517 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2518
2519 int
2520 replace_label (rtx *x, void *data)
2521 {
2522 rtx l = *x;
2523 rtx old_label = ((replace_label_data *) data)->r1;
2524 rtx new_label = ((replace_label_data *) data)->r2;
2525 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2526
2527 if (l == NULL_RTX)
2528 return 0;
2529
2530 if (GET_CODE (l) == SYMBOL_REF
2531 && CONSTANT_POOL_ADDRESS_P (l))
2532 {
2533 rtx c = get_pool_constant (l);
2534 if (rtx_referenced_p (old_label, c))
2535 {
2536 rtx new_c, new_l;
2537 replace_label_data *d = (replace_label_data *) data;
2538
2539 /* Create a copy of constant C; replace the label inside
2540 but do not update LABEL_NUSES because uses in constant pool
2541 are not counted. */
2542 new_c = copy_rtx (c);
2543 d->update_label_nuses = false;
2544 for_each_rtx (&new_c, replace_label, data);
2545 d->update_label_nuses = update_label_nuses;
2546
2547 /* Add the new constant NEW_C to constant pool and replace
2548 the old reference to constant by new reference. */
2549 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2550 *x = replace_rtx (l, l, new_l);
2551 }
2552 return 0;
2553 }
2554
2555 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2556 field. This is not handled by for_each_rtx because it doesn't
2557 handle unprinted ('0') fields. */
2558 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2559 JUMP_LABEL (l) = new_label;
2560
2561 if ((GET_CODE (l) == LABEL_REF
2562 || GET_CODE (l) == INSN_LIST)
2563 && XEXP (l, 0) == old_label)
2564 {
2565 XEXP (l, 0) = new_label;
2566 if (update_label_nuses)
2567 {
2568 ++LABEL_NUSES (new_label);
2569 --LABEL_NUSES (old_label);
2570 }
2571 return 0;
2572 }
2573
2574 return 0;
2575 }
2576
2577 /* When *BODY is equal to X or X is directly referenced by *BODY
2578 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2579 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2580
2581 static int
2582 rtx_referenced_p_1 (rtx *body, void *x)
2583 {
2584 rtx y = (rtx) x;
2585
2586 if (*body == NULL_RTX)
2587 return y == NULL_RTX;
2588
2589 /* Return true if a label_ref *BODY refers to label Y. */
2590 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2591 return XEXP (*body, 0) == y;
2592
2593 /* If *BODY is a reference to pool constant traverse the constant. */
2594 if (GET_CODE (*body) == SYMBOL_REF
2595 && CONSTANT_POOL_ADDRESS_P (*body))
2596 return rtx_referenced_p (y, get_pool_constant (*body));
2597
2598 /* By default, compare the RTL expressions. */
2599 return rtx_equal_p (*body, y);
2600 }
2601
2602 /* Return true if X is referenced in BODY. */
2603
2604 int
2605 rtx_referenced_p (rtx x, rtx body)
2606 {
2607 return for_each_rtx (&body, rtx_referenced_p_1, x);
2608 }
2609
2610 /* If INSN is a tablejump return true and store the label (before jump table) to
2611 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2612
2613 bool
2614 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2615 {
2616 rtx label, table;
2617
2618 if (JUMP_P (insn)
2619 && (label = JUMP_LABEL (insn)) != NULL_RTX
2620 && (table = next_active_insn (label)) != NULL_RTX
2621 && JUMP_P (table)
2622 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2623 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2624 {
2625 if (labelp)
2626 *labelp = label;
2627 if (tablep)
2628 *tablep = table;
2629 return true;
2630 }
2631 return false;
2632 }
2633
2634 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2635 constant that is not in the constant pool and not in the condition
2636 of an IF_THEN_ELSE. */
2637
2638 static int
2639 computed_jump_p_1 (const_rtx x)
2640 {
2641 const enum rtx_code code = GET_CODE (x);
2642 int i, j;
2643 const char *fmt;
2644
2645 switch (code)
2646 {
2647 case LABEL_REF:
2648 case PC:
2649 return 0;
2650
2651 case CONST:
2652 case CONST_INT:
2653 case CONST_DOUBLE:
2654 case CONST_FIXED:
2655 case CONST_VECTOR:
2656 case SYMBOL_REF:
2657 case REG:
2658 return 1;
2659
2660 case MEM:
2661 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2662 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2663
2664 case IF_THEN_ELSE:
2665 return (computed_jump_p_1 (XEXP (x, 1))
2666 || computed_jump_p_1 (XEXP (x, 2)));
2667
2668 default:
2669 break;
2670 }
2671
2672 fmt = GET_RTX_FORMAT (code);
2673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2674 {
2675 if (fmt[i] == 'e'
2676 && computed_jump_p_1 (XEXP (x, i)))
2677 return 1;
2678
2679 else if (fmt[i] == 'E')
2680 for (j = 0; j < XVECLEN (x, i); j++)
2681 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2682 return 1;
2683 }
2684
2685 return 0;
2686 }
2687
2688 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2689
2690 Tablejumps and casesi insns are not considered indirect jumps;
2691 we can recognize them by a (use (label_ref)). */
2692
2693 int
2694 computed_jump_p (const_rtx insn)
2695 {
2696 int i;
2697 if (JUMP_P (insn))
2698 {
2699 rtx pat = PATTERN (insn);
2700
2701 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2702 if (JUMP_LABEL (insn) != NULL)
2703 return 0;
2704
2705 if (GET_CODE (pat) == PARALLEL)
2706 {
2707 int len = XVECLEN (pat, 0);
2708 int has_use_labelref = 0;
2709
2710 for (i = len - 1; i >= 0; i--)
2711 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2712 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2713 == LABEL_REF))
2714 has_use_labelref = 1;
2715
2716 if (! has_use_labelref)
2717 for (i = len - 1; i >= 0; i--)
2718 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2719 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2720 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2721 return 1;
2722 }
2723 else if (GET_CODE (pat) == SET
2724 && SET_DEST (pat) == pc_rtx
2725 && computed_jump_p_1 (SET_SRC (pat)))
2726 return 1;
2727 }
2728 return 0;
2729 }
2730
2731 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2732 calls. Processes the subexpressions of EXP and passes them to F. */
2733 static int
2734 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2735 {
2736 int result, i, j;
2737 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2738 rtx *x;
2739
2740 for (; format[n] != '\0'; n++)
2741 {
2742 switch (format[n])
2743 {
2744 case 'e':
2745 /* Call F on X. */
2746 x = &XEXP (exp, n);
2747 result = (*f) (x, data);
2748 if (result == -1)
2749 /* Do not traverse sub-expressions. */
2750 continue;
2751 else if (result != 0)
2752 /* Stop the traversal. */
2753 return result;
2754
2755 if (*x == NULL_RTX)
2756 /* There are no sub-expressions. */
2757 continue;
2758
2759 i = non_rtx_starting_operands[GET_CODE (*x)];
2760 if (i >= 0)
2761 {
2762 result = for_each_rtx_1 (*x, i, f, data);
2763 if (result != 0)
2764 return result;
2765 }
2766 break;
2767
2768 case 'V':
2769 case 'E':
2770 if (XVEC (exp, n) == 0)
2771 continue;
2772 for (j = 0; j < XVECLEN (exp, n); ++j)
2773 {
2774 /* Call F on X. */
2775 x = &XVECEXP (exp, n, j);
2776 result = (*f) (x, data);
2777 if (result == -1)
2778 /* Do not traverse sub-expressions. */
2779 continue;
2780 else if (result != 0)
2781 /* Stop the traversal. */
2782 return result;
2783
2784 if (*x == NULL_RTX)
2785 /* There are no sub-expressions. */
2786 continue;
2787
2788 i = non_rtx_starting_operands[GET_CODE (*x)];
2789 if (i >= 0)
2790 {
2791 result = for_each_rtx_1 (*x, i, f, data);
2792 if (result != 0)
2793 return result;
2794 }
2795 }
2796 break;
2797
2798 default:
2799 /* Nothing to do. */
2800 break;
2801 }
2802 }
2803
2804 return 0;
2805 }
2806
2807 /* Traverse X via depth-first search, calling F for each
2808 sub-expression (including X itself). F is also passed the DATA.
2809 If F returns -1, do not traverse sub-expressions, but continue
2810 traversing the rest of the tree. If F ever returns any other
2811 nonzero value, stop the traversal, and return the value returned
2812 by F. Otherwise, return 0. This function does not traverse inside
2813 tree structure that contains RTX_EXPRs, or into sub-expressions
2814 whose format code is `0' since it is not known whether or not those
2815 codes are actually RTL.
2816
2817 This routine is very general, and could (should?) be used to
2818 implement many of the other routines in this file. */
2819
2820 int
2821 for_each_rtx (rtx *x, rtx_function f, void *data)
2822 {
2823 int result;
2824 int i;
2825
2826 /* Call F on X. */
2827 result = (*f) (x, data);
2828 if (result == -1)
2829 /* Do not traverse sub-expressions. */
2830 return 0;
2831 else if (result != 0)
2832 /* Stop the traversal. */
2833 return result;
2834
2835 if (*x == NULL_RTX)
2836 /* There are no sub-expressions. */
2837 return 0;
2838
2839 i = non_rtx_starting_operands[GET_CODE (*x)];
2840 if (i < 0)
2841 return 0;
2842
2843 return for_each_rtx_1 (*x, i, f, data);
2844 }
2845
2846
2847 /* Searches X for any reference to REGNO, returning the rtx of the
2848 reference found if any. Otherwise, returns NULL_RTX. */
2849
2850 rtx
2851 regno_use_in (unsigned int regno, rtx x)
2852 {
2853 const char *fmt;
2854 int i, j;
2855 rtx tem;
2856
2857 if (REG_P (x) && REGNO (x) == regno)
2858 return x;
2859
2860 fmt = GET_RTX_FORMAT (GET_CODE (x));
2861 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2862 {
2863 if (fmt[i] == 'e')
2864 {
2865 if ((tem = regno_use_in (regno, XEXP (x, i))))
2866 return tem;
2867 }
2868 else if (fmt[i] == 'E')
2869 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2870 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2871 return tem;
2872 }
2873
2874 return NULL_RTX;
2875 }
2876
2877 /* Return a value indicating whether OP, an operand of a commutative
2878 operation, is preferred as the first or second operand. The higher
2879 the value, the stronger the preference for being the first operand.
2880 We use negative values to indicate a preference for the first operand
2881 and positive values for the second operand. */
2882
2883 int
2884 commutative_operand_precedence (rtx op)
2885 {
2886 enum rtx_code code = GET_CODE (op);
2887
2888 /* Constants always come the second operand. Prefer "nice" constants. */
2889 if (code == CONST_INT)
2890 return -8;
2891 if (code == CONST_DOUBLE)
2892 return -7;
2893 if (code == CONST_FIXED)
2894 return -7;
2895 op = avoid_constant_pool_reference (op);
2896 code = GET_CODE (op);
2897
2898 switch (GET_RTX_CLASS (code))
2899 {
2900 case RTX_CONST_OBJ:
2901 if (code == SYMBOL_REF)
2902 return -1;
2903 if (code == CONST_INT)
2904 return -6;
2905 if (code == CONST_DOUBLE)
2906 return -5;
2907 if (code == CONST_FIXED)
2908 return -5;
2909 return -4;
2910
2911 case RTX_EXTRA:
2912 /* SUBREGs of objects should come second. */
2913 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2914 return -3;
2915 return 0;
2916
2917 case RTX_OBJ:
2918 /* Complex expressions should be the first, so decrease priority
2919 of objects. Prefer pointer objects over non pointer objects. */
2920 if ((REG_P (op) && REG_POINTER (op))
2921 || (MEM_P (op) && MEM_POINTER (op)))
2922 return -1;
2923 return -2;
2924
2925 case RTX_COMM_ARITH:
2926 /* Prefer operands that are themselves commutative to be first.
2927 This helps to make things linear. In particular,
2928 (and (and (reg) (reg)) (not (reg))) is canonical. */
2929 return 4;
2930
2931 case RTX_BIN_ARITH:
2932 /* If only one operand is a binary expression, it will be the first
2933 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2934 is canonical, although it will usually be further simplified. */
2935 return 2;
2936
2937 case RTX_UNARY:
2938 /* Then prefer NEG and NOT. */
2939 if (code == NEG || code == NOT)
2940 return 1;
2941
2942 default:
2943 return 0;
2944 }
2945 }
2946
2947 /* Return 1 iff it is necessary to swap operands of commutative operation
2948 in order to canonicalize expression. */
2949
2950 bool
2951 swap_commutative_operands_p (rtx x, rtx y)
2952 {
2953 return (commutative_operand_precedence (x)
2954 < commutative_operand_precedence (y));
2955 }
2956
2957 /* Return 1 if X is an autoincrement side effect and the register is
2958 not the stack pointer. */
2959 int
2960 auto_inc_p (const_rtx x)
2961 {
2962 switch (GET_CODE (x))
2963 {
2964 case PRE_INC:
2965 case POST_INC:
2966 case PRE_DEC:
2967 case POST_DEC:
2968 case PRE_MODIFY:
2969 case POST_MODIFY:
2970 /* There are no REG_INC notes for SP. */
2971 if (XEXP (x, 0) != stack_pointer_rtx)
2972 return 1;
2973 default:
2974 break;
2975 }
2976 return 0;
2977 }
2978
2979 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2980 int
2981 loc_mentioned_in_p (rtx *loc, const_rtx in)
2982 {
2983 enum rtx_code code;
2984 const char *fmt;
2985 int i, j;
2986
2987 if (!in)
2988 return 0;
2989
2990 code = GET_CODE (in);
2991 fmt = GET_RTX_FORMAT (code);
2992 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2993 {
2994 if (fmt[i] == 'e')
2995 {
2996 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
2997 return 1;
2998 }
2999 else if (fmt[i] == 'E')
3000 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3001 if (loc == &XVECEXP (in, i, j)
3002 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3003 return 1;
3004 }
3005 return 0;
3006 }
3007
3008 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3009 and SUBREG_BYTE, return the bit offset where the subreg begins
3010 (counting from the least significant bit of the operand). */
3011
3012 unsigned int
3013 subreg_lsb_1 (enum machine_mode outer_mode,
3014 enum machine_mode inner_mode,
3015 unsigned int subreg_byte)
3016 {
3017 unsigned int bitpos;
3018 unsigned int byte;
3019 unsigned int word;
3020
3021 /* A paradoxical subreg begins at bit position 0. */
3022 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3023 return 0;
3024
3025 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3026 /* If the subreg crosses a word boundary ensure that
3027 it also begins and ends on a word boundary. */
3028 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3029 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3030 && (subreg_byte % UNITS_PER_WORD
3031 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3032
3033 if (WORDS_BIG_ENDIAN)
3034 word = (GET_MODE_SIZE (inner_mode)
3035 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3036 else
3037 word = subreg_byte / UNITS_PER_WORD;
3038 bitpos = word * BITS_PER_WORD;
3039
3040 if (BYTES_BIG_ENDIAN)
3041 byte = (GET_MODE_SIZE (inner_mode)
3042 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3043 else
3044 byte = subreg_byte % UNITS_PER_WORD;
3045 bitpos += byte * BITS_PER_UNIT;
3046
3047 return bitpos;
3048 }
3049
3050 /* Given a subreg X, return the bit offset where the subreg begins
3051 (counting from the least significant bit of the reg). */
3052
3053 unsigned int
3054 subreg_lsb (const_rtx x)
3055 {
3056 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3057 SUBREG_BYTE (x));
3058 }
3059
3060 /* Fill in information about a subreg of a hard register.
3061 xregno - A regno of an inner hard subreg_reg (or what will become one).
3062 xmode - The mode of xregno.
3063 offset - The byte offset.
3064 ymode - The mode of a top level SUBREG (or what may become one).
3065 info - Pointer to structure to fill in. */
3066 static void
3067 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3068 unsigned int offset, enum machine_mode ymode,
3069 struct subreg_info *info)
3070 {
3071 int nregs_xmode, nregs_ymode;
3072 int mode_multiple, nregs_multiple;
3073 int offset_adj, y_offset, y_offset_adj;
3074 int regsize_xmode, regsize_ymode;
3075 bool rknown;
3076
3077 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3078
3079 rknown = false;
3080
3081 /* If there are holes in a non-scalar mode in registers, we expect
3082 that it is made up of its units concatenated together. */
3083 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3084 {
3085 enum machine_mode xmode_unit;
3086
3087 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3088 if (GET_MODE_INNER (xmode) == VOIDmode)
3089 xmode_unit = xmode;
3090 else
3091 xmode_unit = GET_MODE_INNER (xmode);
3092 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3093 gcc_assert (nregs_xmode
3094 == (GET_MODE_NUNITS (xmode)
3095 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3096 gcc_assert (hard_regno_nregs[xregno][xmode]
3097 == (hard_regno_nregs[xregno][xmode_unit]
3098 * GET_MODE_NUNITS (xmode)));
3099
3100 /* You can only ask for a SUBREG of a value with holes in the middle
3101 if you don't cross the holes. (Such a SUBREG should be done by
3102 picking a different register class, or doing it in memory if
3103 necessary.) An example of a value with holes is XCmode on 32-bit
3104 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3105 3 for each part, but in memory it's two 128-bit parts.
3106 Padding is assumed to be at the end (not necessarily the 'high part')
3107 of each unit. */
3108 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3109 < GET_MODE_NUNITS (xmode))
3110 && (offset / GET_MODE_SIZE (xmode_unit)
3111 != ((offset + GET_MODE_SIZE (ymode) - 1)
3112 / GET_MODE_SIZE (xmode_unit))))
3113 {
3114 info->representable_p = false;
3115 rknown = true;
3116 }
3117 }
3118 else
3119 nregs_xmode = hard_regno_nregs[xregno][xmode];
3120
3121 nregs_ymode = hard_regno_nregs[xregno][ymode];
3122
3123 /* Paradoxical subregs are otherwise valid. */
3124 if (!rknown
3125 && offset == 0
3126 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3127 {
3128 info->representable_p = true;
3129 /* If this is a big endian paradoxical subreg, which uses more
3130 actual hard registers than the original register, we must
3131 return a negative offset so that we find the proper highpart
3132 of the register. */
3133 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3134 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3135 info->offset = nregs_xmode - nregs_ymode;
3136 else
3137 info->offset = 0;
3138 info->nregs = nregs_ymode;
3139 return;
3140 }
3141
3142 /* If registers store different numbers of bits in the different
3143 modes, we cannot generally form this subreg. */
3144 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3145 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3146 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3147 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3148 {
3149 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3150 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3151 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3152 {
3153 info->representable_p = false;
3154 info->nregs
3155 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3156 info->offset = offset / regsize_xmode;
3157 return;
3158 }
3159 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3160 {
3161 info->representable_p = false;
3162 info->nregs
3163 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3164 info->offset = offset / regsize_xmode;
3165 return;
3166 }
3167 }
3168
3169 /* Lowpart subregs are otherwise valid. */
3170 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3171 {
3172 info->representable_p = true;
3173 rknown = true;
3174
3175 if (offset == 0 || nregs_xmode == nregs_ymode)
3176 {
3177 info->offset = 0;
3178 info->nregs = nregs_ymode;
3179 return;
3180 }
3181 }
3182
3183 /* This should always pass, otherwise we don't know how to verify
3184 the constraint. These conditions may be relaxed but
3185 subreg_regno_offset would need to be redesigned. */
3186 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3187 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3188
3189 /* The XMODE value can be seen as a vector of NREGS_XMODE
3190 values. The subreg must represent a lowpart of given field.
3191 Compute what field it is. */
3192 offset_adj = offset;
3193 offset_adj -= subreg_lowpart_offset (ymode,
3194 mode_for_size (GET_MODE_BITSIZE (xmode)
3195 / nregs_xmode,
3196 MODE_INT, 0));
3197
3198 /* Size of ymode must not be greater than the size of xmode. */
3199 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3200 gcc_assert (mode_multiple != 0);
3201
3202 y_offset = offset / GET_MODE_SIZE (ymode);
3203 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3204 nregs_multiple = nregs_xmode / nregs_ymode;
3205
3206 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3207 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3208
3209 if (!rknown)
3210 {
3211 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3212 rknown = true;
3213 }
3214 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3215 info->nregs = nregs_ymode;
3216 }
3217
3218 /* This function returns the regno offset of a subreg expression.
3219 xregno - A regno of an inner hard subreg_reg (or what will become one).
3220 xmode - The mode of xregno.
3221 offset - The byte offset.
3222 ymode - The mode of a top level SUBREG (or what may become one).
3223 RETURN - The regno offset which would be used. */
3224 unsigned int
3225 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3226 unsigned int offset, enum machine_mode ymode)
3227 {
3228 struct subreg_info info;
3229 subreg_get_info (xregno, xmode, offset, ymode, &info);
3230 return info.offset;
3231 }
3232
3233 /* This function returns true when the offset is representable via
3234 subreg_offset in the given regno.
3235 xregno - A regno of an inner hard subreg_reg (or what will become one).
3236 xmode - The mode of xregno.
3237 offset - The byte offset.
3238 ymode - The mode of a top level SUBREG (or what may become one).
3239 RETURN - Whether the offset is representable. */
3240 bool
3241 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3242 unsigned int offset, enum machine_mode ymode)
3243 {
3244 struct subreg_info info;
3245 subreg_get_info (xregno, xmode, offset, ymode, &info);
3246 return info.representable_p;
3247 }
3248
3249 /* Return the final regno that a subreg expression refers to. */
3250 unsigned int
3251 subreg_regno (const_rtx x)
3252 {
3253 unsigned int ret;
3254 rtx subreg = SUBREG_REG (x);
3255 int regno = REGNO (subreg);
3256
3257 ret = regno + subreg_regno_offset (regno,
3258 GET_MODE (subreg),
3259 SUBREG_BYTE (x),
3260 GET_MODE (x));
3261 return ret;
3262
3263 }
3264
3265 /* Return the number of registers that a subreg expression refers
3266 to. */
3267 unsigned int
3268 subreg_nregs (const_rtx x)
3269 {
3270 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3271 }
3272
3273 /* Return the number of registers that a subreg REG with REGNO
3274 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3275 changed so that the regno can be passed in. */
3276
3277 unsigned int
3278 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3279 {
3280 struct subreg_info info;
3281 rtx subreg = SUBREG_REG (x);
3282
3283 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3284 &info);
3285 return info.nregs;
3286 }
3287
3288
3289 struct parms_set_data
3290 {
3291 int nregs;
3292 HARD_REG_SET regs;
3293 };
3294
3295 /* Helper function for noticing stores to parameter registers. */
3296 static void
3297 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3298 {
3299 struct parms_set_data *d = data;
3300 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3301 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3302 {
3303 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3304 d->nregs--;
3305 }
3306 }
3307
3308 /* Look backward for first parameter to be loaded.
3309 Note that loads of all parameters will not necessarily be
3310 found if CSE has eliminated some of them (e.g., an argument
3311 to the outer function is passed down as a parameter).
3312 Do not skip BOUNDARY. */
3313 rtx
3314 find_first_parameter_load (rtx call_insn, rtx boundary)
3315 {
3316 struct parms_set_data parm;
3317 rtx p, before, first_set;
3318
3319 /* Since different machines initialize their parameter registers
3320 in different orders, assume nothing. Collect the set of all
3321 parameter registers. */
3322 CLEAR_HARD_REG_SET (parm.regs);
3323 parm.nregs = 0;
3324 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3325 if (GET_CODE (XEXP (p, 0)) == USE
3326 && REG_P (XEXP (XEXP (p, 0), 0)))
3327 {
3328 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3329
3330 /* We only care about registers which can hold function
3331 arguments. */
3332 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3333 continue;
3334
3335 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3336 parm.nregs++;
3337 }
3338 before = call_insn;
3339 first_set = call_insn;
3340
3341 /* Search backward for the first set of a register in this set. */
3342 while (parm.nregs && before != boundary)
3343 {
3344 before = PREV_INSN (before);
3345
3346 /* It is possible that some loads got CSEed from one call to
3347 another. Stop in that case. */
3348 if (CALL_P (before))
3349 break;
3350
3351 /* Our caller needs either ensure that we will find all sets
3352 (in case code has not been optimized yet), or take care
3353 for possible labels in a way by setting boundary to preceding
3354 CODE_LABEL. */
3355 if (LABEL_P (before))
3356 {
3357 gcc_assert (before == boundary);
3358 break;
3359 }
3360
3361 if (INSN_P (before))
3362 {
3363 int nregs_old = parm.nregs;
3364 note_stores (PATTERN (before), parms_set, &parm);
3365 /* If we found something that did not set a parameter reg,
3366 we're done. Do not keep going, as that might result
3367 in hoisting an insn before the setting of a pseudo
3368 that is used by the hoisted insn. */
3369 if (nregs_old != parm.nregs)
3370 first_set = before;
3371 else
3372 break;
3373 }
3374 }
3375 return first_set;
3376 }
3377
3378 /* Return true if we should avoid inserting code between INSN and preceding
3379 call instruction. */
3380
3381 bool
3382 keep_with_call_p (const_rtx insn)
3383 {
3384 rtx set;
3385
3386 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3387 {
3388 if (REG_P (SET_DEST (set))
3389 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3390 && fixed_regs[REGNO (SET_DEST (set))]
3391 && general_operand (SET_SRC (set), VOIDmode))
3392 return true;
3393 if (REG_P (SET_SRC (set))
3394 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3395 && REG_P (SET_DEST (set))
3396 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3397 return true;
3398 /* There may be a stack pop just after the call and before the store
3399 of the return register. Search for the actual store when deciding
3400 if we can break or not. */
3401 if (SET_DEST (set) == stack_pointer_rtx)
3402 {
3403 /* This CONST_CAST is okay because next_nonnote_insn just
3404 returns it's argument and we assign it to a const_rtx
3405 variable. */
3406 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3407 if (i2 && keep_with_call_p (i2))
3408 return true;
3409 }
3410 }
3411 return false;
3412 }
3413
3414 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3415 to non-complex jumps. That is, direct unconditional, conditional,
3416 and tablejumps, but not computed jumps or returns. It also does
3417 not apply to the fallthru case of a conditional jump. */
3418
3419 bool
3420 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3421 {
3422 rtx tmp = JUMP_LABEL (jump_insn);
3423
3424 if (label == tmp)
3425 return true;
3426
3427 if (tablejump_p (jump_insn, NULL, &tmp))
3428 {
3429 rtvec vec = XVEC (PATTERN (tmp),
3430 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3431 int i, veclen = GET_NUM_ELEM (vec);
3432
3433 for (i = 0; i < veclen; ++i)
3434 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3435 return true;
3436 }
3437
3438 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3439 return true;
3440
3441 return false;
3442 }
3443
3444 \f
3445 /* Return an estimate of the cost of computing rtx X.
3446 One use is in cse, to decide which expression to keep in the hash table.
3447 Another is in rtl generation, to pick the cheapest way to multiply.
3448 Other uses like the latter are expected in the future. */
3449
3450 int
3451 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3452 {
3453 int i, j;
3454 enum rtx_code code;
3455 const char *fmt;
3456 int total;
3457
3458 if (x == 0)
3459 return 0;
3460
3461 /* Compute the default costs of certain things.
3462 Note that targetm.rtx_costs can override the defaults. */
3463
3464 code = GET_CODE (x);
3465 switch (code)
3466 {
3467 case MULT:
3468 total = COSTS_N_INSNS (5);
3469 break;
3470 case DIV:
3471 case UDIV:
3472 case MOD:
3473 case UMOD:
3474 total = COSTS_N_INSNS (7);
3475 break;
3476 case USE:
3477 /* Used in combine.c as a marker. */
3478 total = 0;
3479 break;
3480 default:
3481 total = COSTS_N_INSNS (1);
3482 }
3483
3484 switch (code)
3485 {
3486 case REG:
3487 return 0;
3488
3489 case SUBREG:
3490 total = 0;
3491 /* If we can't tie these modes, make this expensive. The larger
3492 the mode, the more expensive it is. */
3493 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3494 return COSTS_N_INSNS (2
3495 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3496 break;
3497
3498 default:
3499 if (targetm.rtx_costs (x, code, outer_code, &total))
3500 return total;
3501 break;
3502 }
3503
3504 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3505 which is already in total. */
3506
3507 fmt = GET_RTX_FORMAT (code);
3508 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3509 if (fmt[i] == 'e')
3510 total += rtx_cost (XEXP (x, i), code);
3511 else if (fmt[i] == 'E')
3512 for (j = 0; j < XVECLEN (x, i); j++)
3513 total += rtx_cost (XVECEXP (x, i, j), code);
3514
3515 return total;
3516 }
3517 \f
3518 /* Return cost of address expression X.
3519 Expect that X is properly formed address reference. */
3520
3521 int
3522 address_cost (rtx x, enum machine_mode mode)
3523 {
3524 /* We may be asked for cost of various unusual addresses, such as operands
3525 of push instruction. It is not worthwhile to complicate writing
3526 of the target hook by such cases. */
3527
3528 if (!memory_address_p (mode, x))
3529 return 1000;
3530
3531 return targetm.address_cost (x);
3532 }
3533
3534 /* If the target doesn't override, compute the cost as with arithmetic. */
3535
3536 int
3537 default_address_cost (rtx x)
3538 {
3539 return rtx_cost (x, MEM);
3540 }
3541 \f
3542
3543 unsigned HOST_WIDE_INT
3544 nonzero_bits (const_rtx x, enum machine_mode mode)
3545 {
3546 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3547 }
3548
3549 unsigned int
3550 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3551 {
3552 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3553 }
3554
3555 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3556 It avoids exponential behavior in nonzero_bits1 when X has
3557 identical subexpressions on the first or the second level. */
3558
3559 static unsigned HOST_WIDE_INT
3560 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3561 enum machine_mode known_mode,
3562 unsigned HOST_WIDE_INT known_ret)
3563 {
3564 if (x == known_x && mode == known_mode)
3565 return known_ret;
3566
3567 /* Try to find identical subexpressions. If found call
3568 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3569 precomputed value for the subexpression as KNOWN_RET. */
3570
3571 if (ARITHMETIC_P (x))
3572 {
3573 rtx x0 = XEXP (x, 0);
3574 rtx x1 = XEXP (x, 1);
3575
3576 /* Check the first level. */
3577 if (x0 == x1)
3578 return nonzero_bits1 (x, mode, x0, mode,
3579 cached_nonzero_bits (x0, mode, known_x,
3580 known_mode, known_ret));
3581
3582 /* Check the second level. */
3583 if (ARITHMETIC_P (x0)
3584 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3585 return nonzero_bits1 (x, mode, x1, mode,
3586 cached_nonzero_bits (x1, mode, known_x,
3587 known_mode, known_ret));
3588
3589 if (ARITHMETIC_P (x1)
3590 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3591 return nonzero_bits1 (x, mode, x0, mode,
3592 cached_nonzero_bits (x0, mode, known_x,
3593 known_mode, known_ret));
3594 }
3595
3596 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3597 }
3598
3599 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3600 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3601 is less useful. We can't allow both, because that results in exponential
3602 run time recursion. There is a nullstone testcase that triggered
3603 this. This macro avoids accidental uses of num_sign_bit_copies. */
3604 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3605
3606 /* Given an expression, X, compute which bits in X can be nonzero.
3607 We don't care about bits outside of those defined in MODE.
3608
3609 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3610 an arithmetic operation, we can do better. */
3611
3612 static unsigned HOST_WIDE_INT
3613 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3614 enum machine_mode known_mode,
3615 unsigned HOST_WIDE_INT known_ret)
3616 {
3617 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3618 unsigned HOST_WIDE_INT inner_nz;
3619 enum rtx_code code;
3620 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3621
3622 /* For floating-point values, assume all bits are needed. */
3623 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3624 return nonzero;
3625
3626 /* If X is wider than MODE, use its mode instead. */
3627 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3628 {
3629 mode = GET_MODE (x);
3630 nonzero = GET_MODE_MASK (mode);
3631 mode_width = GET_MODE_BITSIZE (mode);
3632 }
3633
3634 if (mode_width > HOST_BITS_PER_WIDE_INT)
3635 /* Our only callers in this case look for single bit values. So
3636 just return the mode mask. Those tests will then be false. */
3637 return nonzero;
3638
3639 #ifndef WORD_REGISTER_OPERATIONS
3640 /* If MODE is wider than X, but both are a single word for both the host
3641 and target machines, we can compute this from which bits of the
3642 object might be nonzero in its own mode, taking into account the fact
3643 that on many CISC machines, accessing an object in a wider mode
3644 causes the high-order bits to become undefined. So they are
3645 not known to be zero. */
3646
3647 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3648 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3649 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3650 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3651 {
3652 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3653 known_x, known_mode, known_ret);
3654 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3655 return nonzero;
3656 }
3657 #endif
3658
3659 code = GET_CODE (x);
3660 switch (code)
3661 {
3662 case REG:
3663 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3664 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3665 all the bits above ptr_mode are known to be zero. */
3666 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3667 && REG_POINTER (x))
3668 nonzero &= GET_MODE_MASK (ptr_mode);
3669 #endif
3670
3671 /* Include declared information about alignment of pointers. */
3672 /* ??? We don't properly preserve REG_POINTER changes across
3673 pointer-to-integer casts, so we can't trust it except for
3674 things that we know must be pointers. See execute/960116-1.c. */
3675 if ((x == stack_pointer_rtx
3676 || x == frame_pointer_rtx
3677 || x == arg_pointer_rtx)
3678 && REGNO_POINTER_ALIGN (REGNO (x)))
3679 {
3680 unsigned HOST_WIDE_INT alignment
3681 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3682
3683 #ifdef PUSH_ROUNDING
3684 /* If PUSH_ROUNDING is defined, it is possible for the
3685 stack to be momentarily aligned only to that amount,
3686 so we pick the least alignment. */
3687 if (x == stack_pointer_rtx && PUSH_ARGS)
3688 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3689 alignment);
3690 #endif
3691
3692 nonzero &= ~(alignment - 1);
3693 }
3694
3695 {
3696 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3697 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3698 known_mode, known_ret,
3699 &nonzero_for_hook);
3700
3701 if (new)
3702 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3703 known_mode, known_ret);
3704
3705 return nonzero_for_hook;
3706 }
3707
3708 case CONST_INT:
3709 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3710 /* If X is negative in MODE, sign-extend the value. */
3711 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3712 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3713 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3714 #endif
3715
3716 return INTVAL (x);
3717
3718 case MEM:
3719 #ifdef LOAD_EXTEND_OP
3720 /* In many, if not most, RISC machines, reading a byte from memory
3721 zeros the rest of the register. Noticing that fact saves a lot
3722 of extra zero-extends. */
3723 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3724 nonzero &= GET_MODE_MASK (GET_MODE (x));
3725 #endif
3726 break;
3727
3728 case EQ: case NE:
3729 case UNEQ: case LTGT:
3730 case GT: case GTU: case UNGT:
3731 case LT: case LTU: case UNLT:
3732 case GE: case GEU: case UNGE:
3733 case LE: case LEU: case UNLE:
3734 case UNORDERED: case ORDERED:
3735 /* If this produces an integer result, we know which bits are set.
3736 Code here used to clear bits outside the mode of X, but that is
3737 now done above. */
3738 /* Mind that MODE is the mode the caller wants to look at this
3739 operation in, and not the actual operation mode. We can wind
3740 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3741 that describes the results of a vector compare. */
3742 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3743 && mode_width <= HOST_BITS_PER_WIDE_INT)
3744 nonzero = STORE_FLAG_VALUE;
3745 break;
3746
3747 case NEG:
3748 #if 0
3749 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3750 and num_sign_bit_copies. */
3751 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3752 == GET_MODE_BITSIZE (GET_MODE (x)))
3753 nonzero = 1;
3754 #endif
3755
3756 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3757 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3758 break;
3759
3760 case ABS:
3761 #if 0
3762 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3763 and num_sign_bit_copies. */
3764 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3765 == GET_MODE_BITSIZE (GET_MODE (x)))
3766 nonzero = 1;
3767 #endif
3768 break;
3769
3770 case TRUNCATE:
3771 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3772 known_x, known_mode, known_ret)
3773 & GET_MODE_MASK (mode));
3774 break;
3775
3776 case ZERO_EXTEND:
3777 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3778 known_x, known_mode, known_ret);
3779 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3780 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3781 break;
3782
3783 case SIGN_EXTEND:
3784 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3785 Otherwise, show all the bits in the outer mode but not the inner
3786 may be nonzero. */
3787 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3788 known_x, known_mode, known_ret);
3789 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3790 {
3791 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3792 if (inner_nz
3793 & (((HOST_WIDE_INT) 1
3794 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3795 inner_nz |= (GET_MODE_MASK (mode)
3796 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3797 }
3798
3799 nonzero &= inner_nz;
3800 break;
3801
3802 case AND:
3803 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3804 known_x, known_mode, known_ret)
3805 & cached_nonzero_bits (XEXP (x, 1), mode,
3806 known_x, known_mode, known_ret);
3807 break;
3808
3809 case XOR: case IOR:
3810 case UMIN: case UMAX: case SMIN: case SMAX:
3811 {
3812 unsigned HOST_WIDE_INT nonzero0 =
3813 cached_nonzero_bits (XEXP (x, 0), mode,
3814 known_x, known_mode, known_ret);
3815
3816 /* Don't call nonzero_bits for the second time if it cannot change
3817 anything. */
3818 if ((nonzero & nonzero0) != nonzero)
3819 nonzero &= nonzero0
3820 | cached_nonzero_bits (XEXP (x, 1), mode,
3821 known_x, known_mode, known_ret);
3822 }
3823 break;
3824
3825 case PLUS: case MINUS:
3826 case MULT:
3827 case DIV: case UDIV:
3828 case MOD: case UMOD:
3829 /* We can apply the rules of arithmetic to compute the number of
3830 high- and low-order zero bits of these operations. We start by
3831 computing the width (position of the highest-order nonzero bit)
3832 and the number of low-order zero bits for each value. */
3833 {
3834 unsigned HOST_WIDE_INT nz0 =
3835 cached_nonzero_bits (XEXP (x, 0), mode,
3836 known_x, known_mode, known_ret);
3837 unsigned HOST_WIDE_INT nz1 =
3838 cached_nonzero_bits (XEXP (x, 1), mode,
3839 known_x, known_mode, known_ret);
3840 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3841 int width0 = floor_log2 (nz0) + 1;
3842 int width1 = floor_log2 (nz1) + 1;
3843 int low0 = floor_log2 (nz0 & -nz0);
3844 int low1 = floor_log2 (nz1 & -nz1);
3845 HOST_WIDE_INT op0_maybe_minusp
3846 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3847 HOST_WIDE_INT op1_maybe_minusp
3848 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3849 unsigned int result_width = mode_width;
3850 int result_low = 0;
3851
3852 switch (code)
3853 {
3854 case PLUS:
3855 result_width = MAX (width0, width1) + 1;
3856 result_low = MIN (low0, low1);
3857 break;
3858 case MINUS:
3859 result_low = MIN (low0, low1);
3860 break;
3861 case MULT:
3862 result_width = width0 + width1;
3863 result_low = low0 + low1;
3864 break;
3865 case DIV:
3866 if (width1 == 0)
3867 break;
3868 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3869 result_width = width0;
3870 break;
3871 case UDIV:
3872 if (width1 == 0)
3873 break;
3874 result_width = width0;
3875 break;
3876 case MOD:
3877 if (width1 == 0)
3878 break;
3879 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3880 result_width = MIN (width0, width1);
3881 result_low = MIN (low0, low1);
3882 break;
3883 case UMOD:
3884 if (width1 == 0)
3885 break;
3886 result_width = MIN (width0, width1);
3887 result_low = MIN (low0, low1);
3888 break;
3889 default:
3890 gcc_unreachable ();
3891 }
3892
3893 if (result_width < mode_width)
3894 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3895
3896 if (result_low > 0)
3897 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3898
3899 #ifdef POINTERS_EXTEND_UNSIGNED
3900 /* If pointers extend unsigned and this is an addition or subtraction
3901 to a pointer in Pmode, all the bits above ptr_mode are known to be
3902 zero. */
3903 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3904 && (code == PLUS || code == MINUS)
3905 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3906 nonzero &= GET_MODE_MASK (ptr_mode);
3907 #endif
3908 }
3909 break;
3910
3911 case ZERO_EXTRACT:
3912 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3913 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3914 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3915 break;
3916
3917 case SUBREG:
3918 /* If this is a SUBREG formed for a promoted variable that has
3919 been zero-extended, we know that at least the high-order bits
3920 are zero, though others might be too. */
3921
3922 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3923 nonzero = GET_MODE_MASK (GET_MODE (x))
3924 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3925 known_x, known_mode, known_ret);
3926
3927 /* If the inner mode is a single word for both the host and target
3928 machines, we can compute this from which bits of the inner
3929 object might be nonzero. */
3930 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3931 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3932 <= HOST_BITS_PER_WIDE_INT))
3933 {
3934 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3935 known_x, known_mode, known_ret);
3936
3937 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3938 /* If this is a typical RISC machine, we only have to worry
3939 about the way loads are extended. */
3940 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3941 ? (((nonzero
3942 & (((unsigned HOST_WIDE_INT) 1
3943 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3944 != 0))
3945 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3946 || !MEM_P (SUBREG_REG (x)))
3947 #endif
3948 {
3949 /* On many CISC machines, accessing an object in a wider mode
3950 causes the high-order bits to become undefined. So they are
3951 not known to be zero. */
3952 if (GET_MODE_SIZE (GET_MODE (x))
3953 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3954 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3955 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3956 }
3957 }
3958 break;
3959
3960 case ASHIFTRT:
3961 case LSHIFTRT:
3962 case ASHIFT:
3963 case ROTATE:
3964 /* The nonzero bits are in two classes: any bits within MODE
3965 that aren't in GET_MODE (x) are always significant. The rest of the
3966 nonzero bits are those that are significant in the operand of
3967 the shift when shifted the appropriate number of bits. This
3968 shows that high-order bits are cleared by the right shift and
3969 low-order bits by left shifts. */
3970 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3971 && INTVAL (XEXP (x, 1)) >= 0
3972 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3973 {
3974 enum machine_mode inner_mode = GET_MODE (x);
3975 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3976 int count = INTVAL (XEXP (x, 1));
3977 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3978 unsigned HOST_WIDE_INT op_nonzero =
3979 cached_nonzero_bits (XEXP (x, 0), mode,
3980 known_x, known_mode, known_ret);
3981 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3982 unsigned HOST_WIDE_INT outer = 0;
3983
3984 if (mode_width > width)
3985 outer = (op_nonzero & nonzero & ~mode_mask);
3986
3987 if (code == LSHIFTRT)
3988 inner >>= count;
3989 else if (code == ASHIFTRT)
3990 {
3991 inner >>= count;
3992
3993 /* If the sign bit may have been nonzero before the shift, we
3994 need to mark all the places it could have been copied to
3995 by the shift as possibly nonzero. */
3996 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3997 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3998 }
3999 else if (code == ASHIFT)
4000 inner <<= count;
4001 else
4002 inner = ((inner << (count % width)
4003 | (inner >> (width - (count % width)))) & mode_mask);
4004
4005 nonzero &= (outer | inner);
4006 }
4007 break;
4008
4009 case FFS:
4010 case POPCOUNT:
4011 /* This is at most the number of bits in the mode. */
4012 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4013 break;
4014
4015 case CLZ:
4016 /* If CLZ has a known value at zero, then the nonzero bits are
4017 that value, plus the number of bits in the mode minus one. */
4018 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4019 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4020 else
4021 nonzero = -1;
4022 break;
4023
4024 case CTZ:
4025 /* If CTZ has a known value at zero, then the nonzero bits are
4026 that value, plus the number of bits in the mode minus one. */
4027 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4028 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4029 else
4030 nonzero = -1;
4031 break;
4032
4033 case PARITY:
4034 nonzero = 1;
4035 break;
4036
4037 case IF_THEN_ELSE:
4038 {
4039 unsigned HOST_WIDE_INT nonzero_true =
4040 cached_nonzero_bits (XEXP (x, 1), mode,
4041 known_x, known_mode, known_ret);
4042
4043 /* Don't call nonzero_bits for the second time if it cannot change
4044 anything. */
4045 if ((nonzero & nonzero_true) != nonzero)
4046 nonzero &= nonzero_true
4047 | cached_nonzero_bits (XEXP (x, 2), mode,
4048 known_x, known_mode, known_ret);
4049 }
4050 break;
4051
4052 default:
4053 break;
4054 }
4055
4056 return nonzero;
4057 }
4058
4059 /* See the macro definition above. */
4060 #undef cached_num_sign_bit_copies
4061
4062 \f
4063 /* The function cached_num_sign_bit_copies is a wrapper around
4064 num_sign_bit_copies1. It avoids exponential behavior in
4065 num_sign_bit_copies1 when X has identical subexpressions on the
4066 first or the second level. */
4067
4068 static unsigned int
4069 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4070 enum machine_mode known_mode,
4071 unsigned int known_ret)
4072 {
4073 if (x == known_x && mode == known_mode)
4074 return known_ret;
4075
4076 /* Try to find identical subexpressions. If found call
4077 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4078 the precomputed value for the subexpression as KNOWN_RET. */
4079
4080 if (ARITHMETIC_P (x))
4081 {
4082 rtx x0 = XEXP (x, 0);
4083 rtx x1 = XEXP (x, 1);
4084
4085 /* Check the first level. */
4086 if (x0 == x1)
4087 return
4088 num_sign_bit_copies1 (x, mode, x0, mode,
4089 cached_num_sign_bit_copies (x0, mode, known_x,
4090 known_mode,
4091 known_ret));
4092
4093 /* Check the second level. */
4094 if (ARITHMETIC_P (x0)
4095 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4096 return
4097 num_sign_bit_copies1 (x, mode, x1, mode,
4098 cached_num_sign_bit_copies (x1, mode, known_x,
4099 known_mode,
4100 known_ret));
4101
4102 if (ARITHMETIC_P (x1)
4103 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4104 return
4105 num_sign_bit_copies1 (x, mode, x0, mode,
4106 cached_num_sign_bit_copies (x0, mode, known_x,
4107 known_mode,
4108 known_ret));
4109 }
4110
4111 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4112 }
4113
4114 /* Return the number of bits at the high-order end of X that are known to
4115 be equal to the sign bit. X will be used in mode MODE; if MODE is
4116 VOIDmode, X will be used in its own mode. The returned value will always
4117 be between 1 and the number of bits in MODE. */
4118
4119 static unsigned int
4120 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4121 enum machine_mode known_mode,
4122 unsigned int known_ret)
4123 {
4124 enum rtx_code code = GET_CODE (x);
4125 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4126 int num0, num1, result;
4127 unsigned HOST_WIDE_INT nonzero;
4128
4129 /* If we weren't given a mode, use the mode of X. If the mode is still
4130 VOIDmode, we don't know anything. Likewise if one of the modes is
4131 floating-point. */
4132
4133 if (mode == VOIDmode)
4134 mode = GET_MODE (x);
4135
4136 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4137 return 1;
4138
4139 /* For a smaller object, just ignore the high bits. */
4140 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4141 {
4142 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4143 known_x, known_mode, known_ret);
4144 return MAX (1,
4145 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4146 }
4147
4148 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4149 {
4150 #ifndef WORD_REGISTER_OPERATIONS
4151 /* If this machine does not do all register operations on the entire
4152 register and MODE is wider than the mode of X, we can say nothing
4153 at all about the high-order bits. */
4154 return 1;
4155 #else
4156 /* Likewise on machines that do, if the mode of the object is smaller
4157 than a word and loads of that size don't sign extend, we can say
4158 nothing about the high order bits. */
4159 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4160 #ifdef LOAD_EXTEND_OP
4161 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4162 #endif
4163 )
4164 return 1;
4165 #endif
4166 }
4167
4168 switch (code)
4169 {
4170 case REG:
4171
4172 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4173 /* If pointers extend signed and this is a pointer in Pmode, say that
4174 all the bits above ptr_mode are known to be sign bit copies. */
4175 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4176 && REG_POINTER (x))
4177 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4178 #endif
4179
4180 {
4181 unsigned int copies_for_hook = 1, copies = 1;
4182 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4183 known_mode, known_ret,
4184 &copies_for_hook);
4185
4186 if (new)
4187 copies = cached_num_sign_bit_copies (new, mode, known_x,
4188 known_mode, known_ret);
4189
4190 if (copies > 1 || copies_for_hook > 1)
4191 return MAX (copies, copies_for_hook);
4192
4193 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4194 }
4195 break;
4196
4197 case MEM:
4198 #ifdef LOAD_EXTEND_OP
4199 /* Some RISC machines sign-extend all loads of smaller than a word. */
4200 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4201 return MAX (1, ((int) bitwidth
4202 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4203 #endif
4204 break;
4205
4206 case CONST_INT:
4207 /* If the constant is negative, take its 1's complement and remask.
4208 Then see how many zero bits we have. */
4209 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4210 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4211 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4212 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4213
4214 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4215
4216 case SUBREG:
4217 /* If this is a SUBREG for a promoted object that is sign-extended
4218 and we are looking at it in a wider mode, we know that at least the
4219 high-order bits are known to be sign bit copies. */
4220
4221 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4222 {
4223 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4224 known_x, known_mode, known_ret);
4225 return MAX ((int) bitwidth
4226 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4227 num0);
4228 }
4229
4230 /* For a smaller object, just ignore the high bits. */
4231 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4232 {
4233 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4234 known_x, known_mode, known_ret);
4235 return MAX (1, (num0
4236 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4237 - bitwidth)));
4238 }
4239
4240 #ifdef WORD_REGISTER_OPERATIONS
4241 #ifdef LOAD_EXTEND_OP
4242 /* For paradoxical SUBREGs on machines where all register operations
4243 affect the entire register, just look inside. Note that we are
4244 passing MODE to the recursive call, so the number of sign bit copies
4245 will remain relative to that mode, not the inner mode. */
4246
4247 /* This works only if loads sign extend. Otherwise, if we get a
4248 reload for the inner part, it may be loaded from the stack, and
4249 then we lose all sign bit copies that existed before the store
4250 to the stack. */
4251
4252 if ((GET_MODE_SIZE (GET_MODE (x))
4253 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4254 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4255 && MEM_P (SUBREG_REG (x)))
4256 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4257 known_x, known_mode, known_ret);
4258 #endif
4259 #endif
4260 break;
4261
4262 case SIGN_EXTRACT:
4263 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4264 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4265 break;
4266
4267 case SIGN_EXTEND:
4268 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4269 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4270 known_x, known_mode, known_ret));
4271
4272 case TRUNCATE:
4273 /* For a smaller object, just ignore the high bits. */
4274 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4275 known_x, known_mode, known_ret);
4276 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4277 - bitwidth)));
4278
4279 case NOT:
4280 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4281 known_x, known_mode, known_ret);
4282
4283 case ROTATE: case ROTATERT:
4284 /* If we are rotating left by a number of bits less than the number
4285 of sign bit copies, we can just subtract that amount from the
4286 number. */
4287 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4288 && INTVAL (XEXP (x, 1)) >= 0
4289 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4290 {
4291 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4292 known_x, known_mode, known_ret);
4293 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4294 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4295 }
4296 break;
4297
4298 case NEG:
4299 /* In general, this subtracts one sign bit copy. But if the value
4300 is known to be positive, the number of sign bit copies is the
4301 same as that of the input. Finally, if the input has just one bit
4302 that might be nonzero, all the bits are copies of the sign bit. */
4303 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4304 known_x, known_mode, known_ret);
4305 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4306 return num0 > 1 ? num0 - 1 : 1;
4307
4308 nonzero = nonzero_bits (XEXP (x, 0), mode);
4309 if (nonzero == 1)
4310 return bitwidth;
4311
4312 if (num0 > 1
4313 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4314 num0--;
4315
4316 return num0;
4317
4318 case IOR: case AND: case XOR:
4319 case SMIN: case SMAX: case UMIN: case UMAX:
4320 /* Logical operations will preserve the number of sign-bit copies.
4321 MIN and MAX operations always return one of the operands. */
4322 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4323 known_x, known_mode, known_ret);
4324 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4325 known_x, known_mode, known_ret);
4326
4327 /* If num1 is clearing some of the top bits then regardless of
4328 the other term, we are guaranteed to have at least that many
4329 high-order zero bits. */
4330 if (code == AND
4331 && num1 > 1
4332 && bitwidth <= HOST_BITS_PER_WIDE_INT
4333 && GET_CODE (XEXP (x, 1)) == CONST_INT
4334 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4335 return num1;
4336
4337 /* Similarly for IOR when setting high-order bits. */
4338 if (code == IOR
4339 && num1 > 1
4340 && bitwidth <= HOST_BITS_PER_WIDE_INT
4341 && GET_CODE (XEXP (x, 1)) == CONST_INT
4342 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4343 return num1;
4344
4345 return MIN (num0, num1);
4346
4347 case PLUS: case MINUS:
4348 /* For addition and subtraction, we can have a 1-bit carry. However,
4349 if we are subtracting 1 from a positive number, there will not
4350 be such a carry. Furthermore, if the positive number is known to
4351 be 0 or 1, we know the result is either -1 or 0. */
4352
4353 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4354 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4355 {
4356 nonzero = nonzero_bits (XEXP (x, 0), mode);
4357 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4358 return (nonzero == 1 || nonzero == 0 ? bitwidth
4359 : bitwidth - floor_log2 (nonzero) - 1);
4360 }
4361
4362 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4363 known_x, known_mode, known_ret);
4364 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4365 known_x, known_mode, known_ret);
4366 result = MAX (1, MIN (num0, num1) - 1);
4367
4368 #ifdef POINTERS_EXTEND_UNSIGNED
4369 /* If pointers extend signed and this is an addition or subtraction
4370 to a pointer in Pmode, all the bits above ptr_mode are known to be
4371 sign bit copies. */
4372 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4373 && (code == PLUS || code == MINUS)
4374 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4375 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4376 - GET_MODE_BITSIZE (ptr_mode) + 1),
4377 result);
4378 #endif
4379 return result;
4380
4381 case MULT:
4382 /* The number of bits of the product is the sum of the number of
4383 bits of both terms. However, unless one of the terms if known
4384 to be positive, we must allow for an additional bit since negating
4385 a negative number can remove one sign bit copy. */
4386
4387 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4388 known_x, known_mode, known_ret);
4389 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4390 known_x, known_mode, known_ret);
4391
4392 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4393 if (result > 0
4394 && (bitwidth > HOST_BITS_PER_WIDE_INT
4395 || (((nonzero_bits (XEXP (x, 0), mode)
4396 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4397 && ((nonzero_bits (XEXP (x, 1), mode)
4398 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4399 result--;
4400
4401 return MAX (1, result);
4402
4403 case UDIV:
4404 /* The result must be <= the first operand. If the first operand
4405 has the high bit set, we know nothing about the number of sign
4406 bit copies. */
4407 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4408 return 1;
4409 else if ((nonzero_bits (XEXP (x, 0), mode)
4410 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4411 return 1;
4412 else
4413 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4414 known_x, known_mode, known_ret);
4415
4416 case UMOD:
4417 /* The result must be <= the second operand. */
4418 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4419 known_x, known_mode, known_ret);
4420
4421 case DIV:
4422 /* Similar to unsigned division, except that we have to worry about
4423 the case where the divisor is negative, in which case we have
4424 to add 1. */
4425 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4426 known_x, known_mode, known_ret);
4427 if (result > 1
4428 && (bitwidth > HOST_BITS_PER_WIDE_INT
4429 || (nonzero_bits (XEXP (x, 1), mode)
4430 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4431 result--;
4432
4433 return result;
4434
4435 case MOD:
4436 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4437 known_x, known_mode, known_ret);
4438 if (result > 1
4439 && (bitwidth > HOST_BITS_PER_WIDE_INT
4440 || (nonzero_bits (XEXP (x, 1), mode)
4441 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4442 result--;
4443
4444 return result;
4445
4446 case ASHIFTRT:
4447 /* Shifts by a constant add to the number of bits equal to the
4448 sign bit. */
4449 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4450 known_x, known_mode, known_ret);
4451 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4452 && INTVAL (XEXP (x, 1)) > 0)
4453 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4454
4455 return num0;
4456
4457 case ASHIFT:
4458 /* Left shifts destroy copies. */
4459 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4460 || INTVAL (XEXP (x, 1)) < 0
4461 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4462 return 1;
4463
4464 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4465 known_x, known_mode, known_ret);
4466 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4467
4468 case IF_THEN_ELSE:
4469 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4470 known_x, known_mode, known_ret);
4471 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4472 known_x, known_mode, known_ret);
4473 return MIN (num0, num1);
4474
4475 case EQ: case NE: case GE: case GT: case LE: case LT:
4476 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4477 case GEU: case GTU: case LEU: case LTU:
4478 case UNORDERED: case ORDERED:
4479 /* If the constant is negative, take its 1's complement and remask.
4480 Then see how many zero bits we have. */
4481 nonzero = STORE_FLAG_VALUE;
4482 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4483 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4484 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4485
4486 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4487
4488 default:
4489 break;
4490 }
4491
4492 /* If we haven't been able to figure it out by one of the above rules,
4493 see if some of the high-order bits are known to be zero. If so,
4494 count those bits and return one less than that amount. If we can't
4495 safely compute the mask for this mode, always return BITWIDTH. */
4496
4497 bitwidth = GET_MODE_BITSIZE (mode);
4498 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4499 return 1;
4500
4501 nonzero = nonzero_bits (x, mode);
4502 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4503 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4504 }
4505
4506 /* Calculate the rtx_cost of a single instruction. A return value of
4507 zero indicates an instruction pattern without a known cost. */
4508
4509 int
4510 insn_rtx_cost (rtx pat)
4511 {
4512 int i, cost;
4513 rtx set;
4514
4515 /* Extract the single set rtx from the instruction pattern.
4516 We can't use single_set since we only have the pattern. */
4517 if (GET_CODE (pat) == SET)
4518 set = pat;
4519 else if (GET_CODE (pat) == PARALLEL)
4520 {
4521 set = NULL_RTX;
4522 for (i = 0; i < XVECLEN (pat, 0); i++)
4523 {
4524 rtx x = XVECEXP (pat, 0, i);
4525 if (GET_CODE (x) == SET)
4526 {
4527 if (set)
4528 return 0;
4529 set = x;
4530 }
4531 }
4532 if (!set)
4533 return 0;
4534 }
4535 else
4536 return 0;
4537
4538 cost = rtx_cost (SET_SRC (set), SET);
4539 return cost > 0 ? cost : COSTS_N_INSNS (1);
4540 }
4541
4542 /* Given an insn INSN and condition COND, return the condition in a
4543 canonical form to simplify testing by callers. Specifically:
4544
4545 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4546 (2) Both operands will be machine operands; (cc0) will have been replaced.
4547 (3) If an operand is a constant, it will be the second operand.
4548 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4549 for GE, GEU, and LEU.
4550
4551 If the condition cannot be understood, or is an inequality floating-point
4552 comparison which needs to be reversed, 0 will be returned.
4553
4554 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4555
4556 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4557 insn used in locating the condition was found. If a replacement test
4558 of the condition is desired, it should be placed in front of that
4559 insn and we will be sure that the inputs are still valid.
4560
4561 If WANT_REG is nonzero, we wish the condition to be relative to that
4562 register, if possible. Therefore, do not canonicalize the condition
4563 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4564 to be a compare to a CC mode register.
4565
4566 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4567 and at INSN. */
4568
4569 rtx
4570 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4571 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4572 {
4573 enum rtx_code code;
4574 rtx prev = insn;
4575 const_rtx set;
4576 rtx tem;
4577 rtx op0, op1;
4578 int reverse_code = 0;
4579 enum machine_mode mode;
4580 basic_block bb = BLOCK_FOR_INSN (insn);
4581
4582 code = GET_CODE (cond);
4583 mode = GET_MODE (cond);
4584 op0 = XEXP (cond, 0);
4585 op1 = XEXP (cond, 1);
4586
4587 if (reverse)
4588 code = reversed_comparison_code (cond, insn);
4589 if (code == UNKNOWN)
4590 return 0;
4591
4592 if (earliest)
4593 *earliest = insn;
4594
4595 /* If we are comparing a register with zero, see if the register is set
4596 in the previous insn to a COMPARE or a comparison operation. Perform
4597 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4598 in cse.c */
4599
4600 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4601 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4602 && op1 == CONST0_RTX (GET_MODE (op0))
4603 && op0 != want_reg)
4604 {
4605 /* Set nonzero when we find something of interest. */
4606 rtx x = 0;
4607
4608 #ifdef HAVE_cc0
4609 /* If comparison with cc0, import actual comparison from compare
4610 insn. */
4611 if (op0 == cc0_rtx)
4612 {
4613 if ((prev = prev_nonnote_insn (prev)) == 0
4614 || !NONJUMP_INSN_P (prev)
4615 || (set = single_set (prev)) == 0
4616 || SET_DEST (set) != cc0_rtx)
4617 return 0;
4618
4619 op0 = SET_SRC (set);
4620 op1 = CONST0_RTX (GET_MODE (op0));
4621 if (earliest)
4622 *earliest = prev;
4623 }
4624 #endif
4625
4626 /* If this is a COMPARE, pick up the two things being compared. */
4627 if (GET_CODE (op0) == COMPARE)
4628 {
4629 op1 = XEXP (op0, 1);
4630 op0 = XEXP (op0, 0);
4631 continue;
4632 }
4633 else if (!REG_P (op0))
4634 break;
4635
4636 /* Go back to the previous insn. Stop if it is not an INSN. We also
4637 stop if it isn't a single set or if it has a REG_INC note because
4638 we don't want to bother dealing with it. */
4639
4640 if ((prev = prev_nonnote_insn (prev)) == 0
4641 || !NONJUMP_INSN_P (prev)
4642 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4643 /* In cfglayout mode, there do not have to be labels at the
4644 beginning of a block, or jumps at the end, so the previous
4645 conditions would not stop us when we reach bb boundary. */
4646 || BLOCK_FOR_INSN (prev) != bb)
4647 break;
4648
4649 set = set_of (op0, prev);
4650
4651 if (set
4652 && (GET_CODE (set) != SET
4653 || !rtx_equal_p (SET_DEST (set), op0)))
4654 break;
4655
4656 /* If this is setting OP0, get what it sets it to if it looks
4657 relevant. */
4658 if (set)
4659 {
4660 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4661 #ifdef FLOAT_STORE_FLAG_VALUE
4662 REAL_VALUE_TYPE fsfv;
4663 #endif
4664
4665 /* ??? We may not combine comparisons done in a CCmode with
4666 comparisons not done in a CCmode. This is to aid targets
4667 like Alpha that have an IEEE compliant EQ instruction, and
4668 a non-IEEE compliant BEQ instruction. The use of CCmode is
4669 actually artificial, simply to prevent the combination, but
4670 should not affect other platforms.
4671
4672 However, we must allow VOIDmode comparisons to match either
4673 CCmode or non-CCmode comparison, because some ports have
4674 modeless comparisons inside branch patterns.
4675
4676 ??? This mode check should perhaps look more like the mode check
4677 in simplify_comparison in combine. */
4678
4679 if ((GET_CODE (SET_SRC (set)) == COMPARE
4680 || (((code == NE
4681 || (code == LT
4682 && GET_MODE_CLASS (inner_mode) == MODE_INT
4683 && (GET_MODE_BITSIZE (inner_mode)
4684 <= HOST_BITS_PER_WIDE_INT)
4685 && (STORE_FLAG_VALUE
4686 & ((HOST_WIDE_INT) 1
4687 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4688 #ifdef FLOAT_STORE_FLAG_VALUE
4689 || (code == LT
4690 && SCALAR_FLOAT_MODE_P (inner_mode)
4691 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4692 REAL_VALUE_NEGATIVE (fsfv)))
4693 #endif
4694 ))
4695 && COMPARISON_P (SET_SRC (set))))
4696 && (((GET_MODE_CLASS (mode) == MODE_CC)
4697 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4698 || mode == VOIDmode || inner_mode == VOIDmode))
4699 x = SET_SRC (set);
4700 else if (((code == EQ
4701 || (code == GE
4702 && (GET_MODE_BITSIZE (inner_mode)
4703 <= HOST_BITS_PER_WIDE_INT)
4704 && GET_MODE_CLASS (inner_mode) == MODE_INT
4705 && (STORE_FLAG_VALUE
4706 & ((HOST_WIDE_INT) 1
4707 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4708 #ifdef FLOAT_STORE_FLAG_VALUE
4709 || (code == GE
4710 && SCALAR_FLOAT_MODE_P (inner_mode)
4711 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4712 REAL_VALUE_NEGATIVE (fsfv)))
4713 #endif
4714 ))
4715 && COMPARISON_P (SET_SRC (set))
4716 && (((GET_MODE_CLASS (mode) == MODE_CC)
4717 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4718 || mode == VOIDmode || inner_mode == VOIDmode))
4719
4720 {
4721 reverse_code = 1;
4722 x = SET_SRC (set);
4723 }
4724 else
4725 break;
4726 }
4727
4728 else if (reg_set_p (op0, prev))
4729 /* If this sets OP0, but not directly, we have to give up. */
4730 break;
4731
4732 if (x)
4733 {
4734 /* If the caller is expecting the condition to be valid at INSN,
4735 make sure X doesn't change before INSN. */
4736 if (valid_at_insn_p)
4737 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4738 break;
4739 if (COMPARISON_P (x))
4740 code = GET_CODE (x);
4741 if (reverse_code)
4742 {
4743 code = reversed_comparison_code (x, prev);
4744 if (code == UNKNOWN)
4745 return 0;
4746 reverse_code = 0;
4747 }
4748
4749 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4750 if (earliest)
4751 *earliest = prev;
4752 }
4753 }
4754
4755 /* If constant is first, put it last. */
4756 if (CONSTANT_P (op0))
4757 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4758
4759 /* If OP0 is the result of a comparison, we weren't able to find what
4760 was really being compared, so fail. */
4761 if (!allow_cc_mode
4762 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4763 return 0;
4764
4765 /* Canonicalize any ordered comparison with integers involving equality
4766 if we can do computations in the relevant mode and we do not
4767 overflow. */
4768
4769 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4770 && GET_CODE (op1) == CONST_INT
4771 && GET_MODE (op0) != VOIDmode
4772 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4773 {
4774 HOST_WIDE_INT const_val = INTVAL (op1);
4775 unsigned HOST_WIDE_INT uconst_val = const_val;
4776 unsigned HOST_WIDE_INT max_val
4777 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4778
4779 switch (code)
4780 {
4781 case LE:
4782 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4783 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4784 break;
4785
4786 /* When cross-compiling, const_val might be sign-extended from
4787 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4788 case GE:
4789 if ((HOST_WIDE_INT) (const_val & max_val)
4790 != (((HOST_WIDE_INT) 1
4791 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4792 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4793 break;
4794
4795 case LEU:
4796 if (uconst_val < max_val)
4797 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4798 break;
4799
4800 case GEU:
4801 if (uconst_val != 0)
4802 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4803 break;
4804
4805 default:
4806 break;
4807 }
4808 }
4809
4810 /* Never return CC0; return zero instead. */
4811 if (CC0_P (op0))
4812 return 0;
4813
4814 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4815 }
4816
4817 /* Given a jump insn JUMP, return the condition that will cause it to branch
4818 to its JUMP_LABEL. If the condition cannot be understood, or is an
4819 inequality floating-point comparison which needs to be reversed, 0 will
4820 be returned.
4821
4822 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4823 insn used in locating the condition was found. If a replacement test
4824 of the condition is desired, it should be placed in front of that
4825 insn and we will be sure that the inputs are still valid. If EARLIEST
4826 is null, the returned condition will be valid at INSN.
4827
4828 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4829 compare CC mode register.
4830
4831 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4832
4833 rtx
4834 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4835 {
4836 rtx cond;
4837 int reverse;
4838 rtx set;
4839
4840 /* If this is not a standard conditional jump, we can't parse it. */
4841 if (!JUMP_P (jump)
4842 || ! any_condjump_p (jump))
4843 return 0;
4844 set = pc_set (jump);
4845
4846 cond = XEXP (SET_SRC (set), 0);
4847
4848 /* If this branches to JUMP_LABEL when the condition is false, reverse
4849 the condition. */
4850 reverse
4851 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4852 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4853
4854 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4855 allow_cc_mode, valid_at_insn_p);
4856 }
4857
4858 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4859 TARGET_MODE_REP_EXTENDED.
4860
4861 Note that we assume that the property of
4862 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4863 narrower than mode B. I.e., if A is a mode narrower than B then in
4864 order to be able to operate on it in mode B, mode A needs to
4865 satisfy the requirements set by the representation of mode B. */
4866
4867 static void
4868 init_num_sign_bit_copies_in_rep (void)
4869 {
4870 enum machine_mode mode, in_mode;
4871
4872 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4873 in_mode = GET_MODE_WIDER_MODE (mode))
4874 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4875 mode = GET_MODE_WIDER_MODE (mode))
4876 {
4877 enum machine_mode i;
4878
4879 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4880 extends to the next widest mode. */
4881 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4882 || GET_MODE_WIDER_MODE (mode) == in_mode);
4883
4884 /* We are in in_mode. Count how many bits outside of mode
4885 have to be copies of the sign-bit. */
4886 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4887 {
4888 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4889
4890 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4891 /* We can only check sign-bit copies starting from the
4892 top-bit. In order to be able to check the bits we
4893 have already seen we pretend that subsequent bits
4894 have to be sign-bit copies too. */
4895 || num_sign_bit_copies_in_rep [in_mode][mode])
4896 num_sign_bit_copies_in_rep [in_mode][mode]
4897 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4898 }
4899 }
4900 }
4901
4902 /* Suppose that truncation from the machine mode of X to MODE is not a
4903 no-op. See if there is anything special about X so that we can
4904 assume it already contains a truncated value of MODE. */
4905
4906 bool
4907 truncated_to_mode (enum machine_mode mode, const_rtx x)
4908 {
4909 /* This register has already been used in MODE without explicit
4910 truncation. */
4911 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4912 return true;
4913
4914 /* See if we already satisfy the requirements of MODE. If yes we
4915 can just switch to MODE. */
4916 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4917 && (num_sign_bit_copies (x, GET_MODE (x))
4918 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4919 return true;
4920
4921 return false;
4922 }
4923 \f
4924 /* Initialize non_rtx_starting_operands, which is used to speed up
4925 for_each_rtx. */
4926 void
4927 init_rtlanal (void)
4928 {
4929 int i;
4930 for (i = 0; i < NUM_RTX_CODE; i++)
4931 {
4932 const char *format = GET_RTX_FORMAT (i);
4933 const char *first = strpbrk (format, "eEV");
4934 non_rtx_starting_operands[i] = first ? first - format : -1;
4935 }
4936
4937 init_num_sign_bit_copies_in_rep ();
4938 }
4939 \f
4940 /* Check whether this is a constant pool constant. */
4941 bool
4942 constant_pool_constant_p (rtx x)
4943 {
4944 x = avoid_constant_pool_reference (x);
4945 return GET_CODE (x) == CONST_DOUBLE;
4946 }
4947