cfgexpand.c (expand_debug_locations): Encapsulate test for CONST_DOUBLE in macro.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011, 2012 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "hard-reg-set.h"
29 #include "rtl.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
70
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
78
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 \f
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
86
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
93
94 switch (code)
95 {
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
107
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
120
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
124
125 /* Fall through. */
126
127 default:
128 break;
129 }
130
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
134 {
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
137 }
138 else if (fmt[i] == 'E')
139 {
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
144 }
145
146 return 0;
147 }
148
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
155
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159 RTX_CODE code;
160 int i;
161 const char *fmt;
162
163 if (!x)
164 return 0;
165
166 code = GET_CODE (x);
167 switch (code)
168 {
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
180
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
198
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
205
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
209
210 /* Fall through. */
211
212 default:
213 break;
214 }
215
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
219 {
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
222 }
223 else if (fmt[i] == 'E')
224 {
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
229 }
230
231 return 0;
232 }
233
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
238
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
242 {
243 enum rtx_code code = GET_CODE (x);
244
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
248 {
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
261 }
262
263 switch (code)
264 {
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
269 {
270 tree decl;
271 HOST_WIDE_INT decl_size;
272
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
279
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
283
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
298
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300 }
301
302 return 0;
303
304 case LABEL_REF:
305 return 0;
306
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
319
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
323
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
329
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
337
338 return 1;
339
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
344
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
352
353 default:
354 break;
355 }
356
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
359 }
360
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
362
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368
369 /* Return true if X is an address that is known to not be zero. */
370
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374 const enum rtx_code code = GET_CODE (x);
375
376 switch (code)
377 {
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
380
381 case LABEL_REF:
382 return true;
383
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
395
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
398
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
407
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
416
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
420
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
426
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
429
430 default:
431 break;
432 }
433
434 /* If it isn't one of the case above, might be zero. */
435 return false;
436 }
437
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
443
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447 enum rtx_code code;
448 int i;
449 const char *fmt;
450
451 if (x == 0)
452 return 0;
453
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
461 {
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
464 }
465 else if (fmt[i] == 'E')
466 {
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
471 }
472 return 0;
473 }
474 \f
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
479
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
485
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
493 }
494
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
498
499 rtx
500 get_related_value (const_rtx x)
501 {
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
512 }
513 \f
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
516
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520 tree decl;
521
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
524
525 if (offset == 0)
526 return true;
527
528 if (offset > 0)
529 {
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
533
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
537 }
538
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
545
546 return false;
547 }
548
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
551
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555 if (GET_CODE (x) == CONST)
556 {
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 {
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
563 }
564 }
565 *base_out = x;
566 *offset_out = const0_rtx;
567 }
568 \f
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
571
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
579
580 if (x == find)
581 return 1;
582
583 code = GET_CODE (x);
584
585 switch (code)
586 {
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
597
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
603
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
608
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
613
614 default:
615 break;
616 }
617
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
620
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
622 {
623 switch (*format_ptr++)
624 {
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
628
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
633 }
634 }
635 return count;
636 }
637
638 \f
639 /* Return TRUE if OP is a register or subreg of a register that
640 holds an unsigned quantity. Otherwise, return FALSE. */
641
642 bool
643 unsigned_reg_p (rtx op)
644 {
645 if (REG_P (op)
646 && REG_EXPR (op)
647 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
648 return true;
649
650 if (GET_CODE (op) == SUBREG
651 && SUBREG_PROMOTED_UNSIGNED_P (op))
652 return true;
653
654 return false;
655 }
656
657 \f
658 /* Nonzero if register REG appears somewhere within IN.
659 Also works if REG is not a register; in this case it checks
660 for a subexpression of IN that is Lisp "equal" to REG. */
661
662 int
663 reg_mentioned_p (const_rtx reg, const_rtx in)
664 {
665 const char *fmt;
666 int i;
667 enum rtx_code code;
668
669 if (in == 0)
670 return 0;
671
672 if (reg == in)
673 return 1;
674
675 if (GET_CODE (in) == LABEL_REF)
676 return reg == XEXP (in, 0);
677
678 code = GET_CODE (in);
679
680 switch (code)
681 {
682 /* Compare registers by number. */
683 case REG:
684 return REG_P (reg) && REGNO (in) == REGNO (reg);
685
686 /* These codes have no constituent expressions
687 and are unique. */
688 case SCRATCH:
689 case CC0:
690 case PC:
691 return 0;
692
693 case CONST_INT:
694 case CONST_VECTOR:
695 case CONST_DOUBLE:
696 case CONST_FIXED:
697 /* These are kept unique for a given value. */
698 return 0;
699
700 default:
701 break;
702 }
703
704 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
705 return 1;
706
707 fmt = GET_RTX_FORMAT (code);
708
709 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
710 {
711 if (fmt[i] == 'E')
712 {
713 int j;
714 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
715 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
716 return 1;
717 }
718 else if (fmt[i] == 'e'
719 && reg_mentioned_p (reg, XEXP (in, i)))
720 return 1;
721 }
722 return 0;
723 }
724 \f
725 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
726 no CODE_LABEL insn. */
727
728 int
729 no_labels_between_p (const_rtx beg, const_rtx end)
730 {
731 rtx p;
732 if (beg == end)
733 return 0;
734 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
735 if (LABEL_P (p))
736 return 0;
737 return 1;
738 }
739
740 /* Nonzero if register REG is used in an insn between
741 FROM_INSN and TO_INSN (exclusive of those two). */
742
743 int
744 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
745 {
746 rtx insn;
747
748 if (from_insn == to_insn)
749 return 0;
750
751 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
752 if (NONDEBUG_INSN_P (insn)
753 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
754 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
755 return 1;
756 return 0;
757 }
758 \f
759 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
760 is entirely replaced by a new value and the only use is as a SET_DEST,
761 we do not consider it a reference. */
762
763 int
764 reg_referenced_p (const_rtx x, const_rtx body)
765 {
766 int i;
767
768 switch (GET_CODE (body))
769 {
770 case SET:
771 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
772 return 1;
773
774 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
775 of a REG that occupies all of the REG, the insn references X if
776 it is mentioned in the destination. */
777 if (GET_CODE (SET_DEST (body)) != CC0
778 && GET_CODE (SET_DEST (body)) != PC
779 && !REG_P (SET_DEST (body))
780 && ! (GET_CODE (SET_DEST (body)) == SUBREG
781 && REG_P (SUBREG_REG (SET_DEST (body)))
782 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
783 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
784 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
785 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
786 && reg_overlap_mentioned_p (x, SET_DEST (body)))
787 return 1;
788 return 0;
789
790 case ASM_OPERANDS:
791 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
792 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
793 return 1;
794 return 0;
795
796 case CALL:
797 case USE:
798 case IF_THEN_ELSE:
799 return reg_overlap_mentioned_p (x, body);
800
801 case TRAP_IF:
802 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
803
804 case PREFETCH:
805 return reg_overlap_mentioned_p (x, XEXP (body, 0));
806
807 case UNSPEC:
808 case UNSPEC_VOLATILE:
809 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
810 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
811 return 1;
812 return 0;
813
814 case PARALLEL:
815 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
816 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
817 return 1;
818 return 0;
819
820 case CLOBBER:
821 if (MEM_P (XEXP (body, 0)))
822 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
823 return 1;
824 return 0;
825
826 case COND_EXEC:
827 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
828 return 1;
829 return reg_referenced_p (x, COND_EXEC_CODE (body));
830
831 default:
832 return 0;
833 }
834 }
835 \f
836 /* Nonzero if register REG is set or clobbered in an insn between
837 FROM_INSN and TO_INSN (exclusive of those two). */
838
839 int
840 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
841 {
842 const_rtx insn;
843
844 if (from_insn == to_insn)
845 return 0;
846
847 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
848 if (INSN_P (insn) && reg_set_p (reg, insn))
849 return 1;
850 return 0;
851 }
852
853 /* Internals of reg_set_between_p. */
854 int
855 reg_set_p (const_rtx reg, const_rtx insn)
856 {
857 /* We can be passed an insn or part of one. If we are passed an insn,
858 check if a side-effect of the insn clobbers REG. */
859 if (INSN_P (insn)
860 && (FIND_REG_INC_NOTE (insn, reg)
861 || (CALL_P (insn)
862 && ((REG_P (reg)
863 && REGNO (reg) < FIRST_PSEUDO_REGISTER
864 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
865 GET_MODE (reg), REGNO (reg)))
866 || MEM_P (reg)
867 || find_reg_fusage (insn, CLOBBER, reg)))))
868 return 1;
869
870 return set_of (reg, insn) != NULL_RTX;
871 }
872
873 /* Similar to reg_set_between_p, but check all registers in X. Return 0
874 only if none of them are modified between START and END. Return 1 if
875 X contains a MEM; this routine does use memory aliasing. */
876
877 int
878 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
879 {
880 const enum rtx_code code = GET_CODE (x);
881 const char *fmt;
882 int i, j;
883 rtx insn;
884
885 if (start == end)
886 return 0;
887
888 switch (code)
889 {
890 case CONST_INT:
891 case CONST_DOUBLE:
892 case CONST_FIXED:
893 case CONST_VECTOR:
894 case CONST:
895 case SYMBOL_REF:
896 case LABEL_REF:
897 return 0;
898
899 case PC:
900 case CC0:
901 return 1;
902
903 case MEM:
904 if (modified_between_p (XEXP (x, 0), start, end))
905 return 1;
906 if (MEM_READONLY_P (x))
907 return 0;
908 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
909 if (memory_modified_in_insn_p (x, insn))
910 return 1;
911 return 0;
912 break;
913
914 case REG:
915 return reg_set_between_p (x, start, end);
916
917 default:
918 break;
919 }
920
921 fmt = GET_RTX_FORMAT (code);
922 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
923 {
924 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
925 return 1;
926
927 else if (fmt[i] == 'E')
928 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
929 if (modified_between_p (XVECEXP (x, i, j), start, end))
930 return 1;
931 }
932
933 return 0;
934 }
935
936 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
937 of them are modified in INSN. Return 1 if X contains a MEM; this routine
938 does use memory aliasing. */
939
940 int
941 modified_in_p (const_rtx x, const_rtx insn)
942 {
943 const enum rtx_code code = GET_CODE (x);
944 const char *fmt;
945 int i, j;
946
947 switch (code)
948 {
949 case CONST_INT:
950 case CONST_DOUBLE:
951 case CONST_FIXED:
952 case CONST_VECTOR:
953 case CONST:
954 case SYMBOL_REF:
955 case LABEL_REF:
956 return 0;
957
958 case PC:
959 case CC0:
960 return 1;
961
962 case MEM:
963 if (modified_in_p (XEXP (x, 0), insn))
964 return 1;
965 if (MEM_READONLY_P (x))
966 return 0;
967 if (memory_modified_in_insn_p (x, insn))
968 return 1;
969 return 0;
970 break;
971
972 case REG:
973 return reg_set_p (x, insn);
974
975 default:
976 break;
977 }
978
979 fmt = GET_RTX_FORMAT (code);
980 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
981 {
982 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
983 return 1;
984
985 else if (fmt[i] == 'E')
986 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
987 if (modified_in_p (XVECEXP (x, i, j), insn))
988 return 1;
989 }
990
991 return 0;
992 }
993 \f
994 /* Helper function for set_of. */
995 struct set_of_data
996 {
997 const_rtx found;
998 const_rtx pat;
999 };
1000
1001 static void
1002 set_of_1 (rtx x, const_rtx pat, void *data1)
1003 {
1004 struct set_of_data *const data = (struct set_of_data *) (data1);
1005 if (rtx_equal_p (x, data->pat)
1006 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1007 data->found = pat;
1008 }
1009
1010 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1011 (either directly or via STRICT_LOW_PART and similar modifiers). */
1012 const_rtx
1013 set_of (const_rtx pat, const_rtx insn)
1014 {
1015 struct set_of_data data;
1016 data.found = NULL_RTX;
1017 data.pat = pat;
1018 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1019 return data.found;
1020 }
1021
1022 /* This function, called through note_stores, collects sets and
1023 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1024 by DATA. */
1025 void
1026 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1027 {
1028 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1029 if (REG_P (x) && HARD_REGISTER_P (x))
1030 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1031 }
1032
1033 /* Examine INSN, and compute the set of hard registers written by it.
1034 Store it in *PSET. Should only be called after reload. */
1035 void
1036 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1037 {
1038 rtx link;
1039
1040 CLEAR_HARD_REG_SET (*pset);
1041 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1042 if (CALL_P (insn))
1043 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1044 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1045 if (REG_NOTE_KIND (link) == REG_INC)
1046 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1047 }
1048
1049 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1050 static int
1051 record_hard_reg_uses_1 (rtx *px, void *data)
1052 {
1053 rtx x = *px;
1054 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1055
1056 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1057 {
1058 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1059 while (nregs-- > 0)
1060 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1061 }
1062 return 0;
1063 }
1064
1065 /* Like record_hard_reg_sets, but called through note_uses. */
1066 void
1067 record_hard_reg_uses (rtx *px, void *data)
1068 {
1069 for_each_rtx (px, record_hard_reg_uses_1, data);
1070 }
1071 \f
1072 /* Given an INSN, return a SET expression if this insn has only a single SET.
1073 It may also have CLOBBERs, USEs, or SET whose output
1074 will not be used, which we ignore. */
1075
1076 rtx
1077 single_set_2 (const_rtx insn, const_rtx pat)
1078 {
1079 rtx set = NULL;
1080 int set_verified = 1;
1081 int i;
1082
1083 if (GET_CODE (pat) == PARALLEL)
1084 {
1085 for (i = 0; i < XVECLEN (pat, 0); i++)
1086 {
1087 rtx sub = XVECEXP (pat, 0, i);
1088 switch (GET_CODE (sub))
1089 {
1090 case USE:
1091 case CLOBBER:
1092 break;
1093
1094 case SET:
1095 /* We can consider insns having multiple sets, where all
1096 but one are dead as single set insns. In common case
1097 only single set is present in the pattern so we want
1098 to avoid checking for REG_UNUSED notes unless necessary.
1099
1100 When we reach set first time, we just expect this is
1101 the single set we are looking for and only when more
1102 sets are found in the insn, we check them. */
1103 if (!set_verified)
1104 {
1105 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1106 && !side_effects_p (set))
1107 set = NULL;
1108 else
1109 set_verified = 1;
1110 }
1111 if (!set)
1112 set = sub, set_verified = 0;
1113 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1114 || side_effects_p (sub))
1115 return NULL_RTX;
1116 break;
1117
1118 default:
1119 return NULL_RTX;
1120 }
1121 }
1122 }
1123 return set;
1124 }
1125
1126 /* Given an INSN, return nonzero if it has more than one SET, else return
1127 zero. */
1128
1129 int
1130 multiple_sets (const_rtx insn)
1131 {
1132 int found;
1133 int i;
1134
1135 /* INSN must be an insn. */
1136 if (! INSN_P (insn))
1137 return 0;
1138
1139 /* Only a PARALLEL can have multiple SETs. */
1140 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1141 {
1142 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1143 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1144 {
1145 /* If we have already found a SET, then return now. */
1146 if (found)
1147 return 1;
1148 else
1149 found = 1;
1150 }
1151 }
1152
1153 /* Either zero or one SET. */
1154 return 0;
1155 }
1156 \f
1157 /* Return nonzero if the destination of SET equals the source
1158 and there are no side effects. */
1159
1160 int
1161 set_noop_p (const_rtx set)
1162 {
1163 rtx src = SET_SRC (set);
1164 rtx dst = SET_DEST (set);
1165
1166 if (dst == pc_rtx && src == pc_rtx)
1167 return 1;
1168
1169 if (MEM_P (dst) && MEM_P (src))
1170 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1171
1172 if (GET_CODE (dst) == ZERO_EXTRACT)
1173 return rtx_equal_p (XEXP (dst, 0), src)
1174 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1175 && !side_effects_p (src);
1176
1177 if (GET_CODE (dst) == STRICT_LOW_PART)
1178 dst = XEXP (dst, 0);
1179
1180 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1181 {
1182 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1183 return 0;
1184 src = SUBREG_REG (src);
1185 dst = SUBREG_REG (dst);
1186 }
1187
1188 return (REG_P (src) && REG_P (dst)
1189 && REGNO (src) == REGNO (dst));
1190 }
1191 \f
1192 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1193 value to itself. */
1194
1195 int
1196 noop_move_p (const_rtx insn)
1197 {
1198 rtx pat = PATTERN (insn);
1199
1200 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1201 return 1;
1202
1203 /* Insns carrying these notes are useful later on. */
1204 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1205 return 0;
1206
1207 if (GET_CODE (pat) == SET && set_noop_p (pat))
1208 return 1;
1209
1210 if (GET_CODE (pat) == PARALLEL)
1211 {
1212 int i;
1213 /* If nothing but SETs of registers to themselves,
1214 this insn can also be deleted. */
1215 for (i = 0; i < XVECLEN (pat, 0); i++)
1216 {
1217 rtx tem = XVECEXP (pat, 0, i);
1218
1219 if (GET_CODE (tem) == USE
1220 || GET_CODE (tem) == CLOBBER)
1221 continue;
1222
1223 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1224 return 0;
1225 }
1226
1227 return 1;
1228 }
1229 return 0;
1230 }
1231 \f
1232
1233 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1234 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1235 If the object was modified, if we hit a partial assignment to X, or hit a
1236 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1237 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1238 be the src. */
1239
1240 rtx
1241 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1242 {
1243 rtx p;
1244
1245 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1246 p = PREV_INSN (p))
1247 if (INSN_P (p))
1248 {
1249 rtx set = single_set (p);
1250 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1251
1252 if (set && rtx_equal_p (x, SET_DEST (set)))
1253 {
1254 rtx src = SET_SRC (set);
1255
1256 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1257 src = XEXP (note, 0);
1258
1259 if ((valid_to == NULL_RTX
1260 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1261 /* Reject hard registers because we don't usually want
1262 to use them; we'd rather use a pseudo. */
1263 && (! (REG_P (src)
1264 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1265 {
1266 *pinsn = p;
1267 return src;
1268 }
1269 }
1270
1271 /* If set in non-simple way, we don't have a value. */
1272 if (reg_set_p (x, p))
1273 break;
1274 }
1275
1276 return x;
1277 }
1278 \f
1279 /* Return nonzero if register in range [REGNO, ENDREGNO)
1280 appears either explicitly or implicitly in X
1281 other than being stored into.
1282
1283 References contained within the substructure at LOC do not count.
1284 LOC may be zero, meaning don't ignore anything. */
1285
1286 int
1287 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1288 rtx *loc)
1289 {
1290 int i;
1291 unsigned int x_regno;
1292 RTX_CODE code;
1293 const char *fmt;
1294
1295 repeat:
1296 /* The contents of a REG_NONNEG note is always zero, so we must come here
1297 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1298 if (x == 0)
1299 return 0;
1300
1301 code = GET_CODE (x);
1302
1303 switch (code)
1304 {
1305 case REG:
1306 x_regno = REGNO (x);
1307
1308 /* If we modifying the stack, frame, or argument pointer, it will
1309 clobber a virtual register. In fact, we could be more precise,
1310 but it isn't worth it. */
1311 if ((x_regno == STACK_POINTER_REGNUM
1312 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1313 || x_regno == ARG_POINTER_REGNUM
1314 #endif
1315 || x_regno == FRAME_POINTER_REGNUM)
1316 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1317 return 1;
1318
1319 return endregno > x_regno && regno < END_REGNO (x);
1320
1321 case SUBREG:
1322 /* If this is a SUBREG of a hard reg, we can see exactly which
1323 registers are being modified. Otherwise, handle normally. */
1324 if (REG_P (SUBREG_REG (x))
1325 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1326 {
1327 unsigned int inner_regno = subreg_regno (x);
1328 unsigned int inner_endregno
1329 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1330 ? subreg_nregs (x) : 1);
1331
1332 return endregno > inner_regno && regno < inner_endregno;
1333 }
1334 break;
1335
1336 case CLOBBER:
1337 case SET:
1338 if (&SET_DEST (x) != loc
1339 /* Note setting a SUBREG counts as referring to the REG it is in for
1340 a pseudo but not for hard registers since we can
1341 treat each word individually. */
1342 && ((GET_CODE (SET_DEST (x)) == SUBREG
1343 && loc != &SUBREG_REG (SET_DEST (x))
1344 && REG_P (SUBREG_REG (SET_DEST (x)))
1345 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1346 && refers_to_regno_p (regno, endregno,
1347 SUBREG_REG (SET_DEST (x)), loc))
1348 || (!REG_P (SET_DEST (x))
1349 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1350 return 1;
1351
1352 if (code == CLOBBER || loc == &SET_SRC (x))
1353 return 0;
1354 x = SET_SRC (x);
1355 goto repeat;
1356
1357 default:
1358 break;
1359 }
1360
1361 /* X does not match, so try its subexpressions. */
1362
1363 fmt = GET_RTX_FORMAT (code);
1364 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1365 {
1366 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1367 {
1368 if (i == 0)
1369 {
1370 x = XEXP (x, 0);
1371 goto repeat;
1372 }
1373 else
1374 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1375 return 1;
1376 }
1377 else if (fmt[i] == 'E')
1378 {
1379 int j;
1380 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1381 if (loc != &XVECEXP (x, i, j)
1382 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1383 return 1;
1384 }
1385 }
1386 return 0;
1387 }
1388
1389 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1390 we check if any register number in X conflicts with the relevant register
1391 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1392 contains a MEM (we don't bother checking for memory addresses that can't
1393 conflict because we expect this to be a rare case. */
1394
1395 int
1396 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1397 {
1398 unsigned int regno, endregno;
1399
1400 /* If either argument is a constant, then modifying X can not
1401 affect IN. Here we look at IN, we can profitably combine
1402 CONSTANT_P (x) with the switch statement below. */
1403 if (CONSTANT_P (in))
1404 return 0;
1405
1406 recurse:
1407 switch (GET_CODE (x))
1408 {
1409 case STRICT_LOW_PART:
1410 case ZERO_EXTRACT:
1411 case SIGN_EXTRACT:
1412 /* Overly conservative. */
1413 x = XEXP (x, 0);
1414 goto recurse;
1415
1416 case SUBREG:
1417 regno = REGNO (SUBREG_REG (x));
1418 if (regno < FIRST_PSEUDO_REGISTER)
1419 regno = subreg_regno (x);
1420 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1421 ? subreg_nregs (x) : 1);
1422 goto do_reg;
1423
1424 case REG:
1425 regno = REGNO (x);
1426 endregno = END_REGNO (x);
1427 do_reg:
1428 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1429
1430 case MEM:
1431 {
1432 const char *fmt;
1433 int i;
1434
1435 if (MEM_P (in))
1436 return 1;
1437
1438 fmt = GET_RTX_FORMAT (GET_CODE (in));
1439 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1440 if (fmt[i] == 'e')
1441 {
1442 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1443 return 1;
1444 }
1445 else if (fmt[i] == 'E')
1446 {
1447 int j;
1448 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1449 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1450 return 1;
1451 }
1452
1453 return 0;
1454 }
1455
1456 case SCRATCH:
1457 case PC:
1458 case CC0:
1459 return reg_mentioned_p (x, in);
1460
1461 case PARALLEL:
1462 {
1463 int i;
1464
1465 /* If any register in here refers to it we return true. */
1466 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1467 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1468 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1469 return 1;
1470 return 0;
1471 }
1472
1473 default:
1474 gcc_assert (CONSTANT_P (x));
1475 return 0;
1476 }
1477 }
1478 \f
1479 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1480 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1481 ignored by note_stores, but passed to FUN.
1482
1483 FUN receives three arguments:
1484 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1485 2. the SET or CLOBBER rtx that does the store,
1486 3. the pointer DATA provided to note_stores.
1487
1488 If the item being stored in or clobbered is a SUBREG of a hard register,
1489 the SUBREG will be passed. */
1490
1491 void
1492 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1493 {
1494 int i;
1495
1496 if (GET_CODE (x) == COND_EXEC)
1497 x = COND_EXEC_CODE (x);
1498
1499 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1500 {
1501 rtx dest = SET_DEST (x);
1502
1503 while ((GET_CODE (dest) == SUBREG
1504 && (!REG_P (SUBREG_REG (dest))
1505 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1506 || GET_CODE (dest) == ZERO_EXTRACT
1507 || GET_CODE (dest) == STRICT_LOW_PART)
1508 dest = XEXP (dest, 0);
1509
1510 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1511 each of whose first operand is a register. */
1512 if (GET_CODE (dest) == PARALLEL)
1513 {
1514 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1515 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1516 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1517 }
1518 else
1519 (*fun) (dest, x, data);
1520 }
1521
1522 else if (GET_CODE (x) == PARALLEL)
1523 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1524 note_stores (XVECEXP (x, 0, i), fun, data);
1525 }
1526 \f
1527 /* Like notes_stores, but call FUN for each expression that is being
1528 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1529 FUN for each expression, not any interior subexpressions. FUN receives a
1530 pointer to the expression and the DATA passed to this function.
1531
1532 Note that this is not quite the same test as that done in reg_referenced_p
1533 since that considers something as being referenced if it is being
1534 partially set, while we do not. */
1535
1536 void
1537 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1538 {
1539 rtx body = *pbody;
1540 int i;
1541
1542 switch (GET_CODE (body))
1543 {
1544 case COND_EXEC:
1545 (*fun) (&COND_EXEC_TEST (body), data);
1546 note_uses (&COND_EXEC_CODE (body), fun, data);
1547 return;
1548
1549 case PARALLEL:
1550 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1551 note_uses (&XVECEXP (body, 0, i), fun, data);
1552 return;
1553
1554 case SEQUENCE:
1555 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1556 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1557 return;
1558
1559 case USE:
1560 (*fun) (&XEXP (body, 0), data);
1561 return;
1562
1563 case ASM_OPERANDS:
1564 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1565 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1566 return;
1567
1568 case TRAP_IF:
1569 (*fun) (&TRAP_CONDITION (body), data);
1570 return;
1571
1572 case PREFETCH:
1573 (*fun) (&XEXP (body, 0), data);
1574 return;
1575
1576 case UNSPEC:
1577 case UNSPEC_VOLATILE:
1578 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1579 (*fun) (&XVECEXP (body, 0, i), data);
1580 return;
1581
1582 case CLOBBER:
1583 if (MEM_P (XEXP (body, 0)))
1584 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1585 return;
1586
1587 case SET:
1588 {
1589 rtx dest = SET_DEST (body);
1590
1591 /* For sets we replace everything in source plus registers in memory
1592 expression in store and operands of a ZERO_EXTRACT. */
1593 (*fun) (&SET_SRC (body), data);
1594
1595 if (GET_CODE (dest) == ZERO_EXTRACT)
1596 {
1597 (*fun) (&XEXP (dest, 1), data);
1598 (*fun) (&XEXP (dest, 2), data);
1599 }
1600
1601 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1602 dest = XEXP (dest, 0);
1603
1604 if (MEM_P (dest))
1605 (*fun) (&XEXP (dest, 0), data);
1606 }
1607 return;
1608
1609 default:
1610 /* All the other possibilities never store. */
1611 (*fun) (pbody, data);
1612 return;
1613 }
1614 }
1615 \f
1616 /* Return nonzero if X's old contents don't survive after INSN.
1617 This will be true if X is (cc0) or if X is a register and
1618 X dies in INSN or because INSN entirely sets X.
1619
1620 "Entirely set" means set directly and not through a SUBREG, or
1621 ZERO_EXTRACT, so no trace of the old contents remains.
1622 Likewise, REG_INC does not count.
1623
1624 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1625 but for this use that makes no difference, since regs don't overlap
1626 during their lifetimes. Therefore, this function may be used
1627 at any time after deaths have been computed.
1628
1629 If REG is a hard reg that occupies multiple machine registers, this
1630 function will only return 1 if each of those registers will be replaced
1631 by INSN. */
1632
1633 int
1634 dead_or_set_p (const_rtx insn, const_rtx x)
1635 {
1636 unsigned int regno, end_regno;
1637 unsigned int i;
1638
1639 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1640 if (GET_CODE (x) == CC0)
1641 return 1;
1642
1643 gcc_assert (REG_P (x));
1644
1645 regno = REGNO (x);
1646 end_regno = END_REGNO (x);
1647 for (i = regno; i < end_regno; i++)
1648 if (! dead_or_set_regno_p (insn, i))
1649 return 0;
1650
1651 return 1;
1652 }
1653
1654 /* Return TRUE iff DEST is a register or subreg of a register and
1655 doesn't change the number of words of the inner register, and any
1656 part of the register is TEST_REGNO. */
1657
1658 static bool
1659 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1660 {
1661 unsigned int regno, endregno;
1662
1663 if (GET_CODE (dest) == SUBREG
1664 && (((GET_MODE_SIZE (GET_MODE (dest))
1665 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1666 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1667 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1668 dest = SUBREG_REG (dest);
1669
1670 if (!REG_P (dest))
1671 return false;
1672
1673 regno = REGNO (dest);
1674 endregno = END_REGNO (dest);
1675 return (test_regno >= regno && test_regno < endregno);
1676 }
1677
1678 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1679 any member matches the covers_regno_no_parallel_p criteria. */
1680
1681 static bool
1682 covers_regno_p (const_rtx dest, unsigned int test_regno)
1683 {
1684 if (GET_CODE (dest) == PARALLEL)
1685 {
1686 /* Some targets place small structures in registers for return
1687 values of functions, and those registers are wrapped in
1688 PARALLELs that we may see as the destination of a SET. */
1689 int i;
1690
1691 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1692 {
1693 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1694 if (inner != NULL_RTX
1695 && covers_regno_no_parallel_p (inner, test_regno))
1696 return true;
1697 }
1698
1699 return false;
1700 }
1701 else
1702 return covers_regno_no_parallel_p (dest, test_regno);
1703 }
1704
1705 /* Utility function for dead_or_set_p to check an individual register. */
1706
1707 int
1708 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1709 {
1710 const_rtx pattern;
1711
1712 /* See if there is a death note for something that includes TEST_REGNO. */
1713 if (find_regno_note (insn, REG_DEAD, test_regno))
1714 return 1;
1715
1716 if (CALL_P (insn)
1717 && find_regno_fusage (insn, CLOBBER, test_regno))
1718 return 1;
1719
1720 pattern = PATTERN (insn);
1721
1722 if (GET_CODE (pattern) == COND_EXEC)
1723 pattern = COND_EXEC_CODE (pattern);
1724
1725 if (GET_CODE (pattern) == SET)
1726 return covers_regno_p (SET_DEST (pattern), test_regno);
1727 else if (GET_CODE (pattern) == PARALLEL)
1728 {
1729 int i;
1730
1731 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1732 {
1733 rtx body = XVECEXP (pattern, 0, i);
1734
1735 if (GET_CODE (body) == COND_EXEC)
1736 body = COND_EXEC_CODE (body);
1737
1738 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1739 && covers_regno_p (SET_DEST (body), test_regno))
1740 return 1;
1741 }
1742 }
1743
1744 return 0;
1745 }
1746
1747 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1748 If DATUM is nonzero, look for one whose datum is DATUM. */
1749
1750 rtx
1751 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1752 {
1753 rtx link;
1754
1755 gcc_checking_assert (insn);
1756
1757 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1758 if (! INSN_P (insn))
1759 return 0;
1760 if (datum == 0)
1761 {
1762 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1763 if (REG_NOTE_KIND (link) == kind)
1764 return link;
1765 return 0;
1766 }
1767
1768 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1769 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1770 return link;
1771 return 0;
1772 }
1773
1774 /* Return the reg-note of kind KIND in insn INSN which applies to register
1775 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1776 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1777 it might be the case that the note overlaps REGNO. */
1778
1779 rtx
1780 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1781 {
1782 rtx link;
1783
1784 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1785 if (! INSN_P (insn))
1786 return 0;
1787
1788 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1789 if (REG_NOTE_KIND (link) == kind
1790 /* Verify that it is a register, so that scratch and MEM won't cause a
1791 problem here. */
1792 && REG_P (XEXP (link, 0))
1793 && REGNO (XEXP (link, 0)) <= regno
1794 && END_REGNO (XEXP (link, 0)) > regno)
1795 return link;
1796 return 0;
1797 }
1798
1799 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1800 has such a note. */
1801
1802 rtx
1803 find_reg_equal_equiv_note (const_rtx insn)
1804 {
1805 rtx link;
1806
1807 if (!INSN_P (insn))
1808 return 0;
1809
1810 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1811 if (REG_NOTE_KIND (link) == REG_EQUAL
1812 || REG_NOTE_KIND (link) == REG_EQUIV)
1813 {
1814 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1815 insns that have multiple sets. Checking single_set to
1816 make sure of this is not the proper check, as explained
1817 in the comment in set_unique_reg_note.
1818
1819 This should be changed into an assert. */
1820 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1821 return 0;
1822 return link;
1823 }
1824 return NULL;
1825 }
1826
1827 /* Check whether INSN is a single_set whose source is known to be
1828 equivalent to a constant. Return that constant if so, otherwise
1829 return null. */
1830
1831 rtx
1832 find_constant_src (const_rtx insn)
1833 {
1834 rtx note, set, x;
1835
1836 set = single_set (insn);
1837 if (set)
1838 {
1839 x = avoid_constant_pool_reference (SET_SRC (set));
1840 if (CONSTANT_P (x))
1841 return x;
1842 }
1843
1844 note = find_reg_equal_equiv_note (insn);
1845 if (note && CONSTANT_P (XEXP (note, 0)))
1846 return XEXP (note, 0);
1847
1848 return NULL_RTX;
1849 }
1850
1851 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1852 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1853
1854 int
1855 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1856 {
1857 /* If it's not a CALL_INSN, it can't possibly have a
1858 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1859 if (!CALL_P (insn))
1860 return 0;
1861
1862 gcc_assert (datum);
1863
1864 if (!REG_P (datum))
1865 {
1866 rtx link;
1867
1868 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1869 link;
1870 link = XEXP (link, 1))
1871 if (GET_CODE (XEXP (link, 0)) == code
1872 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1873 return 1;
1874 }
1875 else
1876 {
1877 unsigned int regno = REGNO (datum);
1878
1879 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1880 to pseudo registers, so don't bother checking. */
1881
1882 if (regno < FIRST_PSEUDO_REGISTER)
1883 {
1884 unsigned int end_regno = END_HARD_REGNO (datum);
1885 unsigned int i;
1886
1887 for (i = regno; i < end_regno; i++)
1888 if (find_regno_fusage (insn, code, i))
1889 return 1;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1897 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1898
1899 int
1900 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1901 {
1902 rtx link;
1903
1904 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1905 to pseudo registers, so don't bother checking. */
1906
1907 if (regno >= FIRST_PSEUDO_REGISTER
1908 || !CALL_P (insn) )
1909 return 0;
1910
1911 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1912 {
1913 rtx op, reg;
1914
1915 if (GET_CODE (op = XEXP (link, 0)) == code
1916 && REG_P (reg = XEXP (op, 0))
1917 && REGNO (reg) <= regno
1918 && END_HARD_REGNO (reg) > regno)
1919 return 1;
1920 }
1921
1922 return 0;
1923 }
1924
1925 \f
1926 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1927 stored as the pointer to the next register note. */
1928
1929 rtx
1930 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1931 {
1932 rtx note;
1933
1934 switch (kind)
1935 {
1936 case REG_CC_SETTER:
1937 case REG_CC_USER:
1938 case REG_LABEL_TARGET:
1939 case REG_LABEL_OPERAND:
1940 case REG_TM:
1941 /* These types of register notes use an INSN_LIST rather than an
1942 EXPR_LIST, so that copying is done right and dumps look
1943 better. */
1944 note = alloc_INSN_LIST (datum, list);
1945 PUT_REG_NOTE_KIND (note, kind);
1946 break;
1947
1948 default:
1949 note = alloc_EXPR_LIST (kind, datum, list);
1950 break;
1951 }
1952
1953 return note;
1954 }
1955
1956 /* Add register note with kind KIND and datum DATUM to INSN. */
1957
1958 void
1959 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1960 {
1961 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1962 }
1963
1964 /* Remove register note NOTE from the REG_NOTES of INSN. */
1965
1966 void
1967 remove_note (rtx insn, const_rtx note)
1968 {
1969 rtx link;
1970
1971 if (note == NULL_RTX)
1972 return;
1973
1974 if (REG_NOTES (insn) == note)
1975 REG_NOTES (insn) = XEXP (note, 1);
1976 else
1977 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1978 if (XEXP (link, 1) == note)
1979 {
1980 XEXP (link, 1) = XEXP (note, 1);
1981 break;
1982 }
1983
1984 switch (REG_NOTE_KIND (note))
1985 {
1986 case REG_EQUAL:
1987 case REG_EQUIV:
1988 df_notes_rescan (insn);
1989 break;
1990 default:
1991 break;
1992 }
1993 }
1994
1995 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1996
1997 void
1998 remove_reg_equal_equiv_notes (rtx insn)
1999 {
2000 rtx *loc;
2001
2002 loc = &REG_NOTES (insn);
2003 while (*loc)
2004 {
2005 enum reg_note kind = REG_NOTE_KIND (*loc);
2006 if (kind == REG_EQUAL || kind == REG_EQUIV)
2007 *loc = XEXP (*loc, 1);
2008 else
2009 loc = &XEXP (*loc, 1);
2010 }
2011 }
2012
2013 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2014
2015 void
2016 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2017 {
2018 df_ref eq_use;
2019
2020 if (!df)
2021 return;
2022
2023 /* This loop is a little tricky. We cannot just go down the chain because
2024 it is being modified by some actions in the loop. So we just iterate
2025 over the head. We plan to drain the list anyway. */
2026 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2027 {
2028 rtx insn = DF_REF_INSN (eq_use);
2029 rtx note = find_reg_equal_equiv_note (insn);
2030
2031 /* This assert is generally triggered when someone deletes a REG_EQUAL
2032 or REG_EQUIV note by hacking the list manually rather than calling
2033 remove_note. */
2034 gcc_assert (note);
2035
2036 remove_note (insn, note);
2037 }
2038 }
2039
2040 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2041 return 1 if it is found. A simple equality test is used to determine if
2042 NODE matches. */
2043
2044 int
2045 in_expr_list_p (const_rtx listp, const_rtx node)
2046 {
2047 const_rtx x;
2048
2049 for (x = listp; x; x = XEXP (x, 1))
2050 if (node == XEXP (x, 0))
2051 return 1;
2052
2053 return 0;
2054 }
2055
2056 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2057 remove that entry from the list if it is found.
2058
2059 A simple equality test is used to determine if NODE matches. */
2060
2061 void
2062 remove_node_from_expr_list (const_rtx node, rtx *listp)
2063 {
2064 rtx temp = *listp;
2065 rtx prev = NULL_RTX;
2066
2067 while (temp)
2068 {
2069 if (node == XEXP (temp, 0))
2070 {
2071 /* Splice the node out of the list. */
2072 if (prev)
2073 XEXP (prev, 1) = XEXP (temp, 1);
2074 else
2075 *listp = XEXP (temp, 1);
2076
2077 return;
2078 }
2079
2080 prev = temp;
2081 temp = XEXP (temp, 1);
2082 }
2083 }
2084 \f
2085 /* Nonzero if X contains any volatile instructions. These are instructions
2086 which may cause unpredictable machine state instructions, and thus no
2087 instructions should be moved or combined across them. This includes
2088 only volatile asms and UNSPEC_VOLATILE instructions. */
2089
2090 int
2091 volatile_insn_p (const_rtx x)
2092 {
2093 const RTX_CODE code = GET_CODE (x);
2094 switch (code)
2095 {
2096 case LABEL_REF:
2097 case SYMBOL_REF:
2098 case CONST_INT:
2099 case CONST:
2100 case CONST_DOUBLE:
2101 case CONST_FIXED:
2102 case CONST_VECTOR:
2103 case CC0:
2104 case PC:
2105 case REG:
2106 case SCRATCH:
2107 case CLOBBER:
2108 case ADDR_VEC:
2109 case ADDR_DIFF_VEC:
2110 case CALL:
2111 case MEM:
2112 return 0;
2113
2114 case UNSPEC_VOLATILE:
2115 /* case TRAP_IF: This isn't clear yet. */
2116 return 1;
2117
2118 case ASM_INPUT:
2119 case ASM_OPERANDS:
2120 if (MEM_VOLATILE_P (x))
2121 return 1;
2122
2123 default:
2124 break;
2125 }
2126
2127 /* Recursively scan the operands of this expression. */
2128
2129 {
2130 const char *const fmt = GET_RTX_FORMAT (code);
2131 int i;
2132
2133 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2134 {
2135 if (fmt[i] == 'e')
2136 {
2137 if (volatile_insn_p (XEXP (x, i)))
2138 return 1;
2139 }
2140 else if (fmt[i] == 'E')
2141 {
2142 int j;
2143 for (j = 0; j < XVECLEN (x, i); j++)
2144 if (volatile_insn_p (XVECEXP (x, i, j)))
2145 return 1;
2146 }
2147 }
2148 }
2149 return 0;
2150 }
2151
2152 /* Nonzero if X contains any volatile memory references
2153 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2154
2155 int
2156 volatile_refs_p (const_rtx x)
2157 {
2158 const RTX_CODE code = GET_CODE (x);
2159 switch (code)
2160 {
2161 case LABEL_REF:
2162 case SYMBOL_REF:
2163 case CONST_INT:
2164 case CONST:
2165 case CONST_DOUBLE:
2166 case CONST_FIXED:
2167 case CONST_VECTOR:
2168 case CC0:
2169 case PC:
2170 case REG:
2171 case SCRATCH:
2172 case CLOBBER:
2173 case ADDR_VEC:
2174 case ADDR_DIFF_VEC:
2175 return 0;
2176
2177 case UNSPEC_VOLATILE:
2178 return 1;
2179
2180 case MEM:
2181 case ASM_INPUT:
2182 case ASM_OPERANDS:
2183 if (MEM_VOLATILE_P (x))
2184 return 1;
2185
2186 default:
2187 break;
2188 }
2189
2190 /* Recursively scan the operands of this expression. */
2191
2192 {
2193 const char *const fmt = GET_RTX_FORMAT (code);
2194 int i;
2195
2196 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2197 {
2198 if (fmt[i] == 'e')
2199 {
2200 if (volatile_refs_p (XEXP (x, i)))
2201 return 1;
2202 }
2203 else if (fmt[i] == 'E')
2204 {
2205 int j;
2206 for (j = 0; j < XVECLEN (x, i); j++)
2207 if (volatile_refs_p (XVECEXP (x, i, j)))
2208 return 1;
2209 }
2210 }
2211 }
2212 return 0;
2213 }
2214
2215 /* Similar to above, except that it also rejects register pre- and post-
2216 incrementing. */
2217
2218 int
2219 side_effects_p (const_rtx x)
2220 {
2221 const RTX_CODE code = GET_CODE (x);
2222 switch (code)
2223 {
2224 case LABEL_REF:
2225 case SYMBOL_REF:
2226 case CONST_INT:
2227 case CONST:
2228 case CONST_DOUBLE:
2229 case CONST_FIXED:
2230 case CONST_VECTOR:
2231 case CC0:
2232 case PC:
2233 case REG:
2234 case SCRATCH:
2235 case ADDR_VEC:
2236 case ADDR_DIFF_VEC:
2237 case VAR_LOCATION:
2238 return 0;
2239
2240 case CLOBBER:
2241 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2242 when some combination can't be done. If we see one, don't think
2243 that we can simplify the expression. */
2244 return (GET_MODE (x) != VOIDmode);
2245
2246 case PRE_INC:
2247 case PRE_DEC:
2248 case POST_INC:
2249 case POST_DEC:
2250 case PRE_MODIFY:
2251 case POST_MODIFY:
2252 case CALL:
2253 case UNSPEC_VOLATILE:
2254 /* case TRAP_IF: This isn't clear yet. */
2255 return 1;
2256
2257 case MEM:
2258 case ASM_INPUT:
2259 case ASM_OPERANDS:
2260 if (MEM_VOLATILE_P (x))
2261 return 1;
2262
2263 default:
2264 break;
2265 }
2266
2267 /* Recursively scan the operands of this expression. */
2268
2269 {
2270 const char *fmt = GET_RTX_FORMAT (code);
2271 int i;
2272
2273 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2274 {
2275 if (fmt[i] == 'e')
2276 {
2277 if (side_effects_p (XEXP (x, i)))
2278 return 1;
2279 }
2280 else if (fmt[i] == 'E')
2281 {
2282 int j;
2283 for (j = 0; j < XVECLEN (x, i); j++)
2284 if (side_effects_p (XVECEXP (x, i, j)))
2285 return 1;
2286 }
2287 }
2288 }
2289 return 0;
2290 }
2291 \f
2292 /* Return nonzero if evaluating rtx X might cause a trap.
2293 FLAGS controls how to consider MEMs. A nonzero means the context
2294 of the access may have changed from the original, such that the
2295 address may have become invalid. */
2296
2297 int
2298 may_trap_p_1 (const_rtx x, unsigned flags)
2299 {
2300 int i;
2301 enum rtx_code code;
2302 const char *fmt;
2303
2304 /* We make no distinction currently, but this function is part of
2305 the internal target-hooks ABI so we keep the parameter as
2306 "unsigned flags". */
2307 bool code_changed = flags != 0;
2308
2309 if (x == 0)
2310 return 0;
2311 code = GET_CODE (x);
2312 switch (code)
2313 {
2314 /* Handle these cases quickly. */
2315 case CONST_INT:
2316 case CONST_DOUBLE:
2317 case CONST_FIXED:
2318 case CONST_VECTOR:
2319 case SYMBOL_REF:
2320 case LABEL_REF:
2321 case CONST:
2322 case PC:
2323 case CC0:
2324 case REG:
2325 case SCRATCH:
2326 return 0;
2327
2328 case UNSPEC:
2329 case UNSPEC_VOLATILE:
2330 return targetm.unspec_may_trap_p (x, flags);
2331
2332 case ASM_INPUT:
2333 case TRAP_IF:
2334 return 1;
2335
2336 case ASM_OPERANDS:
2337 return MEM_VOLATILE_P (x);
2338
2339 /* Memory ref can trap unless it's a static var or a stack slot. */
2340 case MEM:
2341 /* Recognize specific pattern of stack checking probes. */
2342 if (flag_stack_check
2343 && MEM_VOLATILE_P (x)
2344 && XEXP (x, 0) == stack_pointer_rtx)
2345 return 1;
2346 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2347 reference; moving it out of context such as when moving code
2348 when optimizing, might cause its address to become invalid. */
2349 code_changed
2350 || !MEM_NOTRAP_P (x))
2351 {
2352 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2353 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2354 GET_MODE (x), code_changed);
2355 }
2356
2357 return 0;
2358
2359 /* Division by a non-constant might trap. */
2360 case DIV:
2361 case MOD:
2362 case UDIV:
2363 case UMOD:
2364 if (HONOR_SNANS (GET_MODE (x)))
2365 return 1;
2366 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2367 return flag_trapping_math;
2368 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2369 return 1;
2370 break;
2371
2372 case EXPR_LIST:
2373 /* An EXPR_LIST is used to represent a function call. This
2374 certainly may trap. */
2375 return 1;
2376
2377 case GE:
2378 case GT:
2379 case LE:
2380 case LT:
2381 case LTGT:
2382 case COMPARE:
2383 /* Some floating point comparisons may trap. */
2384 if (!flag_trapping_math)
2385 break;
2386 /* ??? There is no machine independent way to check for tests that trap
2387 when COMPARE is used, though many targets do make this distinction.
2388 For instance, sparc uses CCFPE for compares which generate exceptions
2389 and CCFP for compares which do not generate exceptions. */
2390 if (HONOR_NANS (GET_MODE (x)))
2391 return 1;
2392 /* But often the compare has some CC mode, so check operand
2393 modes as well. */
2394 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2395 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2396 return 1;
2397 break;
2398
2399 case EQ:
2400 case NE:
2401 if (HONOR_SNANS (GET_MODE (x)))
2402 return 1;
2403 /* Often comparison is CC mode, so check operand modes. */
2404 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2405 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2406 return 1;
2407 break;
2408
2409 case FIX:
2410 /* Conversion of floating point might trap. */
2411 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2412 return 1;
2413 break;
2414
2415 case NEG:
2416 case ABS:
2417 case SUBREG:
2418 /* These operations don't trap even with floating point. */
2419 break;
2420
2421 default:
2422 /* Any floating arithmetic may trap. */
2423 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2424 && flag_trapping_math)
2425 return 1;
2426 }
2427
2428 fmt = GET_RTX_FORMAT (code);
2429 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2430 {
2431 if (fmt[i] == 'e')
2432 {
2433 if (may_trap_p_1 (XEXP (x, i), flags))
2434 return 1;
2435 }
2436 else if (fmt[i] == 'E')
2437 {
2438 int j;
2439 for (j = 0; j < XVECLEN (x, i); j++)
2440 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2441 return 1;
2442 }
2443 }
2444 return 0;
2445 }
2446
2447 /* Return nonzero if evaluating rtx X might cause a trap. */
2448
2449 int
2450 may_trap_p (const_rtx x)
2451 {
2452 return may_trap_p_1 (x, 0);
2453 }
2454
2455 /* Same as above, but additionally return nonzero if evaluating rtx X might
2456 cause a fault. We define a fault for the purpose of this function as a
2457 erroneous execution condition that cannot be encountered during the normal
2458 execution of a valid program; the typical example is an unaligned memory
2459 access on a strict alignment machine. The compiler guarantees that it
2460 doesn't generate code that will fault from a valid program, but this
2461 guarantee doesn't mean anything for individual instructions. Consider
2462 the following example:
2463
2464 struct S { int d; union { char *cp; int *ip; }; };
2465
2466 int foo(struct S *s)
2467 {
2468 if (s->d == 1)
2469 return *s->ip;
2470 else
2471 return *s->cp;
2472 }
2473
2474 on a strict alignment machine. In a valid program, foo will never be
2475 invoked on a structure for which d is equal to 1 and the underlying
2476 unique field of the union not aligned on a 4-byte boundary, but the
2477 expression *s->ip might cause a fault if considered individually.
2478
2479 At the RTL level, potentially problematic expressions will almost always
2480 verify may_trap_p; for example, the above dereference can be emitted as
2481 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2482 However, suppose that foo is inlined in a caller that causes s->cp to
2483 point to a local character variable and guarantees that s->d is not set
2484 to 1; foo may have been effectively translated into pseudo-RTL as:
2485
2486 if ((reg:SI) == 1)
2487 (set (reg:SI) (mem:SI (%fp - 7)))
2488 else
2489 (set (reg:QI) (mem:QI (%fp - 7)))
2490
2491 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2492 memory reference to a stack slot, but it will certainly cause a fault
2493 on a strict alignment machine. */
2494
2495 int
2496 may_trap_or_fault_p (const_rtx x)
2497 {
2498 return may_trap_p_1 (x, 1);
2499 }
2500 \f
2501 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2502 i.e., an inequality. */
2503
2504 int
2505 inequality_comparisons_p (const_rtx x)
2506 {
2507 const char *fmt;
2508 int len, i;
2509 const enum rtx_code code = GET_CODE (x);
2510
2511 switch (code)
2512 {
2513 case REG:
2514 case SCRATCH:
2515 case PC:
2516 case CC0:
2517 case CONST_INT:
2518 case CONST_DOUBLE:
2519 case CONST_FIXED:
2520 case CONST_VECTOR:
2521 case CONST:
2522 case LABEL_REF:
2523 case SYMBOL_REF:
2524 return 0;
2525
2526 case LT:
2527 case LTU:
2528 case GT:
2529 case GTU:
2530 case LE:
2531 case LEU:
2532 case GE:
2533 case GEU:
2534 return 1;
2535
2536 default:
2537 break;
2538 }
2539
2540 len = GET_RTX_LENGTH (code);
2541 fmt = GET_RTX_FORMAT (code);
2542
2543 for (i = 0; i < len; i++)
2544 {
2545 if (fmt[i] == 'e')
2546 {
2547 if (inequality_comparisons_p (XEXP (x, i)))
2548 return 1;
2549 }
2550 else if (fmt[i] == 'E')
2551 {
2552 int j;
2553 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2554 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2555 return 1;
2556 }
2557 }
2558
2559 return 0;
2560 }
2561 \f
2562 /* Replace any occurrence of FROM in X with TO. The function does
2563 not enter into CONST_DOUBLE for the replace.
2564
2565 Note that copying is not done so X must not be shared unless all copies
2566 are to be modified. */
2567
2568 rtx
2569 replace_rtx (rtx x, rtx from, rtx to)
2570 {
2571 int i, j;
2572 const char *fmt;
2573
2574 if (x == from)
2575 return to;
2576
2577 /* Allow this function to make replacements in EXPR_LISTs. */
2578 if (x == 0)
2579 return 0;
2580
2581 if (GET_CODE (x) == SUBREG)
2582 {
2583 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2584
2585 if (CONST_INT_P (new_rtx))
2586 {
2587 x = simplify_subreg (GET_MODE (x), new_rtx,
2588 GET_MODE (SUBREG_REG (x)),
2589 SUBREG_BYTE (x));
2590 gcc_assert (x);
2591 }
2592 else
2593 SUBREG_REG (x) = new_rtx;
2594
2595 return x;
2596 }
2597 else if (GET_CODE (x) == ZERO_EXTEND)
2598 {
2599 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2600
2601 if (CONST_INT_P (new_rtx))
2602 {
2603 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2604 new_rtx, GET_MODE (XEXP (x, 0)));
2605 gcc_assert (x);
2606 }
2607 else
2608 XEXP (x, 0) = new_rtx;
2609
2610 return x;
2611 }
2612
2613 fmt = GET_RTX_FORMAT (GET_CODE (x));
2614 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2615 {
2616 if (fmt[i] == 'e')
2617 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2618 else if (fmt[i] == 'E')
2619 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2620 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2621 }
2622
2623 return x;
2624 }
2625 \f
2626 /* Replace occurrences of the old label in *X with the new one.
2627 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2628
2629 int
2630 replace_label (rtx *x, void *data)
2631 {
2632 rtx l = *x;
2633 rtx old_label = ((replace_label_data *) data)->r1;
2634 rtx new_label = ((replace_label_data *) data)->r2;
2635 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2636
2637 if (l == NULL_RTX)
2638 return 0;
2639
2640 if (GET_CODE (l) == SYMBOL_REF
2641 && CONSTANT_POOL_ADDRESS_P (l))
2642 {
2643 rtx c = get_pool_constant (l);
2644 if (rtx_referenced_p (old_label, c))
2645 {
2646 rtx new_c, new_l;
2647 replace_label_data *d = (replace_label_data *) data;
2648
2649 /* Create a copy of constant C; replace the label inside
2650 but do not update LABEL_NUSES because uses in constant pool
2651 are not counted. */
2652 new_c = copy_rtx (c);
2653 d->update_label_nuses = false;
2654 for_each_rtx (&new_c, replace_label, data);
2655 d->update_label_nuses = update_label_nuses;
2656
2657 /* Add the new constant NEW_C to constant pool and replace
2658 the old reference to constant by new reference. */
2659 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2660 *x = replace_rtx (l, l, new_l);
2661 }
2662 return 0;
2663 }
2664
2665 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2666 field. This is not handled by for_each_rtx because it doesn't
2667 handle unprinted ('0') fields. */
2668 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2669 JUMP_LABEL (l) = new_label;
2670
2671 if ((GET_CODE (l) == LABEL_REF
2672 || GET_CODE (l) == INSN_LIST)
2673 && XEXP (l, 0) == old_label)
2674 {
2675 XEXP (l, 0) = new_label;
2676 if (update_label_nuses)
2677 {
2678 ++LABEL_NUSES (new_label);
2679 --LABEL_NUSES (old_label);
2680 }
2681 return 0;
2682 }
2683
2684 return 0;
2685 }
2686
2687 /* When *BODY is equal to X or X is directly referenced by *BODY
2688 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2689 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2690
2691 static int
2692 rtx_referenced_p_1 (rtx *body, void *x)
2693 {
2694 rtx y = (rtx) x;
2695
2696 if (*body == NULL_RTX)
2697 return y == NULL_RTX;
2698
2699 /* Return true if a label_ref *BODY refers to label Y. */
2700 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2701 return XEXP (*body, 0) == y;
2702
2703 /* If *BODY is a reference to pool constant traverse the constant. */
2704 if (GET_CODE (*body) == SYMBOL_REF
2705 && CONSTANT_POOL_ADDRESS_P (*body))
2706 return rtx_referenced_p (y, get_pool_constant (*body));
2707
2708 /* By default, compare the RTL expressions. */
2709 return rtx_equal_p (*body, y);
2710 }
2711
2712 /* Return true if X is referenced in BODY. */
2713
2714 int
2715 rtx_referenced_p (rtx x, rtx body)
2716 {
2717 return for_each_rtx (&body, rtx_referenced_p_1, x);
2718 }
2719
2720 /* If INSN is a tablejump return true and store the label (before jump table) to
2721 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2722
2723 bool
2724 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2725 {
2726 rtx label, table;
2727
2728 if (!JUMP_P (insn))
2729 return false;
2730
2731 label = JUMP_LABEL (insn);
2732 if (label != NULL_RTX && !ANY_RETURN_P (label)
2733 && (table = next_active_insn (label)) != NULL_RTX
2734 && JUMP_TABLE_DATA_P (table))
2735 {
2736 if (labelp)
2737 *labelp = label;
2738 if (tablep)
2739 *tablep = table;
2740 return true;
2741 }
2742 return false;
2743 }
2744
2745 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2746 constant that is not in the constant pool and not in the condition
2747 of an IF_THEN_ELSE. */
2748
2749 static int
2750 computed_jump_p_1 (const_rtx x)
2751 {
2752 const enum rtx_code code = GET_CODE (x);
2753 int i, j;
2754 const char *fmt;
2755
2756 switch (code)
2757 {
2758 case LABEL_REF:
2759 case PC:
2760 return 0;
2761
2762 case CONST:
2763 case CONST_INT:
2764 case CONST_DOUBLE:
2765 case CONST_FIXED:
2766 case CONST_VECTOR:
2767 case SYMBOL_REF:
2768 case REG:
2769 return 1;
2770
2771 case MEM:
2772 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2773 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2774
2775 case IF_THEN_ELSE:
2776 return (computed_jump_p_1 (XEXP (x, 1))
2777 || computed_jump_p_1 (XEXP (x, 2)));
2778
2779 default:
2780 break;
2781 }
2782
2783 fmt = GET_RTX_FORMAT (code);
2784 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2785 {
2786 if (fmt[i] == 'e'
2787 && computed_jump_p_1 (XEXP (x, i)))
2788 return 1;
2789
2790 else if (fmt[i] == 'E')
2791 for (j = 0; j < XVECLEN (x, i); j++)
2792 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2793 return 1;
2794 }
2795
2796 return 0;
2797 }
2798
2799 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2800
2801 Tablejumps and casesi insns are not considered indirect jumps;
2802 we can recognize them by a (use (label_ref)). */
2803
2804 int
2805 computed_jump_p (const_rtx insn)
2806 {
2807 int i;
2808 if (JUMP_P (insn))
2809 {
2810 rtx pat = PATTERN (insn);
2811
2812 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2813 if (JUMP_LABEL (insn) != NULL)
2814 return 0;
2815
2816 if (GET_CODE (pat) == PARALLEL)
2817 {
2818 int len = XVECLEN (pat, 0);
2819 int has_use_labelref = 0;
2820
2821 for (i = len - 1; i >= 0; i--)
2822 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2823 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2824 == LABEL_REF))
2825 has_use_labelref = 1;
2826
2827 if (! has_use_labelref)
2828 for (i = len - 1; i >= 0; i--)
2829 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2830 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2831 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2832 return 1;
2833 }
2834 else if (GET_CODE (pat) == SET
2835 && SET_DEST (pat) == pc_rtx
2836 && computed_jump_p_1 (SET_SRC (pat)))
2837 return 1;
2838 }
2839 return 0;
2840 }
2841
2842 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2843 calls. Processes the subexpressions of EXP and passes them to F. */
2844 static int
2845 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2846 {
2847 int result, i, j;
2848 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2849 rtx *x;
2850
2851 for (; format[n] != '\0'; n++)
2852 {
2853 switch (format[n])
2854 {
2855 case 'e':
2856 /* Call F on X. */
2857 x = &XEXP (exp, n);
2858 result = (*f) (x, data);
2859 if (result == -1)
2860 /* Do not traverse sub-expressions. */
2861 continue;
2862 else if (result != 0)
2863 /* Stop the traversal. */
2864 return result;
2865
2866 if (*x == NULL_RTX)
2867 /* There are no sub-expressions. */
2868 continue;
2869
2870 i = non_rtx_starting_operands[GET_CODE (*x)];
2871 if (i >= 0)
2872 {
2873 result = for_each_rtx_1 (*x, i, f, data);
2874 if (result != 0)
2875 return result;
2876 }
2877 break;
2878
2879 case 'V':
2880 case 'E':
2881 if (XVEC (exp, n) == 0)
2882 continue;
2883 for (j = 0; j < XVECLEN (exp, n); ++j)
2884 {
2885 /* Call F on X. */
2886 x = &XVECEXP (exp, n, j);
2887 result = (*f) (x, data);
2888 if (result == -1)
2889 /* Do not traverse sub-expressions. */
2890 continue;
2891 else if (result != 0)
2892 /* Stop the traversal. */
2893 return result;
2894
2895 if (*x == NULL_RTX)
2896 /* There are no sub-expressions. */
2897 continue;
2898
2899 i = non_rtx_starting_operands[GET_CODE (*x)];
2900 if (i >= 0)
2901 {
2902 result = for_each_rtx_1 (*x, i, f, data);
2903 if (result != 0)
2904 return result;
2905 }
2906 }
2907 break;
2908
2909 default:
2910 /* Nothing to do. */
2911 break;
2912 }
2913 }
2914
2915 return 0;
2916 }
2917
2918 /* Traverse X via depth-first search, calling F for each
2919 sub-expression (including X itself). F is also passed the DATA.
2920 If F returns -1, do not traverse sub-expressions, but continue
2921 traversing the rest of the tree. If F ever returns any other
2922 nonzero value, stop the traversal, and return the value returned
2923 by F. Otherwise, return 0. This function does not traverse inside
2924 tree structure that contains RTX_EXPRs, or into sub-expressions
2925 whose format code is `0' since it is not known whether or not those
2926 codes are actually RTL.
2927
2928 This routine is very general, and could (should?) be used to
2929 implement many of the other routines in this file. */
2930
2931 int
2932 for_each_rtx (rtx *x, rtx_function f, void *data)
2933 {
2934 int result;
2935 int i;
2936
2937 /* Call F on X. */
2938 result = (*f) (x, data);
2939 if (result == -1)
2940 /* Do not traverse sub-expressions. */
2941 return 0;
2942 else if (result != 0)
2943 /* Stop the traversal. */
2944 return result;
2945
2946 if (*x == NULL_RTX)
2947 /* There are no sub-expressions. */
2948 return 0;
2949
2950 i = non_rtx_starting_operands[GET_CODE (*x)];
2951 if (i < 0)
2952 return 0;
2953
2954 return for_each_rtx_1 (*x, i, f, data);
2955 }
2956
2957 \f
2958
2959 /* Data structure that holds the internal state communicated between
2960 for_each_inc_dec, for_each_inc_dec_find_mem and
2961 for_each_inc_dec_find_inc_dec. */
2962
2963 struct for_each_inc_dec_ops {
2964 /* The function to be called for each autoinc operation found. */
2965 for_each_inc_dec_fn fn;
2966 /* The opaque argument to be passed to it. */
2967 void *arg;
2968 /* The MEM we're visiting, if any. */
2969 rtx mem;
2970 };
2971
2972 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2973
2974 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2975 operands of the equivalent add insn and pass the result to the
2976 operator specified by *D. */
2977
2978 static int
2979 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2980 {
2981 rtx x = *r;
2982 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2983
2984 switch (GET_CODE (x))
2985 {
2986 case PRE_INC:
2987 case POST_INC:
2988 {
2989 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2990 rtx r1 = XEXP (x, 0);
2991 rtx c = gen_int_mode (size, GET_MODE (r1));
2992 return data->fn (data->mem, x, r1, r1, c, data->arg);
2993 }
2994
2995 case PRE_DEC:
2996 case POST_DEC:
2997 {
2998 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2999 rtx r1 = XEXP (x, 0);
3000 rtx c = gen_int_mode (-size, GET_MODE (r1));
3001 return data->fn (data->mem, x, r1, r1, c, data->arg);
3002 }
3003
3004 case PRE_MODIFY:
3005 case POST_MODIFY:
3006 {
3007 rtx r1 = XEXP (x, 0);
3008 rtx add = XEXP (x, 1);
3009 return data->fn (data->mem, x, r1, add, NULL, data->arg);
3010 }
3011
3012 case MEM:
3013 {
3014 rtx save = data->mem;
3015 int ret = for_each_inc_dec_find_mem (r, d);
3016 data->mem = save;
3017 return ret;
3018 }
3019
3020 default:
3021 return 0;
3022 }
3023 }
3024
3025 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3026 address, extract the operands of the equivalent add insn and pass
3027 the result to the operator specified by *D. */
3028
3029 static int
3030 for_each_inc_dec_find_mem (rtx *r, void *d)
3031 {
3032 rtx x = *r;
3033 if (x != NULL_RTX && MEM_P (x))
3034 {
3035 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3036 int result;
3037
3038 data->mem = x;
3039
3040 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3041 data);
3042 if (result)
3043 return result;
3044
3045 return -1;
3046 }
3047 return 0;
3048 }
3049
3050 /* Traverse *X looking for MEMs, and for autoinc operations within
3051 them. For each such autoinc operation found, call FN, passing it
3052 the innermost enclosing MEM, the operation itself, the RTX modified
3053 by the operation, two RTXs (the second may be NULL) that, once
3054 added, represent the value to be held by the modified RTX
3055 afterwards, and ARG. FN is to return -1 to skip looking for other
3056 autoinc operations within the visited operation, 0 to continue the
3057 traversal, or any other value to have it returned to the caller of
3058 for_each_inc_dec. */
3059
3060 int
3061 for_each_inc_dec (rtx *x,
3062 for_each_inc_dec_fn fn,
3063 void *arg)
3064 {
3065 struct for_each_inc_dec_ops data;
3066
3067 data.fn = fn;
3068 data.arg = arg;
3069 data.mem = NULL;
3070
3071 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3072 }
3073
3074 \f
3075 /* Searches X for any reference to REGNO, returning the rtx of the
3076 reference found if any. Otherwise, returns NULL_RTX. */
3077
3078 rtx
3079 regno_use_in (unsigned int regno, rtx x)
3080 {
3081 const char *fmt;
3082 int i, j;
3083 rtx tem;
3084
3085 if (REG_P (x) && REGNO (x) == regno)
3086 return x;
3087
3088 fmt = GET_RTX_FORMAT (GET_CODE (x));
3089 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3090 {
3091 if (fmt[i] == 'e')
3092 {
3093 if ((tem = regno_use_in (regno, XEXP (x, i))))
3094 return tem;
3095 }
3096 else if (fmt[i] == 'E')
3097 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3098 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3099 return tem;
3100 }
3101
3102 return NULL_RTX;
3103 }
3104
3105 /* Return a value indicating whether OP, an operand of a commutative
3106 operation, is preferred as the first or second operand. The higher
3107 the value, the stronger the preference for being the first operand.
3108 We use negative values to indicate a preference for the first operand
3109 and positive values for the second operand. */
3110
3111 int
3112 commutative_operand_precedence (rtx op)
3113 {
3114 enum rtx_code code = GET_CODE (op);
3115
3116 /* Constants always come the second operand. Prefer "nice" constants. */
3117 if (code == CONST_INT)
3118 return -8;
3119 if (code == CONST_DOUBLE)
3120 return -7;
3121 if (code == CONST_FIXED)
3122 return -7;
3123 op = avoid_constant_pool_reference (op);
3124 code = GET_CODE (op);
3125
3126 switch (GET_RTX_CLASS (code))
3127 {
3128 case RTX_CONST_OBJ:
3129 if (code == CONST_INT)
3130 return -6;
3131 if (code == CONST_DOUBLE)
3132 return -5;
3133 if (code == CONST_FIXED)
3134 return -5;
3135 return -4;
3136
3137 case RTX_EXTRA:
3138 /* SUBREGs of objects should come second. */
3139 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3140 return -3;
3141 return 0;
3142
3143 case RTX_OBJ:
3144 /* Complex expressions should be the first, so decrease priority
3145 of objects. Prefer pointer objects over non pointer objects. */
3146 if ((REG_P (op) && REG_POINTER (op))
3147 || (MEM_P (op) && MEM_POINTER (op)))
3148 return -1;
3149 return -2;
3150
3151 case RTX_COMM_ARITH:
3152 /* Prefer operands that are themselves commutative to be first.
3153 This helps to make things linear. In particular,
3154 (and (and (reg) (reg)) (not (reg))) is canonical. */
3155 return 4;
3156
3157 case RTX_BIN_ARITH:
3158 /* If only one operand is a binary expression, it will be the first
3159 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3160 is canonical, although it will usually be further simplified. */
3161 return 2;
3162
3163 case RTX_UNARY:
3164 /* Then prefer NEG and NOT. */
3165 if (code == NEG || code == NOT)
3166 return 1;
3167
3168 default:
3169 return 0;
3170 }
3171 }
3172
3173 /* Return 1 iff it is necessary to swap operands of commutative operation
3174 in order to canonicalize expression. */
3175
3176 bool
3177 swap_commutative_operands_p (rtx x, rtx y)
3178 {
3179 return (commutative_operand_precedence (x)
3180 < commutative_operand_precedence (y));
3181 }
3182
3183 /* Return 1 if X is an autoincrement side effect and the register is
3184 not the stack pointer. */
3185 int
3186 auto_inc_p (const_rtx x)
3187 {
3188 switch (GET_CODE (x))
3189 {
3190 case PRE_INC:
3191 case POST_INC:
3192 case PRE_DEC:
3193 case POST_DEC:
3194 case PRE_MODIFY:
3195 case POST_MODIFY:
3196 /* There are no REG_INC notes for SP. */
3197 if (XEXP (x, 0) != stack_pointer_rtx)
3198 return 1;
3199 default:
3200 break;
3201 }
3202 return 0;
3203 }
3204
3205 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3206 int
3207 loc_mentioned_in_p (rtx *loc, const_rtx in)
3208 {
3209 enum rtx_code code;
3210 const char *fmt;
3211 int i, j;
3212
3213 if (!in)
3214 return 0;
3215
3216 code = GET_CODE (in);
3217 fmt = GET_RTX_FORMAT (code);
3218 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3219 {
3220 if (fmt[i] == 'e')
3221 {
3222 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3223 return 1;
3224 }
3225 else if (fmt[i] == 'E')
3226 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3227 if (loc == &XVECEXP (in, i, j)
3228 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3229 return 1;
3230 }
3231 return 0;
3232 }
3233
3234 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3235 and SUBREG_BYTE, return the bit offset where the subreg begins
3236 (counting from the least significant bit of the operand). */
3237
3238 unsigned int
3239 subreg_lsb_1 (enum machine_mode outer_mode,
3240 enum machine_mode inner_mode,
3241 unsigned int subreg_byte)
3242 {
3243 unsigned int bitpos;
3244 unsigned int byte;
3245 unsigned int word;
3246
3247 /* A paradoxical subreg begins at bit position 0. */
3248 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3249 return 0;
3250
3251 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3252 /* If the subreg crosses a word boundary ensure that
3253 it also begins and ends on a word boundary. */
3254 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3255 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3256 && (subreg_byte % UNITS_PER_WORD
3257 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3258
3259 if (WORDS_BIG_ENDIAN)
3260 word = (GET_MODE_SIZE (inner_mode)
3261 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3262 else
3263 word = subreg_byte / UNITS_PER_WORD;
3264 bitpos = word * BITS_PER_WORD;
3265
3266 if (BYTES_BIG_ENDIAN)
3267 byte = (GET_MODE_SIZE (inner_mode)
3268 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3269 else
3270 byte = subreg_byte % UNITS_PER_WORD;
3271 bitpos += byte * BITS_PER_UNIT;
3272
3273 return bitpos;
3274 }
3275
3276 /* Given a subreg X, return the bit offset where the subreg begins
3277 (counting from the least significant bit of the reg). */
3278
3279 unsigned int
3280 subreg_lsb (const_rtx x)
3281 {
3282 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3283 SUBREG_BYTE (x));
3284 }
3285
3286 /* Fill in information about a subreg of a hard register.
3287 xregno - A regno of an inner hard subreg_reg (or what will become one).
3288 xmode - The mode of xregno.
3289 offset - The byte offset.
3290 ymode - The mode of a top level SUBREG (or what may become one).
3291 info - Pointer to structure to fill in. */
3292 void
3293 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3294 unsigned int offset, enum machine_mode ymode,
3295 struct subreg_info *info)
3296 {
3297 int nregs_xmode, nregs_ymode;
3298 int mode_multiple, nregs_multiple;
3299 int offset_adj, y_offset, y_offset_adj;
3300 int regsize_xmode, regsize_ymode;
3301 bool rknown;
3302
3303 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3304
3305 rknown = false;
3306
3307 /* If there are holes in a non-scalar mode in registers, we expect
3308 that it is made up of its units concatenated together. */
3309 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3310 {
3311 enum machine_mode xmode_unit;
3312
3313 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3314 if (GET_MODE_INNER (xmode) == VOIDmode)
3315 xmode_unit = xmode;
3316 else
3317 xmode_unit = GET_MODE_INNER (xmode);
3318 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3319 gcc_assert (nregs_xmode
3320 == (GET_MODE_NUNITS (xmode)
3321 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3322 gcc_assert (hard_regno_nregs[xregno][xmode]
3323 == (hard_regno_nregs[xregno][xmode_unit]
3324 * GET_MODE_NUNITS (xmode)));
3325
3326 /* You can only ask for a SUBREG of a value with holes in the middle
3327 if you don't cross the holes. (Such a SUBREG should be done by
3328 picking a different register class, or doing it in memory if
3329 necessary.) An example of a value with holes is XCmode on 32-bit
3330 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3331 3 for each part, but in memory it's two 128-bit parts.
3332 Padding is assumed to be at the end (not necessarily the 'high part')
3333 of each unit. */
3334 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3335 < GET_MODE_NUNITS (xmode))
3336 && (offset / GET_MODE_SIZE (xmode_unit)
3337 != ((offset + GET_MODE_SIZE (ymode) - 1)
3338 / GET_MODE_SIZE (xmode_unit))))
3339 {
3340 info->representable_p = false;
3341 rknown = true;
3342 }
3343 }
3344 else
3345 nregs_xmode = hard_regno_nregs[xregno][xmode];
3346
3347 nregs_ymode = hard_regno_nregs[xregno][ymode];
3348
3349 /* Paradoxical subregs are otherwise valid. */
3350 if (!rknown
3351 && offset == 0
3352 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3353 {
3354 info->representable_p = true;
3355 /* If this is a big endian paradoxical subreg, which uses more
3356 actual hard registers than the original register, we must
3357 return a negative offset so that we find the proper highpart
3358 of the register. */
3359 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3360 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3361 info->offset = nregs_xmode - nregs_ymode;
3362 else
3363 info->offset = 0;
3364 info->nregs = nregs_ymode;
3365 return;
3366 }
3367
3368 /* If registers store different numbers of bits in the different
3369 modes, we cannot generally form this subreg. */
3370 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3371 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3372 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3373 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3374 {
3375 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3376 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3377 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3378 {
3379 info->representable_p = false;
3380 info->nregs
3381 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3382 info->offset = offset / regsize_xmode;
3383 return;
3384 }
3385 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3386 {
3387 info->representable_p = false;
3388 info->nregs
3389 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3390 info->offset = offset / regsize_xmode;
3391 return;
3392 }
3393 }
3394
3395 /* Lowpart subregs are otherwise valid. */
3396 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3397 {
3398 info->representable_p = true;
3399 rknown = true;
3400
3401 if (offset == 0 || nregs_xmode == nregs_ymode)
3402 {
3403 info->offset = 0;
3404 info->nregs = nregs_ymode;
3405 return;
3406 }
3407 }
3408
3409 /* This should always pass, otherwise we don't know how to verify
3410 the constraint. These conditions may be relaxed but
3411 subreg_regno_offset would need to be redesigned. */
3412 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3413 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3414
3415 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3416 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3417 {
3418 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3419 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3420 HOST_WIDE_INT off_low = offset & (ysize - 1);
3421 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3422 offset = (xsize - ysize - off_high) | off_low;
3423 }
3424 /* The XMODE value can be seen as a vector of NREGS_XMODE
3425 values. The subreg must represent a lowpart of given field.
3426 Compute what field it is. */
3427 offset_adj = offset;
3428 offset_adj -= subreg_lowpart_offset (ymode,
3429 mode_for_size (GET_MODE_BITSIZE (xmode)
3430 / nregs_xmode,
3431 MODE_INT, 0));
3432
3433 /* Size of ymode must not be greater than the size of xmode. */
3434 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3435 gcc_assert (mode_multiple != 0);
3436
3437 y_offset = offset / GET_MODE_SIZE (ymode);
3438 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3439 nregs_multiple = nregs_xmode / nregs_ymode;
3440
3441 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3442 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3443
3444 if (!rknown)
3445 {
3446 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3447 rknown = true;
3448 }
3449 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3450 info->nregs = nregs_ymode;
3451 }
3452
3453 /* This function returns the regno offset of a subreg expression.
3454 xregno - A regno of an inner hard subreg_reg (or what will become one).
3455 xmode - The mode of xregno.
3456 offset - The byte offset.
3457 ymode - The mode of a top level SUBREG (or what may become one).
3458 RETURN - The regno offset which would be used. */
3459 unsigned int
3460 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3461 unsigned int offset, enum machine_mode ymode)
3462 {
3463 struct subreg_info info;
3464 subreg_get_info (xregno, xmode, offset, ymode, &info);
3465 return info.offset;
3466 }
3467
3468 /* This function returns true when the offset is representable via
3469 subreg_offset in the given regno.
3470 xregno - A regno of an inner hard subreg_reg (or what will become one).
3471 xmode - The mode of xregno.
3472 offset - The byte offset.
3473 ymode - The mode of a top level SUBREG (or what may become one).
3474 RETURN - Whether the offset is representable. */
3475 bool
3476 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3477 unsigned int offset, enum machine_mode ymode)
3478 {
3479 struct subreg_info info;
3480 subreg_get_info (xregno, xmode, offset, ymode, &info);
3481 return info.representable_p;
3482 }
3483
3484 /* Return the number of a YMODE register to which
3485
3486 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3487
3488 can be simplified. Return -1 if the subreg can't be simplified.
3489
3490 XREGNO is a hard register number. */
3491
3492 int
3493 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3494 unsigned int offset, enum machine_mode ymode)
3495 {
3496 struct subreg_info info;
3497 unsigned int yregno;
3498
3499 #ifdef CANNOT_CHANGE_MODE_CLASS
3500 /* Give the backend a chance to disallow the mode change. */
3501 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3502 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3503 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3504 return -1;
3505 #endif
3506
3507 /* We shouldn't simplify stack-related registers. */
3508 if ((!reload_completed || frame_pointer_needed)
3509 && xregno == FRAME_POINTER_REGNUM)
3510 return -1;
3511
3512 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3513 && xregno == ARG_POINTER_REGNUM)
3514 return -1;
3515
3516 if (xregno == STACK_POINTER_REGNUM)
3517 return -1;
3518
3519 /* Try to get the register offset. */
3520 subreg_get_info (xregno, xmode, offset, ymode, &info);
3521 if (!info.representable_p)
3522 return -1;
3523
3524 /* Make sure that the offsetted register value is in range. */
3525 yregno = xregno + info.offset;
3526 if (!HARD_REGISTER_NUM_P (yregno))
3527 return -1;
3528
3529 /* See whether (reg:YMODE YREGNO) is valid.
3530
3531 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3532 This is a kludge to work around how complex FP arguments are passed
3533 on IA-64 and should be fixed. See PR target/49226. */
3534 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3535 && HARD_REGNO_MODE_OK (xregno, xmode))
3536 return -1;
3537
3538 return (int) yregno;
3539 }
3540
3541 /* Return the final regno that a subreg expression refers to. */
3542 unsigned int
3543 subreg_regno (const_rtx x)
3544 {
3545 unsigned int ret;
3546 rtx subreg = SUBREG_REG (x);
3547 int regno = REGNO (subreg);
3548
3549 ret = regno + subreg_regno_offset (regno,
3550 GET_MODE (subreg),
3551 SUBREG_BYTE (x),
3552 GET_MODE (x));
3553 return ret;
3554
3555 }
3556
3557 /* Return the number of registers that a subreg expression refers
3558 to. */
3559 unsigned int
3560 subreg_nregs (const_rtx x)
3561 {
3562 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3563 }
3564
3565 /* Return the number of registers that a subreg REG with REGNO
3566 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3567 changed so that the regno can be passed in. */
3568
3569 unsigned int
3570 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3571 {
3572 struct subreg_info info;
3573 rtx subreg = SUBREG_REG (x);
3574
3575 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3576 &info);
3577 return info.nregs;
3578 }
3579
3580
3581 struct parms_set_data
3582 {
3583 int nregs;
3584 HARD_REG_SET regs;
3585 };
3586
3587 /* Helper function for noticing stores to parameter registers. */
3588 static void
3589 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3590 {
3591 struct parms_set_data *const d = (struct parms_set_data *) data;
3592 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3593 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3594 {
3595 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3596 d->nregs--;
3597 }
3598 }
3599
3600 /* Look backward for first parameter to be loaded.
3601 Note that loads of all parameters will not necessarily be
3602 found if CSE has eliminated some of them (e.g., an argument
3603 to the outer function is passed down as a parameter).
3604 Do not skip BOUNDARY. */
3605 rtx
3606 find_first_parameter_load (rtx call_insn, rtx boundary)
3607 {
3608 struct parms_set_data parm;
3609 rtx p, before, first_set;
3610
3611 /* Since different machines initialize their parameter registers
3612 in different orders, assume nothing. Collect the set of all
3613 parameter registers. */
3614 CLEAR_HARD_REG_SET (parm.regs);
3615 parm.nregs = 0;
3616 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3617 if (GET_CODE (XEXP (p, 0)) == USE
3618 && REG_P (XEXP (XEXP (p, 0), 0)))
3619 {
3620 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3621
3622 /* We only care about registers which can hold function
3623 arguments. */
3624 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3625 continue;
3626
3627 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3628 parm.nregs++;
3629 }
3630 before = call_insn;
3631 first_set = call_insn;
3632
3633 /* Search backward for the first set of a register in this set. */
3634 while (parm.nregs && before != boundary)
3635 {
3636 before = PREV_INSN (before);
3637
3638 /* It is possible that some loads got CSEed from one call to
3639 another. Stop in that case. */
3640 if (CALL_P (before))
3641 break;
3642
3643 /* Our caller needs either ensure that we will find all sets
3644 (in case code has not been optimized yet), or take care
3645 for possible labels in a way by setting boundary to preceding
3646 CODE_LABEL. */
3647 if (LABEL_P (before))
3648 {
3649 gcc_assert (before == boundary);
3650 break;
3651 }
3652
3653 if (INSN_P (before))
3654 {
3655 int nregs_old = parm.nregs;
3656 note_stores (PATTERN (before), parms_set, &parm);
3657 /* If we found something that did not set a parameter reg,
3658 we're done. Do not keep going, as that might result
3659 in hoisting an insn before the setting of a pseudo
3660 that is used by the hoisted insn. */
3661 if (nregs_old != parm.nregs)
3662 first_set = before;
3663 else
3664 break;
3665 }
3666 }
3667 return first_set;
3668 }
3669
3670 /* Return true if we should avoid inserting code between INSN and preceding
3671 call instruction. */
3672
3673 bool
3674 keep_with_call_p (const_rtx insn)
3675 {
3676 rtx set;
3677
3678 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3679 {
3680 if (REG_P (SET_DEST (set))
3681 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3682 && fixed_regs[REGNO (SET_DEST (set))]
3683 && general_operand (SET_SRC (set), VOIDmode))
3684 return true;
3685 if (REG_P (SET_SRC (set))
3686 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3687 && REG_P (SET_DEST (set))
3688 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3689 return true;
3690 /* There may be a stack pop just after the call and before the store
3691 of the return register. Search for the actual store when deciding
3692 if we can break or not. */
3693 if (SET_DEST (set) == stack_pointer_rtx)
3694 {
3695 /* This CONST_CAST is okay because next_nonnote_insn just
3696 returns its argument and we assign it to a const_rtx
3697 variable. */
3698 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3699 if (i2 && keep_with_call_p (i2))
3700 return true;
3701 }
3702 }
3703 return false;
3704 }
3705
3706 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3707 to non-complex jumps. That is, direct unconditional, conditional,
3708 and tablejumps, but not computed jumps or returns. It also does
3709 not apply to the fallthru case of a conditional jump. */
3710
3711 bool
3712 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3713 {
3714 rtx tmp = JUMP_LABEL (jump_insn);
3715
3716 if (label == tmp)
3717 return true;
3718
3719 if (tablejump_p (jump_insn, NULL, &tmp))
3720 {
3721 rtvec vec = XVEC (PATTERN (tmp),
3722 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3723 int i, veclen = GET_NUM_ELEM (vec);
3724
3725 for (i = 0; i < veclen; ++i)
3726 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3727 return true;
3728 }
3729
3730 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3731 return true;
3732
3733 return false;
3734 }
3735
3736 \f
3737 /* Return an estimate of the cost of computing rtx X.
3738 One use is in cse, to decide which expression to keep in the hash table.
3739 Another is in rtl generation, to pick the cheapest way to multiply.
3740 Other uses like the latter are expected in the future.
3741
3742 X appears as operand OPNO in an expression with code OUTER_CODE.
3743 SPEED specifies whether costs optimized for speed or size should
3744 be returned. */
3745
3746 int
3747 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3748 {
3749 int i, j;
3750 enum rtx_code code;
3751 const char *fmt;
3752 int total;
3753 int factor;
3754
3755 if (x == 0)
3756 return 0;
3757
3758 /* A size N times larger than UNITS_PER_WORD likely needs N times as
3759 many insns, taking N times as long. */
3760 factor = GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD;
3761 if (factor == 0)
3762 factor = 1;
3763
3764 /* Compute the default costs of certain things.
3765 Note that targetm.rtx_costs can override the defaults. */
3766
3767 code = GET_CODE (x);
3768 switch (code)
3769 {
3770 case MULT:
3771 /* Multiplication has time-complexity O(N*N), where N is the
3772 number of units (translated from digits) when using
3773 schoolbook long multiplication. */
3774 total = factor * factor * COSTS_N_INSNS (5);
3775 break;
3776 case DIV:
3777 case UDIV:
3778 case MOD:
3779 case UMOD:
3780 /* Similarly, complexity for schoolbook long division. */
3781 total = factor * factor * COSTS_N_INSNS (7);
3782 break;
3783 case USE:
3784 /* Used in combine.c as a marker. */
3785 total = 0;
3786 break;
3787 case SET:
3788 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
3789 the mode for the factor. */
3790 factor = GET_MODE_SIZE (GET_MODE (SET_DEST (x))) / UNITS_PER_WORD;
3791 if (factor == 0)
3792 factor = 1;
3793 /* Pass through. */
3794 default:
3795 total = factor * COSTS_N_INSNS (1);
3796 }
3797
3798 switch (code)
3799 {
3800 case REG:
3801 return 0;
3802
3803 case SUBREG:
3804 total = 0;
3805 /* If we can't tie these modes, make this expensive. The larger
3806 the mode, the more expensive it is. */
3807 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3808 return COSTS_N_INSNS (2 + factor);
3809 break;
3810
3811 default:
3812 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3813 return total;
3814 break;
3815 }
3816
3817 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3818 which is already in total. */
3819
3820 fmt = GET_RTX_FORMAT (code);
3821 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3822 if (fmt[i] == 'e')
3823 total += rtx_cost (XEXP (x, i), code, i, speed);
3824 else if (fmt[i] == 'E')
3825 for (j = 0; j < XVECLEN (x, i); j++)
3826 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3827
3828 return total;
3829 }
3830
3831 /* Fill in the structure C with information about both speed and size rtx
3832 costs for X, which is operand OPNO in an expression with code OUTER. */
3833
3834 void
3835 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3836 struct full_rtx_costs *c)
3837 {
3838 c->speed = rtx_cost (x, outer, opno, true);
3839 c->size = rtx_cost (x, outer, opno, false);
3840 }
3841
3842 \f
3843 /* Return cost of address expression X.
3844 Expect that X is properly formed address reference.
3845
3846 SPEED parameter specify whether costs optimized for speed or size should
3847 be returned. */
3848
3849 int
3850 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3851 {
3852 /* We may be asked for cost of various unusual addresses, such as operands
3853 of push instruction. It is not worthwhile to complicate writing
3854 of the target hook by such cases. */
3855
3856 if (!memory_address_addr_space_p (mode, x, as))
3857 return 1000;
3858
3859 return targetm.address_cost (x, speed);
3860 }
3861
3862 /* If the target doesn't override, compute the cost as with arithmetic. */
3863
3864 int
3865 default_address_cost (rtx x, bool speed)
3866 {
3867 return rtx_cost (x, MEM, 0, speed);
3868 }
3869 \f
3870
3871 unsigned HOST_WIDE_INT
3872 nonzero_bits (const_rtx x, enum machine_mode mode)
3873 {
3874 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3875 }
3876
3877 unsigned int
3878 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3879 {
3880 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3881 }
3882
3883 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3884 It avoids exponential behavior in nonzero_bits1 when X has
3885 identical subexpressions on the first or the second level. */
3886
3887 static unsigned HOST_WIDE_INT
3888 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3889 enum machine_mode known_mode,
3890 unsigned HOST_WIDE_INT known_ret)
3891 {
3892 if (x == known_x && mode == known_mode)
3893 return known_ret;
3894
3895 /* Try to find identical subexpressions. If found call
3896 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3897 precomputed value for the subexpression as KNOWN_RET. */
3898
3899 if (ARITHMETIC_P (x))
3900 {
3901 rtx x0 = XEXP (x, 0);
3902 rtx x1 = XEXP (x, 1);
3903
3904 /* Check the first level. */
3905 if (x0 == x1)
3906 return nonzero_bits1 (x, mode, x0, mode,
3907 cached_nonzero_bits (x0, mode, known_x,
3908 known_mode, known_ret));
3909
3910 /* Check the second level. */
3911 if (ARITHMETIC_P (x0)
3912 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3913 return nonzero_bits1 (x, mode, x1, mode,
3914 cached_nonzero_bits (x1, mode, known_x,
3915 known_mode, known_ret));
3916
3917 if (ARITHMETIC_P (x1)
3918 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3919 return nonzero_bits1 (x, mode, x0, mode,
3920 cached_nonzero_bits (x0, mode, known_x,
3921 known_mode, known_ret));
3922 }
3923
3924 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3925 }
3926
3927 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3928 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3929 is less useful. We can't allow both, because that results in exponential
3930 run time recursion. There is a nullstone testcase that triggered
3931 this. This macro avoids accidental uses of num_sign_bit_copies. */
3932 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3933
3934 /* Given an expression, X, compute which bits in X can be nonzero.
3935 We don't care about bits outside of those defined in MODE.
3936
3937 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3938 an arithmetic operation, we can do better. */
3939
3940 static unsigned HOST_WIDE_INT
3941 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3942 enum machine_mode known_mode,
3943 unsigned HOST_WIDE_INT known_ret)
3944 {
3945 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3946 unsigned HOST_WIDE_INT inner_nz;
3947 enum rtx_code code;
3948 enum machine_mode inner_mode;
3949 unsigned int mode_width = GET_MODE_PRECISION (mode);
3950
3951 /* For floating-point and vector values, assume all bits are needed. */
3952 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3953 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3954 return nonzero;
3955
3956 /* If X is wider than MODE, use its mode instead. */
3957 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3958 {
3959 mode = GET_MODE (x);
3960 nonzero = GET_MODE_MASK (mode);
3961 mode_width = GET_MODE_PRECISION (mode);
3962 }
3963
3964 if (mode_width > HOST_BITS_PER_WIDE_INT)
3965 /* Our only callers in this case look for single bit values. So
3966 just return the mode mask. Those tests will then be false. */
3967 return nonzero;
3968
3969 #ifndef WORD_REGISTER_OPERATIONS
3970 /* If MODE is wider than X, but both are a single word for both the host
3971 and target machines, we can compute this from which bits of the
3972 object might be nonzero in its own mode, taking into account the fact
3973 that on many CISC machines, accessing an object in a wider mode
3974 causes the high-order bits to become undefined. So they are
3975 not known to be zero. */
3976
3977 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3978 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3979 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3980 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3981 {
3982 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3983 known_x, known_mode, known_ret);
3984 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3985 return nonzero;
3986 }
3987 #endif
3988
3989 code = GET_CODE (x);
3990 switch (code)
3991 {
3992 case REG:
3993 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3994 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3995 all the bits above ptr_mode are known to be zero. */
3996 /* As we do not know which address space the pointer is referring to,
3997 we can do this only if the target does not support different pointer
3998 or address modes depending on the address space. */
3999 if (target_default_pointer_address_modes_p ()
4000 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4001 && REG_POINTER (x))
4002 nonzero &= GET_MODE_MASK (ptr_mode);
4003 #endif
4004
4005 /* Include declared information about alignment of pointers. */
4006 /* ??? We don't properly preserve REG_POINTER changes across
4007 pointer-to-integer casts, so we can't trust it except for
4008 things that we know must be pointers. See execute/960116-1.c. */
4009 if ((x == stack_pointer_rtx
4010 || x == frame_pointer_rtx
4011 || x == arg_pointer_rtx)
4012 && REGNO_POINTER_ALIGN (REGNO (x)))
4013 {
4014 unsigned HOST_WIDE_INT alignment
4015 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4016
4017 #ifdef PUSH_ROUNDING
4018 /* If PUSH_ROUNDING is defined, it is possible for the
4019 stack to be momentarily aligned only to that amount,
4020 so we pick the least alignment. */
4021 if (x == stack_pointer_rtx && PUSH_ARGS)
4022 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4023 alignment);
4024 #endif
4025
4026 nonzero &= ~(alignment - 1);
4027 }
4028
4029 {
4030 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4031 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4032 known_mode, known_ret,
4033 &nonzero_for_hook);
4034
4035 if (new_rtx)
4036 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4037 known_mode, known_ret);
4038
4039 return nonzero_for_hook;
4040 }
4041
4042 case CONST_INT:
4043 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4044 /* If X is negative in MODE, sign-extend the value. */
4045 if (INTVAL (x) > 0
4046 && mode_width < BITS_PER_WORD
4047 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4048 != 0)
4049 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4050 #endif
4051
4052 return UINTVAL (x);
4053
4054 case MEM:
4055 #ifdef LOAD_EXTEND_OP
4056 /* In many, if not most, RISC machines, reading a byte from memory
4057 zeros the rest of the register. Noticing that fact saves a lot
4058 of extra zero-extends. */
4059 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4060 nonzero &= GET_MODE_MASK (GET_MODE (x));
4061 #endif
4062 break;
4063
4064 case EQ: case NE:
4065 case UNEQ: case LTGT:
4066 case GT: case GTU: case UNGT:
4067 case LT: case LTU: case UNLT:
4068 case GE: case GEU: case UNGE:
4069 case LE: case LEU: case UNLE:
4070 case UNORDERED: case ORDERED:
4071 /* If this produces an integer result, we know which bits are set.
4072 Code here used to clear bits outside the mode of X, but that is
4073 now done above. */
4074 /* Mind that MODE is the mode the caller wants to look at this
4075 operation in, and not the actual operation mode. We can wind
4076 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4077 that describes the results of a vector compare. */
4078 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4079 && mode_width <= HOST_BITS_PER_WIDE_INT)
4080 nonzero = STORE_FLAG_VALUE;
4081 break;
4082
4083 case NEG:
4084 #if 0
4085 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4086 and num_sign_bit_copies. */
4087 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4088 == GET_MODE_PRECISION (GET_MODE (x)))
4089 nonzero = 1;
4090 #endif
4091
4092 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4093 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4094 break;
4095
4096 case ABS:
4097 #if 0
4098 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4099 and num_sign_bit_copies. */
4100 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4101 == GET_MODE_PRECISION (GET_MODE (x)))
4102 nonzero = 1;
4103 #endif
4104 break;
4105
4106 case TRUNCATE:
4107 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4108 known_x, known_mode, known_ret)
4109 & GET_MODE_MASK (mode));
4110 break;
4111
4112 case ZERO_EXTEND:
4113 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4114 known_x, known_mode, known_ret);
4115 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4116 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4117 break;
4118
4119 case SIGN_EXTEND:
4120 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4121 Otherwise, show all the bits in the outer mode but not the inner
4122 may be nonzero. */
4123 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4124 known_x, known_mode, known_ret);
4125 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4126 {
4127 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4128 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4129 inner_nz |= (GET_MODE_MASK (mode)
4130 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4131 }
4132
4133 nonzero &= inner_nz;
4134 break;
4135
4136 case AND:
4137 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4138 known_x, known_mode, known_ret)
4139 & cached_nonzero_bits (XEXP (x, 1), mode,
4140 known_x, known_mode, known_ret);
4141 break;
4142
4143 case XOR: case IOR:
4144 case UMIN: case UMAX: case SMIN: case SMAX:
4145 {
4146 unsigned HOST_WIDE_INT nonzero0
4147 = cached_nonzero_bits (XEXP (x, 0), mode,
4148 known_x, known_mode, known_ret);
4149
4150 /* Don't call nonzero_bits for the second time if it cannot change
4151 anything. */
4152 if ((nonzero & nonzero0) != nonzero)
4153 nonzero &= nonzero0
4154 | cached_nonzero_bits (XEXP (x, 1), mode,
4155 known_x, known_mode, known_ret);
4156 }
4157 break;
4158
4159 case PLUS: case MINUS:
4160 case MULT:
4161 case DIV: case UDIV:
4162 case MOD: case UMOD:
4163 /* We can apply the rules of arithmetic to compute the number of
4164 high- and low-order zero bits of these operations. We start by
4165 computing the width (position of the highest-order nonzero bit)
4166 and the number of low-order zero bits for each value. */
4167 {
4168 unsigned HOST_WIDE_INT nz0
4169 = cached_nonzero_bits (XEXP (x, 0), mode,
4170 known_x, known_mode, known_ret);
4171 unsigned HOST_WIDE_INT nz1
4172 = cached_nonzero_bits (XEXP (x, 1), mode,
4173 known_x, known_mode, known_ret);
4174 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4175 int width0 = floor_log2 (nz0) + 1;
4176 int width1 = floor_log2 (nz1) + 1;
4177 int low0 = floor_log2 (nz0 & -nz0);
4178 int low1 = floor_log2 (nz1 & -nz1);
4179 unsigned HOST_WIDE_INT op0_maybe_minusp
4180 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4181 unsigned HOST_WIDE_INT op1_maybe_minusp
4182 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4183 unsigned int result_width = mode_width;
4184 int result_low = 0;
4185
4186 switch (code)
4187 {
4188 case PLUS:
4189 result_width = MAX (width0, width1) + 1;
4190 result_low = MIN (low0, low1);
4191 break;
4192 case MINUS:
4193 result_low = MIN (low0, low1);
4194 break;
4195 case MULT:
4196 result_width = width0 + width1;
4197 result_low = low0 + low1;
4198 break;
4199 case DIV:
4200 if (width1 == 0)
4201 break;
4202 if (!op0_maybe_minusp && !op1_maybe_minusp)
4203 result_width = width0;
4204 break;
4205 case UDIV:
4206 if (width1 == 0)
4207 break;
4208 result_width = width0;
4209 break;
4210 case MOD:
4211 if (width1 == 0)
4212 break;
4213 if (!op0_maybe_minusp && !op1_maybe_minusp)
4214 result_width = MIN (width0, width1);
4215 result_low = MIN (low0, low1);
4216 break;
4217 case UMOD:
4218 if (width1 == 0)
4219 break;
4220 result_width = MIN (width0, width1);
4221 result_low = MIN (low0, low1);
4222 break;
4223 default:
4224 gcc_unreachable ();
4225 }
4226
4227 if (result_width < mode_width)
4228 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4229
4230 if (result_low > 0)
4231 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4232 }
4233 break;
4234
4235 case ZERO_EXTRACT:
4236 if (CONST_INT_P (XEXP (x, 1))
4237 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4238 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4239 break;
4240
4241 case SUBREG:
4242 /* If this is a SUBREG formed for a promoted variable that has
4243 been zero-extended, we know that at least the high-order bits
4244 are zero, though others might be too. */
4245
4246 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4247 nonzero = GET_MODE_MASK (GET_MODE (x))
4248 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4249 known_x, known_mode, known_ret);
4250
4251 inner_mode = GET_MODE (SUBREG_REG (x));
4252 /* If the inner mode is a single word for both the host and target
4253 machines, we can compute this from which bits of the inner
4254 object might be nonzero. */
4255 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4256 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4257 {
4258 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4259 known_x, known_mode, known_ret);
4260
4261 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4262 /* If this is a typical RISC machine, we only have to worry
4263 about the way loads are extended. */
4264 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4265 ? val_signbit_known_set_p (inner_mode, nonzero)
4266 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4267 || !MEM_P (SUBREG_REG (x)))
4268 #endif
4269 {
4270 /* On many CISC machines, accessing an object in a wider mode
4271 causes the high-order bits to become undefined. So they are
4272 not known to be zero. */
4273 if (GET_MODE_PRECISION (GET_MODE (x))
4274 > GET_MODE_PRECISION (inner_mode))
4275 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4276 & ~GET_MODE_MASK (inner_mode));
4277 }
4278 }
4279 break;
4280
4281 case ASHIFTRT:
4282 case LSHIFTRT:
4283 case ASHIFT:
4284 case ROTATE:
4285 /* The nonzero bits are in two classes: any bits within MODE
4286 that aren't in GET_MODE (x) are always significant. The rest of the
4287 nonzero bits are those that are significant in the operand of
4288 the shift when shifted the appropriate number of bits. This
4289 shows that high-order bits are cleared by the right shift and
4290 low-order bits by left shifts. */
4291 if (CONST_INT_P (XEXP (x, 1))
4292 && INTVAL (XEXP (x, 1)) >= 0
4293 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4294 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4295 {
4296 enum machine_mode inner_mode = GET_MODE (x);
4297 unsigned int width = GET_MODE_PRECISION (inner_mode);
4298 int count = INTVAL (XEXP (x, 1));
4299 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4300 unsigned HOST_WIDE_INT op_nonzero
4301 = cached_nonzero_bits (XEXP (x, 0), mode,
4302 known_x, known_mode, known_ret);
4303 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4304 unsigned HOST_WIDE_INT outer = 0;
4305
4306 if (mode_width > width)
4307 outer = (op_nonzero & nonzero & ~mode_mask);
4308
4309 if (code == LSHIFTRT)
4310 inner >>= count;
4311 else if (code == ASHIFTRT)
4312 {
4313 inner >>= count;
4314
4315 /* If the sign bit may have been nonzero before the shift, we
4316 need to mark all the places it could have been copied to
4317 by the shift as possibly nonzero. */
4318 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4319 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4320 << (width - count);
4321 }
4322 else if (code == ASHIFT)
4323 inner <<= count;
4324 else
4325 inner = ((inner << (count % width)
4326 | (inner >> (width - (count % width)))) & mode_mask);
4327
4328 nonzero &= (outer | inner);
4329 }
4330 break;
4331
4332 case FFS:
4333 case POPCOUNT:
4334 /* This is at most the number of bits in the mode. */
4335 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4336 break;
4337
4338 case CLZ:
4339 /* If CLZ has a known value at zero, then the nonzero bits are
4340 that value, plus the number of bits in the mode minus one. */
4341 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4342 nonzero
4343 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4344 else
4345 nonzero = -1;
4346 break;
4347
4348 case CTZ:
4349 /* If CTZ has a known value at zero, then the nonzero bits are
4350 that value, plus the number of bits in the mode minus one. */
4351 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4352 nonzero
4353 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4354 else
4355 nonzero = -1;
4356 break;
4357
4358 case CLRSB:
4359 /* This is at most the number of bits in the mode minus 1. */
4360 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4361 break;
4362
4363 case PARITY:
4364 nonzero = 1;
4365 break;
4366
4367 case IF_THEN_ELSE:
4368 {
4369 unsigned HOST_WIDE_INT nonzero_true
4370 = cached_nonzero_bits (XEXP (x, 1), mode,
4371 known_x, known_mode, known_ret);
4372
4373 /* Don't call nonzero_bits for the second time if it cannot change
4374 anything. */
4375 if ((nonzero & nonzero_true) != nonzero)
4376 nonzero &= nonzero_true
4377 | cached_nonzero_bits (XEXP (x, 2), mode,
4378 known_x, known_mode, known_ret);
4379 }
4380 break;
4381
4382 default:
4383 break;
4384 }
4385
4386 return nonzero;
4387 }
4388
4389 /* See the macro definition above. */
4390 #undef cached_num_sign_bit_copies
4391
4392 \f
4393 /* The function cached_num_sign_bit_copies is a wrapper around
4394 num_sign_bit_copies1. It avoids exponential behavior in
4395 num_sign_bit_copies1 when X has identical subexpressions on the
4396 first or the second level. */
4397
4398 static unsigned int
4399 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4400 enum machine_mode known_mode,
4401 unsigned int known_ret)
4402 {
4403 if (x == known_x && mode == known_mode)
4404 return known_ret;
4405
4406 /* Try to find identical subexpressions. If found call
4407 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4408 the precomputed value for the subexpression as KNOWN_RET. */
4409
4410 if (ARITHMETIC_P (x))
4411 {
4412 rtx x0 = XEXP (x, 0);
4413 rtx x1 = XEXP (x, 1);
4414
4415 /* Check the first level. */
4416 if (x0 == x1)
4417 return
4418 num_sign_bit_copies1 (x, mode, x0, mode,
4419 cached_num_sign_bit_copies (x0, mode, known_x,
4420 known_mode,
4421 known_ret));
4422
4423 /* Check the second level. */
4424 if (ARITHMETIC_P (x0)
4425 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4426 return
4427 num_sign_bit_copies1 (x, mode, x1, mode,
4428 cached_num_sign_bit_copies (x1, mode, known_x,
4429 known_mode,
4430 known_ret));
4431
4432 if (ARITHMETIC_P (x1)
4433 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4434 return
4435 num_sign_bit_copies1 (x, mode, x0, mode,
4436 cached_num_sign_bit_copies (x0, mode, known_x,
4437 known_mode,
4438 known_ret));
4439 }
4440
4441 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4442 }
4443
4444 /* Return the number of bits at the high-order end of X that are known to
4445 be equal to the sign bit. X will be used in mode MODE; if MODE is
4446 VOIDmode, X will be used in its own mode. The returned value will always
4447 be between 1 and the number of bits in MODE. */
4448
4449 static unsigned int
4450 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4451 enum machine_mode known_mode,
4452 unsigned int known_ret)
4453 {
4454 enum rtx_code code = GET_CODE (x);
4455 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4456 int num0, num1, result;
4457 unsigned HOST_WIDE_INT nonzero;
4458
4459 /* If we weren't given a mode, use the mode of X. If the mode is still
4460 VOIDmode, we don't know anything. Likewise if one of the modes is
4461 floating-point. */
4462
4463 if (mode == VOIDmode)
4464 mode = GET_MODE (x);
4465
4466 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4467 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4468 return 1;
4469
4470 /* For a smaller object, just ignore the high bits. */
4471 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4472 {
4473 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4474 known_x, known_mode, known_ret);
4475 return MAX (1,
4476 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4477 }
4478
4479 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4480 {
4481 #ifndef WORD_REGISTER_OPERATIONS
4482 /* If this machine does not do all register operations on the entire
4483 register and MODE is wider than the mode of X, we can say nothing
4484 at all about the high-order bits. */
4485 return 1;
4486 #else
4487 /* Likewise on machines that do, if the mode of the object is smaller
4488 than a word and loads of that size don't sign extend, we can say
4489 nothing about the high order bits. */
4490 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4491 #ifdef LOAD_EXTEND_OP
4492 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4493 #endif
4494 )
4495 return 1;
4496 #endif
4497 }
4498
4499 switch (code)
4500 {
4501 case REG:
4502
4503 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4504 /* If pointers extend signed and this is a pointer in Pmode, say that
4505 all the bits above ptr_mode are known to be sign bit copies. */
4506 /* As we do not know which address space the pointer is referring to,
4507 we can do this only if the target does not support different pointer
4508 or address modes depending on the address space. */
4509 if (target_default_pointer_address_modes_p ()
4510 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4511 && mode == Pmode && REG_POINTER (x))
4512 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4513 #endif
4514
4515 {
4516 unsigned int copies_for_hook = 1, copies = 1;
4517 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4518 known_mode, known_ret,
4519 &copies_for_hook);
4520
4521 if (new_rtx)
4522 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4523 known_mode, known_ret);
4524
4525 if (copies > 1 || copies_for_hook > 1)
4526 return MAX (copies, copies_for_hook);
4527
4528 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4529 }
4530 break;
4531
4532 case MEM:
4533 #ifdef LOAD_EXTEND_OP
4534 /* Some RISC machines sign-extend all loads of smaller than a word. */
4535 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4536 return MAX (1, ((int) bitwidth
4537 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4538 #endif
4539 break;
4540
4541 case CONST_INT:
4542 /* If the constant is negative, take its 1's complement and remask.
4543 Then see how many zero bits we have. */
4544 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4545 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4546 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4547 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4548
4549 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4550
4551 case SUBREG:
4552 /* If this is a SUBREG for a promoted object that is sign-extended
4553 and we are looking at it in a wider mode, we know that at least the
4554 high-order bits are known to be sign bit copies. */
4555
4556 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4557 {
4558 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4559 known_x, known_mode, known_ret);
4560 return MAX ((int) bitwidth
4561 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4562 num0);
4563 }
4564
4565 /* For a smaller object, just ignore the high bits. */
4566 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4567 {
4568 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4569 known_x, known_mode, known_ret);
4570 return MAX (1, (num0
4571 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4572 - bitwidth)));
4573 }
4574
4575 #ifdef WORD_REGISTER_OPERATIONS
4576 #ifdef LOAD_EXTEND_OP
4577 /* For paradoxical SUBREGs on machines where all register operations
4578 affect the entire register, just look inside. Note that we are
4579 passing MODE to the recursive call, so the number of sign bit copies
4580 will remain relative to that mode, not the inner mode. */
4581
4582 /* This works only if loads sign extend. Otherwise, if we get a
4583 reload for the inner part, it may be loaded from the stack, and
4584 then we lose all sign bit copies that existed before the store
4585 to the stack. */
4586
4587 if (paradoxical_subreg_p (x)
4588 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4589 && MEM_P (SUBREG_REG (x)))
4590 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4591 known_x, known_mode, known_ret);
4592 #endif
4593 #endif
4594 break;
4595
4596 case SIGN_EXTRACT:
4597 if (CONST_INT_P (XEXP (x, 1)))
4598 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4599 break;
4600
4601 case SIGN_EXTEND:
4602 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4603 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4604 known_x, known_mode, known_ret));
4605
4606 case TRUNCATE:
4607 /* For a smaller object, just ignore the high bits. */
4608 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4609 known_x, known_mode, known_ret);
4610 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4611 - bitwidth)));
4612
4613 case NOT:
4614 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4615 known_x, known_mode, known_ret);
4616
4617 case ROTATE: case ROTATERT:
4618 /* If we are rotating left by a number of bits less than the number
4619 of sign bit copies, we can just subtract that amount from the
4620 number. */
4621 if (CONST_INT_P (XEXP (x, 1))
4622 && INTVAL (XEXP (x, 1)) >= 0
4623 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4624 {
4625 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4626 known_x, known_mode, known_ret);
4627 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4628 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4629 }
4630 break;
4631
4632 case NEG:
4633 /* In general, this subtracts one sign bit copy. But if the value
4634 is known to be positive, the number of sign bit copies is the
4635 same as that of the input. Finally, if the input has just one bit
4636 that might be nonzero, all the bits are copies of the sign bit. */
4637 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4638 known_x, known_mode, known_ret);
4639 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4640 return num0 > 1 ? num0 - 1 : 1;
4641
4642 nonzero = nonzero_bits (XEXP (x, 0), mode);
4643 if (nonzero == 1)
4644 return bitwidth;
4645
4646 if (num0 > 1
4647 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4648 num0--;
4649
4650 return num0;
4651
4652 case IOR: case AND: case XOR:
4653 case SMIN: case SMAX: case UMIN: case UMAX:
4654 /* Logical operations will preserve the number of sign-bit copies.
4655 MIN and MAX operations always return one of the operands. */
4656 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4657 known_x, known_mode, known_ret);
4658 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4659 known_x, known_mode, known_ret);
4660
4661 /* If num1 is clearing some of the top bits then regardless of
4662 the other term, we are guaranteed to have at least that many
4663 high-order zero bits. */
4664 if (code == AND
4665 && num1 > 1
4666 && bitwidth <= HOST_BITS_PER_WIDE_INT
4667 && CONST_INT_P (XEXP (x, 1))
4668 && (UINTVAL (XEXP (x, 1))
4669 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4670 return num1;
4671
4672 /* Similarly for IOR when setting high-order bits. */
4673 if (code == IOR
4674 && num1 > 1
4675 && bitwidth <= HOST_BITS_PER_WIDE_INT
4676 && CONST_INT_P (XEXP (x, 1))
4677 && (UINTVAL (XEXP (x, 1))
4678 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4679 return num1;
4680
4681 return MIN (num0, num1);
4682
4683 case PLUS: case MINUS:
4684 /* For addition and subtraction, we can have a 1-bit carry. However,
4685 if we are subtracting 1 from a positive number, there will not
4686 be such a carry. Furthermore, if the positive number is known to
4687 be 0 or 1, we know the result is either -1 or 0. */
4688
4689 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4690 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4691 {
4692 nonzero = nonzero_bits (XEXP (x, 0), mode);
4693 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4694 return (nonzero == 1 || nonzero == 0 ? bitwidth
4695 : bitwidth - floor_log2 (nonzero) - 1);
4696 }
4697
4698 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4699 known_x, known_mode, known_ret);
4700 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4701 known_x, known_mode, known_ret);
4702 result = MAX (1, MIN (num0, num1) - 1);
4703
4704 return result;
4705
4706 case MULT:
4707 /* The number of bits of the product is the sum of the number of
4708 bits of both terms. However, unless one of the terms if known
4709 to be positive, we must allow for an additional bit since negating
4710 a negative number can remove one sign bit copy. */
4711
4712 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4713 known_x, known_mode, known_ret);
4714 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4715 known_x, known_mode, known_ret);
4716
4717 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4718 if (result > 0
4719 && (bitwidth > HOST_BITS_PER_WIDE_INT
4720 || (((nonzero_bits (XEXP (x, 0), mode)
4721 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4722 && ((nonzero_bits (XEXP (x, 1), mode)
4723 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4724 != 0))))
4725 result--;
4726
4727 return MAX (1, result);
4728
4729 case UDIV:
4730 /* The result must be <= the first operand. If the first operand
4731 has the high bit set, we know nothing about the number of sign
4732 bit copies. */
4733 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4734 return 1;
4735 else if ((nonzero_bits (XEXP (x, 0), mode)
4736 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4737 return 1;
4738 else
4739 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4740 known_x, known_mode, known_ret);
4741
4742 case UMOD:
4743 /* The result must be <= the second operand. If the second operand
4744 has (or just might have) the high bit set, we know nothing about
4745 the number of sign bit copies. */
4746 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4747 return 1;
4748 else if ((nonzero_bits (XEXP (x, 1), mode)
4749 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4750 return 1;
4751 else
4752 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4753 known_x, known_mode, known_ret);
4754
4755 case DIV:
4756 /* Similar to unsigned division, except that we have to worry about
4757 the case where the divisor is negative, in which case we have
4758 to add 1. */
4759 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4760 known_x, known_mode, known_ret);
4761 if (result > 1
4762 && (bitwidth > HOST_BITS_PER_WIDE_INT
4763 || (nonzero_bits (XEXP (x, 1), mode)
4764 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4765 result--;
4766
4767 return result;
4768
4769 case MOD:
4770 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4771 known_x, known_mode, known_ret);
4772 if (result > 1
4773 && (bitwidth > HOST_BITS_PER_WIDE_INT
4774 || (nonzero_bits (XEXP (x, 1), mode)
4775 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4776 result--;
4777
4778 return result;
4779
4780 case ASHIFTRT:
4781 /* Shifts by a constant add to the number of bits equal to the
4782 sign bit. */
4783 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4784 known_x, known_mode, known_ret);
4785 if (CONST_INT_P (XEXP (x, 1))
4786 && INTVAL (XEXP (x, 1)) > 0
4787 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4788 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4789
4790 return num0;
4791
4792 case ASHIFT:
4793 /* Left shifts destroy copies. */
4794 if (!CONST_INT_P (XEXP (x, 1))
4795 || INTVAL (XEXP (x, 1)) < 0
4796 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4797 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4798 return 1;
4799
4800 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4801 known_x, known_mode, known_ret);
4802 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4803
4804 case IF_THEN_ELSE:
4805 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4806 known_x, known_mode, known_ret);
4807 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4808 known_x, known_mode, known_ret);
4809 return MIN (num0, num1);
4810
4811 case EQ: case NE: case GE: case GT: case LE: case LT:
4812 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4813 case GEU: case GTU: case LEU: case LTU:
4814 case UNORDERED: case ORDERED:
4815 /* If the constant is negative, take its 1's complement and remask.
4816 Then see how many zero bits we have. */
4817 nonzero = STORE_FLAG_VALUE;
4818 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4819 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4820 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4821
4822 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4823
4824 default:
4825 break;
4826 }
4827
4828 /* If we haven't been able to figure it out by one of the above rules,
4829 see if some of the high-order bits are known to be zero. If so,
4830 count those bits and return one less than that amount. If we can't
4831 safely compute the mask for this mode, always return BITWIDTH. */
4832
4833 bitwidth = GET_MODE_PRECISION (mode);
4834 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4835 return 1;
4836
4837 nonzero = nonzero_bits (x, mode);
4838 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4839 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4840 }
4841
4842 /* Calculate the rtx_cost of a single instruction. A return value of
4843 zero indicates an instruction pattern without a known cost. */
4844
4845 int
4846 insn_rtx_cost (rtx pat, bool speed)
4847 {
4848 int i, cost;
4849 rtx set;
4850
4851 /* Extract the single set rtx from the instruction pattern.
4852 We can't use single_set since we only have the pattern. */
4853 if (GET_CODE (pat) == SET)
4854 set = pat;
4855 else if (GET_CODE (pat) == PARALLEL)
4856 {
4857 set = NULL_RTX;
4858 for (i = 0; i < XVECLEN (pat, 0); i++)
4859 {
4860 rtx x = XVECEXP (pat, 0, i);
4861 if (GET_CODE (x) == SET)
4862 {
4863 if (set)
4864 return 0;
4865 set = x;
4866 }
4867 }
4868 if (!set)
4869 return 0;
4870 }
4871 else
4872 return 0;
4873
4874 cost = set_src_cost (SET_SRC (set), speed);
4875 return cost > 0 ? cost : COSTS_N_INSNS (1);
4876 }
4877
4878 /* Given an insn INSN and condition COND, return the condition in a
4879 canonical form to simplify testing by callers. Specifically:
4880
4881 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4882 (2) Both operands will be machine operands; (cc0) will have been replaced.
4883 (3) If an operand is a constant, it will be the second operand.
4884 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4885 for GE, GEU, and LEU.
4886
4887 If the condition cannot be understood, or is an inequality floating-point
4888 comparison which needs to be reversed, 0 will be returned.
4889
4890 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4891
4892 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4893 insn used in locating the condition was found. If a replacement test
4894 of the condition is desired, it should be placed in front of that
4895 insn and we will be sure that the inputs are still valid.
4896
4897 If WANT_REG is nonzero, we wish the condition to be relative to that
4898 register, if possible. Therefore, do not canonicalize the condition
4899 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4900 to be a compare to a CC mode register.
4901
4902 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4903 and at INSN. */
4904
4905 rtx
4906 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4907 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4908 {
4909 enum rtx_code code;
4910 rtx prev = insn;
4911 const_rtx set;
4912 rtx tem;
4913 rtx op0, op1;
4914 int reverse_code = 0;
4915 enum machine_mode mode;
4916 basic_block bb = BLOCK_FOR_INSN (insn);
4917
4918 code = GET_CODE (cond);
4919 mode = GET_MODE (cond);
4920 op0 = XEXP (cond, 0);
4921 op1 = XEXP (cond, 1);
4922
4923 if (reverse)
4924 code = reversed_comparison_code (cond, insn);
4925 if (code == UNKNOWN)
4926 return 0;
4927
4928 if (earliest)
4929 *earliest = insn;
4930
4931 /* If we are comparing a register with zero, see if the register is set
4932 in the previous insn to a COMPARE or a comparison operation. Perform
4933 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4934 in cse.c */
4935
4936 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4937 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4938 && op1 == CONST0_RTX (GET_MODE (op0))
4939 && op0 != want_reg)
4940 {
4941 /* Set nonzero when we find something of interest. */
4942 rtx x = 0;
4943
4944 #ifdef HAVE_cc0
4945 /* If comparison with cc0, import actual comparison from compare
4946 insn. */
4947 if (op0 == cc0_rtx)
4948 {
4949 if ((prev = prev_nonnote_insn (prev)) == 0
4950 || !NONJUMP_INSN_P (prev)
4951 || (set = single_set (prev)) == 0
4952 || SET_DEST (set) != cc0_rtx)
4953 return 0;
4954
4955 op0 = SET_SRC (set);
4956 op1 = CONST0_RTX (GET_MODE (op0));
4957 if (earliest)
4958 *earliest = prev;
4959 }
4960 #endif
4961
4962 /* If this is a COMPARE, pick up the two things being compared. */
4963 if (GET_CODE (op0) == COMPARE)
4964 {
4965 op1 = XEXP (op0, 1);
4966 op0 = XEXP (op0, 0);
4967 continue;
4968 }
4969 else if (!REG_P (op0))
4970 break;
4971
4972 /* Go back to the previous insn. Stop if it is not an INSN. We also
4973 stop if it isn't a single set or if it has a REG_INC note because
4974 we don't want to bother dealing with it. */
4975
4976 prev = prev_nonnote_nondebug_insn (prev);
4977
4978 if (prev == 0
4979 || !NONJUMP_INSN_P (prev)
4980 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4981 /* In cfglayout mode, there do not have to be labels at the
4982 beginning of a block, or jumps at the end, so the previous
4983 conditions would not stop us when we reach bb boundary. */
4984 || BLOCK_FOR_INSN (prev) != bb)
4985 break;
4986
4987 set = set_of (op0, prev);
4988
4989 if (set
4990 && (GET_CODE (set) != SET
4991 || !rtx_equal_p (SET_DEST (set), op0)))
4992 break;
4993
4994 /* If this is setting OP0, get what it sets it to if it looks
4995 relevant. */
4996 if (set)
4997 {
4998 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4999 #ifdef FLOAT_STORE_FLAG_VALUE
5000 REAL_VALUE_TYPE fsfv;
5001 #endif
5002
5003 /* ??? We may not combine comparisons done in a CCmode with
5004 comparisons not done in a CCmode. This is to aid targets
5005 like Alpha that have an IEEE compliant EQ instruction, and
5006 a non-IEEE compliant BEQ instruction. The use of CCmode is
5007 actually artificial, simply to prevent the combination, but
5008 should not affect other platforms.
5009
5010 However, we must allow VOIDmode comparisons to match either
5011 CCmode or non-CCmode comparison, because some ports have
5012 modeless comparisons inside branch patterns.
5013
5014 ??? This mode check should perhaps look more like the mode check
5015 in simplify_comparison in combine. */
5016
5017 if ((GET_CODE (SET_SRC (set)) == COMPARE
5018 || (((code == NE
5019 || (code == LT
5020 && val_signbit_known_set_p (inner_mode,
5021 STORE_FLAG_VALUE))
5022 #ifdef FLOAT_STORE_FLAG_VALUE
5023 || (code == LT
5024 && SCALAR_FLOAT_MODE_P (inner_mode)
5025 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5026 REAL_VALUE_NEGATIVE (fsfv)))
5027 #endif
5028 ))
5029 && COMPARISON_P (SET_SRC (set))))
5030 && (((GET_MODE_CLASS (mode) == MODE_CC)
5031 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5032 || mode == VOIDmode || inner_mode == VOIDmode))
5033 x = SET_SRC (set);
5034 else if (((code == EQ
5035 || (code == GE
5036 && val_signbit_known_set_p (inner_mode,
5037 STORE_FLAG_VALUE))
5038 #ifdef FLOAT_STORE_FLAG_VALUE
5039 || (code == GE
5040 && SCALAR_FLOAT_MODE_P (inner_mode)
5041 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5042 REAL_VALUE_NEGATIVE (fsfv)))
5043 #endif
5044 ))
5045 && COMPARISON_P (SET_SRC (set))
5046 && (((GET_MODE_CLASS (mode) == MODE_CC)
5047 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5048 || mode == VOIDmode || inner_mode == VOIDmode))
5049
5050 {
5051 reverse_code = 1;
5052 x = SET_SRC (set);
5053 }
5054 else
5055 break;
5056 }
5057
5058 else if (reg_set_p (op0, prev))
5059 /* If this sets OP0, but not directly, we have to give up. */
5060 break;
5061
5062 if (x)
5063 {
5064 /* If the caller is expecting the condition to be valid at INSN,
5065 make sure X doesn't change before INSN. */
5066 if (valid_at_insn_p)
5067 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5068 break;
5069 if (COMPARISON_P (x))
5070 code = GET_CODE (x);
5071 if (reverse_code)
5072 {
5073 code = reversed_comparison_code (x, prev);
5074 if (code == UNKNOWN)
5075 return 0;
5076 reverse_code = 0;
5077 }
5078
5079 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5080 if (earliest)
5081 *earliest = prev;
5082 }
5083 }
5084
5085 /* If constant is first, put it last. */
5086 if (CONSTANT_P (op0))
5087 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5088
5089 /* If OP0 is the result of a comparison, we weren't able to find what
5090 was really being compared, so fail. */
5091 if (!allow_cc_mode
5092 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5093 return 0;
5094
5095 /* Canonicalize any ordered comparison with integers involving equality
5096 if we can do computations in the relevant mode and we do not
5097 overflow. */
5098
5099 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5100 && CONST_INT_P (op1)
5101 && GET_MODE (op0) != VOIDmode
5102 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5103 {
5104 HOST_WIDE_INT const_val = INTVAL (op1);
5105 unsigned HOST_WIDE_INT uconst_val = const_val;
5106 unsigned HOST_WIDE_INT max_val
5107 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5108
5109 switch (code)
5110 {
5111 case LE:
5112 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5113 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5114 break;
5115
5116 /* When cross-compiling, const_val might be sign-extended from
5117 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5118 case GE:
5119 if ((const_val & max_val)
5120 != ((unsigned HOST_WIDE_INT) 1
5121 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5122 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5123 break;
5124
5125 case LEU:
5126 if (uconst_val < max_val)
5127 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5128 break;
5129
5130 case GEU:
5131 if (uconst_val != 0)
5132 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5133 break;
5134
5135 default:
5136 break;
5137 }
5138 }
5139
5140 /* Never return CC0; return zero instead. */
5141 if (CC0_P (op0))
5142 return 0;
5143
5144 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5145 }
5146
5147 /* Given a jump insn JUMP, return the condition that will cause it to branch
5148 to its JUMP_LABEL. If the condition cannot be understood, or is an
5149 inequality floating-point comparison which needs to be reversed, 0 will
5150 be returned.
5151
5152 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5153 insn used in locating the condition was found. If a replacement test
5154 of the condition is desired, it should be placed in front of that
5155 insn and we will be sure that the inputs are still valid. If EARLIEST
5156 is null, the returned condition will be valid at INSN.
5157
5158 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5159 compare CC mode register.
5160
5161 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5162
5163 rtx
5164 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5165 {
5166 rtx cond;
5167 int reverse;
5168 rtx set;
5169
5170 /* If this is not a standard conditional jump, we can't parse it. */
5171 if (!JUMP_P (jump)
5172 || ! any_condjump_p (jump))
5173 return 0;
5174 set = pc_set (jump);
5175
5176 cond = XEXP (SET_SRC (set), 0);
5177
5178 /* If this branches to JUMP_LABEL when the condition is false, reverse
5179 the condition. */
5180 reverse
5181 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5182 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5183
5184 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5185 allow_cc_mode, valid_at_insn_p);
5186 }
5187
5188 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5189 TARGET_MODE_REP_EXTENDED.
5190
5191 Note that we assume that the property of
5192 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5193 narrower than mode B. I.e., if A is a mode narrower than B then in
5194 order to be able to operate on it in mode B, mode A needs to
5195 satisfy the requirements set by the representation of mode B. */
5196
5197 static void
5198 init_num_sign_bit_copies_in_rep (void)
5199 {
5200 enum machine_mode mode, in_mode;
5201
5202 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5203 in_mode = GET_MODE_WIDER_MODE (mode))
5204 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5205 mode = GET_MODE_WIDER_MODE (mode))
5206 {
5207 enum machine_mode i;
5208
5209 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5210 extends to the next widest mode. */
5211 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5212 || GET_MODE_WIDER_MODE (mode) == in_mode);
5213
5214 /* We are in in_mode. Count how many bits outside of mode
5215 have to be copies of the sign-bit. */
5216 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5217 {
5218 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5219
5220 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5221 /* We can only check sign-bit copies starting from the
5222 top-bit. In order to be able to check the bits we
5223 have already seen we pretend that subsequent bits
5224 have to be sign-bit copies too. */
5225 || num_sign_bit_copies_in_rep [in_mode][mode])
5226 num_sign_bit_copies_in_rep [in_mode][mode]
5227 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5228 }
5229 }
5230 }
5231
5232 /* Suppose that truncation from the machine mode of X to MODE is not a
5233 no-op. See if there is anything special about X so that we can
5234 assume it already contains a truncated value of MODE. */
5235
5236 bool
5237 truncated_to_mode (enum machine_mode mode, const_rtx x)
5238 {
5239 /* This register has already been used in MODE without explicit
5240 truncation. */
5241 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5242 return true;
5243
5244 /* See if we already satisfy the requirements of MODE. If yes we
5245 can just switch to MODE. */
5246 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5247 && (num_sign_bit_copies (x, GET_MODE (x))
5248 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5249 return true;
5250
5251 return false;
5252 }
5253 \f
5254 /* Initialize non_rtx_starting_operands, which is used to speed up
5255 for_each_rtx. */
5256 void
5257 init_rtlanal (void)
5258 {
5259 int i;
5260 for (i = 0; i < NUM_RTX_CODE; i++)
5261 {
5262 const char *format = GET_RTX_FORMAT (i);
5263 const char *first = strpbrk (format, "eEV");
5264 non_rtx_starting_operands[i] = first ? first - format : -1;
5265 }
5266
5267 init_num_sign_bit_copies_in_rep ();
5268 }
5269 \f
5270 /* Check whether this is a constant pool constant. */
5271 bool
5272 constant_pool_constant_p (rtx x)
5273 {
5274 x = avoid_constant_pool_reference (x);
5275 return CONST_DOUBLE_P (x);
5276 }
5277 \f
5278 /* If M is a bitmask that selects a field of low-order bits within an item but
5279 not the entire word, return the length of the field. Return -1 otherwise.
5280 M is used in machine mode MODE. */
5281
5282 int
5283 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5284 {
5285 if (mode != VOIDmode)
5286 {
5287 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5288 return -1;
5289 m &= GET_MODE_MASK (mode);
5290 }
5291
5292 return exact_log2 (m + 1);
5293 }
5294
5295 /* Return the mode of MEM's address. */
5296
5297 enum machine_mode
5298 get_address_mode (rtx mem)
5299 {
5300 enum machine_mode mode;
5301
5302 gcc_assert (MEM_P (mem));
5303 mode = GET_MODE (XEXP (mem, 0));
5304 if (mode != VOIDmode)
5305 return mode;
5306 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5307 }
5308 \f
5309 /* Split up a CONST_DOUBLE or integer constant rtx
5310 into two rtx's for single words,
5311 storing in *FIRST the word that comes first in memory in the target
5312 and in *SECOND the other. */
5313
5314 void
5315 split_double (rtx value, rtx *first, rtx *second)
5316 {
5317 if (CONST_INT_P (value))
5318 {
5319 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5320 {
5321 /* In this case the CONST_INT holds both target words.
5322 Extract the bits from it into two word-sized pieces.
5323 Sign extend each half to HOST_WIDE_INT. */
5324 unsigned HOST_WIDE_INT low, high;
5325 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5326 unsigned bits_per_word = BITS_PER_WORD;
5327
5328 /* Set sign_bit to the most significant bit of a word. */
5329 sign_bit = 1;
5330 sign_bit <<= bits_per_word - 1;
5331
5332 /* Set mask so that all bits of the word are set. We could
5333 have used 1 << BITS_PER_WORD instead of basing the
5334 calculation on sign_bit. However, on machines where
5335 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5336 compiler warning, even though the code would never be
5337 executed. */
5338 mask = sign_bit << 1;
5339 mask--;
5340
5341 /* Set sign_extend as any remaining bits. */
5342 sign_extend = ~mask;
5343
5344 /* Pick the lower word and sign-extend it. */
5345 low = INTVAL (value);
5346 low &= mask;
5347 if (low & sign_bit)
5348 low |= sign_extend;
5349
5350 /* Pick the higher word, shifted to the least significant
5351 bits, and sign-extend it. */
5352 high = INTVAL (value);
5353 high >>= bits_per_word - 1;
5354 high >>= 1;
5355 high &= mask;
5356 if (high & sign_bit)
5357 high |= sign_extend;
5358
5359 /* Store the words in the target machine order. */
5360 if (WORDS_BIG_ENDIAN)
5361 {
5362 *first = GEN_INT (high);
5363 *second = GEN_INT (low);
5364 }
5365 else
5366 {
5367 *first = GEN_INT (low);
5368 *second = GEN_INT (high);
5369 }
5370 }
5371 else
5372 {
5373 /* The rule for using CONST_INT for a wider mode
5374 is that we regard the value as signed.
5375 So sign-extend it. */
5376 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5377 if (WORDS_BIG_ENDIAN)
5378 {
5379 *first = high;
5380 *second = value;
5381 }
5382 else
5383 {
5384 *first = value;
5385 *second = high;
5386 }
5387 }
5388 }
5389 else if (!CONST_DOUBLE_P (value))
5390 {
5391 if (WORDS_BIG_ENDIAN)
5392 {
5393 *first = const0_rtx;
5394 *second = value;
5395 }
5396 else
5397 {
5398 *first = value;
5399 *second = const0_rtx;
5400 }
5401 }
5402 else if (GET_MODE (value) == VOIDmode
5403 /* This is the old way we did CONST_DOUBLE integers. */
5404 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5405 {
5406 /* In an integer, the words are defined as most and least significant.
5407 So order them by the target's convention. */
5408 if (WORDS_BIG_ENDIAN)
5409 {
5410 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5411 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5412 }
5413 else
5414 {
5415 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5416 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5417 }
5418 }
5419 else
5420 {
5421 REAL_VALUE_TYPE r;
5422 long l[2];
5423 REAL_VALUE_FROM_CONST_DOUBLE (r, value);
5424
5425 /* Note, this converts the REAL_VALUE_TYPE to the target's
5426 format, splits up the floating point double and outputs
5427 exactly 32 bits of it into each of l[0] and l[1] --
5428 not necessarily BITS_PER_WORD bits. */
5429 REAL_VALUE_TO_TARGET_DOUBLE (r, l);
5430
5431 /* If 32 bits is an entire word for the target, but not for the host,
5432 then sign-extend on the host so that the number will look the same
5433 way on the host that it would on the target. See for instance
5434 simplify_unary_operation. The #if is needed to avoid compiler
5435 warnings. */
5436
5437 #if HOST_BITS_PER_LONG > 32
5438 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5439 {
5440 if (l[0] & ((long) 1 << 31))
5441 l[0] |= ((long) (-1) << 32);
5442 if (l[1] & ((long) 1 << 31))
5443 l[1] |= ((long) (-1) << 32);
5444 }
5445 #endif
5446
5447 *first = GEN_INT (l[0]);
5448 *second = GEN_INT (l[1]);
5449 }
5450 }
5451