re PR rtl-optimization/37889 (SEGV, conditional execution proactively executed the...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
267 enum machine_mode mode, bool unaligned_mems)
268 {
269 enum rtx_code code = GET_CODE (x);
270
271 if (STRICT_ALIGNMENT
272 && unaligned_mems
273 && GET_MODE_SIZE (mode) != 0)
274 {
275 HOST_WIDE_INT actual_offset = offset;
276 #ifdef SPARC_STACK_BOUNDARY_HACK
277 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
278 the real alignment of %sp. However, when it does this, the
279 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
280 if (SPARC_STACK_BOUNDARY_HACK
281 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
282 actual_offset -= STACK_POINTER_OFFSET;
283 #endif
284
285 return actual_offset % GET_MODE_SIZE (mode) != 0;
286 }
287
288 switch (code)
289 {
290 case SYMBOL_REF:
291 if (SYMBOL_REF_WEAK (x))
292 return 1;
293 if (!CONSTANT_POOL_ADDRESS_P (x))
294 {
295 tree decl;
296 HOST_WIDE_INT decl_size;
297
298 if (offset < 0)
299 return 1;
300 if (size == 0)
301 size = GET_MODE_SIZE (mode);
302 if (size == 0)
303 return offset != 0;
304
305 /* If the size of the access or of the symbol is unknown,
306 assume the worst. */
307 decl = SYMBOL_REF_DECL (x);
308
309 /* Else check that the access is in bounds. TODO: restructure
310 expr_size/lhd_expr_size/int_expr_size and just use the latter. */
311 if (!decl)
312 decl_size = -1;
313 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
314 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
315 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
316 : -1);
317 else if (TREE_CODE (decl) == STRING_CST)
318 decl_size = TREE_STRING_LENGTH (decl);
319 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
320 decl_size = int_size_in_bytes (TREE_TYPE (decl));
321 else
322 decl_size = -1;
323
324 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
325 }
326
327 return 0;
328
329 case LABEL_REF:
330 return 0;
331
332 case REG:
333 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
334 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
335 || x == stack_pointer_rtx
336 /* The arg pointer varies if it is not a fixed register. */
337 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
338 return 0;
339 /* All of the virtual frame registers are stack references. */
340 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
341 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
342 return 0;
343 return 1;
344
345 case CONST:
346 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
347 mode, unaligned_mems);
348
349 case PLUS:
350 /* An address is assumed not to trap if:
351 - it is the pic register plus a constant. */
352 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
353 return 0;
354
355 /* - or it is an address that can't trap plus a constant integer,
356 with the proper remainder modulo the mode size if we are
357 considering unaligned memory references. */
358 if (GET_CODE (XEXP (x, 1)) == CONST_INT
359 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
360 size, mode, unaligned_mems))
361 return 0;
362
363 return 1;
364
365 case LO_SUM:
366 case PRE_MODIFY:
367 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
368 mode, unaligned_mems);
369
370 case PRE_DEC:
371 case PRE_INC:
372 case POST_DEC:
373 case POST_INC:
374 case POST_MODIFY:
375 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
376 mode, unaligned_mems);
377
378 default:
379 break;
380 }
381
382 /* If it isn't one of the case above, it can cause a trap. */
383 return 1;
384 }
385
386 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
387
388 int
389 rtx_addr_can_trap_p (const_rtx x)
390 {
391 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
392 }
393
394 /* Return true if X is an address that is known to not be zero. */
395
396 bool
397 nonzero_address_p (const_rtx x)
398 {
399 const enum rtx_code code = GET_CODE (x);
400
401 switch (code)
402 {
403 case SYMBOL_REF:
404 return !SYMBOL_REF_WEAK (x);
405
406 case LABEL_REF:
407 return true;
408
409 case REG:
410 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
411 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
412 || x == stack_pointer_rtx
413 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
414 return true;
415 /* All of the virtual frame registers are stack references. */
416 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
417 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
418 return true;
419 return false;
420
421 case CONST:
422 return nonzero_address_p (XEXP (x, 0));
423
424 case PLUS:
425 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
426 return nonzero_address_p (XEXP (x, 0));
427 /* Handle PIC references. */
428 else if (XEXP (x, 0) == pic_offset_table_rtx
429 && CONSTANT_P (XEXP (x, 1)))
430 return true;
431 return false;
432
433 case PRE_MODIFY:
434 /* Similar to the above; allow positive offsets. Further, since
435 auto-inc is only allowed in memories, the register must be a
436 pointer. */
437 if (GET_CODE (XEXP (x, 1)) == CONST_INT
438 && INTVAL (XEXP (x, 1)) > 0)
439 return true;
440 return nonzero_address_p (XEXP (x, 0));
441
442 case PRE_INC:
443 /* Similarly. Further, the offset is always positive. */
444 return true;
445
446 case PRE_DEC:
447 case POST_DEC:
448 case POST_INC:
449 case POST_MODIFY:
450 return nonzero_address_p (XEXP (x, 0));
451
452 case LO_SUM:
453 return nonzero_address_p (XEXP (x, 1));
454
455 default:
456 break;
457 }
458
459 /* If it isn't one of the case above, might be zero. */
460 return false;
461 }
462
463 /* Return 1 if X refers to a memory location whose address
464 cannot be compared reliably with constant addresses,
465 or if X refers to a BLKmode memory object.
466 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
467 zero, we are slightly more conservative. */
468
469 bool
470 rtx_addr_varies_p (const_rtx x, bool for_alias)
471 {
472 enum rtx_code code;
473 int i;
474 const char *fmt;
475
476 if (x == 0)
477 return 0;
478
479 code = GET_CODE (x);
480 if (code == MEM)
481 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
482
483 fmt = GET_RTX_FORMAT (code);
484 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
485 if (fmt[i] == 'e')
486 {
487 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
488 return 1;
489 }
490 else if (fmt[i] == 'E')
491 {
492 int j;
493 for (j = 0; j < XVECLEN (x, i); j++)
494 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
495 return 1;
496 }
497 return 0;
498 }
499 \f
500 /* Return the value of the integer term in X, if one is apparent;
501 otherwise return 0.
502 Only obvious integer terms are detected.
503 This is used in cse.c with the `related_value' field. */
504
505 HOST_WIDE_INT
506 get_integer_term (const_rtx x)
507 {
508 if (GET_CODE (x) == CONST)
509 x = XEXP (x, 0);
510
511 if (GET_CODE (x) == MINUS
512 && GET_CODE (XEXP (x, 1)) == CONST_INT)
513 return - INTVAL (XEXP (x, 1));
514 if (GET_CODE (x) == PLUS
515 && GET_CODE (XEXP (x, 1)) == CONST_INT)
516 return INTVAL (XEXP (x, 1));
517 return 0;
518 }
519
520 /* If X is a constant, return the value sans apparent integer term;
521 otherwise return 0.
522 Only obvious integer terms are detected. */
523
524 rtx
525 get_related_value (const_rtx x)
526 {
527 if (GET_CODE (x) != CONST)
528 return 0;
529 x = XEXP (x, 0);
530 if (GET_CODE (x) == PLUS
531 && GET_CODE (XEXP (x, 1)) == CONST_INT)
532 return XEXP (x, 0);
533 else if (GET_CODE (x) == MINUS
534 && GET_CODE (XEXP (x, 1)) == CONST_INT)
535 return XEXP (x, 0);
536 return 0;
537 }
538 \f
539 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
540 to somewhere in the same object or object_block as SYMBOL. */
541
542 bool
543 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
544 {
545 tree decl;
546
547 if (GET_CODE (symbol) != SYMBOL_REF)
548 return false;
549
550 if (offset == 0)
551 return true;
552
553 if (offset > 0)
554 {
555 if (CONSTANT_POOL_ADDRESS_P (symbol)
556 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
557 return true;
558
559 decl = SYMBOL_REF_DECL (symbol);
560 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
561 return true;
562 }
563
564 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
565 && SYMBOL_REF_BLOCK (symbol)
566 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
567 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
568 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
569 return true;
570
571 return false;
572 }
573
574 /* Split X into a base and a constant offset, storing them in *BASE_OUT
575 and *OFFSET_OUT respectively. */
576
577 void
578 split_const (rtx x, rtx *base_out, rtx *offset_out)
579 {
580 if (GET_CODE (x) == CONST)
581 {
582 x = XEXP (x, 0);
583 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
584 {
585 *base_out = XEXP (x, 0);
586 *offset_out = XEXP (x, 1);
587 return;
588 }
589 }
590 *base_out = x;
591 *offset_out = const0_rtx;
592 }
593 \f
594 /* Return the number of places FIND appears within X. If COUNT_DEST is
595 zero, we do not count occurrences inside the destination of a SET. */
596
597 int
598 count_occurrences (const_rtx x, const_rtx find, int count_dest)
599 {
600 int i, j;
601 enum rtx_code code;
602 const char *format_ptr;
603 int count;
604
605 if (x == find)
606 return 1;
607
608 code = GET_CODE (x);
609
610 switch (code)
611 {
612 case REG:
613 case CONST_INT:
614 case CONST_DOUBLE:
615 case CONST_FIXED:
616 case CONST_VECTOR:
617 case SYMBOL_REF:
618 case CODE_LABEL:
619 case PC:
620 case CC0:
621 return 0;
622
623 case EXPR_LIST:
624 count = count_occurrences (XEXP (x, 0), find, count_dest);
625 if (XEXP (x, 1))
626 count += count_occurrences (XEXP (x, 1), find, count_dest);
627 return count;
628
629 case MEM:
630 if (MEM_P (find) && rtx_equal_p (x, find))
631 return 1;
632 break;
633
634 case SET:
635 if (SET_DEST (x) == find && ! count_dest)
636 return count_occurrences (SET_SRC (x), find, count_dest);
637 break;
638
639 default:
640 break;
641 }
642
643 format_ptr = GET_RTX_FORMAT (code);
644 count = 0;
645
646 for (i = 0; i < GET_RTX_LENGTH (code); i++)
647 {
648 switch (*format_ptr++)
649 {
650 case 'e':
651 count += count_occurrences (XEXP (x, i), find, count_dest);
652 break;
653
654 case 'E':
655 for (j = 0; j < XVECLEN (x, i); j++)
656 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
657 break;
658 }
659 }
660 return count;
661 }
662
663 \f
664 /* Nonzero if register REG appears somewhere within IN.
665 Also works if REG is not a register; in this case it checks
666 for a subexpression of IN that is Lisp "equal" to REG. */
667
668 int
669 reg_mentioned_p (const_rtx reg, const_rtx in)
670 {
671 const char *fmt;
672 int i;
673 enum rtx_code code;
674
675 if (in == 0)
676 return 0;
677
678 if (reg == in)
679 return 1;
680
681 if (GET_CODE (in) == LABEL_REF)
682 return reg == XEXP (in, 0);
683
684 code = GET_CODE (in);
685
686 switch (code)
687 {
688 /* Compare registers by number. */
689 case REG:
690 return REG_P (reg) && REGNO (in) == REGNO (reg);
691
692 /* These codes have no constituent expressions
693 and are unique. */
694 case SCRATCH:
695 case CC0:
696 case PC:
697 return 0;
698
699 case CONST_INT:
700 case CONST_VECTOR:
701 case CONST_DOUBLE:
702 case CONST_FIXED:
703 /* These are kept unique for a given value. */
704 return 0;
705
706 default:
707 break;
708 }
709
710 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
711 return 1;
712
713 fmt = GET_RTX_FORMAT (code);
714
715 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
716 {
717 if (fmt[i] == 'E')
718 {
719 int j;
720 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
721 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
722 return 1;
723 }
724 else if (fmt[i] == 'e'
725 && reg_mentioned_p (reg, XEXP (in, i)))
726 return 1;
727 }
728 return 0;
729 }
730 \f
731 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
732 no CODE_LABEL insn. */
733
734 int
735 no_labels_between_p (const_rtx beg, const_rtx end)
736 {
737 rtx p;
738 if (beg == end)
739 return 0;
740 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
741 if (LABEL_P (p))
742 return 0;
743 return 1;
744 }
745
746 /* Nonzero if register REG is used in an insn between
747 FROM_INSN and TO_INSN (exclusive of those two). */
748
749 int
750 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
751 {
752 rtx insn;
753
754 if (from_insn == to_insn)
755 return 0;
756
757 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
758 if (INSN_P (insn)
759 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
760 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
761 return 1;
762 return 0;
763 }
764 \f
765 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
766 is entirely replaced by a new value and the only use is as a SET_DEST,
767 we do not consider it a reference. */
768
769 int
770 reg_referenced_p (const_rtx x, const_rtx body)
771 {
772 int i;
773
774 switch (GET_CODE (body))
775 {
776 case SET:
777 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
778 return 1;
779
780 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
781 of a REG that occupies all of the REG, the insn references X if
782 it is mentioned in the destination. */
783 if (GET_CODE (SET_DEST (body)) != CC0
784 && GET_CODE (SET_DEST (body)) != PC
785 && !REG_P (SET_DEST (body))
786 && ! (GET_CODE (SET_DEST (body)) == SUBREG
787 && REG_P (SUBREG_REG (SET_DEST (body)))
788 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
789 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
790 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
791 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
792 && reg_overlap_mentioned_p (x, SET_DEST (body)))
793 return 1;
794 return 0;
795
796 case ASM_OPERANDS:
797 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
798 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
799 return 1;
800 return 0;
801
802 case CALL:
803 case USE:
804 case IF_THEN_ELSE:
805 return reg_overlap_mentioned_p (x, body);
806
807 case TRAP_IF:
808 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
809
810 case PREFETCH:
811 return reg_overlap_mentioned_p (x, XEXP (body, 0));
812
813 case UNSPEC:
814 case UNSPEC_VOLATILE:
815 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
816 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
817 return 1;
818 return 0;
819
820 case PARALLEL:
821 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
822 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
823 return 1;
824 return 0;
825
826 case CLOBBER:
827 if (MEM_P (XEXP (body, 0)))
828 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
829 return 1;
830 return 0;
831
832 case COND_EXEC:
833 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
834 return 1;
835 return reg_referenced_p (x, COND_EXEC_CODE (body));
836
837 default:
838 return 0;
839 }
840 }
841 \f
842 /* Nonzero if register REG is set or clobbered in an insn between
843 FROM_INSN and TO_INSN (exclusive of those two). */
844
845 int
846 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
847 {
848 const_rtx insn;
849
850 if (from_insn == to_insn)
851 return 0;
852
853 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
854 if (INSN_P (insn) && reg_set_p (reg, insn))
855 return 1;
856 return 0;
857 }
858
859 /* Internals of reg_set_between_p. */
860 int
861 reg_set_p (const_rtx reg, const_rtx insn)
862 {
863 /* We can be passed an insn or part of one. If we are passed an insn,
864 check if a side-effect of the insn clobbers REG. */
865 if (INSN_P (insn)
866 && (FIND_REG_INC_NOTE (insn, reg)
867 || (CALL_P (insn)
868 && ((REG_P (reg)
869 && REGNO (reg) < FIRST_PSEUDO_REGISTER
870 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
871 GET_MODE (reg), REGNO (reg)))
872 || MEM_P (reg)
873 || find_reg_fusage (insn, CLOBBER, reg)))))
874 return 1;
875
876 return set_of (reg, insn) != NULL_RTX;
877 }
878
879 /* Similar to reg_set_between_p, but check all registers in X. Return 0
880 only if none of them are modified between START and END. Return 1 if
881 X contains a MEM; this routine does use memory aliasing. */
882
883 int
884 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
885 {
886 const enum rtx_code code = GET_CODE (x);
887 const char *fmt;
888 int i, j;
889 rtx insn;
890
891 if (start == end)
892 return 0;
893
894 switch (code)
895 {
896 case CONST_INT:
897 case CONST_DOUBLE:
898 case CONST_FIXED:
899 case CONST_VECTOR:
900 case CONST:
901 case SYMBOL_REF:
902 case LABEL_REF:
903 return 0;
904
905 case PC:
906 case CC0:
907 return 1;
908
909 case MEM:
910 if (modified_between_p (XEXP (x, 0), start, end))
911 return 1;
912 if (MEM_READONLY_P (x))
913 return 0;
914 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
915 if (memory_modified_in_insn_p (x, insn))
916 return 1;
917 return 0;
918 break;
919
920 case REG:
921 return reg_set_between_p (x, start, end);
922
923 default:
924 break;
925 }
926
927 fmt = GET_RTX_FORMAT (code);
928 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
929 {
930 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
931 return 1;
932
933 else if (fmt[i] == 'E')
934 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
935 if (modified_between_p (XVECEXP (x, i, j), start, end))
936 return 1;
937 }
938
939 return 0;
940 }
941
942 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
943 of them are modified in INSN. Return 1 if X contains a MEM; this routine
944 does use memory aliasing. */
945
946 int
947 modified_in_p (const_rtx x, const_rtx insn)
948 {
949 const enum rtx_code code = GET_CODE (x);
950 const char *fmt;
951 int i, j;
952
953 switch (code)
954 {
955 case CONST_INT:
956 case CONST_DOUBLE:
957 case CONST_FIXED:
958 case CONST_VECTOR:
959 case CONST:
960 case SYMBOL_REF:
961 case LABEL_REF:
962 return 0;
963
964 case PC:
965 case CC0:
966 return 1;
967
968 case MEM:
969 if (modified_in_p (XEXP (x, 0), insn))
970 return 1;
971 if (MEM_READONLY_P (x))
972 return 0;
973 if (memory_modified_in_insn_p (x, insn))
974 return 1;
975 return 0;
976 break;
977
978 case REG:
979 return reg_set_p (x, insn);
980
981 default:
982 break;
983 }
984
985 fmt = GET_RTX_FORMAT (code);
986 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
987 {
988 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
989 return 1;
990
991 else if (fmt[i] == 'E')
992 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
993 if (modified_in_p (XVECEXP (x, i, j), insn))
994 return 1;
995 }
996
997 return 0;
998 }
999 \f
1000 /* Helper function for set_of. */
1001 struct set_of_data
1002 {
1003 const_rtx found;
1004 const_rtx pat;
1005 };
1006
1007 static void
1008 set_of_1 (rtx x, const_rtx pat, void *data1)
1009 {
1010 struct set_of_data *const data = (struct set_of_data *) (data1);
1011 if (rtx_equal_p (x, data->pat)
1012 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1013 data->found = pat;
1014 }
1015
1016 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1017 (either directly or via STRICT_LOW_PART and similar modifiers). */
1018 const_rtx
1019 set_of (const_rtx pat, const_rtx insn)
1020 {
1021 struct set_of_data data;
1022 data.found = NULL_RTX;
1023 data.pat = pat;
1024 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1025 return data.found;
1026 }
1027 \f
1028 /* Given an INSN, return a SET expression if this insn has only a single SET.
1029 It may also have CLOBBERs, USEs, or SET whose output
1030 will not be used, which we ignore. */
1031
1032 rtx
1033 single_set_2 (const_rtx insn, const_rtx pat)
1034 {
1035 rtx set = NULL;
1036 int set_verified = 1;
1037 int i;
1038
1039 if (GET_CODE (pat) == PARALLEL)
1040 {
1041 for (i = 0; i < XVECLEN (pat, 0); i++)
1042 {
1043 rtx sub = XVECEXP (pat, 0, i);
1044 switch (GET_CODE (sub))
1045 {
1046 case USE:
1047 case CLOBBER:
1048 break;
1049
1050 case SET:
1051 /* We can consider insns having multiple sets, where all
1052 but one are dead as single set insns. In common case
1053 only single set is present in the pattern so we want
1054 to avoid checking for REG_UNUSED notes unless necessary.
1055
1056 When we reach set first time, we just expect this is
1057 the single set we are looking for and only when more
1058 sets are found in the insn, we check them. */
1059 if (!set_verified)
1060 {
1061 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1062 && !side_effects_p (set))
1063 set = NULL;
1064 else
1065 set_verified = 1;
1066 }
1067 if (!set)
1068 set = sub, set_verified = 0;
1069 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1070 || side_effects_p (sub))
1071 return NULL_RTX;
1072 break;
1073
1074 default:
1075 return NULL_RTX;
1076 }
1077 }
1078 }
1079 return set;
1080 }
1081
1082 /* Given an INSN, return nonzero if it has more than one SET, else return
1083 zero. */
1084
1085 int
1086 multiple_sets (const_rtx insn)
1087 {
1088 int found;
1089 int i;
1090
1091 /* INSN must be an insn. */
1092 if (! INSN_P (insn))
1093 return 0;
1094
1095 /* Only a PARALLEL can have multiple SETs. */
1096 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1097 {
1098 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1099 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1100 {
1101 /* If we have already found a SET, then return now. */
1102 if (found)
1103 return 1;
1104 else
1105 found = 1;
1106 }
1107 }
1108
1109 /* Either zero or one SET. */
1110 return 0;
1111 }
1112 \f
1113 /* Return nonzero if the destination of SET equals the source
1114 and there are no side effects. */
1115
1116 int
1117 set_noop_p (const_rtx set)
1118 {
1119 rtx src = SET_SRC (set);
1120 rtx dst = SET_DEST (set);
1121
1122 if (dst == pc_rtx && src == pc_rtx)
1123 return 1;
1124
1125 if (MEM_P (dst) && MEM_P (src))
1126 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1127
1128 if (GET_CODE (dst) == ZERO_EXTRACT)
1129 return rtx_equal_p (XEXP (dst, 0), src)
1130 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1131 && !side_effects_p (src);
1132
1133 if (GET_CODE (dst) == STRICT_LOW_PART)
1134 dst = XEXP (dst, 0);
1135
1136 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1137 {
1138 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1139 return 0;
1140 src = SUBREG_REG (src);
1141 dst = SUBREG_REG (dst);
1142 }
1143
1144 return (REG_P (src) && REG_P (dst)
1145 && REGNO (src) == REGNO (dst));
1146 }
1147 \f
1148 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1149 value to itself. */
1150
1151 int
1152 noop_move_p (const_rtx insn)
1153 {
1154 rtx pat = PATTERN (insn);
1155
1156 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1157 return 1;
1158
1159 /* Insns carrying these notes are useful later on. */
1160 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1161 return 0;
1162
1163 if (GET_CODE (pat) == SET && set_noop_p (pat))
1164 return 1;
1165
1166 if (GET_CODE (pat) == PARALLEL)
1167 {
1168 int i;
1169 /* If nothing but SETs of registers to themselves,
1170 this insn can also be deleted. */
1171 for (i = 0; i < XVECLEN (pat, 0); i++)
1172 {
1173 rtx tem = XVECEXP (pat, 0, i);
1174
1175 if (GET_CODE (tem) == USE
1176 || GET_CODE (tem) == CLOBBER)
1177 continue;
1178
1179 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1180 return 0;
1181 }
1182
1183 return 1;
1184 }
1185 return 0;
1186 }
1187 \f
1188
1189 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1190 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1191 If the object was modified, if we hit a partial assignment to X, or hit a
1192 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1193 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1194 be the src. */
1195
1196 rtx
1197 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1198 {
1199 rtx p;
1200
1201 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1202 p = PREV_INSN (p))
1203 if (INSN_P (p))
1204 {
1205 rtx set = single_set (p);
1206 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1207
1208 if (set && rtx_equal_p (x, SET_DEST (set)))
1209 {
1210 rtx src = SET_SRC (set);
1211
1212 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1213 src = XEXP (note, 0);
1214
1215 if ((valid_to == NULL_RTX
1216 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1217 /* Reject hard registers because we don't usually want
1218 to use them; we'd rather use a pseudo. */
1219 && (! (REG_P (src)
1220 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1221 {
1222 *pinsn = p;
1223 return src;
1224 }
1225 }
1226
1227 /* If set in non-simple way, we don't have a value. */
1228 if (reg_set_p (x, p))
1229 break;
1230 }
1231
1232 return x;
1233 }
1234 \f
1235 /* Return nonzero if register in range [REGNO, ENDREGNO)
1236 appears either explicitly or implicitly in X
1237 other than being stored into.
1238
1239 References contained within the substructure at LOC do not count.
1240 LOC may be zero, meaning don't ignore anything. */
1241
1242 int
1243 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1244 rtx *loc)
1245 {
1246 int i;
1247 unsigned int x_regno;
1248 RTX_CODE code;
1249 const char *fmt;
1250
1251 repeat:
1252 /* The contents of a REG_NONNEG note is always zero, so we must come here
1253 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1254 if (x == 0)
1255 return 0;
1256
1257 code = GET_CODE (x);
1258
1259 switch (code)
1260 {
1261 case REG:
1262 x_regno = REGNO (x);
1263
1264 /* If we modifying the stack, frame, or argument pointer, it will
1265 clobber a virtual register. In fact, we could be more precise,
1266 but it isn't worth it. */
1267 if ((x_regno == STACK_POINTER_REGNUM
1268 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1269 || x_regno == ARG_POINTER_REGNUM
1270 #endif
1271 || x_regno == FRAME_POINTER_REGNUM)
1272 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1273 return 1;
1274
1275 return endregno > x_regno && regno < END_REGNO (x);
1276
1277 case SUBREG:
1278 /* If this is a SUBREG of a hard reg, we can see exactly which
1279 registers are being modified. Otherwise, handle normally. */
1280 if (REG_P (SUBREG_REG (x))
1281 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1282 {
1283 unsigned int inner_regno = subreg_regno (x);
1284 unsigned int inner_endregno
1285 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1286 ? subreg_nregs (x) : 1);
1287
1288 return endregno > inner_regno && regno < inner_endregno;
1289 }
1290 break;
1291
1292 case CLOBBER:
1293 case SET:
1294 if (&SET_DEST (x) != loc
1295 /* Note setting a SUBREG counts as referring to the REG it is in for
1296 a pseudo but not for hard registers since we can
1297 treat each word individually. */
1298 && ((GET_CODE (SET_DEST (x)) == SUBREG
1299 && loc != &SUBREG_REG (SET_DEST (x))
1300 && REG_P (SUBREG_REG (SET_DEST (x)))
1301 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1302 && refers_to_regno_p (regno, endregno,
1303 SUBREG_REG (SET_DEST (x)), loc))
1304 || (!REG_P (SET_DEST (x))
1305 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1306 return 1;
1307
1308 if (code == CLOBBER || loc == &SET_SRC (x))
1309 return 0;
1310 x = SET_SRC (x);
1311 goto repeat;
1312
1313 default:
1314 break;
1315 }
1316
1317 /* X does not match, so try its subexpressions. */
1318
1319 fmt = GET_RTX_FORMAT (code);
1320 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1321 {
1322 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1323 {
1324 if (i == 0)
1325 {
1326 x = XEXP (x, 0);
1327 goto repeat;
1328 }
1329 else
1330 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1331 return 1;
1332 }
1333 else if (fmt[i] == 'E')
1334 {
1335 int j;
1336 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1337 if (loc != &XVECEXP (x, i, j)
1338 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1339 return 1;
1340 }
1341 }
1342 return 0;
1343 }
1344
1345 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1346 we check if any register number in X conflicts with the relevant register
1347 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1348 contains a MEM (we don't bother checking for memory addresses that can't
1349 conflict because we expect this to be a rare case. */
1350
1351 int
1352 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1353 {
1354 unsigned int regno, endregno;
1355
1356 /* If either argument is a constant, then modifying X can not
1357 affect IN. Here we look at IN, we can profitably combine
1358 CONSTANT_P (x) with the switch statement below. */
1359 if (CONSTANT_P (in))
1360 return 0;
1361
1362 recurse:
1363 switch (GET_CODE (x))
1364 {
1365 case STRICT_LOW_PART:
1366 case ZERO_EXTRACT:
1367 case SIGN_EXTRACT:
1368 /* Overly conservative. */
1369 x = XEXP (x, 0);
1370 goto recurse;
1371
1372 case SUBREG:
1373 regno = REGNO (SUBREG_REG (x));
1374 if (regno < FIRST_PSEUDO_REGISTER)
1375 regno = subreg_regno (x);
1376 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1377 ? subreg_nregs (x) : 1);
1378 goto do_reg;
1379
1380 case REG:
1381 regno = REGNO (x);
1382 endregno = END_REGNO (x);
1383 do_reg:
1384 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1385
1386 case MEM:
1387 {
1388 const char *fmt;
1389 int i;
1390
1391 if (MEM_P (in))
1392 return 1;
1393
1394 fmt = GET_RTX_FORMAT (GET_CODE (in));
1395 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1396 if (fmt[i] == 'e')
1397 {
1398 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1399 return 1;
1400 }
1401 else if (fmt[i] == 'E')
1402 {
1403 int j;
1404 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1405 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1406 return 1;
1407 }
1408
1409 return 0;
1410 }
1411
1412 case SCRATCH:
1413 case PC:
1414 case CC0:
1415 return reg_mentioned_p (x, in);
1416
1417 case PARALLEL:
1418 {
1419 int i;
1420
1421 /* If any register in here refers to it we return true. */
1422 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1423 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1424 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1425 return 1;
1426 return 0;
1427 }
1428
1429 default:
1430 gcc_assert (CONSTANT_P (x));
1431 return 0;
1432 }
1433 }
1434 \f
1435 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1436 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1437 ignored by note_stores, but passed to FUN.
1438
1439 FUN receives three arguments:
1440 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1441 2. the SET or CLOBBER rtx that does the store,
1442 3. the pointer DATA provided to note_stores.
1443
1444 If the item being stored in or clobbered is a SUBREG of a hard register,
1445 the SUBREG will be passed. */
1446
1447 void
1448 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1449 {
1450 int i;
1451
1452 if (GET_CODE (x) == COND_EXEC)
1453 x = COND_EXEC_CODE (x);
1454
1455 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1456 {
1457 rtx dest = SET_DEST (x);
1458
1459 while ((GET_CODE (dest) == SUBREG
1460 && (!REG_P (SUBREG_REG (dest))
1461 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1462 || GET_CODE (dest) == ZERO_EXTRACT
1463 || GET_CODE (dest) == STRICT_LOW_PART)
1464 dest = XEXP (dest, 0);
1465
1466 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1467 each of whose first operand is a register. */
1468 if (GET_CODE (dest) == PARALLEL)
1469 {
1470 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1471 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1472 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1473 }
1474 else
1475 (*fun) (dest, x, data);
1476 }
1477
1478 else if (GET_CODE (x) == PARALLEL)
1479 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1480 note_stores (XVECEXP (x, 0, i), fun, data);
1481 }
1482 \f
1483 /* Like notes_stores, but call FUN for each expression that is being
1484 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1485 FUN for each expression, not any interior subexpressions. FUN receives a
1486 pointer to the expression and the DATA passed to this function.
1487
1488 Note that this is not quite the same test as that done in reg_referenced_p
1489 since that considers something as being referenced if it is being
1490 partially set, while we do not. */
1491
1492 void
1493 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1494 {
1495 rtx body = *pbody;
1496 int i;
1497
1498 switch (GET_CODE (body))
1499 {
1500 case COND_EXEC:
1501 (*fun) (&COND_EXEC_TEST (body), data);
1502 note_uses (&COND_EXEC_CODE (body), fun, data);
1503 return;
1504
1505 case PARALLEL:
1506 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1507 note_uses (&XVECEXP (body, 0, i), fun, data);
1508 return;
1509
1510 case SEQUENCE:
1511 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1512 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1513 return;
1514
1515 case USE:
1516 (*fun) (&XEXP (body, 0), data);
1517 return;
1518
1519 case ASM_OPERANDS:
1520 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1521 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1522 return;
1523
1524 case TRAP_IF:
1525 (*fun) (&TRAP_CONDITION (body), data);
1526 return;
1527
1528 case PREFETCH:
1529 (*fun) (&XEXP (body, 0), data);
1530 return;
1531
1532 case UNSPEC:
1533 case UNSPEC_VOLATILE:
1534 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1535 (*fun) (&XVECEXP (body, 0, i), data);
1536 return;
1537
1538 case CLOBBER:
1539 if (MEM_P (XEXP (body, 0)))
1540 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1541 return;
1542
1543 case SET:
1544 {
1545 rtx dest = SET_DEST (body);
1546
1547 /* For sets we replace everything in source plus registers in memory
1548 expression in store and operands of a ZERO_EXTRACT. */
1549 (*fun) (&SET_SRC (body), data);
1550
1551 if (GET_CODE (dest) == ZERO_EXTRACT)
1552 {
1553 (*fun) (&XEXP (dest, 1), data);
1554 (*fun) (&XEXP (dest, 2), data);
1555 }
1556
1557 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1558 dest = XEXP (dest, 0);
1559
1560 if (MEM_P (dest))
1561 (*fun) (&XEXP (dest, 0), data);
1562 }
1563 return;
1564
1565 default:
1566 /* All the other possibilities never store. */
1567 (*fun) (pbody, data);
1568 return;
1569 }
1570 }
1571 \f
1572 /* Return nonzero if X's old contents don't survive after INSN.
1573 This will be true if X is (cc0) or if X is a register and
1574 X dies in INSN or because INSN entirely sets X.
1575
1576 "Entirely set" means set directly and not through a SUBREG, or
1577 ZERO_EXTRACT, so no trace of the old contents remains.
1578 Likewise, REG_INC does not count.
1579
1580 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1581 but for this use that makes no difference, since regs don't overlap
1582 during their lifetimes. Therefore, this function may be used
1583 at any time after deaths have been computed.
1584
1585 If REG is a hard reg that occupies multiple machine registers, this
1586 function will only return 1 if each of those registers will be replaced
1587 by INSN. */
1588
1589 int
1590 dead_or_set_p (const_rtx insn, const_rtx x)
1591 {
1592 unsigned int regno, end_regno;
1593 unsigned int i;
1594
1595 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1596 if (GET_CODE (x) == CC0)
1597 return 1;
1598
1599 gcc_assert (REG_P (x));
1600
1601 regno = REGNO (x);
1602 end_regno = END_REGNO (x);
1603 for (i = regno; i < end_regno; i++)
1604 if (! dead_or_set_regno_p (insn, i))
1605 return 0;
1606
1607 return 1;
1608 }
1609
1610 /* Return TRUE iff DEST is a register or subreg of a register and
1611 doesn't change the number of words of the inner register, and any
1612 part of the register is TEST_REGNO. */
1613
1614 static bool
1615 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1616 {
1617 unsigned int regno, endregno;
1618
1619 if (GET_CODE (dest) == SUBREG
1620 && (((GET_MODE_SIZE (GET_MODE (dest))
1621 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1622 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1623 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1624 dest = SUBREG_REG (dest);
1625
1626 if (!REG_P (dest))
1627 return false;
1628
1629 regno = REGNO (dest);
1630 endregno = END_REGNO (dest);
1631 return (test_regno >= regno && test_regno < endregno);
1632 }
1633
1634 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1635 any member matches the covers_regno_no_parallel_p criteria. */
1636
1637 static bool
1638 covers_regno_p (const_rtx dest, unsigned int test_regno)
1639 {
1640 if (GET_CODE (dest) == PARALLEL)
1641 {
1642 /* Some targets place small structures in registers for return
1643 values of functions, and those registers are wrapped in
1644 PARALLELs that we may see as the destination of a SET. */
1645 int i;
1646
1647 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1648 {
1649 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1650 if (inner != NULL_RTX
1651 && covers_regno_no_parallel_p (inner, test_regno))
1652 return true;
1653 }
1654
1655 return false;
1656 }
1657 else
1658 return covers_regno_no_parallel_p (dest, test_regno);
1659 }
1660
1661 /* Utility function for dead_or_set_p to check an individual register. */
1662
1663 int
1664 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1665 {
1666 const_rtx pattern;
1667
1668 /* See if there is a death note for something that includes TEST_REGNO. */
1669 if (find_regno_note (insn, REG_DEAD, test_regno))
1670 return 1;
1671
1672 if (CALL_P (insn)
1673 && find_regno_fusage (insn, CLOBBER, test_regno))
1674 return 1;
1675
1676 pattern = PATTERN (insn);
1677
1678 if (GET_CODE (pattern) == COND_EXEC)
1679 pattern = COND_EXEC_CODE (pattern);
1680
1681 if (GET_CODE (pattern) == SET)
1682 return covers_regno_p (SET_DEST (pattern), test_regno);
1683 else if (GET_CODE (pattern) == PARALLEL)
1684 {
1685 int i;
1686
1687 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1688 {
1689 rtx body = XVECEXP (pattern, 0, i);
1690
1691 if (GET_CODE (body) == COND_EXEC)
1692 body = COND_EXEC_CODE (body);
1693
1694 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1695 && covers_regno_p (SET_DEST (body), test_regno))
1696 return 1;
1697 }
1698 }
1699
1700 return 0;
1701 }
1702
1703 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1704 If DATUM is nonzero, look for one whose datum is DATUM. */
1705
1706 rtx
1707 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1708 {
1709 rtx link;
1710
1711 gcc_assert (insn);
1712
1713 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1714 if (! INSN_P (insn))
1715 return 0;
1716 if (datum == 0)
1717 {
1718 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1719 if (REG_NOTE_KIND (link) == kind)
1720 return link;
1721 return 0;
1722 }
1723
1724 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1725 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1726 return link;
1727 return 0;
1728 }
1729
1730 /* Return the reg-note of kind KIND in insn INSN which applies to register
1731 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1732 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1733 it might be the case that the note overlaps REGNO. */
1734
1735 rtx
1736 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1737 {
1738 rtx link;
1739
1740 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1741 if (! INSN_P (insn))
1742 return 0;
1743
1744 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1745 if (REG_NOTE_KIND (link) == kind
1746 /* Verify that it is a register, so that scratch and MEM won't cause a
1747 problem here. */
1748 && REG_P (XEXP (link, 0))
1749 && REGNO (XEXP (link, 0)) <= regno
1750 && END_REGNO (XEXP (link, 0)) > regno)
1751 return link;
1752 return 0;
1753 }
1754
1755 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1756 has such a note. */
1757
1758 rtx
1759 find_reg_equal_equiv_note (const_rtx insn)
1760 {
1761 rtx link;
1762
1763 if (!INSN_P (insn))
1764 return 0;
1765
1766 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1767 if (REG_NOTE_KIND (link) == REG_EQUAL
1768 || REG_NOTE_KIND (link) == REG_EQUIV)
1769 {
1770 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1771 insns that have multiple sets. Checking single_set to
1772 make sure of this is not the proper check, as explained
1773 in the comment in set_unique_reg_note.
1774
1775 This should be changed into an assert. */
1776 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1777 return 0;
1778 return link;
1779 }
1780 return NULL;
1781 }
1782
1783 /* Check whether INSN is a single_set whose source is known to be
1784 equivalent to a constant. Return that constant if so, otherwise
1785 return null. */
1786
1787 rtx
1788 find_constant_src (const_rtx insn)
1789 {
1790 rtx note, set, x;
1791
1792 set = single_set (insn);
1793 if (set)
1794 {
1795 x = avoid_constant_pool_reference (SET_SRC (set));
1796 if (CONSTANT_P (x))
1797 return x;
1798 }
1799
1800 note = find_reg_equal_equiv_note (insn);
1801 if (note && CONSTANT_P (XEXP (note, 0)))
1802 return XEXP (note, 0);
1803
1804 return NULL_RTX;
1805 }
1806
1807 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1808 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1809
1810 int
1811 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1812 {
1813 /* If it's not a CALL_INSN, it can't possibly have a
1814 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1815 if (!CALL_P (insn))
1816 return 0;
1817
1818 gcc_assert (datum);
1819
1820 if (!REG_P (datum))
1821 {
1822 rtx link;
1823
1824 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1825 link;
1826 link = XEXP (link, 1))
1827 if (GET_CODE (XEXP (link, 0)) == code
1828 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1829 return 1;
1830 }
1831 else
1832 {
1833 unsigned int regno = REGNO (datum);
1834
1835 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1836 to pseudo registers, so don't bother checking. */
1837
1838 if (regno < FIRST_PSEUDO_REGISTER)
1839 {
1840 unsigned int end_regno = END_HARD_REGNO (datum);
1841 unsigned int i;
1842
1843 for (i = regno; i < end_regno; i++)
1844 if (find_regno_fusage (insn, code, i))
1845 return 1;
1846 }
1847 }
1848
1849 return 0;
1850 }
1851
1852 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1853 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1854
1855 int
1856 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1857 {
1858 rtx link;
1859
1860 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1861 to pseudo registers, so don't bother checking. */
1862
1863 if (regno >= FIRST_PSEUDO_REGISTER
1864 || !CALL_P (insn) )
1865 return 0;
1866
1867 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1868 {
1869 rtx op, reg;
1870
1871 if (GET_CODE (op = XEXP (link, 0)) == code
1872 && REG_P (reg = XEXP (op, 0))
1873 && REGNO (reg) <= regno
1874 && END_HARD_REGNO (reg) > regno)
1875 return 1;
1876 }
1877
1878 return 0;
1879 }
1880
1881 \f
1882 /* Add register note with kind KIND and datum DATUM to INSN. */
1883
1884 void
1885 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1886 {
1887 rtx note;
1888
1889 switch (kind)
1890 {
1891 case REG_CC_SETTER:
1892 case REG_CC_USER:
1893 case REG_LABEL_TARGET:
1894 case REG_LABEL_OPERAND:
1895 /* These types of register notes use an INSN_LIST rather than an
1896 EXPR_LIST, so that copying is done right and dumps look
1897 better. */
1898 note = alloc_INSN_LIST (datum, REG_NOTES (insn));
1899 PUT_REG_NOTE_KIND (note, kind);
1900 break;
1901
1902 default:
1903 note = alloc_EXPR_LIST (kind, datum, REG_NOTES (insn));
1904 break;
1905 }
1906
1907 REG_NOTES (insn) = note;
1908 }
1909
1910 /* Remove register note NOTE from the REG_NOTES of INSN. */
1911
1912 void
1913 remove_note (rtx insn, const_rtx note)
1914 {
1915 rtx link;
1916
1917 if (note == NULL_RTX)
1918 return;
1919
1920 if (REG_NOTES (insn) == note)
1921 REG_NOTES (insn) = XEXP (note, 1);
1922 else
1923 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1924 if (XEXP (link, 1) == note)
1925 {
1926 XEXP (link, 1) = XEXP (note, 1);
1927 break;
1928 }
1929
1930 switch (REG_NOTE_KIND (note))
1931 {
1932 case REG_EQUAL:
1933 case REG_EQUIV:
1934 df_notes_rescan (insn);
1935 break;
1936 default:
1937 break;
1938 }
1939 }
1940
1941 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1942
1943 void
1944 remove_reg_equal_equiv_notes (rtx insn)
1945 {
1946 rtx *loc;
1947
1948 loc = &REG_NOTES (insn);
1949 while (*loc)
1950 {
1951 enum reg_note kind = REG_NOTE_KIND (*loc);
1952 if (kind == REG_EQUAL || kind == REG_EQUIV)
1953 *loc = XEXP (*loc, 1);
1954 else
1955 loc = &XEXP (*loc, 1);
1956 }
1957 }
1958
1959 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1960 return 1 if it is found. A simple equality test is used to determine if
1961 NODE matches. */
1962
1963 int
1964 in_expr_list_p (const_rtx listp, const_rtx node)
1965 {
1966 const_rtx x;
1967
1968 for (x = listp; x; x = XEXP (x, 1))
1969 if (node == XEXP (x, 0))
1970 return 1;
1971
1972 return 0;
1973 }
1974
1975 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1976 remove that entry from the list if it is found.
1977
1978 A simple equality test is used to determine if NODE matches. */
1979
1980 void
1981 remove_node_from_expr_list (const_rtx node, rtx *listp)
1982 {
1983 rtx temp = *listp;
1984 rtx prev = NULL_RTX;
1985
1986 while (temp)
1987 {
1988 if (node == XEXP (temp, 0))
1989 {
1990 /* Splice the node out of the list. */
1991 if (prev)
1992 XEXP (prev, 1) = XEXP (temp, 1);
1993 else
1994 *listp = XEXP (temp, 1);
1995
1996 return;
1997 }
1998
1999 prev = temp;
2000 temp = XEXP (temp, 1);
2001 }
2002 }
2003 \f
2004 /* Nonzero if X contains any volatile instructions. These are instructions
2005 which may cause unpredictable machine state instructions, and thus no
2006 instructions should be moved or combined across them. This includes
2007 only volatile asms and UNSPEC_VOLATILE instructions. */
2008
2009 int
2010 volatile_insn_p (const_rtx x)
2011 {
2012 const RTX_CODE code = GET_CODE (x);
2013 switch (code)
2014 {
2015 case LABEL_REF:
2016 case SYMBOL_REF:
2017 case CONST_INT:
2018 case CONST:
2019 case CONST_DOUBLE:
2020 case CONST_FIXED:
2021 case CONST_VECTOR:
2022 case CC0:
2023 case PC:
2024 case REG:
2025 case SCRATCH:
2026 case CLOBBER:
2027 case ADDR_VEC:
2028 case ADDR_DIFF_VEC:
2029 case CALL:
2030 case MEM:
2031 return 0;
2032
2033 case UNSPEC_VOLATILE:
2034 /* case TRAP_IF: This isn't clear yet. */
2035 return 1;
2036
2037 case ASM_INPUT:
2038 case ASM_OPERANDS:
2039 if (MEM_VOLATILE_P (x))
2040 return 1;
2041
2042 default:
2043 break;
2044 }
2045
2046 /* Recursively scan the operands of this expression. */
2047
2048 {
2049 const char *const fmt = GET_RTX_FORMAT (code);
2050 int i;
2051
2052 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2053 {
2054 if (fmt[i] == 'e')
2055 {
2056 if (volatile_insn_p (XEXP (x, i)))
2057 return 1;
2058 }
2059 else if (fmt[i] == 'E')
2060 {
2061 int j;
2062 for (j = 0; j < XVECLEN (x, i); j++)
2063 if (volatile_insn_p (XVECEXP (x, i, j)))
2064 return 1;
2065 }
2066 }
2067 }
2068 return 0;
2069 }
2070
2071 /* Nonzero if X contains any volatile memory references
2072 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2073
2074 int
2075 volatile_refs_p (const_rtx x)
2076 {
2077 const RTX_CODE code = GET_CODE (x);
2078 switch (code)
2079 {
2080 case LABEL_REF:
2081 case SYMBOL_REF:
2082 case CONST_INT:
2083 case CONST:
2084 case CONST_DOUBLE:
2085 case CONST_FIXED:
2086 case CONST_VECTOR:
2087 case CC0:
2088 case PC:
2089 case REG:
2090 case SCRATCH:
2091 case CLOBBER:
2092 case ADDR_VEC:
2093 case ADDR_DIFF_VEC:
2094 return 0;
2095
2096 case UNSPEC_VOLATILE:
2097 return 1;
2098
2099 case MEM:
2100 case ASM_INPUT:
2101 case ASM_OPERANDS:
2102 if (MEM_VOLATILE_P (x))
2103 return 1;
2104
2105 default:
2106 break;
2107 }
2108
2109 /* Recursively scan the operands of this expression. */
2110
2111 {
2112 const char *const fmt = GET_RTX_FORMAT (code);
2113 int i;
2114
2115 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2116 {
2117 if (fmt[i] == 'e')
2118 {
2119 if (volatile_refs_p (XEXP (x, i)))
2120 return 1;
2121 }
2122 else if (fmt[i] == 'E')
2123 {
2124 int j;
2125 for (j = 0; j < XVECLEN (x, i); j++)
2126 if (volatile_refs_p (XVECEXP (x, i, j)))
2127 return 1;
2128 }
2129 }
2130 }
2131 return 0;
2132 }
2133
2134 /* Similar to above, except that it also rejects register pre- and post-
2135 incrementing. */
2136
2137 int
2138 side_effects_p (const_rtx x)
2139 {
2140 const RTX_CODE code = GET_CODE (x);
2141 switch (code)
2142 {
2143 case LABEL_REF:
2144 case SYMBOL_REF:
2145 case CONST_INT:
2146 case CONST:
2147 case CONST_DOUBLE:
2148 case CONST_FIXED:
2149 case CONST_VECTOR:
2150 case CC0:
2151 case PC:
2152 case REG:
2153 case SCRATCH:
2154 case ADDR_VEC:
2155 case ADDR_DIFF_VEC:
2156 return 0;
2157
2158 case CLOBBER:
2159 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2160 when some combination can't be done. If we see one, don't think
2161 that we can simplify the expression. */
2162 return (GET_MODE (x) != VOIDmode);
2163
2164 case PRE_INC:
2165 case PRE_DEC:
2166 case POST_INC:
2167 case POST_DEC:
2168 case PRE_MODIFY:
2169 case POST_MODIFY:
2170 case CALL:
2171 case UNSPEC_VOLATILE:
2172 /* case TRAP_IF: This isn't clear yet. */
2173 return 1;
2174
2175 case MEM:
2176 case ASM_INPUT:
2177 case ASM_OPERANDS:
2178 if (MEM_VOLATILE_P (x))
2179 return 1;
2180
2181 default:
2182 break;
2183 }
2184
2185 /* Recursively scan the operands of this expression. */
2186
2187 {
2188 const char *fmt = GET_RTX_FORMAT (code);
2189 int i;
2190
2191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2192 {
2193 if (fmt[i] == 'e')
2194 {
2195 if (side_effects_p (XEXP (x, i)))
2196 return 1;
2197 }
2198 else if (fmt[i] == 'E')
2199 {
2200 int j;
2201 for (j = 0; j < XVECLEN (x, i); j++)
2202 if (side_effects_p (XVECEXP (x, i, j)))
2203 return 1;
2204 }
2205 }
2206 }
2207 return 0;
2208 }
2209 \f
2210 /* Return nonzero if evaluating rtx X might cause a trap.
2211 FLAGS controls how to consider MEMs. A nonzero means the context
2212 of the access may have changed from the original, such that the
2213 address may have become invalid. */
2214
2215 int
2216 may_trap_p_1 (const_rtx x, unsigned flags)
2217 {
2218 int i;
2219 enum rtx_code code;
2220 const char *fmt;
2221
2222 /* We make no distinction currently, but this function is part of
2223 the internal target-hooks ABI so we keep the parameter as
2224 "unsigned flags". */
2225 bool code_changed = flags != 0;
2226
2227 if (x == 0)
2228 return 0;
2229 code = GET_CODE (x);
2230 switch (code)
2231 {
2232 /* Handle these cases quickly. */
2233 case CONST_INT:
2234 case CONST_DOUBLE:
2235 case CONST_FIXED:
2236 case CONST_VECTOR:
2237 case SYMBOL_REF:
2238 case LABEL_REF:
2239 case CONST:
2240 case PC:
2241 case CC0:
2242 case REG:
2243 case SCRATCH:
2244 return 0;
2245
2246 case UNSPEC:
2247 case UNSPEC_VOLATILE:
2248 return targetm.unspec_may_trap_p (x, flags);
2249
2250 case ASM_INPUT:
2251 case TRAP_IF:
2252 return 1;
2253
2254 case ASM_OPERANDS:
2255 return MEM_VOLATILE_P (x);
2256
2257 /* Memory ref can trap unless it's a static var or a stack slot. */
2258 case MEM:
2259 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2260 reference; moving it out of context such as when moving code
2261 when optimizing, might cause its address to become invalid. */
2262 code_changed
2263 || !MEM_NOTRAP_P (x))
2264 {
2265 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2266 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2267 GET_MODE (x), code_changed);
2268 }
2269
2270 return 0;
2271
2272 /* Division by a non-constant might trap. */
2273 case DIV:
2274 case MOD:
2275 case UDIV:
2276 case UMOD:
2277 if (HONOR_SNANS (GET_MODE (x)))
2278 return 1;
2279 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2280 return flag_trapping_math;
2281 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2282 return 1;
2283 break;
2284
2285 case EXPR_LIST:
2286 /* An EXPR_LIST is used to represent a function call. This
2287 certainly may trap. */
2288 return 1;
2289
2290 case GE:
2291 case GT:
2292 case LE:
2293 case LT:
2294 case LTGT:
2295 case COMPARE:
2296 /* Some floating point comparisons may trap. */
2297 if (!flag_trapping_math)
2298 break;
2299 /* ??? There is no machine independent way to check for tests that trap
2300 when COMPARE is used, though many targets do make this distinction.
2301 For instance, sparc uses CCFPE for compares which generate exceptions
2302 and CCFP for compares which do not generate exceptions. */
2303 if (HONOR_NANS (GET_MODE (x)))
2304 return 1;
2305 /* But often the compare has some CC mode, so check operand
2306 modes as well. */
2307 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2308 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2309 return 1;
2310 break;
2311
2312 case EQ:
2313 case NE:
2314 if (HONOR_SNANS (GET_MODE (x)))
2315 return 1;
2316 /* Often comparison is CC mode, so check operand modes. */
2317 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2318 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2319 return 1;
2320 break;
2321
2322 case FIX:
2323 /* Conversion of floating point might trap. */
2324 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2325 return 1;
2326 break;
2327
2328 case NEG:
2329 case ABS:
2330 case SUBREG:
2331 /* These operations don't trap even with floating point. */
2332 break;
2333
2334 default:
2335 /* Any floating arithmetic may trap. */
2336 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2337 && flag_trapping_math)
2338 return 1;
2339 }
2340
2341 fmt = GET_RTX_FORMAT (code);
2342 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2343 {
2344 if (fmt[i] == 'e')
2345 {
2346 if (may_trap_p_1 (XEXP (x, i), flags))
2347 return 1;
2348 }
2349 else if (fmt[i] == 'E')
2350 {
2351 int j;
2352 for (j = 0; j < XVECLEN (x, i); j++)
2353 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2354 return 1;
2355 }
2356 }
2357 return 0;
2358 }
2359
2360 /* Return nonzero if evaluating rtx X might cause a trap. */
2361
2362 int
2363 may_trap_p (const_rtx x)
2364 {
2365 return may_trap_p_1 (x, 0);
2366 }
2367
2368 /* Same as above, but additionally return nonzero if evaluating rtx X might
2369 cause a fault. We define a fault for the purpose of this function as a
2370 erroneous execution condition that cannot be encountered during the normal
2371 execution of a valid program; the typical example is an unaligned memory
2372 access on a strict alignment machine. The compiler guarantees that it
2373 doesn't generate code that will fault from a valid program, but this
2374 guarantee doesn't mean anything for individual instructions. Consider
2375 the following example:
2376
2377 struct S { int d; union { char *cp; int *ip; }; };
2378
2379 int foo(struct S *s)
2380 {
2381 if (s->d == 1)
2382 return *s->ip;
2383 else
2384 return *s->cp;
2385 }
2386
2387 on a strict alignment machine. In a valid program, foo will never be
2388 invoked on a structure for which d is equal to 1 and the underlying
2389 unique field of the union not aligned on a 4-byte boundary, but the
2390 expression *s->ip might cause a fault if considered individually.
2391
2392 At the RTL level, potentially problematic expressions will almost always
2393 verify may_trap_p; for example, the above dereference can be emitted as
2394 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2395 However, suppose that foo is inlined in a caller that causes s->cp to
2396 point to a local character variable and guarantees that s->d is not set
2397 to 1; foo may have been effectively translated into pseudo-RTL as:
2398
2399 if ((reg:SI) == 1)
2400 (set (reg:SI) (mem:SI (%fp - 7)))
2401 else
2402 (set (reg:QI) (mem:QI (%fp - 7)))
2403
2404 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2405 memory reference to a stack slot, but it will certainly cause a fault
2406 on a strict alignment machine. */
2407
2408 int
2409 may_trap_or_fault_p (const_rtx x)
2410 {
2411 return may_trap_p_1 (x, 1);
2412 }
2413 \f
2414 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2415 i.e., an inequality. */
2416
2417 int
2418 inequality_comparisons_p (const_rtx x)
2419 {
2420 const char *fmt;
2421 int len, i;
2422 const enum rtx_code code = GET_CODE (x);
2423
2424 switch (code)
2425 {
2426 case REG:
2427 case SCRATCH:
2428 case PC:
2429 case CC0:
2430 case CONST_INT:
2431 case CONST_DOUBLE:
2432 case CONST_FIXED:
2433 case CONST_VECTOR:
2434 case CONST:
2435 case LABEL_REF:
2436 case SYMBOL_REF:
2437 return 0;
2438
2439 case LT:
2440 case LTU:
2441 case GT:
2442 case GTU:
2443 case LE:
2444 case LEU:
2445 case GE:
2446 case GEU:
2447 return 1;
2448
2449 default:
2450 break;
2451 }
2452
2453 len = GET_RTX_LENGTH (code);
2454 fmt = GET_RTX_FORMAT (code);
2455
2456 for (i = 0; i < len; i++)
2457 {
2458 if (fmt[i] == 'e')
2459 {
2460 if (inequality_comparisons_p (XEXP (x, i)))
2461 return 1;
2462 }
2463 else if (fmt[i] == 'E')
2464 {
2465 int j;
2466 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2467 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2468 return 1;
2469 }
2470 }
2471
2472 return 0;
2473 }
2474 \f
2475 /* Replace any occurrence of FROM in X with TO. The function does
2476 not enter into CONST_DOUBLE for the replace.
2477
2478 Note that copying is not done so X must not be shared unless all copies
2479 are to be modified. */
2480
2481 rtx
2482 replace_rtx (rtx x, rtx from, rtx to)
2483 {
2484 int i, j;
2485 const char *fmt;
2486
2487 /* The following prevents loops occurrence when we change MEM in
2488 CONST_DOUBLE onto the same CONST_DOUBLE. */
2489 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2490 return x;
2491
2492 if (x == from)
2493 return to;
2494
2495 /* Allow this function to make replacements in EXPR_LISTs. */
2496 if (x == 0)
2497 return 0;
2498
2499 if (GET_CODE (x) == SUBREG)
2500 {
2501 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2502
2503 if (GET_CODE (new_rtx) == CONST_INT)
2504 {
2505 x = simplify_subreg (GET_MODE (x), new_rtx,
2506 GET_MODE (SUBREG_REG (x)),
2507 SUBREG_BYTE (x));
2508 gcc_assert (x);
2509 }
2510 else
2511 SUBREG_REG (x) = new_rtx;
2512
2513 return x;
2514 }
2515 else if (GET_CODE (x) == ZERO_EXTEND)
2516 {
2517 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2518
2519 if (GET_CODE (new_rtx) == CONST_INT)
2520 {
2521 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2522 new_rtx, GET_MODE (XEXP (x, 0)));
2523 gcc_assert (x);
2524 }
2525 else
2526 XEXP (x, 0) = new_rtx;
2527
2528 return x;
2529 }
2530
2531 fmt = GET_RTX_FORMAT (GET_CODE (x));
2532 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2533 {
2534 if (fmt[i] == 'e')
2535 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2536 else if (fmt[i] == 'E')
2537 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2538 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2539 }
2540
2541 return x;
2542 }
2543 \f
2544 /* Replace occurrences of the old label in *X with the new one.
2545 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2546
2547 int
2548 replace_label (rtx *x, void *data)
2549 {
2550 rtx l = *x;
2551 rtx old_label = ((replace_label_data *) data)->r1;
2552 rtx new_label = ((replace_label_data *) data)->r2;
2553 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2554
2555 if (l == NULL_RTX)
2556 return 0;
2557
2558 if (GET_CODE (l) == SYMBOL_REF
2559 && CONSTANT_POOL_ADDRESS_P (l))
2560 {
2561 rtx c = get_pool_constant (l);
2562 if (rtx_referenced_p (old_label, c))
2563 {
2564 rtx new_c, new_l;
2565 replace_label_data *d = (replace_label_data *) data;
2566
2567 /* Create a copy of constant C; replace the label inside
2568 but do not update LABEL_NUSES because uses in constant pool
2569 are not counted. */
2570 new_c = copy_rtx (c);
2571 d->update_label_nuses = false;
2572 for_each_rtx (&new_c, replace_label, data);
2573 d->update_label_nuses = update_label_nuses;
2574
2575 /* Add the new constant NEW_C to constant pool and replace
2576 the old reference to constant by new reference. */
2577 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2578 *x = replace_rtx (l, l, new_l);
2579 }
2580 return 0;
2581 }
2582
2583 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2584 field. This is not handled by for_each_rtx because it doesn't
2585 handle unprinted ('0') fields. */
2586 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2587 JUMP_LABEL (l) = new_label;
2588
2589 if ((GET_CODE (l) == LABEL_REF
2590 || GET_CODE (l) == INSN_LIST)
2591 && XEXP (l, 0) == old_label)
2592 {
2593 XEXP (l, 0) = new_label;
2594 if (update_label_nuses)
2595 {
2596 ++LABEL_NUSES (new_label);
2597 --LABEL_NUSES (old_label);
2598 }
2599 return 0;
2600 }
2601
2602 return 0;
2603 }
2604
2605 /* When *BODY is equal to X or X is directly referenced by *BODY
2606 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2607 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2608
2609 static int
2610 rtx_referenced_p_1 (rtx *body, void *x)
2611 {
2612 rtx y = (rtx) x;
2613
2614 if (*body == NULL_RTX)
2615 return y == NULL_RTX;
2616
2617 /* Return true if a label_ref *BODY refers to label Y. */
2618 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2619 return XEXP (*body, 0) == y;
2620
2621 /* If *BODY is a reference to pool constant traverse the constant. */
2622 if (GET_CODE (*body) == SYMBOL_REF
2623 && CONSTANT_POOL_ADDRESS_P (*body))
2624 return rtx_referenced_p (y, get_pool_constant (*body));
2625
2626 /* By default, compare the RTL expressions. */
2627 return rtx_equal_p (*body, y);
2628 }
2629
2630 /* Return true if X is referenced in BODY. */
2631
2632 int
2633 rtx_referenced_p (rtx x, rtx body)
2634 {
2635 return for_each_rtx (&body, rtx_referenced_p_1, x);
2636 }
2637
2638 /* If INSN is a tablejump return true and store the label (before jump table) to
2639 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2640
2641 bool
2642 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2643 {
2644 rtx label, table;
2645
2646 if (JUMP_P (insn)
2647 && (label = JUMP_LABEL (insn)) != NULL_RTX
2648 && (table = next_active_insn (label)) != NULL_RTX
2649 && JUMP_P (table)
2650 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2651 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2652 {
2653 if (labelp)
2654 *labelp = label;
2655 if (tablep)
2656 *tablep = table;
2657 return true;
2658 }
2659 return false;
2660 }
2661
2662 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2663 constant that is not in the constant pool and not in the condition
2664 of an IF_THEN_ELSE. */
2665
2666 static int
2667 computed_jump_p_1 (const_rtx x)
2668 {
2669 const enum rtx_code code = GET_CODE (x);
2670 int i, j;
2671 const char *fmt;
2672
2673 switch (code)
2674 {
2675 case LABEL_REF:
2676 case PC:
2677 return 0;
2678
2679 case CONST:
2680 case CONST_INT:
2681 case CONST_DOUBLE:
2682 case CONST_FIXED:
2683 case CONST_VECTOR:
2684 case SYMBOL_REF:
2685 case REG:
2686 return 1;
2687
2688 case MEM:
2689 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2690 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2691
2692 case IF_THEN_ELSE:
2693 return (computed_jump_p_1 (XEXP (x, 1))
2694 || computed_jump_p_1 (XEXP (x, 2)));
2695
2696 default:
2697 break;
2698 }
2699
2700 fmt = GET_RTX_FORMAT (code);
2701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2702 {
2703 if (fmt[i] == 'e'
2704 && computed_jump_p_1 (XEXP (x, i)))
2705 return 1;
2706
2707 else if (fmt[i] == 'E')
2708 for (j = 0; j < XVECLEN (x, i); j++)
2709 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2710 return 1;
2711 }
2712
2713 return 0;
2714 }
2715
2716 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2717
2718 Tablejumps and casesi insns are not considered indirect jumps;
2719 we can recognize them by a (use (label_ref)). */
2720
2721 int
2722 computed_jump_p (const_rtx insn)
2723 {
2724 int i;
2725 if (JUMP_P (insn))
2726 {
2727 rtx pat = PATTERN (insn);
2728
2729 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2730 if (JUMP_LABEL (insn) != NULL)
2731 return 0;
2732
2733 if (GET_CODE (pat) == PARALLEL)
2734 {
2735 int len = XVECLEN (pat, 0);
2736 int has_use_labelref = 0;
2737
2738 for (i = len - 1; i >= 0; i--)
2739 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2740 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2741 == LABEL_REF))
2742 has_use_labelref = 1;
2743
2744 if (! has_use_labelref)
2745 for (i = len - 1; i >= 0; i--)
2746 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2747 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2749 return 1;
2750 }
2751 else if (GET_CODE (pat) == SET
2752 && SET_DEST (pat) == pc_rtx
2753 && computed_jump_p_1 (SET_SRC (pat)))
2754 return 1;
2755 }
2756 return 0;
2757 }
2758
2759 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2760 calls. Processes the subexpressions of EXP and passes them to F. */
2761 static int
2762 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2763 {
2764 int result, i, j;
2765 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2766 rtx *x;
2767
2768 for (; format[n] != '\0'; n++)
2769 {
2770 switch (format[n])
2771 {
2772 case 'e':
2773 /* Call F on X. */
2774 x = &XEXP (exp, n);
2775 result = (*f) (x, data);
2776 if (result == -1)
2777 /* Do not traverse sub-expressions. */
2778 continue;
2779 else if (result != 0)
2780 /* Stop the traversal. */
2781 return result;
2782
2783 if (*x == NULL_RTX)
2784 /* There are no sub-expressions. */
2785 continue;
2786
2787 i = non_rtx_starting_operands[GET_CODE (*x)];
2788 if (i >= 0)
2789 {
2790 result = for_each_rtx_1 (*x, i, f, data);
2791 if (result != 0)
2792 return result;
2793 }
2794 break;
2795
2796 case 'V':
2797 case 'E':
2798 if (XVEC (exp, n) == 0)
2799 continue;
2800 for (j = 0; j < XVECLEN (exp, n); ++j)
2801 {
2802 /* Call F on X. */
2803 x = &XVECEXP (exp, n, j);
2804 result = (*f) (x, data);
2805 if (result == -1)
2806 /* Do not traverse sub-expressions. */
2807 continue;
2808 else if (result != 0)
2809 /* Stop the traversal. */
2810 return result;
2811
2812 if (*x == NULL_RTX)
2813 /* There are no sub-expressions. */
2814 continue;
2815
2816 i = non_rtx_starting_operands[GET_CODE (*x)];
2817 if (i >= 0)
2818 {
2819 result = for_each_rtx_1 (*x, i, f, data);
2820 if (result != 0)
2821 return result;
2822 }
2823 }
2824 break;
2825
2826 default:
2827 /* Nothing to do. */
2828 break;
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
2835 /* Traverse X via depth-first search, calling F for each
2836 sub-expression (including X itself). F is also passed the DATA.
2837 If F returns -1, do not traverse sub-expressions, but continue
2838 traversing the rest of the tree. If F ever returns any other
2839 nonzero value, stop the traversal, and return the value returned
2840 by F. Otherwise, return 0. This function does not traverse inside
2841 tree structure that contains RTX_EXPRs, or into sub-expressions
2842 whose format code is `0' since it is not known whether or not those
2843 codes are actually RTL.
2844
2845 This routine is very general, and could (should?) be used to
2846 implement many of the other routines in this file. */
2847
2848 int
2849 for_each_rtx (rtx *x, rtx_function f, void *data)
2850 {
2851 int result;
2852 int i;
2853
2854 /* Call F on X. */
2855 result = (*f) (x, data);
2856 if (result == -1)
2857 /* Do not traverse sub-expressions. */
2858 return 0;
2859 else if (result != 0)
2860 /* Stop the traversal. */
2861 return result;
2862
2863 if (*x == NULL_RTX)
2864 /* There are no sub-expressions. */
2865 return 0;
2866
2867 i = non_rtx_starting_operands[GET_CODE (*x)];
2868 if (i < 0)
2869 return 0;
2870
2871 return for_each_rtx_1 (*x, i, f, data);
2872 }
2873
2874
2875 /* Searches X for any reference to REGNO, returning the rtx of the
2876 reference found if any. Otherwise, returns NULL_RTX. */
2877
2878 rtx
2879 regno_use_in (unsigned int regno, rtx x)
2880 {
2881 const char *fmt;
2882 int i, j;
2883 rtx tem;
2884
2885 if (REG_P (x) && REGNO (x) == regno)
2886 return x;
2887
2888 fmt = GET_RTX_FORMAT (GET_CODE (x));
2889 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2890 {
2891 if (fmt[i] == 'e')
2892 {
2893 if ((tem = regno_use_in (regno, XEXP (x, i))))
2894 return tem;
2895 }
2896 else if (fmt[i] == 'E')
2897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2898 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2899 return tem;
2900 }
2901
2902 return NULL_RTX;
2903 }
2904
2905 /* Return a value indicating whether OP, an operand of a commutative
2906 operation, is preferred as the first or second operand. The higher
2907 the value, the stronger the preference for being the first operand.
2908 We use negative values to indicate a preference for the first operand
2909 and positive values for the second operand. */
2910
2911 int
2912 commutative_operand_precedence (rtx op)
2913 {
2914 enum rtx_code code = GET_CODE (op);
2915
2916 /* Constants always come the second operand. Prefer "nice" constants. */
2917 if (code == CONST_INT)
2918 return -8;
2919 if (code == CONST_DOUBLE)
2920 return -7;
2921 if (code == CONST_FIXED)
2922 return -7;
2923 op = avoid_constant_pool_reference (op);
2924 code = GET_CODE (op);
2925
2926 switch (GET_RTX_CLASS (code))
2927 {
2928 case RTX_CONST_OBJ:
2929 if (code == CONST_INT)
2930 return -6;
2931 if (code == CONST_DOUBLE)
2932 return -5;
2933 if (code == CONST_FIXED)
2934 return -5;
2935 return -4;
2936
2937 case RTX_EXTRA:
2938 /* SUBREGs of objects should come second. */
2939 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2940 return -3;
2941 return 0;
2942
2943 case RTX_OBJ:
2944 /* Complex expressions should be the first, so decrease priority
2945 of objects. Prefer pointer objects over non pointer objects. */
2946 if ((REG_P (op) && REG_POINTER (op))
2947 || (MEM_P (op) && MEM_POINTER (op)))
2948 return -1;
2949 return -2;
2950
2951 case RTX_COMM_ARITH:
2952 /* Prefer operands that are themselves commutative to be first.
2953 This helps to make things linear. In particular,
2954 (and (and (reg) (reg)) (not (reg))) is canonical. */
2955 return 4;
2956
2957 case RTX_BIN_ARITH:
2958 /* If only one operand is a binary expression, it will be the first
2959 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2960 is canonical, although it will usually be further simplified. */
2961 return 2;
2962
2963 case RTX_UNARY:
2964 /* Then prefer NEG and NOT. */
2965 if (code == NEG || code == NOT)
2966 return 1;
2967
2968 default:
2969 return 0;
2970 }
2971 }
2972
2973 /* Return 1 iff it is necessary to swap operands of commutative operation
2974 in order to canonicalize expression. */
2975
2976 bool
2977 swap_commutative_operands_p (rtx x, rtx y)
2978 {
2979 return (commutative_operand_precedence (x)
2980 < commutative_operand_precedence (y));
2981 }
2982
2983 /* Return 1 if X is an autoincrement side effect and the register is
2984 not the stack pointer. */
2985 int
2986 auto_inc_p (const_rtx x)
2987 {
2988 switch (GET_CODE (x))
2989 {
2990 case PRE_INC:
2991 case POST_INC:
2992 case PRE_DEC:
2993 case POST_DEC:
2994 case PRE_MODIFY:
2995 case POST_MODIFY:
2996 /* There are no REG_INC notes for SP. */
2997 if (XEXP (x, 0) != stack_pointer_rtx)
2998 return 1;
2999 default:
3000 break;
3001 }
3002 return 0;
3003 }
3004
3005 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3006 int
3007 loc_mentioned_in_p (rtx *loc, const_rtx in)
3008 {
3009 enum rtx_code code;
3010 const char *fmt;
3011 int i, j;
3012
3013 if (!in)
3014 return 0;
3015
3016 code = GET_CODE (in);
3017 fmt = GET_RTX_FORMAT (code);
3018 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3019 {
3020 if (fmt[i] == 'e')
3021 {
3022 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3023 return 1;
3024 }
3025 else if (fmt[i] == 'E')
3026 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3027 if (loc == &XVECEXP (in, i, j)
3028 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3029 return 1;
3030 }
3031 return 0;
3032 }
3033
3034 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3035 and SUBREG_BYTE, return the bit offset where the subreg begins
3036 (counting from the least significant bit of the operand). */
3037
3038 unsigned int
3039 subreg_lsb_1 (enum machine_mode outer_mode,
3040 enum machine_mode inner_mode,
3041 unsigned int subreg_byte)
3042 {
3043 unsigned int bitpos;
3044 unsigned int byte;
3045 unsigned int word;
3046
3047 /* A paradoxical subreg begins at bit position 0. */
3048 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3049 return 0;
3050
3051 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3052 /* If the subreg crosses a word boundary ensure that
3053 it also begins and ends on a word boundary. */
3054 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3055 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3056 && (subreg_byte % UNITS_PER_WORD
3057 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3058
3059 if (WORDS_BIG_ENDIAN)
3060 word = (GET_MODE_SIZE (inner_mode)
3061 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3062 else
3063 word = subreg_byte / UNITS_PER_WORD;
3064 bitpos = word * BITS_PER_WORD;
3065
3066 if (BYTES_BIG_ENDIAN)
3067 byte = (GET_MODE_SIZE (inner_mode)
3068 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3069 else
3070 byte = subreg_byte % UNITS_PER_WORD;
3071 bitpos += byte * BITS_PER_UNIT;
3072
3073 return bitpos;
3074 }
3075
3076 /* Given a subreg X, return the bit offset where the subreg begins
3077 (counting from the least significant bit of the reg). */
3078
3079 unsigned int
3080 subreg_lsb (const_rtx x)
3081 {
3082 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3083 SUBREG_BYTE (x));
3084 }
3085
3086 /* Fill in information about a subreg of a hard register.
3087 xregno - A regno of an inner hard subreg_reg (or what will become one).
3088 xmode - The mode of xregno.
3089 offset - The byte offset.
3090 ymode - The mode of a top level SUBREG (or what may become one).
3091 info - Pointer to structure to fill in. */
3092 static void
3093 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3094 unsigned int offset, enum machine_mode ymode,
3095 struct subreg_info *info)
3096 {
3097 int nregs_xmode, nregs_ymode;
3098 int mode_multiple, nregs_multiple;
3099 int offset_adj, y_offset, y_offset_adj;
3100 int regsize_xmode, regsize_ymode;
3101 bool rknown;
3102
3103 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3104
3105 rknown = false;
3106
3107 /* If there are holes in a non-scalar mode in registers, we expect
3108 that it is made up of its units concatenated together. */
3109 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3110 {
3111 enum machine_mode xmode_unit;
3112
3113 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3114 if (GET_MODE_INNER (xmode) == VOIDmode)
3115 xmode_unit = xmode;
3116 else
3117 xmode_unit = GET_MODE_INNER (xmode);
3118 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3119 gcc_assert (nregs_xmode
3120 == (GET_MODE_NUNITS (xmode)
3121 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3122 gcc_assert (hard_regno_nregs[xregno][xmode]
3123 == (hard_regno_nregs[xregno][xmode_unit]
3124 * GET_MODE_NUNITS (xmode)));
3125
3126 /* You can only ask for a SUBREG of a value with holes in the middle
3127 if you don't cross the holes. (Such a SUBREG should be done by
3128 picking a different register class, or doing it in memory if
3129 necessary.) An example of a value with holes is XCmode on 32-bit
3130 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3131 3 for each part, but in memory it's two 128-bit parts.
3132 Padding is assumed to be at the end (not necessarily the 'high part')
3133 of each unit. */
3134 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3135 < GET_MODE_NUNITS (xmode))
3136 && (offset / GET_MODE_SIZE (xmode_unit)
3137 != ((offset + GET_MODE_SIZE (ymode) - 1)
3138 / GET_MODE_SIZE (xmode_unit))))
3139 {
3140 info->representable_p = false;
3141 rknown = true;
3142 }
3143 }
3144 else
3145 nregs_xmode = hard_regno_nregs[xregno][xmode];
3146
3147 nregs_ymode = hard_regno_nregs[xregno][ymode];
3148
3149 /* Paradoxical subregs are otherwise valid. */
3150 if (!rknown
3151 && offset == 0
3152 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3153 {
3154 info->representable_p = true;
3155 /* If this is a big endian paradoxical subreg, which uses more
3156 actual hard registers than the original register, we must
3157 return a negative offset so that we find the proper highpart
3158 of the register. */
3159 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3160 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3161 info->offset = nregs_xmode - nregs_ymode;
3162 else
3163 info->offset = 0;
3164 info->nregs = nregs_ymode;
3165 return;
3166 }
3167
3168 /* If registers store different numbers of bits in the different
3169 modes, we cannot generally form this subreg. */
3170 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3171 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3172 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3173 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3174 {
3175 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3176 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3177 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3178 {
3179 info->representable_p = false;
3180 info->nregs
3181 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3182 info->offset = offset / regsize_xmode;
3183 return;
3184 }
3185 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3186 {
3187 info->representable_p = false;
3188 info->nregs
3189 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3190 info->offset = offset / regsize_xmode;
3191 return;
3192 }
3193 }
3194
3195 /* Lowpart subregs are otherwise valid. */
3196 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3197 {
3198 info->representable_p = true;
3199 rknown = true;
3200
3201 if (offset == 0 || nregs_xmode == nregs_ymode)
3202 {
3203 info->offset = 0;
3204 info->nregs = nregs_ymode;
3205 return;
3206 }
3207 }
3208
3209 /* This should always pass, otherwise we don't know how to verify
3210 the constraint. These conditions may be relaxed but
3211 subreg_regno_offset would need to be redesigned. */
3212 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3213 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3214
3215 /* The XMODE value can be seen as a vector of NREGS_XMODE
3216 values. The subreg must represent a lowpart of given field.
3217 Compute what field it is. */
3218 offset_adj = offset;
3219 offset_adj -= subreg_lowpart_offset (ymode,
3220 mode_for_size (GET_MODE_BITSIZE (xmode)
3221 / nregs_xmode,
3222 MODE_INT, 0));
3223
3224 /* Size of ymode must not be greater than the size of xmode. */
3225 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3226 gcc_assert (mode_multiple != 0);
3227
3228 y_offset = offset / GET_MODE_SIZE (ymode);
3229 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3230 nregs_multiple = nregs_xmode / nregs_ymode;
3231
3232 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3233 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3234
3235 if (!rknown)
3236 {
3237 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3238 rknown = true;
3239 }
3240 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3241 info->nregs = nregs_ymode;
3242 }
3243
3244 /* This function returns the regno offset of a subreg expression.
3245 xregno - A regno of an inner hard subreg_reg (or what will become one).
3246 xmode - The mode of xregno.
3247 offset - The byte offset.
3248 ymode - The mode of a top level SUBREG (or what may become one).
3249 RETURN - The regno offset which would be used. */
3250 unsigned int
3251 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3252 unsigned int offset, enum machine_mode ymode)
3253 {
3254 struct subreg_info info;
3255 subreg_get_info (xregno, xmode, offset, ymode, &info);
3256 return info.offset;
3257 }
3258
3259 /* This function returns true when the offset is representable via
3260 subreg_offset in the given regno.
3261 xregno - A regno of an inner hard subreg_reg (or what will become one).
3262 xmode - The mode of xregno.
3263 offset - The byte offset.
3264 ymode - The mode of a top level SUBREG (or what may become one).
3265 RETURN - Whether the offset is representable. */
3266 bool
3267 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3268 unsigned int offset, enum machine_mode ymode)
3269 {
3270 struct subreg_info info;
3271 subreg_get_info (xregno, xmode, offset, ymode, &info);
3272 return info.representable_p;
3273 }
3274
3275 /* Return the number of a YMODE register to which
3276
3277 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3278
3279 can be simplified. Return -1 if the subreg can't be simplified.
3280
3281 XREGNO is a hard register number. */
3282
3283 int
3284 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3285 unsigned int offset, enum machine_mode ymode)
3286 {
3287 struct subreg_info info;
3288 unsigned int yregno;
3289
3290 #ifdef CANNOT_CHANGE_MODE_CLASS
3291 /* Give the backend a chance to disallow the mode change. */
3292 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3293 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3294 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3295 return -1;
3296 #endif
3297
3298 /* We shouldn't simplify stack-related registers. */
3299 if ((!reload_completed || frame_pointer_needed)
3300 && (xregno == FRAME_POINTER_REGNUM
3301 || xregno == HARD_FRAME_POINTER_REGNUM))
3302 return -1;
3303
3304 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3305 && xregno == ARG_POINTER_REGNUM)
3306 return -1;
3307
3308 if (xregno == STACK_POINTER_REGNUM)
3309 return -1;
3310
3311 /* Try to get the register offset. */
3312 subreg_get_info (xregno, xmode, offset, ymode, &info);
3313 if (!info.representable_p)
3314 return -1;
3315
3316 /* Make sure that the offsetted register value is in range. */
3317 yregno = xregno + info.offset;
3318 if (!HARD_REGISTER_NUM_P (yregno))
3319 return -1;
3320
3321 /* See whether (reg:YMODE YREGNO) is valid.
3322
3323 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3324 This is a kludge to work around how float/complex arguments are passed
3325 on 32-bit SPARC and should be fixed. */
3326 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3327 && HARD_REGNO_MODE_OK (xregno, xmode))
3328 return -1;
3329
3330 return (int) yregno;
3331 }
3332
3333 /* Return the final regno that a subreg expression refers to. */
3334 unsigned int
3335 subreg_regno (const_rtx x)
3336 {
3337 unsigned int ret;
3338 rtx subreg = SUBREG_REG (x);
3339 int regno = REGNO (subreg);
3340
3341 ret = regno + subreg_regno_offset (regno,
3342 GET_MODE (subreg),
3343 SUBREG_BYTE (x),
3344 GET_MODE (x));
3345 return ret;
3346
3347 }
3348
3349 /* Return the number of registers that a subreg expression refers
3350 to. */
3351 unsigned int
3352 subreg_nregs (const_rtx x)
3353 {
3354 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3355 }
3356
3357 /* Return the number of registers that a subreg REG with REGNO
3358 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3359 changed so that the regno can be passed in. */
3360
3361 unsigned int
3362 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3363 {
3364 struct subreg_info info;
3365 rtx subreg = SUBREG_REG (x);
3366
3367 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3368 &info);
3369 return info.nregs;
3370 }
3371
3372
3373 struct parms_set_data
3374 {
3375 int nregs;
3376 HARD_REG_SET regs;
3377 };
3378
3379 /* Helper function for noticing stores to parameter registers. */
3380 static void
3381 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3382 {
3383 struct parms_set_data *const d = (struct parms_set_data *) data;
3384 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3385 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3386 {
3387 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3388 d->nregs--;
3389 }
3390 }
3391
3392 /* Look backward for first parameter to be loaded.
3393 Note that loads of all parameters will not necessarily be
3394 found if CSE has eliminated some of them (e.g., an argument
3395 to the outer function is passed down as a parameter).
3396 Do not skip BOUNDARY. */
3397 rtx
3398 find_first_parameter_load (rtx call_insn, rtx boundary)
3399 {
3400 struct parms_set_data parm;
3401 rtx p, before, first_set;
3402
3403 /* Since different machines initialize their parameter registers
3404 in different orders, assume nothing. Collect the set of all
3405 parameter registers. */
3406 CLEAR_HARD_REG_SET (parm.regs);
3407 parm.nregs = 0;
3408 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3409 if (GET_CODE (XEXP (p, 0)) == USE
3410 && REG_P (XEXP (XEXP (p, 0), 0)))
3411 {
3412 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3413
3414 /* We only care about registers which can hold function
3415 arguments. */
3416 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3417 continue;
3418
3419 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3420 parm.nregs++;
3421 }
3422 before = call_insn;
3423 first_set = call_insn;
3424
3425 /* Search backward for the first set of a register in this set. */
3426 while (parm.nregs && before != boundary)
3427 {
3428 before = PREV_INSN (before);
3429
3430 /* It is possible that some loads got CSEed from one call to
3431 another. Stop in that case. */
3432 if (CALL_P (before))
3433 break;
3434
3435 /* Our caller needs either ensure that we will find all sets
3436 (in case code has not been optimized yet), or take care
3437 for possible labels in a way by setting boundary to preceding
3438 CODE_LABEL. */
3439 if (LABEL_P (before))
3440 {
3441 gcc_assert (before == boundary);
3442 break;
3443 }
3444
3445 if (INSN_P (before))
3446 {
3447 int nregs_old = parm.nregs;
3448 note_stores (PATTERN (before), parms_set, &parm);
3449 /* If we found something that did not set a parameter reg,
3450 we're done. Do not keep going, as that might result
3451 in hoisting an insn before the setting of a pseudo
3452 that is used by the hoisted insn. */
3453 if (nregs_old != parm.nregs)
3454 first_set = before;
3455 else
3456 break;
3457 }
3458 }
3459 return first_set;
3460 }
3461
3462 /* Return true if we should avoid inserting code between INSN and preceding
3463 call instruction. */
3464
3465 bool
3466 keep_with_call_p (const_rtx insn)
3467 {
3468 rtx set;
3469
3470 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3471 {
3472 if (REG_P (SET_DEST (set))
3473 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3474 && fixed_regs[REGNO (SET_DEST (set))]
3475 && general_operand (SET_SRC (set), VOIDmode))
3476 return true;
3477 if (REG_P (SET_SRC (set))
3478 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3479 && REG_P (SET_DEST (set))
3480 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3481 return true;
3482 /* There may be a stack pop just after the call and before the store
3483 of the return register. Search for the actual store when deciding
3484 if we can break or not. */
3485 if (SET_DEST (set) == stack_pointer_rtx)
3486 {
3487 /* This CONST_CAST is okay because next_nonnote_insn just
3488 returns its argument and we assign it to a const_rtx
3489 variable. */
3490 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3491 if (i2 && keep_with_call_p (i2))
3492 return true;
3493 }
3494 }
3495 return false;
3496 }
3497
3498 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3499 to non-complex jumps. That is, direct unconditional, conditional,
3500 and tablejumps, but not computed jumps or returns. It also does
3501 not apply to the fallthru case of a conditional jump. */
3502
3503 bool
3504 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3505 {
3506 rtx tmp = JUMP_LABEL (jump_insn);
3507
3508 if (label == tmp)
3509 return true;
3510
3511 if (tablejump_p (jump_insn, NULL, &tmp))
3512 {
3513 rtvec vec = XVEC (PATTERN (tmp),
3514 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3515 int i, veclen = GET_NUM_ELEM (vec);
3516
3517 for (i = 0; i < veclen; ++i)
3518 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3519 return true;
3520 }
3521
3522 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3523 return true;
3524
3525 return false;
3526 }
3527
3528 \f
3529 /* Return an estimate of the cost of computing rtx X.
3530 One use is in cse, to decide which expression to keep in the hash table.
3531 Another is in rtl generation, to pick the cheapest way to multiply.
3532 Other uses like the latter are expected in the future.
3533
3534 SPEED parameter specify whether costs optimized for speed or size should
3535 be returned. */
3536
3537 int
3538 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3539 {
3540 int i, j;
3541 enum rtx_code code;
3542 const char *fmt;
3543 int total;
3544
3545 if (x == 0)
3546 return 0;
3547
3548 /* Compute the default costs of certain things.
3549 Note that targetm.rtx_costs can override the defaults. */
3550
3551 code = GET_CODE (x);
3552 switch (code)
3553 {
3554 case MULT:
3555 total = COSTS_N_INSNS (5);
3556 break;
3557 case DIV:
3558 case UDIV:
3559 case MOD:
3560 case UMOD:
3561 total = COSTS_N_INSNS (7);
3562 break;
3563 case USE:
3564 /* Used in combine.c as a marker. */
3565 total = 0;
3566 break;
3567 default:
3568 total = COSTS_N_INSNS (1);
3569 }
3570
3571 switch (code)
3572 {
3573 case REG:
3574 return 0;
3575
3576 case SUBREG:
3577 total = 0;
3578 /* If we can't tie these modes, make this expensive. The larger
3579 the mode, the more expensive it is. */
3580 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3581 return COSTS_N_INSNS (2
3582 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3583 break;
3584
3585 default:
3586 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3587 return total;
3588 break;
3589 }
3590
3591 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3592 which is already in total. */
3593
3594 fmt = GET_RTX_FORMAT (code);
3595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3596 if (fmt[i] == 'e')
3597 total += rtx_cost (XEXP (x, i), code, speed);
3598 else if (fmt[i] == 'E')
3599 for (j = 0; j < XVECLEN (x, i); j++)
3600 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3601
3602 return total;
3603 }
3604 \f
3605 /* Return cost of address expression X.
3606 Expect that X is properly formed address reference.
3607
3608 SPEED parameter specify whether costs optimized for speed or size should
3609 be returned. */
3610
3611 int
3612 address_cost (rtx x, enum machine_mode mode, bool speed)
3613 {
3614 /* We may be asked for cost of various unusual addresses, such as operands
3615 of push instruction. It is not worthwhile to complicate writing
3616 of the target hook by such cases. */
3617
3618 if (!memory_address_p (mode, x))
3619 return 1000;
3620
3621 return targetm.address_cost (x, speed);
3622 }
3623
3624 /* If the target doesn't override, compute the cost as with arithmetic. */
3625
3626 int
3627 default_address_cost (rtx x, bool speed)
3628 {
3629 return rtx_cost (x, MEM, speed);
3630 }
3631 \f
3632
3633 unsigned HOST_WIDE_INT
3634 nonzero_bits (const_rtx x, enum machine_mode mode)
3635 {
3636 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3637 }
3638
3639 unsigned int
3640 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3641 {
3642 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3643 }
3644
3645 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3646 It avoids exponential behavior in nonzero_bits1 when X has
3647 identical subexpressions on the first or the second level. */
3648
3649 static unsigned HOST_WIDE_INT
3650 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3651 enum machine_mode known_mode,
3652 unsigned HOST_WIDE_INT known_ret)
3653 {
3654 if (x == known_x && mode == known_mode)
3655 return known_ret;
3656
3657 /* Try to find identical subexpressions. If found call
3658 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3659 precomputed value for the subexpression as KNOWN_RET. */
3660
3661 if (ARITHMETIC_P (x))
3662 {
3663 rtx x0 = XEXP (x, 0);
3664 rtx x1 = XEXP (x, 1);
3665
3666 /* Check the first level. */
3667 if (x0 == x1)
3668 return nonzero_bits1 (x, mode, x0, mode,
3669 cached_nonzero_bits (x0, mode, known_x,
3670 known_mode, known_ret));
3671
3672 /* Check the second level. */
3673 if (ARITHMETIC_P (x0)
3674 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3675 return nonzero_bits1 (x, mode, x1, mode,
3676 cached_nonzero_bits (x1, mode, known_x,
3677 known_mode, known_ret));
3678
3679 if (ARITHMETIC_P (x1)
3680 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3681 return nonzero_bits1 (x, mode, x0, mode,
3682 cached_nonzero_bits (x0, mode, known_x,
3683 known_mode, known_ret));
3684 }
3685
3686 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3687 }
3688
3689 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3690 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3691 is less useful. We can't allow both, because that results in exponential
3692 run time recursion. There is a nullstone testcase that triggered
3693 this. This macro avoids accidental uses of num_sign_bit_copies. */
3694 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3695
3696 /* Given an expression, X, compute which bits in X can be nonzero.
3697 We don't care about bits outside of those defined in MODE.
3698
3699 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3700 an arithmetic operation, we can do better. */
3701
3702 static unsigned HOST_WIDE_INT
3703 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3704 enum machine_mode known_mode,
3705 unsigned HOST_WIDE_INT known_ret)
3706 {
3707 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3708 unsigned HOST_WIDE_INT inner_nz;
3709 enum rtx_code code;
3710 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3711
3712 /* For floating-point and vector values, assume all bits are needed. */
3713 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3714 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3715 return nonzero;
3716
3717 /* If X is wider than MODE, use its mode instead. */
3718 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3719 {
3720 mode = GET_MODE (x);
3721 nonzero = GET_MODE_MASK (mode);
3722 mode_width = GET_MODE_BITSIZE (mode);
3723 }
3724
3725 if (mode_width > HOST_BITS_PER_WIDE_INT)
3726 /* Our only callers in this case look for single bit values. So
3727 just return the mode mask. Those tests will then be false. */
3728 return nonzero;
3729
3730 #ifndef WORD_REGISTER_OPERATIONS
3731 /* If MODE is wider than X, but both are a single word for both the host
3732 and target machines, we can compute this from which bits of the
3733 object might be nonzero in its own mode, taking into account the fact
3734 that on many CISC machines, accessing an object in a wider mode
3735 causes the high-order bits to become undefined. So they are
3736 not known to be zero. */
3737
3738 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3739 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3740 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3741 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3742 {
3743 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3744 known_x, known_mode, known_ret);
3745 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3746 return nonzero;
3747 }
3748 #endif
3749
3750 code = GET_CODE (x);
3751 switch (code)
3752 {
3753 case REG:
3754 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3755 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3756 all the bits above ptr_mode are known to be zero. */
3757 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3758 && REG_POINTER (x))
3759 nonzero &= GET_MODE_MASK (ptr_mode);
3760 #endif
3761
3762 /* Include declared information about alignment of pointers. */
3763 /* ??? We don't properly preserve REG_POINTER changes across
3764 pointer-to-integer casts, so we can't trust it except for
3765 things that we know must be pointers. See execute/960116-1.c. */
3766 if ((x == stack_pointer_rtx
3767 || x == frame_pointer_rtx
3768 || x == arg_pointer_rtx)
3769 && REGNO_POINTER_ALIGN (REGNO (x)))
3770 {
3771 unsigned HOST_WIDE_INT alignment
3772 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3773
3774 #ifdef PUSH_ROUNDING
3775 /* If PUSH_ROUNDING is defined, it is possible for the
3776 stack to be momentarily aligned only to that amount,
3777 so we pick the least alignment. */
3778 if (x == stack_pointer_rtx && PUSH_ARGS)
3779 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3780 alignment);
3781 #endif
3782
3783 nonzero &= ~(alignment - 1);
3784 }
3785
3786 {
3787 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3788 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3789 known_mode, known_ret,
3790 &nonzero_for_hook);
3791
3792 if (new_rtx)
3793 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3794 known_mode, known_ret);
3795
3796 return nonzero_for_hook;
3797 }
3798
3799 case CONST_INT:
3800 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3801 /* If X is negative in MODE, sign-extend the value. */
3802 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3803 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3804 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3805 #endif
3806
3807 return INTVAL (x);
3808
3809 case MEM:
3810 #ifdef LOAD_EXTEND_OP
3811 /* In many, if not most, RISC machines, reading a byte from memory
3812 zeros the rest of the register. Noticing that fact saves a lot
3813 of extra zero-extends. */
3814 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3815 nonzero &= GET_MODE_MASK (GET_MODE (x));
3816 #endif
3817 break;
3818
3819 case EQ: case NE:
3820 case UNEQ: case LTGT:
3821 case GT: case GTU: case UNGT:
3822 case LT: case LTU: case UNLT:
3823 case GE: case GEU: case UNGE:
3824 case LE: case LEU: case UNLE:
3825 case UNORDERED: case ORDERED:
3826 /* If this produces an integer result, we know which bits are set.
3827 Code here used to clear bits outside the mode of X, but that is
3828 now done above. */
3829 /* Mind that MODE is the mode the caller wants to look at this
3830 operation in, and not the actual operation mode. We can wind
3831 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3832 that describes the results of a vector compare. */
3833 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3834 && mode_width <= HOST_BITS_PER_WIDE_INT)
3835 nonzero = STORE_FLAG_VALUE;
3836 break;
3837
3838 case NEG:
3839 #if 0
3840 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3841 and num_sign_bit_copies. */
3842 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3843 == GET_MODE_BITSIZE (GET_MODE (x)))
3844 nonzero = 1;
3845 #endif
3846
3847 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3848 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3849 break;
3850
3851 case ABS:
3852 #if 0
3853 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3854 and num_sign_bit_copies. */
3855 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3856 == GET_MODE_BITSIZE (GET_MODE (x)))
3857 nonzero = 1;
3858 #endif
3859 break;
3860
3861 case TRUNCATE:
3862 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3863 known_x, known_mode, known_ret)
3864 & GET_MODE_MASK (mode));
3865 break;
3866
3867 case ZERO_EXTEND:
3868 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3869 known_x, known_mode, known_ret);
3870 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3871 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3872 break;
3873
3874 case SIGN_EXTEND:
3875 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3876 Otherwise, show all the bits in the outer mode but not the inner
3877 may be nonzero. */
3878 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3879 known_x, known_mode, known_ret);
3880 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3881 {
3882 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3883 if (inner_nz
3884 & (((HOST_WIDE_INT) 1
3885 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3886 inner_nz |= (GET_MODE_MASK (mode)
3887 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3888 }
3889
3890 nonzero &= inner_nz;
3891 break;
3892
3893 case AND:
3894 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3895 known_x, known_mode, known_ret)
3896 & cached_nonzero_bits (XEXP (x, 1), mode,
3897 known_x, known_mode, known_ret);
3898 break;
3899
3900 case XOR: case IOR:
3901 case UMIN: case UMAX: case SMIN: case SMAX:
3902 {
3903 unsigned HOST_WIDE_INT nonzero0 =
3904 cached_nonzero_bits (XEXP (x, 0), mode,
3905 known_x, known_mode, known_ret);
3906
3907 /* Don't call nonzero_bits for the second time if it cannot change
3908 anything. */
3909 if ((nonzero & nonzero0) != nonzero)
3910 nonzero &= nonzero0
3911 | cached_nonzero_bits (XEXP (x, 1), mode,
3912 known_x, known_mode, known_ret);
3913 }
3914 break;
3915
3916 case PLUS: case MINUS:
3917 case MULT:
3918 case DIV: case UDIV:
3919 case MOD: case UMOD:
3920 /* We can apply the rules of arithmetic to compute the number of
3921 high- and low-order zero bits of these operations. We start by
3922 computing the width (position of the highest-order nonzero bit)
3923 and the number of low-order zero bits for each value. */
3924 {
3925 unsigned HOST_WIDE_INT nz0 =
3926 cached_nonzero_bits (XEXP (x, 0), mode,
3927 known_x, known_mode, known_ret);
3928 unsigned HOST_WIDE_INT nz1 =
3929 cached_nonzero_bits (XEXP (x, 1), mode,
3930 known_x, known_mode, known_ret);
3931 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3932 int width0 = floor_log2 (nz0) + 1;
3933 int width1 = floor_log2 (nz1) + 1;
3934 int low0 = floor_log2 (nz0 & -nz0);
3935 int low1 = floor_log2 (nz1 & -nz1);
3936 HOST_WIDE_INT op0_maybe_minusp
3937 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3938 HOST_WIDE_INT op1_maybe_minusp
3939 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3940 unsigned int result_width = mode_width;
3941 int result_low = 0;
3942
3943 switch (code)
3944 {
3945 case PLUS:
3946 result_width = MAX (width0, width1) + 1;
3947 result_low = MIN (low0, low1);
3948 break;
3949 case MINUS:
3950 result_low = MIN (low0, low1);
3951 break;
3952 case MULT:
3953 result_width = width0 + width1;
3954 result_low = low0 + low1;
3955 break;
3956 case DIV:
3957 if (width1 == 0)
3958 break;
3959 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3960 result_width = width0;
3961 break;
3962 case UDIV:
3963 if (width1 == 0)
3964 break;
3965 result_width = width0;
3966 break;
3967 case MOD:
3968 if (width1 == 0)
3969 break;
3970 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3971 result_width = MIN (width0, width1);
3972 result_low = MIN (low0, low1);
3973 break;
3974 case UMOD:
3975 if (width1 == 0)
3976 break;
3977 result_width = MIN (width0, width1);
3978 result_low = MIN (low0, low1);
3979 break;
3980 default:
3981 gcc_unreachable ();
3982 }
3983
3984 if (result_width < mode_width)
3985 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3986
3987 if (result_low > 0)
3988 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3989
3990 #ifdef POINTERS_EXTEND_UNSIGNED
3991 /* If pointers extend unsigned and this is an addition or subtraction
3992 to a pointer in Pmode, all the bits above ptr_mode are known to be
3993 zero. */
3994 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3995 && (code == PLUS || code == MINUS)
3996 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3997 nonzero &= GET_MODE_MASK (ptr_mode);
3998 #endif
3999 }
4000 break;
4001
4002 case ZERO_EXTRACT:
4003 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4004 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4005 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4006 break;
4007
4008 case SUBREG:
4009 /* If this is a SUBREG formed for a promoted variable that has
4010 been zero-extended, we know that at least the high-order bits
4011 are zero, though others might be too. */
4012
4013 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4014 nonzero = GET_MODE_MASK (GET_MODE (x))
4015 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4016 known_x, known_mode, known_ret);
4017
4018 /* If the inner mode is a single word for both the host and target
4019 machines, we can compute this from which bits of the inner
4020 object might be nonzero. */
4021 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4022 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4023 <= HOST_BITS_PER_WIDE_INT))
4024 {
4025 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4026 known_x, known_mode, known_ret);
4027
4028 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4029 /* If this is a typical RISC machine, we only have to worry
4030 about the way loads are extended. */
4031 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4032 ? (((nonzero
4033 & (((unsigned HOST_WIDE_INT) 1
4034 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4035 != 0))
4036 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4037 || !MEM_P (SUBREG_REG (x)))
4038 #endif
4039 {
4040 /* On many CISC machines, accessing an object in a wider mode
4041 causes the high-order bits to become undefined. So they are
4042 not known to be zero. */
4043 if (GET_MODE_SIZE (GET_MODE (x))
4044 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4045 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4046 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4047 }
4048 }
4049 break;
4050
4051 case ASHIFTRT:
4052 case LSHIFTRT:
4053 case ASHIFT:
4054 case ROTATE:
4055 /* The nonzero bits are in two classes: any bits within MODE
4056 that aren't in GET_MODE (x) are always significant. The rest of the
4057 nonzero bits are those that are significant in the operand of
4058 the shift when shifted the appropriate number of bits. This
4059 shows that high-order bits are cleared by the right shift and
4060 low-order bits by left shifts. */
4061 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4062 && INTVAL (XEXP (x, 1)) >= 0
4063 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4064 {
4065 enum machine_mode inner_mode = GET_MODE (x);
4066 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4067 int count = INTVAL (XEXP (x, 1));
4068 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4069 unsigned HOST_WIDE_INT op_nonzero =
4070 cached_nonzero_bits (XEXP (x, 0), mode,
4071 known_x, known_mode, known_ret);
4072 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4073 unsigned HOST_WIDE_INT outer = 0;
4074
4075 if (mode_width > width)
4076 outer = (op_nonzero & nonzero & ~mode_mask);
4077
4078 if (code == LSHIFTRT)
4079 inner >>= count;
4080 else if (code == ASHIFTRT)
4081 {
4082 inner >>= count;
4083
4084 /* If the sign bit may have been nonzero before the shift, we
4085 need to mark all the places it could have been copied to
4086 by the shift as possibly nonzero. */
4087 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4088 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4089 }
4090 else if (code == ASHIFT)
4091 inner <<= count;
4092 else
4093 inner = ((inner << (count % width)
4094 | (inner >> (width - (count % width)))) & mode_mask);
4095
4096 nonzero &= (outer | inner);
4097 }
4098 break;
4099
4100 case FFS:
4101 case POPCOUNT:
4102 /* This is at most the number of bits in the mode. */
4103 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4104 break;
4105
4106 case CLZ:
4107 /* If CLZ has a known value at zero, then the nonzero bits are
4108 that value, plus the number of bits in the mode minus one. */
4109 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4110 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4111 else
4112 nonzero = -1;
4113 break;
4114
4115 case CTZ:
4116 /* If CTZ has a known value at zero, then the nonzero bits are
4117 that value, plus the number of bits in the mode minus one. */
4118 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4119 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4120 else
4121 nonzero = -1;
4122 break;
4123
4124 case PARITY:
4125 nonzero = 1;
4126 break;
4127
4128 case IF_THEN_ELSE:
4129 {
4130 unsigned HOST_WIDE_INT nonzero_true =
4131 cached_nonzero_bits (XEXP (x, 1), mode,
4132 known_x, known_mode, known_ret);
4133
4134 /* Don't call nonzero_bits for the second time if it cannot change
4135 anything. */
4136 if ((nonzero & nonzero_true) != nonzero)
4137 nonzero &= nonzero_true
4138 | cached_nonzero_bits (XEXP (x, 2), mode,
4139 known_x, known_mode, known_ret);
4140 }
4141 break;
4142
4143 default:
4144 break;
4145 }
4146
4147 return nonzero;
4148 }
4149
4150 /* See the macro definition above. */
4151 #undef cached_num_sign_bit_copies
4152
4153 \f
4154 /* The function cached_num_sign_bit_copies is a wrapper around
4155 num_sign_bit_copies1. It avoids exponential behavior in
4156 num_sign_bit_copies1 when X has identical subexpressions on the
4157 first or the second level. */
4158
4159 static unsigned int
4160 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4161 enum machine_mode known_mode,
4162 unsigned int known_ret)
4163 {
4164 if (x == known_x && mode == known_mode)
4165 return known_ret;
4166
4167 /* Try to find identical subexpressions. If found call
4168 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4169 the precomputed value for the subexpression as KNOWN_RET. */
4170
4171 if (ARITHMETIC_P (x))
4172 {
4173 rtx x0 = XEXP (x, 0);
4174 rtx x1 = XEXP (x, 1);
4175
4176 /* Check the first level. */
4177 if (x0 == x1)
4178 return
4179 num_sign_bit_copies1 (x, mode, x0, mode,
4180 cached_num_sign_bit_copies (x0, mode, known_x,
4181 known_mode,
4182 known_ret));
4183
4184 /* Check the second level. */
4185 if (ARITHMETIC_P (x0)
4186 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4187 return
4188 num_sign_bit_copies1 (x, mode, x1, mode,
4189 cached_num_sign_bit_copies (x1, mode, known_x,
4190 known_mode,
4191 known_ret));
4192
4193 if (ARITHMETIC_P (x1)
4194 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4195 return
4196 num_sign_bit_copies1 (x, mode, x0, mode,
4197 cached_num_sign_bit_copies (x0, mode, known_x,
4198 known_mode,
4199 known_ret));
4200 }
4201
4202 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4203 }
4204
4205 /* Return the number of bits at the high-order end of X that are known to
4206 be equal to the sign bit. X will be used in mode MODE; if MODE is
4207 VOIDmode, X will be used in its own mode. The returned value will always
4208 be between 1 and the number of bits in MODE. */
4209
4210 static unsigned int
4211 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4212 enum machine_mode known_mode,
4213 unsigned int known_ret)
4214 {
4215 enum rtx_code code = GET_CODE (x);
4216 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4217 int num0, num1, result;
4218 unsigned HOST_WIDE_INT nonzero;
4219
4220 /* If we weren't given a mode, use the mode of X. If the mode is still
4221 VOIDmode, we don't know anything. Likewise if one of the modes is
4222 floating-point. */
4223
4224 if (mode == VOIDmode)
4225 mode = GET_MODE (x);
4226
4227 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4228 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4229 return 1;
4230
4231 /* For a smaller object, just ignore the high bits. */
4232 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4233 {
4234 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4235 known_x, known_mode, known_ret);
4236 return MAX (1,
4237 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4238 }
4239
4240 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4241 {
4242 #ifndef WORD_REGISTER_OPERATIONS
4243 /* If this machine does not do all register operations on the entire
4244 register and MODE is wider than the mode of X, we can say nothing
4245 at all about the high-order bits. */
4246 return 1;
4247 #else
4248 /* Likewise on machines that do, if the mode of the object is smaller
4249 than a word and loads of that size don't sign extend, we can say
4250 nothing about the high order bits. */
4251 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4252 #ifdef LOAD_EXTEND_OP
4253 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4254 #endif
4255 )
4256 return 1;
4257 #endif
4258 }
4259
4260 switch (code)
4261 {
4262 case REG:
4263
4264 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4265 /* If pointers extend signed and this is a pointer in Pmode, say that
4266 all the bits above ptr_mode are known to be sign bit copies. */
4267 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4268 && REG_POINTER (x))
4269 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4270 #endif
4271
4272 {
4273 unsigned int copies_for_hook = 1, copies = 1;
4274 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4275 known_mode, known_ret,
4276 &copies_for_hook);
4277
4278 if (new_rtx)
4279 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4280 known_mode, known_ret);
4281
4282 if (copies > 1 || copies_for_hook > 1)
4283 return MAX (copies, copies_for_hook);
4284
4285 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4286 }
4287 break;
4288
4289 case MEM:
4290 #ifdef LOAD_EXTEND_OP
4291 /* Some RISC machines sign-extend all loads of smaller than a word. */
4292 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4293 return MAX (1, ((int) bitwidth
4294 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4295 #endif
4296 break;
4297
4298 case CONST_INT:
4299 /* If the constant is negative, take its 1's complement and remask.
4300 Then see how many zero bits we have. */
4301 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4302 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4303 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4304 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4305
4306 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4307
4308 case SUBREG:
4309 /* If this is a SUBREG for a promoted object that is sign-extended
4310 and we are looking at it in a wider mode, we know that at least the
4311 high-order bits are known to be sign bit copies. */
4312
4313 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4314 {
4315 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4316 known_x, known_mode, known_ret);
4317 return MAX ((int) bitwidth
4318 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4319 num0);
4320 }
4321
4322 /* For a smaller object, just ignore the high bits. */
4323 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4324 {
4325 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4326 known_x, known_mode, known_ret);
4327 return MAX (1, (num0
4328 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4329 - bitwidth)));
4330 }
4331
4332 #ifdef WORD_REGISTER_OPERATIONS
4333 #ifdef LOAD_EXTEND_OP
4334 /* For paradoxical SUBREGs on machines where all register operations
4335 affect the entire register, just look inside. Note that we are
4336 passing MODE to the recursive call, so the number of sign bit copies
4337 will remain relative to that mode, not the inner mode. */
4338
4339 /* This works only if loads sign extend. Otherwise, if we get a
4340 reload for the inner part, it may be loaded from the stack, and
4341 then we lose all sign bit copies that existed before the store
4342 to the stack. */
4343
4344 if ((GET_MODE_SIZE (GET_MODE (x))
4345 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4346 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4347 && MEM_P (SUBREG_REG (x)))
4348 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4349 known_x, known_mode, known_ret);
4350 #endif
4351 #endif
4352 break;
4353
4354 case SIGN_EXTRACT:
4355 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4356 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4357 break;
4358
4359 case SIGN_EXTEND:
4360 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4361 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4362 known_x, known_mode, known_ret));
4363
4364 case TRUNCATE:
4365 /* For a smaller object, just ignore the high bits. */
4366 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4367 known_x, known_mode, known_ret);
4368 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4369 - bitwidth)));
4370
4371 case NOT:
4372 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4373 known_x, known_mode, known_ret);
4374
4375 case ROTATE: case ROTATERT:
4376 /* If we are rotating left by a number of bits less than the number
4377 of sign bit copies, we can just subtract that amount from the
4378 number. */
4379 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4380 && INTVAL (XEXP (x, 1)) >= 0
4381 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4382 {
4383 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4384 known_x, known_mode, known_ret);
4385 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4386 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4387 }
4388 break;
4389
4390 case NEG:
4391 /* In general, this subtracts one sign bit copy. But if the value
4392 is known to be positive, the number of sign bit copies is the
4393 same as that of the input. Finally, if the input has just one bit
4394 that might be nonzero, all the bits are copies of the sign bit. */
4395 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4396 known_x, known_mode, known_ret);
4397 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4398 return num0 > 1 ? num0 - 1 : 1;
4399
4400 nonzero = nonzero_bits (XEXP (x, 0), mode);
4401 if (nonzero == 1)
4402 return bitwidth;
4403
4404 if (num0 > 1
4405 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4406 num0--;
4407
4408 return num0;
4409
4410 case IOR: case AND: case XOR:
4411 case SMIN: case SMAX: case UMIN: case UMAX:
4412 /* Logical operations will preserve the number of sign-bit copies.
4413 MIN and MAX operations always return one of the operands. */
4414 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4415 known_x, known_mode, known_ret);
4416 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4417 known_x, known_mode, known_ret);
4418
4419 /* If num1 is clearing some of the top bits then regardless of
4420 the other term, we are guaranteed to have at least that many
4421 high-order zero bits. */
4422 if (code == AND
4423 && num1 > 1
4424 && bitwidth <= HOST_BITS_PER_WIDE_INT
4425 && GET_CODE (XEXP (x, 1)) == CONST_INT
4426 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4427 return num1;
4428
4429 /* Similarly for IOR when setting high-order bits. */
4430 if (code == IOR
4431 && num1 > 1
4432 && bitwidth <= HOST_BITS_PER_WIDE_INT
4433 && GET_CODE (XEXP (x, 1)) == CONST_INT
4434 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4435 return num1;
4436
4437 return MIN (num0, num1);
4438
4439 case PLUS: case MINUS:
4440 /* For addition and subtraction, we can have a 1-bit carry. However,
4441 if we are subtracting 1 from a positive number, there will not
4442 be such a carry. Furthermore, if the positive number is known to
4443 be 0 or 1, we know the result is either -1 or 0. */
4444
4445 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4446 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4447 {
4448 nonzero = nonzero_bits (XEXP (x, 0), mode);
4449 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4450 return (nonzero == 1 || nonzero == 0 ? bitwidth
4451 : bitwidth - floor_log2 (nonzero) - 1);
4452 }
4453
4454 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4455 known_x, known_mode, known_ret);
4456 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4457 known_x, known_mode, known_ret);
4458 result = MAX (1, MIN (num0, num1) - 1);
4459
4460 #ifdef POINTERS_EXTEND_UNSIGNED
4461 /* If pointers extend signed and this is an addition or subtraction
4462 to a pointer in Pmode, all the bits above ptr_mode are known to be
4463 sign bit copies. */
4464 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4465 && (code == PLUS || code == MINUS)
4466 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4467 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4468 - GET_MODE_BITSIZE (ptr_mode) + 1),
4469 result);
4470 #endif
4471 return result;
4472
4473 case MULT:
4474 /* The number of bits of the product is the sum of the number of
4475 bits of both terms. However, unless one of the terms if known
4476 to be positive, we must allow for an additional bit since negating
4477 a negative number can remove one sign bit copy. */
4478
4479 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4480 known_x, known_mode, known_ret);
4481 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4482 known_x, known_mode, known_ret);
4483
4484 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4485 if (result > 0
4486 && (bitwidth > HOST_BITS_PER_WIDE_INT
4487 || (((nonzero_bits (XEXP (x, 0), mode)
4488 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4489 && ((nonzero_bits (XEXP (x, 1), mode)
4490 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4491 result--;
4492
4493 return MAX (1, result);
4494
4495 case UDIV:
4496 /* The result must be <= the first operand. If the first operand
4497 has the high bit set, we know nothing about the number of sign
4498 bit copies. */
4499 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4500 return 1;
4501 else if ((nonzero_bits (XEXP (x, 0), mode)
4502 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4503 return 1;
4504 else
4505 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4506 known_x, known_mode, known_ret);
4507
4508 case UMOD:
4509 /* The result must be <= the second operand. */
4510 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4511 known_x, known_mode, known_ret);
4512
4513 case DIV:
4514 /* Similar to unsigned division, except that we have to worry about
4515 the case where the divisor is negative, in which case we have
4516 to add 1. */
4517 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4518 known_x, known_mode, known_ret);
4519 if (result > 1
4520 && (bitwidth > HOST_BITS_PER_WIDE_INT
4521 || (nonzero_bits (XEXP (x, 1), mode)
4522 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4523 result--;
4524
4525 return result;
4526
4527 case MOD:
4528 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4529 known_x, known_mode, known_ret);
4530 if (result > 1
4531 && (bitwidth > HOST_BITS_PER_WIDE_INT
4532 || (nonzero_bits (XEXP (x, 1), mode)
4533 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4534 result--;
4535
4536 return result;
4537
4538 case ASHIFTRT:
4539 /* Shifts by a constant add to the number of bits equal to the
4540 sign bit. */
4541 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4542 known_x, known_mode, known_ret);
4543 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4544 && INTVAL (XEXP (x, 1)) > 0)
4545 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4546
4547 return num0;
4548
4549 case ASHIFT:
4550 /* Left shifts destroy copies. */
4551 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4552 || INTVAL (XEXP (x, 1)) < 0
4553 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4554 return 1;
4555
4556 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4557 known_x, known_mode, known_ret);
4558 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4559
4560 case IF_THEN_ELSE:
4561 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4562 known_x, known_mode, known_ret);
4563 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4564 known_x, known_mode, known_ret);
4565 return MIN (num0, num1);
4566
4567 case EQ: case NE: case GE: case GT: case LE: case LT:
4568 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4569 case GEU: case GTU: case LEU: case LTU:
4570 case UNORDERED: case ORDERED:
4571 /* If the constant is negative, take its 1's complement and remask.
4572 Then see how many zero bits we have. */
4573 nonzero = STORE_FLAG_VALUE;
4574 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4575 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4576 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4577
4578 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4579
4580 default:
4581 break;
4582 }
4583
4584 /* If we haven't been able to figure it out by one of the above rules,
4585 see if some of the high-order bits are known to be zero. If so,
4586 count those bits and return one less than that amount. If we can't
4587 safely compute the mask for this mode, always return BITWIDTH. */
4588
4589 bitwidth = GET_MODE_BITSIZE (mode);
4590 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4591 return 1;
4592
4593 nonzero = nonzero_bits (x, mode);
4594 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4595 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4596 }
4597
4598 /* Calculate the rtx_cost of a single instruction. A return value of
4599 zero indicates an instruction pattern without a known cost. */
4600
4601 int
4602 insn_rtx_cost (rtx pat, bool speed)
4603 {
4604 int i, cost;
4605 rtx set;
4606
4607 /* Extract the single set rtx from the instruction pattern.
4608 We can't use single_set since we only have the pattern. */
4609 if (GET_CODE (pat) == SET)
4610 set = pat;
4611 else if (GET_CODE (pat) == PARALLEL)
4612 {
4613 set = NULL_RTX;
4614 for (i = 0; i < XVECLEN (pat, 0); i++)
4615 {
4616 rtx x = XVECEXP (pat, 0, i);
4617 if (GET_CODE (x) == SET)
4618 {
4619 if (set)
4620 return 0;
4621 set = x;
4622 }
4623 }
4624 if (!set)
4625 return 0;
4626 }
4627 else
4628 return 0;
4629
4630 cost = rtx_cost (SET_SRC (set), SET, speed);
4631 return cost > 0 ? cost : COSTS_N_INSNS (1);
4632 }
4633
4634 /* Given an insn INSN and condition COND, return the condition in a
4635 canonical form to simplify testing by callers. Specifically:
4636
4637 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4638 (2) Both operands will be machine operands; (cc0) will have been replaced.
4639 (3) If an operand is a constant, it will be the second operand.
4640 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4641 for GE, GEU, and LEU.
4642
4643 If the condition cannot be understood, or is an inequality floating-point
4644 comparison which needs to be reversed, 0 will be returned.
4645
4646 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4647
4648 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4649 insn used in locating the condition was found. If a replacement test
4650 of the condition is desired, it should be placed in front of that
4651 insn and we will be sure that the inputs are still valid.
4652
4653 If WANT_REG is nonzero, we wish the condition to be relative to that
4654 register, if possible. Therefore, do not canonicalize the condition
4655 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4656 to be a compare to a CC mode register.
4657
4658 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4659 and at INSN. */
4660
4661 rtx
4662 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4663 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4664 {
4665 enum rtx_code code;
4666 rtx prev = insn;
4667 const_rtx set;
4668 rtx tem;
4669 rtx op0, op1;
4670 int reverse_code = 0;
4671 enum machine_mode mode;
4672 basic_block bb = BLOCK_FOR_INSN (insn);
4673
4674 code = GET_CODE (cond);
4675 mode = GET_MODE (cond);
4676 op0 = XEXP (cond, 0);
4677 op1 = XEXP (cond, 1);
4678
4679 if (reverse)
4680 code = reversed_comparison_code (cond, insn);
4681 if (code == UNKNOWN)
4682 return 0;
4683
4684 if (earliest)
4685 *earliest = insn;
4686
4687 /* If we are comparing a register with zero, see if the register is set
4688 in the previous insn to a COMPARE or a comparison operation. Perform
4689 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4690 in cse.c */
4691
4692 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4693 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4694 && op1 == CONST0_RTX (GET_MODE (op0))
4695 && op0 != want_reg)
4696 {
4697 /* Set nonzero when we find something of interest. */
4698 rtx x = 0;
4699
4700 #ifdef HAVE_cc0
4701 /* If comparison with cc0, import actual comparison from compare
4702 insn. */
4703 if (op0 == cc0_rtx)
4704 {
4705 if ((prev = prev_nonnote_insn (prev)) == 0
4706 || !NONJUMP_INSN_P (prev)
4707 || (set = single_set (prev)) == 0
4708 || SET_DEST (set) != cc0_rtx)
4709 return 0;
4710
4711 op0 = SET_SRC (set);
4712 op1 = CONST0_RTX (GET_MODE (op0));
4713 if (earliest)
4714 *earliest = prev;
4715 }
4716 #endif
4717
4718 /* If this is a COMPARE, pick up the two things being compared. */
4719 if (GET_CODE (op0) == COMPARE)
4720 {
4721 op1 = XEXP (op0, 1);
4722 op0 = XEXP (op0, 0);
4723 continue;
4724 }
4725 else if (!REG_P (op0))
4726 break;
4727
4728 /* Go back to the previous insn. Stop if it is not an INSN. We also
4729 stop if it isn't a single set or if it has a REG_INC note because
4730 we don't want to bother dealing with it. */
4731
4732 if ((prev = prev_nonnote_insn (prev)) == 0
4733 || !NONJUMP_INSN_P (prev)
4734 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4735 /* In cfglayout mode, there do not have to be labels at the
4736 beginning of a block, or jumps at the end, so the previous
4737 conditions would not stop us when we reach bb boundary. */
4738 || BLOCK_FOR_INSN (prev) != bb)
4739 break;
4740
4741 set = set_of (op0, prev);
4742
4743 if (set
4744 && (GET_CODE (set) != SET
4745 || !rtx_equal_p (SET_DEST (set), op0)))
4746 break;
4747
4748 /* If this is setting OP0, get what it sets it to if it looks
4749 relevant. */
4750 if (set)
4751 {
4752 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4753 #ifdef FLOAT_STORE_FLAG_VALUE
4754 REAL_VALUE_TYPE fsfv;
4755 #endif
4756
4757 /* ??? We may not combine comparisons done in a CCmode with
4758 comparisons not done in a CCmode. This is to aid targets
4759 like Alpha that have an IEEE compliant EQ instruction, and
4760 a non-IEEE compliant BEQ instruction. The use of CCmode is
4761 actually artificial, simply to prevent the combination, but
4762 should not affect other platforms.
4763
4764 However, we must allow VOIDmode comparisons to match either
4765 CCmode or non-CCmode comparison, because some ports have
4766 modeless comparisons inside branch patterns.
4767
4768 ??? This mode check should perhaps look more like the mode check
4769 in simplify_comparison in combine. */
4770
4771 if ((GET_CODE (SET_SRC (set)) == COMPARE
4772 || (((code == NE
4773 || (code == LT
4774 && GET_MODE_CLASS (inner_mode) == MODE_INT
4775 && (GET_MODE_BITSIZE (inner_mode)
4776 <= HOST_BITS_PER_WIDE_INT)
4777 && (STORE_FLAG_VALUE
4778 & ((HOST_WIDE_INT) 1
4779 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4780 #ifdef FLOAT_STORE_FLAG_VALUE
4781 || (code == LT
4782 && SCALAR_FLOAT_MODE_P (inner_mode)
4783 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4784 REAL_VALUE_NEGATIVE (fsfv)))
4785 #endif
4786 ))
4787 && COMPARISON_P (SET_SRC (set))))
4788 && (((GET_MODE_CLASS (mode) == MODE_CC)
4789 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4790 || mode == VOIDmode || inner_mode == VOIDmode))
4791 x = SET_SRC (set);
4792 else if (((code == EQ
4793 || (code == GE
4794 && (GET_MODE_BITSIZE (inner_mode)
4795 <= HOST_BITS_PER_WIDE_INT)
4796 && GET_MODE_CLASS (inner_mode) == MODE_INT
4797 && (STORE_FLAG_VALUE
4798 & ((HOST_WIDE_INT) 1
4799 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4800 #ifdef FLOAT_STORE_FLAG_VALUE
4801 || (code == GE
4802 && SCALAR_FLOAT_MODE_P (inner_mode)
4803 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4804 REAL_VALUE_NEGATIVE (fsfv)))
4805 #endif
4806 ))
4807 && COMPARISON_P (SET_SRC (set))
4808 && (((GET_MODE_CLASS (mode) == MODE_CC)
4809 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4810 || mode == VOIDmode || inner_mode == VOIDmode))
4811
4812 {
4813 reverse_code = 1;
4814 x = SET_SRC (set);
4815 }
4816 else
4817 break;
4818 }
4819
4820 else if (reg_set_p (op0, prev))
4821 /* If this sets OP0, but not directly, we have to give up. */
4822 break;
4823
4824 if (x)
4825 {
4826 /* If the caller is expecting the condition to be valid at INSN,
4827 make sure X doesn't change before INSN. */
4828 if (valid_at_insn_p)
4829 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4830 break;
4831 if (COMPARISON_P (x))
4832 code = GET_CODE (x);
4833 if (reverse_code)
4834 {
4835 code = reversed_comparison_code (x, prev);
4836 if (code == UNKNOWN)
4837 return 0;
4838 reverse_code = 0;
4839 }
4840
4841 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4842 if (earliest)
4843 *earliest = prev;
4844 }
4845 }
4846
4847 /* If constant is first, put it last. */
4848 if (CONSTANT_P (op0))
4849 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4850
4851 /* If OP0 is the result of a comparison, we weren't able to find what
4852 was really being compared, so fail. */
4853 if (!allow_cc_mode
4854 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4855 return 0;
4856
4857 /* Canonicalize any ordered comparison with integers involving equality
4858 if we can do computations in the relevant mode and we do not
4859 overflow. */
4860
4861 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4862 && GET_CODE (op1) == CONST_INT
4863 && GET_MODE (op0) != VOIDmode
4864 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4865 {
4866 HOST_WIDE_INT const_val = INTVAL (op1);
4867 unsigned HOST_WIDE_INT uconst_val = const_val;
4868 unsigned HOST_WIDE_INT max_val
4869 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4870
4871 switch (code)
4872 {
4873 case LE:
4874 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4875 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4876 break;
4877
4878 /* When cross-compiling, const_val might be sign-extended from
4879 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4880 case GE:
4881 if ((HOST_WIDE_INT) (const_val & max_val)
4882 != (((HOST_WIDE_INT) 1
4883 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4884 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4885 break;
4886
4887 case LEU:
4888 if (uconst_val < max_val)
4889 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4890 break;
4891
4892 case GEU:
4893 if (uconst_val != 0)
4894 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4895 break;
4896
4897 default:
4898 break;
4899 }
4900 }
4901
4902 /* Never return CC0; return zero instead. */
4903 if (CC0_P (op0))
4904 return 0;
4905
4906 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4907 }
4908
4909 /* Given a jump insn JUMP, return the condition that will cause it to branch
4910 to its JUMP_LABEL. If the condition cannot be understood, or is an
4911 inequality floating-point comparison which needs to be reversed, 0 will
4912 be returned.
4913
4914 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4915 insn used in locating the condition was found. If a replacement test
4916 of the condition is desired, it should be placed in front of that
4917 insn and we will be sure that the inputs are still valid. If EARLIEST
4918 is null, the returned condition will be valid at INSN.
4919
4920 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4921 compare CC mode register.
4922
4923 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4924
4925 rtx
4926 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4927 {
4928 rtx cond;
4929 int reverse;
4930 rtx set;
4931
4932 /* If this is not a standard conditional jump, we can't parse it. */
4933 if (!JUMP_P (jump)
4934 || ! any_condjump_p (jump))
4935 return 0;
4936 set = pc_set (jump);
4937
4938 cond = XEXP (SET_SRC (set), 0);
4939
4940 /* If this branches to JUMP_LABEL when the condition is false, reverse
4941 the condition. */
4942 reverse
4943 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4944 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4945
4946 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4947 allow_cc_mode, valid_at_insn_p);
4948 }
4949
4950 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4951 TARGET_MODE_REP_EXTENDED.
4952
4953 Note that we assume that the property of
4954 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4955 narrower than mode B. I.e., if A is a mode narrower than B then in
4956 order to be able to operate on it in mode B, mode A needs to
4957 satisfy the requirements set by the representation of mode B. */
4958
4959 static void
4960 init_num_sign_bit_copies_in_rep (void)
4961 {
4962 enum machine_mode mode, in_mode;
4963
4964 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4965 in_mode = GET_MODE_WIDER_MODE (mode))
4966 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4967 mode = GET_MODE_WIDER_MODE (mode))
4968 {
4969 enum machine_mode i;
4970
4971 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4972 extends to the next widest mode. */
4973 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4974 || GET_MODE_WIDER_MODE (mode) == in_mode);
4975
4976 /* We are in in_mode. Count how many bits outside of mode
4977 have to be copies of the sign-bit. */
4978 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4979 {
4980 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4981
4982 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4983 /* We can only check sign-bit copies starting from the
4984 top-bit. In order to be able to check the bits we
4985 have already seen we pretend that subsequent bits
4986 have to be sign-bit copies too. */
4987 || num_sign_bit_copies_in_rep [in_mode][mode])
4988 num_sign_bit_copies_in_rep [in_mode][mode]
4989 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4990 }
4991 }
4992 }
4993
4994 /* Suppose that truncation from the machine mode of X to MODE is not a
4995 no-op. See if there is anything special about X so that we can
4996 assume it already contains a truncated value of MODE. */
4997
4998 bool
4999 truncated_to_mode (enum machine_mode mode, const_rtx x)
5000 {
5001 /* This register has already been used in MODE without explicit
5002 truncation. */
5003 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5004 return true;
5005
5006 /* See if we already satisfy the requirements of MODE. If yes we
5007 can just switch to MODE. */
5008 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5009 && (num_sign_bit_copies (x, GET_MODE (x))
5010 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5011 return true;
5012
5013 return false;
5014 }
5015 \f
5016 /* Initialize non_rtx_starting_operands, which is used to speed up
5017 for_each_rtx. */
5018 void
5019 init_rtlanal (void)
5020 {
5021 int i;
5022 for (i = 0; i < NUM_RTX_CODE; i++)
5023 {
5024 const char *format = GET_RTX_FORMAT (i);
5025 const char *first = strpbrk (format, "eEV");
5026 non_rtx_starting_operands[i] = first ? first - format : -1;
5027 }
5028
5029 init_num_sign_bit_copies_in_rep ();
5030 }
5031 \f
5032 /* Check whether this is a constant pool constant. */
5033 bool
5034 constant_pool_constant_p (rtx x)
5035 {
5036 x = avoid_constant_pool_reference (x);
5037 return GET_CODE (x) == CONST_DOUBLE;
5038 }
5039