recog.c (validate_change_1, [...]): Avoid C++ keywords.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
267 {
268 enum rtx_code code = GET_CODE (x);
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
274
275 case LABEL_REF:
276 return 0;
277
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
290
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
293
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
301 {
302 HOST_WIDE_INT offset;
303
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
308
309 offset = INTVAL (XEXP (x, 1));
310
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
320
321 return offset % GET_MODE_SIZE (mode) != 0;
322 }
323
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
327
328 return 1;
329
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
333
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
340
341 default:
342 break;
343 }
344
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
347 }
348
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350
351 int
352 rtx_addr_can_trap_p (const_rtx x)
353 {
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 }
356
357 /* Return true if X is an address that is known to not be zero. */
358
359 bool
360 nonzero_address_p (const_rtx x)
361 {
362 const enum rtx_code code = GET_CODE (x);
363
364 switch (code)
365 {
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
368
369 case LABEL_REF:
370 return true;
371
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
383
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
386
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
395
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
404
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
408
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
414
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
417
418 default:
419 break;
420 }
421
422 /* If it isn't one of the case above, might be zero. */
423 return false;
424 }
425
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
431
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
434 {
435 enum rtx_code code;
436 int i;
437 const char *fmt;
438
439 if (x == 0)
440 return 0;
441
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
445
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
449 {
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
452 }
453 else if (fmt[i] == 'E')
454 {
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
459 }
460 return 0;
461 }
462 \f
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
467
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
470 {
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
473
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
481 }
482
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
486
487 rtx
488 get_related_value (const_rtx x)
489 {
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
500 }
501 \f
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
504
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
507 {
508 tree decl;
509
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
512
513 if (offset == 0)
514 return true;
515
516 if (offset > 0)
517 {
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
521
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
525 }
526
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
533
534 return false;
535 }
536
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
539
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
542 {
543 if (GET_CODE (x) == CONST)
544 {
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
547 {
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
551 }
552 }
553 *base_out = x;
554 *offset_out = const0_rtx;
555 }
556 \f
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
559
560 int
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
562 {
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
567
568 if (x == find)
569 return 1;
570
571 code = GET_CODE (x);
572
573 switch (code)
574 {
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
585
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
591
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
596
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
601
602 default:
603 break;
604 }
605
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
608
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
610 {
611 switch (*format_ptr++)
612 {
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
616
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
621 }
622 }
623 return count;
624 }
625
626 \f
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
630
631 int
632 reg_mentioned_p (const_rtx reg, const_rtx in)
633 {
634 const char *fmt;
635 int i;
636 enum rtx_code code;
637
638 if (in == 0)
639 return 0;
640
641 if (reg == in)
642 return 1;
643
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
646
647 code = GET_CODE (in);
648
649 switch (code)
650 {
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
654
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
661
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
668
669 default:
670 break;
671 }
672
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
675
676 fmt = GET_RTX_FORMAT (code);
677
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 if (fmt[i] == 'E')
681 {
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
686 }
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
690 }
691 return 0;
692 }
693 \f
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
696
697 int
698 no_labels_between_p (const_rtx beg, const_rtx end)
699 {
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
707 }
708
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
711
712 int
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
714 {
715 rtx insn;
716
717 if (from_insn == to_insn)
718 return 0;
719
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
726 }
727 \f
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
731
732 int
733 reg_referenced_p (const_rtx x, const_rtx body)
734 {
735 int i;
736
737 switch (GET_CODE (body))
738 {
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
742
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
758
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
764
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
769
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
772
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
775
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
782
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
788
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
794
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
799
800 default:
801 return 0;
802 }
803 }
804 \f
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
807
808 int
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
810 {
811 const_rtx insn;
812
813 if (from_insn == to_insn)
814 return 0;
815
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
820 }
821
822 /* Internals of reg_set_between_p. */
823 int
824 reg_set_p (const_rtx reg, const_rtx insn)
825 {
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
838
839 return set_of (reg, insn) != NULL_RTX;
840 }
841
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does use memory aliasing. */
845
846 int
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
848 {
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
853
854 if (start == end)
855 return 0;
856
857 switch (code)
858 {
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
867
868 case PC:
869 case CC0:
870 return 1;
871
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
882
883 case REG:
884 return reg_set_between_p (x, start, end);
885
886 default:
887 break;
888 }
889
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 {
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
895
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
900 }
901
902 return 0;
903 }
904
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
908
909 int
910 modified_in_p (const_rtx x, const_rtx insn)
911 {
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
915
916 switch (code)
917 {
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
926
927 case PC:
928 case CC0:
929 return 1;
930
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
940
941 case REG:
942 return reg_set_p (x, insn);
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950 {
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
953
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
958 }
959
960 return 0;
961 }
962 \f
963 /* Helper function for set_of. */
964 struct set_of_data
965 {
966 const_rtx found;
967 const_rtx pat;
968 };
969
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
972 {
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
977 }
978
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
983 {
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
989 }
990 \f
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
994
995 rtx
996 single_set_2 (const_rtx insn, const_rtx pat)
997 {
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1001
1002 if (GET_CODE (pat) == PARALLEL)
1003 {
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1005 {
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1008 {
1009 case USE:
1010 case CLOBBER:
1011 break;
1012
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1018
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1023 {
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1029 }
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1036
1037 default:
1038 return NULL_RTX;
1039 }
1040 }
1041 }
1042 return set;
1043 }
1044
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1047
1048 int
1049 multiple_sets (const_rtx insn)
1050 {
1051 int found;
1052 int i;
1053
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1057
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1060 {
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 {
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1069 }
1070 }
1071
1072 /* Either zero or one SET. */
1073 return 0;
1074 }
1075 \f
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1078
1079 int
1080 set_noop_p (const_rtx set)
1081 {
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1084
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1087
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1090
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1095
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1098
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1100 {
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1105 }
1106
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1109 }
1110 \f
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1113
1114 int
1115 noop_move_p (const_rtx insn)
1116 {
1117 rtx pat = PATTERN (insn);
1118
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1121
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1125
1126 if (GET_CODE (pat) == SET && set_noop_p (pat))
1127 return 1;
1128
1129 if (GET_CODE (pat) == PARALLEL)
1130 {
1131 int i;
1132 /* If nothing but SETs of registers to themselves,
1133 this insn can also be deleted. */
1134 for (i = 0; i < XVECLEN (pat, 0); i++)
1135 {
1136 rtx tem = XVECEXP (pat, 0, i);
1137
1138 if (GET_CODE (tem) == USE
1139 || GET_CODE (tem) == CLOBBER)
1140 continue;
1141
1142 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1143 return 0;
1144 }
1145
1146 return 1;
1147 }
1148 return 0;
1149 }
1150 \f
1151
1152 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1153 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1154 If the object was modified, if we hit a partial assignment to X, or hit a
1155 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1156 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1157 be the src. */
1158
1159 rtx
1160 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1161 {
1162 rtx p;
1163
1164 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1165 p = PREV_INSN (p))
1166 if (INSN_P (p))
1167 {
1168 rtx set = single_set (p);
1169 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1170
1171 if (set && rtx_equal_p (x, SET_DEST (set)))
1172 {
1173 rtx src = SET_SRC (set);
1174
1175 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1176 src = XEXP (note, 0);
1177
1178 if ((valid_to == NULL_RTX
1179 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1180 /* Reject hard registers because we don't usually want
1181 to use them; we'd rather use a pseudo. */
1182 && (! (REG_P (src)
1183 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1184 {
1185 *pinsn = p;
1186 return src;
1187 }
1188 }
1189
1190 /* If set in non-simple way, we don't have a value. */
1191 if (reg_set_p (x, p))
1192 break;
1193 }
1194
1195 return x;
1196 }
1197 \f
1198 /* Return nonzero if register in range [REGNO, ENDREGNO)
1199 appears either explicitly or implicitly in X
1200 other than being stored into.
1201
1202 References contained within the substructure at LOC do not count.
1203 LOC may be zero, meaning don't ignore anything. */
1204
1205 int
1206 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1207 rtx *loc)
1208 {
1209 int i;
1210 unsigned int x_regno;
1211 RTX_CODE code;
1212 const char *fmt;
1213
1214 repeat:
1215 /* The contents of a REG_NONNEG note is always zero, so we must come here
1216 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1217 if (x == 0)
1218 return 0;
1219
1220 code = GET_CODE (x);
1221
1222 switch (code)
1223 {
1224 case REG:
1225 x_regno = REGNO (x);
1226
1227 /* If we modifying the stack, frame, or argument pointer, it will
1228 clobber a virtual register. In fact, we could be more precise,
1229 but it isn't worth it. */
1230 if ((x_regno == STACK_POINTER_REGNUM
1231 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1232 || x_regno == ARG_POINTER_REGNUM
1233 #endif
1234 || x_regno == FRAME_POINTER_REGNUM)
1235 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1236 return 1;
1237
1238 return endregno > x_regno && regno < END_REGNO (x);
1239
1240 case SUBREG:
1241 /* If this is a SUBREG of a hard reg, we can see exactly which
1242 registers are being modified. Otherwise, handle normally. */
1243 if (REG_P (SUBREG_REG (x))
1244 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1245 {
1246 unsigned int inner_regno = subreg_regno (x);
1247 unsigned int inner_endregno
1248 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1249 ? subreg_nregs (x) : 1);
1250
1251 return endregno > inner_regno && regno < inner_endregno;
1252 }
1253 break;
1254
1255 case CLOBBER:
1256 case SET:
1257 if (&SET_DEST (x) != loc
1258 /* Note setting a SUBREG counts as referring to the REG it is in for
1259 a pseudo but not for hard registers since we can
1260 treat each word individually. */
1261 && ((GET_CODE (SET_DEST (x)) == SUBREG
1262 && loc != &SUBREG_REG (SET_DEST (x))
1263 && REG_P (SUBREG_REG (SET_DEST (x)))
1264 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1265 && refers_to_regno_p (regno, endregno,
1266 SUBREG_REG (SET_DEST (x)), loc))
1267 || (!REG_P (SET_DEST (x))
1268 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1269 return 1;
1270
1271 if (code == CLOBBER || loc == &SET_SRC (x))
1272 return 0;
1273 x = SET_SRC (x);
1274 goto repeat;
1275
1276 default:
1277 break;
1278 }
1279
1280 /* X does not match, so try its subexpressions. */
1281
1282 fmt = GET_RTX_FORMAT (code);
1283 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1284 {
1285 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1286 {
1287 if (i == 0)
1288 {
1289 x = XEXP (x, 0);
1290 goto repeat;
1291 }
1292 else
1293 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1294 return 1;
1295 }
1296 else if (fmt[i] == 'E')
1297 {
1298 int j;
1299 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1300 if (loc != &XVECEXP (x, i, j)
1301 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1302 return 1;
1303 }
1304 }
1305 return 0;
1306 }
1307
1308 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1309 we check if any register number in X conflicts with the relevant register
1310 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1311 contains a MEM (we don't bother checking for memory addresses that can't
1312 conflict because we expect this to be a rare case. */
1313
1314 int
1315 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1316 {
1317 unsigned int regno, endregno;
1318
1319 /* If either argument is a constant, then modifying X can not
1320 affect IN. Here we look at IN, we can profitably combine
1321 CONSTANT_P (x) with the switch statement below. */
1322 if (CONSTANT_P (in))
1323 return 0;
1324
1325 recurse:
1326 switch (GET_CODE (x))
1327 {
1328 case STRICT_LOW_PART:
1329 case ZERO_EXTRACT:
1330 case SIGN_EXTRACT:
1331 /* Overly conservative. */
1332 x = XEXP (x, 0);
1333 goto recurse;
1334
1335 case SUBREG:
1336 regno = REGNO (SUBREG_REG (x));
1337 if (regno < FIRST_PSEUDO_REGISTER)
1338 regno = subreg_regno (x);
1339 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1340 ? subreg_nregs (x) : 1);
1341 goto do_reg;
1342
1343 case REG:
1344 regno = REGNO (x);
1345 endregno = END_REGNO (x);
1346 do_reg:
1347 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1348
1349 case MEM:
1350 {
1351 const char *fmt;
1352 int i;
1353
1354 if (MEM_P (in))
1355 return 1;
1356
1357 fmt = GET_RTX_FORMAT (GET_CODE (in));
1358 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1359 if (fmt[i] == 'e')
1360 {
1361 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1362 return 1;
1363 }
1364 else if (fmt[i] == 'E')
1365 {
1366 int j;
1367 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1368 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1369 return 1;
1370 }
1371
1372 return 0;
1373 }
1374
1375 case SCRATCH:
1376 case PC:
1377 case CC0:
1378 return reg_mentioned_p (x, in);
1379
1380 case PARALLEL:
1381 {
1382 int i;
1383
1384 /* If any register in here refers to it we return true. */
1385 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1386 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1387 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1388 return 1;
1389 return 0;
1390 }
1391
1392 default:
1393 gcc_assert (CONSTANT_P (x));
1394 return 0;
1395 }
1396 }
1397 \f
1398 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1399 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1400 ignored by note_stores, but passed to FUN.
1401
1402 FUN receives three arguments:
1403 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1404 2. the SET or CLOBBER rtx that does the store,
1405 3. the pointer DATA provided to note_stores.
1406
1407 If the item being stored in or clobbered is a SUBREG of a hard register,
1408 the SUBREG will be passed. */
1409
1410 void
1411 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1412 {
1413 int i;
1414
1415 if (GET_CODE (x) == COND_EXEC)
1416 x = COND_EXEC_CODE (x);
1417
1418 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1419 {
1420 rtx dest = SET_DEST (x);
1421
1422 while ((GET_CODE (dest) == SUBREG
1423 && (!REG_P (SUBREG_REG (dest))
1424 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1425 || GET_CODE (dest) == ZERO_EXTRACT
1426 || GET_CODE (dest) == STRICT_LOW_PART)
1427 dest = XEXP (dest, 0);
1428
1429 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1430 each of whose first operand is a register. */
1431 if (GET_CODE (dest) == PARALLEL)
1432 {
1433 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1434 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1435 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1436 }
1437 else
1438 (*fun) (dest, x, data);
1439 }
1440
1441 else if (GET_CODE (x) == PARALLEL)
1442 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1443 note_stores (XVECEXP (x, 0, i), fun, data);
1444 }
1445 \f
1446 /* Like notes_stores, but call FUN for each expression that is being
1447 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1448 FUN for each expression, not any interior subexpressions. FUN receives a
1449 pointer to the expression and the DATA passed to this function.
1450
1451 Note that this is not quite the same test as that done in reg_referenced_p
1452 since that considers something as being referenced if it is being
1453 partially set, while we do not. */
1454
1455 void
1456 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1457 {
1458 rtx body = *pbody;
1459 int i;
1460
1461 switch (GET_CODE (body))
1462 {
1463 case COND_EXEC:
1464 (*fun) (&COND_EXEC_TEST (body), data);
1465 note_uses (&COND_EXEC_CODE (body), fun, data);
1466 return;
1467
1468 case PARALLEL:
1469 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1470 note_uses (&XVECEXP (body, 0, i), fun, data);
1471 return;
1472
1473 case SEQUENCE:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1476 return;
1477
1478 case USE:
1479 (*fun) (&XEXP (body, 0), data);
1480 return;
1481
1482 case ASM_OPERANDS:
1483 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1484 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1485 return;
1486
1487 case TRAP_IF:
1488 (*fun) (&TRAP_CONDITION (body), data);
1489 return;
1490
1491 case PREFETCH:
1492 (*fun) (&XEXP (body, 0), data);
1493 return;
1494
1495 case UNSPEC:
1496 case UNSPEC_VOLATILE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 (*fun) (&XVECEXP (body, 0, i), data);
1499 return;
1500
1501 case CLOBBER:
1502 if (MEM_P (XEXP (body, 0)))
1503 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1504 return;
1505
1506 case SET:
1507 {
1508 rtx dest = SET_DEST (body);
1509
1510 /* For sets we replace everything in source plus registers in memory
1511 expression in store and operands of a ZERO_EXTRACT. */
1512 (*fun) (&SET_SRC (body), data);
1513
1514 if (GET_CODE (dest) == ZERO_EXTRACT)
1515 {
1516 (*fun) (&XEXP (dest, 1), data);
1517 (*fun) (&XEXP (dest, 2), data);
1518 }
1519
1520 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1521 dest = XEXP (dest, 0);
1522
1523 if (MEM_P (dest))
1524 (*fun) (&XEXP (dest, 0), data);
1525 }
1526 return;
1527
1528 default:
1529 /* All the other possibilities never store. */
1530 (*fun) (pbody, data);
1531 return;
1532 }
1533 }
1534 \f
1535 /* Return nonzero if X's old contents don't survive after INSN.
1536 This will be true if X is (cc0) or if X is a register and
1537 X dies in INSN or because INSN entirely sets X.
1538
1539 "Entirely set" means set directly and not through a SUBREG, or
1540 ZERO_EXTRACT, so no trace of the old contents remains.
1541 Likewise, REG_INC does not count.
1542
1543 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1544 but for this use that makes no difference, since regs don't overlap
1545 during their lifetimes. Therefore, this function may be used
1546 at any time after deaths have been computed.
1547
1548 If REG is a hard reg that occupies multiple machine registers, this
1549 function will only return 1 if each of those registers will be replaced
1550 by INSN. */
1551
1552 int
1553 dead_or_set_p (const_rtx insn, const_rtx x)
1554 {
1555 unsigned int regno, end_regno;
1556 unsigned int i;
1557
1558 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1559 if (GET_CODE (x) == CC0)
1560 return 1;
1561
1562 gcc_assert (REG_P (x));
1563
1564 regno = REGNO (x);
1565 end_regno = END_REGNO (x);
1566 for (i = regno; i < end_regno; i++)
1567 if (! dead_or_set_regno_p (insn, i))
1568 return 0;
1569
1570 return 1;
1571 }
1572
1573 /* Return TRUE iff DEST is a register or subreg of a register and
1574 doesn't change the number of words of the inner register, and any
1575 part of the register is TEST_REGNO. */
1576
1577 static bool
1578 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1579 {
1580 unsigned int regno, endregno;
1581
1582 if (GET_CODE (dest) == SUBREG
1583 && (((GET_MODE_SIZE (GET_MODE (dest))
1584 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1585 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1586 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1587 dest = SUBREG_REG (dest);
1588
1589 if (!REG_P (dest))
1590 return false;
1591
1592 regno = REGNO (dest);
1593 endregno = END_REGNO (dest);
1594 return (test_regno >= regno && test_regno < endregno);
1595 }
1596
1597 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1598 any member matches the covers_regno_no_parallel_p criteria. */
1599
1600 static bool
1601 covers_regno_p (const_rtx dest, unsigned int test_regno)
1602 {
1603 if (GET_CODE (dest) == PARALLEL)
1604 {
1605 /* Some targets place small structures in registers for return
1606 values of functions, and those registers are wrapped in
1607 PARALLELs that we may see as the destination of a SET. */
1608 int i;
1609
1610 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1611 {
1612 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1613 if (inner != NULL_RTX
1614 && covers_regno_no_parallel_p (inner, test_regno))
1615 return true;
1616 }
1617
1618 return false;
1619 }
1620 else
1621 return covers_regno_no_parallel_p (dest, test_regno);
1622 }
1623
1624 /* Utility function for dead_or_set_p to check an individual register. */
1625
1626 int
1627 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1628 {
1629 const_rtx pattern;
1630
1631 /* See if there is a death note for something that includes TEST_REGNO. */
1632 if (find_regno_note (insn, REG_DEAD, test_regno))
1633 return 1;
1634
1635 if (CALL_P (insn)
1636 && find_regno_fusage (insn, CLOBBER, test_regno))
1637 return 1;
1638
1639 pattern = PATTERN (insn);
1640
1641 if (GET_CODE (pattern) == COND_EXEC)
1642 pattern = COND_EXEC_CODE (pattern);
1643
1644 if (GET_CODE (pattern) == SET)
1645 return covers_regno_p (SET_DEST (pattern), test_regno);
1646 else if (GET_CODE (pattern) == PARALLEL)
1647 {
1648 int i;
1649
1650 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1651 {
1652 rtx body = XVECEXP (pattern, 0, i);
1653
1654 if (GET_CODE (body) == COND_EXEC)
1655 body = COND_EXEC_CODE (body);
1656
1657 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1658 && covers_regno_p (SET_DEST (body), test_regno))
1659 return 1;
1660 }
1661 }
1662
1663 return 0;
1664 }
1665
1666 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1667 If DATUM is nonzero, look for one whose datum is DATUM. */
1668
1669 rtx
1670 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1671 {
1672 rtx link;
1673
1674 gcc_assert (insn);
1675
1676 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1677 if (! INSN_P (insn))
1678 return 0;
1679 if (datum == 0)
1680 {
1681 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1682 if (REG_NOTE_KIND (link) == kind)
1683 return link;
1684 return 0;
1685 }
1686
1687 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1688 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1689 return link;
1690 return 0;
1691 }
1692
1693 /* Return the reg-note of kind KIND in insn INSN which applies to register
1694 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1695 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1696 it might be the case that the note overlaps REGNO. */
1697
1698 rtx
1699 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1700 {
1701 rtx link;
1702
1703 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1704 if (! INSN_P (insn))
1705 return 0;
1706
1707 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1708 if (REG_NOTE_KIND (link) == kind
1709 /* Verify that it is a register, so that scratch and MEM won't cause a
1710 problem here. */
1711 && REG_P (XEXP (link, 0))
1712 && REGNO (XEXP (link, 0)) <= regno
1713 && END_REGNO (XEXP (link, 0)) > regno)
1714 return link;
1715 return 0;
1716 }
1717
1718 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1719 has such a note. */
1720
1721 rtx
1722 find_reg_equal_equiv_note (const_rtx insn)
1723 {
1724 rtx link;
1725
1726 if (!INSN_P (insn))
1727 return 0;
1728
1729 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1730 if (REG_NOTE_KIND (link) == REG_EQUAL
1731 || REG_NOTE_KIND (link) == REG_EQUIV)
1732 {
1733 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1734 insns that have multiple sets. Checking single_set to
1735 make sure of this is not the proper check, as explained
1736 in the comment in set_unique_reg_note.
1737
1738 This should be changed into an assert. */
1739 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1740 return 0;
1741 return link;
1742 }
1743 return NULL;
1744 }
1745
1746 /* Check whether INSN is a single_set whose source is known to be
1747 equivalent to a constant. Return that constant if so, otherwise
1748 return null. */
1749
1750 rtx
1751 find_constant_src (const_rtx insn)
1752 {
1753 rtx note, set, x;
1754
1755 set = single_set (insn);
1756 if (set)
1757 {
1758 x = avoid_constant_pool_reference (SET_SRC (set));
1759 if (CONSTANT_P (x))
1760 return x;
1761 }
1762
1763 note = find_reg_equal_equiv_note (insn);
1764 if (note && CONSTANT_P (XEXP (note, 0)))
1765 return XEXP (note, 0);
1766
1767 return NULL_RTX;
1768 }
1769
1770 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1771 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1772
1773 int
1774 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1775 {
1776 /* If it's not a CALL_INSN, it can't possibly have a
1777 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1778 if (!CALL_P (insn))
1779 return 0;
1780
1781 gcc_assert (datum);
1782
1783 if (!REG_P (datum))
1784 {
1785 rtx link;
1786
1787 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1788 link;
1789 link = XEXP (link, 1))
1790 if (GET_CODE (XEXP (link, 0)) == code
1791 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1792 return 1;
1793 }
1794 else
1795 {
1796 unsigned int regno = REGNO (datum);
1797
1798 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1799 to pseudo registers, so don't bother checking. */
1800
1801 if (regno < FIRST_PSEUDO_REGISTER)
1802 {
1803 unsigned int end_regno = END_HARD_REGNO (datum);
1804 unsigned int i;
1805
1806 for (i = regno; i < end_regno; i++)
1807 if (find_regno_fusage (insn, code, i))
1808 return 1;
1809 }
1810 }
1811
1812 return 0;
1813 }
1814
1815 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1816 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1817
1818 int
1819 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1820 {
1821 rtx link;
1822
1823 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1824 to pseudo registers, so don't bother checking. */
1825
1826 if (regno >= FIRST_PSEUDO_REGISTER
1827 || !CALL_P (insn) )
1828 return 0;
1829
1830 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1831 {
1832 rtx op, reg;
1833
1834 if (GET_CODE (op = XEXP (link, 0)) == code
1835 && REG_P (reg = XEXP (op, 0))
1836 && REGNO (reg) <= regno
1837 && END_HARD_REGNO (reg) > regno)
1838 return 1;
1839 }
1840
1841 return 0;
1842 }
1843
1844 \f
1845 /* Add register note with kind KIND and datum DATUM to INSN. */
1846
1847 void
1848 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1849 {
1850 rtx note;
1851
1852 switch (kind)
1853 {
1854 case REG_CC_SETTER:
1855 case REG_CC_USER:
1856 case REG_LABEL_TARGET:
1857 case REG_LABEL_OPERAND:
1858 /* These types of register notes use an INSN_LIST rather than an
1859 EXPR_LIST, so that copying is done right and dumps look
1860 better. */
1861 note = alloc_INSN_LIST (datum, REG_NOTES (insn));
1862 PUT_REG_NOTE_KIND (note, kind);
1863 break;
1864
1865 default:
1866 note = alloc_EXPR_LIST (kind, datum, REG_NOTES (insn));
1867 break;
1868 }
1869
1870 REG_NOTES (insn) = note;
1871 }
1872
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1874
1875 void
1876 remove_note (rtx insn, const_rtx note)
1877 {
1878 rtx link;
1879
1880 if (note == NULL_RTX)
1881 return;
1882
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1888 {
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1891 }
1892
1893 switch (REG_NOTE_KIND (note))
1894 {
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1908 {
1909 rtx *loc;
1910
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1913 {
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1919 }
1920 }
1921
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1925
1926 int
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1928 {
1929 const_rtx x;
1930
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1934
1935 return 0;
1936 }
1937
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1940
1941 A simple equality test is used to determine if NODE matches. */
1942
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1945 {
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1948
1949 while (temp)
1950 {
1951 if (node == XEXP (temp, 0))
1952 {
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1958
1959 return;
1960 }
1961
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1964 }
1965 }
1966 \f
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1971
1972 int
1973 volatile_insn_p (const_rtx x)
1974 {
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1977 {
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1995
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
1999
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2004
2005 default:
2006 break;
2007 }
2008
2009 /* Recursively scan the operands of this expression. */
2010
2011 {
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2014
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2016 {
2017 if (fmt[i] == 'e')
2018 {
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2021 }
2022 else if (fmt[i] == 'E')
2023 {
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 }
2031 return 0;
2032 }
2033
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2036
2037 int
2038 volatile_refs_p (const_rtx x)
2039 {
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2042 {
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2058
2059 case UNSPEC_VOLATILE:
2060 return 1;
2061
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2067
2068 default:
2069 break;
2070 }
2071
2072 /* Recursively scan the operands of this expression. */
2073
2074 {
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2077
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2079 {
2080 if (fmt[i] == 'e')
2081 {
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2084 }
2085 else if (fmt[i] == 'E')
2086 {
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2091 }
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2099
2100 int
2101 side_effects_p (const_rtx x)
2102 {
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2120
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2126
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2137
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2143
2144 default:
2145 break;
2146 }
2147
2148 /* Recursively scan the operands of this expression. */
2149
2150 {
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2153
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155 {
2156 if (fmt[i] == 'e')
2157 {
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2160 }
2161 else if (fmt[i] == 'E')
2162 {
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2167 }
2168 }
2169 }
2170 return 0;
2171 }
2172 \f
2173 enum may_trap_p_flags
2174 {
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2177 };
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2184
2185 int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2187 {
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2192
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2197 {
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2211
2212 case UNSPEC:
2213 case UNSPEC_VOLATILE:
2214 return targetm.unspec_may_trap_p (x, flags);
2215
2216 case ASM_INPUT:
2217 case TRAP_IF:
2218 return 1;
2219
2220 case ASM_OPERANDS:
2221 return MEM_VOLATILE_P (x);
2222
2223 /* Memory ref can trap unless it's a static var or a stack slot. */
2224 case MEM:
2225 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2226 reference; moving it out of condition might cause its address
2227 become invalid. */
2228 !(flags & MTP_AFTER_MOVE)
2229 && MEM_NOTRAP_P (x)
2230 && (!STRICT_ALIGNMENT || !unaligned_mems))
2231 return 0;
2232 return
2233 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2234
2235 /* Division by a non-constant might trap. */
2236 case DIV:
2237 case MOD:
2238 case UDIV:
2239 case UMOD:
2240 if (HONOR_SNANS (GET_MODE (x)))
2241 return 1;
2242 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2243 return flag_trapping_math;
2244 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2245 return 1;
2246 break;
2247
2248 case EXPR_LIST:
2249 /* An EXPR_LIST is used to represent a function call. This
2250 certainly may trap. */
2251 return 1;
2252
2253 case GE:
2254 case GT:
2255 case LE:
2256 case LT:
2257 case LTGT:
2258 case COMPARE:
2259 /* Some floating point comparisons may trap. */
2260 if (!flag_trapping_math)
2261 break;
2262 /* ??? There is no machine independent way to check for tests that trap
2263 when COMPARE is used, though many targets do make this distinction.
2264 For instance, sparc uses CCFPE for compares which generate exceptions
2265 and CCFP for compares which do not generate exceptions. */
2266 if (HONOR_NANS (GET_MODE (x)))
2267 return 1;
2268 /* But often the compare has some CC mode, so check operand
2269 modes as well. */
2270 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2271 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2272 return 1;
2273 break;
2274
2275 case EQ:
2276 case NE:
2277 if (HONOR_SNANS (GET_MODE (x)))
2278 return 1;
2279 /* Often comparison is CC mode, so check operand modes. */
2280 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2281 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2282 return 1;
2283 break;
2284
2285 case FIX:
2286 /* Conversion of floating point might trap. */
2287 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2288 return 1;
2289 break;
2290
2291 case NEG:
2292 case ABS:
2293 case SUBREG:
2294 /* These operations don't trap even with floating point. */
2295 break;
2296
2297 default:
2298 /* Any floating arithmetic may trap. */
2299 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2300 && flag_trapping_math)
2301 return 1;
2302 }
2303
2304 fmt = GET_RTX_FORMAT (code);
2305 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2306 {
2307 if (fmt[i] == 'e')
2308 {
2309 if (may_trap_p_1 (XEXP (x, i), flags))
2310 return 1;
2311 }
2312 else if (fmt[i] == 'E')
2313 {
2314 int j;
2315 for (j = 0; j < XVECLEN (x, i); j++)
2316 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2317 return 1;
2318 }
2319 }
2320 return 0;
2321 }
2322
2323 /* Return nonzero if evaluating rtx X might cause a trap. */
2324
2325 int
2326 may_trap_p (const_rtx x)
2327 {
2328 return may_trap_p_1 (x, 0);
2329 }
2330
2331 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2332 is moved from its current location by some optimization. */
2333
2334 int
2335 may_trap_after_code_motion_p (const_rtx x)
2336 {
2337 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2338 }
2339
2340 /* Same as above, but additionally return nonzero if evaluating rtx X might
2341 cause a fault. We define a fault for the purpose of this function as a
2342 erroneous execution condition that cannot be encountered during the normal
2343 execution of a valid program; the typical example is an unaligned memory
2344 access on a strict alignment machine. The compiler guarantees that it
2345 doesn't generate code that will fault from a valid program, but this
2346 guarantee doesn't mean anything for individual instructions. Consider
2347 the following example:
2348
2349 struct S { int d; union { char *cp; int *ip; }; };
2350
2351 int foo(struct S *s)
2352 {
2353 if (s->d == 1)
2354 return *s->ip;
2355 else
2356 return *s->cp;
2357 }
2358
2359 on a strict alignment machine. In a valid program, foo will never be
2360 invoked on a structure for which d is equal to 1 and the underlying
2361 unique field of the union not aligned on a 4-byte boundary, but the
2362 expression *s->ip might cause a fault if considered individually.
2363
2364 At the RTL level, potentially problematic expressions will almost always
2365 verify may_trap_p; for example, the above dereference can be emitted as
2366 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2367 However, suppose that foo is inlined in a caller that causes s->cp to
2368 point to a local character variable and guarantees that s->d is not set
2369 to 1; foo may have been effectively translated into pseudo-RTL as:
2370
2371 if ((reg:SI) == 1)
2372 (set (reg:SI) (mem:SI (%fp - 7)))
2373 else
2374 (set (reg:QI) (mem:QI (%fp - 7)))
2375
2376 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2377 memory reference to a stack slot, but it will certainly cause a fault
2378 on a strict alignment machine. */
2379
2380 int
2381 may_trap_or_fault_p (const_rtx x)
2382 {
2383 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2384 }
2385 \f
2386 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2387 i.e., an inequality. */
2388
2389 int
2390 inequality_comparisons_p (const_rtx x)
2391 {
2392 const char *fmt;
2393 int len, i;
2394 const enum rtx_code code = GET_CODE (x);
2395
2396 switch (code)
2397 {
2398 case REG:
2399 case SCRATCH:
2400 case PC:
2401 case CC0:
2402 case CONST_INT:
2403 case CONST_DOUBLE:
2404 case CONST_FIXED:
2405 case CONST_VECTOR:
2406 case CONST:
2407 case LABEL_REF:
2408 case SYMBOL_REF:
2409 return 0;
2410
2411 case LT:
2412 case LTU:
2413 case GT:
2414 case GTU:
2415 case LE:
2416 case LEU:
2417 case GE:
2418 case GEU:
2419 return 1;
2420
2421 default:
2422 break;
2423 }
2424
2425 len = GET_RTX_LENGTH (code);
2426 fmt = GET_RTX_FORMAT (code);
2427
2428 for (i = 0; i < len; i++)
2429 {
2430 if (fmt[i] == 'e')
2431 {
2432 if (inequality_comparisons_p (XEXP (x, i)))
2433 return 1;
2434 }
2435 else if (fmt[i] == 'E')
2436 {
2437 int j;
2438 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2439 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2440 return 1;
2441 }
2442 }
2443
2444 return 0;
2445 }
2446 \f
2447 /* Replace any occurrence of FROM in X with TO. The function does
2448 not enter into CONST_DOUBLE for the replace.
2449
2450 Note that copying is not done so X must not be shared unless all copies
2451 are to be modified. */
2452
2453 rtx
2454 replace_rtx (rtx x, rtx from, rtx to)
2455 {
2456 int i, j;
2457 const char *fmt;
2458
2459 /* The following prevents loops occurrence when we change MEM in
2460 CONST_DOUBLE onto the same CONST_DOUBLE. */
2461 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2462 return x;
2463
2464 if (x == from)
2465 return to;
2466
2467 /* Allow this function to make replacements in EXPR_LISTs. */
2468 if (x == 0)
2469 return 0;
2470
2471 if (GET_CODE (x) == SUBREG)
2472 {
2473 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2474
2475 if (GET_CODE (new_rtx) == CONST_INT)
2476 {
2477 x = simplify_subreg (GET_MODE (x), new_rtx,
2478 GET_MODE (SUBREG_REG (x)),
2479 SUBREG_BYTE (x));
2480 gcc_assert (x);
2481 }
2482 else
2483 SUBREG_REG (x) = new_rtx;
2484
2485 return x;
2486 }
2487 else if (GET_CODE (x) == ZERO_EXTEND)
2488 {
2489 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2490
2491 if (GET_CODE (new_rtx) == CONST_INT)
2492 {
2493 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2494 new_rtx, GET_MODE (XEXP (x, 0)));
2495 gcc_assert (x);
2496 }
2497 else
2498 XEXP (x, 0) = new_rtx;
2499
2500 return x;
2501 }
2502
2503 fmt = GET_RTX_FORMAT (GET_CODE (x));
2504 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2505 {
2506 if (fmt[i] == 'e')
2507 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2508 else if (fmt[i] == 'E')
2509 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2510 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2511 }
2512
2513 return x;
2514 }
2515 \f
2516 /* Replace occurrences of the old label in *X with the new one.
2517 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2518
2519 int
2520 replace_label (rtx *x, void *data)
2521 {
2522 rtx l = *x;
2523 rtx old_label = ((replace_label_data *) data)->r1;
2524 rtx new_label = ((replace_label_data *) data)->r2;
2525 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2526
2527 if (l == NULL_RTX)
2528 return 0;
2529
2530 if (GET_CODE (l) == SYMBOL_REF
2531 && CONSTANT_POOL_ADDRESS_P (l))
2532 {
2533 rtx c = get_pool_constant (l);
2534 if (rtx_referenced_p (old_label, c))
2535 {
2536 rtx new_c, new_l;
2537 replace_label_data *d = (replace_label_data *) data;
2538
2539 /* Create a copy of constant C; replace the label inside
2540 but do not update LABEL_NUSES because uses in constant pool
2541 are not counted. */
2542 new_c = copy_rtx (c);
2543 d->update_label_nuses = false;
2544 for_each_rtx (&new_c, replace_label, data);
2545 d->update_label_nuses = update_label_nuses;
2546
2547 /* Add the new constant NEW_C to constant pool and replace
2548 the old reference to constant by new reference. */
2549 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2550 *x = replace_rtx (l, l, new_l);
2551 }
2552 return 0;
2553 }
2554
2555 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2556 field. This is not handled by for_each_rtx because it doesn't
2557 handle unprinted ('0') fields. */
2558 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2559 JUMP_LABEL (l) = new_label;
2560
2561 if ((GET_CODE (l) == LABEL_REF
2562 || GET_CODE (l) == INSN_LIST)
2563 && XEXP (l, 0) == old_label)
2564 {
2565 XEXP (l, 0) = new_label;
2566 if (update_label_nuses)
2567 {
2568 ++LABEL_NUSES (new_label);
2569 --LABEL_NUSES (old_label);
2570 }
2571 return 0;
2572 }
2573
2574 return 0;
2575 }
2576
2577 /* When *BODY is equal to X or X is directly referenced by *BODY
2578 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2579 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2580
2581 static int
2582 rtx_referenced_p_1 (rtx *body, void *x)
2583 {
2584 rtx y = (rtx) x;
2585
2586 if (*body == NULL_RTX)
2587 return y == NULL_RTX;
2588
2589 /* Return true if a label_ref *BODY refers to label Y. */
2590 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2591 return XEXP (*body, 0) == y;
2592
2593 /* If *BODY is a reference to pool constant traverse the constant. */
2594 if (GET_CODE (*body) == SYMBOL_REF
2595 && CONSTANT_POOL_ADDRESS_P (*body))
2596 return rtx_referenced_p (y, get_pool_constant (*body));
2597
2598 /* By default, compare the RTL expressions. */
2599 return rtx_equal_p (*body, y);
2600 }
2601
2602 /* Return true if X is referenced in BODY. */
2603
2604 int
2605 rtx_referenced_p (rtx x, rtx body)
2606 {
2607 return for_each_rtx (&body, rtx_referenced_p_1, x);
2608 }
2609
2610 /* If INSN is a tablejump return true and store the label (before jump table) to
2611 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2612
2613 bool
2614 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2615 {
2616 rtx label, table;
2617
2618 if (JUMP_P (insn)
2619 && (label = JUMP_LABEL (insn)) != NULL_RTX
2620 && (table = next_active_insn (label)) != NULL_RTX
2621 && JUMP_P (table)
2622 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2623 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2624 {
2625 if (labelp)
2626 *labelp = label;
2627 if (tablep)
2628 *tablep = table;
2629 return true;
2630 }
2631 return false;
2632 }
2633
2634 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2635 constant that is not in the constant pool and not in the condition
2636 of an IF_THEN_ELSE. */
2637
2638 static int
2639 computed_jump_p_1 (const_rtx x)
2640 {
2641 const enum rtx_code code = GET_CODE (x);
2642 int i, j;
2643 const char *fmt;
2644
2645 switch (code)
2646 {
2647 case LABEL_REF:
2648 case PC:
2649 return 0;
2650
2651 case CONST:
2652 case CONST_INT:
2653 case CONST_DOUBLE:
2654 case CONST_FIXED:
2655 case CONST_VECTOR:
2656 case SYMBOL_REF:
2657 case REG:
2658 return 1;
2659
2660 case MEM:
2661 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2662 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2663
2664 case IF_THEN_ELSE:
2665 return (computed_jump_p_1 (XEXP (x, 1))
2666 || computed_jump_p_1 (XEXP (x, 2)));
2667
2668 default:
2669 break;
2670 }
2671
2672 fmt = GET_RTX_FORMAT (code);
2673 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2674 {
2675 if (fmt[i] == 'e'
2676 && computed_jump_p_1 (XEXP (x, i)))
2677 return 1;
2678
2679 else if (fmt[i] == 'E')
2680 for (j = 0; j < XVECLEN (x, i); j++)
2681 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2682 return 1;
2683 }
2684
2685 return 0;
2686 }
2687
2688 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2689
2690 Tablejumps and casesi insns are not considered indirect jumps;
2691 we can recognize them by a (use (label_ref)). */
2692
2693 int
2694 computed_jump_p (const_rtx insn)
2695 {
2696 int i;
2697 if (JUMP_P (insn))
2698 {
2699 rtx pat = PATTERN (insn);
2700
2701 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2702 if (JUMP_LABEL (insn) != NULL)
2703 return 0;
2704
2705 if (GET_CODE (pat) == PARALLEL)
2706 {
2707 int len = XVECLEN (pat, 0);
2708 int has_use_labelref = 0;
2709
2710 for (i = len - 1; i >= 0; i--)
2711 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2712 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2713 == LABEL_REF))
2714 has_use_labelref = 1;
2715
2716 if (! has_use_labelref)
2717 for (i = len - 1; i >= 0; i--)
2718 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2719 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2720 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2721 return 1;
2722 }
2723 else if (GET_CODE (pat) == SET
2724 && SET_DEST (pat) == pc_rtx
2725 && computed_jump_p_1 (SET_SRC (pat)))
2726 return 1;
2727 }
2728 return 0;
2729 }
2730
2731 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2732 calls. Processes the subexpressions of EXP and passes them to F. */
2733 static int
2734 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2735 {
2736 int result, i, j;
2737 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2738 rtx *x;
2739
2740 for (; format[n] != '\0'; n++)
2741 {
2742 switch (format[n])
2743 {
2744 case 'e':
2745 /* Call F on X. */
2746 x = &XEXP (exp, n);
2747 result = (*f) (x, data);
2748 if (result == -1)
2749 /* Do not traverse sub-expressions. */
2750 continue;
2751 else if (result != 0)
2752 /* Stop the traversal. */
2753 return result;
2754
2755 if (*x == NULL_RTX)
2756 /* There are no sub-expressions. */
2757 continue;
2758
2759 i = non_rtx_starting_operands[GET_CODE (*x)];
2760 if (i >= 0)
2761 {
2762 result = for_each_rtx_1 (*x, i, f, data);
2763 if (result != 0)
2764 return result;
2765 }
2766 break;
2767
2768 case 'V':
2769 case 'E':
2770 if (XVEC (exp, n) == 0)
2771 continue;
2772 for (j = 0; j < XVECLEN (exp, n); ++j)
2773 {
2774 /* Call F on X. */
2775 x = &XVECEXP (exp, n, j);
2776 result = (*f) (x, data);
2777 if (result == -1)
2778 /* Do not traverse sub-expressions. */
2779 continue;
2780 else if (result != 0)
2781 /* Stop the traversal. */
2782 return result;
2783
2784 if (*x == NULL_RTX)
2785 /* There are no sub-expressions. */
2786 continue;
2787
2788 i = non_rtx_starting_operands[GET_CODE (*x)];
2789 if (i >= 0)
2790 {
2791 result = for_each_rtx_1 (*x, i, f, data);
2792 if (result != 0)
2793 return result;
2794 }
2795 }
2796 break;
2797
2798 default:
2799 /* Nothing to do. */
2800 break;
2801 }
2802 }
2803
2804 return 0;
2805 }
2806
2807 /* Traverse X via depth-first search, calling F for each
2808 sub-expression (including X itself). F is also passed the DATA.
2809 If F returns -1, do not traverse sub-expressions, but continue
2810 traversing the rest of the tree. If F ever returns any other
2811 nonzero value, stop the traversal, and return the value returned
2812 by F. Otherwise, return 0. This function does not traverse inside
2813 tree structure that contains RTX_EXPRs, or into sub-expressions
2814 whose format code is `0' since it is not known whether or not those
2815 codes are actually RTL.
2816
2817 This routine is very general, and could (should?) be used to
2818 implement many of the other routines in this file. */
2819
2820 int
2821 for_each_rtx (rtx *x, rtx_function f, void *data)
2822 {
2823 int result;
2824 int i;
2825
2826 /* Call F on X. */
2827 result = (*f) (x, data);
2828 if (result == -1)
2829 /* Do not traverse sub-expressions. */
2830 return 0;
2831 else if (result != 0)
2832 /* Stop the traversal. */
2833 return result;
2834
2835 if (*x == NULL_RTX)
2836 /* There are no sub-expressions. */
2837 return 0;
2838
2839 i = non_rtx_starting_operands[GET_CODE (*x)];
2840 if (i < 0)
2841 return 0;
2842
2843 return for_each_rtx_1 (*x, i, f, data);
2844 }
2845
2846
2847 /* Searches X for any reference to REGNO, returning the rtx of the
2848 reference found if any. Otherwise, returns NULL_RTX. */
2849
2850 rtx
2851 regno_use_in (unsigned int regno, rtx x)
2852 {
2853 const char *fmt;
2854 int i, j;
2855 rtx tem;
2856
2857 if (REG_P (x) && REGNO (x) == regno)
2858 return x;
2859
2860 fmt = GET_RTX_FORMAT (GET_CODE (x));
2861 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2862 {
2863 if (fmt[i] == 'e')
2864 {
2865 if ((tem = regno_use_in (regno, XEXP (x, i))))
2866 return tem;
2867 }
2868 else if (fmt[i] == 'E')
2869 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2870 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2871 return tem;
2872 }
2873
2874 return NULL_RTX;
2875 }
2876
2877 /* Return a value indicating whether OP, an operand of a commutative
2878 operation, is preferred as the first or second operand. The higher
2879 the value, the stronger the preference for being the first operand.
2880 We use negative values to indicate a preference for the first operand
2881 and positive values for the second operand. */
2882
2883 int
2884 commutative_operand_precedence (rtx op)
2885 {
2886 enum rtx_code code = GET_CODE (op);
2887
2888 /* Constants always come the second operand. Prefer "nice" constants. */
2889 if (code == CONST_INT)
2890 return -8;
2891 if (code == CONST_DOUBLE)
2892 return -7;
2893 if (code == CONST_FIXED)
2894 return -7;
2895 op = avoid_constant_pool_reference (op);
2896 code = GET_CODE (op);
2897
2898 switch (GET_RTX_CLASS (code))
2899 {
2900 case RTX_CONST_OBJ:
2901 if (code == CONST_INT)
2902 return -6;
2903 if (code == CONST_DOUBLE)
2904 return -5;
2905 if (code == CONST_FIXED)
2906 return -5;
2907 return -4;
2908
2909 case RTX_EXTRA:
2910 /* SUBREGs of objects should come second. */
2911 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2912 return -3;
2913 return 0;
2914
2915 case RTX_OBJ:
2916 /* Complex expressions should be the first, so decrease priority
2917 of objects. Prefer pointer objects over non pointer objects. */
2918 if ((REG_P (op) && REG_POINTER (op))
2919 || (MEM_P (op) && MEM_POINTER (op)))
2920 return -1;
2921 return -2;
2922
2923 case RTX_COMM_ARITH:
2924 /* Prefer operands that are themselves commutative to be first.
2925 This helps to make things linear. In particular,
2926 (and (and (reg) (reg)) (not (reg))) is canonical. */
2927 return 4;
2928
2929 case RTX_BIN_ARITH:
2930 /* If only one operand is a binary expression, it will be the first
2931 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2932 is canonical, although it will usually be further simplified. */
2933 return 2;
2934
2935 case RTX_UNARY:
2936 /* Then prefer NEG and NOT. */
2937 if (code == NEG || code == NOT)
2938 return 1;
2939
2940 default:
2941 return 0;
2942 }
2943 }
2944
2945 /* Return 1 iff it is necessary to swap operands of commutative operation
2946 in order to canonicalize expression. */
2947
2948 bool
2949 swap_commutative_operands_p (rtx x, rtx y)
2950 {
2951 return (commutative_operand_precedence (x)
2952 < commutative_operand_precedence (y));
2953 }
2954
2955 /* Return 1 if X is an autoincrement side effect and the register is
2956 not the stack pointer. */
2957 int
2958 auto_inc_p (const_rtx x)
2959 {
2960 switch (GET_CODE (x))
2961 {
2962 case PRE_INC:
2963 case POST_INC:
2964 case PRE_DEC:
2965 case POST_DEC:
2966 case PRE_MODIFY:
2967 case POST_MODIFY:
2968 /* There are no REG_INC notes for SP. */
2969 if (XEXP (x, 0) != stack_pointer_rtx)
2970 return 1;
2971 default:
2972 break;
2973 }
2974 return 0;
2975 }
2976
2977 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2978 int
2979 loc_mentioned_in_p (rtx *loc, const_rtx in)
2980 {
2981 enum rtx_code code;
2982 const char *fmt;
2983 int i, j;
2984
2985 if (!in)
2986 return 0;
2987
2988 code = GET_CODE (in);
2989 fmt = GET_RTX_FORMAT (code);
2990 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2991 {
2992 if (fmt[i] == 'e')
2993 {
2994 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
2995 return 1;
2996 }
2997 else if (fmt[i] == 'E')
2998 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2999 if (loc == &XVECEXP (in, i, j)
3000 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3001 return 1;
3002 }
3003 return 0;
3004 }
3005
3006 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3007 and SUBREG_BYTE, return the bit offset where the subreg begins
3008 (counting from the least significant bit of the operand). */
3009
3010 unsigned int
3011 subreg_lsb_1 (enum machine_mode outer_mode,
3012 enum machine_mode inner_mode,
3013 unsigned int subreg_byte)
3014 {
3015 unsigned int bitpos;
3016 unsigned int byte;
3017 unsigned int word;
3018
3019 /* A paradoxical subreg begins at bit position 0. */
3020 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3021 return 0;
3022
3023 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3024 /* If the subreg crosses a word boundary ensure that
3025 it also begins and ends on a word boundary. */
3026 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3027 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3028 && (subreg_byte % UNITS_PER_WORD
3029 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3030
3031 if (WORDS_BIG_ENDIAN)
3032 word = (GET_MODE_SIZE (inner_mode)
3033 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3034 else
3035 word = subreg_byte / UNITS_PER_WORD;
3036 bitpos = word * BITS_PER_WORD;
3037
3038 if (BYTES_BIG_ENDIAN)
3039 byte = (GET_MODE_SIZE (inner_mode)
3040 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3041 else
3042 byte = subreg_byte % UNITS_PER_WORD;
3043 bitpos += byte * BITS_PER_UNIT;
3044
3045 return bitpos;
3046 }
3047
3048 /* Given a subreg X, return the bit offset where the subreg begins
3049 (counting from the least significant bit of the reg). */
3050
3051 unsigned int
3052 subreg_lsb (const_rtx x)
3053 {
3054 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3055 SUBREG_BYTE (x));
3056 }
3057
3058 /* Fill in information about a subreg of a hard register.
3059 xregno - A regno of an inner hard subreg_reg (or what will become one).
3060 xmode - The mode of xregno.
3061 offset - The byte offset.
3062 ymode - The mode of a top level SUBREG (or what may become one).
3063 info - Pointer to structure to fill in. */
3064 static void
3065 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3066 unsigned int offset, enum machine_mode ymode,
3067 struct subreg_info *info)
3068 {
3069 int nregs_xmode, nregs_ymode;
3070 int mode_multiple, nregs_multiple;
3071 int offset_adj, y_offset, y_offset_adj;
3072 int regsize_xmode, regsize_ymode;
3073 bool rknown;
3074
3075 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3076
3077 rknown = false;
3078
3079 /* If there are holes in a non-scalar mode in registers, we expect
3080 that it is made up of its units concatenated together. */
3081 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3082 {
3083 enum machine_mode xmode_unit;
3084
3085 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3086 if (GET_MODE_INNER (xmode) == VOIDmode)
3087 xmode_unit = xmode;
3088 else
3089 xmode_unit = GET_MODE_INNER (xmode);
3090 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3091 gcc_assert (nregs_xmode
3092 == (GET_MODE_NUNITS (xmode)
3093 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3094 gcc_assert (hard_regno_nregs[xregno][xmode]
3095 == (hard_regno_nregs[xregno][xmode_unit]
3096 * GET_MODE_NUNITS (xmode)));
3097
3098 /* You can only ask for a SUBREG of a value with holes in the middle
3099 if you don't cross the holes. (Such a SUBREG should be done by
3100 picking a different register class, or doing it in memory if
3101 necessary.) An example of a value with holes is XCmode on 32-bit
3102 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3103 3 for each part, but in memory it's two 128-bit parts.
3104 Padding is assumed to be at the end (not necessarily the 'high part')
3105 of each unit. */
3106 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3107 < GET_MODE_NUNITS (xmode))
3108 && (offset / GET_MODE_SIZE (xmode_unit)
3109 != ((offset + GET_MODE_SIZE (ymode) - 1)
3110 / GET_MODE_SIZE (xmode_unit))))
3111 {
3112 info->representable_p = false;
3113 rknown = true;
3114 }
3115 }
3116 else
3117 nregs_xmode = hard_regno_nregs[xregno][xmode];
3118
3119 nregs_ymode = hard_regno_nregs[xregno][ymode];
3120
3121 /* Paradoxical subregs are otherwise valid. */
3122 if (!rknown
3123 && offset == 0
3124 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3125 {
3126 info->representable_p = true;
3127 /* If this is a big endian paradoxical subreg, which uses more
3128 actual hard registers than the original register, we must
3129 return a negative offset so that we find the proper highpart
3130 of the register. */
3131 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3132 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3133 info->offset = nregs_xmode - nregs_ymode;
3134 else
3135 info->offset = 0;
3136 info->nregs = nregs_ymode;
3137 return;
3138 }
3139
3140 /* If registers store different numbers of bits in the different
3141 modes, we cannot generally form this subreg. */
3142 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3143 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3144 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3145 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3146 {
3147 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3148 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3149 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3150 {
3151 info->representable_p = false;
3152 info->nregs
3153 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3154 info->offset = offset / regsize_xmode;
3155 return;
3156 }
3157 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3158 {
3159 info->representable_p = false;
3160 info->nregs
3161 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3162 info->offset = offset / regsize_xmode;
3163 return;
3164 }
3165 }
3166
3167 /* Lowpart subregs are otherwise valid. */
3168 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3169 {
3170 info->representable_p = true;
3171 rknown = true;
3172
3173 if (offset == 0 || nregs_xmode == nregs_ymode)
3174 {
3175 info->offset = 0;
3176 info->nregs = nregs_ymode;
3177 return;
3178 }
3179 }
3180
3181 /* This should always pass, otherwise we don't know how to verify
3182 the constraint. These conditions may be relaxed but
3183 subreg_regno_offset would need to be redesigned. */
3184 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3185 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3186
3187 /* The XMODE value can be seen as a vector of NREGS_XMODE
3188 values. The subreg must represent a lowpart of given field.
3189 Compute what field it is. */
3190 offset_adj = offset;
3191 offset_adj -= subreg_lowpart_offset (ymode,
3192 mode_for_size (GET_MODE_BITSIZE (xmode)
3193 / nregs_xmode,
3194 MODE_INT, 0));
3195
3196 /* Size of ymode must not be greater than the size of xmode. */
3197 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3198 gcc_assert (mode_multiple != 0);
3199
3200 y_offset = offset / GET_MODE_SIZE (ymode);
3201 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3202 nregs_multiple = nregs_xmode / nregs_ymode;
3203
3204 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3205 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3206
3207 if (!rknown)
3208 {
3209 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3210 rknown = true;
3211 }
3212 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3213 info->nregs = nregs_ymode;
3214 }
3215
3216 /* This function returns the regno offset of a subreg expression.
3217 xregno - A regno of an inner hard subreg_reg (or what will become one).
3218 xmode - The mode of xregno.
3219 offset - The byte offset.
3220 ymode - The mode of a top level SUBREG (or what may become one).
3221 RETURN - The regno offset which would be used. */
3222 unsigned int
3223 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3224 unsigned int offset, enum machine_mode ymode)
3225 {
3226 struct subreg_info info;
3227 subreg_get_info (xregno, xmode, offset, ymode, &info);
3228 return info.offset;
3229 }
3230
3231 /* This function returns true when the offset is representable via
3232 subreg_offset in the given regno.
3233 xregno - A regno of an inner hard subreg_reg (or what will become one).
3234 xmode - The mode of xregno.
3235 offset - The byte offset.
3236 ymode - The mode of a top level SUBREG (or what may become one).
3237 RETURN - Whether the offset is representable. */
3238 bool
3239 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3240 unsigned int offset, enum machine_mode ymode)
3241 {
3242 struct subreg_info info;
3243 subreg_get_info (xregno, xmode, offset, ymode, &info);
3244 return info.representable_p;
3245 }
3246
3247 /* Return the final regno that a subreg expression refers to. */
3248 unsigned int
3249 subreg_regno (const_rtx x)
3250 {
3251 unsigned int ret;
3252 rtx subreg = SUBREG_REG (x);
3253 int regno = REGNO (subreg);
3254
3255 ret = regno + subreg_regno_offset (regno,
3256 GET_MODE (subreg),
3257 SUBREG_BYTE (x),
3258 GET_MODE (x));
3259 return ret;
3260
3261 }
3262
3263 /* Return the number of registers that a subreg expression refers
3264 to. */
3265 unsigned int
3266 subreg_nregs (const_rtx x)
3267 {
3268 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3269 }
3270
3271 /* Return the number of registers that a subreg REG with REGNO
3272 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3273 changed so that the regno can be passed in. */
3274
3275 unsigned int
3276 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3277 {
3278 struct subreg_info info;
3279 rtx subreg = SUBREG_REG (x);
3280
3281 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3282 &info);
3283 return info.nregs;
3284 }
3285
3286
3287 struct parms_set_data
3288 {
3289 int nregs;
3290 HARD_REG_SET regs;
3291 };
3292
3293 /* Helper function for noticing stores to parameter registers. */
3294 static void
3295 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3296 {
3297 struct parms_set_data *const d = (struct parms_set_data *) data;
3298 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3299 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3300 {
3301 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3302 d->nregs--;
3303 }
3304 }
3305
3306 /* Look backward for first parameter to be loaded.
3307 Note that loads of all parameters will not necessarily be
3308 found if CSE has eliminated some of them (e.g., an argument
3309 to the outer function is passed down as a parameter).
3310 Do not skip BOUNDARY. */
3311 rtx
3312 find_first_parameter_load (rtx call_insn, rtx boundary)
3313 {
3314 struct parms_set_data parm;
3315 rtx p, before, first_set;
3316
3317 /* Since different machines initialize their parameter registers
3318 in different orders, assume nothing. Collect the set of all
3319 parameter registers. */
3320 CLEAR_HARD_REG_SET (parm.regs);
3321 parm.nregs = 0;
3322 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3323 if (GET_CODE (XEXP (p, 0)) == USE
3324 && REG_P (XEXP (XEXP (p, 0), 0)))
3325 {
3326 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3327
3328 /* We only care about registers which can hold function
3329 arguments. */
3330 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3331 continue;
3332
3333 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3334 parm.nregs++;
3335 }
3336 before = call_insn;
3337 first_set = call_insn;
3338
3339 /* Search backward for the first set of a register in this set. */
3340 while (parm.nregs && before != boundary)
3341 {
3342 before = PREV_INSN (before);
3343
3344 /* It is possible that some loads got CSEed from one call to
3345 another. Stop in that case. */
3346 if (CALL_P (before))
3347 break;
3348
3349 /* Our caller needs either ensure that we will find all sets
3350 (in case code has not been optimized yet), or take care
3351 for possible labels in a way by setting boundary to preceding
3352 CODE_LABEL. */
3353 if (LABEL_P (before))
3354 {
3355 gcc_assert (before == boundary);
3356 break;
3357 }
3358
3359 if (INSN_P (before))
3360 {
3361 int nregs_old = parm.nregs;
3362 note_stores (PATTERN (before), parms_set, &parm);
3363 /* If we found something that did not set a parameter reg,
3364 we're done. Do not keep going, as that might result
3365 in hoisting an insn before the setting of a pseudo
3366 that is used by the hoisted insn. */
3367 if (nregs_old != parm.nregs)
3368 first_set = before;
3369 else
3370 break;
3371 }
3372 }
3373 return first_set;
3374 }
3375
3376 /* Return true if we should avoid inserting code between INSN and preceding
3377 call instruction. */
3378
3379 bool
3380 keep_with_call_p (const_rtx insn)
3381 {
3382 rtx set;
3383
3384 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3385 {
3386 if (REG_P (SET_DEST (set))
3387 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3388 && fixed_regs[REGNO (SET_DEST (set))]
3389 && general_operand (SET_SRC (set), VOIDmode))
3390 return true;
3391 if (REG_P (SET_SRC (set))
3392 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3393 && REG_P (SET_DEST (set))
3394 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3395 return true;
3396 /* There may be a stack pop just after the call and before the store
3397 of the return register. Search for the actual store when deciding
3398 if we can break or not. */
3399 if (SET_DEST (set) == stack_pointer_rtx)
3400 {
3401 /* This CONST_CAST is okay because next_nonnote_insn just
3402 returns it's argument and we assign it to a const_rtx
3403 variable. */
3404 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3405 if (i2 && keep_with_call_p (i2))
3406 return true;
3407 }
3408 }
3409 return false;
3410 }
3411
3412 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3413 to non-complex jumps. That is, direct unconditional, conditional,
3414 and tablejumps, but not computed jumps or returns. It also does
3415 not apply to the fallthru case of a conditional jump. */
3416
3417 bool
3418 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3419 {
3420 rtx tmp = JUMP_LABEL (jump_insn);
3421
3422 if (label == tmp)
3423 return true;
3424
3425 if (tablejump_p (jump_insn, NULL, &tmp))
3426 {
3427 rtvec vec = XVEC (PATTERN (tmp),
3428 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3429 int i, veclen = GET_NUM_ELEM (vec);
3430
3431 for (i = 0; i < veclen; ++i)
3432 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3433 return true;
3434 }
3435
3436 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3437 return true;
3438
3439 return false;
3440 }
3441
3442 \f
3443 /* Return an estimate of the cost of computing rtx X.
3444 One use is in cse, to decide which expression to keep in the hash table.
3445 Another is in rtl generation, to pick the cheapest way to multiply.
3446 Other uses like the latter are expected in the future. */
3447
3448 int
3449 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3450 {
3451 int i, j;
3452 enum rtx_code code;
3453 const char *fmt;
3454 int total;
3455
3456 if (x == 0)
3457 return 0;
3458
3459 /* Compute the default costs of certain things.
3460 Note that targetm.rtx_costs can override the defaults. */
3461
3462 code = GET_CODE (x);
3463 switch (code)
3464 {
3465 case MULT:
3466 total = COSTS_N_INSNS (5);
3467 break;
3468 case DIV:
3469 case UDIV:
3470 case MOD:
3471 case UMOD:
3472 total = COSTS_N_INSNS (7);
3473 break;
3474 case USE:
3475 /* Used in combine.c as a marker. */
3476 total = 0;
3477 break;
3478 default:
3479 total = COSTS_N_INSNS (1);
3480 }
3481
3482 switch (code)
3483 {
3484 case REG:
3485 return 0;
3486
3487 case SUBREG:
3488 total = 0;
3489 /* If we can't tie these modes, make this expensive. The larger
3490 the mode, the more expensive it is. */
3491 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3492 return COSTS_N_INSNS (2
3493 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3494 break;
3495
3496 default:
3497 if (targetm.rtx_costs (x, code, outer_code, &total))
3498 return total;
3499 break;
3500 }
3501
3502 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3503 which is already in total. */
3504
3505 fmt = GET_RTX_FORMAT (code);
3506 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3507 if (fmt[i] == 'e')
3508 total += rtx_cost (XEXP (x, i), code);
3509 else if (fmt[i] == 'E')
3510 for (j = 0; j < XVECLEN (x, i); j++)
3511 total += rtx_cost (XVECEXP (x, i, j), code);
3512
3513 return total;
3514 }
3515 \f
3516 /* Return cost of address expression X.
3517 Expect that X is properly formed address reference. */
3518
3519 int
3520 address_cost (rtx x, enum machine_mode mode)
3521 {
3522 /* We may be asked for cost of various unusual addresses, such as operands
3523 of push instruction. It is not worthwhile to complicate writing
3524 of the target hook by such cases. */
3525
3526 if (!memory_address_p (mode, x))
3527 return 1000;
3528
3529 return targetm.address_cost (x);
3530 }
3531
3532 /* If the target doesn't override, compute the cost as with arithmetic. */
3533
3534 int
3535 default_address_cost (rtx x)
3536 {
3537 return rtx_cost (x, MEM);
3538 }
3539 \f
3540
3541 unsigned HOST_WIDE_INT
3542 nonzero_bits (const_rtx x, enum machine_mode mode)
3543 {
3544 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3545 }
3546
3547 unsigned int
3548 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3549 {
3550 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3551 }
3552
3553 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3554 It avoids exponential behavior in nonzero_bits1 when X has
3555 identical subexpressions on the first or the second level. */
3556
3557 static unsigned HOST_WIDE_INT
3558 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3559 enum machine_mode known_mode,
3560 unsigned HOST_WIDE_INT known_ret)
3561 {
3562 if (x == known_x && mode == known_mode)
3563 return known_ret;
3564
3565 /* Try to find identical subexpressions. If found call
3566 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3567 precomputed value for the subexpression as KNOWN_RET. */
3568
3569 if (ARITHMETIC_P (x))
3570 {
3571 rtx x0 = XEXP (x, 0);
3572 rtx x1 = XEXP (x, 1);
3573
3574 /* Check the first level. */
3575 if (x0 == x1)
3576 return nonzero_bits1 (x, mode, x0, mode,
3577 cached_nonzero_bits (x0, mode, known_x,
3578 known_mode, known_ret));
3579
3580 /* Check the second level. */
3581 if (ARITHMETIC_P (x0)
3582 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3583 return nonzero_bits1 (x, mode, x1, mode,
3584 cached_nonzero_bits (x1, mode, known_x,
3585 known_mode, known_ret));
3586
3587 if (ARITHMETIC_P (x1)
3588 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3589 return nonzero_bits1 (x, mode, x0, mode,
3590 cached_nonzero_bits (x0, mode, known_x,
3591 known_mode, known_ret));
3592 }
3593
3594 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3595 }
3596
3597 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3598 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3599 is less useful. We can't allow both, because that results in exponential
3600 run time recursion. There is a nullstone testcase that triggered
3601 this. This macro avoids accidental uses of num_sign_bit_copies. */
3602 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3603
3604 /* Given an expression, X, compute which bits in X can be nonzero.
3605 We don't care about bits outside of those defined in MODE.
3606
3607 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3608 an arithmetic operation, we can do better. */
3609
3610 static unsigned HOST_WIDE_INT
3611 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3612 enum machine_mode known_mode,
3613 unsigned HOST_WIDE_INT known_ret)
3614 {
3615 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3616 unsigned HOST_WIDE_INT inner_nz;
3617 enum rtx_code code;
3618 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3619
3620 /* For floating-point values, assume all bits are needed. */
3621 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3622 return nonzero;
3623
3624 /* If X is wider than MODE, use its mode instead. */
3625 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3626 {
3627 mode = GET_MODE (x);
3628 nonzero = GET_MODE_MASK (mode);
3629 mode_width = GET_MODE_BITSIZE (mode);
3630 }
3631
3632 if (mode_width > HOST_BITS_PER_WIDE_INT)
3633 /* Our only callers in this case look for single bit values. So
3634 just return the mode mask. Those tests will then be false. */
3635 return nonzero;
3636
3637 #ifndef WORD_REGISTER_OPERATIONS
3638 /* If MODE is wider than X, but both are a single word for both the host
3639 and target machines, we can compute this from which bits of the
3640 object might be nonzero in its own mode, taking into account the fact
3641 that on many CISC machines, accessing an object in a wider mode
3642 causes the high-order bits to become undefined. So they are
3643 not known to be zero. */
3644
3645 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3646 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3647 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3648 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3649 {
3650 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3651 known_x, known_mode, known_ret);
3652 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3653 return nonzero;
3654 }
3655 #endif
3656
3657 code = GET_CODE (x);
3658 switch (code)
3659 {
3660 case REG:
3661 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3662 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3663 all the bits above ptr_mode are known to be zero. */
3664 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3665 && REG_POINTER (x))
3666 nonzero &= GET_MODE_MASK (ptr_mode);
3667 #endif
3668
3669 /* Include declared information about alignment of pointers. */
3670 /* ??? We don't properly preserve REG_POINTER changes across
3671 pointer-to-integer casts, so we can't trust it except for
3672 things that we know must be pointers. See execute/960116-1.c. */
3673 if ((x == stack_pointer_rtx
3674 || x == frame_pointer_rtx
3675 || x == arg_pointer_rtx)
3676 && REGNO_POINTER_ALIGN (REGNO (x)))
3677 {
3678 unsigned HOST_WIDE_INT alignment
3679 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3680
3681 #ifdef PUSH_ROUNDING
3682 /* If PUSH_ROUNDING is defined, it is possible for the
3683 stack to be momentarily aligned only to that amount,
3684 so we pick the least alignment. */
3685 if (x == stack_pointer_rtx && PUSH_ARGS)
3686 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3687 alignment);
3688 #endif
3689
3690 nonzero &= ~(alignment - 1);
3691 }
3692
3693 {
3694 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3695 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3696 known_mode, known_ret,
3697 &nonzero_for_hook);
3698
3699 if (new_rtx)
3700 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3701 known_mode, known_ret);
3702
3703 return nonzero_for_hook;
3704 }
3705
3706 case CONST_INT:
3707 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3708 /* If X is negative in MODE, sign-extend the value. */
3709 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3710 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3711 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3712 #endif
3713
3714 return INTVAL (x);
3715
3716 case MEM:
3717 #ifdef LOAD_EXTEND_OP
3718 /* In many, if not most, RISC machines, reading a byte from memory
3719 zeros the rest of the register. Noticing that fact saves a lot
3720 of extra zero-extends. */
3721 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3722 nonzero &= GET_MODE_MASK (GET_MODE (x));
3723 #endif
3724 break;
3725
3726 case EQ: case NE:
3727 case UNEQ: case LTGT:
3728 case GT: case GTU: case UNGT:
3729 case LT: case LTU: case UNLT:
3730 case GE: case GEU: case UNGE:
3731 case LE: case LEU: case UNLE:
3732 case UNORDERED: case ORDERED:
3733 /* If this produces an integer result, we know which bits are set.
3734 Code here used to clear bits outside the mode of X, but that is
3735 now done above. */
3736 /* Mind that MODE is the mode the caller wants to look at this
3737 operation in, and not the actual operation mode. We can wind
3738 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3739 that describes the results of a vector compare. */
3740 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3741 && mode_width <= HOST_BITS_PER_WIDE_INT)
3742 nonzero = STORE_FLAG_VALUE;
3743 break;
3744
3745 case NEG:
3746 #if 0
3747 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3748 and num_sign_bit_copies. */
3749 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3750 == GET_MODE_BITSIZE (GET_MODE (x)))
3751 nonzero = 1;
3752 #endif
3753
3754 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3755 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3756 break;
3757
3758 case ABS:
3759 #if 0
3760 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3761 and num_sign_bit_copies. */
3762 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3763 == GET_MODE_BITSIZE (GET_MODE (x)))
3764 nonzero = 1;
3765 #endif
3766 break;
3767
3768 case TRUNCATE:
3769 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3770 known_x, known_mode, known_ret)
3771 & GET_MODE_MASK (mode));
3772 break;
3773
3774 case ZERO_EXTEND:
3775 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3776 known_x, known_mode, known_ret);
3777 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3778 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3779 break;
3780
3781 case SIGN_EXTEND:
3782 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3783 Otherwise, show all the bits in the outer mode but not the inner
3784 may be nonzero. */
3785 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3786 known_x, known_mode, known_ret);
3787 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3788 {
3789 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3790 if (inner_nz
3791 & (((HOST_WIDE_INT) 1
3792 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3793 inner_nz |= (GET_MODE_MASK (mode)
3794 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3795 }
3796
3797 nonzero &= inner_nz;
3798 break;
3799
3800 case AND:
3801 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3802 known_x, known_mode, known_ret)
3803 & cached_nonzero_bits (XEXP (x, 1), mode,
3804 known_x, known_mode, known_ret);
3805 break;
3806
3807 case XOR: case IOR:
3808 case UMIN: case UMAX: case SMIN: case SMAX:
3809 {
3810 unsigned HOST_WIDE_INT nonzero0 =
3811 cached_nonzero_bits (XEXP (x, 0), mode,
3812 known_x, known_mode, known_ret);
3813
3814 /* Don't call nonzero_bits for the second time if it cannot change
3815 anything. */
3816 if ((nonzero & nonzero0) != nonzero)
3817 nonzero &= nonzero0
3818 | cached_nonzero_bits (XEXP (x, 1), mode,
3819 known_x, known_mode, known_ret);
3820 }
3821 break;
3822
3823 case PLUS: case MINUS:
3824 case MULT:
3825 case DIV: case UDIV:
3826 case MOD: case UMOD:
3827 /* We can apply the rules of arithmetic to compute the number of
3828 high- and low-order zero bits of these operations. We start by
3829 computing the width (position of the highest-order nonzero bit)
3830 and the number of low-order zero bits for each value. */
3831 {
3832 unsigned HOST_WIDE_INT nz0 =
3833 cached_nonzero_bits (XEXP (x, 0), mode,
3834 known_x, known_mode, known_ret);
3835 unsigned HOST_WIDE_INT nz1 =
3836 cached_nonzero_bits (XEXP (x, 1), mode,
3837 known_x, known_mode, known_ret);
3838 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3839 int width0 = floor_log2 (nz0) + 1;
3840 int width1 = floor_log2 (nz1) + 1;
3841 int low0 = floor_log2 (nz0 & -nz0);
3842 int low1 = floor_log2 (nz1 & -nz1);
3843 HOST_WIDE_INT op0_maybe_minusp
3844 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3845 HOST_WIDE_INT op1_maybe_minusp
3846 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3847 unsigned int result_width = mode_width;
3848 int result_low = 0;
3849
3850 switch (code)
3851 {
3852 case PLUS:
3853 result_width = MAX (width0, width1) + 1;
3854 result_low = MIN (low0, low1);
3855 break;
3856 case MINUS:
3857 result_low = MIN (low0, low1);
3858 break;
3859 case MULT:
3860 result_width = width0 + width1;
3861 result_low = low0 + low1;
3862 break;
3863 case DIV:
3864 if (width1 == 0)
3865 break;
3866 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3867 result_width = width0;
3868 break;
3869 case UDIV:
3870 if (width1 == 0)
3871 break;
3872 result_width = width0;
3873 break;
3874 case MOD:
3875 if (width1 == 0)
3876 break;
3877 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3878 result_width = MIN (width0, width1);
3879 result_low = MIN (low0, low1);
3880 break;
3881 case UMOD:
3882 if (width1 == 0)
3883 break;
3884 result_width = MIN (width0, width1);
3885 result_low = MIN (low0, low1);
3886 break;
3887 default:
3888 gcc_unreachable ();
3889 }
3890
3891 if (result_width < mode_width)
3892 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3893
3894 if (result_low > 0)
3895 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3896
3897 #ifdef POINTERS_EXTEND_UNSIGNED
3898 /* If pointers extend unsigned and this is an addition or subtraction
3899 to a pointer in Pmode, all the bits above ptr_mode are known to be
3900 zero. */
3901 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3902 && (code == PLUS || code == MINUS)
3903 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3904 nonzero &= GET_MODE_MASK (ptr_mode);
3905 #endif
3906 }
3907 break;
3908
3909 case ZERO_EXTRACT:
3910 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3911 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3912 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3913 break;
3914
3915 case SUBREG:
3916 /* If this is a SUBREG formed for a promoted variable that has
3917 been zero-extended, we know that at least the high-order bits
3918 are zero, though others might be too. */
3919
3920 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3921 nonzero = GET_MODE_MASK (GET_MODE (x))
3922 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3923 known_x, known_mode, known_ret);
3924
3925 /* If the inner mode is a single word for both the host and target
3926 machines, we can compute this from which bits of the inner
3927 object might be nonzero. */
3928 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3929 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3930 <= HOST_BITS_PER_WIDE_INT))
3931 {
3932 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3933 known_x, known_mode, known_ret);
3934
3935 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3936 /* If this is a typical RISC machine, we only have to worry
3937 about the way loads are extended. */
3938 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3939 ? (((nonzero
3940 & (((unsigned HOST_WIDE_INT) 1
3941 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3942 != 0))
3943 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3944 || !MEM_P (SUBREG_REG (x)))
3945 #endif
3946 {
3947 /* On many CISC machines, accessing an object in a wider mode
3948 causes the high-order bits to become undefined. So they are
3949 not known to be zero. */
3950 if (GET_MODE_SIZE (GET_MODE (x))
3951 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3952 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3953 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3954 }
3955 }
3956 break;
3957
3958 case ASHIFTRT:
3959 case LSHIFTRT:
3960 case ASHIFT:
3961 case ROTATE:
3962 /* The nonzero bits are in two classes: any bits within MODE
3963 that aren't in GET_MODE (x) are always significant. The rest of the
3964 nonzero bits are those that are significant in the operand of
3965 the shift when shifted the appropriate number of bits. This
3966 shows that high-order bits are cleared by the right shift and
3967 low-order bits by left shifts. */
3968 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3969 && INTVAL (XEXP (x, 1)) >= 0
3970 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3971 {
3972 enum machine_mode inner_mode = GET_MODE (x);
3973 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3974 int count = INTVAL (XEXP (x, 1));
3975 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3976 unsigned HOST_WIDE_INT op_nonzero =
3977 cached_nonzero_bits (XEXP (x, 0), mode,
3978 known_x, known_mode, known_ret);
3979 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3980 unsigned HOST_WIDE_INT outer = 0;
3981
3982 if (mode_width > width)
3983 outer = (op_nonzero & nonzero & ~mode_mask);
3984
3985 if (code == LSHIFTRT)
3986 inner >>= count;
3987 else if (code == ASHIFTRT)
3988 {
3989 inner >>= count;
3990
3991 /* If the sign bit may have been nonzero before the shift, we
3992 need to mark all the places it could have been copied to
3993 by the shift as possibly nonzero. */
3994 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3995 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3996 }
3997 else if (code == ASHIFT)
3998 inner <<= count;
3999 else
4000 inner = ((inner << (count % width)
4001 | (inner >> (width - (count % width)))) & mode_mask);
4002
4003 nonzero &= (outer | inner);
4004 }
4005 break;
4006
4007 case FFS:
4008 case POPCOUNT:
4009 /* This is at most the number of bits in the mode. */
4010 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4011 break;
4012
4013 case CLZ:
4014 /* If CLZ has a known value at zero, then the nonzero bits are
4015 that value, plus the number of bits in the mode minus one. */
4016 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4017 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4018 else
4019 nonzero = -1;
4020 break;
4021
4022 case CTZ:
4023 /* If CTZ has a known value at zero, then the nonzero bits are
4024 that value, plus the number of bits in the mode minus one. */
4025 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4026 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4027 else
4028 nonzero = -1;
4029 break;
4030
4031 case PARITY:
4032 nonzero = 1;
4033 break;
4034
4035 case IF_THEN_ELSE:
4036 {
4037 unsigned HOST_WIDE_INT nonzero_true =
4038 cached_nonzero_bits (XEXP (x, 1), mode,
4039 known_x, known_mode, known_ret);
4040
4041 /* Don't call nonzero_bits for the second time if it cannot change
4042 anything. */
4043 if ((nonzero & nonzero_true) != nonzero)
4044 nonzero &= nonzero_true
4045 | cached_nonzero_bits (XEXP (x, 2), mode,
4046 known_x, known_mode, known_ret);
4047 }
4048 break;
4049
4050 default:
4051 break;
4052 }
4053
4054 return nonzero;
4055 }
4056
4057 /* See the macro definition above. */
4058 #undef cached_num_sign_bit_copies
4059
4060 \f
4061 /* The function cached_num_sign_bit_copies is a wrapper around
4062 num_sign_bit_copies1. It avoids exponential behavior in
4063 num_sign_bit_copies1 when X has identical subexpressions on the
4064 first or the second level. */
4065
4066 static unsigned int
4067 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4068 enum machine_mode known_mode,
4069 unsigned int known_ret)
4070 {
4071 if (x == known_x && mode == known_mode)
4072 return known_ret;
4073
4074 /* Try to find identical subexpressions. If found call
4075 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4076 the precomputed value for the subexpression as KNOWN_RET. */
4077
4078 if (ARITHMETIC_P (x))
4079 {
4080 rtx x0 = XEXP (x, 0);
4081 rtx x1 = XEXP (x, 1);
4082
4083 /* Check the first level. */
4084 if (x0 == x1)
4085 return
4086 num_sign_bit_copies1 (x, mode, x0, mode,
4087 cached_num_sign_bit_copies (x0, mode, known_x,
4088 known_mode,
4089 known_ret));
4090
4091 /* Check the second level. */
4092 if (ARITHMETIC_P (x0)
4093 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4094 return
4095 num_sign_bit_copies1 (x, mode, x1, mode,
4096 cached_num_sign_bit_copies (x1, mode, known_x,
4097 known_mode,
4098 known_ret));
4099
4100 if (ARITHMETIC_P (x1)
4101 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4102 return
4103 num_sign_bit_copies1 (x, mode, x0, mode,
4104 cached_num_sign_bit_copies (x0, mode, known_x,
4105 known_mode,
4106 known_ret));
4107 }
4108
4109 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4110 }
4111
4112 /* Return the number of bits at the high-order end of X that are known to
4113 be equal to the sign bit. X will be used in mode MODE; if MODE is
4114 VOIDmode, X will be used in its own mode. The returned value will always
4115 be between 1 and the number of bits in MODE. */
4116
4117 static unsigned int
4118 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4119 enum machine_mode known_mode,
4120 unsigned int known_ret)
4121 {
4122 enum rtx_code code = GET_CODE (x);
4123 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4124 int num0, num1, result;
4125 unsigned HOST_WIDE_INT nonzero;
4126
4127 /* If we weren't given a mode, use the mode of X. If the mode is still
4128 VOIDmode, we don't know anything. Likewise if one of the modes is
4129 floating-point. */
4130
4131 if (mode == VOIDmode)
4132 mode = GET_MODE (x);
4133
4134 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4135 return 1;
4136
4137 /* For a smaller object, just ignore the high bits. */
4138 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4139 {
4140 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4141 known_x, known_mode, known_ret);
4142 return MAX (1,
4143 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4144 }
4145
4146 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4147 {
4148 #ifndef WORD_REGISTER_OPERATIONS
4149 /* If this machine does not do all register operations on the entire
4150 register and MODE is wider than the mode of X, we can say nothing
4151 at all about the high-order bits. */
4152 return 1;
4153 #else
4154 /* Likewise on machines that do, if the mode of the object is smaller
4155 than a word and loads of that size don't sign extend, we can say
4156 nothing about the high order bits. */
4157 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4158 #ifdef LOAD_EXTEND_OP
4159 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4160 #endif
4161 )
4162 return 1;
4163 #endif
4164 }
4165
4166 switch (code)
4167 {
4168 case REG:
4169
4170 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4171 /* If pointers extend signed and this is a pointer in Pmode, say that
4172 all the bits above ptr_mode are known to be sign bit copies. */
4173 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4174 && REG_POINTER (x))
4175 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4176 #endif
4177
4178 {
4179 unsigned int copies_for_hook = 1, copies = 1;
4180 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4181 known_mode, known_ret,
4182 &copies_for_hook);
4183
4184 if (new_rtx)
4185 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4186 known_mode, known_ret);
4187
4188 if (copies > 1 || copies_for_hook > 1)
4189 return MAX (copies, copies_for_hook);
4190
4191 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4192 }
4193 break;
4194
4195 case MEM:
4196 #ifdef LOAD_EXTEND_OP
4197 /* Some RISC machines sign-extend all loads of smaller than a word. */
4198 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4199 return MAX (1, ((int) bitwidth
4200 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4201 #endif
4202 break;
4203
4204 case CONST_INT:
4205 /* If the constant is negative, take its 1's complement and remask.
4206 Then see how many zero bits we have. */
4207 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4208 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4209 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4210 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4211
4212 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4213
4214 case SUBREG:
4215 /* If this is a SUBREG for a promoted object that is sign-extended
4216 and we are looking at it in a wider mode, we know that at least the
4217 high-order bits are known to be sign bit copies. */
4218
4219 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4220 {
4221 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4222 known_x, known_mode, known_ret);
4223 return MAX ((int) bitwidth
4224 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4225 num0);
4226 }
4227
4228 /* For a smaller object, just ignore the high bits. */
4229 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4230 {
4231 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4232 known_x, known_mode, known_ret);
4233 return MAX (1, (num0
4234 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4235 - bitwidth)));
4236 }
4237
4238 #ifdef WORD_REGISTER_OPERATIONS
4239 #ifdef LOAD_EXTEND_OP
4240 /* For paradoxical SUBREGs on machines where all register operations
4241 affect the entire register, just look inside. Note that we are
4242 passing MODE to the recursive call, so the number of sign bit copies
4243 will remain relative to that mode, not the inner mode. */
4244
4245 /* This works only if loads sign extend. Otherwise, if we get a
4246 reload for the inner part, it may be loaded from the stack, and
4247 then we lose all sign bit copies that existed before the store
4248 to the stack. */
4249
4250 if ((GET_MODE_SIZE (GET_MODE (x))
4251 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4252 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4253 && MEM_P (SUBREG_REG (x)))
4254 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4255 known_x, known_mode, known_ret);
4256 #endif
4257 #endif
4258 break;
4259
4260 case SIGN_EXTRACT:
4261 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4262 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4263 break;
4264
4265 case SIGN_EXTEND:
4266 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4267 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4268 known_x, known_mode, known_ret));
4269
4270 case TRUNCATE:
4271 /* For a smaller object, just ignore the high bits. */
4272 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4273 known_x, known_mode, known_ret);
4274 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4275 - bitwidth)));
4276
4277 case NOT:
4278 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4279 known_x, known_mode, known_ret);
4280
4281 case ROTATE: case ROTATERT:
4282 /* If we are rotating left by a number of bits less than the number
4283 of sign bit copies, we can just subtract that amount from the
4284 number. */
4285 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4286 && INTVAL (XEXP (x, 1)) >= 0
4287 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4288 {
4289 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
4291 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4292 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4293 }
4294 break;
4295
4296 case NEG:
4297 /* In general, this subtracts one sign bit copy. But if the value
4298 is known to be positive, the number of sign bit copies is the
4299 same as that of the input. Finally, if the input has just one bit
4300 that might be nonzero, all the bits are copies of the sign bit. */
4301 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4302 known_x, known_mode, known_ret);
4303 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4304 return num0 > 1 ? num0 - 1 : 1;
4305
4306 nonzero = nonzero_bits (XEXP (x, 0), mode);
4307 if (nonzero == 1)
4308 return bitwidth;
4309
4310 if (num0 > 1
4311 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4312 num0--;
4313
4314 return num0;
4315
4316 case IOR: case AND: case XOR:
4317 case SMIN: case SMAX: case UMIN: case UMAX:
4318 /* Logical operations will preserve the number of sign-bit copies.
4319 MIN and MAX operations always return one of the operands. */
4320 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4321 known_x, known_mode, known_ret);
4322 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4323 known_x, known_mode, known_ret);
4324
4325 /* If num1 is clearing some of the top bits then regardless of
4326 the other term, we are guaranteed to have at least that many
4327 high-order zero bits. */
4328 if (code == AND
4329 && num1 > 1
4330 && bitwidth <= HOST_BITS_PER_WIDE_INT
4331 && GET_CODE (XEXP (x, 1)) == CONST_INT
4332 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4333 return num1;
4334
4335 /* Similarly for IOR when setting high-order bits. */
4336 if (code == IOR
4337 && num1 > 1
4338 && bitwidth <= HOST_BITS_PER_WIDE_INT
4339 && GET_CODE (XEXP (x, 1)) == CONST_INT
4340 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4341 return num1;
4342
4343 return MIN (num0, num1);
4344
4345 case PLUS: case MINUS:
4346 /* For addition and subtraction, we can have a 1-bit carry. However,
4347 if we are subtracting 1 from a positive number, there will not
4348 be such a carry. Furthermore, if the positive number is known to
4349 be 0 or 1, we know the result is either -1 or 0. */
4350
4351 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4352 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4353 {
4354 nonzero = nonzero_bits (XEXP (x, 0), mode);
4355 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4356 return (nonzero == 1 || nonzero == 0 ? bitwidth
4357 : bitwidth - floor_log2 (nonzero) - 1);
4358 }
4359
4360 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4361 known_x, known_mode, known_ret);
4362 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4363 known_x, known_mode, known_ret);
4364 result = MAX (1, MIN (num0, num1) - 1);
4365
4366 #ifdef POINTERS_EXTEND_UNSIGNED
4367 /* If pointers extend signed and this is an addition or subtraction
4368 to a pointer in Pmode, all the bits above ptr_mode are known to be
4369 sign bit copies. */
4370 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4371 && (code == PLUS || code == MINUS)
4372 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4373 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4374 - GET_MODE_BITSIZE (ptr_mode) + 1),
4375 result);
4376 #endif
4377 return result;
4378
4379 case MULT:
4380 /* The number of bits of the product is the sum of the number of
4381 bits of both terms. However, unless one of the terms if known
4382 to be positive, we must allow for an additional bit since negating
4383 a negative number can remove one sign bit copy. */
4384
4385 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4386 known_x, known_mode, known_ret);
4387 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4388 known_x, known_mode, known_ret);
4389
4390 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4391 if (result > 0
4392 && (bitwidth > HOST_BITS_PER_WIDE_INT
4393 || (((nonzero_bits (XEXP (x, 0), mode)
4394 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4395 && ((nonzero_bits (XEXP (x, 1), mode)
4396 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4397 result--;
4398
4399 return MAX (1, result);
4400
4401 case UDIV:
4402 /* The result must be <= the first operand. If the first operand
4403 has the high bit set, we know nothing about the number of sign
4404 bit copies. */
4405 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4406 return 1;
4407 else if ((nonzero_bits (XEXP (x, 0), mode)
4408 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4409 return 1;
4410 else
4411 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4412 known_x, known_mode, known_ret);
4413
4414 case UMOD:
4415 /* The result must be <= the second operand. */
4416 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4417 known_x, known_mode, known_ret);
4418
4419 case DIV:
4420 /* Similar to unsigned division, except that we have to worry about
4421 the case where the divisor is negative, in which case we have
4422 to add 1. */
4423 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4424 known_x, known_mode, known_ret);
4425 if (result > 1
4426 && (bitwidth > HOST_BITS_PER_WIDE_INT
4427 || (nonzero_bits (XEXP (x, 1), mode)
4428 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4429 result--;
4430
4431 return result;
4432
4433 case MOD:
4434 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4435 known_x, known_mode, known_ret);
4436 if (result > 1
4437 && (bitwidth > HOST_BITS_PER_WIDE_INT
4438 || (nonzero_bits (XEXP (x, 1), mode)
4439 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4440 result--;
4441
4442 return result;
4443
4444 case ASHIFTRT:
4445 /* Shifts by a constant add to the number of bits equal to the
4446 sign bit. */
4447 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4448 known_x, known_mode, known_ret);
4449 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4450 && INTVAL (XEXP (x, 1)) > 0)
4451 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4452
4453 return num0;
4454
4455 case ASHIFT:
4456 /* Left shifts destroy copies. */
4457 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4458 || INTVAL (XEXP (x, 1)) < 0
4459 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4460 return 1;
4461
4462 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4463 known_x, known_mode, known_ret);
4464 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4465
4466 case IF_THEN_ELSE:
4467 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4468 known_x, known_mode, known_ret);
4469 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4470 known_x, known_mode, known_ret);
4471 return MIN (num0, num1);
4472
4473 case EQ: case NE: case GE: case GT: case LE: case LT:
4474 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4475 case GEU: case GTU: case LEU: case LTU:
4476 case UNORDERED: case ORDERED:
4477 /* If the constant is negative, take its 1's complement and remask.
4478 Then see how many zero bits we have. */
4479 nonzero = STORE_FLAG_VALUE;
4480 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4481 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4482 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4483
4484 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4485
4486 default:
4487 break;
4488 }
4489
4490 /* If we haven't been able to figure it out by one of the above rules,
4491 see if some of the high-order bits are known to be zero. If so,
4492 count those bits and return one less than that amount. If we can't
4493 safely compute the mask for this mode, always return BITWIDTH. */
4494
4495 bitwidth = GET_MODE_BITSIZE (mode);
4496 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4497 return 1;
4498
4499 nonzero = nonzero_bits (x, mode);
4500 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4501 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4502 }
4503
4504 /* Calculate the rtx_cost of a single instruction. A return value of
4505 zero indicates an instruction pattern without a known cost. */
4506
4507 int
4508 insn_rtx_cost (rtx pat)
4509 {
4510 int i, cost;
4511 rtx set;
4512
4513 /* Extract the single set rtx from the instruction pattern.
4514 We can't use single_set since we only have the pattern. */
4515 if (GET_CODE (pat) == SET)
4516 set = pat;
4517 else if (GET_CODE (pat) == PARALLEL)
4518 {
4519 set = NULL_RTX;
4520 for (i = 0; i < XVECLEN (pat, 0); i++)
4521 {
4522 rtx x = XVECEXP (pat, 0, i);
4523 if (GET_CODE (x) == SET)
4524 {
4525 if (set)
4526 return 0;
4527 set = x;
4528 }
4529 }
4530 if (!set)
4531 return 0;
4532 }
4533 else
4534 return 0;
4535
4536 cost = rtx_cost (SET_SRC (set), SET);
4537 return cost > 0 ? cost : COSTS_N_INSNS (1);
4538 }
4539
4540 /* Given an insn INSN and condition COND, return the condition in a
4541 canonical form to simplify testing by callers. Specifically:
4542
4543 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4544 (2) Both operands will be machine operands; (cc0) will have been replaced.
4545 (3) If an operand is a constant, it will be the second operand.
4546 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4547 for GE, GEU, and LEU.
4548
4549 If the condition cannot be understood, or is an inequality floating-point
4550 comparison which needs to be reversed, 0 will be returned.
4551
4552 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4553
4554 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4555 insn used in locating the condition was found. If a replacement test
4556 of the condition is desired, it should be placed in front of that
4557 insn and we will be sure that the inputs are still valid.
4558
4559 If WANT_REG is nonzero, we wish the condition to be relative to that
4560 register, if possible. Therefore, do not canonicalize the condition
4561 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4562 to be a compare to a CC mode register.
4563
4564 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4565 and at INSN. */
4566
4567 rtx
4568 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4569 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4570 {
4571 enum rtx_code code;
4572 rtx prev = insn;
4573 const_rtx set;
4574 rtx tem;
4575 rtx op0, op1;
4576 int reverse_code = 0;
4577 enum machine_mode mode;
4578 basic_block bb = BLOCK_FOR_INSN (insn);
4579
4580 code = GET_CODE (cond);
4581 mode = GET_MODE (cond);
4582 op0 = XEXP (cond, 0);
4583 op1 = XEXP (cond, 1);
4584
4585 if (reverse)
4586 code = reversed_comparison_code (cond, insn);
4587 if (code == UNKNOWN)
4588 return 0;
4589
4590 if (earliest)
4591 *earliest = insn;
4592
4593 /* If we are comparing a register with zero, see if the register is set
4594 in the previous insn to a COMPARE or a comparison operation. Perform
4595 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4596 in cse.c */
4597
4598 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4599 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4600 && op1 == CONST0_RTX (GET_MODE (op0))
4601 && op0 != want_reg)
4602 {
4603 /* Set nonzero when we find something of interest. */
4604 rtx x = 0;
4605
4606 #ifdef HAVE_cc0
4607 /* If comparison with cc0, import actual comparison from compare
4608 insn. */
4609 if (op0 == cc0_rtx)
4610 {
4611 if ((prev = prev_nonnote_insn (prev)) == 0
4612 || !NONJUMP_INSN_P (prev)
4613 || (set = single_set (prev)) == 0
4614 || SET_DEST (set) != cc0_rtx)
4615 return 0;
4616
4617 op0 = SET_SRC (set);
4618 op1 = CONST0_RTX (GET_MODE (op0));
4619 if (earliest)
4620 *earliest = prev;
4621 }
4622 #endif
4623
4624 /* If this is a COMPARE, pick up the two things being compared. */
4625 if (GET_CODE (op0) == COMPARE)
4626 {
4627 op1 = XEXP (op0, 1);
4628 op0 = XEXP (op0, 0);
4629 continue;
4630 }
4631 else if (!REG_P (op0))
4632 break;
4633
4634 /* Go back to the previous insn. Stop if it is not an INSN. We also
4635 stop if it isn't a single set or if it has a REG_INC note because
4636 we don't want to bother dealing with it. */
4637
4638 if ((prev = prev_nonnote_insn (prev)) == 0
4639 || !NONJUMP_INSN_P (prev)
4640 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4641 /* In cfglayout mode, there do not have to be labels at the
4642 beginning of a block, or jumps at the end, so the previous
4643 conditions would not stop us when we reach bb boundary. */
4644 || BLOCK_FOR_INSN (prev) != bb)
4645 break;
4646
4647 set = set_of (op0, prev);
4648
4649 if (set
4650 && (GET_CODE (set) != SET
4651 || !rtx_equal_p (SET_DEST (set), op0)))
4652 break;
4653
4654 /* If this is setting OP0, get what it sets it to if it looks
4655 relevant. */
4656 if (set)
4657 {
4658 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4659 #ifdef FLOAT_STORE_FLAG_VALUE
4660 REAL_VALUE_TYPE fsfv;
4661 #endif
4662
4663 /* ??? We may not combine comparisons done in a CCmode with
4664 comparisons not done in a CCmode. This is to aid targets
4665 like Alpha that have an IEEE compliant EQ instruction, and
4666 a non-IEEE compliant BEQ instruction. The use of CCmode is
4667 actually artificial, simply to prevent the combination, but
4668 should not affect other platforms.
4669
4670 However, we must allow VOIDmode comparisons to match either
4671 CCmode or non-CCmode comparison, because some ports have
4672 modeless comparisons inside branch patterns.
4673
4674 ??? This mode check should perhaps look more like the mode check
4675 in simplify_comparison in combine. */
4676
4677 if ((GET_CODE (SET_SRC (set)) == COMPARE
4678 || (((code == NE
4679 || (code == LT
4680 && GET_MODE_CLASS (inner_mode) == MODE_INT
4681 && (GET_MODE_BITSIZE (inner_mode)
4682 <= HOST_BITS_PER_WIDE_INT)
4683 && (STORE_FLAG_VALUE
4684 & ((HOST_WIDE_INT) 1
4685 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4686 #ifdef FLOAT_STORE_FLAG_VALUE
4687 || (code == LT
4688 && SCALAR_FLOAT_MODE_P (inner_mode)
4689 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4690 REAL_VALUE_NEGATIVE (fsfv)))
4691 #endif
4692 ))
4693 && COMPARISON_P (SET_SRC (set))))
4694 && (((GET_MODE_CLASS (mode) == MODE_CC)
4695 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4696 || mode == VOIDmode || inner_mode == VOIDmode))
4697 x = SET_SRC (set);
4698 else if (((code == EQ
4699 || (code == GE
4700 && (GET_MODE_BITSIZE (inner_mode)
4701 <= HOST_BITS_PER_WIDE_INT)
4702 && GET_MODE_CLASS (inner_mode) == MODE_INT
4703 && (STORE_FLAG_VALUE
4704 & ((HOST_WIDE_INT) 1
4705 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4706 #ifdef FLOAT_STORE_FLAG_VALUE
4707 || (code == GE
4708 && SCALAR_FLOAT_MODE_P (inner_mode)
4709 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4710 REAL_VALUE_NEGATIVE (fsfv)))
4711 #endif
4712 ))
4713 && COMPARISON_P (SET_SRC (set))
4714 && (((GET_MODE_CLASS (mode) == MODE_CC)
4715 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4716 || mode == VOIDmode || inner_mode == VOIDmode))
4717
4718 {
4719 reverse_code = 1;
4720 x = SET_SRC (set);
4721 }
4722 else
4723 break;
4724 }
4725
4726 else if (reg_set_p (op0, prev))
4727 /* If this sets OP0, but not directly, we have to give up. */
4728 break;
4729
4730 if (x)
4731 {
4732 /* If the caller is expecting the condition to be valid at INSN,
4733 make sure X doesn't change before INSN. */
4734 if (valid_at_insn_p)
4735 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4736 break;
4737 if (COMPARISON_P (x))
4738 code = GET_CODE (x);
4739 if (reverse_code)
4740 {
4741 code = reversed_comparison_code (x, prev);
4742 if (code == UNKNOWN)
4743 return 0;
4744 reverse_code = 0;
4745 }
4746
4747 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4748 if (earliest)
4749 *earliest = prev;
4750 }
4751 }
4752
4753 /* If constant is first, put it last. */
4754 if (CONSTANT_P (op0))
4755 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4756
4757 /* If OP0 is the result of a comparison, we weren't able to find what
4758 was really being compared, so fail. */
4759 if (!allow_cc_mode
4760 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4761 return 0;
4762
4763 /* Canonicalize any ordered comparison with integers involving equality
4764 if we can do computations in the relevant mode and we do not
4765 overflow. */
4766
4767 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4768 && GET_CODE (op1) == CONST_INT
4769 && GET_MODE (op0) != VOIDmode
4770 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4771 {
4772 HOST_WIDE_INT const_val = INTVAL (op1);
4773 unsigned HOST_WIDE_INT uconst_val = const_val;
4774 unsigned HOST_WIDE_INT max_val
4775 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4776
4777 switch (code)
4778 {
4779 case LE:
4780 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4781 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4782 break;
4783
4784 /* When cross-compiling, const_val might be sign-extended from
4785 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4786 case GE:
4787 if ((HOST_WIDE_INT) (const_val & max_val)
4788 != (((HOST_WIDE_INT) 1
4789 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4790 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4791 break;
4792
4793 case LEU:
4794 if (uconst_val < max_val)
4795 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4796 break;
4797
4798 case GEU:
4799 if (uconst_val != 0)
4800 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4801 break;
4802
4803 default:
4804 break;
4805 }
4806 }
4807
4808 /* Never return CC0; return zero instead. */
4809 if (CC0_P (op0))
4810 return 0;
4811
4812 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4813 }
4814
4815 /* Given a jump insn JUMP, return the condition that will cause it to branch
4816 to its JUMP_LABEL. If the condition cannot be understood, or is an
4817 inequality floating-point comparison which needs to be reversed, 0 will
4818 be returned.
4819
4820 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4821 insn used in locating the condition was found. If a replacement test
4822 of the condition is desired, it should be placed in front of that
4823 insn and we will be sure that the inputs are still valid. If EARLIEST
4824 is null, the returned condition will be valid at INSN.
4825
4826 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4827 compare CC mode register.
4828
4829 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4830
4831 rtx
4832 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4833 {
4834 rtx cond;
4835 int reverse;
4836 rtx set;
4837
4838 /* If this is not a standard conditional jump, we can't parse it. */
4839 if (!JUMP_P (jump)
4840 || ! any_condjump_p (jump))
4841 return 0;
4842 set = pc_set (jump);
4843
4844 cond = XEXP (SET_SRC (set), 0);
4845
4846 /* If this branches to JUMP_LABEL when the condition is false, reverse
4847 the condition. */
4848 reverse
4849 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4850 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4851
4852 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4853 allow_cc_mode, valid_at_insn_p);
4854 }
4855
4856 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4857 TARGET_MODE_REP_EXTENDED.
4858
4859 Note that we assume that the property of
4860 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4861 narrower than mode B. I.e., if A is a mode narrower than B then in
4862 order to be able to operate on it in mode B, mode A needs to
4863 satisfy the requirements set by the representation of mode B. */
4864
4865 static void
4866 init_num_sign_bit_copies_in_rep (void)
4867 {
4868 enum machine_mode mode, in_mode;
4869
4870 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4871 in_mode = GET_MODE_WIDER_MODE (mode))
4872 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4873 mode = GET_MODE_WIDER_MODE (mode))
4874 {
4875 enum machine_mode i;
4876
4877 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4878 extends to the next widest mode. */
4879 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4880 || GET_MODE_WIDER_MODE (mode) == in_mode);
4881
4882 /* We are in in_mode. Count how many bits outside of mode
4883 have to be copies of the sign-bit. */
4884 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4885 {
4886 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4887
4888 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4889 /* We can only check sign-bit copies starting from the
4890 top-bit. In order to be able to check the bits we
4891 have already seen we pretend that subsequent bits
4892 have to be sign-bit copies too. */
4893 || num_sign_bit_copies_in_rep [in_mode][mode])
4894 num_sign_bit_copies_in_rep [in_mode][mode]
4895 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4896 }
4897 }
4898 }
4899
4900 /* Suppose that truncation from the machine mode of X to MODE is not a
4901 no-op. See if there is anything special about X so that we can
4902 assume it already contains a truncated value of MODE. */
4903
4904 bool
4905 truncated_to_mode (enum machine_mode mode, const_rtx x)
4906 {
4907 /* This register has already been used in MODE without explicit
4908 truncation. */
4909 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4910 return true;
4911
4912 /* See if we already satisfy the requirements of MODE. If yes we
4913 can just switch to MODE. */
4914 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4915 && (num_sign_bit_copies (x, GET_MODE (x))
4916 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4917 return true;
4918
4919 return false;
4920 }
4921 \f
4922 /* Initialize non_rtx_starting_operands, which is used to speed up
4923 for_each_rtx. */
4924 void
4925 init_rtlanal (void)
4926 {
4927 int i;
4928 for (i = 0; i < NUM_RTX_CODE; i++)
4929 {
4930 const char *format = GET_RTX_FORMAT (i);
4931 const char *first = strpbrk (format, "eEV");
4932 non_rtx_starting_operands[i] = first ? first - format : -1;
4933 }
4934
4935 init_num_sign_bit_copies_in_rep ();
4936 }
4937 \f
4938 /* Check whether this is a constant pool constant. */
4939 bool
4940 constant_pool_constant_p (rtx x)
4941 {
4942 x = avoid_constant_pool_reference (x);
4943 return GET_CODE (x) == CONST_DOUBLE;
4944 }
4945