alias.c: Remove unused headers.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
37
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
44
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
56
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
59
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
64
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
72
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
75 \f
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
78
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
84 {
85 if (base == array.stack)
86 {
87 if (i < LOCAL_ELEMS)
88 {
89 base[i] = x;
90 return base;
91 }
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
101 }
102 unsigned int length = array.heap->length ();
103 if (length > i)
104 {
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
108 }
109 else
110 {
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
114 }
115 }
116
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
119
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
125 {
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
130 {
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
136 {
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
142 }
143 }
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 else if (format[i] == 'E')
155 {
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
172 {
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
176 }
177 }
178 return end - orig_end;
179 }
180
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
184 {
185 vec_free (array.heap);
186 }
187
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
190
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
194
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
199
200 int
201 rtx_unstable_p (const_rtx x)
202 {
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
206
207 switch (code)
208 {
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
211
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
217
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
230
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
234
235 /* Fall through. */
236
237 default:
238 break;
239 }
240
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
244 {
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
247 }
248 else if (fmt[i] == 'E')
249 {
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
254 }
255
256 return 0;
257 }
258
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
265
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
268 {
269 RTX_CODE code;
270 int i;
271 const char *fmt;
272
273 if (!x)
274 return 0;
275
276 code = GET_CODE (x);
277 switch (code)
278 {
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
281
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
287
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
305
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
312
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
316
317 /* Fall through. */
318
319 default:
320 break;
321 }
322
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
326 {
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
329 }
330 else if (fmt[i] == 'E')
331 {
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
336 }
337
338 return 0;
339 }
340
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
344
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
347 {
348 #ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
451
452 #else
453 HOST_WIDE_INT offset;
454
455 if (to == from)
456 return 0;
457
458 if (reload_completed)
459 {
460 INITIAL_FRAME_POINTER_OFFSET (offset);
461 }
462 else
463 {
464 offset = crtl->outgoing_args_size + get_frame_size ();
465 #if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467 #endif
468 }
469
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
476
477 #endif
478 }
479
480 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
484
485 static int
486 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
487 machine_mode mode, bool unaligned_mems)
488 {
489 enum rtx_code code = GET_CODE (x);
490
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
494 {
495 HOST_WIDE_INT actual_offset = offset;
496
497 #ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504 #endif
505
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
508 }
509
510 switch (code)
511 {
512 case SYMBOL_REF:
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
516 {
517 tree decl;
518 HOST_WIDE_INT decl_size;
519
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
526
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
530
531 /* Else check that the access is in bounds. TODO: restructure
532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
545
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
547 }
548
549 return 0;
550
551 case LABEL_REF:
552 return 0;
553
554 case REG:
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
561 {
562 #ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564 #else
565 HOST_WIDE_INT red_zone_size = 0;
566 #endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
570
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
573
574 if (x == frame_pointer_rtx)
575 {
576 if (FRAME_GROWS_DOWNWARD)
577 {
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
580 }
581 else
582 {
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
585 }
586 }
587 else if (x == hard_frame_pointer_rtx)
588 {
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
595
596 #if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
613 }
614 else if (x == stack_pointer_rtx)
615 {
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
619
620 #if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624 #if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626 #endif
627 + stack_boundary;
628 #else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632 #if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634 #endif
635 - stack_boundary;
636 #endif
637 }
638 else
639 {
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643 #if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648 #else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653 #endif
654 }
655
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
659 }
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
665
666 case CONST:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
669
670 case PLUS:
671 /* An address is assumed not to trap if:
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
675
676 /* - or it is an address that can't trap plus a constant integer. */
677 if (CONST_INT_P (XEXP (x, 1))
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
680 return 0;
681
682 return 1;
683
684 case LO_SUM:
685 case PRE_MODIFY:
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
688
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
696
697 default:
698 break;
699 }
700
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
703 }
704
705 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
706
707 int
708 rtx_addr_can_trap_p (const_rtx x)
709 {
710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
711 }
712
713 /* Return true if X is an address that is known to not be zero. */
714
715 bool
716 nonzero_address_p (const_rtx x)
717 {
718 const enum rtx_code code = GET_CODE (x);
719
720 switch (code)
721 {
722 case SYMBOL_REF:
723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
724
725 case LABEL_REF:
726 return true;
727
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
739
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
742
743 case PLUS:
744 /* Handle PIC references. */
745 if (XEXP (x, 0) == pic_offset_table_rtx
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
749
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
754 if (CONST_INT_P (XEXP (x, 1))
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
758
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
762
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
768
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
771
772 default:
773 break;
774 }
775
776 /* If it isn't one of the case above, might be zero. */
777 return false;
778 }
779
780 /* Return 1 if X refers to a memory location whose address
781 cannot be compared reliably with constant addresses,
782 or if X refers to a BLKmode memory object.
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
785
786 bool
787 rtx_addr_varies_p (const_rtx x, bool for_alias)
788 {
789 enum rtx_code code;
790 int i;
791 const char *fmt;
792
793 if (x == 0)
794 return 0;
795
796 code = GET_CODE (x);
797 if (code == MEM)
798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
799
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
803 {
804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
805 return 1;
806 }
807 else if (fmt[i] == 'E')
808 {
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
812 return 1;
813 }
814 return 0;
815 }
816 \f
817 /* Return the CALL in X if there is one. */
818
819 rtx
820 get_call_rtx_from (rtx x)
821 {
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
831 }
832 \f
833 /* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
836 This is used in cse.c with the `related_value' field. */
837
838 HOST_WIDE_INT
839 get_integer_term (const_rtx x)
840 {
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
843
844 if (GET_CODE (x) == MINUS
845 && CONST_INT_P (XEXP (x, 1)))
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
848 && CONST_INT_P (XEXP (x, 1)))
849 return INTVAL (XEXP (x, 1));
850 return 0;
851 }
852
853 /* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
856
857 rtx
858 get_related_value (const_rtx x)
859 {
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
864 && CONST_INT_P (XEXP (x, 1)))
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
867 && CONST_INT_P (XEXP (x, 1)))
868 return XEXP (x, 0);
869 return 0;
870 }
871 \f
872 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
874
875 bool
876 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
877 {
878 tree decl;
879
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
882
883 if (offset == 0)
884 return true;
885
886 if (offset > 0)
887 {
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
891
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
895 }
896
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
903
904 return false;
905 }
906
907 /* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
909
910 void
911 split_const (rtx x, rtx *base_out, rtx *offset_out)
912 {
913 if (GET_CODE (x) == CONST)
914 {
915 x = XEXP (x, 0);
916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
917 {
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
921 }
922 }
923 *base_out = x;
924 *offset_out = const0_rtx;
925 }
926 \f
927 /* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
929
930 int
931 count_occurrences (const_rtx x, const_rtx find, int count_dest)
932 {
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
937
938 if (x == find)
939 return 1;
940
941 code = GET_CODE (x);
942
943 switch (code)
944 {
945 case REG:
946 CASE_CONST_ANY:
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
952
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
958
959 case MEM:
960 if (MEM_P (find) && rtx_equal_p (x, find))
961 return 1;
962 break;
963
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
968
969 default:
970 break;
971 }
972
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
975
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
977 {
978 switch (*format_ptr++)
979 {
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
983
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
988 }
989 }
990 return count;
991 }
992
993 \f
994 /* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
996
997 bool
998 unsigned_reg_p (rtx op)
999 {
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1004
1005 if (GET_CODE (op) == SUBREG
1006 && SUBREG_PROMOTED_SIGN (op))
1007 return true;
1008
1009 return false;
1010 }
1011
1012 \f
1013 /* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1016
1017 int
1018 reg_mentioned_p (const_rtx reg, const_rtx in)
1019 {
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
1023
1024 if (in == 0)
1025 return 0;
1026
1027 if (reg == in)
1028 return 1;
1029
1030 if (GET_CODE (in) == LABEL_REF)
1031 return reg == LABEL_REF_LABEL (in);
1032
1033 code = GET_CODE (in);
1034
1035 switch (code)
1036 {
1037 /* Compare registers by number. */
1038 case REG:
1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
1040
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1047
1048 CASE_CONST_ANY:
1049 /* These are kept unique for a given value. */
1050 return 0;
1051
1052 default:
1053 break;
1054 }
1055
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1058
1059 fmt = GET_RTX_FORMAT (code);
1060
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1062 {
1063 if (fmt[i] == 'E')
1064 {
1065 int j;
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1069 }
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1073 }
1074 return 0;
1075 }
1076 \f
1077 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1079
1080 int
1081 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1082 {
1083 rtx_insn *p;
1084 if (beg == end)
1085 return 0;
1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1087 if (LABEL_P (p))
1088 return 0;
1089 return 1;
1090 }
1091
1092 /* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1094
1095 int
1096 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
1098 {
1099 rtx_insn *insn;
1100
1101 if (from_insn == to_insn)
1102 return 0;
1103
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1105 if (NONDEBUG_INSN_P (insn)
1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1108 return 1;
1109 return 0;
1110 }
1111 \f
1112 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1115
1116 int
1117 reg_referenced_p (const_rtx x, const_rtx body)
1118 {
1119 int i;
1120
1121 switch (GET_CODE (body))
1122 {
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1126
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
1132 && !REG_P (SET_DEST (body))
1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1134 && REG_P (SUBREG_REG (SET_DEST (body)))
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
1141 return 0;
1142
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
1147 return 0;
1148
1149 case CALL:
1150 case USE:
1151 case IF_THEN_ELSE:
1152 return reg_overlap_mentioned_p (x, body);
1153
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1156
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1159
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1166
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
1171 return 0;
1172
1173 case CLOBBER:
1174 if (MEM_P (XEXP (body, 0)))
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1178
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1183
1184 default:
1185 return 0;
1186 }
1187 }
1188 \f
1189 /* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1191
1192 int
1193 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
1195 {
1196 const rtx_insn *insn;
1197
1198 if (from_insn == to_insn)
1199 return 0;
1200
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1202 if (INSN_P (insn) && reg_set_p (reg, insn))
1203 return 1;
1204 return 0;
1205 }
1206
1207 /* Internals of reg_set_between_p. */
1208 int
1209 reg_set_p (const_rtx reg, const_rtx insn)
1210 {
1211 /* After delay slot handling, call and branch insns might be in a
1212 sequence. Check all the elements there. */
1213 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1214 {
1215 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1216 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1217 return true;
1218
1219 return false;
1220 }
1221
1222 /* We can be passed an insn or part of one. If we are passed an insn,
1223 check if a side-effect of the insn clobbers REG. */
1224 if (INSN_P (insn)
1225 && (FIND_REG_INC_NOTE (insn, reg)
1226 || (CALL_P (insn)
1227 && ((REG_P (reg)
1228 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1229 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1230 GET_MODE (reg), REGNO (reg)))
1231 || MEM_P (reg)
1232 || find_reg_fusage (insn, CLOBBER, reg)))))
1233 return true;
1234
1235 return set_of (reg, insn) != NULL_RTX;
1236 }
1237
1238 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1239 only if none of them are modified between START and END. Return 1 if
1240 X contains a MEM; this routine does use memory aliasing. */
1241
1242 int
1243 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1244 {
1245 const enum rtx_code code = GET_CODE (x);
1246 const char *fmt;
1247 int i, j;
1248 rtx_insn *insn;
1249
1250 if (start == end)
1251 return 0;
1252
1253 switch (code)
1254 {
1255 CASE_CONST_ANY:
1256 case CONST:
1257 case SYMBOL_REF:
1258 case LABEL_REF:
1259 return 0;
1260
1261 case PC:
1262 case CC0:
1263 return 1;
1264
1265 case MEM:
1266 if (modified_between_p (XEXP (x, 0), start, end))
1267 return 1;
1268 if (MEM_READONLY_P (x))
1269 return 0;
1270 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1271 if (memory_modified_in_insn_p (x, insn))
1272 return 1;
1273 return 0;
1274 break;
1275
1276 case REG:
1277 return reg_set_between_p (x, start, end);
1278
1279 default:
1280 break;
1281 }
1282
1283 fmt = GET_RTX_FORMAT (code);
1284 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1285 {
1286 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1287 return 1;
1288
1289 else if (fmt[i] == 'E')
1290 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1291 if (modified_between_p (XVECEXP (x, i, j), start, end))
1292 return 1;
1293 }
1294
1295 return 0;
1296 }
1297
1298 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1299 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1300 does use memory aliasing. */
1301
1302 int
1303 modified_in_p (const_rtx x, const_rtx insn)
1304 {
1305 const enum rtx_code code = GET_CODE (x);
1306 const char *fmt;
1307 int i, j;
1308
1309 switch (code)
1310 {
1311 CASE_CONST_ANY:
1312 case CONST:
1313 case SYMBOL_REF:
1314 case LABEL_REF:
1315 return 0;
1316
1317 case PC:
1318 case CC0:
1319 return 1;
1320
1321 case MEM:
1322 if (modified_in_p (XEXP (x, 0), insn))
1323 return 1;
1324 if (MEM_READONLY_P (x))
1325 return 0;
1326 if (memory_modified_in_insn_p (x, insn))
1327 return 1;
1328 return 0;
1329 break;
1330
1331 case REG:
1332 return reg_set_p (x, insn);
1333
1334 default:
1335 break;
1336 }
1337
1338 fmt = GET_RTX_FORMAT (code);
1339 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1340 {
1341 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1342 return 1;
1343
1344 else if (fmt[i] == 'E')
1345 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1346 if (modified_in_p (XVECEXP (x, i, j), insn))
1347 return 1;
1348 }
1349
1350 return 0;
1351 }
1352 \f
1353 /* Helper function for set_of. */
1354 struct set_of_data
1355 {
1356 const_rtx found;
1357 const_rtx pat;
1358 };
1359
1360 static void
1361 set_of_1 (rtx x, const_rtx pat, void *data1)
1362 {
1363 struct set_of_data *const data = (struct set_of_data *) (data1);
1364 if (rtx_equal_p (x, data->pat)
1365 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1366 data->found = pat;
1367 }
1368
1369 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1370 (either directly or via STRICT_LOW_PART and similar modifiers). */
1371 const_rtx
1372 set_of (const_rtx pat, const_rtx insn)
1373 {
1374 struct set_of_data data;
1375 data.found = NULL_RTX;
1376 data.pat = pat;
1377 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1378 return data.found;
1379 }
1380
1381 /* Add all hard register in X to *PSET. */
1382 void
1383 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1384 {
1385 subrtx_iterator::array_type array;
1386 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1387 {
1388 const_rtx x = *iter;
1389 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1390 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1391 }
1392 }
1393
1394 /* This function, called through note_stores, collects sets and
1395 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1396 by DATA. */
1397 void
1398 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1399 {
1400 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1401 if (REG_P (x) && HARD_REGISTER_P (x))
1402 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1403 }
1404
1405 /* Examine INSN, and compute the set of hard registers written by it.
1406 Store it in *PSET. Should only be called after reload. */
1407 void
1408 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1409 {
1410 rtx link;
1411
1412 CLEAR_HARD_REG_SET (*pset);
1413 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1414 if (CALL_P (insn))
1415 {
1416 if (implicit)
1417 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1418
1419 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1420 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1421 }
1422 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1423 if (REG_NOTE_KIND (link) == REG_INC)
1424 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1425 }
1426
1427 /* Like record_hard_reg_sets, but called through note_uses. */
1428 void
1429 record_hard_reg_uses (rtx *px, void *data)
1430 {
1431 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1432 }
1433 \f
1434 /* Given an INSN, return a SET expression if this insn has only a single SET.
1435 It may also have CLOBBERs, USEs, or SET whose output
1436 will not be used, which we ignore. */
1437
1438 rtx
1439 single_set_2 (const rtx_insn *insn, const_rtx pat)
1440 {
1441 rtx set = NULL;
1442 int set_verified = 1;
1443 int i;
1444
1445 if (GET_CODE (pat) == PARALLEL)
1446 {
1447 for (i = 0; i < XVECLEN (pat, 0); i++)
1448 {
1449 rtx sub = XVECEXP (pat, 0, i);
1450 switch (GET_CODE (sub))
1451 {
1452 case USE:
1453 case CLOBBER:
1454 break;
1455
1456 case SET:
1457 /* We can consider insns having multiple sets, where all
1458 but one are dead as single set insns. In common case
1459 only single set is present in the pattern so we want
1460 to avoid checking for REG_UNUSED notes unless necessary.
1461
1462 When we reach set first time, we just expect this is
1463 the single set we are looking for and only when more
1464 sets are found in the insn, we check them. */
1465 if (!set_verified)
1466 {
1467 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1468 && !side_effects_p (set))
1469 set = NULL;
1470 else
1471 set_verified = 1;
1472 }
1473 if (!set)
1474 set = sub, set_verified = 0;
1475 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1476 || side_effects_p (sub))
1477 return NULL_RTX;
1478 break;
1479
1480 default:
1481 return NULL_RTX;
1482 }
1483 }
1484 }
1485 return set;
1486 }
1487
1488 /* Given an INSN, return nonzero if it has more than one SET, else return
1489 zero. */
1490
1491 int
1492 multiple_sets (const_rtx insn)
1493 {
1494 int found;
1495 int i;
1496
1497 /* INSN must be an insn. */
1498 if (! INSN_P (insn))
1499 return 0;
1500
1501 /* Only a PARALLEL can have multiple SETs. */
1502 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1503 {
1504 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1505 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1506 {
1507 /* If we have already found a SET, then return now. */
1508 if (found)
1509 return 1;
1510 else
1511 found = 1;
1512 }
1513 }
1514
1515 /* Either zero or one SET. */
1516 return 0;
1517 }
1518 \f
1519 /* Return nonzero if the destination of SET equals the source
1520 and there are no side effects. */
1521
1522 int
1523 set_noop_p (const_rtx set)
1524 {
1525 rtx src = SET_SRC (set);
1526 rtx dst = SET_DEST (set);
1527
1528 if (dst == pc_rtx && src == pc_rtx)
1529 return 1;
1530
1531 if (MEM_P (dst) && MEM_P (src))
1532 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1533
1534 if (GET_CODE (dst) == ZERO_EXTRACT)
1535 return rtx_equal_p (XEXP (dst, 0), src)
1536 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1537 && !side_effects_p (src);
1538
1539 if (GET_CODE (dst) == STRICT_LOW_PART)
1540 dst = XEXP (dst, 0);
1541
1542 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1543 {
1544 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1545 return 0;
1546 src = SUBREG_REG (src);
1547 dst = SUBREG_REG (dst);
1548 }
1549
1550 /* It is a NOOP if destination overlaps with selected src vector
1551 elements. */
1552 if (GET_CODE (src) == VEC_SELECT
1553 && REG_P (XEXP (src, 0)) && REG_P (dst)
1554 && HARD_REGISTER_P (XEXP (src, 0))
1555 && HARD_REGISTER_P (dst))
1556 {
1557 int i;
1558 rtx par = XEXP (src, 1);
1559 rtx src0 = XEXP (src, 0);
1560 int c0 = INTVAL (XVECEXP (par, 0, 0));
1561 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1562
1563 for (i = 1; i < XVECLEN (par, 0); i++)
1564 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1565 return 0;
1566 return
1567 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1568 offset, GET_MODE (dst)) == (int) REGNO (dst);
1569 }
1570
1571 return (REG_P (src) && REG_P (dst)
1572 && REGNO (src) == REGNO (dst));
1573 }
1574 \f
1575 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1576 value to itself. */
1577
1578 int
1579 noop_move_p (const rtx_insn *insn)
1580 {
1581 rtx pat = PATTERN (insn);
1582
1583 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1584 return 1;
1585
1586 /* Insns carrying these notes are useful later on. */
1587 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1588 return 0;
1589
1590 /* Check the code to be executed for COND_EXEC. */
1591 if (GET_CODE (pat) == COND_EXEC)
1592 pat = COND_EXEC_CODE (pat);
1593
1594 if (GET_CODE (pat) == SET && set_noop_p (pat))
1595 return 1;
1596
1597 if (GET_CODE (pat) == PARALLEL)
1598 {
1599 int i;
1600 /* If nothing but SETs of registers to themselves,
1601 this insn can also be deleted. */
1602 for (i = 0; i < XVECLEN (pat, 0); i++)
1603 {
1604 rtx tem = XVECEXP (pat, 0, i);
1605
1606 if (GET_CODE (tem) == USE
1607 || GET_CODE (tem) == CLOBBER)
1608 continue;
1609
1610 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1611 return 0;
1612 }
1613
1614 return 1;
1615 }
1616 return 0;
1617 }
1618 \f
1619
1620 /* Return nonzero if register in range [REGNO, ENDREGNO)
1621 appears either explicitly or implicitly in X
1622 other than being stored into.
1623
1624 References contained within the substructure at LOC do not count.
1625 LOC may be zero, meaning don't ignore anything. */
1626
1627 bool
1628 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1629 rtx *loc)
1630 {
1631 int i;
1632 unsigned int x_regno;
1633 RTX_CODE code;
1634 const char *fmt;
1635
1636 repeat:
1637 /* The contents of a REG_NONNEG note is always zero, so we must come here
1638 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1639 if (x == 0)
1640 return false;
1641
1642 code = GET_CODE (x);
1643
1644 switch (code)
1645 {
1646 case REG:
1647 x_regno = REGNO (x);
1648
1649 /* If we modifying the stack, frame, or argument pointer, it will
1650 clobber a virtual register. In fact, we could be more precise,
1651 but it isn't worth it. */
1652 if ((x_regno == STACK_POINTER_REGNUM
1653 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1654 && x_regno == ARG_POINTER_REGNUM)
1655 || x_regno == FRAME_POINTER_REGNUM)
1656 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1657 return true;
1658
1659 return endregno > x_regno && regno < END_REGNO (x);
1660
1661 case SUBREG:
1662 /* If this is a SUBREG of a hard reg, we can see exactly which
1663 registers are being modified. Otherwise, handle normally. */
1664 if (REG_P (SUBREG_REG (x))
1665 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1666 {
1667 unsigned int inner_regno = subreg_regno (x);
1668 unsigned int inner_endregno
1669 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1670 ? subreg_nregs (x) : 1);
1671
1672 return endregno > inner_regno && regno < inner_endregno;
1673 }
1674 break;
1675
1676 case CLOBBER:
1677 case SET:
1678 if (&SET_DEST (x) != loc
1679 /* Note setting a SUBREG counts as referring to the REG it is in for
1680 a pseudo but not for hard registers since we can
1681 treat each word individually. */
1682 && ((GET_CODE (SET_DEST (x)) == SUBREG
1683 && loc != &SUBREG_REG (SET_DEST (x))
1684 && REG_P (SUBREG_REG (SET_DEST (x)))
1685 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1686 && refers_to_regno_p (regno, endregno,
1687 SUBREG_REG (SET_DEST (x)), loc))
1688 || (!REG_P (SET_DEST (x))
1689 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1690 return true;
1691
1692 if (code == CLOBBER || loc == &SET_SRC (x))
1693 return false;
1694 x = SET_SRC (x);
1695 goto repeat;
1696
1697 default:
1698 break;
1699 }
1700
1701 /* X does not match, so try its subexpressions. */
1702
1703 fmt = GET_RTX_FORMAT (code);
1704 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1705 {
1706 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1707 {
1708 if (i == 0)
1709 {
1710 x = XEXP (x, 0);
1711 goto repeat;
1712 }
1713 else
1714 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1715 return true;
1716 }
1717 else if (fmt[i] == 'E')
1718 {
1719 int j;
1720 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1721 if (loc != &XVECEXP (x, i, j)
1722 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1723 return true;
1724 }
1725 }
1726 return false;
1727 }
1728
1729 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1730 we check if any register number in X conflicts with the relevant register
1731 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1732 contains a MEM (we don't bother checking for memory addresses that can't
1733 conflict because we expect this to be a rare case. */
1734
1735 int
1736 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1737 {
1738 unsigned int regno, endregno;
1739
1740 /* If either argument is a constant, then modifying X can not
1741 affect IN. Here we look at IN, we can profitably combine
1742 CONSTANT_P (x) with the switch statement below. */
1743 if (CONSTANT_P (in))
1744 return 0;
1745
1746 recurse:
1747 switch (GET_CODE (x))
1748 {
1749 case STRICT_LOW_PART:
1750 case ZERO_EXTRACT:
1751 case SIGN_EXTRACT:
1752 /* Overly conservative. */
1753 x = XEXP (x, 0);
1754 goto recurse;
1755
1756 case SUBREG:
1757 regno = REGNO (SUBREG_REG (x));
1758 if (regno < FIRST_PSEUDO_REGISTER)
1759 regno = subreg_regno (x);
1760 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1761 ? subreg_nregs (x) : 1);
1762 goto do_reg;
1763
1764 case REG:
1765 regno = REGNO (x);
1766 endregno = END_REGNO (x);
1767 do_reg:
1768 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1769
1770 case MEM:
1771 {
1772 const char *fmt;
1773 int i;
1774
1775 if (MEM_P (in))
1776 return 1;
1777
1778 fmt = GET_RTX_FORMAT (GET_CODE (in));
1779 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1780 if (fmt[i] == 'e')
1781 {
1782 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1783 return 1;
1784 }
1785 else if (fmt[i] == 'E')
1786 {
1787 int j;
1788 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1789 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1790 return 1;
1791 }
1792
1793 return 0;
1794 }
1795
1796 case SCRATCH:
1797 case PC:
1798 case CC0:
1799 return reg_mentioned_p (x, in);
1800
1801 case PARALLEL:
1802 {
1803 int i;
1804
1805 /* If any register in here refers to it we return true. */
1806 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1807 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1808 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1809 return 1;
1810 return 0;
1811 }
1812
1813 default:
1814 gcc_assert (CONSTANT_P (x));
1815 return 0;
1816 }
1817 }
1818 \f
1819 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1820 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1821 ignored by note_stores, but passed to FUN.
1822
1823 FUN receives three arguments:
1824 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1825 2. the SET or CLOBBER rtx that does the store,
1826 3. the pointer DATA provided to note_stores.
1827
1828 If the item being stored in or clobbered is a SUBREG of a hard register,
1829 the SUBREG will be passed. */
1830
1831 void
1832 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1833 {
1834 int i;
1835
1836 if (GET_CODE (x) == COND_EXEC)
1837 x = COND_EXEC_CODE (x);
1838
1839 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1840 {
1841 rtx dest = SET_DEST (x);
1842
1843 while ((GET_CODE (dest) == SUBREG
1844 && (!REG_P (SUBREG_REG (dest))
1845 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1846 || GET_CODE (dest) == ZERO_EXTRACT
1847 || GET_CODE (dest) == STRICT_LOW_PART)
1848 dest = XEXP (dest, 0);
1849
1850 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1851 each of whose first operand is a register. */
1852 if (GET_CODE (dest) == PARALLEL)
1853 {
1854 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1855 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1856 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1857 }
1858 else
1859 (*fun) (dest, x, data);
1860 }
1861
1862 else if (GET_CODE (x) == PARALLEL)
1863 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1864 note_stores (XVECEXP (x, 0, i), fun, data);
1865 }
1866 \f
1867 /* Like notes_stores, but call FUN for each expression that is being
1868 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1869 FUN for each expression, not any interior subexpressions. FUN receives a
1870 pointer to the expression and the DATA passed to this function.
1871
1872 Note that this is not quite the same test as that done in reg_referenced_p
1873 since that considers something as being referenced if it is being
1874 partially set, while we do not. */
1875
1876 void
1877 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1878 {
1879 rtx body = *pbody;
1880 int i;
1881
1882 switch (GET_CODE (body))
1883 {
1884 case COND_EXEC:
1885 (*fun) (&COND_EXEC_TEST (body), data);
1886 note_uses (&COND_EXEC_CODE (body), fun, data);
1887 return;
1888
1889 case PARALLEL:
1890 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1891 note_uses (&XVECEXP (body, 0, i), fun, data);
1892 return;
1893
1894 case SEQUENCE:
1895 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1896 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1897 return;
1898
1899 case USE:
1900 (*fun) (&XEXP (body, 0), data);
1901 return;
1902
1903 case ASM_OPERANDS:
1904 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1905 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1906 return;
1907
1908 case TRAP_IF:
1909 (*fun) (&TRAP_CONDITION (body), data);
1910 return;
1911
1912 case PREFETCH:
1913 (*fun) (&XEXP (body, 0), data);
1914 return;
1915
1916 case UNSPEC:
1917 case UNSPEC_VOLATILE:
1918 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1919 (*fun) (&XVECEXP (body, 0, i), data);
1920 return;
1921
1922 case CLOBBER:
1923 if (MEM_P (XEXP (body, 0)))
1924 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1925 return;
1926
1927 case SET:
1928 {
1929 rtx dest = SET_DEST (body);
1930
1931 /* For sets we replace everything in source plus registers in memory
1932 expression in store and operands of a ZERO_EXTRACT. */
1933 (*fun) (&SET_SRC (body), data);
1934
1935 if (GET_CODE (dest) == ZERO_EXTRACT)
1936 {
1937 (*fun) (&XEXP (dest, 1), data);
1938 (*fun) (&XEXP (dest, 2), data);
1939 }
1940
1941 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1942 dest = XEXP (dest, 0);
1943
1944 if (MEM_P (dest))
1945 (*fun) (&XEXP (dest, 0), data);
1946 }
1947 return;
1948
1949 default:
1950 /* All the other possibilities never store. */
1951 (*fun) (pbody, data);
1952 return;
1953 }
1954 }
1955 \f
1956 /* Return nonzero if X's old contents don't survive after INSN.
1957 This will be true if X is (cc0) or if X is a register and
1958 X dies in INSN or because INSN entirely sets X.
1959
1960 "Entirely set" means set directly and not through a SUBREG, or
1961 ZERO_EXTRACT, so no trace of the old contents remains.
1962 Likewise, REG_INC does not count.
1963
1964 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1965 but for this use that makes no difference, since regs don't overlap
1966 during their lifetimes. Therefore, this function may be used
1967 at any time after deaths have been computed.
1968
1969 If REG is a hard reg that occupies multiple machine registers, this
1970 function will only return 1 if each of those registers will be replaced
1971 by INSN. */
1972
1973 int
1974 dead_or_set_p (const_rtx insn, const_rtx x)
1975 {
1976 unsigned int regno, end_regno;
1977 unsigned int i;
1978
1979 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1980 if (GET_CODE (x) == CC0)
1981 return 1;
1982
1983 gcc_assert (REG_P (x));
1984
1985 regno = REGNO (x);
1986 end_regno = END_REGNO (x);
1987 for (i = regno; i < end_regno; i++)
1988 if (! dead_or_set_regno_p (insn, i))
1989 return 0;
1990
1991 return 1;
1992 }
1993
1994 /* Return TRUE iff DEST is a register or subreg of a register and
1995 doesn't change the number of words of the inner register, and any
1996 part of the register is TEST_REGNO. */
1997
1998 static bool
1999 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2000 {
2001 unsigned int regno, endregno;
2002
2003 if (GET_CODE (dest) == SUBREG
2004 && (((GET_MODE_SIZE (GET_MODE (dest))
2005 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2006 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2007 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2008 dest = SUBREG_REG (dest);
2009
2010 if (!REG_P (dest))
2011 return false;
2012
2013 regno = REGNO (dest);
2014 endregno = END_REGNO (dest);
2015 return (test_regno >= regno && test_regno < endregno);
2016 }
2017
2018 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2019 any member matches the covers_regno_no_parallel_p criteria. */
2020
2021 static bool
2022 covers_regno_p (const_rtx dest, unsigned int test_regno)
2023 {
2024 if (GET_CODE (dest) == PARALLEL)
2025 {
2026 /* Some targets place small structures in registers for return
2027 values of functions, and those registers are wrapped in
2028 PARALLELs that we may see as the destination of a SET. */
2029 int i;
2030
2031 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2032 {
2033 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2034 if (inner != NULL_RTX
2035 && covers_regno_no_parallel_p (inner, test_regno))
2036 return true;
2037 }
2038
2039 return false;
2040 }
2041 else
2042 return covers_regno_no_parallel_p (dest, test_regno);
2043 }
2044
2045 /* Utility function for dead_or_set_p to check an individual register. */
2046
2047 int
2048 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2049 {
2050 const_rtx pattern;
2051
2052 /* See if there is a death note for something that includes TEST_REGNO. */
2053 if (find_regno_note (insn, REG_DEAD, test_regno))
2054 return 1;
2055
2056 if (CALL_P (insn)
2057 && find_regno_fusage (insn, CLOBBER, test_regno))
2058 return 1;
2059
2060 pattern = PATTERN (insn);
2061
2062 /* If a COND_EXEC is not executed, the value survives. */
2063 if (GET_CODE (pattern) == COND_EXEC)
2064 return 0;
2065
2066 if (GET_CODE (pattern) == SET)
2067 return covers_regno_p (SET_DEST (pattern), test_regno);
2068 else if (GET_CODE (pattern) == PARALLEL)
2069 {
2070 int i;
2071
2072 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2073 {
2074 rtx body = XVECEXP (pattern, 0, i);
2075
2076 if (GET_CODE (body) == COND_EXEC)
2077 body = COND_EXEC_CODE (body);
2078
2079 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2080 && covers_regno_p (SET_DEST (body), test_regno))
2081 return 1;
2082 }
2083 }
2084
2085 return 0;
2086 }
2087
2088 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2089 If DATUM is nonzero, look for one whose datum is DATUM. */
2090
2091 rtx
2092 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2093 {
2094 rtx link;
2095
2096 gcc_checking_assert (insn);
2097
2098 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2099 if (! INSN_P (insn))
2100 return 0;
2101 if (datum == 0)
2102 {
2103 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2104 if (REG_NOTE_KIND (link) == kind)
2105 return link;
2106 return 0;
2107 }
2108
2109 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2110 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2111 return link;
2112 return 0;
2113 }
2114
2115 /* Return the reg-note of kind KIND in insn INSN which applies to register
2116 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2117 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2118 it might be the case that the note overlaps REGNO. */
2119
2120 rtx
2121 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2122 {
2123 rtx link;
2124
2125 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2126 if (! INSN_P (insn))
2127 return 0;
2128
2129 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2130 if (REG_NOTE_KIND (link) == kind
2131 /* Verify that it is a register, so that scratch and MEM won't cause a
2132 problem here. */
2133 && REG_P (XEXP (link, 0))
2134 && REGNO (XEXP (link, 0)) <= regno
2135 && END_REGNO (XEXP (link, 0)) > regno)
2136 return link;
2137 return 0;
2138 }
2139
2140 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2141 has such a note. */
2142
2143 rtx
2144 find_reg_equal_equiv_note (const_rtx insn)
2145 {
2146 rtx link;
2147
2148 if (!INSN_P (insn))
2149 return 0;
2150
2151 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2152 if (REG_NOTE_KIND (link) == REG_EQUAL
2153 || REG_NOTE_KIND (link) == REG_EQUIV)
2154 {
2155 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2156 insns that have multiple sets. Checking single_set to
2157 make sure of this is not the proper check, as explained
2158 in the comment in set_unique_reg_note.
2159
2160 This should be changed into an assert. */
2161 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2162 return 0;
2163 return link;
2164 }
2165 return NULL;
2166 }
2167
2168 /* Check whether INSN is a single_set whose source is known to be
2169 equivalent to a constant. Return that constant if so, otherwise
2170 return null. */
2171
2172 rtx
2173 find_constant_src (const rtx_insn *insn)
2174 {
2175 rtx note, set, x;
2176
2177 set = single_set (insn);
2178 if (set)
2179 {
2180 x = avoid_constant_pool_reference (SET_SRC (set));
2181 if (CONSTANT_P (x))
2182 return x;
2183 }
2184
2185 note = find_reg_equal_equiv_note (insn);
2186 if (note && CONSTANT_P (XEXP (note, 0)))
2187 return XEXP (note, 0);
2188
2189 return NULL_RTX;
2190 }
2191
2192 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2193 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2194
2195 int
2196 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2197 {
2198 /* If it's not a CALL_INSN, it can't possibly have a
2199 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2200 if (!CALL_P (insn))
2201 return 0;
2202
2203 gcc_assert (datum);
2204
2205 if (!REG_P (datum))
2206 {
2207 rtx link;
2208
2209 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2210 link;
2211 link = XEXP (link, 1))
2212 if (GET_CODE (XEXP (link, 0)) == code
2213 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2214 return 1;
2215 }
2216 else
2217 {
2218 unsigned int regno = REGNO (datum);
2219
2220 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2221 to pseudo registers, so don't bother checking. */
2222
2223 if (regno < FIRST_PSEUDO_REGISTER)
2224 {
2225 unsigned int end_regno = END_REGNO (datum);
2226 unsigned int i;
2227
2228 for (i = regno; i < end_regno; i++)
2229 if (find_regno_fusage (insn, code, i))
2230 return 1;
2231 }
2232 }
2233
2234 return 0;
2235 }
2236
2237 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2238 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2239
2240 int
2241 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2242 {
2243 rtx link;
2244
2245 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2246 to pseudo registers, so don't bother checking. */
2247
2248 if (regno >= FIRST_PSEUDO_REGISTER
2249 || !CALL_P (insn) )
2250 return 0;
2251
2252 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2253 {
2254 rtx op, reg;
2255
2256 if (GET_CODE (op = XEXP (link, 0)) == code
2257 && REG_P (reg = XEXP (op, 0))
2258 && REGNO (reg) <= regno
2259 && END_REGNO (reg) > regno)
2260 return 1;
2261 }
2262
2263 return 0;
2264 }
2265
2266 \f
2267 /* Return true if KIND is an integer REG_NOTE. */
2268
2269 static bool
2270 int_reg_note_p (enum reg_note kind)
2271 {
2272 return kind == REG_BR_PROB;
2273 }
2274
2275 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2276 stored as the pointer to the next register note. */
2277
2278 rtx
2279 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2280 {
2281 rtx note;
2282
2283 gcc_checking_assert (!int_reg_note_p (kind));
2284 switch (kind)
2285 {
2286 case REG_CC_SETTER:
2287 case REG_CC_USER:
2288 case REG_LABEL_TARGET:
2289 case REG_LABEL_OPERAND:
2290 case REG_TM:
2291 /* These types of register notes use an INSN_LIST rather than an
2292 EXPR_LIST, so that copying is done right and dumps look
2293 better. */
2294 note = alloc_INSN_LIST (datum, list);
2295 PUT_REG_NOTE_KIND (note, kind);
2296 break;
2297
2298 default:
2299 note = alloc_EXPR_LIST (kind, datum, list);
2300 break;
2301 }
2302
2303 return note;
2304 }
2305
2306 /* Add register note with kind KIND and datum DATUM to INSN. */
2307
2308 void
2309 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2310 {
2311 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2312 }
2313
2314 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2315
2316 void
2317 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2318 {
2319 gcc_checking_assert (int_reg_note_p (kind));
2320 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2321 datum, REG_NOTES (insn));
2322 }
2323
2324 /* Add a register note like NOTE to INSN. */
2325
2326 void
2327 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2328 {
2329 if (GET_CODE (note) == INT_LIST)
2330 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2331 else
2332 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2333 }
2334
2335 /* Remove register note NOTE from the REG_NOTES of INSN. */
2336
2337 void
2338 remove_note (rtx insn, const_rtx note)
2339 {
2340 rtx link;
2341
2342 if (note == NULL_RTX)
2343 return;
2344
2345 if (REG_NOTES (insn) == note)
2346 REG_NOTES (insn) = XEXP (note, 1);
2347 else
2348 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2349 if (XEXP (link, 1) == note)
2350 {
2351 XEXP (link, 1) = XEXP (note, 1);
2352 break;
2353 }
2354
2355 switch (REG_NOTE_KIND (note))
2356 {
2357 case REG_EQUAL:
2358 case REG_EQUIV:
2359 df_notes_rescan (as_a <rtx_insn *> (insn));
2360 break;
2361 default:
2362 break;
2363 }
2364 }
2365
2366 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2367
2368 void
2369 remove_reg_equal_equiv_notes (rtx_insn *insn)
2370 {
2371 rtx *loc;
2372
2373 loc = &REG_NOTES (insn);
2374 while (*loc)
2375 {
2376 enum reg_note kind = REG_NOTE_KIND (*loc);
2377 if (kind == REG_EQUAL || kind == REG_EQUIV)
2378 *loc = XEXP (*loc, 1);
2379 else
2380 loc = &XEXP (*loc, 1);
2381 }
2382 }
2383
2384 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2385
2386 void
2387 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2388 {
2389 df_ref eq_use;
2390
2391 if (!df)
2392 return;
2393
2394 /* This loop is a little tricky. We cannot just go down the chain because
2395 it is being modified by some actions in the loop. So we just iterate
2396 over the head. We plan to drain the list anyway. */
2397 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2398 {
2399 rtx_insn *insn = DF_REF_INSN (eq_use);
2400 rtx note = find_reg_equal_equiv_note (insn);
2401
2402 /* This assert is generally triggered when someone deletes a REG_EQUAL
2403 or REG_EQUIV note by hacking the list manually rather than calling
2404 remove_note. */
2405 gcc_assert (note);
2406
2407 remove_note (insn, note);
2408 }
2409 }
2410
2411 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2412 return 1 if it is found. A simple equality test is used to determine if
2413 NODE matches. */
2414
2415 bool
2416 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2417 {
2418 const_rtx x;
2419
2420 for (x = listp; x; x = XEXP (x, 1))
2421 if (node == XEXP (x, 0))
2422 return true;
2423
2424 return false;
2425 }
2426
2427 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2428 remove that entry from the list if it is found.
2429
2430 A simple equality test is used to determine if NODE matches. */
2431
2432 void
2433 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2434 {
2435 rtx_expr_list *temp = *listp;
2436 rtx_expr_list *prev = NULL;
2437
2438 while (temp)
2439 {
2440 if (node == temp->element ())
2441 {
2442 /* Splice the node out of the list. */
2443 if (prev)
2444 XEXP (prev, 1) = temp->next ();
2445 else
2446 *listp = temp->next ();
2447
2448 return;
2449 }
2450
2451 prev = temp;
2452 temp = temp->next ();
2453 }
2454 }
2455
2456 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2457 remove that entry from the list if it is found.
2458
2459 A simple equality test is used to determine if NODE matches. */
2460
2461 void
2462 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2463 {
2464 rtx_insn_list *temp = *listp;
2465 rtx_insn_list *prev = NULL;
2466
2467 while (temp)
2468 {
2469 if (node == temp->insn ())
2470 {
2471 /* Splice the node out of the list. */
2472 if (prev)
2473 XEXP (prev, 1) = temp->next ();
2474 else
2475 *listp = temp->next ();
2476
2477 return;
2478 }
2479
2480 prev = temp;
2481 temp = temp->next ();
2482 }
2483 }
2484 \f
2485 /* Nonzero if X contains any volatile instructions. These are instructions
2486 which may cause unpredictable machine state instructions, and thus no
2487 instructions or register uses should be moved or combined across them.
2488 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2489
2490 int
2491 volatile_insn_p (const_rtx x)
2492 {
2493 const RTX_CODE code = GET_CODE (x);
2494 switch (code)
2495 {
2496 case LABEL_REF:
2497 case SYMBOL_REF:
2498 case CONST:
2499 CASE_CONST_ANY:
2500 case CC0:
2501 case PC:
2502 case REG:
2503 case SCRATCH:
2504 case CLOBBER:
2505 case ADDR_VEC:
2506 case ADDR_DIFF_VEC:
2507 case CALL:
2508 case MEM:
2509 return 0;
2510
2511 case UNSPEC_VOLATILE:
2512 return 1;
2513
2514 case ASM_INPUT:
2515 case ASM_OPERANDS:
2516 if (MEM_VOLATILE_P (x))
2517 return 1;
2518
2519 default:
2520 break;
2521 }
2522
2523 /* Recursively scan the operands of this expression. */
2524
2525 {
2526 const char *const fmt = GET_RTX_FORMAT (code);
2527 int i;
2528
2529 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2530 {
2531 if (fmt[i] == 'e')
2532 {
2533 if (volatile_insn_p (XEXP (x, i)))
2534 return 1;
2535 }
2536 else if (fmt[i] == 'E')
2537 {
2538 int j;
2539 for (j = 0; j < XVECLEN (x, i); j++)
2540 if (volatile_insn_p (XVECEXP (x, i, j)))
2541 return 1;
2542 }
2543 }
2544 }
2545 return 0;
2546 }
2547
2548 /* Nonzero if X contains any volatile memory references
2549 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2550
2551 int
2552 volatile_refs_p (const_rtx x)
2553 {
2554 const RTX_CODE code = GET_CODE (x);
2555 switch (code)
2556 {
2557 case LABEL_REF:
2558 case SYMBOL_REF:
2559 case CONST:
2560 CASE_CONST_ANY:
2561 case CC0:
2562 case PC:
2563 case REG:
2564 case SCRATCH:
2565 case CLOBBER:
2566 case ADDR_VEC:
2567 case ADDR_DIFF_VEC:
2568 return 0;
2569
2570 case UNSPEC_VOLATILE:
2571 return 1;
2572
2573 case MEM:
2574 case ASM_INPUT:
2575 case ASM_OPERANDS:
2576 if (MEM_VOLATILE_P (x))
2577 return 1;
2578
2579 default:
2580 break;
2581 }
2582
2583 /* Recursively scan the operands of this expression. */
2584
2585 {
2586 const char *const fmt = GET_RTX_FORMAT (code);
2587 int i;
2588
2589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2590 {
2591 if (fmt[i] == 'e')
2592 {
2593 if (volatile_refs_p (XEXP (x, i)))
2594 return 1;
2595 }
2596 else if (fmt[i] == 'E')
2597 {
2598 int j;
2599 for (j = 0; j < XVECLEN (x, i); j++)
2600 if (volatile_refs_p (XVECEXP (x, i, j)))
2601 return 1;
2602 }
2603 }
2604 }
2605 return 0;
2606 }
2607
2608 /* Similar to above, except that it also rejects register pre- and post-
2609 incrementing. */
2610
2611 int
2612 side_effects_p (const_rtx x)
2613 {
2614 const RTX_CODE code = GET_CODE (x);
2615 switch (code)
2616 {
2617 case LABEL_REF:
2618 case SYMBOL_REF:
2619 case CONST:
2620 CASE_CONST_ANY:
2621 case CC0:
2622 case PC:
2623 case REG:
2624 case SCRATCH:
2625 case ADDR_VEC:
2626 case ADDR_DIFF_VEC:
2627 case VAR_LOCATION:
2628 return 0;
2629
2630 case CLOBBER:
2631 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2632 when some combination can't be done. If we see one, don't think
2633 that we can simplify the expression. */
2634 return (GET_MODE (x) != VOIDmode);
2635
2636 case PRE_INC:
2637 case PRE_DEC:
2638 case POST_INC:
2639 case POST_DEC:
2640 case PRE_MODIFY:
2641 case POST_MODIFY:
2642 case CALL:
2643 case UNSPEC_VOLATILE:
2644 return 1;
2645
2646 case MEM:
2647 case ASM_INPUT:
2648 case ASM_OPERANDS:
2649 if (MEM_VOLATILE_P (x))
2650 return 1;
2651
2652 default:
2653 break;
2654 }
2655
2656 /* Recursively scan the operands of this expression. */
2657
2658 {
2659 const char *fmt = GET_RTX_FORMAT (code);
2660 int i;
2661
2662 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2663 {
2664 if (fmt[i] == 'e')
2665 {
2666 if (side_effects_p (XEXP (x, i)))
2667 return 1;
2668 }
2669 else if (fmt[i] == 'E')
2670 {
2671 int j;
2672 for (j = 0; j < XVECLEN (x, i); j++)
2673 if (side_effects_p (XVECEXP (x, i, j)))
2674 return 1;
2675 }
2676 }
2677 }
2678 return 0;
2679 }
2680 \f
2681 /* Return nonzero if evaluating rtx X might cause a trap.
2682 FLAGS controls how to consider MEMs. A nonzero means the context
2683 of the access may have changed from the original, such that the
2684 address may have become invalid. */
2685
2686 int
2687 may_trap_p_1 (const_rtx x, unsigned flags)
2688 {
2689 int i;
2690 enum rtx_code code;
2691 const char *fmt;
2692
2693 /* We make no distinction currently, but this function is part of
2694 the internal target-hooks ABI so we keep the parameter as
2695 "unsigned flags". */
2696 bool code_changed = flags != 0;
2697
2698 if (x == 0)
2699 return 0;
2700 code = GET_CODE (x);
2701 switch (code)
2702 {
2703 /* Handle these cases quickly. */
2704 CASE_CONST_ANY:
2705 case SYMBOL_REF:
2706 case LABEL_REF:
2707 case CONST:
2708 case PC:
2709 case CC0:
2710 case REG:
2711 case SCRATCH:
2712 return 0;
2713
2714 case UNSPEC:
2715 return targetm.unspec_may_trap_p (x, flags);
2716
2717 case UNSPEC_VOLATILE:
2718 case ASM_INPUT:
2719 case TRAP_IF:
2720 return 1;
2721
2722 case ASM_OPERANDS:
2723 return MEM_VOLATILE_P (x);
2724
2725 /* Memory ref can trap unless it's a static var or a stack slot. */
2726 case MEM:
2727 /* Recognize specific pattern of stack checking probes. */
2728 if (flag_stack_check
2729 && MEM_VOLATILE_P (x)
2730 && XEXP (x, 0) == stack_pointer_rtx)
2731 return 1;
2732 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2733 reference; moving it out of context such as when moving code
2734 when optimizing, might cause its address to become invalid. */
2735 code_changed
2736 || !MEM_NOTRAP_P (x))
2737 {
2738 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2739 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2740 GET_MODE (x), code_changed);
2741 }
2742
2743 return 0;
2744
2745 /* Division by a non-constant might trap. */
2746 case DIV:
2747 case MOD:
2748 case UDIV:
2749 case UMOD:
2750 if (HONOR_SNANS (x))
2751 return 1;
2752 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2753 return flag_trapping_math;
2754 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2755 return 1;
2756 break;
2757
2758 case EXPR_LIST:
2759 /* An EXPR_LIST is used to represent a function call. This
2760 certainly may trap. */
2761 return 1;
2762
2763 case GE:
2764 case GT:
2765 case LE:
2766 case LT:
2767 case LTGT:
2768 case COMPARE:
2769 /* Some floating point comparisons may trap. */
2770 if (!flag_trapping_math)
2771 break;
2772 /* ??? There is no machine independent way to check for tests that trap
2773 when COMPARE is used, though many targets do make this distinction.
2774 For instance, sparc uses CCFPE for compares which generate exceptions
2775 and CCFP for compares which do not generate exceptions. */
2776 if (HONOR_NANS (x))
2777 return 1;
2778 /* But often the compare has some CC mode, so check operand
2779 modes as well. */
2780 if (HONOR_NANS (XEXP (x, 0))
2781 || HONOR_NANS (XEXP (x, 1)))
2782 return 1;
2783 break;
2784
2785 case EQ:
2786 case NE:
2787 if (HONOR_SNANS (x))
2788 return 1;
2789 /* Often comparison is CC mode, so check operand modes. */
2790 if (HONOR_SNANS (XEXP (x, 0))
2791 || HONOR_SNANS (XEXP (x, 1)))
2792 return 1;
2793 break;
2794
2795 case FIX:
2796 /* Conversion of floating point might trap. */
2797 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2798 return 1;
2799 break;
2800
2801 case NEG:
2802 case ABS:
2803 case SUBREG:
2804 /* These operations don't trap even with floating point. */
2805 break;
2806
2807 default:
2808 /* Any floating arithmetic may trap. */
2809 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2810 return 1;
2811 }
2812
2813 fmt = GET_RTX_FORMAT (code);
2814 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2815 {
2816 if (fmt[i] == 'e')
2817 {
2818 if (may_trap_p_1 (XEXP (x, i), flags))
2819 return 1;
2820 }
2821 else if (fmt[i] == 'E')
2822 {
2823 int j;
2824 for (j = 0; j < XVECLEN (x, i); j++)
2825 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2826 return 1;
2827 }
2828 }
2829 return 0;
2830 }
2831
2832 /* Return nonzero if evaluating rtx X might cause a trap. */
2833
2834 int
2835 may_trap_p (const_rtx x)
2836 {
2837 return may_trap_p_1 (x, 0);
2838 }
2839
2840 /* Same as above, but additionally return nonzero if evaluating rtx X might
2841 cause a fault. We define a fault for the purpose of this function as a
2842 erroneous execution condition that cannot be encountered during the normal
2843 execution of a valid program; the typical example is an unaligned memory
2844 access on a strict alignment machine. The compiler guarantees that it
2845 doesn't generate code that will fault from a valid program, but this
2846 guarantee doesn't mean anything for individual instructions. Consider
2847 the following example:
2848
2849 struct S { int d; union { char *cp; int *ip; }; };
2850
2851 int foo(struct S *s)
2852 {
2853 if (s->d == 1)
2854 return *s->ip;
2855 else
2856 return *s->cp;
2857 }
2858
2859 on a strict alignment machine. In a valid program, foo will never be
2860 invoked on a structure for which d is equal to 1 and the underlying
2861 unique field of the union not aligned on a 4-byte boundary, but the
2862 expression *s->ip might cause a fault if considered individually.
2863
2864 At the RTL level, potentially problematic expressions will almost always
2865 verify may_trap_p; for example, the above dereference can be emitted as
2866 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2867 However, suppose that foo is inlined in a caller that causes s->cp to
2868 point to a local character variable and guarantees that s->d is not set
2869 to 1; foo may have been effectively translated into pseudo-RTL as:
2870
2871 if ((reg:SI) == 1)
2872 (set (reg:SI) (mem:SI (%fp - 7)))
2873 else
2874 (set (reg:QI) (mem:QI (%fp - 7)))
2875
2876 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2877 memory reference to a stack slot, but it will certainly cause a fault
2878 on a strict alignment machine. */
2879
2880 int
2881 may_trap_or_fault_p (const_rtx x)
2882 {
2883 return may_trap_p_1 (x, 1);
2884 }
2885 \f
2886 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2887 i.e., an inequality. */
2888
2889 int
2890 inequality_comparisons_p (const_rtx x)
2891 {
2892 const char *fmt;
2893 int len, i;
2894 const enum rtx_code code = GET_CODE (x);
2895
2896 switch (code)
2897 {
2898 case REG:
2899 case SCRATCH:
2900 case PC:
2901 case CC0:
2902 CASE_CONST_ANY:
2903 case CONST:
2904 case LABEL_REF:
2905 case SYMBOL_REF:
2906 return 0;
2907
2908 case LT:
2909 case LTU:
2910 case GT:
2911 case GTU:
2912 case LE:
2913 case LEU:
2914 case GE:
2915 case GEU:
2916 return 1;
2917
2918 default:
2919 break;
2920 }
2921
2922 len = GET_RTX_LENGTH (code);
2923 fmt = GET_RTX_FORMAT (code);
2924
2925 for (i = 0; i < len; i++)
2926 {
2927 if (fmt[i] == 'e')
2928 {
2929 if (inequality_comparisons_p (XEXP (x, i)))
2930 return 1;
2931 }
2932 else if (fmt[i] == 'E')
2933 {
2934 int j;
2935 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2936 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2937 return 1;
2938 }
2939 }
2940
2941 return 0;
2942 }
2943 \f
2944 /* Replace any occurrence of FROM in X with TO. The function does
2945 not enter into CONST_DOUBLE for the replace.
2946
2947 Note that copying is not done so X must not be shared unless all copies
2948 are to be modified. */
2949
2950 rtx
2951 replace_rtx (rtx x, rtx from, rtx to)
2952 {
2953 int i, j;
2954 const char *fmt;
2955
2956 if (x == from)
2957 return to;
2958
2959 /* Allow this function to make replacements in EXPR_LISTs. */
2960 if (x == 0)
2961 return 0;
2962
2963 if (GET_CODE (x) == SUBREG)
2964 {
2965 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2966
2967 if (CONST_INT_P (new_rtx))
2968 {
2969 x = simplify_subreg (GET_MODE (x), new_rtx,
2970 GET_MODE (SUBREG_REG (x)),
2971 SUBREG_BYTE (x));
2972 gcc_assert (x);
2973 }
2974 else
2975 SUBREG_REG (x) = new_rtx;
2976
2977 return x;
2978 }
2979 else if (GET_CODE (x) == ZERO_EXTEND)
2980 {
2981 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2982
2983 if (CONST_INT_P (new_rtx))
2984 {
2985 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2986 new_rtx, GET_MODE (XEXP (x, 0)));
2987 gcc_assert (x);
2988 }
2989 else
2990 XEXP (x, 0) = new_rtx;
2991
2992 return x;
2993 }
2994
2995 fmt = GET_RTX_FORMAT (GET_CODE (x));
2996 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2997 {
2998 if (fmt[i] == 'e')
2999 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
3000 else if (fmt[i] == 'E')
3001 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3002 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
3003 }
3004
3005 return x;
3006 }
3007 \f
3008 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3009 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3010
3011 void
3012 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3013 {
3014 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3015 rtx x = *loc;
3016 if (JUMP_TABLE_DATA_P (x))
3017 {
3018 x = PATTERN (x);
3019 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3020 int len = GET_NUM_ELEM (vec);
3021 for (int i = 0; i < len; ++i)
3022 {
3023 rtx ref = RTVEC_ELT (vec, i);
3024 if (XEXP (ref, 0) == old_label)
3025 {
3026 XEXP (ref, 0) = new_label;
3027 if (update_label_nuses)
3028 {
3029 ++LABEL_NUSES (new_label);
3030 --LABEL_NUSES (old_label);
3031 }
3032 }
3033 }
3034 return;
3035 }
3036
3037 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3038 field. This is not handled by the iterator because it doesn't
3039 handle unprinted ('0') fields. */
3040 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3041 JUMP_LABEL (x) = new_label;
3042
3043 subrtx_ptr_iterator::array_type array;
3044 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3045 {
3046 rtx *loc = *iter;
3047 if (rtx x = *loc)
3048 {
3049 if (GET_CODE (x) == SYMBOL_REF
3050 && CONSTANT_POOL_ADDRESS_P (x))
3051 {
3052 rtx c = get_pool_constant (x);
3053 if (rtx_referenced_p (old_label, c))
3054 {
3055 /* Create a copy of constant C; replace the label inside
3056 but do not update LABEL_NUSES because uses in constant pool
3057 are not counted. */
3058 rtx new_c = copy_rtx (c);
3059 replace_label (&new_c, old_label, new_label, false);
3060
3061 /* Add the new constant NEW_C to constant pool and replace
3062 the old reference to constant by new reference. */
3063 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3064 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3065 }
3066 }
3067
3068 if ((GET_CODE (x) == LABEL_REF
3069 || GET_CODE (x) == INSN_LIST)
3070 && XEXP (x, 0) == old_label)
3071 {
3072 XEXP (x, 0) = new_label;
3073 if (update_label_nuses)
3074 {
3075 ++LABEL_NUSES (new_label);
3076 --LABEL_NUSES (old_label);
3077 }
3078 }
3079 }
3080 }
3081 }
3082
3083 void
3084 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3085 bool update_label_nuses)
3086 {
3087 rtx insn_as_rtx = insn;
3088 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3089 gcc_checking_assert (insn_as_rtx == insn);
3090 }
3091
3092 /* Return true if X is referenced in BODY. */
3093
3094 bool
3095 rtx_referenced_p (const_rtx x, const_rtx body)
3096 {
3097 subrtx_iterator::array_type array;
3098 FOR_EACH_SUBRTX (iter, array, body, ALL)
3099 if (const_rtx y = *iter)
3100 {
3101 /* Check if a label_ref Y refers to label X. */
3102 if (GET_CODE (y) == LABEL_REF
3103 && LABEL_P (x)
3104 && LABEL_REF_LABEL (y) == x)
3105 return true;
3106
3107 if (rtx_equal_p (x, y))
3108 return true;
3109
3110 /* If Y is a reference to pool constant traverse the constant. */
3111 if (GET_CODE (y) == SYMBOL_REF
3112 && CONSTANT_POOL_ADDRESS_P (y))
3113 iter.substitute (get_pool_constant (y));
3114 }
3115 return false;
3116 }
3117
3118 /* If INSN is a tablejump return true and store the label (before jump table) to
3119 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3120
3121 bool
3122 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3123 {
3124 rtx label;
3125 rtx_insn *table;
3126
3127 if (!JUMP_P (insn))
3128 return false;
3129
3130 label = JUMP_LABEL (insn);
3131 if (label != NULL_RTX && !ANY_RETURN_P (label)
3132 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3133 && JUMP_TABLE_DATA_P (table))
3134 {
3135 if (labelp)
3136 *labelp = label;
3137 if (tablep)
3138 *tablep = as_a <rtx_jump_table_data *> (table);
3139 return true;
3140 }
3141 return false;
3142 }
3143
3144 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3145 constant that is not in the constant pool and not in the condition
3146 of an IF_THEN_ELSE. */
3147
3148 static int
3149 computed_jump_p_1 (const_rtx x)
3150 {
3151 const enum rtx_code code = GET_CODE (x);
3152 int i, j;
3153 const char *fmt;
3154
3155 switch (code)
3156 {
3157 case LABEL_REF:
3158 case PC:
3159 return 0;
3160
3161 case CONST:
3162 CASE_CONST_ANY:
3163 case SYMBOL_REF:
3164 case REG:
3165 return 1;
3166
3167 case MEM:
3168 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3169 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3170
3171 case IF_THEN_ELSE:
3172 return (computed_jump_p_1 (XEXP (x, 1))
3173 || computed_jump_p_1 (XEXP (x, 2)));
3174
3175 default:
3176 break;
3177 }
3178
3179 fmt = GET_RTX_FORMAT (code);
3180 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3181 {
3182 if (fmt[i] == 'e'
3183 && computed_jump_p_1 (XEXP (x, i)))
3184 return 1;
3185
3186 else if (fmt[i] == 'E')
3187 for (j = 0; j < XVECLEN (x, i); j++)
3188 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3189 return 1;
3190 }
3191
3192 return 0;
3193 }
3194
3195 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3196
3197 Tablejumps and casesi insns are not considered indirect jumps;
3198 we can recognize them by a (use (label_ref)). */
3199
3200 int
3201 computed_jump_p (const rtx_insn *insn)
3202 {
3203 int i;
3204 if (JUMP_P (insn))
3205 {
3206 rtx pat = PATTERN (insn);
3207
3208 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3209 if (JUMP_LABEL (insn) != NULL)
3210 return 0;
3211
3212 if (GET_CODE (pat) == PARALLEL)
3213 {
3214 int len = XVECLEN (pat, 0);
3215 int has_use_labelref = 0;
3216
3217 for (i = len - 1; i >= 0; i--)
3218 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3219 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3220 == LABEL_REF))
3221 {
3222 has_use_labelref = 1;
3223 break;
3224 }
3225
3226 if (! has_use_labelref)
3227 for (i = len - 1; i >= 0; i--)
3228 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3229 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3230 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3231 return 1;
3232 }
3233 else if (GET_CODE (pat) == SET
3234 && SET_DEST (pat) == pc_rtx
3235 && computed_jump_p_1 (SET_SRC (pat)))
3236 return 1;
3237 }
3238 return 0;
3239 }
3240
3241 \f
3242
3243 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3244 the equivalent add insn and pass the result to FN, using DATA as the
3245 final argument. */
3246
3247 static int
3248 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3249 {
3250 rtx x = XEXP (mem, 0);
3251 switch (GET_CODE (x))
3252 {
3253 case PRE_INC:
3254 case POST_INC:
3255 {
3256 int size = GET_MODE_SIZE (GET_MODE (mem));
3257 rtx r1 = XEXP (x, 0);
3258 rtx c = gen_int_mode (size, GET_MODE (r1));
3259 return fn (mem, x, r1, r1, c, data);
3260 }
3261
3262 case PRE_DEC:
3263 case POST_DEC:
3264 {
3265 int size = GET_MODE_SIZE (GET_MODE (mem));
3266 rtx r1 = XEXP (x, 0);
3267 rtx c = gen_int_mode (-size, GET_MODE (r1));
3268 return fn (mem, x, r1, r1, c, data);
3269 }
3270
3271 case PRE_MODIFY:
3272 case POST_MODIFY:
3273 {
3274 rtx r1 = XEXP (x, 0);
3275 rtx add = XEXP (x, 1);
3276 return fn (mem, x, r1, add, NULL, data);
3277 }
3278
3279 default:
3280 gcc_unreachable ();
3281 }
3282 }
3283
3284 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3285 For each such autoinc operation found, call FN, passing it
3286 the innermost enclosing MEM, the operation itself, the RTX modified
3287 by the operation, two RTXs (the second may be NULL) that, once
3288 added, represent the value to be held by the modified RTX
3289 afterwards, and DATA. FN is to return 0 to continue the
3290 traversal or any other value to have it returned to the caller of
3291 for_each_inc_dec. */
3292
3293 int
3294 for_each_inc_dec (rtx x,
3295 for_each_inc_dec_fn fn,
3296 void *data)
3297 {
3298 subrtx_var_iterator::array_type array;
3299 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3300 {
3301 rtx mem = *iter;
3302 if (mem
3303 && MEM_P (mem)
3304 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3305 {
3306 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3307 if (res != 0)
3308 return res;
3309 iter.skip_subrtxes ();
3310 }
3311 }
3312 return 0;
3313 }
3314
3315 \f
3316 /* Searches X for any reference to REGNO, returning the rtx of the
3317 reference found if any. Otherwise, returns NULL_RTX. */
3318
3319 rtx
3320 regno_use_in (unsigned int regno, rtx x)
3321 {
3322 const char *fmt;
3323 int i, j;
3324 rtx tem;
3325
3326 if (REG_P (x) && REGNO (x) == regno)
3327 return x;
3328
3329 fmt = GET_RTX_FORMAT (GET_CODE (x));
3330 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3331 {
3332 if (fmt[i] == 'e')
3333 {
3334 if ((tem = regno_use_in (regno, XEXP (x, i))))
3335 return tem;
3336 }
3337 else if (fmt[i] == 'E')
3338 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3339 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3340 return tem;
3341 }
3342
3343 return NULL_RTX;
3344 }
3345
3346 /* Return a value indicating whether OP, an operand of a commutative
3347 operation, is preferred as the first or second operand. The more
3348 positive the value, the stronger the preference for being the first
3349 operand. */
3350
3351 int
3352 commutative_operand_precedence (rtx op)
3353 {
3354 enum rtx_code code = GET_CODE (op);
3355
3356 /* Constants always become the second operand. Prefer "nice" constants. */
3357 if (code == CONST_INT)
3358 return -8;
3359 if (code == CONST_WIDE_INT)
3360 return -8;
3361 if (code == CONST_DOUBLE)
3362 return -7;
3363 if (code == CONST_FIXED)
3364 return -7;
3365 op = avoid_constant_pool_reference (op);
3366 code = GET_CODE (op);
3367
3368 switch (GET_RTX_CLASS (code))
3369 {
3370 case RTX_CONST_OBJ:
3371 if (code == CONST_INT)
3372 return -6;
3373 if (code == CONST_WIDE_INT)
3374 return -6;
3375 if (code == CONST_DOUBLE)
3376 return -5;
3377 if (code == CONST_FIXED)
3378 return -5;
3379 return -4;
3380
3381 case RTX_EXTRA:
3382 /* SUBREGs of objects should come second. */
3383 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3384 return -3;
3385 return 0;
3386
3387 case RTX_OBJ:
3388 /* Complex expressions should be the first, so decrease priority
3389 of objects. Prefer pointer objects over non pointer objects. */
3390 if ((REG_P (op) && REG_POINTER (op))
3391 || (MEM_P (op) && MEM_POINTER (op)))
3392 return -1;
3393 return -2;
3394
3395 case RTX_COMM_ARITH:
3396 /* Prefer operands that are themselves commutative to be first.
3397 This helps to make things linear. In particular,
3398 (and (and (reg) (reg)) (not (reg))) is canonical. */
3399 return 4;
3400
3401 case RTX_BIN_ARITH:
3402 /* If only one operand is a binary expression, it will be the first
3403 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3404 is canonical, although it will usually be further simplified. */
3405 return 2;
3406
3407 case RTX_UNARY:
3408 /* Then prefer NEG and NOT. */
3409 if (code == NEG || code == NOT)
3410 return 1;
3411
3412 default:
3413 return 0;
3414 }
3415 }
3416
3417 /* Return 1 iff it is necessary to swap operands of commutative operation
3418 in order to canonicalize expression. */
3419
3420 bool
3421 swap_commutative_operands_p (rtx x, rtx y)
3422 {
3423 return (commutative_operand_precedence (x)
3424 < commutative_operand_precedence (y));
3425 }
3426
3427 /* Return 1 if X is an autoincrement side effect and the register is
3428 not the stack pointer. */
3429 int
3430 auto_inc_p (const_rtx x)
3431 {
3432 switch (GET_CODE (x))
3433 {
3434 case PRE_INC:
3435 case POST_INC:
3436 case PRE_DEC:
3437 case POST_DEC:
3438 case PRE_MODIFY:
3439 case POST_MODIFY:
3440 /* There are no REG_INC notes for SP. */
3441 if (XEXP (x, 0) != stack_pointer_rtx)
3442 return 1;
3443 default:
3444 break;
3445 }
3446 return 0;
3447 }
3448
3449 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3450 int
3451 loc_mentioned_in_p (rtx *loc, const_rtx in)
3452 {
3453 enum rtx_code code;
3454 const char *fmt;
3455 int i, j;
3456
3457 if (!in)
3458 return 0;
3459
3460 code = GET_CODE (in);
3461 fmt = GET_RTX_FORMAT (code);
3462 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3463 {
3464 if (fmt[i] == 'e')
3465 {
3466 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3467 return 1;
3468 }
3469 else if (fmt[i] == 'E')
3470 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3471 if (loc == &XVECEXP (in, i, j)
3472 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3473 return 1;
3474 }
3475 return 0;
3476 }
3477
3478 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3479 and SUBREG_BYTE, return the bit offset where the subreg begins
3480 (counting from the least significant bit of the operand). */
3481
3482 unsigned int
3483 subreg_lsb_1 (machine_mode outer_mode,
3484 machine_mode inner_mode,
3485 unsigned int subreg_byte)
3486 {
3487 unsigned int bitpos;
3488 unsigned int byte;
3489 unsigned int word;
3490
3491 /* A paradoxical subreg begins at bit position 0. */
3492 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3493 return 0;
3494
3495 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3496 /* If the subreg crosses a word boundary ensure that
3497 it also begins and ends on a word boundary. */
3498 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3499 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3500 && (subreg_byte % UNITS_PER_WORD
3501 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3502
3503 if (WORDS_BIG_ENDIAN)
3504 word = (GET_MODE_SIZE (inner_mode)
3505 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3506 else
3507 word = subreg_byte / UNITS_PER_WORD;
3508 bitpos = word * BITS_PER_WORD;
3509
3510 if (BYTES_BIG_ENDIAN)
3511 byte = (GET_MODE_SIZE (inner_mode)
3512 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3513 else
3514 byte = subreg_byte % UNITS_PER_WORD;
3515 bitpos += byte * BITS_PER_UNIT;
3516
3517 return bitpos;
3518 }
3519
3520 /* Given a subreg X, return the bit offset where the subreg begins
3521 (counting from the least significant bit of the reg). */
3522
3523 unsigned int
3524 subreg_lsb (const_rtx x)
3525 {
3526 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3527 SUBREG_BYTE (x));
3528 }
3529
3530 /* Fill in information about a subreg of a hard register.
3531 xregno - A regno of an inner hard subreg_reg (or what will become one).
3532 xmode - The mode of xregno.
3533 offset - The byte offset.
3534 ymode - The mode of a top level SUBREG (or what may become one).
3535 info - Pointer to structure to fill in.
3536
3537 Rather than considering one particular inner register (and thus one
3538 particular "outer" register) in isolation, this function really uses
3539 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3540 function does not check whether adding INFO->offset to XREGNO gives
3541 a valid hard register; even if INFO->offset + XREGNO is out of range,
3542 there might be another register of the same type that is in range.
3543 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3544 register, since that can depend on things like whether the final
3545 register number is even or odd. Callers that want to check whether
3546 this particular subreg can be replaced by a simple (reg ...) should
3547 use simplify_subreg_regno. */
3548
3549 void
3550 subreg_get_info (unsigned int xregno, machine_mode xmode,
3551 unsigned int offset, machine_mode ymode,
3552 struct subreg_info *info)
3553 {
3554 int nregs_xmode, nregs_ymode;
3555 int mode_multiple, nregs_multiple;
3556 int offset_adj, y_offset, y_offset_adj;
3557 int regsize_xmode, regsize_ymode;
3558 bool rknown;
3559
3560 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3561
3562 rknown = false;
3563
3564 /* If there are holes in a non-scalar mode in registers, we expect
3565 that it is made up of its units concatenated together. */
3566 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3567 {
3568 machine_mode xmode_unit;
3569
3570 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3571 xmode_unit = GET_MODE_INNER (xmode);
3572 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3573 gcc_assert (nregs_xmode
3574 == (GET_MODE_NUNITS (xmode)
3575 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3576 gcc_assert (hard_regno_nregs[xregno][xmode]
3577 == (hard_regno_nregs[xregno][xmode_unit]
3578 * GET_MODE_NUNITS (xmode)));
3579
3580 /* You can only ask for a SUBREG of a value with holes in the middle
3581 if you don't cross the holes. (Such a SUBREG should be done by
3582 picking a different register class, or doing it in memory if
3583 necessary.) An example of a value with holes is XCmode on 32-bit
3584 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3585 3 for each part, but in memory it's two 128-bit parts.
3586 Padding is assumed to be at the end (not necessarily the 'high part')
3587 of each unit. */
3588 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3589 < GET_MODE_NUNITS (xmode))
3590 && (offset / GET_MODE_SIZE (xmode_unit)
3591 != ((offset + GET_MODE_SIZE (ymode) - 1)
3592 / GET_MODE_SIZE (xmode_unit))))
3593 {
3594 info->representable_p = false;
3595 rknown = true;
3596 }
3597 }
3598 else
3599 nregs_xmode = hard_regno_nregs[xregno][xmode];
3600
3601 nregs_ymode = hard_regno_nregs[xregno][ymode];
3602
3603 /* Paradoxical subregs are otherwise valid. */
3604 if (!rknown
3605 && offset == 0
3606 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3607 {
3608 info->representable_p = true;
3609 /* If this is a big endian paradoxical subreg, which uses more
3610 actual hard registers than the original register, we must
3611 return a negative offset so that we find the proper highpart
3612 of the register. */
3613 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3614 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3615 info->offset = nregs_xmode - nregs_ymode;
3616 else
3617 info->offset = 0;
3618 info->nregs = nregs_ymode;
3619 return;
3620 }
3621
3622 /* If registers store different numbers of bits in the different
3623 modes, we cannot generally form this subreg. */
3624 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3625 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3626 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3627 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3628 {
3629 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3630 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3631 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3632 {
3633 info->representable_p = false;
3634 info->nregs
3635 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3636 info->offset = offset / regsize_xmode;
3637 return;
3638 }
3639 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3640 {
3641 info->representable_p = false;
3642 info->nregs
3643 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3644 info->offset = offset / regsize_xmode;
3645 return;
3646 }
3647 /* Quick exit for the simple and common case of extracting whole
3648 subregisters from a multiregister value. */
3649 /* ??? It would be better to integrate this into the code below,
3650 if we can generalize the concept enough and figure out how
3651 odd-sized modes can coexist with the other weird cases we support. */
3652 if (!rknown
3653 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3654 && regsize_xmode == regsize_ymode
3655 && (offset % regsize_ymode) == 0)
3656 {
3657 info->representable_p = true;
3658 info->nregs = nregs_ymode;
3659 info->offset = offset / regsize_ymode;
3660 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3661 return;
3662 }
3663 }
3664
3665 /* Lowpart subregs are otherwise valid. */
3666 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3667 {
3668 info->representable_p = true;
3669 rknown = true;
3670
3671 if (offset == 0 || nregs_xmode == nregs_ymode)
3672 {
3673 info->offset = 0;
3674 info->nregs = nregs_ymode;
3675 return;
3676 }
3677 }
3678
3679 /* This should always pass, otherwise we don't know how to verify
3680 the constraint. These conditions may be relaxed but
3681 subreg_regno_offset would need to be redesigned. */
3682 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3683 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3684
3685 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3686 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3687 {
3688 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3689 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3690 HOST_WIDE_INT off_low = offset & (ysize - 1);
3691 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3692 offset = (xsize - ysize - off_high) | off_low;
3693 }
3694 /* The XMODE value can be seen as a vector of NREGS_XMODE
3695 values. The subreg must represent a lowpart of given field.
3696 Compute what field it is. */
3697 offset_adj = offset;
3698 offset_adj -= subreg_lowpart_offset (ymode,
3699 mode_for_size (GET_MODE_BITSIZE (xmode)
3700 / nregs_xmode,
3701 MODE_INT, 0));
3702
3703 /* Size of ymode must not be greater than the size of xmode. */
3704 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3705 gcc_assert (mode_multiple != 0);
3706
3707 y_offset = offset / GET_MODE_SIZE (ymode);
3708 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3709 nregs_multiple = nregs_xmode / nregs_ymode;
3710
3711 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3712 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3713
3714 if (!rknown)
3715 {
3716 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3717 rknown = true;
3718 }
3719 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3720 info->nregs = nregs_ymode;
3721 }
3722
3723 /* This function returns the regno offset of a subreg expression.
3724 xregno - A regno of an inner hard subreg_reg (or what will become one).
3725 xmode - The mode of xregno.
3726 offset - The byte offset.
3727 ymode - The mode of a top level SUBREG (or what may become one).
3728 RETURN - The regno offset which would be used. */
3729 unsigned int
3730 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3731 unsigned int offset, machine_mode ymode)
3732 {
3733 struct subreg_info info;
3734 subreg_get_info (xregno, xmode, offset, ymode, &info);
3735 return info.offset;
3736 }
3737
3738 /* This function returns true when the offset is representable via
3739 subreg_offset in the given regno.
3740 xregno - A regno of an inner hard subreg_reg (or what will become one).
3741 xmode - The mode of xregno.
3742 offset - The byte offset.
3743 ymode - The mode of a top level SUBREG (or what may become one).
3744 RETURN - Whether the offset is representable. */
3745 bool
3746 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3747 unsigned int offset, machine_mode ymode)
3748 {
3749 struct subreg_info info;
3750 subreg_get_info (xregno, xmode, offset, ymode, &info);
3751 return info.representable_p;
3752 }
3753
3754 /* Return the number of a YMODE register to which
3755
3756 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3757
3758 can be simplified. Return -1 if the subreg can't be simplified.
3759
3760 XREGNO is a hard register number. */
3761
3762 int
3763 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3764 unsigned int offset, machine_mode ymode)
3765 {
3766 struct subreg_info info;
3767 unsigned int yregno;
3768
3769 #ifdef CANNOT_CHANGE_MODE_CLASS
3770 /* Give the backend a chance to disallow the mode change. */
3771 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3772 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3773 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3774 /* We can use mode change in LRA for some transformations. */
3775 && ! lra_in_progress)
3776 return -1;
3777 #endif
3778
3779 /* We shouldn't simplify stack-related registers. */
3780 if ((!reload_completed || frame_pointer_needed)
3781 && xregno == FRAME_POINTER_REGNUM)
3782 return -1;
3783
3784 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3785 && xregno == ARG_POINTER_REGNUM)
3786 return -1;
3787
3788 if (xregno == STACK_POINTER_REGNUM
3789 /* We should convert hard stack register in LRA if it is
3790 possible. */
3791 && ! lra_in_progress)
3792 return -1;
3793
3794 /* Try to get the register offset. */
3795 subreg_get_info (xregno, xmode, offset, ymode, &info);
3796 if (!info.representable_p)
3797 return -1;
3798
3799 /* Make sure that the offsetted register value is in range. */
3800 yregno = xregno + info.offset;
3801 if (!HARD_REGISTER_NUM_P (yregno))
3802 return -1;
3803
3804 /* See whether (reg:YMODE YREGNO) is valid.
3805
3806 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3807 This is a kludge to work around how complex FP arguments are passed
3808 on IA-64 and should be fixed. See PR target/49226. */
3809 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3810 && HARD_REGNO_MODE_OK (xregno, xmode))
3811 return -1;
3812
3813 return (int) yregno;
3814 }
3815
3816 /* Return the final regno that a subreg expression refers to. */
3817 unsigned int
3818 subreg_regno (const_rtx x)
3819 {
3820 unsigned int ret;
3821 rtx subreg = SUBREG_REG (x);
3822 int regno = REGNO (subreg);
3823
3824 ret = regno + subreg_regno_offset (regno,
3825 GET_MODE (subreg),
3826 SUBREG_BYTE (x),
3827 GET_MODE (x));
3828 return ret;
3829
3830 }
3831
3832 /* Return the number of registers that a subreg expression refers
3833 to. */
3834 unsigned int
3835 subreg_nregs (const_rtx x)
3836 {
3837 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3838 }
3839
3840 /* Return the number of registers that a subreg REG with REGNO
3841 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3842 changed so that the regno can be passed in. */
3843
3844 unsigned int
3845 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3846 {
3847 struct subreg_info info;
3848 rtx subreg = SUBREG_REG (x);
3849
3850 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3851 &info);
3852 return info.nregs;
3853 }
3854
3855
3856 struct parms_set_data
3857 {
3858 int nregs;
3859 HARD_REG_SET regs;
3860 };
3861
3862 /* Helper function for noticing stores to parameter registers. */
3863 static void
3864 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3865 {
3866 struct parms_set_data *const d = (struct parms_set_data *) data;
3867 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3868 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3869 {
3870 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3871 d->nregs--;
3872 }
3873 }
3874
3875 /* Look backward for first parameter to be loaded.
3876 Note that loads of all parameters will not necessarily be
3877 found if CSE has eliminated some of them (e.g., an argument
3878 to the outer function is passed down as a parameter).
3879 Do not skip BOUNDARY. */
3880 rtx_insn *
3881 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3882 {
3883 struct parms_set_data parm;
3884 rtx p;
3885 rtx_insn *before, *first_set;
3886
3887 /* Since different machines initialize their parameter registers
3888 in different orders, assume nothing. Collect the set of all
3889 parameter registers. */
3890 CLEAR_HARD_REG_SET (parm.regs);
3891 parm.nregs = 0;
3892 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3893 if (GET_CODE (XEXP (p, 0)) == USE
3894 && REG_P (XEXP (XEXP (p, 0), 0)))
3895 {
3896 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3897
3898 /* We only care about registers which can hold function
3899 arguments. */
3900 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3901 continue;
3902
3903 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3904 parm.nregs++;
3905 }
3906 before = call_insn;
3907 first_set = call_insn;
3908
3909 /* Search backward for the first set of a register in this set. */
3910 while (parm.nregs && before != boundary)
3911 {
3912 before = PREV_INSN (before);
3913
3914 /* It is possible that some loads got CSEed from one call to
3915 another. Stop in that case. */
3916 if (CALL_P (before))
3917 break;
3918
3919 /* Our caller needs either ensure that we will find all sets
3920 (in case code has not been optimized yet), or take care
3921 for possible labels in a way by setting boundary to preceding
3922 CODE_LABEL. */
3923 if (LABEL_P (before))
3924 {
3925 gcc_assert (before == boundary);
3926 break;
3927 }
3928
3929 if (INSN_P (before))
3930 {
3931 int nregs_old = parm.nregs;
3932 note_stores (PATTERN (before), parms_set, &parm);
3933 /* If we found something that did not set a parameter reg,
3934 we're done. Do not keep going, as that might result
3935 in hoisting an insn before the setting of a pseudo
3936 that is used by the hoisted insn. */
3937 if (nregs_old != parm.nregs)
3938 first_set = before;
3939 else
3940 break;
3941 }
3942 }
3943 return first_set;
3944 }
3945
3946 /* Return true if we should avoid inserting code between INSN and preceding
3947 call instruction. */
3948
3949 bool
3950 keep_with_call_p (const rtx_insn *insn)
3951 {
3952 rtx set;
3953
3954 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3955 {
3956 if (REG_P (SET_DEST (set))
3957 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3958 && fixed_regs[REGNO (SET_DEST (set))]
3959 && general_operand (SET_SRC (set), VOIDmode))
3960 return true;
3961 if (REG_P (SET_SRC (set))
3962 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3963 && REG_P (SET_DEST (set))
3964 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3965 return true;
3966 /* There may be a stack pop just after the call and before the store
3967 of the return register. Search for the actual store when deciding
3968 if we can break or not. */
3969 if (SET_DEST (set) == stack_pointer_rtx)
3970 {
3971 /* This CONST_CAST is okay because next_nonnote_insn just
3972 returns its argument and we assign it to a const_rtx
3973 variable. */
3974 const rtx_insn *i2
3975 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3976 if (i2 && keep_with_call_p (i2))
3977 return true;
3978 }
3979 }
3980 return false;
3981 }
3982
3983 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3984 to non-complex jumps. That is, direct unconditional, conditional,
3985 and tablejumps, but not computed jumps or returns. It also does
3986 not apply to the fallthru case of a conditional jump. */
3987
3988 bool
3989 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
3990 {
3991 rtx tmp = JUMP_LABEL (jump_insn);
3992 rtx_jump_table_data *table;
3993
3994 if (label == tmp)
3995 return true;
3996
3997 if (tablejump_p (jump_insn, NULL, &table))
3998 {
3999 rtvec vec = table->get_labels ();
4000 int i, veclen = GET_NUM_ELEM (vec);
4001
4002 for (i = 0; i < veclen; ++i)
4003 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4004 return true;
4005 }
4006
4007 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4008 return true;
4009
4010 return false;
4011 }
4012
4013 \f
4014 /* Return an estimate of the cost of computing rtx X.
4015 One use is in cse, to decide which expression to keep in the hash table.
4016 Another is in rtl generation, to pick the cheapest way to multiply.
4017 Other uses like the latter are expected in the future.
4018
4019 X appears as operand OPNO in an expression with code OUTER_CODE.
4020 SPEED specifies whether costs optimized for speed or size should
4021 be returned. */
4022
4023 int
4024 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4025 int opno, bool speed)
4026 {
4027 int i, j;
4028 enum rtx_code code;
4029 const char *fmt;
4030 int total;
4031 int factor;
4032
4033 if (x == 0)
4034 return 0;
4035
4036 if (GET_MODE (x) != VOIDmode)
4037 mode = GET_MODE (x);
4038
4039 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4040 many insns, taking N times as long. */
4041 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4042 if (factor == 0)
4043 factor = 1;
4044
4045 /* Compute the default costs of certain things.
4046 Note that targetm.rtx_costs can override the defaults. */
4047
4048 code = GET_CODE (x);
4049 switch (code)
4050 {
4051 case MULT:
4052 /* Multiplication has time-complexity O(N*N), where N is the
4053 number of units (translated from digits) when using
4054 schoolbook long multiplication. */
4055 total = factor * factor * COSTS_N_INSNS (5);
4056 break;
4057 case DIV:
4058 case UDIV:
4059 case MOD:
4060 case UMOD:
4061 /* Similarly, complexity for schoolbook long division. */
4062 total = factor * factor * COSTS_N_INSNS (7);
4063 break;
4064 case USE:
4065 /* Used in combine.c as a marker. */
4066 total = 0;
4067 break;
4068 case SET:
4069 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4070 the mode for the factor. */
4071 mode = GET_MODE (SET_DEST (x));
4072 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4073 if (factor == 0)
4074 factor = 1;
4075 /* Pass through. */
4076 default:
4077 total = factor * COSTS_N_INSNS (1);
4078 }
4079
4080 switch (code)
4081 {
4082 case REG:
4083 return 0;
4084
4085 case SUBREG:
4086 total = 0;
4087 /* If we can't tie these modes, make this expensive. The larger
4088 the mode, the more expensive it is. */
4089 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4090 return COSTS_N_INSNS (2 + factor);
4091 break;
4092
4093 default:
4094 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4095 return total;
4096 break;
4097 }
4098
4099 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4100 which is already in total. */
4101
4102 fmt = GET_RTX_FORMAT (code);
4103 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4104 if (fmt[i] == 'e')
4105 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4106 else if (fmt[i] == 'E')
4107 for (j = 0; j < XVECLEN (x, i); j++)
4108 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4109
4110 return total;
4111 }
4112
4113 /* Fill in the structure C with information about both speed and size rtx
4114 costs for X, which is operand OPNO in an expression with code OUTER. */
4115
4116 void
4117 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4118 struct full_rtx_costs *c)
4119 {
4120 c->speed = rtx_cost (x, mode, outer, opno, true);
4121 c->size = rtx_cost (x, mode, outer, opno, false);
4122 }
4123
4124 \f
4125 /* Return cost of address expression X.
4126 Expect that X is properly formed address reference.
4127
4128 SPEED parameter specify whether costs optimized for speed or size should
4129 be returned. */
4130
4131 int
4132 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4133 {
4134 /* We may be asked for cost of various unusual addresses, such as operands
4135 of push instruction. It is not worthwhile to complicate writing
4136 of the target hook by such cases. */
4137
4138 if (!memory_address_addr_space_p (mode, x, as))
4139 return 1000;
4140
4141 return targetm.address_cost (x, mode, as, speed);
4142 }
4143
4144 /* If the target doesn't override, compute the cost as with arithmetic. */
4145
4146 int
4147 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4148 {
4149 return rtx_cost (x, Pmode, MEM, 0, speed);
4150 }
4151 \f
4152
4153 unsigned HOST_WIDE_INT
4154 nonzero_bits (const_rtx x, machine_mode mode)
4155 {
4156 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4157 }
4158
4159 unsigned int
4160 num_sign_bit_copies (const_rtx x, machine_mode mode)
4161 {
4162 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4163 }
4164
4165 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4166 It avoids exponential behavior in nonzero_bits1 when X has
4167 identical subexpressions on the first or the second level. */
4168
4169 static unsigned HOST_WIDE_INT
4170 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4171 machine_mode known_mode,
4172 unsigned HOST_WIDE_INT known_ret)
4173 {
4174 if (x == known_x && mode == known_mode)
4175 return known_ret;
4176
4177 /* Try to find identical subexpressions. If found call
4178 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4179 precomputed value for the subexpression as KNOWN_RET. */
4180
4181 if (ARITHMETIC_P (x))
4182 {
4183 rtx x0 = XEXP (x, 0);
4184 rtx x1 = XEXP (x, 1);
4185
4186 /* Check the first level. */
4187 if (x0 == x1)
4188 return nonzero_bits1 (x, mode, x0, mode,
4189 cached_nonzero_bits (x0, mode, known_x,
4190 known_mode, known_ret));
4191
4192 /* Check the second level. */
4193 if (ARITHMETIC_P (x0)
4194 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4195 return nonzero_bits1 (x, mode, x1, mode,
4196 cached_nonzero_bits (x1, mode, known_x,
4197 known_mode, known_ret));
4198
4199 if (ARITHMETIC_P (x1)
4200 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4201 return nonzero_bits1 (x, mode, x0, mode,
4202 cached_nonzero_bits (x0, mode, known_x,
4203 known_mode, known_ret));
4204 }
4205
4206 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4207 }
4208
4209 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4210 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4211 is less useful. We can't allow both, because that results in exponential
4212 run time recursion. There is a nullstone testcase that triggered
4213 this. This macro avoids accidental uses of num_sign_bit_copies. */
4214 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4215
4216 /* Given an expression, X, compute which bits in X can be nonzero.
4217 We don't care about bits outside of those defined in MODE.
4218
4219 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4220 an arithmetic operation, we can do better. */
4221
4222 static unsigned HOST_WIDE_INT
4223 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4224 machine_mode known_mode,
4225 unsigned HOST_WIDE_INT known_ret)
4226 {
4227 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4228 unsigned HOST_WIDE_INT inner_nz;
4229 enum rtx_code code;
4230 machine_mode inner_mode;
4231 unsigned int mode_width = GET_MODE_PRECISION (mode);
4232
4233 /* For floating-point and vector values, assume all bits are needed. */
4234 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4235 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4236 return nonzero;
4237
4238 /* If X is wider than MODE, use its mode instead. */
4239 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4240 {
4241 mode = GET_MODE (x);
4242 nonzero = GET_MODE_MASK (mode);
4243 mode_width = GET_MODE_PRECISION (mode);
4244 }
4245
4246 if (mode_width > HOST_BITS_PER_WIDE_INT)
4247 /* Our only callers in this case look for single bit values. So
4248 just return the mode mask. Those tests will then be false. */
4249 return nonzero;
4250
4251 /* If MODE is wider than X, but both are a single word for both the host
4252 and target machines, we can compute this from which bits of the
4253 object might be nonzero in its own mode, taking into account the fact
4254 that on many CISC machines, accessing an object in a wider mode
4255 causes the high-order bits to become undefined. So they are
4256 not known to be zero. */
4257
4258 if (!WORD_REGISTER_OPERATIONS
4259 && GET_MODE (x) != VOIDmode
4260 && GET_MODE (x) != mode
4261 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4262 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4263 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4264 {
4265 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4266 known_x, known_mode, known_ret);
4267 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4268 return nonzero;
4269 }
4270
4271 code = GET_CODE (x);
4272 switch (code)
4273 {
4274 case REG:
4275 #if defined(POINTERS_EXTEND_UNSIGNED)
4276 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4277 all the bits above ptr_mode are known to be zero. */
4278 /* As we do not know which address space the pointer is referring to,
4279 we can do this only if the target does not support different pointer
4280 or address modes depending on the address space. */
4281 if (target_default_pointer_address_modes_p ()
4282 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4283 && REG_POINTER (x)
4284 && !targetm.have_ptr_extend ())
4285 nonzero &= GET_MODE_MASK (ptr_mode);
4286 #endif
4287
4288 /* Include declared information about alignment of pointers. */
4289 /* ??? We don't properly preserve REG_POINTER changes across
4290 pointer-to-integer casts, so we can't trust it except for
4291 things that we know must be pointers. See execute/960116-1.c. */
4292 if ((x == stack_pointer_rtx
4293 || x == frame_pointer_rtx
4294 || x == arg_pointer_rtx)
4295 && REGNO_POINTER_ALIGN (REGNO (x)))
4296 {
4297 unsigned HOST_WIDE_INT alignment
4298 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4299
4300 #ifdef PUSH_ROUNDING
4301 /* If PUSH_ROUNDING is defined, it is possible for the
4302 stack to be momentarily aligned only to that amount,
4303 so we pick the least alignment. */
4304 if (x == stack_pointer_rtx && PUSH_ARGS)
4305 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4306 alignment);
4307 #endif
4308
4309 nonzero &= ~(alignment - 1);
4310 }
4311
4312 {
4313 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4314 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4315 known_mode, known_ret,
4316 &nonzero_for_hook);
4317
4318 if (new_rtx)
4319 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4320 known_mode, known_ret);
4321
4322 return nonzero_for_hook;
4323 }
4324
4325 case CONST_INT:
4326 /* If X is negative in MODE, sign-extend the value. */
4327 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4328 && mode_width < BITS_PER_WORD
4329 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4330 != 0)
4331 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4332
4333 return UINTVAL (x);
4334
4335 case MEM:
4336 #ifdef LOAD_EXTEND_OP
4337 /* In many, if not most, RISC machines, reading a byte from memory
4338 zeros the rest of the register. Noticing that fact saves a lot
4339 of extra zero-extends. */
4340 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4341 nonzero &= GET_MODE_MASK (GET_MODE (x));
4342 #endif
4343 break;
4344
4345 case EQ: case NE:
4346 case UNEQ: case LTGT:
4347 case GT: case GTU: case UNGT:
4348 case LT: case LTU: case UNLT:
4349 case GE: case GEU: case UNGE:
4350 case LE: case LEU: case UNLE:
4351 case UNORDERED: case ORDERED:
4352 /* If this produces an integer result, we know which bits are set.
4353 Code here used to clear bits outside the mode of X, but that is
4354 now done above. */
4355 /* Mind that MODE is the mode the caller wants to look at this
4356 operation in, and not the actual operation mode. We can wind
4357 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4358 that describes the results of a vector compare. */
4359 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4360 && mode_width <= HOST_BITS_PER_WIDE_INT)
4361 nonzero = STORE_FLAG_VALUE;
4362 break;
4363
4364 case NEG:
4365 #if 0
4366 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4367 and num_sign_bit_copies. */
4368 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4369 == GET_MODE_PRECISION (GET_MODE (x)))
4370 nonzero = 1;
4371 #endif
4372
4373 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4374 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4375 break;
4376
4377 case ABS:
4378 #if 0
4379 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4380 and num_sign_bit_copies. */
4381 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4382 == GET_MODE_PRECISION (GET_MODE (x)))
4383 nonzero = 1;
4384 #endif
4385 break;
4386
4387 case TRUNCATE:
4388 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4389 known_x, known_mode, known_ret)
4390 & GET_MODE_MASK (mode));
4391 break;
4392
4393 case ZERO_EXTEND:
4394 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4395 known_x, known_mode, known_ret);
4396 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4397 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4398 break;
4399
4400 case SIGN_EXTEND:
4401 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4402 Otherwise, show all the bits in the outer mode but not the inner
4403 may be nonzero. */
4404 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4405 known_x, known_mode, known_ret);
4406 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4407 {
4408 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4409 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4410 inner_nz |= (GET_MODE_MASK (mode)
4411 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4412 }
4413
4414 nonzero &= inner_nz;
4415 break;
4416
4417 case AND:
4418 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4419 known_x, known_mode, known_ret)
4420 & cached_nonzero_bits (XEXP (x, 1), mode,
4421 known_x, known_mode, known_ret);
4422 break;
4423
4424 case XOR: case IOR:
4425 case UMIN: case UMAX: case SMIN: case SMAX:
4426 {
4427 unsigned HOST_WIDE_INT nonzero0
4428 = cached_nonzero_bits (XEXP (x, 0), mode,
4429 known_x, known_mode, known_ret);
4430
4431 /* Don't call nonzero_bits for the second time if it cannot change
4432 anything. */
4433 if ((nonzero & nonzero0) != nonzero)
4434 nonzero &= nonzero0
4435 | cached_nonzero_bits (XEXP (x, 1), mode,
4436 known_x, known_mode, known_ret);
4437 }
4438 break;
4439
4440 case PLUS: case MINUS:
4441 case MULT:
4442 case DIV: case UDIV:
4443 case MOD: case UMOD:
4444 /* We can apply the rules of arithmetic to compute the number of
4445 high- and low-order zero bits of these operations. We start by
4446 computing the width (position of the highest-order nonzero bit)
4447 and the number of low-order zero bits for each value. */
4448 {
4449 unsigned HOST_WIDE_INT nz0
4450 = cached_nonzero_bits (XEXP (x, 0), mode,
4451 known_x, known_mode, known_ret);
4452 unsigned HOST_WIDE_INT nz1
4453 = cached_nonzero_bits (XEXP (x, 1), mode,
4454 known_x, known_mode, known_ret);
4455 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4456 int width0 = floor_log2 (nz0) + 1;
4457 int width1 = floor_log2 (nz1) + 1;
4458 int low0 = floor_log2 (nz0 & -nz0);
4459 int low1 = floor_log2 (nz1 & -nz1);
4460 unsigned HOST_WIDE_INT op0_maybe_minusp
4461 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4462 unsigned HOST_WIDE_INT op1_maybe_minusp
4463 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4464 unsigned int result_width = mode_width;
4465 int result_low = 0;
4466
4467 switch (code)
4468 {
4469 case PLUS:
4470 result_width = MAX (width0, width1) + 1;
4471 result_low = MIN (low0, low1);
4472 break;
4473 case MINUS:
4474 result_low = MIN (low0, low1);
4475 break;
4476 case MULT:
4477 result_width = width0 + width1;
4478 result_low = low0 + low1;
4479 break;
4480 case DIV:
4481 if (width1 == 0)
4482 break;
4483 if (!op0_maybe_minusp && !op1_maybe_minusp)
4484 result_width = width0;
4485 break;
4486 case UDIV:
4487 if (width1 == 0)
4488 break;
4489 result_width = width0;
4490 break;
4491 case MOD:
4492 if (width1 == 0)
4493 break;
4494 if (!op0_maybe_minusp && !op1_maybe_minusp)
4495 result_width = MIN (width0, width1);
4496 result_low = MIN (low0, low1);
4497 break;
4498 case UMOD:
4499 if (width1 == 0)
4500 break;
4501 result_width = MIN (width0, width1);
4502 result_low = MIN (low0, low1);
4503 break;
4504 default:
4505 gcc_unreachable ();
4506 }
4507
4508 if (result_width < mode_width)
4509 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4510
4511 if (result_low > 0)
4512 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4513 }
4514 break;
4515
4516 case ZERO_EXTRACT:
4517 if (CONST_INT_P (XEXP (x, 1))
4518 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4519 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4520 break;
4521
4522 case SUBREG:
4523 /* If this is a SUBREG formed for a promoted variable that has
4524 been zero-extended, we know that at least the high-order bits
4525 are zero, though others might be too. */
4526
4527 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4528 nonzero = GET_MODE_MASK (GET_MODE (x))
4529 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4530 known_x, known_mode, known_ret);
4531
4532 inner_mode = GET_MODE (SUBREG_REG (x));
4533 /* If the inner mode is a single word for both the host and target
4534 machines, we can compute this from which bits of the inner
4535 object might be nonzero. */
4536 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4537 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4538 {
4539 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4540 known_x, known_mode, known_ret);
4541
4542 #if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
4543 /* If this is a typical RISC machine, we only have to worry
4544 about the way loads are extended. */
4545 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4546 ? val_signbit_known_set_p (inner_mode, nonzero)
4547 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4548 || !MEM_P (SUBREG_REG (x)))
4549 #endif
4550 {
4551 /* On many CISC machines, accessing an object in a wider mode
4552 causes the high-order bits to become undefined. So they are
4553 not known to be zero. */
4554 if (GET_MODE_PRECISION (GET_MODE (x))
4555 > GET_MODE_PRECISION (inner_mode))
4556 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4557 & ~GET_MODE_MASK (inner_mode));
4558 }
4559 }
4560 break;
4561
4562 case ASHIFTRT:
4563 case LSHIFTRT:
4564 case ASHIFT:
4565 case ROTATE:
4566 /* The nonzero bits are in two classes: any bits within MODE
4567 that aren't in GET_MODE (x) are always significant. The rest of the
4568 nonzero bits are those that are significant in the operand of
4569 the shift when shifted the appropriate number of bits. This
4570 shows that high-order bits are cleared by the right shift and
4571 low-order bits by left shifts. */
4572 if (CONST_INT_P (XEXP (x, 1))
4573 && INTVAL (XEXP (x, 1)) >= 0
4574 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4575 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4576 {
4577 machine_mode inner_mode = GET_MODE (x);
4578 unsigned int width = GET_MODE_PRECISION (inner_mode);
4579 int count = INTVAL (XEXP (x, 1));
4580 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4581 unsigned HOST_WIDE_INT op_nonzero
4582 = cached_nonzero_bits (XEXP (x, 0), mode,
4583 known_x, known_mode, known_ret);
4584 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4585 unsigned HOST_WIDE_INT outer = 0;
4586
4587 if (mode_width > width)
4588 outer = (op_nonzero & nonzero & ~mode_mask);
4589
4590 if (code == LSHIFTRT)
4591 inner >>= count;
4592 else if (code == ASHIFTRT)
4593 {
4594 inner >>= count;
4595
4596 /* If the sign bit may have been nonzero before the shift, we
4597 need to mark all the places it could have been copied to
4598 by the shift as possibly nonzero. */
4599 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4600 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4601 << (width - count);
4602 }
4603 else if (code == ASHIFT)
4604 inner <<= count;
4605 else
4606 inner = ((inner << (count % width)
4607 | (inner >> (width - (count % width)))) & mode_mask);
4608
4609 nonzero &= (outer | inner);
4610 }
4611 break;
4612
4613 case FFS:
4614 case POPCOUNT:
4615 /* This is at most the number of bits in the mode. */
4616 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4617 break;
4618
4619 case CLZ:
4620 /* If CLZ has a known value at zero, then the nonzero bits are
4621 that value, plus the number of bits in the mode minus one. */
4622 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4623 nonzero
4624 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4625 else
4626 nonzero = -1;
4627 break;
4628
4629 case CTZ:
4630 /* If CTZ has a known value at zero, then the nonzero bits are
4631 that value, plus the number of bits in the mode minus one. */
4632 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4633 nonzero
4634 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4635 else
4636 nonzero = -1;
4637 break;
4638
4639 case CLRSB:
4640 /* This is at most the number of bits in the mode minus 1. */
4641 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4642 break;
4643
4644 case PARITY:
4645 nonzero = 1;
4646 break;
4647
4648 case IF_THEN_ELSE:
4649 {
4650 unsigned HOST_WIDE_INT nonzero_true
4651 = cached_nonzero_bits (XEXP (x, 1), mode,
4652 known_x, known_mode, known_ret);
4653
4654 /* Don't call nonzero_bits for the second time if it cannot change
4655 anything. */
4656 if ((nonzero & nonzero_true) != nonzero)
4657 nonzero &= nonzero_true
4658 | cached_nonzero_bits (XEXP (x, 2), mode,
4659 known_x, known_mode, known_ret);
4660 }
4661 break;
4662
4663 default:
4664 break;
4665 }
4666
4667 return nonzero;
4668 }
4669
4670 /* See the macro definition above. */
4671 #undef cached_num_sign_bit_copies
4672
4673 \f
4674 /* The function cached_num_sign_bit_copies is a wrapper around
4675 num_sign_bit_copies1. It avoids exponential behavior in
4676 num_sign_bit_copies1 when X has identical subexpressions on the
4677 first or the second level. */
4678
4679 static unsigned int
4680 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4681 machine_mode known_mode,
4682 unsigned int known_ret)
4683 {
4684 if (x == known_x && mode == known_mode)
4685 return known_ret;
4686
4687 /* Try to find identical subexpressions. If found call
4688 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4689 the precomputed value for the subexpression as KNOWN_RET. */
4690
4691 if (ARITHMETIC_P (x))
4692 {
4693 rtx x0 = XEXP (x, 0);
4694 rtx x1 = XEXP (x, 1);
4695
4696 /* Check the first level. */
4697 if (x0 == x1)
4698 return
4699 num_sign_bit_copies1 (x, mode, x0, mode,
4700 cached_num_sign_bit_copies (x0, mode, known_x,
4701 known_mode,
4702 known_ret));
4703
4704 /* Check the second level. */
4705 if (ARITHMETIC_P (x0)
4706 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4707 return
4708 num_sign_bit_copies1 (x, mode, x1, mode,
4709 cached_num_sign_bit_copies (x1, mode, known_x,
4710 known_mode,
4711 known_ret));
4712
4713 if (ARITHMETIC_P (x1)
4714 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4715 return
4716 num_sign_bit_copies1 (x, mode, x0, mode,
4717 cached_num_sign_bit_copies (x0, mode, known_x,
4718 known_mode,
4719 known_ret));
4720 }
4721
4722 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4723 }
4724
4725 /* Return the number of bits at the high-order end of X that are known to
4726 be equal to the sign bit. X will be used in mode MODE; if MODE is
4727 VOIDmode, X will be used in its own mode. The returned value will always
4728 be between 1 and the number of bits in MODE. */
4729
4730 static unsigned int
4731 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4732 machine_mode known_mode,
4733 unsigned int known_ret)
4734 {
4735 enum rtx_code code = GET_CODE (x);
4736 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4737 int num0, num1, result;
4738 unsigned HOST_WIDE_INT nonzero;
4739
4740 /* If we weren't given a mode, use the mode of X. If the mode is still
4741 VOIDmode, we don't know anything. Likewise if one of the modes is
4742 floating-point. */
4743
4744 if (mode == VOIDmode)
4745 mode = GET_MODE (x);
4746
4747 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4748 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4749 return 1;
4750
4751 /* For a smaller object, just ignore the high bits. */
4752 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4753 {
4754 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4755 known_x, known_mode, known_ret);
4756 return MAX (1,
4757 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4758 }
4759
4760 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4761 {
4762 /* If this machine does not do all register operations on the entire
4763 register and MODE is wider than the mode of X, we can say nothing
4764 at all about the high-order bits. */
4765 if (!WORD_REGISTER_OPERATIONS)
4766 return 1;
4767
4768 /* Likewise on machines that do, if the mode of the object is smaller
4769 than a word and loads of that size don't sign extend, we can say
4770 nothing about the high order bits. */
4771 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4772 #ifdef LOAD_EXTEND_OP
4773 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4774 #endif
4775 )
4776 return 1;
4777 }
4778
4779 switch (code)
4780 {
4781 case REG:
4782
4783 #if defined(POINTERS_EXTEND_UNSIGNED)
4784 /* If pointers extend signed and this is a pointer in Pmode, say that
4785 all the bits above ptr_mode are known to be sign bit copies. */
4786 /* As we do not know which address space the pointer is referring to,
4787 we can do this only if the target does not support different pointer
4788 or address modes depending on the address space. */
4789 if (target_default_pointer_address_modes_p ()
4790 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4791 && mode == Pmode && REG_POINTER (x)
4792 && !targetm.have_ptr_extend ())
4793 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4794 #endif
4795
4796 {
4797 unsigned int copies_for_hook = 1, copies = 1;
4798 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4799 known_mode, known_ret,
4800 &copies_for_hook);
4801
4802 if (new_rtx)
4803 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4804 known_mode, known_ret);
4805
4806 if (copies > 1 || copies_for_hook > 1)
4807 return MAX (copies, copies_for_hook);
4808
4809 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4810 }
4811 break;
4812
4813 case MEM:
4814 #ifdef LOAD_EXTEND_OP
4815 /* Some RISC machines sign-extend all loads of smaller than a word. */
4816 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4817 return MAX (1, ((int) bitwidth
4818 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4819 #endif
4820 break;
4821
4822 case CONST_INT:
4823 /* If the constant is negative, take its 1's complement and remask.
4824 Then see how many zero bits we have. */
4825 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4826 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4827 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4828 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4829
4830 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4831
4832 case SUBREG:
4833 /* If this is a SUBREG for a promoted object that is sign-extended
4834 and we are looking at it in a wider mode, we know that at least the
4835 high-order bits are known to be sign bit copies. */
4836
4837 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4838 {
4839 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4840 known_x, known_mode, known_ret);
4841 return MAX ((int) bitwidth
4842 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4843 num0);
4844 }
4845
4846 /* For a smaller object, just ignore the high bits. */
4847 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4848 {
4849 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4850 known_x, known_mode, known_ret);
4851 return MAX (1, (num0
4852 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4853 - bitwidth)));
4854 }
4855
4856 #ifdef LOAD_EXTEND_OP
4857 /* For paradoxical SUBREGs on machines where all register operations
4858 affect the entire register, just look inside. Note that we are
4859 passing MODE to the recursive call, so the number of sign bit copies
4860 will remain relative to that mode, not the inner mode. */
4861
4862 /* This works only if loads sign extend. Otherwise, if we get a
4863 reload for the inner part, it may be loaded from the stack, and
4864 then we lose all sign bit copies that existed before the store
4865 to the stack. */
4866
4867 if (WORD_REGISTER_OPERATIONS
4868 && paradoxical_subreg_p (x)
4869 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4870 && MEM_P (SUBREG_REG (x)))
4871 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4872 known_x, known_mode, known_ret);
4873 #endif
4874 break;
4875
4876 case SIGN_EXTRACT:
4877 if (CONST_INT_P (XEXP (x, 1)))
4878 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4879 break;
4880
4881 case SIGN_EXTEND:
4882 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4883 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4884 known_x, known_mode, known_ret));
4885
4886 case TRUNCATE:
4887 /* For a smaller object, just ignore the high bits. */
4888 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4889 known_x, known_mode, known_ret);
4890 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4891 - bitwidth)));
4892
4893 case NOT:
4894 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4895 known_x, known_mode, known_ret);
4896
4897 case ROTATE: case ROTATERT:
4898 /* If we are rotating left by a number of bits less than the number
4899 of sign bit copies, we can just subtract that amount from the
4900 number. */
4901 if (CONST_INT_P (XEXP (x, 1))
4902 && INTVAL (XEXP (x, 1)) >= 0
4903 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4904 {
4905 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4906 known_x, known_mode, known_ret);
4907 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4908 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4909 }
4910 break;
4911
4912 case NEG:
4913 /* In general, this subtracts one sign bit copy. But if the value
4914 is known to be positive, the number of sign bit copies is the
4915 same as that of the input. Finally, if the input has just one bit
4916 that might be nonzero, all the bits are copies of the sign bit. */
4917 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4918 known_x, known_mode, known_ret);
4919 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4920 return num0 > 1 ? num0 - 1 : 1;
4921
4922 nonzero = nonzero_bits (XEXP (x, 0), mode);
4923 if (nonzero == 1)
4924 return bitwidth;
4925
4926 if (num0 > 1
4927 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4928 num0--;
4929
4930 return num0;
4931
4932 case IOR: case AND: case XOR:
4933 case SMIN: case SMAX: case UMIN: case UMAX:
4934 /* Logical operations will preserve the number of sign-bit copies.
4935 MIN and MAX operations always return one of the operands. */
4936 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4937 known_x, known_mode, known_ret);
4938 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4939 known_x, known_mode, known_ret);
4940
4941 /* If num1 is clearing some of the top bits then regardless of
4942 the other term, we are guaranteed to have at least that many
4943 high-order zero bits. */
4944 if (code == AND
4945 && num1 > 1
4946 && bitwidth <= HOST_BITS_PER_WIDE_INT
4947 && CONST_INT_P (XEXP (x, 1))
4948 && (UINTVAL (XEXP (x, 1))
4949 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4950 return num1;
4951
4952 /* Similarly for IOR when setting high-order bits. */
4953 if (code == IOR
4954 && num1 > 1
4955 && bitwidth <= HOST_BITS_PER_WIDE_INT
4956 && CONST_INT_P (XEXP (x, 1))
4957 && (UINTVAL (XEXP (x, 1))
4958 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4959 return num1;
4960
4961 return MIN (num0, num1);
4962
4963 case PLUS: case MINUS:
4964 /* For addition and subtraction, we can have a 1-bit carry. However,
4965 if we are subtracting 1 from a positive number, there will not
4966 be such a carry. Furthermore, if the positive number is known to
4967 be 0 or 1, we know the result is either -1 or 0. */
4968
4969 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4970 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4971 {
4972 nonzero = nonzero_bits (XEXP (x, 0), mode);
4973 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4974 return (nonzero == 1 || nonzero == 0 ? bitwidth
4975 : bitwidth - floor_log2 (nonzero) - 1);
4976 }
4977
4978 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4979 known_x, known_mode, known_ret);
4980 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4981 known_x, known_mode, known_ret);
4982 result = MAX (1, MIN (num0, num1) - 1);
4983
4984 return result;
4985
4986 case MULT:
4987 /* The number of bits of the product is the sum of the number of
4988 bits of both terms. However, unless one of the terms if known
4989 to be positive, we must allow for an additional bit since negating
4990 a negative number can remove one sign bit copy. */
4991
4992 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4993 known_x, known_mode, known_ret);
4994 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4995 known_x, known_mode, known_ret);
4996
4997 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4998 if (result > 0
4999 && (bitwidth > HOST_BITS_PER_WIDE_INT
5000 || (((nonzero_bits (XEXP (x, 0), mode)
5001 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5002 && ((nonzero_bits (XEXP (x, 1), mode)
5003 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5004 != 0))))
5005 result--;
5006
5007 return MAX (1, result);
5008
5009 case UDIV:
5010 /* The result must be <= the first operand. If the first operand
5011 has the high bit set, we know nothing about the number of sign
5012 bit copies. */
5013 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5014 return 1;
5015 else if ((nonzero_bits (XEXP (x, 0), mode)
5016 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5017 return 1;
5018 else
5019 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5020 known_x, known_mode, known_ret);
5021
5022 case UMOD:
5023 /* The result must be <= the second operand. If the second operand
5024 has (or just might have) the high bit set, we know nothing about
5025 the number of sign bit copies. */
5026 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5027 return 1;
5028 else if ((nonzero_bits (XEXP (x, 1), mode)
5029 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5030 return 1;
5031 else
5032 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5033 known_x, known_mode, known_ret);
5034
5035 case DIV:
5036 /* Similar to unsigned division, except that we have to worry about
5037 the case where the divisor is negative, in which case we have
5038 to add 1. */
5039 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5040 known_x, known_mode, known_ret);
5041 if (result > 1
5042 && (bitwidth > HOST_BITS_PER_WIDE_INT
5043 || (nonzero_bits (XEXP (x, 1), mode)
5044 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5045 result--;
5046
5047 return result;
5048
5049 case MOD:
5050 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5051 known_x, known_mode, known_ret);
5052 if (result > 1
5053 && (bitwidth > HOST_BITS_PER_WIDE_INT
5054 || (nonzero_bits (XEXP (x, 1), mode)
5055 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5056 result--;
5057
5058 return result;
5059
5060 case ASHIFTRT:
5061 /* Shifts by a constant add to the number of bits equal to the
5062 sign bit. */
5063 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5064 known_x, known_mode, known_ret);
5065 if (CONST_INT_P (XEXP (x, 1))
5066 && INTVAL (XEXP (x, 1)) > 0
5067 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5068 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5069
5070 return num0;
5071
5072 case ASHIFT:
5073 /* Left shifts destroy copies. */
5074 if (!CONST_INT_P (XEXP (x, 1))
5075 || INTVAL (XEXP (x, 1)) < 0
5076 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5077 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5078 return 1;
5079
5080 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5081 known_x, known_mode, known_ret);
5082 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5083
5084 case IF_THEN_ELSE:
5085 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5086 known_x, known_mode, known_ret);
5087 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5088 known_x, known_mode, known_ret);
5089 return MIN (num0, num1);
5090
5091 case EQ: case NE: case GE: case GT: case LE: case LT:
5092 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5093 case GEU: case GTU: case LEU: case LTU:
5094 case UNORDERED: case ORDERED:
5095 /* If the constant is negative, take its 1's complement and remask.
5096 Then see how many zero bits we have. */
5097 nonzero = STORE_FLAG_VALUE;
5098 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5099 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5100 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5101
5102 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5103
5104 default:
5105 break;
5106 }
5107
5108 /* If we haven't been able to figure it out by one of the above rules,
5109 see if some of the high-order bits are known to be zero. If so,
5110 count those bits and return one less than that amount. If we can't
5111 safely compute the mask for this mode, always return BITWIDTH. */
5112
5113 bitwidth = GET_MODE_PRECISION (mode);
5114 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5115 return 1;
5116
5117 nonzero = nonzero_bits (x, mode);
5118 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5119 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5120 }
5121
5122 /* Calculate the rtx_cost of a single instruction. A return value of
5123 zero indicates an instruction pattern without a known cost. */
5124
5125 int
5126 insn_rtx_cost (rtx pat, bool speed)
5127 {
5128 int i, cost;
5129 rtx set;
5130
5131 /* Extract the single set rtx from the instruction pattern.
5132 We can't use single_set since we only have the pattern. */
5133 if (GET_CODE (pat) == SET)
5134 set = pat;
5135 else if (GET_CODE (pat) == PARALLEL)
5136 {
5137 set = NULL_RTX;
5138 for (i = 0; i < XVECLEN (pat, 0); i++)
5139 {
5140 rtx x = XVECEXP (pat, 0, i);
5141 if (GET_CODE (x) == SET)
5142 {
5143 if (set)
5144 return 0;
5145 set = x;
5146 }
5147 }
5148 if (!set)
5149 return 0;
5150 }
5151 else
5152 return 0;
5153
5154 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5155 return cost > 0 ? cost : COSTS_N_INSNS (1);
5156 }
5157
5158 /* Returns estimate on cost of computing SEQ. */
5159
5160 unsigned
5161 seq_cost (const rtx_insn *seq, bool speed)
5162 {
5163 unsigned cost = 0;
5164 rtx set;
5165
5166 for (; seq; seq = NEXT_INSN (seq))
5167 {
5168 set = single_set (seq);
5169 if (set)
5170 cost += set_rtx_cost (set, speed);
5171 else
5172 cost++;
5173 }
5174
5175 return cost;
5176 }
5177
5178 /* Given an insn INSN and condition COND, return the condition in a
5179 canonical form to simplify testing by callers. Specifically:
5180
5181 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5182 (2) Both operands will be machine operands; (cc0) will have been replaced.
5183 (3) If an operand is a constant, it will be the second operand.
5184 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5185 for GE, GEU, and LEU.
5186
5187 If the condition cannot be understood, or is an inequality floating-point
5188 comparison which needs to be reversed, 0 will be returned.
5189
5190 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5191
5192 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5193 insn used in locating the condition was found. If a replacement test
5194 of the condition is desired, it should be placed in front of that
5195 insn and we will be sure that the inputs are still valid.
5196
5197 If WANT_REG is nonzero, we wish the condition to be relative to that
5198 register, if possible. Therefore, do not canonicalize the condition
5199 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5200 to be a compare to a CC mode register.
5201
5202 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5203 and at INSN. */
5204
5205 rtx
5206 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5207 rtx_insn **earliest,
5208 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5209 {
5210 enum rtx_code code;
5211 rtx_insn *prev = insn;
5212 const_rtx set;
5213 rtx tem;
5214 rtx op0, op1;
5215 int reverse_code = 0;
5216 machine_mode mode;
5217 basic_block bb = BLOCK_FOR_INSN (insn);
5218
5219 code = GET_CODE (cond);
5220 mode = GET_MODE (cond);
5221 op0 = XEXP (cond, 0);
5222 op1 = XEXP (cond, 1);
5223
5224 if (reverse)
5225 code = reversed_comparison_code (cond, insn);
5226 if (code == UNKNOWN)
5227 return 0;
5228
5229 if (earliest)
5230 *earliest = insn;
5231
5232 /* If we are comparing a register with zero, see if the register is set
5233 in the previous insn to a COMPARE or a comparison operation. Perform
5234 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5235 in cse.c */
5236
5237 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5238 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5239 && op1 == CONST0_RTX (GET_MODE (op0))
5240 && op0 != want_reg)
5241 {
5242 /* Set nonzero when we find something of interest. */
5243 rtx x = 0;
5244
5245 /* If comparison with cc0, import actual comparison from compare
5246 insn. */
5247 if (op0 == cc0_rtx)
5248 {
5249 if ((prev = prev_nonnote_insn (prev)) == 0
5250 || !NONJUMP_INSN_P (prev)
5251 || (set = single_set (prev)) == 0
5252 || SET_DEST (set) != cc0_rtx)
5253 return 0;
5254
5255 op0 = SET_SRC (set);
5256 op1 = CONST0_RTX (GET_MODE (op0));
5257 if (earliest)
5258 *earliest = prev;
5259 }
5260
5261 /* If this is a COMPARE, pick up the two things being compared. */
5262 if (GET_CODE (op0) == COMPARE)
5263 {
5264 op1 = XEXP (op0, 1);
5265 op0 = XEXP (op0, 0);
5266 continue;
5267 }
5268 else if (!REG_P (op0))
5269 break;
5270
5271 /* Go back to the previous insn. Stop if it is not an INSN. We also
5272 stop if it isn't a single set or if it has a REG_INC note because
5273 we don't want to bother dealing with it. */
5274
5275 prev = prev_nonnote_nondebug_insn (prev);
5276
5277 if (prev == 0
5278 || !NONJUMP_INSN_P (prev)
5279 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5280 /* In cfglayout mode, there do not have to be labels at the
5281 beginning of a block, or jumps at the end, so the previous
5282 conditions would not stop us when we reach bb boundary. */
5283 || BLOCK_FOR_INSN (prev) != bb)
5284 break;
5285
5286 set = set_of (op0, prev);
5287
5288 if (set
5289 && (GET_CODE (set) != SET
5290 || !rtx_equal_p (SET_DEST (set), op0)))
5291 break;
5292
5293 /* If this is setting OP0, get what it sets it to if it looks
5294 relevant. */
5295 if (set)
5296 {
5297 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5298 #ifdef FLOAT_STORE_FLAG_VALUE
5299 REAL_VALUE_TYPE fsfv;
5300 #endif
5301
5302 /* ??? We may not combine comparisons done in a CCmode with
5303 comparisons not done in a CCmode. This is to aid targets
5304 like Alpha that have an IEEE compliant EQ instruction, and
5305 a non-IEEE compliant BEQ instruction. The use of CCmode is
5306 actually artificial, simply to prevent the combination, but
5307 should not affect other platforms.
5308
5309 However, we must allow VOIDmode comparisons to match either
5310 CCmode or non-CCmode comparison, because some ports have
5311 modeless comparisons inside branch patterns.
5312
5313 ??? This mode check should perhaps look more like the mode check
5314 in simplify_comparison in combine. */
5315 if (((GET_MODE_CLASS (mode) == MODE_CC)
5316 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5317 && mode != VOIDmode
5318 && inner_mode != VOIDmode)
5319 break;
5320 if (GET_CODE (SET_SRC (set)) == COMPARE
5321 || (((code == NE
5322 || (code == LT
5323 && val_signbit_known_set_p (inner_mode,
5324 STORE_FLAG_VALUE))
5325 #ifdef FLOAT_STORE_FLAG_VALUE
5326 || (code == LT
5327 && SCALAR_FLOAT_MODE_P (inner_mode)
5328 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5329 REAL_VALUE_NEGATIVE (fsfv)))
5330 #endif
5331 ))
5332 && COMPARISON_P (SET_SRC (set))))
5333 x = SET_SRC (set);
5334 else if (((code == EQ
5335 || (code == GE
5336 && val_signbit_known_set_p (inner_mode,
5337 STORE_FLAG_VALUE))
5338 #ifdef FLOAT_STORE_FLAG_VALUE
5339 || (code == GE
5340 && SCALAR_FLOAT_MODE_P (inner_mode)
5341 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5342 REAL_VALUE_NEGATIVE (fsfv)))
5343 #endif
5344 ))
5345 && COMPARISON_P (SET_SRC (set)))
5346 {
5347 reverse_code = 1;
5348 x = SET_SRC (set);
5349 }
5350 else if ((code == EQ || code == NE)
5351 && GET_CODE (SET_SRC (set)) == XOR)
5352 /* Handle sequences like:
5353
5354 (set op0 (xor X Y))
5355 ...(eq|ne op0 (const_int 0))...
5356
5357 in which case:
5358
5359 (eq op0 (const_int 0)) reduces to (eq X Y)
5360 (ne op0 (const_int 0)) reduces to (ne X Y)
5361
5362 This is the form used by MIPS16, for example. */
5363 x = SET_SRC (set);
5364 else
5365 break;
5366 }
5367
5368 else if (reg_set_p (op0, prev))
5369 /* If this sets OP0, but not directly, we have to give up. */
5370 break;
5371
5372 if (x)
5373 {
5374 /* If the caller is expecting the condition to be valid at INSN,
5375 make sure X doesn't change before INSN. */
5376 if (valid_at_insn_p)
5377 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5378 break;
5379 if (COMPARISON_P (x))
5380 code = GET_CODE (x);
5381 if (reverse_code)
5382 {
5383 code = reversed_comparison_code (x, prev);
5384 if (code == UNKNOWN)
5385 return 0;
5386 reverse_code = 0;
5387 }
5388
5389 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5390 if (earliest)
5391 *earliest = prev;
5392 }
5393 }
5394
5395 /* If constant is first, put it last. */
5396 if (CONSTANT_P (op0))
5397 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5398
5399 /* If OP0 is the result of a comparison, we weren't able to find what
5400 was really being compared, so fail. */
5401 if (!allow_cc_mode
5402 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5403 return 0;
5404
5405 /* Canonicalize any ordered comparison with integers involving equality
5406 if we can do computations in the relevant mode and we do not
5407 overflow. */
5408
5409 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5410 && CONST_INT_P (op1)
5411 && GET_MODE (op0) != VOIDmode
5412 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5413 {
5414 HOST_WIDE_INT const_val = INTVAL (op1);
5415 unsigned HOST_WIDE_INT uconst_val = const_val;
5416 unsigned HOST_WIDE_INT max_val
5417 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5418
5419 switch (code)
5420 {
5421 case LE:
5422 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5423 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5424 break;
5425
5426 /* When cross-compiling, const_val might be sign-extended from
5427 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5428 case GE:
5429 if ((const_val & max_val)
5430 != ((unsigned HOST_WIDE_INT) 1
5431 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5432 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5433 break;
5434
5435 case LEU:
5436 if (uconst_val < max_val)
5437 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5438 break;
5439
5440 case GEU:
5441 if (uconst_val != 0)
5442 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5443 break;
5444
5445 default:
5446 break;
5447 }
5448 }
5449
5450 /* Never return CC0; return zero instead. */
5451 if (CC0_P (op0))
5452 return 0;
5453
5454 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5455 }
5456
5457 /* Given a jump insn JUMP, return the condition that will cause it to branch
5458 to its JUMP_LABEL. If the condition cannot be understood, or is an
5459 inequality floating-point comparison which needs to be reversed, 0 will
5460 be returned.
5461
5462 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5463 insn used in locating the condition was found. If a replacement test
5464 of the condition is desired, it should be placed in front of that
5465 insn and we will be sure that the inputs are still valid. If EARLIEST
5466 is null, the returned condition will be valid at INSN.
5467
5468 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5469 compare CC mode register.
5470
5471 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5472
5473 rtx
5474 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5475 int valid_at_insn_p)
5476 {
5477 rtx cond;
5478 int reverse;
5479 rtx set;
5480
5481 /* If this is not a standard conditional jump, we can't parse it. */
5482 if (!JUMP_P (jump)
5483 || ! any_condjump_p (jump))
5484 return 0;
5485 set = pc_set (jump);
5486
5487 cond = XEXP (SET_SRC (set), 0);
5488
5489 /* If this branches to JUMP_LABEL when the condition is false, reverse
5490 the condition. */
5491 reverse
5492 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5493 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5494
5495 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5496 allow_cc_mode, valid_at_insn_p);
5497 }
5498
5499 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5500 TARGET_MODE_REP_EXTENDED.
5501
5502 Note that we assume that the property of
5503 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5504 narrower than mode B. I.e., if A is a mode narrower than B then in
5505 order to be able to operate on it in mode B, mode A needs to
5506 satisfy the requirements set by the representation of mode B. */
5507
5508 static void
5509 init_num_sign_bit_copies_in_rep (void)
5510 {
5511 machine_mode mode, in_mode;
5512
5513 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5514 in_mode = GET_MODE_WIDER_MODE (mode))
5515 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5516 mode = GET_MODE_WIDER_MODE (mode))
5517 {
5518 machine_mode i;
5519
5520 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5521 extends to the next widest mode. */
5522 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5523 || GET_MODE_WIDER_MODE (mode) == in_mode);
5524
5525 /* We are in in_mode. Count how many bits outside of mode
5526 have to be copies of the sign-bit. */
5527 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5528 {
5529 machine_mode wider = GET_MODE_WIDER_MODE (i);
5530
5531 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5532 /* We can only check sign-bit copies starting from the
5533 top-bit. In order to be able to check the bits we
5534 have already seen we pretend that subsequent bits
5535 have to be sign-bit copies too. */
5536 || num_sign_bit_copies_in_rep [in_mode][mode])
5537 num_sign_bit_copies_in_rep [in_mode][mode]
5538 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5539 }
5540 }
5541 }
5542
5543 /* Suppose that truncation from the machine mode of X to MODE is not a
5544 no-op. See if there is anything special about X so that we can
5545 assume it already contains a truncated value of MODE. */
5546
5547 bool
5548 truncated_to_mode (machine_mode mode, const_rtx x)
5549 {
5550 /* This register has already been used in MODE without explicit
5551 truncation. */
5552 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5553 return true;
5554
5555 /* See if we already satisfy the requirements of MODE. If yes we
5556 can just switch to MODE. */
5557 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5558 && (num_sign_bit_copies (x, GET_MODE (x))
5559 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5560 return true;
5561
5562 return false;
5563 }
5564 \f
5565 /* Return true if RTX code CODE has a single sequence of zero or more
5566 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5567 entry in that case. */
5568
5569 static bool
5570 setup_reg_subrtx_bounds (unsigned int code)
5571 {
5572 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5573 unsigned int i = 0;
5574 for (; format[i] != 'e'; ++i)
5575 {
5576 if (!format[i])
5577 /* No subrtxes. Leave start and count as 0. */
5578 return true;
5579 if (format[i] == 'E' || format[i] == 'V')
5580 return false;
5581 }
5582
5583 /* Record the sequence of 'e's. */
5584 rtx_all_subrtx_bounds[code].start = i;
5585 do
5586 ++i;
5587 while (format[i] == 'e');
5588 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5589 /* rtl-iter.h relies on this. */
5590 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5591
5592 for (; format[i]; ++i)
5593 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5594 return false;
5595
5596 return true;
5597 }
5598
5599 /* Initialize rtx_all_subrtx_bounds. */
5600 void
5601 init_rtlanal (void)
5602 {
5603 int i;
5604 for (i = 0; i < NUM_RTX_CODE; i++)
5605 {
5606 if (!setup_reg_subrtx_bounds (i))
5607 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5608 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5609 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5610 }
5611
5612 init_num_sign_bit_copies_in_rep ();
5613 }
5614 \f
5615 /* Check whether this is a constant pool constant. */
5616 bool
5617 constant_pool_constant_p (rtx x)
5618 {
5619 x = avoid_constant_pool_reference (x);
5620 return CONST_DOUBLE_P (x);
5621 }
5622 \f
5623 /* If M is a bitmask that selects a field of low-order bits within an item but
5624 not the entire word, return the length of the field. Return -1 otherwise.
5625 M is used in machine mode MODE. */
5626
5627 int
5628 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5629 {
5630 if (mode != VOIDmode)
5631 {
5632 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5633 return -1;
5634 m &= GET_MODE_MASK (mode);
5635 }
5636
5637 return exact_log2 (m + 1);
5638 }
5639
5640 /* Return the mode of MEM's address. */
5641
5642 machine_mode
5643 get_address_mode (rtx mem)
5644 {
5645 machine_mode mode;
5646
5647 gcc_assert (MEM_P (mem));
5648 mode = GET_MODE (XEXP (mem, 0));
5649 if (mode != VOIDmode)
5650 return mode;
5651 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5652 }
5653 \f
5654 /* Split up a CONST_DOUBLE or integer constant rtx
5655 into two rtx's for single words,
5656 storing in *FIRST the word that comes first in memory in the target
5657 and in *SECOND the other.
5658
5659 TODO: This function needs to be rewritten to work on any size
5660 integer. */
5661
5662 void
5663 split_double (rtx value, rtx *first, rtx *second)
5664 {
5665 if (CONST_INT_P (value))
5666 {
5667 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5668 {
5669 /* In this case the CONST_INT holds both target words.
5670 Extract the bits from it into two word-sized pieces.
5671 Sign extend each half to HOST_WIDE_INT. */
5672 unsigned HOST_WIDE_INT low, high;
5673 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5674 unsigned bits_per_word = BITS_PER_WORD;
5675
5676 /* Set sign_bit to the most significant bit of a word. */
5677 sign_bit = 1;
5678 sign_bit <<= bits_per_word - 1;
5679
5680 /* Set mask so that all bits of the word are set. We could
5681 have used 1 << BITS_PER_WORD instead of basing the
5682 calculation on sign_bit. However, on machines where
5683 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5684 compiler warning, even though the code would never be
5685 executed. */
5686 mask = sign_bit << 1;
5687 mask--;
5688
5689 /* Set sign_extend as any remaining bits. */
5690 sign_extend = ~mask;
5691
5692 /* Pick the lower word and sign-extend it. */
5693 low = INTVAL (value);
5694 low &= mask;
5695 if (low & sign_bit)
5696 low |= sign_extend;
5697
5698 /* Pick the higher word, shifted to the least significant
5699 bits, and sign-extend it. */
5700 high = INTVAL (value);
5701 high >>= bits_per_word - 1;
5702 high >>= 1;
5703 high &= mask;
5704 if (high & sign_bit)
5705 high |= sign_extend;
5706
5707 /* Store the words in the target machine order. */
5708 if (WORDS_BIG_ENDIAN)
5709 {
5710 *first = GEN_INT (high);
5711 *second = GEN_INT (low);
5712 }
5713 else
5714 {
5715 *first = GEN_INT (low);
5716 *second = GEN_INT (high);
5717 }
5718 }
5719 else
5720 {
5721 /* The rule for using CONST_INT for a wider mode
5722 is that we regard the value as signed.
5723 So sign-extend it. */
5724 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5725 if (WORDS_BIG_ENDIAN)
5726 {
5727 *first = high;
5728 *second = value;
5729 }
5730 else
5731 {
5732 *first = value;
5733 *second = high;
5734 }
5735 }
5736 }
5737 else if (GET_CODE (value) == CONST_WIDE_INT)
5738 {
5739 /* All of this is scary code and needs to be converted to
5740 properly work with any size integer. */
5741 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5742 if (WORDS_BIG_ENDIAN)
5743 {
5744 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5745 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5746 }
5747 else
5748 {
5749 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5750 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5751 }
5752 }
5753 else if (!CONST_DOUBLE_P (value))
5754 {
5755 if (WORDS_BIG_ENDIAN)
5756 {
5757 *first = const0_rtx;
5758 *second = value;
5759 }
5760 else
5761 {
5762 *first = value;
5763 *second = const0_rtx;
5764 }
5765 }
5766 else if (GET_MODE (value) == VOIDmode
5767 /* This is the old way we did CONST_DOUBLE integers. */
5768 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5769 {
5770 /* In an integer, the words are defined as most and least significant.
5771 So order them by the target's convention. */
5772 if (WORDS_BIG_ENDIAN)
5773 {
5774 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5775 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5776 }
5777 else
5778 {
5779 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5780 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5781 }
5782 }
5783 else
5784 {
5785 long l[2];
5786
5787 /* Note, this converts the REAL_VALUE_TYPE to the target's
5788 format, splits up the floating point double and outputs
5789 exactly 32 bits of it into each of l[0] and l[1] --
5790 not necessarily BITS_PER_WORD bits. */
5791 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5792
5793 /* If 32 bits is an entire word for the target, but not for the host,
5794 then sign-extend on the host so that the number will look the same
5795 way on the host that it would on the target. See for instance
5796 simplify_unary_operation. The #if is needed to avoid compiler
5797 warnings. */
5798
5799 #if HOST_BITS_PER_LONG > 32
5800 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5801 {
5802 if (l[0] & ((long) 1 << 31))
5803 l[0] |= ((unsigned long) (-1) << 32);
5804 if (l[1] & ((long) 1 << 31))
5805 l[1] |= ((unsigned long) (-1) << 32);
5806 }
5807 #endif
5808
5809 *first = GEN_INT (l[0]);
5810 *second = GEN_INT (l[1]);
5811 }
5812 }
5813
5814 /* Return true if X is a sign_extract or zero_extract from the least
5815 significant bit. */
5816
5817 static bool
5818 lsb_bitfield_op_p (rtx x)
5819 {
5820 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5821 {
5822 machine_mode mode = GET_MODE (XEXP (x, 0));
5823 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5824 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5825
5826 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5827 }
5828 return false;
5829 }
5830
5831 /* Strip outer address "mutations" from LOC and return a pointer to the
5832 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5833 stripped expression there.
5834
5835 "Mutations" either convert between modes or apply some kind of
5836 extension, truncation or alignment. */
5837
5838 rtx *
5839 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5840 {
5841 for (;;)
5842 {
5843 enum rtx_code code = GET_CODE (*loc);
5844 if (GET_RTX_CLASS (code) == RTX_UNARY)
5845 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5846 used to convert between pointer sizes. */
5847 loc = &XEXP (*loc, 0);
5848 else if (lsb_bitfield_op_p (*loc))
5849 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5850 acts as a combined truncation and extension. */
5851 loc = &XEXP (*loc, 0);
5852 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5853 /* (and ... (const_int -X)) is used to align to X bytes. */
5854 loc = &XEXP (*loc, 0);
5855 else if (code == SUBREG
5856 && !OBJECT_P (SUBREG_REG (*loc))
5857 && subreg_lowpart_p (*loc))
5858 /* (subreg (operator ...) ...) inside and is used for mode
5859 conversion too. */
5860 loc = &SUBREG_REG (*loc);
5861 else
5862 return loc;
5863 if (outer_code)
5864 *outer_code = code;
5865 }
5866 }
5867
5868 /* Return true if CODE applies some kind of scale. The scaled value is
5869 is the first operand and the scale is the second. */
5870
5871 static bool
5872 binary_scale_code_p (enum rtx_code code)
5873 {
5874 return (code == MULT
5875 || code == ASHIFT
5876 /* Needed by ARM targets. */
5877 || code == ASHIFTRT
5878 || code == LSHIFTRT
5879 || code == ROTATE
5880 || code == ROTATERT);
5881 }
5882
5883 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5884 (see address_info). Return null otherwise. */
5885
5886 static rtx *
5887 get_base_term (rtx *inner)
5888 {
5889 if (GET_CODE (*inner) == LO_SUM)
5890 inner = strip_address_mutations (&XEXP (*inner, 0));
5891 if (REG_P (*inner)
5892 || MEM_P (*inner)
5893 || GET_CODE (*inner) == SUBREG
5894 || GET_CODE (*inner) == SCRATCH)
5895 return inner;
5896 return 0;
5897 }
5898
5899 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5900 (see address_info). Return null otherwise. */
5901
5902 static rtx *
5903 get_index_term (rtx *inner)
5904 {
5905 /* At present, only constant scales are allowed. */
5906 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5907 inner = strip_address_mutations (&XEXP (*inner, 0));
5908 if (REG_P (*inner)
5909 || MEM_P (*inner)
5910 || GET_CODE (*inner) == SUBREG
5911 || GET_CODE (*inner) == SCRATCH)
5912 return inner;
5913 return 0;
5914 }
5915
5916 /* Set the segment part of address INFO to LOC, given that INNER is the
5917 unmutated value. */
5918
5919 static void
5920 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5921 {
5922 gcc_assert (!info->segment);
5923 info->segment = loc;
5924 info->segment_term = inner;
5925 }
5926
5927 /* Set the base part of address INFO to LOC, given that INNER is the
5928 unmutated value. */
5929
5930 static void
5931 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
5932 {
5933 gcc_assert (!info->base);
5934 info->base = loc;
5935 info->base_term = inner;
5936 }
5937
5938 /* Set the index part of address INFO to LOC, given that INNER is the
5939 unmutated value. */
5940
5941 static void
5942 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
5943 {
5944 gcc_assert (!info->index);
5945 info->index = loc;
5946 info->index_term = inner;
5947 }
5948
5949 /* Set the displacement part of address INFO to LOC, given that INNER
5950 is the constant term. */
5951
5952 static void
5953 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
5954 {
5955 gcc_assert (!info->disp);
5956 info->disp = loc;
5957 info->disp_term = inner;
5958 }
5959
5960 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
5961 rest of INFO accordingly. */
5962
5963 static void
5964 decompose_incdec_address (struct address_info *info)
5965 {
5966 info->autoinc_p = true;
5967
5968 rtx *base = &XEXP (*info->inner, 0);
5969 set_address_base (info, base, base);
5970 gcc_checking_assert (info->base == info->base_term);
5971
5972 /* These addresses are only valid when the size of the addressed
5973 value is known. */
5974 gcc_checking_assert (info->mode != VOIDmode);
5975 }
5976
5977 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
5978 of INFO accordingly. */
5979
5980 static void
5981 decompose_automod_address (struct address_info *info)
5982 {
5983 info->autoinc_p = true;
5984
5985 rtx *base = &XEXP (*info->inner, 0);
5986 set_address_base (info, base, base);
5987 gcc_checking_assert (info->base == info->base_term);
5988
5989 rtx plus = XEXP (*info->inner, 1);
5990 gcc_assert (GET_CODE (plus) == PLUS);
5991
5992 info->base_term2 = &XEXP (plus, 0);
5993 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
5994
5995 rtx *step = &XEXP (plus, 1);
5996 rtx *inner_step = strip_address_mutations (step);
5997 if (CONSTANT_P (*inner_step))
5998 set_address_disp (info, step, inner_step);
5999 else
6000 set_address_index (info, step, inner_step);
6001 }
6002
6003 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6004 values in [PTR, END). Return a pointer to the end of the used array. */
6005
6006 static rtx **
6007 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6008 {
6009 rtx x = *loc;
6010 if (GET_CODE (x) == PLUS)
6011 {
6012 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6013 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6014 }
6015 else
6016 {
6017 gcc_assert (ptr != end);
6018 *ptr++ = loc;
6019 }
6020 return ptr;
6021 }
6022
6023 /* Evaluate the likelihood of X being a base or index value, returning
6024 positive if it is likely to be a base, negative if it is likely to be
6025 an index, and 0 if we can't tell. Make the magnitude of the return
6026 value reflect the amount of confidence we have in the answer.
6027
6028 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6029
6030 static int
6031 baseness (rtx x, machine_mode mode, addr_space_t as,
6032 enum rtx_code outer_code, enum rtx_code index_code)
6033 {
6034 /* Believe *_POINTER unless the address shape requires otherwise. */
6035 if (REG_P (x) && REG_POINTER (x))
6036 return 2;
6037 if (MEM_P (x) && MEM_POINTER (x))
6038 return 2;
6039
6040 if (REG_P (x) && HARD_REGISTER_P (x))
6041 {
6042 /* X is a hard register. If it only fits one of the base
6043 or index classes, choose that interpretation. */
6044 int regno = REGNO (x);
6045 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6046 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6047 if (base_p != index_p)
6048 return base_p ? 1 : -1;
6049 }
6050 return 0;
6051 }
6052
6053 /* INFO->INNER describes a normal, non-automodified address.
6054 Fill in the rest of INFO accordingly. */
6055
6056 static void
6057 decompose_normal_address (struct address_info *info)
6058 {
6059 /* Treat the address as the sum of up to four values. */
6060 rtx *ops[4];
6061 size_t n_ops = extract_plus_operands (info->inner, ops,
6062 ops + ARRAY_SIZE (ops)) - ops;
6063
6064 /* If there is more than one component, any base component is in a PLUS. */
6065 if (n_ops > 1)
6066 info->base_outer_code = PLUS;
6067
6068 /* Try to classify each sum operand now. Leave those that could be
6069 either a base or an index in OPS. */
6070 rtx *inner_ops[4];
6071 size_t out = 0;
6072 for (size_t in = 0; in < n_ops; ++in)
6073 {
6074 rtx *loc = ops[in];
6075 rtx *inner = strip_address_mutations (loc);
6076 if (CONSTANT_P (*inner))
6077 set_address_disp (info, loc, inner);
6078 else if (GET_CODE (*inner) == UNSPEC)
6079 set_address_segment (info, loc, inner);
6080 else
6081 {
6082 /* The only other possibilities are a base or an index. */
6083 rtx *base_term = get_base_term (inner);
6084 rtx *index_term = get_index_term (inner);
6085 gcc_assert (base_term || index_term);
6086 if (!base_term)
6087 set_address_index (info, loc, index_term);
6088 else if (!index_term)
6089 set_address_base (info, loc, base_term);
6090 else
6091 {
6092 gcc_assert (base_term == index_term);
6093 ops[out] = loc;
6094 inner_ops[out] = base_term;
6095 ++out;
6096 }
6097 }
6098 }
6099
6100 /* Classify the remaining OPS members as bases and indexes. */
6101 if (out == 1)
6102 {
6103 /* If we haven't seen a base or an index yet, assume that this is
6104 the base. If we were confident that another term was the base
6105 or index, treat the remaining operand as the other kind. */
6106 if (!info->base)
6107 set_address_base (info, ops[0], inner_ops[0]);
6108 else
6109 set_address_index (info, ops[0], inner_ops[0]);
6110 }
6111 else if (out == 2)
6112 {
6113 /* In the event of a tie, assume the base comes first. */
6114 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6115 GET_CODE (*ops[1]))
6116 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6117 GET_CODE (*ops[0])))
6118 {
6119 set_address_base (info, ops[0], inner_ops[0]);
6120 set_address_index (info, ops[1], inner_ops[1]);
6121 }
6122 else
6123 {
6124 set_address_base (info, ops[1], inner_ops[1]);
6125 set_address_index (info, ops[0], inner_ops[0]);
6126 }
6127 }
6128 else
6129 gcc_assert (out == 0);
6130 }
6131
6132 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6133 or VOIDmode if not known. AS is the address space associated with LOC.
6134 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6135
6136 void
6137 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6138 addr_space_t as, enum rtx_code outer_code)
6139 {
6140 memset (info, 0, sizeof (*info));
6141 info->mode = mode;
6142 info->as = as;
6143 info->addr_outer_code = outer_code;
6144 info->outer = loc;
6145 info->inner = strip_address_mutations (loc, &outer_code);
6146 info->base_outer_code = outer_code;
6147 switch (GET_CODE (*info->inner))
6148 {
6149 case PRE_DEC:
6150 case PRE_INC:
6151 case POST_DEC:
6152 case POST_INC:
6153 decompose_incdec_address (info);
6154 break;
6155
6156 case PRE_MODIFY:
6157 case POST_MODIFY:
6158 decompose_automod_address (info);
6159 break;
6160
6161 default:
6162 decompose_normal_address (info);
6163 break;
6164 }
6165 }
6166
6167 /* Describe address operand LOC in INFO. */
6168
6169 void
6170 decompose_lea_address (struct address_info *info, rtx *loc)
6171 {
6172 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6173 }
6174
6175 /* Describe the address of MEM X in INFO. */
6176
6177 void
6178 decompose_mem_address (struct address_info *info, rtx x)
6179 {
6180 gcc_assert (MEM_P (x));
6181 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6182 MEM_ADDR_SPACE (x), MEM);
6183 }
6184
6185 /* Update INFO after a change to the address it describes. */
6186
6187 void
6188 update_address (struct address_info *info)
6189 {
6190 decompose_address (info, info->outer, info->mode, info->as,
6191 info->addr_outer_code);
6192 }
6193
6194 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6195 more complicated than that. */
6196
6197 HOST_WIDE_INT
6198 get_index_scale (const struct address_info *info)
6199 {
6200 rtx index = *info->index;
6201 if (GET_CODE (index) == MULT
6202 && CONST_INT_P (XEXP (index, 1))
6203 && info->index_term == &XEXP (index, 0))
6204 return INTVAL (XEXP (index, 1));
6205
6206 if (GET_CODE (index) == ASHIFT
6207 && CONST_INT_P (XEXP (index, 1))
6208 && info->index_term == &XEXP (index, 0))
6209 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6210
6211 if (info->index == info->index_term)
6212 return 1;
6213
6214 return 0;
6215 }
6216
6217 /* Return the "index code" of INFO, in the form required by
6218 ok_for_base_p_1. */
6219
6220 enum rtx_code
6221 get_index_code (const struct address_info *info)
6222 {
6223 if (info->index)
6224 return GET_CODE (*info->index);
6225
6226 if (info->disp)
6227 return GET_CODE (*info->disp);
6228
6229 return SCRATCH;
6230 }
6231
6232 /* Return true if X contains a thread-local symbol. */
6233
6234 bool
6235 tls_referenced_p (const_rtx x)
6236 {
6237 if (!targetm.have_tls)
6238 return false;
6239
6240 subrtx_iterator::array_type array;
6241 FOR_EACH_SUBRTX (iter, array, x, ALL)
6242 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6243 return true;
6244 return false;
6245 }