rtl.h (remove_reg_equal_equiv_notes): New prototype.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "real.h"
38 #include "regs.h"
39 #include "function.h"
40
41 /* Information about a subreg of a hard register. */
42 struct subreg_info
43 {
44 /* Offset of first hard register involved in the subreg. */
45 int offset;
46 /* Number of hard registers involved in the subreg. */
47 int nregs;
48 /* Whether this subreg can be represented as a hard reg with the new
49 mode. */
50 bool representable_p;
51 };
52
53 /* Forward declarations */
54 static void set_of_1 (rtx, rtx, void *);
55 static bool covers_regno_p (rtx, unsigned int);
56 static bool covers_regno_no_parallel_p (rtx, unsigned int);
57 static int rtx_referenced_p_1 (rtx *, void *);
58 static int computed_jump_p_1 (rtx);
59 static void parms_set (rtx, rtx, void *);
60 static void subreg_get_info (unsigned int, enum machine_mode,
61 unsigned int, enum machine_mode,
62 struct subreg_info *);
63
64 static unsigned HOST_WIDE_INT cached_nonzero_bits (rtx, enum machine_mode,
65 rtx, enum machine_mode,
66 unsigned HOST_WIDE_INT);
67 static unsigned HOST_WIDE_INT nonzero_bits1 (rtx, enum machine_mode, rtx,
68 enum machine_mode,
69 unsigned HOST_WIDE_INT);
70 static unsigned int cached_num_sign_bit_copies (rtx, enum machine_mode, rtx,
71 enum machine_mode,
72 unsigned int);
73 static unsigned int num_sign_bit_copies1 (rtx, enum machine_mode, rtx,
74 enum machine_mode, unsigned int);
75
76 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
77 -1 if a code has no such operand. */
78 static int non_rtx_starting_operands[NUM_RTX_CODE];
79
80 /* Bit flags that specify the machine subtype we are compiling for.
81 Bits are tested using macros TARGET_... defined in the tm.h file
82 and set by `-m...' switches. Must be defined in rtlanal.c. */
83
84 int target_flags;
85
86 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
87 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
88 SIGN_EXTEND then while narrowing we also have to enforce the
89 representation and sign-extend the value to mode DESTINATION_REP.
90
91 If the value is already sign-extended to DESTINATION_REP mode we
92 can just switch to DESTINATION mode on it. For each pair of
93 integral modes SOURCE and DESTINATION, when truncating from SOURCE
94 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
95 contains the number of high-order bits in SOURCE that have to be
96 copies of the sign-bit so that we can do this mode-switch to
97 DESTINATION. */
98
99 static unsigned int
100 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
101 \f
102 /* Return 1 if the value of X is unstable
103 (would be different at a different point in the program).
104 The frame pointer, arg pointer, etc. are considered stable
105 (within one function) and so is anything marked `unchanging'. */
106
107 int
108 rtx_unstable_p (rtx x)
109 {
110 RTX_CODE code = GET_CODE (x);
111 int i;
112 const char *fmt;
113
114 switch (code)
115 {
116 case MEM:
117 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
118
119 case CONST:
120 case CONST_INT:
121 case CONST_DOUBLE:
122 case CONST_VECTOR:
123 case SYMBOL_REF:
124 case LABEL_REF:
125 return 0;
126
127 case REG:
128 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
129 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
130 /* The arg pointer varies if it is not a fixed register. */
131 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
132 return 0;
133 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
134 /* ??? When call-clobbered, the value is stable modulo the restore
135 that must happen after a call. This currently screws up local-alloc
136 into believing that the restore is not needed. */
137 if (x == pic_offset_table_rtx)
138 return 0;
139 #endif
140 return 1;
141
142 case ASM_OPERANDS:
143 if (MEM_VOLATILE_P (x))
144 return 1;
145
146 /* Fall through. */
147
148 default:
149 break;
150 }
151
152 fmt = GET_RTX_FORMAT (code);
153 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
154 if (fmt[i] == 'e')
155 {
156 if (rtx_unstable_p (XEXP (x, i)))
157 return 1;
158 }
159 else if (fmt[i] == 'E')
160 {
161 int j;
162 for (j = 0; j < XVECLEN (x, i); j++)
163 if (rtx_unstable_p (XVECEXP (x, i, j)))
164 return 1;
165 }
166
167 return 0;
168 }
169
170 /* Return 1 if X has a value that can vary even between two
171 executions of the program. 0 means X can be compared reliably
172 against certain constants or near-constants.
173 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
174 zero, we are slightly more conservative.
175 The frame pointer and the arg pointer are considered constant. */
176
177 int
178 rtx_varies_p (rtx x, int for_alias)
179 {
180 RTX_CODE code;
181 int i;
182 const char *fmt;
183
184 if (!x)
185 return 0;
186
187 code = GET_CODE (x);
188 switch (code)
189 {
190 case MEM:
191 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
192
193 case CONST:
194 case CONST_INT:
195 case CONST_DOUBLE:
196 case CONST_VECTOR:
197 case SYMBOL_REF:
198 case LABEL_REF:
199 return 0;
200
201 case REG:
202 /* Note that we have to test for the actual rtx used for the frame
203 and arg pointers and not just the register number in case we have
204 eliminated the frame and/or arg pointer and are using it
205 for pseudos. */
206 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
207 /* The arg pointer varies if it is not a fixed register. */
208 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
209 return 0;
210 if (x == pic_offset_table_rtx
211 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
212 /* ??? When call-clobbered, the value is stable modulo the restore
213 that must happen after a call. This currently screws up
214 local-alloc into believing that the restore is not needed, so we
215 must return 0 only if we are called from alias analysis. */
216 && for_alias
217 #endif
218 )
219 return 0;
220 return 1;
221
222 case LO_SUM:
223 /* The operand 0 of a LO_SUM is considered constant
224 (in fact it is related specifically to operand 1)
225 during alias analysis. */
226 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
227 || rtx_varies_p (XEXP (x, 1), for_alias);
228
229 case ASM_OPERANDS:
230 if (MEM_VOLATILE_P (x))
231 return 1;
232
233 /* Fall through. */
234
235 default:
236 break;
237 }
238
239 fmt = GET_RTX_FORMAT (code);
240 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
241 if (fmt[i] == 'e')
242 {
243 if (rtx_varies_p (XEXP (x, i), for_alias))
244 return 1;
245 }
246 else if (fmt[i] == 'E')
247 {
248 int j;
249 for (j = 0; j < XVECLEN (x, i); j++)
250 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
251 return 1;
252 }
253
254 return 0;
255 }
256
257 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
258 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
259 whether nonzero is returned for unaligned memory accesses on strict
260 alignment machines. */
261
262 static int
263 rtx_addr_can_trap_p_1 (rtx x, enum machine_mode mode, bool unaligned_mems)
264 {
265 enum rtx_code code = GET_CODE (x);
266
267 switch (code)
268 {
269 case SYMBOL_REF:
270 return SYMBOL_REF_WEAK (x);
271
272 case LABEL_REF:
273 return 0;
274
275 case REG:
276 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
277 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
278 || x == stack_pointer_rtx
279 /* The arg pointer varies if it is not a fixed register. */
280 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
281 return 0;
282 /* All of the virtual frame registers are stack references. */
283 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
284 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
285 return 0;
286 return 1;
287
288 case CONST:
289 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
290
291 case PLUS:
292 /* An address is assumed not to trap if:
293 - it is an address that can't trap plus a constant integer,
294 with the proper remainder modulo the mode size if we are
295 considering unaligned memory references. */
296 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
297 && GET_CODE (XEXP (x, 1)) == CONST_INT)
298 {
299 HOST_WIDE_INT offset;
300
301 if (!STRICT_ALIGNMENT
302 || !unaligned_mems
303 || GET_MODE_SIZE (mode) == 0)
304 return 0;
305
306 offset = INTVAL (XEXP (x, 1));
307
308 #ifdef SPARC_STACK_BOUNDARY_HACK
309 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
310 the real alignment of %sp. However, when it does this, the
311 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
312 if (SPARC_STACK_BOUNDARY_HACK
313 && (XEXP (x, 0) == stack_pointer_rtx
314 || XEXP (x, 0) == hard_frame_pointer_rtx))
315 offset -= STACK_POINTER_OFFSET;
316 #endif
317
318 return offset % GET_MODE_SIZE (mode) != 0;
319 }
320
321 /* - or it is the pic register plus a constant. */
322 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
323 return 0;
324
325 return 1;
326
327 case LO_SUM:
328 case PRE_MODIFY:
329 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
330
331 case PRE_DEC:
332 case PRE_INC:
333 case POST_DEC:
334 case POST_INC:
335 case POST_MODIFY:
336 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
337
338 default:
339 break;
340 }
341
342 /* If it isn't one of the case above, it can cause a trap. */
343 return 1;
344 }
345
346 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
347
348 int
349 rtx_addr_can_trap_p (rtx x)
350 {
351 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
352 }
353
354 /* Return true if X is an address that is known to not be zero. */
355
356 bool
357 nonzero_address_p (rtx x)
358 {
359 enum rtx_code code = GET_CODE (x);
360
361 switch (code)
362 {
363 case SYMBOL_REF:
364 return !SYMBOL_REF_WEAK (x);
365
366 case LABEL_REF:
367 return true;
368
369 case REG:
370 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
371 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
372 || x == stack_pointer_rtx
373 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
374 return true;
375 /* All of the virtual frame registers are stack references. */
376 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
377 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
378 return true;
379 return false;
380
381 case CONST:
382 return nonzero_address_p (XEXP (x, 0));
383
384 case PLUS:
385 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
386 return nonzero_address_p (XEXP (x, 0));
387 /* Handle PIC references. */
388 else if (XEXP (x, 0) == pic_offset_table_rtx
389 && CONSTANT_P (XEXP (x, 1)))
390 return true;
391 return false;
392
393 case PRE_MODIFY:
394 /* Similar to the above; allow positive offsets. Further, since
395 auto-inc is only allowed in memories, the register must be a
396 pointer. */
397 if (GET_CODE (XEXP (x, 1)) == CONST_INT
398 && INTVAL (XEXP (x, 1)) > 0)
399 return true;
400 return nonzero_address_p (XEXP (x, 0));
401
402 case PRE_INC:
403 /* Similarly. Further, the offset is always positive. */
404 return true;
405
406 case PRE_DEC:
407 case POST_DEC:
408 case POST_INC:
409 case POST_MODIFY:
410 return nonzero_address_p (XEXP (x, 0));
411
412 case LO_SUM:
413 return nonzero_address_p (XEXP (x, 1));
414
415 default:
416 break;
417 }
418
419 /* If it isn't one of the case above, might be zero. */
420 return false;
421 }
422
423 /* Return 1 if X refers to a memory location whose address
424 cannot be compared reliably with constant addresses,
425 or if X refers to a BLKmode memory object.
426 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
427 zero, we are slightly more conservative. */
428
429 int
430 rtx_addr_varies_p (rtx x, int for_alias)
431 {
432 enum rtx_code code;
433 int i;
434 const char *fmt;
435
436 if (x == 0)
437 return 0;
438
439 code = GET_CODE (x);
440 if (code == MEM)
441 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
442
443 fmt = GET_RTX_FORMAT (code);
444 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
445 if (fmt[i] == 'e')
446 {
447 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
448 return 1;
449 }
450 else if (fmt[i] == 'E')
451 {
452 int j;
453 for (j = 0; j < XVECLEN (x, i); j++)
454 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
455 return 1;
456 }
457 return 0;
458 }
459 \f
460 /* Return the value of the integer term in X, if one is apparent;
461 otherwise return 0.
462 Only obvious integer terms are detected.
463 This is used in cse.c with the `related_value' field. */
464
465 HOST_WIDE_INT
466 get_integer_term (rtx x)
467 {
468 if (GET_CODE (x) == CONST)
469 x = XEXP (x, 0);
470
471 if (GET_CODE (x) == MINUS
472 && GET_CODE (XEXP (x, 1)) == CONST_INT)
473 return - INTVAL (XEXP (x, 1));
474 if (GET_CODE (x) == PLUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return INTVAL (XEXP (x, 1));
477 return 0;
478 }
479
480 /* If X is a constant, return the value sans apparent integer term;
481 otherwise return 0.
482 Only obvious integer terms are detected. */
483
484 rtx
485 get_related_value (rtx x)
486 {
487 if (GET_CODE (x) != CONST)
488 return 0;
489 x = XEXP (x, 0);
490 if (GET_CODE (x) == PLUS
491 && GET_CODE (XEXP (x, 1)) == CONST_INT)
492 return XEXP (x, 0);
493 else if (GET_CODE (x) == MINUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 return 0;
497 }
498 \f
499 /* Return the number of places FIND appears within X. If COUNT_DEST is
500 zero, we do not count occurrences inside the destination of a SET. */
501
502 int
503 count_occurrences (rtx x, rtx find, int count_dest)
504 {
505 int i, j;
506 enum rtx_code code;
507 const char *format_ptr;
508 int count;
509
510 if (x == find)
511 return 1;
512
513 code = GET_CODE (x);
514
515 switch (code)
516 {
517 case REG:
518 case CONST_INT:
519 case CONST_DOUBLE:
520 case CONST_VECTOR:
521 case SYMBOL_REF:
522 case CODE_LABEL:
523 case PC:
524 case CC0:
525 return 0;
526
527 case EXPR_LIST:
528 count = count_occurrences (XEXP (x, 0), find, count_dest);
529 if (XEXP (x, 1))
530 count += count_occurrences (XEXP (x, 1), find, count_dest);
531 return count;
532
533 case MEM:
534 if (MEM_P (find) && rtx_equal_p (x, find))
535 return 1;
536 break;
537
538 case SET:
539 if (SET_DEST (x) == find && ! count_dest)
540 return count_occurrences (SET_SRC (x), find, count_dest);
541 break;
542
543 default:
544 break;
545 }
546
547 format_ptr = GET_RTX_FORMAT (code);
548 count = 0;
549
550 for (i = 0; i < GET_RTX_LENGTH (code); i++)
551 {
552 switch (*format_ptr++)
553 {
554 case 'e':
555 count += count_occurrences (XEXP (x, i), find, count_dest);
556 break;
557
558 case 'E':
559 for (j = 0; j < XVECLEN (x, i); j++)
560 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
561 break;
562 }
563 }
564 return count;
565 }
566 \f
567 /* Nonzero if register REG appears somewhere within IN.
568 Also works if REG is not a register; in this case it checks
569 for a subexpression of IN that is Lisp "equal" to REG. */
570
571 int
572 reg_mentioned_p (rtx reg, rtx in)
573 {
574 const char *fmt;
575 int i;
576 enum rtx_code code;
577
578 if (in == 0)
579 return 0;
580
581 if (reg == in)
582 return 1;
583
584 if (GET_CODE (in) == LABEL_REF)
585 return reg == XEXP (in, 0);
586
587 code = GET_CODE (in);
588
589 switch (code)
590 {
591 /* Compare registers by number. */
592 case REG:
593 return REG_P (reg) && REGNO (in) == REGNO (reg);
594
595 /* These codes have no constituent expressions
596 and are unique. */
597 case SCRATCH:
598 case CC0:
599 case PC:
600 return 0;
601
602 case CONST_INT:
603 case CONST_VECTOR:
604 case CONST_DOUBLE:
605 /* These are kept unique for a given value. */
606 return 0;
607
608 default:
609 break;
610 }
611
612 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
613 return 1;
614
615 fmt = GET_RTX_FORMAT (code);
616
617 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
618 {
619 if (fmt[i] == 'E')
620 {
621 int j;
622 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
623 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
624 return 1;
625 }
626 else if (fmt[i] == 'e'
627 && reg_mentioned_p (reg, XEXP (in, i)))
628 return 1;
629 }
630 return 0;
631 }
632 \f
633 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
634 no CODE_LABEL insn. */
635
636 int
637 no_labels_between_p (rtx beg, rtx end)
638 {
639 rtx p;
640 if (beg == end)
641 return 0;
642 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
643 if (LABEL_P (p))
644 return 0;
645 return 1;
646 }
647
648 /* Nonzero if register REG is used in an insn between
649 FROM_INSN and TO_INSN (exclusive of those two). */
650
651 int
652 reg_used_between_p (rtx reg, rtx from_insn, rtx to_insn)
653 {
654 rtx insn;
655
656 if (from_insn == to_insn)
657 return 0;
658
659 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
660 if (INSN_P (insn)
661 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
662 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
663 return 1;
664 return 0;
665 }
666 \f
667 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
668 is entirely replaced by a new value and the only use is as a SET_DEST,
669 we do not consider it a reference. */
670
671 int
672 reg_referenced_p (rtx x, rtx body)
673 {
674 int i;
675
676 switch (GET_CODE (body))
677 {
678 case SET:
679 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
680 return 1;
681
682 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
683 of a REG that occupies all of the REG, the insn references X if
684 it is mentioned in the destination. */
685 if (GET_CODE (SET_DEST (body)) != CC0
686 && GET_CODE (SET_DEST (body)) != PC
687 && !REG_P (SET_DEST (body))
688 && ! (GET_CODE (SET_DEST (body)) == SUBREG
689 && REG_P (SUBREG_REG (SET_DEST (body)))
690 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
691 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
692 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
693 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
694 && reg_overlap_mentioned_p (x, SET_DEST (body)))
695 return 1;
696 return 0;
697
698 case ASM_OPERANDS:
699 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
700 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
701 return 1;
702 return 0;
703
704 case CALL:
705 case USE:
706 case IF_THEN_ELSE:
707 return reg_overlap_mentioned_p (x, body);
708
709 case TRAP_IF:
710 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
711
712 case PREFETCH:
713 return reg_overlap_mentioned_p (x, XEXP (body, 0));
714
715 case UNSPEC:
716 case UNSPEC_VOLATILE:
717 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
718 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
719 return 1;
720 return 0;
721
722 case PARALLEL:
723 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
724 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
725 return 1;
726 return 0;
727
728 case CLOBBER:
729 if (MEM_P (XEXP (body, 0)))
730 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
731 return 1;
732 return 0;
733
734 case COND_EXEC:
735 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
736 return 1;
737 return reg_referenced_p (x, COND_EXEC_CODE (body));
738
739 default:
740 return 0;
741 }
742 }
743 \f
744 /* Nonzero if register REG is set or clobbered in an insn between
745 FROM_INSN and TO_INSN (exclusive of those two). */
746
747 int
748 reg_set_between_p (rtx reg, rtx from_insn, rtx to_insn)
749 {
750 rtx insn;
751
752 if (from_insn == to_insn)
753 return 0;
754
755 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
756 if (INSN_P (insn) && reg_set_p (reg, insn))
757 return 1;
758 return 0;
759 }
760
761 /* Internals of reg_set_between_p. */
762 int
763 reg_set_p (rtx reg, rtx insn)
764 {
765 /* We can be passed an insn or part of one. If we are passed an insn,
766 check if a side-effect of the insn clobbers REG. */
767 if (INSN_P (insn)
768 && (FIND_REG_INC_NOTE (insn, reg)
769 || (CALL_P (insn)
770 && ((REG_P (reg)
771 && REGNO (reg) < FIRST_PSEUDO_REGISTER
772 && TEST_HARD_REG_BIT (regs_invalidated_by_call,
773 REGNO (reg)))
774 || MEM_P (reg)
775 || find_reg_fusage (insn, CLOBBER, reg)))))
776 return 1;
777
778 return set_of (reg, insn) != NULL_RTX;
779 }
780
781 /* Similar to reg_set_between_p, but check all registers in X. Return 0
782 only if none of them are modified between START and END. Return 1 if
783 X contains a MEM; this routine does usememory aliasing. */
784
785 int
786 modified_between_p (rtx x, rtx start, rtx end)
787 {
788 enum rtx_code code = GET_CODE (x);
789 const char *fmt;
790 int i, j;
791 rtx insn;
792
793 if (start == end)
794 return 0;
795
796 switch (code)
797 {
798 case CONST_INT:
799 case CONST_DOUBLE:
800 case CONST_VECTOR:
801 case CONST:
802 case SYMBOL_REF:
803 case LABEL_REF:
804 return 0;
805
806 case PC:
807 case CC0:
808 return 1;
809
810 case MEM:
811 if (modified_between_p (XEXP (x, 0), start, end))
812 return 1;
813 if (MEM_READONLY_P (x))
814 return 0;
815 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
816 if (memory_modified_in_insn_p (x, insn))
817 return 1;
818 return 0;
819 break;
820
821 case REG:
822 return reg_set_between_p (x, start, end);
823
824 default:
825 break;
826 }
827
828 fmt = GET_RTX_FORMAT (code);
829 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
830 {
831 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
832 return 1;
833
834 else if (fmt[i] == 'E')
835 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
836 if (modified_between_p (XVECEXP (x, i, j), start, end))
837 return 1;
838 }
839
840 return 0;
841 }
842
843 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
844 of them are modified in INSN. Return 1 if X contains a MEM; this routine
845 does use memory aliasing. */
846
847 int
848 modified_in_p (rtx x, rtx insn)
849 {
850 enum rtx_code code = GET_CODE (x);
851 const char *fmt;
852 int i, j;
853
854 switch (code)
855 {
856 case CONST_INT:
857 case CONST_DOUBLE:
858 case CONST_VECTOR:
859 case CONST:
860 case SYMBOL_REF:
861 case LABEL_REF:
862 return 0;
863
864 case PC:
865 case CC0:
866 return 1;
867
868 case MEM:
869 if (modified_in_p (XEXP (x, 0), insn))
870 return 1;
871 if (MEM_READONLY_P (x))
872 return 0;
873 if (memory_modified_in_insn_p (x, insn))
874 return 1;
875 return 0;
876 break;
877
878 case REG:
879 return reg_set_p (x, insn);
880
881 default:
882 break;
883 }
884
885 fmt = GET_RTX_FORMAT (code);
886 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
887 {
888 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
889 return 1;
890
891 else if (fmt[i] == 'E')
892 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
893 if (modified_in_p (XVECEXP (x, i, j), insn))
894 return 1;
895 }
896
897 return 0;
898 }
899 \f
900 /* Helper function for set_of. */
901 struct set_of_data
902 {
903 rtx found;
904 rtx pat;
905 };
906
907 static void
908 set_of_1 (rtx x, rtx pat, void *data1)
909 {
910 struct set_of_data *data = (struct set_of_data *) (data1);
911 if (rtx_equal_p (x, data->pat)
912 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
913 data->found = pat;
914 }
915
916 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
917 (either directly or via STRICT_LOW_PART and similar modifiers). */
918 rtx
919 set_of (rtx pat, rtx insn)
920 {
921 struct set_of_data data;
922 data.found = NULL_RTX;
923 data.pat = pat;
924 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
925 return data.found;
926 }
927 \f
928 /* Given an INSN, return a SET expression if this insn has only a single SET.
929 It may also have CLOBBERs, USEs, or SET whose output
930 will not be used, which we ignore. */
931
932 rtx
933 single_set_2 (rtx insn, rtx pat)
934 {
935 rtx set = NULL;
936 int set_verified = 1;
937 int i;
938
939 if (GET_CODE (pat) == PARALLEL)
940 {
941 for (i = 0; i < XVECLEN (pat, 0); i++)
942 {
943 rtx sub = XVECEXP (pat, 0, i);
944 switch (GET_CODE (sub))
945 {
946 case USE:
947 case CLOBBER:
948 break;
949
950 case SET:
951 /* We can consider insns having multiple sets, where all
952 but one are dead as single set insns. In common case
953 only single set is present in the pattern so we want
954 to avoid checking for REG_UNUSED notes unless necessary.
955
956 When we reach set first time, we just expect this is
957 the single set we are looking for and only when more
958 sets are found in the insn, we check them. */
959 if (!set_verified)
960 {
961 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
962 && !side_effects_p (set))
963 set = NULL;
964 else
965 set_verified = 1;
966 }
967 if (!set)
968 set = sub, set_verified = 0;
969 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
970 || side_effects_p (sub))
971 return NULL_RTX;
972 break;
973
974 default:
975 return NULL_RTX;
976 }
977 }
978 }
979 return set;
980 }
981
982 /* Given an INSN, return nonzero if it has more than one SET, else return
983 zero. */
984
985 int
986 multiple_sets (rtx insn)
987 {
988 int found;
989 int i;
990
991 /* INSN must be an insn. */
992 if (! INSN_P (insn))
993 return 0;
994
995 /* Only a PARALLEL can have multiple SETs. */
996 if (GET_CODE (PATTERN (insn)) == PARALLEL)
997 {
998 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
999 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1000 {
1001 /* If we have already found a SET, then return now. */
1002 if (found)
1003 return 1;
1004 else
1005 found = 1;
1006 }
1007 }
1008
1009 /* Either zero or one SET. */
1010 return 0;
1011 }
1012 \f
1013 /* Return nonzero if the destination of SET equals the source
1014 and there are no side effects. */
1015
1016 int
1017 set_noop_p (rtx set)
1018 {
1019 rtx src = SET_SRC (set);
1020 rtx dst = SET_DEST (set);
1021
1022 if (dst == pc_rtx && src == pc_rtx)
1023 return 1;
1024
1025 if (MEM_P (dst) && MEM_P (src))
1026 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1027
1028 if (GET_CODE (dst) == ZERO_EXTRACT)
1029 return rtx_equal_p (XEXP (dst, 0), src)
1030 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1031 && !side_effects_p (src);
1032
1033 if (GET_CODE (dst) == STRICT_LOW_PART)
1034 dst = XEXP (dst, 0);
1035
1036 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1037 {
1038 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1039 return 0;
1040 src = SUBREG_REG (src);
1041 dst = SUBREG_REG (dst);
1042 }
1043
1044 return (REG_P (src) && REG_P (dst)
1045 && REGNO (src) == REGNO (dst));
1046 }
1047 \f
1048 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1049 value to itself. */
1050
1051 int
1052 noop_move_p (rtx insn)
1053 {
1054 rtx pat = PATTERN (insn);
1055
1056 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1057 return 1;
1058
1059 /* Insns carrying these notes are useful later on. */
1060 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1061 return 0;
1062
1063 /* For now treat an insn with a REG_RETVAL note as a
1064 a special insn which should not be considered a no-op. */
1065 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1066 return 0;
1067
1068 if (GET_CODE (pat) == SET && set_noop_p (pat))
1069 return 1;
1070
1071 if (GET_CODE (pat) == PARALLEL)
1072 {
1073 int i;
1074 /* If nothing but SETs of registers to themselves,
1075 this insn can also be deleted. */
1076 for (i = 0; i < XVECLEN (pat, 0); i++)
1077 {
1078 rtx tem = XVECEXP (pat, 0, i);
1079
1080 if (GET_CODE (tem) == USE
1081 || GET_CODE (tem) == CLOBBER)
1082 continue;
1083
1084 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1085 return 0;
1086 }
1087
1088 return 1;
1089 }
1090 return 0;
1091 }
1092 \f
1093
1094 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1095 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1096 If the object was modified, if we hit a partial assignment to X, or hit a
1097 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1098 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1099 be the src. */
1100
1101 rtx
1102 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1103 {
1104 rtx p;
1105
1106 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1107 p = PREV_INSN (p))
1108 if (INSN_P (p))
1109 {
1110 rtx set = single_set (p);
1111 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1112
1113 if (set && rtx_equal_p (x, SET_DEST (set)))
1114 {
1115 rtx src = SET_SRC (set);
1116
1117 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1118 src = XEXP (note, 0);
1119
1120 if ((valid_to == NULL_RTX
1121 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1122 /* Reject hard registers because we don't usually want
1123 to use them; we'd rather use a pseudo. */
1124 && (! (REG_P (src)
1125 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1126 {
1127 *pinsn = p;
1128 return src;
1129 }
1130 }
1131
1132 /* If set in non-simple way, we don't have a value. */
1133 if (reg_set_p (x, p))
1134 break;
1135 }
1136
1137 return x;
1138 }
1139 \f
1140 /* Return nonzero if register in range [REGNO, ENDREGNO)
1141 appears either explicitly or implicitly in X
1142 other than being stored into.
1143
1144 References contained within the substructure at LOC do not count.
1145 LOC may be zero, meaning don't ignore anything. */
1146
1147 int
1148 refers_to_regno_p (unsigned int regno, unsigned int endregno, rtx x,
1149 rtx *loc)
1150 {
1151 int i;
1152 unsigned int x_regno;
1153 RTX_CODE code;
1154 const char *fmt;
1155
1156 repeat:
1157 /* The contents of a REG_NONNEG note is always zero, so we must come here
1158 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1159 if (x == 0)
1160 return 0;
1161
1162 code = GET_CODE (x);
1163
1164 switch (code)
1165 {
1166 case REG:
1167 x_regno = REGNO (x);
1168
1169 /* If we modifying the stack, frame, or argument pointer, it will
1170 clobber a virtual register. In fact, we could be more precise,
1171 but it isn't worth it. */
1172 if ((x_regno == STACK_POINTER_REGNUM
1173 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1174 || x_regno == ARG_POINTER_REGNUM
1175 #endif
1176 || x_regno == FRAME_POINTER_REGNUM)
1177 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1178 return 1;
1179
1180 return (endregno > x_regno
1181 && regno < x_regno + (x_regno < FIRST_PSEUDO_REGISTER
1182 ? hard_regno_nregs[x_regno][GET_MODE (x)]
1183 : 1));
1184
1185 case SUBREG:
1186 /* If this is a SUBREG of a hard reg, we can see exactly which
1187 registers are being modified. Otherwise, handle normally. */
1188 if (REG_P (SUBREG_REG (x))
1189 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1190 {
1191 unsigned int inner_regno = subreg_regno (x);
1192 unsigned int inner_endregno
1193 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1194 ? subreg_nregs (x) : 1);
1195
1196 return endregno > inner_regno && regno < inner_endregno;
1197 }
1198 break;
1199
1200 case CLOBBER:
1201 case SET:
1202 if (&SET_DEST (x) != loc
1203 /* Note setting a SUBREG counts as referring to the REG it is in for
1204 a pseudo but not for hard registers since we can
1205 treat each word individually. */
1206 && ((GET_CODE (SET_DEST (x)) == SUBREG
1207 && loc != &SUBREG_REG (SET_DEST (x))
1208 && REG_P (SUBREG_REG (SET_DEST (x)))
1209 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1210 && refers_to_regno_p (regno, endregno,
1211 SUBREG_REG (SET_DEST (x)), loc))
1212 || (!REG_P (SET_DEST (x))
1213 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1214 return 1;
1215
1216 if (code == CLOBBER || loc == &SET_SRC (x))
1217 return 0;
1218 x = SET_SRC (x);
1219 goto repeat;
1220
1221 default:
1222 break;
1223 }
1224
1225 /* X does not match, so try its subexpressions. */
1226
1227 fmt = GET_RTX_FORMAT (code);
1228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1229 {
1230 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1231 {
1232 if (i == 0)
1233 {
1234 x = XEXP (x, 0);
1235 goto repeat;
1236 }
1237 else
1238 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1239 return 1;
1240 }
1241 else if (fmt[i] == 'E')
1242 {
1243 int j;
1244 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1245 if (loc != &XVECEXP (x, i, j)
1246 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1247 return 1;
1248 }
1249 }
1250 return 0;
1251 }
1252
1253 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1254 we check if any register number in X conflicts with the relevant register
1255 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1256 contains a MEM (we don't bother checking for memory addresses that can't
1257 conflict because we expect this to be a rare case. */
1258
1259 int
1260 reg_overlap_mentioned_p (rtx x, rtx in)
1261 {
1262 unsigned int regno, endregno;
1263
1264 /* If either argument is a constant, then modifying X can not
1265 affect IN. Here we look at IN, we can profitably combine
1266 CONSTANT_P (x) with the switch statement below. */
1267 if (CONSTANT_P (in))
1268 return 0;
1269
1270 recurse:
1271 switch (GET_CODE (x))
1272 {
1273 case STRICT_LOW_PART:
1274 case ZERO_EXTRACT:
1275 case SIGN_EXTRACT:
1276 /* Overly conservative. */
1277 x = XEXP (x, 0);
1278 goto recurse;
1279
1280 case SUBREG:
1281 regno = REGNO (SUBREG_REG (x));
1282 if (regno < FIRST_PSEUDO_REGISTER)
1283 regno = subreg_regno (x);
1284 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1285 ? subreg_nregs (x) : 1);
1286 goto do_reg;
1287
1288 case REG:
1289 regno = REGNO (x);
1290 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1291 ? hard_regno_nregs[regno][GET_MODE (x)] : 1);
1292 do_reg:
1293 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1294
1295 case MEM:
1296 {
1297 const char *fmt;
1298 int i;
1299
1300 if (MEM_P (in))
1301 return 1;
1302
1303 fmt = GET_RTX_FORMAT (GET_CODE (in));
1304 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1305 if (fmt[i] == 'e')
1306 {
1307 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1308 return 1;
1309 }
1310 else if (fmt[i] == 'E')
1311 {
1312 int j;
1313 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1314 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1315 return 1;
1316 }
1317
1318 return 0;
1319 }
1320
1321 case SCRATCH:
1322 case PC:
1323 case CC0:
1324 return reg_mentioned_p (x, in);
1325
1326 case PARALLEL:
1327 {
1328 int i;
1329
1330 /* If any register in here refers to it we return true. */
1331 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1332 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1333 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1334 return 1;
1335 return 0;
1336 }
1337
1338 default:
1339 gcc_assert (CONSTANT_P (x));
1340 return 0;
1341 }
1342 }
1343 \f
1344 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1345 (X would be the pattern of an insn).
1346 FUN receives two arguments:
1347 the REG, MEM, CC0 or PC being stored in or clobbered,
1348 the SET or CLOBBER rtx that does the store.
1349
1350 If the item being stored in or clobbered is a SUBREG of a hard register,
1351 the SUBREG will be passed. */
1352
1353 void
1354 note_stores (rtx x, void (*fun) (rtx, rtx, void *), void *data)
1355 {
1356 int i;
1357
1358 if (GET_CODE (x) == COND_EXEC)
1359 x = COND_EXEC_CODE (x);
1360
1361 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1362 {
1363 rtx dest = SET_DEST (x);
1364
1365 while ((GET_CODE (dest) == SUBREG
1366 && (!REG_P (SUBREG_REG (dest))
1367 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1368 || GET_CODE (dest) == ZERO_EXTRACT
1369 || GET_CODE (dest) == STRICT_LOW_PART)
1370 dest = XEXP (dest, 0);
1371
1372 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1373 each of whose first operand is a register. */
1374 if (GET_CODE (dest) == PARALLEL)
1375 {
1376 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1377 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1378 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1379 }
1380 else
1381 (*fun) (dest, x, data);
1382 }
1383
1384 else if (GET_CODE (x) == PARALLEL)
1385 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1386 note_stores (XVECEXP (x, 0, i), fun, data);
1387 }
1388 \f
1389 /* Like notes_stores, but call FUN for each expression that is being
1390 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1391 FUN for each expression, not any interior subexpressions. FUN receives a
1392 pointer to the expression and the DATA passed to this function.
1393
1394 Note that this is not quite the same test as that done in reg_referenced_p
1395 since that considers something as being referenced if it is being
1396 partially set, while we do not. */
1397
1398 void
1399 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1400 {
1401 rtx body = *pbody;
1402 int i;
1403
1404 switch (GET_CODE (body))
1405 {
1406 case COND_EXEC:
1407 (*fun) (&COND_EXEC_TEST (body), data);
1408 note_uses (&COND_EXEC_CODE (body), fun, data);
1409 return;
1410
1411 case PARALLEL:
1412 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1413 note_uses (&XVECEXP (body, 0, i), fun, data);
1414 return;
1415
1416 case SEQUENCE:
1417 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1418 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1419 return;
1420
1421 case USE:
1422 (*fun) (&XEXP (body, 0), data);
1423 return;
1424
1425 case ASM_OPERANDS:
1426 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1427 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1428 return;
1429
1430 case TRAP_IF:
1431 (*fun) (&TRAP_CONDITION (body), data);
1432 return;
1433
1434 case PREFETCH:
1435 (*fun) (&XEXP (body, 0), data);
1436 return;
1437
1438 case UNSPEC:
1439 case UNSPEC_VOLATILE:
1440 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1441 (*fun) (&XVECEXP (body, 0, i), data);
1442 return;
1443
1444 case CLOBBER:
1445 if (MEM_P (XEXP (body, 0)))
1446 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1447 return;
1448
1449 case SET:
1450 {
1451 rtx dest = SET_DEST (body);
1452
1453 /* For sets we replace everything in source plus registers in memory
1454 expression in store and operands of a ZERO_EXTRACT. */
1455 (*fun) (&SET_SRC (body), data);
1456
1457 if (GET_CODE (dest) == ZERO_EXTRACT)
1458 {
1459 (*fun) (&XEXP (dest, 1), data);
1460 (*fun) (&XEXP (dest, 2), data);
1461 }
1462
1463 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1464 dest = XEXP (dest, 0);
1465
1466 if (MEM_P (dest))
1467 (*fun) (&XEXP (dest, 0), data);
1468 }
1469 return;
1470
1471 default:
1472 /* All the other possibilities never store. */
1473 (*fun) (pbody, data);
1474 return;
1475 }
1476 }
1477 \f
1478 /* Return nonzero if X's old contents don't survive after INSN.
1479 This will be true if X is (cc0) or if X is a register and
1480 X dies in INSN or because INSN entirely sets X.
1481
1482 "Entirely set" means set directly and not through a SUBREG, or
1483 ZERO_EXTRACT, so no trace of the old contents remains.
1484 Likewise, REG_INC does not count.
1485
1486 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1487 but for this use that makes no difference, since regs don't overlap
1488 during their lifetimes. Therefore, this function may be used
1489 at any time after deaths have been computed (in flow.c).
1490
1491 If REG is a hard reg that occupies multiple machine registers, this
1492 function will only return 1 if each of those registers will be replaced
1493 by INSN. */
1494
1495 int
1496 dead_or_set_p (rtx insn, rtx x)
1497 {
1498 unsigned int regno, last_regno;
1499 unsigned int i;
1500
1501 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1502 if (GET_CODE (x) == CC0)
1503 return 1;
1504
1505 gcc_assert (REG_P (x));
1506
1507 regno = REGNO (x);
1508 last_regno = (regno >= FIRST_PSEUDO_REGISTER ? regno
1509 : regno + hard_regno_nregs[regno][GET_MODE (x)] - 1);
1510
1511 for (i = regno; i <= last_regno; i++)
1512 if (! dead_or_set_regno_p (insn, i))
1513 return 0;
1514
1515 return 1;
1516 }
1517
1518 /* Return TRUE iff DEST is a register or subreg of a register and
1519 doesn't change the number of words of the inner register, and any
1520 part of the register is TEST_REGNO. */
1521
1522 static bool
1523 covers_regno_no_parallel_p (rtx dest, unsigned int test_regno)
1524 {
1525 unsigned int regno, endregno;
1526
1527 if (GET_CODE (dest) == SUBREG
1528 && (((GET_MODE_SIZE (GET_MODE (dest))
1529 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1530 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1531 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1532 dest = SUBREG_REG (dest);
1533
1534 if (!REG_P (dest))
1535 return false;
1536
1537 regno = REGNO (dest);
1538 endregno = (regno >= FIRST_PSEUDO_REGISTER ? regno + 1
1539 : regno + hard_regno_nregs[regno][GET_MODE (dest)]);
1540 return (test_regno >= regno && test_regno < endregno);
1541 }
1542
1543 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1544 any member matches the covers_regno_no_parallel_p criteria. */
1545
1546 static bool
1547 covers_regno_p (rtx dest, unsigned int test_regno)
1548 {
1549 if (GET_CODE (dest) == PARALLEL)
1550 {
1551 /* Some targets place small structures in registers for return
1552 values of functions, and those registers are wrapped in
1553 PARALLELs that we may see as the destination of a SET. */
1554 int i;
1555
1556 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1557 {
1558 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1559 if (inner != NULL_RTX
1560 && covers_regno_no_parallel_p (inner, test_regno))
1561 return true;
1562 }
1563
1564 return false;
1565 }
1566 else
1567 return covers_regno_no_parallel_p (dest, test_regno);
1568 }
1569
1570 /* Utility function for dead_or_set_p to check an individual register. Also
1571 called from flow.c. */
1572
1573 int
1574 dead_or_set_regno_p (rtx insn, unsigned int test_regno)
1575 {
1576 rtx pattern;
1577
1578 /* See if there is a death note for something that includes TEST_REGNO. */
1579 if (find_regno_note (insn, REG_DEAD, test_regno))
1580 return 1;
1581
1582 if (CALL_P (insn)
1583 && find_regno_fusage (insn, CLOBBER, test_regno))
1584 return 1;
1585
1586 pattern = PATTERN (insn);
1587
1588 if (GET_CODE (pattern) == COND_EXEC)
1589 pattern = COND_EXEC_CODE (pattern);
1590
1591 if (GET_CODE (pattern) == SET)
1592 return covers_regno_p (SET_DEST (pattern), test_regno);
1593 else if (GET_CODE (pattern) == PARALLEL)
1594 {
1595 int i;
1596
1597 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1598 {
1599 rtx body = XVECEXP (pattern, 0, i);
1600
1601 if (GET_CODE (body) == COND_EXEC)
1602 body = COND_EXEC_CODE (body);
1603
1604 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1605 && covers_regno_p (SET_DEST (body), test_regno))
1606 return 1;
1607 }
1608 }
1609
1610 return 0;
1611 }
1612
1613 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1614 If DATUM is nonzero, look for one whose datum is DATUM. */
1615
1616 rtx
1617 find_reg_note (rtx insn, enum reg_note kind, rtx datum)
1618 {
1619 rtx link;
1620
1621 gcc_assert (insn);
1622
1623 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1624 if (! INSN_P (insn))
1625 return 0;
1626 if (datum == 0)
1627 {
1628 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1629 if (REG_NOTE_KIND (link) == kind)
1630 return link;
1631 return 0;
1632 }
1633
1634 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1635 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1636 return link;
1637 return 0;
1638 }
1639
1640 /* Return the reg-note of kind KIND in insn INSN which applies to register
1641 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1642 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1643 it might be the case that the note overlaps REGNO. */
1644
1645 rtx
1646 find_regno_note (rtx insn, enum reg_note kind, unsigned int regno)
1647 {
1648 rtx link;
1649
1650 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1651 if (! INSN_P (insn))
1652 return 0;
1653
1654 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1655 if (REG_NOTE_KIND (link) == kind
1656 /* Verify that it is a register, so that scratch and MEM won't cause a
1657 problem here. */
1658 && REG_P (XEXP (link, 0))
1659 && REGNO (XEXP (link, 0)) <= regno
1660 && ((REGNO (XEXP (link, 0))
1661 + (REGNO (XEXP (link, 0)) >= FIRST_PSEUDO_REGISTER ? 1
1662 : hard_regno_nregs[REGNO (XEXP (link, 0))]
1663 [GET_MODE (XEXP (link, 0))]))
1664 > regno))
1665 return link;
1666 return 0;
1667 }
1668
1669 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1670 has such a note. */
1671
1672 rtx
1673 find_reg_equal_equiv_note (rtx insn)
1674 {
1675 rtx link;
1676
1677 if (!INSN_P (insn))
1678 return 0;
1679
1680 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1681 if (REG_NOTE_KIND (link) == REG_EQUAL
1682 || REG_NOTE_KIND (link) == REG_EQUIV)
1683 {
1684 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1685 insns that have multiple sets. Checking single_set to
1686 make sure of this is not the proper check, as explained
1687 in the comment in set_unique_reg_note.
1688
1689 This should be changed into an assert. */
1690 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1691 return 0;
1692 return link;
1693 }
1694 return NULL;
1695 }
1696
1697 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1698 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1699
1700 int
1701 find_reg_fusage (rtx insn, enum rtx_code code, rtx datum)
1702 {
1703 /* If it's not a CALL_INSN, it can't possibly have a
1704 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1705 if (!CALL_P (insn))
1706 return 0;
1707
1708 gcc_assert (datum);
1709
1710 if (!REG_P (datum))
1711 {
1712 rtx link;
1713
1714 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1715 link;
1716 link = XEXP (link, 1))
1717 if (GET_CODE (XEXP (link, 0)) == code
1718 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1719 return 1;
1720 }
1721 else
1722 {
1723 unsigned int regno = REGNO (datum);
1724
1725 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1726 to pseudo registers, so don't bother checking. */
1727
1728 if (regno < FIRST_PSEUDO_REGISTER)
1729 {
1730 unsigned int end_regno
1731 = regno + hard_regno_nregs[regno][GET_MODE (datum)];
1732 unsigned int i;
1733
1734 for (i = regno; i < end_regno; i++)
1735 if (find_regno_fusage (insn, code, i))
1736 return 1;
1737 }
1738 }
1739
1740 return 0;
1741 }
1742
1743 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1744 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1745
1746 int
1747 find_regno_fusage (rtx insn, enum rtx_code code, unsigned int regno)
1748 {
1749 rtx link;
1750
1751 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1752 to pseudo registers, so don't bother checking. */
1753
1754 if (regno >= FIRST_PSEUDO_REGISTER
1755 || !CALL_P (insn) )
1756 return 0;
1757
1758 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1759 {
1760 unsigned int regnote;
1761 rtx op, reg;
1762
1763 if (GET_CODE (op = XEXP (link, 0)) == code
1764 && REG_P (reg = XEXP (op, 0))
1765 && (regnote = REGNO (reg)) <= regno
1766 && regnote + hard_regno_nregs[regnote][GET_MODE (reg)] > regno)
1767 return 1;
1768 }
1769
1770 return 0;
1771 }
1772
1773 /* Return true if INSN is a call to a pure function. */
1774
1775 int
1776 pure_call_p (rtx insn)
1777 {
1778 rtx link;
1779
1780 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1781 return 0;
1782
1783 /* Look for the note that differentiates const and pure functions. */
1784 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1785 {
1786 rtx u, m;
1787
1788 if (GET_CODE (u = XEXP (link, 0)) == USE
1789 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1790 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1791 return 1;
1792 }
1793
1794 return 0;
1795 }
1796 \f
1797 /* Remove register note NOTE from the REG_NOTES of INSN. */
1798
1799 void
1800 remove_note (rtx insn, rtx note)
1801 {
1802 rtx link;
1803
1804 if (note == NULL_RTX)
1805 return;
1806
1807 if (REG_NOTES (insn) == note)
1808 {
1809 REG_NOTES (insn) = XEXP (note, 1);
1810 return;
1811 }
1812
1813 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1814 if (XEXP (link, 1) == note)
1815 {
1816 XEXP (link, 1) = XEXP (note, 1);
1817 return;
1818 }
1819
1820 gcc_unreachable ();
1821 }
1822
1823 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1824
1825 void
1826 remove_reg_equal_equiv_notes (rtx insn)
1827 {
1828 rtx *loc;
1829
1830 loc = &REG_NOTES (insn);
1831 while (*loc)
1832 {
1833 enum reg_note kind = REG_NOTE_KIND (*loc);
1834 if (kind == REG_EQUAL || kind == REG_EQUIV)
1835 *loc = XEXP (*loc, 1);
1836 else
1837 loc = &XEXP (*loc, 1);
1838 }
1839 }
1840
1841 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1842 return 1 if it is found. A simple equality test is used to determine if
1843 NODE matches. */
1844
1845 int
1846 in_expr_list_p (rtx listp, rtx node)
1847 {
1848 rtx x;
1849
1850 for (x = listp; x; x = XEXP (x, 1))
1851 if (node == XEXP (x, 0))
1852 return 1;
1853
1854 return 0;
1855 }
1856
1857 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1858 remove that entry from the list if it is found.
1859
1860 A simple equality test is used to determine if NODE matches. */
1861
1862 void
1863 remove_node_from_expr_list (rtx node, rtx *listp)
1864 {
1865 rtx temp = *listp;
1866 rtx prev = NULL_RTX;
1867
1868 while (temp)
1869 {
1870 if (node == XEXP (temp, 0))
1871 {
1872 /* Splice the node out of the list. */
1873 if (prev)
1874 XEXP (prev, 1) = XEXP (temp, 1);
1875 else
1876 *listp = XEXP (temp, 1);
1877
1878 return;
1879 }
1880
1881 prev = temp;
1882 temp = XEXP (temp, 1);
1883 }
1884 }
1885 \f
1886 /* Nonzero if X contains any volatile instructions. These are instructions
1887 which may cause unpredictable machine state instructions, and thus no
1888 instructions should be moved or combined across them. This includes
1889 only volatile asms and UNSPEC_VOLATILE instructions. */
1890
1891 int
1892 volatile_insn_p (rtx x)
1893 {
1894 RTX_CODE code;
1895
1896 code = GET_CODE (x);
1897 switch (code)
1898 {
1899 case LABEL_REF:
1900 case SYMBOL_REF:
1901 case CONST_INT:
1902 case CONST:
1903 case CONST_DOUBLE:
1904 case CONST_VECTOR:
1905 case CC0:
1906 case PC:
1907 case REG:
1908 case SCRATCH:
1909 case CLOBBER:
1910 case ADDR_VEC:
1911 case ADDR_DIFF_VEC:
1912 case CALL:
1913 case MEM:
1914 return 0;
1915
1916 case UNSPEC_VOLATILE:
1917 /* case TRAP_IF: This isn't clear yet. */
1918 return 1;
1919
1920 case ASM_INPUT:
1921 case ASM_OPERANDS:
1922 if (MEM_VOLATILE_P (x))
1923 return 1;
1924
1925 default:
1926 break;
1927 }
1928
1929 /* Recursively scan the operands of this expression. */
1930
1931 {
1932 const char *fmt = GET_RTX_FORMAT (code);
1933 int i;
1934
1935 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1936 {
1937 if (fmt[i] == 'e')
1938 {
1939 if (volatile_insn_p (XEXP (x, i)))
1940 return 1;
1941 }
1942 else if (fmt[i] == 'E')
1943 {
1944 int j;
1945 for (j = 0; j < XVECLEN (x, i); j++)
1946 if (volatile_insn_p (XVECEXP (x, i, j)))
1947 return 1;
1948 }
1949 }
1950 }
1951 return 0;
1952 }
1953
1954 /* Nonzero if X contains any volatile memory references
1955 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
1956
1957 int
1958 volatile_refs_p (rtx x)
1959 {
1960 RTX_CODE code;
1961
1962 code = GET_CODE (x);
1963 switch (code)
1964 {
1965 case LABEL_REF:
1966 case SYMBOL_REF:
1967 case CONST_INT:
1968 case CONST:
1969 case CONST_DOUBLE:
1970 case CONST_VECTOR:
1971 case CC0:
1972 case PC:
1973 case REG:
1974 case SCRATCH:
1975 case CLOBBER:
1976 case ADDR_VEC:
1977 case ADDR_DIFF_VEC:
1978 return 0;
1979
1980 case UNSPEC_VOLATILE:
1981 return 1;
1982
1983 case MEM:
1984 case ASM_INPUT:
1985 case ASM_OPERANDS:
1986 if (MEM_VOLATILE_P (x))
1987 return 1;
1988
1989 default:
1990 break;
1991 }
1992
1993 /* Recursively scan the operands of this expression. */
1994
1995 {
1996 const char *fmt = GET_RTX_FORMAT (code);
1997 int i;
1998
1999 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2000 {
2001 if (fmt[i] == 'e')
2002 {
2003 if (volatile_refs_p (XEXP (x, i)))
2004 return 1;
2005 }
2006 else if (fmt[i] == 'E')
2007 {
2008 int j;
2009 for (j = 0; j < XVECLEN (x, i); j++)
2010 if (volatile_refs_p (XVECEXP (x, i, j)))
2011 return 1;
2012 }
2013 }
2014 }
2015 return 0;
2016 }
2017
2018 /* Similar to above, except that it also rejects register pre- and post-
2019 incrementing. */
2020
2021 int
2022 side_effects_p (rtx x)
2023 {
2024 RTX_CODE code;
2025
2026 code = GET_CODE (x);
2027 switch (code)
2028 {
2029 case LABEL_REF:
2030 case SYMBOL_REF:
2031 case CONST_INT:
2032 case CONST:
2033 case CONST_DOUBLE:
2034 case CONST_VECTOR:
2035 case CC0:
2036 case PC:
2037 case REG:
2038 case SCRATCH:
2039 case ADDR_VEC:
2040 case ADDR_DIFF_VEC:
2041 return 0;
2042
2043 case CLOBBER:
2044 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2045 when some combination can't be done. If we see one, don't think
2046 that we can simplify the expression. */
2047 return (GET_MODE (x) != VOIDmode);
2048
2049 case PRE_INC:
2050 case PRE_DEC:
2051 case POST_INC:
2052 case POST_DEC:
2053 case PRE_MODIFY:
2054 case POST_MODIFY:
2055 case CALL:
2056 case UNSPEC_VOLATILE:
2057 /* case TRAP_IF: This isn't clear yet. */
2058 return 1;
2059
2060 case MEM:
2061 case ASM_INPUT:
2062 case ASM_OPERANDS:
2063 if (MEM_VOLATILE_P (x))
2064 return 1;
2065
2066 default:
2067 break;
2068 }
2069
2070 /* Recursively scan the operands of this expression. */
2071
2072 {
2073 const char *fmt = GET_RTX_FORMAT (code);
2074 int i;
2075
2076 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2077 {
2078 if (fmt[i] == 'e')
2079 {
2080 if (side_effects_p (XEXP (x, i)))
2081 return 1;
2082 }
2083 else if (fmt[i] == 'E')
2084 {
2085 int j;
2086 for (j = 0; j < XVECLEN (x, i); j++)
2087 if (side_effects_p (XVECEXP (x, i, j)))
2088 return 1;
2089 }
2090 }
2091 }
2092 return 0;
2093 }
2094 \f
2095 enum may_trap_p_flags
2096 {
2097 MTP_UNALIGNED_MEMS = 1,
2098 MTP_AFTER_MOVE = 2
2099 };
2100 /* Return nonzero if evaluating rtx X might cause a trap.
2101 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2102 unaligned memory accesses on strict alignment machines. If
2103 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2104 cannot trap at its current location, but it might become trapping if moved
2105 elsewhere. */
2106
2107 static int
2108 may_trap_p_1 (rtx x, unsigned flags)
2109 {
2110 int i;
2111 enum rtx_code code;
2112 const char *fmt;
2113 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2114
2115 if (x == 0)
2116 return 0;
2117 code = GET_CODE (x);
2118 switch (code)
2119 {
2120 /* Handle these cases quickly. */
2121 case CONST_INT:
2122 case CONST_DOUBLE:
2123 case CONST_VECTOR:
2124 case SYMBOL_REF:
2125 case LABEL_REF:
2126 case CONST:
2127 case PC:
2128 case CC0:
2129 case REG:
2130 case SCRATCH:
2131 return 0;
2132
2133 case ASM_INPUT:
2134 case UNSPEC_VOLATILE:
2135 case TRAP_IF:
2136 return 1;
2137
2138 case ASM_OPERANDS:
2139 return MEM_VOLATILE_P (x);
2140
2141 /* Memory ref can trap unless it's a static var or a stack slot. */
2142 case MEM:
2143 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2144 reference; moving it out of condition might cause its address
2145 become invalid. */
2146 !(flags & MTP_AFTER_MOVE)
2147 && MEM_NOTRAP_P (x)
2148 && (!STRICT_ALIGNMENT || !unaligned_mems))
2149 return 0;
2150 return
2151 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2152
2153 /* Division by a non-constant might trap. */
2154 case DIV:
2155 case MOD:
2156 case UDIV:
2157 case UMOD:
2158 if (HONOR_SNANS (GET_MODE (x)))
2159 return 1;
2160 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2161 return flag_trapping_math;
2162 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2163 return 1;
2164 break;
2165
2166 case EXPR_LIST:
2167 /* An EXPR_LIST is used to represent a function call. This
2168 certainly may trap. */
2169 return 1;
2170
2171 case GE:
2172 case GT:
2173 case LE:
2174 case LT:
2175 case LTGT:
2176 case COMPARE:
2177 /* Some floating point comparisons may trap. */
2178 if (!flag_trapping_math)
2179 break;
2180 /* ??? There is no machine independent way to check for tests that trap
2181 when COMPARE is used, though many targets do make this distinction.
2182 For instance, sparc uses CCFPE for compares which generate exceptions
2183 and CCFP for compares which do not generate exceptions. */
2184 if (HONOR_NANS (GET_MODE (x)))
2185 return 1;
2186 /* But often the compare has some CC mode, so check operand
2187 modes as well. */
2188 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2189 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2190 return 1;
2191 break;
2192
2193 case EQ:
2194 case NE:
2195 if (HONOR_SNANS (GET_MODE (x)))
2196 return 1;
2197 /* Often comparison is CC mode, so check operand modes. */
2198 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2199 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2200 return 1;
2201 break;
2202
2203 case FIX:
2204 /* Conversion of floating point might trap. */
2205 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2206 return 1;
2207 break;
2208
2209 case NEG:
2210 case ABS:
2211 case SUBREG:
2212 /* These operations don't trap even with floating point. */
2213 break;
2214
2215 default:
2216 /* Any floating arithmetic may trap. */
2217 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2218 && flag_trapping_math)
2219 return 1;
2220 }
2221
2222 fmt = GET_RTX_FORMAT (code);
2223 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2224 {
2225 if (fmt[i] == 'e')
2226 {
2227 if (may_trap_p_1 (XEXP (x, i), flags))
2228 return 1;
2229 }
2230 else if (fmt[i] == 'E')
2231 {
2232 int j;
2233 for (j = 0; j < XVECLEN (x, i); j++)
2234 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2235 return 1;
2236 }
2237 }
2238 return 0;
2239 }
2240
2241 /* Return nonzero if evaluating rtx X might cause a trap. */
2242
2243 int
2244 may_trap_p (rtx x)
2245 {
2246 return may_trap_p_1 (x, 0);
2247 }
2248
2249 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2250 is moved from its current location by some optimization. */
2251
2252 int
2253 may_trap_after_code_motion_p (rtx x)
2254 {
2255 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2256 }
2257
2258 /* Same as above, but additionally return nonzero if evaluating rtx X might
2259 cause a fault. We define a fault for the purpose of this function as a
2260 erroneous execution condition that cannot be encountered during the normal
2261 execution of a valid program; the typical example is an unaligned memory
2262 access on a strict alignment machine. The compiler guarantees that it
2263 doesn't generate code that will fault from a valid program, but this
2264 guarantee doesn't mean anything for individual instructions. Consider
2265 the following example:
2266
2267 struct S { int d; union { char *cp; int *ip; }; };
2268
2269 int foo(struct S *s)
2270 {
2271 if (s->d == 1)
2272 return *s->ip;
2273 else
2274 return *s->cp;
2275 }
2276
2277 on a strict alignment machine. In a valid program, foo will never be
2278 invoked on a structure for which d is equal to 1 and the underlying
2279 unique field of the union not aligned on a 4-byte boundary, but the
2280 expression *s->ip might cause a fault if considered individually.
2281
2282 At the RTL level, potentially problematic expressions will almost always
2283 verify may_trap_p; for example, the above dereference can be emitted as
2284 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2285 However, suppose that foo is inlined in a caller that causes s->cp to
2286 point to a local character variable and guarantees that s->d is not set
2287 to 1; foo may have been effectively translated into pseudo-RTL as:
2288
2289 if ((reg:SI) == 1)
2290 (set (reg:SI) (mem:SI (%fp - 7)))
2291 else
2292 (set (reg:QI) (mem:QI (%fp - 7)))
2293
2294 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2295 memory reference to a stack slot, but it will certainly cause a fault
2296 on a strict alignment machine. */
2297
2298 int
2299 may_trap_or_fault_p (rtx x)
2300 {
2301 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2302 }
2303 \f
2304 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2305 i.e., an inequality. */
2306
2307 int
2308 inequality_comparisons_p (rtx x)
2309 {
2310 const char *fmt;
2311 int len, i;
2312 enum rtx_code code = GET_CODE (x);
2313
2314 switch (code)
2315 {
2316 case REG:
2317 case SCRATCH:
2318 case PC:
2319 case CC0:
2320 case CONST_INT:
2321 case CONST_DOUBLE:
2322 case CONST_VECTOR:
2323 case CONST:
2324 case LABEL_REF:
2325 case SYMBOL_REF:
2326 return 0;
2327
2328 case LT:
2329 case LTU:
2330 case GT:
2331 case GTU:
2332 case LE:
2333 case LEU:
2334 case GE:
2335 case GEU:
2336 return 1;
2337
2338 default:
2339 break;
2340 }
2341
2342 len = GET_RTX_LENGTH (code);
2343 fmt = GET_RTX_FORMAT (code);
2344
2345 for (i = 0; i < len; i++)
2346 {
2347 if (fmt[i] == 'e')
2348 {
2349 if (inequality_comparisons_p (XEXP (x, i)))
2350 return 1;
2351 }
2352 else if (fmt[i] == 'E')
2353 {
2354 int j;
2355 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2356 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2357 return 1;
2358 }
2359 }
2360
2361 return 0;
2362 }
2363 \f
2364 /* Replace any occurrence of FROM in X with TO. The function does
2365 not enter into CONST_DOUBLE for the replace.
2366
2367 Note that copying is not done so X must not be shared unless all copies
2368 are to be modified. */
2369
2370 rtx
2371 replace_rtx (rtx x, rtx from, rtx to)
2372 {
2373 int i, j;
2374 const char *fmt;
2375
2376 /* The following prevents loops occurrence when we change MEM in
2377 CONST_DOUBLE onto the same CONST_DOUBLE. */
2378 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2379 return x;
2380
2381 if (x == from)
2382 return to;
2383
2384 /* Allow this function to make replacements in EXPR_LISTs. */
2385 if (x == 0)
2386 return 0;
2387
2388 if (GET_CODE (x) == SUBREG)
2389 {
2390 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2391
2392 if (GET_CODE (new) == CONST_INT)
2393 {
2394 x = simplify_subreg (GET_MODE (x), new,
2395 GET_MODE (SUBREG_REG (x)),
2396 SUBREG_BYTE (x));
2397 gcc_assert (x);
2398 }
2399 else
2400 SUBREG_REG (x) = new;
2401
2402 return x;
2403 }
2404 else if (GET_CODE (x) == ZERO_EXTEND)
2405 {
2406 rtx new = replace_rtx (XEXP (x, 0), from, to);
2407
2408 if (GET_CODE (new) == CONST_INT)
2409 {
2410 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2411 new, GET_MODE (XEXP (x, 0)));
2412 gcc_assert (x);
2413 }
2414 else
2415 XEXP (x, 0) = new;
2416
2417 return x;
2418 }
2419
2420 fmt = GET_RTX_FORMAT (GET_CODE (x));
2421 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2422 {
2423 if (fmt[i] == 'e')
2424 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2425 else if (fmt[i] == 'E')
2426 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2427 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2428 }
2429
2430 return x;
2431 }
2432 \f
2433 /* Replace occurrences of the old label in *X with the new one.
2434 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2435
2436 int
2437 replace_label (rtx *x, void *data)
2438 {
2439 rtx l = *x;
2440 rtx old_label = ((replace_label_data *) data)->r1;
2441 rtx new_label = ((replace_label_data *) data)->r2;
2442 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2443
2444 if (l == NULL_RTX)
2445 return 0;
2446
2447 if (GET_CODE (l) == SYMBOL_REF
2448 && CONSTANT_POOL_ADDRESS_P (l))
2449 {
2450 rtx c = get_pool_constant (l);
2451 if (rtx_referenced_p (old_label, c))
2452 {
2453 rtx new_c, new_l;
2454 replace_label_data *d = (replace_label_data *) data;
2455
2456 /* Create a copy of constant C; replace the label inside
2457 but do not update LABEL_NUSES because uses in constant pool
2458 are not counted. */
2459 new_c = copy_rtx (c);
2460 d->update_label_nuses = false;
2461 for_each_rtx (&new_c, replace_label, data);
2462 d->update_label_nuses = update_label_nuses;
2463
2464 /* Add the new constant NEW_C to constant pool and replace
2465 the old reference to constant by new reference. */
2466 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2467 *x = replace_rtx (l, l, new_l);
2468 }
2469 return 0;
2470 }
2471
2472 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2473 field. This is not handled by for_each_rtx because it doesn't
2474 handle unprinted ('0') fields. */
2475 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2476 JUMP_LABEL (l) = new_label;
2477
2478 if ((GET_CODE (l) == LABEL_REF
2479 || GET_CODE (l) == INSN_LIST)
2480 && XEXP (l, 0) == old_label)
2481 {
2482 XEXP (l, 0) = new_label;
2483 if (update_label_nuses)
2484 {
2485 ++LABEL_NUSES (new_label);
2486 --LABEL_NUSES (old_label);
2487 }
2488 return 0;
2489 }
2490
2491 return 0;
2492 }
2493
2494 /* When *BODY is equal to X or X is directly referenced by *BODY
2495 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2496 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2497
2498 static int
2499 rtx_referenced_p_1 (rtx *body, void *x)
2500 {
2501 rtx y = (rtx) x;
2502
2503 if (*body == NULL_RTX)
2504 return y == NULL_RTX;
2505
2506 /* Return true if a label_ref *BODY refers to label Y. */
2507 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2508 return XEXP (*body, 0) == y;
2509
2510 /* If *BODY is a reference to pool constant traverse the constant. */
2511 if (GET_CODE (*body) == SYMBOL_REF
2512 && CONSTANT_POOL_ADDRESS_P (*body))
2513 return rtx_referenced_p (y, get_pool_constant (*body));
2514
2515 /* By default, compare the RTL expressions. */
2516 return rtx_equal_p (*body, y);
2517 }
2518
2519 /* Return true if X is referenced in BODY. */
2520
2521 int
2522 rtx_referenced_p (rtx x, rtx body)
2523 {
2524 return for_each_rtx (&body, rtx_referenced_p_1, x);
2525 }
2526
2527 /* If INSN is a tablejump return true and store the label (before jump table) to
2528 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2529
2530 bool
2531 tablejump_p (rtx insn, rtx *labelp, rtx *tablep)
2532 {
2533 rtx label, table;
2534
2535 if (JUMP_P (insn)
2536 && (label = JUMP_LABEL (insn)) != NULL_RTX
2537 && (table = next_active_insn (label)) != NULL_RTX
2538 && JUMP_P (table)
2539 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2540 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2541 {
2542 if (labelp)
2543 *labelp = label;
2544 if (tablep)
2545 *tablep = table;
2546 return true;
2547 }
2548 return false;
2549 }
2550
2551 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2552 constant that is not in the constant pool and not in the condition
2553 of an IF_THEN_ELSE. */
2554
2555 static int
2556 computed_jump_p_1 (rtx x)
2557 {
2558 enum rtx_code code = GET_CODE (x);
2559 int i, j;
2560 const char *fmt;
2561
2562 switch (code)
2563 {
2564 case LABEL_REF:
2565 case PC:
2566 return 0;
2567
2568 case CONST:
2569 case CONST_INT:
2570 case CONST_DOUBLE:
2571 case CONST_VECTOR:
2572 case SYMBOL_REF:
2573 case REG:
2574 return 1;
2575
2576 case MEM:
2577 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2578 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2579
2580 case IF_THEN_ELSE:
2581 return (computed_jump_p_1 (XEXP (x, 1))
2582 || computed_jump_p_1 (XEXP (x, 2)));
2583
2584 default:
2585 break;
2586 }
2587
2588 fmt = GET_RTX_FORMAT (code);
2589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2590 {
2591 if (fmt[i] == 'e'
2592 && computed_jump_p_1 (XEXP (x, i)))
2593 return 1;
2594
2595 else if (fmt[i] == 'E')
2596 for (j = 0; j < XVECLEN (x, i); j++)
2597 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2598 return 1;
2599 }
2600
2601 return 0;
2602 }
2603
2604 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2605
2606 Tablejumps and casesi insns are not considered indirect jumps;
2607 we can recognize them by a (use (label_ref)). */
2608
2609 int
2610 computed_jump_p (rtx insn)
2611 {
2612 int i;
2613 if (JUMP_P (insn))
2614 {
2615 rtx pat = PATTERN (insn);
2616
2617 if (find_reg_note (insn, REG_LABEL, NULL_RTX))
2618 return 0;
2619 else if (GET_CODE (pat) == PARALLEL)
2620 {
2621 int len = XVECLEN (pat, 0);
2622 int has_use_labelref = 0;
2623
2624 for (i = len - 1; i >= 0; i--)
2625 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2626 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2627 == LABEL_REF))
2628 has_use_labelref = 1;
2629
2630 if (! has_use_labelref)
2631 for (i = len - 1; i >= 0; i--)
2632 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2633 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2634 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2635 return 1;
2636 }
2637 else if (GET_CODE (pat) == SET
2638 && SET_DEST (pat) == pc_rtx
2639 && computed_jump_p_1 (SET_SRC (pat)))
2640 return 1;
2641 }
2642 return 0;
2643 }
2644
2645 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2646 calls. Processes the subexpressions of EXP and passes them to F. */
2647 static int
2648 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2649 {
2650 int result, i, j;
2651 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2652 rtx *x;
2653
2654 for (; format[n] != '\0'; n++)
2655 {
2656 switch (format[n])
2657 {
2658 case 'e':
2659 /* Call F on X. */
2660 x = &XEXP (exp, n);
2661 result = (*f) (x, data);
2662 if (result == -1)
2663 /* Do not traverse sub-expressions. */
2664 continue;
2665 else if (result != 0)
2666 /* Stop the traversal. */
2667 return result;
2668
2669 if (*x == NULL_RTX)
2670 /* There are no sub-expressions. */
2671 continue;
2672
2673 i = non_rtx_starting_operands[GET_CODE (*x)];
2674 if (i >= 0)
2675 {
2676 result = for_each_rtx_1 (*x, i, f, data);
2677 if (result != 0)
2678 return result;
2679 }
2680 break;
2681
2682 case 'V':
2683 case 'E':
2684 if (XVEC (exp, n) == 0)
2685 continue;
2686 for (j = 0; j < XVECLEN (exp, n); ++j)
2687 {
2688 /* Call F on X. */
2689 x = &XVECEXP (exp, n, j);
2690 result = (*f) (x, data);
2691 if (result == -1)
2692 /* Do not traverse sub-expressions. */
2693 continue;
2694 else if (result != 0)
2695 /* Stop the traversal. */
2696 return result;
2697
2698 if (*x == NULL_RTX)
2699 /* There are no sub-expressions. */
2700 continue;
2701
2702 i = non_rtx_starting_operands[GET_CODE (*x)];
2703 if (i >= 0)
2704 {
2705 result = for_each_rtx_1 (*x, i, f, data);
2706 if (result != 0)
2707 return result;
2708 }
2709 }
2710 break;
2711
2712 default:
2713 /* Nothing to do. */
2714 break;
2715 }
2716 }
2717
2718 return 0;
2719 }
2720
2721 /* Traverse X via depth-first search, calling F for each
2722 sub-expression (including X itself). F is also passed the DATA.
2723 If F returns -1, do not traverse sub-expressions, but continue
2724 traversing the rest of the tree. If F ever returns any other
2725 nonzero value, stop the traversal, and return the value returned
2726 by F. Otherwise, return 0. This function does not traverse inside
2727 tree structure that contains RTX_EXPRs, or into sub-expressions
2728 whose format code is `0' since it is not known whether or not those
2729 codes are actually RTL.
2730
2731 This routine is very general, and could (should?) be used to
2732 implement many of the other routines in this file. */
2733
2734 int
2735 for_each_rtx (rtx *x, rtx_function f, void *data)
2736 {
2737 int result;
2738 int i;
2739
2740 /* Call F on X. */
2741 result = (*f) (x, data);
2742 if (result == -1)
2743 /* Do not traverse sub-expressions. */
2744 return 0;
2745 else if (result != 0)
2746 /* Stop the traversal. */
2747 return result;
2748
2749 if (*x == NULL_RTX)
2750 /* There are no sub-expressions. */
2751 return 0;
2752
2753 i = non_rtx_starting_operands[GET_CODE (*x)];
2754 if (i < 0)
2755 return 0;
2756
2757 return for_each_rtx_1 (*x, i, f, data);
2758 }
2759
2760
2761 /* Searches X for any reference to REGNO, returning the rtx of the
2762 reference found if any. Otherwise, returns NULL_RTX. */
2763
2764 rtx
2765 regno_use_in (unsigned int regno, rtx x)
2766 {
2767 const char *fmt;
2768 int i, j;
2769 rtx tem;
2770
2771 if (REG_P (x) && REGNO (x) == regno)
2772 return x;
2773
2774 fmt = GET_RTX_FORMAT (GET_CODE (x));
2775 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2776 {
2777 if (fmt[i] == 'e')
2778 {
2779 if ((tem = regno_use_in (regno, XEXP (x, i))))
2780 return tem;
2781 }
2782 else if (fmt[i] == 'E')
2783 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2784 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2785 return tem;
2786 }
2787
2788 return NULL_RTX;
2789 }
2790
2791 /* Return a value indicating whether OP, an operand of a commutative
2792 operation, is preferred as the first or second operand. The higher
2793 the value, the stronger the preference for being the first operand.
2794 We use negative values to indicate a preference for the first operand
2795 and positive values for the second operand. */
2796
2797 int
2798 commutative_operand_precedence (rtx op)
2799 {
2800 enum rtx_code code = GET_CODE (op);
2801
2802 /* Constants always come the second operand. Prefer "nice" constants. */
2803 if (code == CONST_INT)
2804 return -7;
2805 if (code == CONST_DOUBLE)
2806 return -6;
2807 op = avoid_constant_pool_reference (op);
2808 code = GET_CODE (op);
2809
2810 switch (GET_RTX_CLASS (code))
2811 {
2812 case RTX_CONST_OBJ:
2813 if (code == CONST_INT)
2814 return -5;
2815 if (code == CONST_DOUBLE)
2816 return -4;
2817 return -3;
2818
2819 case RTX_EXTRA:
2820 /* SUBREGs of objects should come second. */
2821 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2822 return -2;
2823
2824 if (!CONSTANT_P (op))
2825 return 0;
2826 else
2827 /* As for RTX_CONST_OBJ. */
2828 return -3;
2829
2830 case RTX_OBJ:
2831 /* Complex expressions should be the first, so decrease priority
2832 of objects. */
2833 return -1;
2834
2835 case RTX_COMM_ARITH:
2836 /* Prefer operands that are themselves commutative to be first.
2837 This helps to make things linear. In particular,
2838 (and (and (reg) (reg)) (not (reg))) is canonical. */
2839 return 4;
2840
2841 case RTX_BIN_ARITH:
2842 /* If only one operand is a binary expression, it will be the first
2843 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2844 is canonical, although it will usually be further simplified. */
2845 return 2;
2846
2847 case RTX_UNARY:
2848 /* Then prefer NEG and NOT. */
2849 if (code == NEG || code == NOT)
2850 return 1;
2851
2852 default:
2853 return 0;
2854 }
2855 }
2856
2857 /* Return 1 iff it is necessary to swap operands of commutative operation
2858 in order to canonicalize expression. */
2859
2860 int
2861 swap_commutative_operands_p (rtx x, rtx y)
2862 {
2863 return (commutative_operand_precedence (x)
2864 < commutative_operand_precedence (y));
2865 }
2866
2867 /* Return 1 if X is an autoincrement side effect and the register is
2868 not the stack pointer. */
2869 int
2870 auto_inc_p (rtx x)
2871 {
2872 switch (GET_CODE (x))
2873 {
2874 case PRE_INC:
2875 case POST_INC:
2876 case PRE_DEC:
2877 case POST_DEC:
2878 case PRE_MODIFY:
2879 case POST_MODIFY:
2880 /* There are no REG_INC notes for SP. */
2881 if (XEXP (x, 0) != stack_pointer_rtx)
2882 return 1;
2883 default:
2884 break;
2885 }
2886 return 0;
2887 }
2888
2889 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2890 int
2891 loc_mentioned_in_p (rtx *loc, rtx in)
2892 {
2893 enum rtx_code code;
2894 const char *fmt;
2895 int i, j;
2896
2897 if (!in)
2898 return 0;
2899
2900 code = GET_CODE (in);
2901 fmt = GET_RTX_FORMAT (code);
2902 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2903 {
2904 if (loc == &in->u.fld[i].rt_rtx)
2905 return 1;
2906 if (fmt[i] == 'e')
2907 {
2908 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2909 return 1;
2910 }
2911 else if (fmt[i] == 'E')
2912 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2913 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2914 return 1;
2915 }
2916 return 0;
2917 }
2918
2919 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
2920 and SUBREG_BYTE, return the bit offset where the subreg begins
2921 (counting from the least significant bit of the operand). */
2922
2923 unsigned int
2924 subreg_lsb_1 (enum machine_mode outer_mode,
2925 enum machine_mode inner_mode,
2926 unsigned int subreg_byte)
2927 {
2928 unsigned int bitpos;
2929 unsigned int byte;
2930 unsigned int word;
2931
2932 /* A paradoxical subreg begins at bit position 0. */
2933 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
2934 return 0;
2935
2936 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
2937 /* If the subreg crosses a word boundary ensure that
2938 it also begins and ends on a word boundary. */
2939 gcc_assert (!((subreg_byte % UNITS_PER_WORD
2940 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
2941 && (subreg_byte % UNITS_PER_WORD
2942 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
2943
2944 if (WORDS_BIG_ENDIAN)
2945 word = (GET_MODE_SIZE (inner_mode)
2946 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
2947 else
2948 word = subreg_byte / UNITS_PER_WORD;
2949 bitpos = word * BITS_PER_WORD;
2950
2951 if (BYTES_BIG_ENDIAN)
2952 byte = (GET_MODE_SIZE (inner_mode)
2953 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
2954 else
2955 byte = subreg_byte % UNITS_PER_WORD;
2956 bitpos += byte * BITS_PER_UNIT;
2957
2958 return bitpos;
2959 }
2960
2961 /* Given a subreg X, return the bit offset where the subreg begins
2962 (counting from the least significant bit of the reg). */
2963
2964 unsigned int
2965 subreg_lsb (rtx x)
2966 {
2967 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
2968 SUBREG_BYTE (x));
2969 }
2970
2971 /* Fill in information about a subreg of a hard register.
2972 xregno - A regno of an inner hard subreg_reg (or what will become one).
2973 xmode - The mode of xregno.
2974 offset - The byte offset.
2975 ymode - The mode of a top level SUBREG (or what may become one).
2976 info - Pointer to structure to fill in. */
2977 static void
2978 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
2979 unsigned int offset, enum machine_mode ymode,
2980 struct subreg_info *info)
2981 {
2982 int nregs_xmode, nregs_ymode;
2983 int mode_multiple, nregs_multiple;
2984 int offset_adj, y_offset, y_offset_adj;
2985 int regsize_xmode, regsize_ymode;
2986 bool rknown;
2987
2988 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
2989
2990 rknown = false;
2991
2992 /* If there are holes in a non-scalar mode in registers, we expect
2993 that it is made up of its units concatenated together. */
2994 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
2995 {
2996 enum machine_mode xmode_unit;
2997
2998 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
2999 if (GET_MODE_INNER (xmode) == VOIDmode)
3000 xmode_unit = xmode;
3001 else
3002 xmode_unit = GET_MODE_INNER (xmode);
3003 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3004 gcc_assert (nregs_xmode
3005 == (GET_MODE_NUNITS (xmode)
3006 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3007 gcc_assert (hard_regno_nregs[xregno][xmode]
3008 == (hard_regno_nregs[xregno][xmode_unit]
3009 * GET_MODE_NUNITS (xmode)));
3010
3011 /* You can only ask for a SUBREG of a value with holes in the middle
3012 if you don't cross the holes. (Such a SUBREG should be done by
3013 picking a different register class, or doing it in memory if
3014 necessary.) An example of a value with holes is XCmode on 32-bit
3015 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3016 3 for each part, but in memory it's two 128-bit parts.
3017 Padding is assumed to be at the end (not necessarily the 'high part')
3018 of each unit. */
3019 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3020 < GET_MODE_NUNITS (xmode))
3021 && (offset / GET_MODE_SIZE (xmode_unit)
3022 != ((offset + GET_MODE_SIZE (ymode) - 1)
3023 / GET_MODE_SIZE (xmode_unit))))
3024 {
3025 info->representable_p = false;
3026 rknown = true;
3027 }
3028 }
3029 else
3030 nregs_xmode = hard_regno_nregs[xregno][xmode];
3031
3032 nregs_ymode = hard_regno_nregs[xregno][ymode];
3033
3034 /* Paradoxical subregs are otherwise valid. */
3035 if (!rknown
3036 && offset == 0
3037 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3038 {
3039 info->representable_p = true;
3040 /* If this is a big endian paradoxical subreg, which uses more
3041 actual hard registers than the original register, we must
3042 return a negative offset so that we find the proper highpart
3043 of the register. */
3044 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3045 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3046 info->offset = nregs_xmode - nregs_ymode;
3047 else
3048 info->offset = 0;
3049 info->nregs = nregs_ymode;
3050 return;
3051 }
3052
3053 /* If registers store different numbers of bits in the different
3054 modes, we cannot generally form this subreg. */
3055 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3056 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3057 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3058 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3059 {
3060 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3061 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3062 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3063 {
3064 info->representable_p = false;
3065 info->nregs
3066 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3067 info->offset = offset / regsize_xmode;
3068 return;
3069 }
3070 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3071 {
3072 info->representable_p = false;
3073 info->nregs
3074 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3075 info->offset = offset / regsize_xmode;
3076 return;
3077 }
3078 }
3079
3080 /* Lowpart subregs are otherwise valid. */
3081 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3082 {
3083 info->representable_p = true;
3084 rknown = true;
3085
3086 if (offset == 0 || nregs_xmode == nregs_ymode)
3087 {
3088 info->offset = 0;
3089 info->nregs = nregs_ymode;
3090 return;
3091 }
3092 }
3093
3094 /* This should always pass, otherwise we don't know how to verify
3095 the constraint. These conditions may be relaxed but
3096 subreg_regno_offset would need to be redesigned. */
3097 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3098 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3099
3100 /* The XMODE value can be seen as a vector of NREGS_XMODE
3101 values. The subreg must represent a lowpart of given field.
3102 Compute what field it is. */
3103 offset_adj = offset;
3104 offset_adj -= subreg_lowpart_offset (ymode,
3105 mode_for_size (GET_MODE_BITSIZE (xmode)
3106 / nregs_xmode,
3107 MODE_INT, 0));
3108
3109 /* Size of ymode must not be greater than the size of xmode. */
3110 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3111 gcc_assert (mode_multiple != 0);
3112
3113 y_offset = offset / GET_MODE_SIZE (ymode);
3114 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3115 nregs_multiple = nregs_xmode / nregs_ymode;
3116
3117 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3118 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3119
3120 if (!rknown)
3121 {
3122 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3123 rknown = true;
3124 }
3125 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3126 info->nregs = nregs_ymode;
3127 }
3128
3129 /* This function returns the regno offset of a subreg expression.
3130 xregno - A regno of an inner hard subreg_reg (or what will become one).
3131 xmode - The mode of xregno.
3132 offset - The byte offset.
3133 ymode - The mode of a top level SUBREG (or what may become one).
3134 RETURN - The regno offset which would be used. */
3135 unsigned int
3136 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3137 unsigned int offset, enum machine_mode ymode)
3138 {
3139 struct subreg_info info;
3140 subreg_get_info (xregno, xmode, offset, ymode, &info);
3141 return info.offset;
3142 }
3143
3144 /* This function returns true when the offset is representable via
3145 subreg_offset in the given regno.
3146 xregno - A regno of an inner hard subreg_reg (or what will become one).
3147 xmode - The mode of xregno.
3148 offset - The byte offset.
3149 ymode - The mode of a top level SUBREG (or what may become one).
3150 RETURN - Whether the offset is representable. */
3151 bool
3152 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3153 unsigned int offset, enum machine_mode ymode)
3154 {
3155 struct subreg_info info;
3156 subreg_get_info (xregno, xmode, offset, ymode, &info);
3157 return info.representable_p;
3158 }
3159
3160 /* Return the final regno that a subreg expression refers to. */
3161 unsigned int
3162 subreg_regno (rtx x)
3163 {
3164 unsigned int ret;
3165 rtx subreg = SUBREG_REG (x);
3166 int regno = REGNO (subreg);
3167
3168 ret = regno + subreg_regno_offset (regno,
3169 GET_MODE (subreg),
3170 SUBREG_BYTE (x),
3171 GET_MODE (x));
3172 return ret;
3173
3174 }
3175
3176 /* Return the number of registers that a subreg expression refers
3177 to. */
3178 unsigned int
3179 subreg_nregs (rtx x)
3180 {
3181 struct subreg_info info;
3182 rtx subreg = SUBREG_REG (x);
3183 int regno = REGNO (subreg);
3184
3185 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3186 &info);
3187 return info.nregs;
3188 }
3189
3190 struct parms_set_data
3191 {
3192 int nregs;
3193 HARD_REG_SET regs;
3194 };
3195
3196 /* Helper function for noticing stores to parameter registers. */
3197 static void
3198 parms_set (rtx x, rtx pat ATTRIBUTE_UNUSED, void *data)
3199 {
3200 struct parms_set_data *d = data;
3201 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3202 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3203 {
3204 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3205 d->nregs--;
3206 }
3207 }
3208
3209 /* Look backward for first parameter to be loaded.
3210 Note that loads of all parameters will not necessarily be
3211 found if CSE has eliminated some of them (e.g., an argument
3212 to the outer function is passed down as a parameter).
3213 Do not skip BOUNDARY. */
3214 rtx
3215 find_first_parameter_load (rtx call_insn, rtx boundary)
3216 {
3217 struct parms_set_data parm;
3218 rtx p, before, first_set;
3219
3220 /* Since different machines initialize their parameter registers
3221 in different orders, assume nothing. Collect the set of all
3222 parameter registers. */
3223 CLEAR_HARD_REG_SET (parm.regs);
3224 parm.nregs = 0;
3225 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3226 if (GET_CODE (XEXP (p, 0)) == USE
3227 && REG_P (XEXP (XEXP (p, 0), 0)))
3228 {
3229 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3230
3231 /* We only care about registers which can hold function
3232 arguments. */
3233 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3234 continue;
3235
3236 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3237 parm.nregs++;
3238 }
3239 before = call_insn;
3240 first_set = call_insn;
3241
3242 /* Search backward for the first set of a register in this set. */
3243 while (parm.nregs && before != boundary)
3244 {
3245 before = PREV_INSN (before);
3246
3247 /* It is possible that some loads got CSEed from one call to
3248 another. Stop in that case. */
3249 if (CALL_P (before))
3250 break;
3251
3252 /* Our caller needs either ensure that we will find all sets
3253 (in case code has not been optimized yet), or take care
3254 for possible labels in a way by setting boundary to preceding
3255 CODE_LABEL. */
3256 if (LABEL_P (before))
3257 {
3258 gcc_assert (before == boundary);
3259 break;
3260 }
3261
3262 if (INSN_P (before))
3263 {
3264 int nregs_old = parm.nregs;
3265 note_stores (PATTERN (before), parms_set, &parm);
3266 /* If we found something that did not set a parameter reg,
3267 we're done. Do not keep going, as that might result
3268 in hoisting an insn before the setting of a pseudo
3269 that is used by the hoisted insn. */
3270 if (nregs_old != parm.nregs)
3271 first_set = before;
3272 else
3273 break;
3274 }
3275 }
3276 return first_set;
3277 }
3278
3279 /* Return true if we should avoid inserting code between INSN and preceding
3280 call instruction. */
3281
3282 bool
3283 keep_with_call_p (rtx insn)
3284 {
3285 rtx set;
3286
3287 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3288 {
3289 if (REG_P (SET_DEST (set))
3290 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3291 && fixed_regs[REGNO (SET_DEST (set))]
3292 && general_operand (SET_SRC (set), VOIDmode))
3293 return true;
3294 if (REG_P (SET_SRC (set))
3295 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3296 && REG_P (SET_DEST (set))
3297 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3298 return true;
3299 /* There may be a stack pop just after the call and before the store
3300 of the return register. Search for the actual store when deciding
3301 if we can break or not. */
3302 if (SET_DEST (set) == stack_pointer_rtx)
3303 {
3304 rtx i2 = next_nonnote_insn (insn);
3305 if (i2 && keep_with_call_p (i2))
3306 return true;
3307 }
3308 }
3309 return false;
3310 }
3311
3312 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3313 to non-complex jumps. That is, direct unconditional, conditional,
3314 and tablejumps, but not computed jumps or returns. It also does
3315 not apply to the fallthru case of a conditional jump. */
3316
3317 bool
3318 label_is_jump_target_p (rtx label, rtx jump_insn)
3319 {
3320 rtx tmp = JUMP_LABEL (jump_insn);
3321
3322 if (label == tmp)
3323 return true;
3324
3325 if (tablejump_p (jump_insn, NULL, &tmp))
3326 {
3327 rtvec vec = XVEC (PATTERN (tmp),
3328 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3329 int i, veclen = GET_NUM_ELEM (vec);
3330
3331 for (i = 0; i < veclen; ++i)
3332 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3333 return true;
3334 }
3335
3336 return false;
3337 }
3338
3339 \f
3340 /* Return an estimate of the cost of computing rtx X.
3341 One use is in cse, to decide which expression to keep in the hash table.
3342 Another is in rtl generation, to pick the cheapest way to multiply.
3343 Other uses like the latter are expected in the future. */
3344
3345 int
3346 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3347 {
3348 int i, j;
3349 enum rtx_code code;
3350 const char *fmt;
3351 int total;
3352
3353 if (x == 0)
3354 return 0;
3355
3356 /* Compute the default costs of certain things.
3357 Note that targetm.rtx_costs can override the defaults. */
3358
3359 code = GET_CODE (x);
3360 switch (code)
3361 {
3362 case MULT:
3363 total = COSTS_N_INSNS (5);
3364 break;
3365 case DIV:
3366 case UDIV:
3367 case MOD:
3368 case UMOD:
3369 total = COSTS_N_INSNS (7);
3370 break;
3371 case USE:
3372 /* Used in combine.c as a marker. */
3373 total = 0;
3374 break;
3375 default:
3376 total = COSTS_N_INSNS (1);
3377 }
3378
3379 switch (code)
3380 {
3381 case REG:
3382 return 0;
3383
3384 case SUBREG:
3385 total = 0;
3386 /* If we can't tie these modes, make this expensive. The larger
3387 the mode, the more expensive it is. */
3388 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3389 return COSTS_N_INSNS (2
3390 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3391 break;
3392
3393 default:
3394 if (targetm.rtx_costs (x, code, outer_code, &total))
3395 return total;
3396 break;
3397 }
3398
3399 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3400 which is already in total. */
3401
3402 fmt = GET_RTX_FORMAT (code);
3403 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3404 if (fmt[i] == 'e')
3405 total += rtx_cost (XEXP (x, i), code);
3406 else if (fmt[i] == 'E')
3407 for (j = 0; j < XVECLEN (x, i); j++)
3408 total += rtx_cost (XVECEXP (x, i, j), code);
3409
3410 return total;
3411 }
3412 \f
3413 /* Return cost of address expression X.
3414 Expect that X is properly formed address reference. */
3415
3416 int
3417 address_cost (rtx x, enum machine_mode mode)
3418 {
3419 /* We may be asked for cost of various unusual addresses, such as operands
3420 of push instruction. It is not worthwhile to complicate writing
3421 of the target hook by such cases. */
3422
3423 if (!memory_address_p (mode, x))
3424 return 1000;
3425
3426 return targetm.address_cost (x);
3427 }
3428
3429 /* If the target doesn't override, compute the cost as with arithmetic. */
3430
3431 int
3432 default_address_cost (rtx x)
3433 {
3434 return rtx_cost (x, MEM);
3435 }
3436 \f
3437
3438 unsigned HOST_WIDE_INT
3439 nonzero_bits (rtx x, enum machine_mode mode)
3440 {
3441 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3442 }
3443
3444 unsigned int
3445 num_sign_bit_copies (rtx x, enum machine_mode mode)
3446 {
3447 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3448 }
3449
3450 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3451 It avoids exponential behavior in nonzero_bits1 when X has
3452 identical subexpressions on the first or the second level. */
3453
3454 static unsigned HOST_WIDE_INT
3455 cached_nonzero_bits (rtx x, enum machine_mode mode, rtx known_x,
3456 enum machine_mode known_mode,
3457 unsigned HOST_WIDE_INT known_ret)
3458 {
3459 if (x == known_x && mode == known_mode)
3460 return known_ret;
3461
3462 /* Try to find identical subexpressions. If found call
3463 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3464 precomputed value for the subexpression as KNOWN_RET. */
3465
3466 if (ARITHMETIC_P (x))
3467 {
3468 rtx x0 = XEXP (x, 0);
3469 rtx x1 = XEXP (x, 1);
3470
3471 /* Check the first level. */
3472 if (x0 == x1)
3473 return nonzero_bits1 (x, mode, x0, mode,
3474 cached_nonzero_bits (x0, mode, known_x,
3475 known_mode, known_ret));
3476
3477 /* Check the second level. */
3478 if (ARITHMETIC_P (x0)
3479 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3480 return nonzero_bits1 (x, mode, x1, mode,
3481 cached_nonzero_bits (x1, mode, known_x,
3482 known_mode, known_ret));
3483
3484 if (ARITHMETIC_P (x1)
3485 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3486 return nonzero_bits1 (x, mode, x0, mode,
3487 cached_nonzero_bits (x0, mode, known_x,
3488 known_mode, known_ret));
3489 }
3490
3491 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3492 }
3493
3494 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3495 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3496 is less useful. We can't allow both, because that results in exponential
3497 run time recursion. There is a nullstone testcase that triggered
3498 this. This macro avoids accidental uses of num_sign_bit_copies. */
3499 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3500
3501 /* Given an expression, X, compute which bits in X can be nonzero.
3502 We don't care about bits outside of those defined in MODE.
3503
3504 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3505 an arithmetic operation, we can do better. */
3506
3507 static unsigned HOST_WIDE_INT
3508 nonzero_bits1 (rtx x, enum machine_mode mode, rtx known_x,
3509 enum machine_mode known_mode,
3510 unsigned HOST_WIDE_INT known_ret)
3511 {
3512 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3513 unsigned HOST_WIDE_INT inner_nz;
3514 enum rtx_code code;
3515 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3516
3517 /* For floating-point values, assume all bits are needed. */
3518 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3519 return nonzero;
3520
3521 /* If X is wider than MODE, use its mode instead. */
3522 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3523 {
3524 mode = GET_MODE (x);
3525 nonzero = GET_MODE_MASK (mode);
3526 mode_width = GET_MODE_BITSIZE (mode);
3527 }
3528
3529 if (mode_width > HOST_BITS_PER_WIDE_INT)
3530 /* Our only callers in this case look for single bit values. So
3531 just return the mode mask. Those tests will then be false. */
3532 return nonzero;
3533
3534 #ifndef WORD_REGISTER_OPERATIONS
3535 /* If MODE is wider than X, but both are a single word for both the host
3536 and target machines, we can compute this from which bits of the
3537 object might be nonzero in its own mode, taking into account the fact
3538 that on many CISC machines, accessing an object in a wider mode
3539 causes the high-order bits to become undefined. So they are
3540 not known to be zero. */
3541
3542 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3543 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3544 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3545 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3546 {
3547 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3548 known_x, known_mode, known_ret);
3549 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3550 return nonzero;
3551 }
3552 #endif
3553
3554 code = GET_CODE (x);
3555 switch (code)
3556 {
3557 case REG:
3558 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3559 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3560 all the bits above ptr_mode are known to be zero. */
3561 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3562 && REG_POINTER (x))
3563 nonzero &= GET_MODE_MASK (ptr_mode);
3564 #endif
3565
3566 /* Include declared information about alignment of pointers. */
3567 /* ??? We don't properly preserve REG_POINTER changes across
3568 pointer-to-integer casts, so we can't trust it except for
3569 things that we know must be pointers. See execute/960116-1.c. */
3570 if ((x == stack_pointer_rtx
3571 || x == frame_pointer_rtx
3572 || x == arg_pointer_rtx)
3573 && REGNO_POINTER_ALIGN (REGNO (x)))
3574 {
3575 unsigned HOST_WIDE_INT alignment
3576 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3577
3578 #ifdef PUSH_ROUNDING
3579 /* If PUSH_ROUNDING is defined, it is possible for the
3580 stack to be momentarily aligned only to that amount,
3581 so we pick the least alignment. */
3582 if (x == stack_pointer_rtx && PUSH_ARGS)
3583 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3584 alignment);
3585 #endif
3586
3587 nonzero &= ~(alignment - 1);
3588 }
3589
3590 {
3591 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3592 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3593 known_mode, known_ret,
3594 &nonzero_for_hook);
3595
3596 if (new)
3597 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3598 known_mode, known_ret);
3599
3600 return nonzero_for_hook;
3601 }
3602
3603 case CONST_INT:
3604 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3605 /* If X is negative in MODE, sign-extend the value. */
3606 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3607 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3608 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3609 #endif
3610
3611 return INTVAL (x);
3612
3613 case MEM:
3614 #ifdef LOAD_EXTEND_OP
3615 /* In many, if not most, RISC machines, reading a byte from memory
3616 zeros the rest of the register. Noticing that fact saves a lot
3617 of extra zero-extends. */
3618 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3619 nonzero &= GET_MODE_MASK (GET_MODE (x));
3620 #endif
3621 break;
3622
3623 case EQ: case NE:
3624 case UNEQ: case LTGT:
3625 case GT: case GTU: case UNGT:
3626 case LT: case LTU: case UNLT:
3627 case GE: case GEU: case UNGE:
3628 case LE: case LEU: case UNLE:
3629 case UNORDERED: case ORDERED:
3630 /* If this produces an integer result, we know which bits are set.
3631 Code here used to clear bits outside the mode of X, but that is
3632 now done above. */
3633 /* Mind that MODE is the mode the caller wants to look at this
3634 operation in, and not the actual operation mode. We can wind
3635 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3636 that describes the results of a vector compare. */
3637 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3638 && mode_width <= HOST_BITS_PER_WIDE_INT)
3639 nonzero = STORE_FLAG_VALUE;
3640 break;
3641
3642 case NEG:
3643 #if 0
3644 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3645 and num_sign_bit_copies. */
3646 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3647 == GET_MODE_BITSIZE (GET_MODE (x)))
3648 nonzero = 1;
3649 #endif
3650
3651 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3652 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3653 break;
3654
3655 case ABS:
3656 #if 0
3657 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3658 and num_sign_bit_copies. */
3659 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3660 == GET_MODE_BITSIZE (GET_MODE (x)))
3661 nonzero = 1;
3662 #endif
3663 break;
3664
3665 case TRUNCATE:
3666 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3667 known_x, known_mode, known_ret)
3668 & GET_MODE_MASK (mode));
3669 break;
3670
3671 case ZERO_EXTEND:
3672 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3673 known_x, known_mode, known_ret);
3674 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3675 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3676 break;
3677
3678 case SIGN_EXTEND:
3679 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3680 Otherwise, show all the bits in the outer mode but not the inner
3681 may be nonzero. */
3682 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3683 known_x, known_mode, known_ret);
3684 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3685 {
3686 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3687 if (inner_nz
3688 & (((HOST_WIDE_INT) 1
3689 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3690 inner_nz |= (GET_MODE_MASK (mode)
3691 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3692 }
3693
3694 nonzero &= inner_nz;
3695 break;
3696
3697 case AND:
3698 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3699 known_x, known_mode, known_ret)
3700 & cached_nonzero_bits (XEXP (x, 1), mode,
3701 known_x, known_mode, known_ret);
3702 break;
3703
3704 case XOR: case IOR:
3705 case UMIN: case UMAX: case SMIN: case SMAX:
3706 {
3707 unsigned HOST_WIDE_INT nonzero0 =
3708 cached_nonzero_bits (XEXP (x, 0), mode,
3709 known_x, known_mode, known_ret);
3710
3711 /* Don't call nonzero_bits for the second time if it cannot change
3712 anything. */
3713 if ((nonzero & nonzero0) != nonzero)
3714 nonzero &= nonzero0
3715 | cached_nonzero_bits (XEXP (x, 1), mode,
3716 known_x, known_mode, known_ret);
3717 }
3718 break;
3719
3720 case PLUS: case MINUS:
3721 case MULT:
3722 case DIV: case UDIV:
3723 case MOD: case UMOD:
3724 /* We can apply the rules of arithmetic to compute the number of
3725 high- and low-order zero bits of these operations. We start by
3726 computing the width (position of the highest-order nonzero bit)
3727 and the number of low-order zero bits for each value. */
3728 {
3729 unsigned HOST_WIDE_INT nz0 =
3730 cached_nonzero_bits (XEXP (x, 0), mode,
3731 known_x, known_mode, known_ret);
3732 unsigned HOST_WIDE_INT nz1 =
3733 cached_nonzero_bits (XEXP (x, 1), mode,
3734 known_x, known_mode, known_ret);
3735 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3736 int width0 = floor_log2 (nz0) + 1;
3737 int width1 = floor_log2 (nz1) + 1;
3738 int low0 = floor_log2 (nz0 & -nz0);
3739 int low1 = floor_log2 (nz1 & -nz1);
3740 HOST_WIDE_INT op0_maybe_minusp
3741 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3742 HOST_WIDE_INT op1_maybe_minusp
3743 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3744 unsigned int result_width = mode_width;
3745 int result_low = 0;
3746
3747 switch (code)
3748 {
3749 case PLUS:
3750 result_width = MAX (width0, width1) + 1;
3751 result_low = MIN (low0, low1);
3752 break;
3753 case MINUS:
3754 result_low = MIN (low0, low1);
3755 break;
3756 case MULT:
3757 result_width = width0 + width1;
3758 result_low = low0 + low1;
3759 break;
3760 case DIV:
3761 if (width1 == 0)
3762 break;
3763 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3764 result_width = width0;
3765 break;
3766 case UDIV:
3767 if (width1 == 0)
3768 break;
3769 result_width = width0;
3770 break;
3771 case MOD:
3772 if (width1 == 0)
3773 break;
3774 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3775 result_width = MIN (width0, width1);
3776 result_low = MIN (low0, low1);
3777 break;
3778 case UMOD:
3779 if (width1 == 0)
3780 break;
3781 result_width = MIN (width0, width1);
3782 result_low = MIN (low0, low1);
3783 break;
3784 default:
3785 gcc_unreachable ();
3786 }
3787
3788 if (result_width < mode_width)
3789 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3790
3791 if (result_low > 0)
3792 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3793
3794 #ifdef POINTERS_EXTEND_UNSIGNED
3795 /* If pointers extend unsigned and this is an addition or subtraction
3796 to a pointer in Pmode, all the bits above ptr_mode are known to be
3797 zero. */
3798 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3799 && (code == PLUS || code == MINUS)
3800 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3801 nonzero &= GET_MODE_MASK (ptr_mode);
3802 #endif
3803 }
3804 break;
3805
3806 case ZERO_EXTRACT:
3807 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3808 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3809 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3810 break;
3811
3812 case SUBREG:
3813 /* If this is a SUBREG formed for a promoted variable that has
3814 been zero-extended, we know that at least the high-order bits
3815 are zero, though others might be too. */
3816
3817 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3818 nonzero = GET_MODE_MASK (GET_MODE (x))
3819 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3820 known_x, known_mode, known_ret);
3821
3822 /* If the inner mode is a single word for both the host and target
3823 machines, we can compute this from which bits of the inner
3824 object might be nonzero. */
3825 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3826 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3827 <= HOST_BITS_PER_WIDE_INT))
3828 {
3829 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3830 known_x, known_mode, known_ret);
3831
3832 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3833 /* If this is a typical RISC machine, we only have to worry
3834 about the way loads are extended. */
3835 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3836 ? (((nonzero
3837 & (((unsigned HOST_WIDE_INT) 1
3838 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3839 != 0))
3840 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3841 || !MEM_P (SUBREG_REG (x)))
3842 #endif
3843 {
3844 /* On many CISC machines, accessing an object in a wider mode
3845 causes the high-order bits to become undefined. So they are
3846 not known to be zero. */
3847 if (GET_MODE_SIZE (GET_MODE (x))
3848 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3849 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3850 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3851 }
3852 }
3853 break;
3854
3855 case ASHIFTRT:
3856 case LSHIFTRT:
3857 case ASHIFT:
3858 case ROTATE:
3859 /* The nonzero bits are in two classes: any bits within MODE
3860 that aren't in GET_MODE (x) are always significant. The rest of the
3861 nonzero bits are those that are significant in the operand of
3862 the shift when shifted the appropriate number of bits. This
3863 shows that high-order bits are cleared by the right shift and
3864 low-order bits by left shifts. */
3865 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3866 && INTVAL (XEXP (x, 1)) >= 0
3867 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3868 {
3869 enum machine_mode inner_mode = GET_MODE (x);
3870 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3871 int count = INTVAL (XEXP (x, 1));
3872 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3873 unsigned HOST_WIDE_INT op_nonzero =
3874 cached_nonzero_bits (XEXP (x, 0), mode,
3875 known_x, known_mode, known_ret);
3876 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3877 unsigned HOST_WIDE_INT outer = 0;
3878
3879 if (mode_width > width)
3880 outer = (op_nonzero & nonzero & ~mode_mask);
3881
3882 if (code == LSHIFTRT)
3883 inner >>= count;
3884 else if (code == ASHIFTRT)
3885 {
3886 inner >>= count;
3887
3888 /* If the sign bit may have been nonzero before the shift, we
3889 need to mark all the places it could have been copied to
3890 by the shift as possibly nonzero. */
3891 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3892 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3893 }
3894 else if (code == ASHIFT)
3895 inner <<= count;
3896 else
3897 inner = ((inner << (count % width)
3898 | (inner >> (width - (count % width)))) & mode_mask);
3899
3900 nonzero &= (outer | inner);
3901 }
3902 break;
3903
3904 case FFS:
3905 case POPCOUNT:
3906 /* This is at most the number of bits in the mode. */
3907 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3908 break;
3909
3910 case CLZ:
3911 /* If CLZ has a known value at zero, then the nonzero bits are
3912 that value, plus the number of bits in the mode minus one. */
3913 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3914 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3915 else
3916 nonzero = -1;
3917 break;
3918
3919 case CTZ:
3920 /* If CTZ has a known value at zero, then the nonzero bits are
3921 that value, plus the number of bits in the mode minus one. */
3922 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
3923 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
3924 else
3925 nonzero = -1;
3926 break;
3927
3928 case PARITY:
3929 nonzero = 1;
3930 break;
3931
3932 case IF_THEN_ELSE:
3933 {
3934 unsigned HOST_WIDE_INT nonzero_true =
3935 cached_nonzero_bits (XEXP (x, 1), mode,
3936 known_x, known_mode, known_ret);
3937
3938 /* Don't call nonzero_bits for the second time if it cannot change
3939 anything. */
3940 if ((nonzero & nonzero_true) != nonzero)
3941 nonzero &= nonzero_true
3942 | cached_nonzero_bits (XEXP (x, 2), mode,
3943 known_x, known_mode, known_ret);
3944 }
3945 break;
3946
3947 default:
3948 break;
3949 }
3950
3951 return nonzero;
3952 }
3953
3954 /* See the macro definition above. */
3955 #undef cached_num_sign_bit_copies
3956
3957 \f
3958 /* The function cached_num_sign_bit_copies is a wrapper around
3959 num_sign_bit_copies1. It avoids exponential behavior in
3960 num_sign_bit_copies1 when X has identical subexpressions on the
3961 first or the second level. */
3962
3963 static unsigned int
3964 cached_num_sign_bit_copies (rtx x, enum machine_mode mode, rtx known_x,
3965 enum machine_mode known_mode,
3966 unsigned int known_ret)
3967 {
3968 if (x == known_x && mode == known_mode)
3969 return known_ret;
3970
3971 /* Try to find identical subexpressions. If found call
3972 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
3973 the precomputed value for the subexpression as KNOWN_RET. */
3974
3975 if (ARITHMETIC_P (x))
3976 {
3977 rtx x0 = XEXP (x, 0);
3978 rtx x1 = XEXP (x, 1);
3979
3980 /* Check the first level. */
3981 if (x0 == x1)
3982 return
3983 num_sign_bit_copies1 (x, mode, x0, mode,
3984 cached_num_sign_bit_copies (x0, mode, known_x,
3985 known_mode,
3986 known_ret));
3987
3988 /* Check the second level. */
3989 if (ARITHMETIC_P (x0)
3990 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3991 return
3992 num_sign_bit_copies1 (x, mode, x1, mode,
3993 cached_num_sign_bit_copies (x1, mode, known_x,
3994 known_mode,
3995 known_ret));
3996
3997 if (ARITHMETIC_P (x1)
3998 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3999 return
4000 num_sign_bit_copies1 (x, mode, x0, mode,
4001 cached_num_sign_bit_copies (x0, mode, known_x,
4002 known_mode,
4003 known_ret));
4004 }
4005
4006 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4007 }
4008
4009 /* Return the number of bits at the high-order end of X that are known to
4010 be equal to the sign bit. X will be used in mode MODE; if MODE is
4011 VOIDmode, X will be used in its own mode. The returned value will always
4012 be between 1 and the number of bits in MODE. */
4013
4014 static unsigned int
4015 num_sign_bit_copies1 (rtx x, enum machine_mode mode, rtx known_x,
4016 enum machine_mode known_mode,
4017 unsigned int known_ret)
4018 {
4019 enum rtx_code code = GET_CODE (x);
4020 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4021 int num0, num1, result;
4022 unsigned HOST_WIDE_INT nonzero;
4023
4024 /* If we weren't given a mode, use the mode of X. If the mode is still
4025 VOIDmode, we don't know anything. Likewise if one of the modes is
4026 floating-point. */
4027
4028 if (mode == VOIDmode)
4029 mode = GET_MODE (x);
4030
4031 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4032 return 1;
4033
4034 /* For a smaller object, just ignore the high bits. */
4035 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4036 {
4037 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4038 known_x, known_mode, known_ret);
4039 return MAX (1,
4040 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4041 }
4042
4043 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4044 {
4045 #ifndef WORD_REGISTER_OPERATIONS
4046 /* If this machine does not do all register operations on the entire
4047 register and MODE is wider than the mode of X, we can say nothing
4048 at all about the high-order bits. */
4049 return 1;
4050 #else
4051 /* Likewise on machines that do, if the mode of the object is smaller
4052 than a word and loads of that size don't sign extend, we can say
4053 nothing about the high order bits. */
4054 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4055 #ifdef LOAD_EXTEND_OP
4056 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4057 #endif
4058 )
4059 return 1;
4060 #endif
4061 }
4062
4063 switch (code)
4064 {
4065 case REG:
4066
4067 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4068 /* If pointers extend signed and this is a pointer in Pmode, say that
4069 all the bits above ptr_mode are known to be sign bit copies. */
4070 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4071 && REG_POINTER (x))
4072 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4073 #endif
4074
4075 {
4076 unsigned int copies_for_hook = 1, copies = 1;
4077 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4078 known_mode, known_ret,
4079 &copies_for_hook);
4080
4081 if (new)
4082 copies = cached_num_sign_bit_copies (new, mode, known_x,
4083 known_mode, known_ret);
4084
4085 if (copies > 1 || copies_for_hook > 1)
4086 return MAX (copies, copies_for_hook);
4087
4088 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4089 }
4090 break;
4091
4092 case MEM:
4093 #ifdef LOAD_EXTEND_OP
4094 /* Some RISC machines sign-extend all loads of smaller than a word. */
4095 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4096 return MAX (1, ((int) bitwidth
4097 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4098 #endif
4099 break;
4100
4101 case CONST_INT:
4102 /* If the constant is negative, take its 1's complement and remask.
4103 Then see how many zero bits we have. */
4104 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4105 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4106 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4107 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4108
4109 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4110
4111 case SUBREG:
4112 /* If this is a SUBREG for a promoted object that is sign-extended
4113 and we are looking at it in a wider mode, we know that at least the
4114 high-order bits are known to be sign bit copies. */
4115
4116 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4117 {
4118 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4119 known_x, known_mode, known_ret);
4120 return MAX ((int) bitwidth
4121 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4122 num0);
4123 }
4124
4125 /* For a smaller object, just ignore the high bits. */
4126 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4127 {
4128 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4129 known_x, known_mode, known_ret);
4130 return MAX (1, (num0
4131 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4132 - bitwidth)));
4133 }
4134
4135 #ifdef WORD_REGISTER_OPERATIONS
4136 #ifdef LOAD_EXTEND_OP
4137 /* For paradoxical SUBREGs on machines where all register operations
4138 affect the entire register, just look inside. Note that we are
4139 passing MODE to the recursive call, so the number of sign bit copies
4140 will remain relative to that mode, not the inner mode. */
4141
4142 /* This works only if loads sign extend. Otherwise, if we get a
4143 reload for the inner part, it may be loaded from the stack, and
4144 then we lose all sign bit copies that existed before the store
4145 to the stack. */
4146
4147 if ((GET_MODE_SIZE (GET_MODE (x))
4148 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4149 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4150 && MEM_P (SUBREG_REG (x)))
4151 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4152 known_x, known_mode, known_ret);
4153 #endif
4154 #endif
4155 break;
4156
4157 case SIGN_EXTRACT:
4158 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4159 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4160 break;
4161
4162 case SIGN_EXTEND:
4163 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4164 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4165 known_x, known_mode, known_ret));
4166
4167 case TRUNCATE:
4168 /* For a smaller object, just ignore the high bits. */
4169 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4170 known_x, known_mode, known_ret);
4171 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4172 - bitwidth)));
4173
4174 case NOT:
4175 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4176 known_x, known_mode, known_ret);
4177
4178 case ROTATE: case ROTATERT:
4179 /* If we are rotating left by a number of bits less than the number
4180 of sign bit copies, we can just subtract that amount from the
4181 number. */
4182 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4183 && INTVAL (XEXP (x, 1)) >= 0
4184 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4185 {
4186 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4187 known_x, known_mode, known_ret);
4188 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4189 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4190 }
4191 break;
4192
4193 case NEG:
4194 /* In general, this subtracts one sign bit copy. But if the value
4195 is known to be positive, the number of sign bit copies is the
4196 same as that of the input. Finally, if the input has just one bit
4197 that might be nonzero, all the bits are copies of the sign bit. */
4198 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4199 known_x, known_mode, known_ret);
4200 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4201 return num0 > 1 ? num0 - 1 : 1;
4202
4203 nonzero = nonzero_bits (XEXP (x, 0), mode);
4204 if (nonzero == 1)
4205 return bitwidth;
4206
4207 if (num0 > 1
4208 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4209 num0--;
4210
4211 return num0;
4212
4213 case IOR: case AND: case XOR:
4214 case SMIN: case SMAX: case UMIN: case UMAX:
4215 /* Logical operations will preserve the number of sign-bit copies.
4216 MIN and MAX operations always return one of the operands. */
4217 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4218 known_x, known_mode, known_ret);
4219 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4220 known_x, known_mode, known_ret);
4221 return MIN (num0, num1);
4222
4223 case PLUS: case MINUS:
4224 /* For addition and subtraction, we can have a 1-bit carry. However,
4225 if we are subtracting 1 from a positive number, there will not
4226 be such a carry. Furthermore, if the positive number is known to
4227 be 0 or 1, we know the result is either -1 or 0. */
4228
4229 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4230 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4231 {
4232 nonzero = nonzero_bits (XEXP (x, 0), mode);
4233 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4234 return (nonzero == 1 || nonzero == 0 ? bitwidth
4235 : bitwidth - floor_log2 (nonzero) - 1);
4236 }
4237
4238 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4239 known_x, known_mode, known_ret);
4240 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4241 known_x, known_mode, known_ret);
4242 result = MAX (1, MIN (num0, num1) - 1);
4243
4244 #ifdef POINTERS_EXTEND_UNSIGNED
4245 /* If pointers extend signed and this is an addition or subtraction
4246 to a pointer in Pmode, all the bits above ptr_mode are known to be
4247 sign bit copies. */
4248 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4249 && (code == PLUS || code == MINUS)
4250 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4251 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4252 - GET_MODE_BITSIZE (ptr_mode) + 1),
4253 result);
4254 #endif
4255 return result;
4256
4257 case MULT:
4258 /* The number of bits of the product is the sum of the number of
4259 bits of both terms. However, unless one of the terms if known
4260 to be positive, we must allow for an additional bit since negating
4261 a negative number can remove one sign bit copy. */
4262
4263 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4264 known_x, known_mode, known_ret);
4265 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4266 known_x, known_mode, known_ret);
4267
4268 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4269 if (result > 0
4270 && (bitwidth > HOST_BITS_PER_WIDE_INT
4271 || (((nonzero_bits (XEXP (x, 0), mode)
4272 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4273 && ((nonzero_bits (XEXP (x, 1), mode)
4274 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4275 result--;
4276
4277 return MAX (1, result);
4278
4279 case UDIV:
4280 /* The result must be <= the first operand. If the first operand
4281 has the high bit set, we know nothing about the number of sign
4282 bit copies. */
4283 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4284 return 1;
4285 else if ((nonzero_bits (XEXP (x, 0), mode)
4286 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4287 return 1;
4288 else
4289 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4290 known_x, known_mode, known_ret);
4291
4292 case UMOD:
4293 /* The result must be <= the second operand. */
4294 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4295 known_x, known_mode, known_ret);
4296
4297 case DIV:
4298 /* Similar to unsigned division, except that we have to worry about
4299 the case where the divisor is negative, in which case we have
4300 to add 1. */
4301 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4302 known_x, known_mode, known_ret);
4303 if (result > 1
4304 && (bitwidth > HOST_BITS_PER_WIDE_INT
4305 || (nonzero_bits (XEXP (x, 1), mode)
4306 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4307 result--;
4308
4309 return result;
4310
4311 case MOD:
4312 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4313 known_x, known_mode, known_ret);
4314 if (result > 1
4315 && (bitwidth > HOST_BITS_PER_WIDE_INT
4316 || (nonzero_bits (XEXP (x, 1), mode)
4317 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4318 result--;
4319
4320 return result;
4321
4322 case ASHIFTRT:
4323 /* Shifts by a constant add to the number of bits equal to the
4324 sign bit. */
4325 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4326 known_x, known_mode, known_ret);
4327 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4328 && INTVAL (XEXP (x, 1)) > 0)
4329 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4330
4331 return num0;
4332
4333 case ASHIFT:
4334 /* Left shifts destroy copies. */
4335 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4336 || INTVAL (XEXP (x, 1)) < 0
4337 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4338 return 1;
4339
4340 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4341 known_x, known_mode, known_ret);
4342 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4343
4344 case IF_THEN_ELSE:
4345 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4346 known_x, known_mode, known_ret);
4347 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4348 known_x, known_mode, known_ret);
4349 return MIN (num0, num1);
4350
4351 case EQ: case NE: case GE: case GT: case LE: case LT:
4352 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4353 case GEU: case GTU: case LEU: case LTU:
4354 case UNORDERED: case ORDERED:
4355 /* If the constant is negative, take its 1's complement and remask.
4356 Then see how many zero bits we have. */
4357 nonzero = STORE_FLAG_VALUE;
4358 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4359 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4360 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4361
4362 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4363
4364 default:
4365 break;
4366 }
4367
4368 /* If we haven't been able to figure it out by one of the above rules,
4369 see if some of the high-order bits are known to be zero. If so,
4370 count those bits and return one less than that amount. If we can't
4371 safely compute the mask for this mode, always return BITWIDTH. */
4372
4373 bitwidth = GET_MODE_BITSIZE (mode);
4374 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4375 return 1;
4376
4377 nonzero = nonzero_bits (x, mode);
4378 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4379 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4380 }
4381
4382 /* Calculate the rtx_cost of a single instruction. A return value of
4383 zero indicates an instruction pattern without a known cost. */
4384
4385 int
4386 insn_rtx_cost (rtx pat)
4387 {
4388 int i, cost;
4389 rtx set;
4390
4391 /* Extract the single set rtx from the instruction pattern.
4392 We can't use single_set since we only have the pattern. */
4393 if (GET_CODE (pat) == SET)
4394 set = pat;
4395 else if (GET_CODE (pat) == PARALLEL)
4396 {
4397 set = NULL_RTX;
4398 for (i = 0; i < XVECLEN (pat, 0); i++)
4399 {
4400 rtx x = XVECEXP (pat, 0, i);
4401 if (GET_CODE (x) == SET)
4402 {
4403 if (set)
4404 return 0;
4405 set = x;
4406 }
4407 }
4408 if (!set)
4409 return 0;
4410 }
4411 else
4412 return 0;
4413
4414 cost = rtx_cost (SET_SRC (set), SET);
4415 return cost > 0 ? cost : COSTS_N_INSNS (1);
4416 }
4417
4418 /* Given an insn INSN and condition COND, return the condition in a
4419 canonical form to simplify testing by callers. Specifically:
4420
4421 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4422 (2) Both operands will be machine operands; (cc0) will have been replaced.
4423 (3) If an operand is a constant, it will be the second operand.
4424 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4425 for GE, GEU, and LEU.
4426
4427 If the condition cannot be understood, or is an inequality floating-point
4428 comparison which needs to be reversed, 0 will be returned.
4429
4430 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4431
4432 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4433 insn used in locating the condition was found. If a replacement test
4434 of the condition is desired, it should be placed in front of that
4435 insn and we will be sure that the inputs are still valid.
4436
4437 If WANT_REG is nonzero, we wish the condition to be relative to that
4438 register, if possible. Therefore, do not canonicalize the condition
4439 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4440 to be a compare to a CC mode register.
4441
4442 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4443 and at INSN. */
4444
4445 rtx
4446 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4447 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4448 {
4449 enum rtx_code code;
4450 rtx prev = insn;
4451 rtx set;
4452 rtx tem;
4453 rtx op0, op1;
4454 int reverse_code = 0;
4455 enum machine_mode mode;
4456 basic_block bb = BLOCK_FOR_INSN (insn);
4457
4458 code = GET_CODE (cond);
4459 mode = GET_MODE (cond);
4460 op0 = XEXP (cond, 0);
4461 op1 = XEXP (cond, 1);
4462
4463 if (reverse)
4464 code = reversed_comparison_code (cond, insn);
4465 if (code == UNKNOWN)
4466 return 0;
4467
4468 if (earliest)
4469 *earliest = insn;
4470
4471 /* If we are comparing a register with zero, see if the register is set
4472 in the previous insn to a COMPARE or a comparison operation. Perform
4473 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4474 in cse.c */
4475
4476 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4477 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4478 && op1 == CONST0_RTX (GET_MODE (op0))
4479 && op0 != want_reg)
4480 {
4481 /* Set nonzero when we find something of interest. */
4482 rtx x = 0;
4483
4484 #ifdef HAVE_cc0
4485 /* If comparison with cc0, import actual comparison from compare
4486 insn. */
4487 if (op0 == cc0_rtx)
4488 {
4489 if ((prev = prev_nonnote_insn (prev)) == 0
4490 || !NONJUMP_INSN_P (prev)
4491 || (set = single_set (prev)) == 0
4492 || SET_DEST (set) != cc0_rtx)
4493 return 0;
4494
4495 op0 = SET_SRC (set);
4496 op1 = CONST0_RTX (GET_MODE (op0));
4497 if (earliest)
4498 *earliest = prev;
4499 }
4500 #endif
4501
4502 /* If this is a COMPARE, pick up the two things being compared. */
4503 if (GET_CODE (op0) == COMPARE)
4504 {
4505 op1 = XEXP (op0, 1);
4506 op0 = XEXP (op0, 0);
4507 continue;
4508 }
4509 else if (!REG_P (op0))
4510 break;
4511
4512 /* Go back to the previous insn. Stop if it is not an INSN. We also
4513 stop if it isn't a single set or if it has a REG_INC note because
4514 we don't want to bother dealing with it. */
4515
4516 if ((prev = prev_nonnote_insn (prev)) == 0
4517 || !NONJUMP_INSN_P (prev)
4518 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4519 /* In cfglayout mode, there do not have to be labels at the
4520 beginning of a block, or jumps at the end, so the previous
4521 conditions would not stop us when we reach bb boundary. */
4522 || BLOCK_FOR_INSN (prev) != bb)
4523 break;
4524
4525 set = set_of (op0, prev);
4526
4527 if (set
4528 && (GET_CODE (set) != SET
4529 || !rtx_equal_p (SET_DEST (set), op0)))
4530 break;
4531
4532 /* If this is setting OP0, get what it sets it to if it looks
4533 relevant. */
4534 if (set)
4535 {
4536 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4537 #ifdef FLOAT_STORE_FLAG_VALUE
4538 REAL_VALUE_TYPE fsfv;
4539 #endif
4540
4541 /* ??? We may not combine comparisons done in a CCmode with
4542 comparisons not done in a CCmode. This is to aid targets
4543 like Alpha that have an IEEE compliant EQ instruction, and
4544 a non-IEEE compliant BEQ instruction. The use of CCmode is
4545 actually artificial, simply to prevent the combination, but
4546 should not affect other platforms.
4547
4548 However, we must allow VOIDmode comparisons to match either
4549 CCmode or non-CCmode comparison, because some ports have
4550 modeless comparisons inside branch patterns.
4551
4552 ??? This mode check should perhaps look more like the mode check
4553 in simplify_comparison in combine. */
4554
4555 if ((GET_CODE (SET_SRC (set)) == COMPARE
4556 || (((code == NE
4557 || (code == LT
4558 && GET_MODE_CLASS (inner_mode) == MODE_INT
4559 && (GET_MODE_BITSIZE (inner_mode)
4560 <= HOST_BITS_PER_WIDE_INT)
4561 && (STORE_FLAG_VALUE
4562 & ((HOST_WIDE_INT) 1
4563 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4564 #ifdef FLOAT_STORE_FLAG_VALUE
4565 || (code == LT
4566 && SCALAR_FLOAT_MODE_P (inner_mode)
4567 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4568 REAL_VALUE_NEGATIVE (fsfv)))
4569 #endif
4570 ))
4571 && COMPARISON_P (SET_SRC (set))))
4572 && (((GET_MODE_CLASS (mode) == MODE_CC)
4573 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4574 || mode == VOIDmode || inner_mode == VOIDmode))
4575 x = SET_SRC (set);
4576 else if (((code == EQ
4577 || (code == GE
4578 && (GET_MODE_BITSIZE (inner_mode)
4579 <= HOST_BITS_PER_WIDE_INT)
4580 && GET_MODE_CLASS (inner_mode) == MODE_INT
4581 && (STORE_FLAG_VALUE
4582 & ((HOST_WIDE_INT) 1
4583 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4584 #ifdef FLOAT_STORE_FLAG_VALUE
4585 || (code == GE
4586 && SCALAR_FLOAT_MODE_P (inner_mode)
4587 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4588 REAL_VALUE_NEGATIVE (fsfv)))
4589 #endif
4590 ))
4591 && COMPARISON_P (SET_SRC (set))
4592 && (((GET_MODE_CLASS (mode) == MODE_CC)
4593 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4594 || mode == VOIDmode || inner_mode == VOIDmode))
4595
4596 {
4597 reverse_code = 1;
4598 x = SET_SRC (set);
4599 }
4600 else
4601 break;
4602 }
4603
4604 else if (reg_set_p (op0, prev))
4605 /* If this sets OP0, but not directly, we have to give up. */
4606 break;
4607
4608 if (x)
4609 {
4610 /* If the caller is expecting the condition to be valid at INSN,
4611 make sure X doesn't change before INSN. */
4612 if (valid_at_insn_p)
4613 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4614 break;
4615 if (COMPARISON_P (x))
4616 code = GET_CODE (x);
4617 if (reverse_code)
4618 {
4619 code = reversed_comparison_code (x, prev);
4620 if (code == UNKNOWN)
4621 return 0;
4622 reverse_code = 0;
4623 }
4624
4625 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4626 if (earliest)
4627 *earliest = prev;
4628 }
4629 }
4630
4631 /* If constant is first, put it last. */
4632 if (CONSTANT_P (op0))
4633 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4634
4635 /* If OP0 is the result of a comparison, we weren't able to find what
4636 was really being compared, so fail. */
4637 if (!allow_cc_mode
4638 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4639 return 0;
4640
4641 /* Canonicalize any ordered comparison with integers involving equality
4642 if we can do computations in the relevant mode and we do not
4643 overflow. */
4644
4645 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4646 && GET_CODE (op1) == CONST_INT
4647 && GET_MODE (op0) != VOIDmode
4648 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4649 {
4650 HOST_WIDE_INT const_val = INTVAL (op1);
4651 unsigned HOST_WIDE_INT uconst_val = const_val;
4652 unsigned HOST_WIDE_INT max_val
4653 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4654
4655 switch (code)
4656 {
4657 case LE:
4658 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4659 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4660 break;
4661
4662 /* When cross-compiling, const_val might be sign-extended from
4663 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4664 case GE:
4665 if ((HOST_WIDE_INT) (const_val & max_val)
4666 != (((HOST_WIDE_INT) 1
4667 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4668 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4669 break;
4670
4671 case LEU:
4672 if (uconst_val < max_val)
4673 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4674 break;
4675
4676 case GEU:
4677 if (uconst_val != 0)
4678 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4679 break;
4680
4681 default:
4682 break;
4683 }
4684 }
4685
4686 /* Never return CC0; return zero instead. */
4687 if (CC0_P (op0))
4688 return 0;
4689
4690 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4691 }
4692
4693 /* Given a jump insn JUMP, return the condition that will cause it to branch
4694 to its JUMP_LABEL. If the condition cannot be understood, or is an
4695 inequality floating-point comparison which needs to be reversed, 0 will
4696 be returned.
4697
4698 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4699 insn used in locating the condition was found. If a replacement test
4700 of the condition is desired, it should be placed in front of that
4701 insn and we will be sure that the inputs are still valid. If EARLIEST
4702 is null, the returned condition will be valid at INSN.
4703
4704 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4705 compare CC mode register.
4706
4707 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4708
4709 rtx
4710 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4711 {
4712 rtx cond;
4713 int reverse;
4714 rtx set;
4715
4716 /* If this is not a standard conditional jump, we can't parse it. */
4717 if (!JUMP_P (jump)
4718 || ! any_condjump_p (jump))
4719 return 0;
4720 set = pc_set (jump);
4721
4722 cond = XEXP (SET_SRC (set), 0);
4723
4724 /* If this branches to JUMP_LABEL when the condition is false, reverse
4725 the condition. */
4726 reverse
4727 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4728 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4729
4730 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4731 allow_cc_mode, valid_at_insn_p);
4732 }
4733
4734 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4735 TARGET_MODE_REP_EXTENDED.
4736
4737 Note that we assume that the property of
4738 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4739 narrower than mode B. I.e., if A is a mode narrower than B then in
4740 order to be able to operate on it in mode B, mode A needs to
4741 satisfy the requirements set by the representation of mode B. */
4742
4743 static void
4744 init_num_sign_bit_copies_in_rep (void)
4745 {
4746 enum machine_mode mode, in_mode;
4747
4748 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4749 in_mode = GET_MODE_WIDER_MODE (mode))
4750 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4751 mode = GET_MODE_WIDER_MODE (mode))
4752 {
4753 enum machine_mode i;
4754
4755 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4756 extends to the next widest mode. */
4757 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4758 || GET_MODE_WIDER_MODE (mode) == in_mode);
4759
4760 /* We are in in_mode. Count how many bits outside of mode
4761 have to be copies of the sign-bit. */
4762 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4763 {
4764 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4765
4766 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4767 /* We can only check sign-bit copies starting from the
4768 top-bit. In order to be able to check the bits we
4769 have already seen we pretend that subsequent bits
4770 have to be sign-bit copies too. */
4771 || num_sign_bit_copies_in_rep [in_mode][mode])
4772 num_sign_bit_copies_in_rep [in_mode][mode]
4773 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4774 }
4775 }
4776 }
4777
4778 /* Suppose that truncation from the machine mode of X to MODE is not a
4779 no-op. See if there is anything special about X so that we can
4780 assume it already contains a truncated value of MODE. */
4781
4782 bool
4783 truncated_to_mode (enum machine_mode mode, rtx x)
4784 {
4785 /* This register has already been used in MODE without explicit
4786 truncation. */
4787 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4788 return true;
4789
4790 /* See if we already satisfy the requirements of MODE. If yes we
4791 can just switch to MODE. */
4792 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4793 && (num_sign_bit_copies (x, GET_MODE (x))
4794 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4795 return true;
4796
4797 return false;
4798 }
4799 \f
4800 /* Initialize non_rtx_starting_operands, which is used to speed up
4801 for_each_rtx. */
4802 void
4803 init_rtlanal (void)
4804 {
4805 int i;
4806 for (i = 0; i < NUM_RTX_CODE; i++)
4807 {
4808 const char *format = GET_RTX_FORMAT (i);
4809 const char *first = strpbrk (format, "eEV");
4810 non_rtx_starting_operands[i] = first ? first - format : -1;
4811 }
4812
4813 init_num_sign_bit_copies_in_rep ();
4814 }
4815 \f
4816 /* Check whether this is a constant pool constant. */
4817 bool
4818 constant_pool_constant_p (rtx x)
4819 {
4820 x = avoid_constant_pool_reference (x);
4821 return GET_CODE (x) == CONST_DOUBLE;
4822 }
4823