alias.c (memory_modified_1): Deconstify.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
267 {
268 enum rtx_code code = GET_CODE (x);
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
274
275 case LABEL_REF:
276 return 0;
277
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
290
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
293
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
301 {
302 HOST_WIDE_INT offset;
303
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
308
309 offset = INTVAL (XEXP (x, 1));
310
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
320
321 return offset % GET_MODE_SIZE (mode) != 0;
322 }
323
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
327
328 return 1;
329
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
333
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
340
341 default:
342 break;
343 }
344
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
347 }
348
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350
351 int
352 rtx_addr_can_trap_p (const_rtx x)
353 {
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 }
356
357 /* Return true if X is an address that is known to not be zero. */
358
359 bool
360 nonzero_address_p (const_rtx x)
361 {
362 const enum rtx_code code = GET_CODE (x);
363
364 switch (code)
365 {
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
368
369 case LABEL_REF:
370 return true;
371
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
383
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
386
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
395
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
404
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
408
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
414
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
417
418 default:
419 break;
420 }
421
422 /* If it isn't one of the case above, might be zero. */
423 return false;
424 }
425
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
431
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
434 {
435 enum rtx_code code;
436 int i;
437 const char *fmt;
438
439 if (x == 0)
440 return 0;
441
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
445
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
449 {
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
452 }
453 else if (fmt[i] == 'E')
454 {
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
459 }
460 return 0;
461 }
462 \f
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
467
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
470 {
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
473
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
481 }
482
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
486
487 rtx
488 get_related_value (const_rtx x)
489 {
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
500 }
501 \f
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
504
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
507 {
508 tree decl;
509
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
512
513 if (offset == 0)
514 return true;
515
516 if (offset > 0)
517 {
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
521
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
525 }
526
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
533
534 return false;
535 }
536
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
539
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
542 {
543 if (GET_CODE (x) == CONST)
544 {
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
547 {
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
551 }
552 }
553 *base_out = x;
554 *offset_out = const0_rtx;
555 }
556 \f
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
559
560 int
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
562 {
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
567
568 if (x == find)
569 return 1;
570
571 code = GET_CODE (x);
572
573 switch (code)
574 {
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
585
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
591
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
596
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
601
602 default:
603 break;
604 }
605
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
608
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
610 {
611 switch (*format_ptr++)
612 {
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
616
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
621 }
622 }
623 return count;
624 }
625
626 \f
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
630
631 int
632 reg_mentioned_p (const_rtx reg, const_rtx in)
633 {
634 const char *fmt;
635 int i;
636 enum rtx_code code;
637
638 if (in == 0)
639 return 0;
640
641 if (reg == in)
642 return 1;
643
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
646
647 code = GET_CODE (in);
648
649 switch (code)
650 {
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
654
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
661
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
668
669 default:
670 break;
671 }
672
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
675
676 fmt = GET_RTX_FORMAT (code);
677
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 if (fmt[i] == 'E')
681 {
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
686 }
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
690 }
691 return 0;
692 }
693 \f
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
696
697 int
698 no_labels_between_p (const_rtx beg, const_rtx end)
699 {
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
707 }
708
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
711
712 int
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
714 {
715 rtx insn;
716
717 if (from_insn == to_insn)
718 return 0;
719
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
726 }
727 \f
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
731
732 int
733 reg_referenced_p (const_rtx x, const_rtx body)
734 {
735 int i;
736
737 switch (GET_CODE (body))
738 {
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
742
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
758
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
764
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
769
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
772
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
775
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
782
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
788
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
794
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
799
800 default:
801 return 0;
802 }
803 }
804 \f
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
807
808 int
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
810 {
811 const_rtx insn;
812
813 if (from_insn == to_insn)
814 return 0;
815
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
820 }
821
822 /* Internals of reg_set_between_p. */
823 int
824 reg_set_p (const_rtx reg, const_rtx insn)
825 {
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
838
839 return set_of (reg, insn) != NULL_RTX;
840 }
841
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
845
846 int
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
848 {
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
853
854 if (start == end)
855 return 0;
856
857 switch (code)
858 {
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
867
868 case PC:
869 case CC0:
870 return 1;
871
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
882
883 case REG:
884 return reg_set_between_p (x, start, end);
885
886 default:
887 break;
888 }
889
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 {
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
895
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
900 }
901
902 return 0;
903 }
904
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
908
909 int
910 modified_in_p (const_rtx x, const_rtx insn)
911 {
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
915
916 switch (code)
917 {
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
926
927 case PC:
928 case CC0:
929 return 1;
930
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
940
941 case REG:
942 return reg_set_p (x, insn);
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950 {
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
953
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
958 }
959
960 return 0;
961 }
962 \f
963 /* Helper function for set_of. */
964 struct set_of_data
965 {
966 const_rtx found;
967 const_rtx pat;
968 };
969
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
972 {
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
977 }
978
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
983 {
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
989 }
990 \f
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
994
995 rtx
996 single_set_2 (const_rtx insn, const_rtx pat)
997 {
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1001
1002 if (GET_CODE (pat) == PARALLEL)
1003 {
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1005 {
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1008 {
1009 case USE:
1010 case CLOBBER:
1011 break;
1012
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1018
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1023 {
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1029 }
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1036
1037 default:
1038 return NULL_RTX;
1039 }
1040 }
1041 }
1042 return set;
1043 }
1044
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1047
1048 int
1049 multiple_sets (const_rtx insn)
1050 {
1051 int found;
1052 int i;
1053
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1057
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1060 {
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 {
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1069 }
1070 }
1071
1072 /* Either zero or one SET. */
1073 return 0;
1074 }
1075 \f
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1078
1079 int
1080 set_noop_p (const_rtx set)
1081 {
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1084
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1087
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1090
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1095
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1098
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1100 {
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1105 }
1106
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1109 }
1110 \f
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1113
1114 int
1115 noop_move_p (const_rtx insn)
1116 {
1117 rtx pat = PATTERN (insn);
1118
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1121
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1125
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1130
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1133
1134 if (GET_CODE (pat) == PARALLEL)
1135 {
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1140 {
1141 rtx tem = XVECEXP (pat, 0, i);
1142
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1146
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1149 }
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155 \f
1156
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1163
1164 rtx
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1166 {
1167 rtx p;
1168
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1172 {
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1175
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1177 {
1178 rtx src = SET_SRC (set);
1179
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1182
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1189 {
1190 *pinsn = p;
1191 return src;
1192 }
1193 }
1194
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1198 }
1199
1200 return x;
1201 }
1202 \f
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1206
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1209
1210 int
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1213 {
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1218
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1224
1225 code = GET_CODE (x);
1226
1227 switch (code)
1228 {
1229 case REG:
1230 x_regno = REGNO (x);
1231
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1242
1243 return endregno > x_regno && regno < END_REGNO (x);
1244
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1250 {
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1255
1256 return endregno > inner_regno && regno < inner_endregno;
1257 }
1258 break;
1259
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1275
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1280
1281 default:
1282 break;
1283 }
1284
1285 /* X does not match, so try its subexpressions. */
1286
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1289 {
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1291 {
1292 if (i == 0)
1293 {
1294 x = XEXP (x, 0);
1295 goto repeat;
1296 }
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1300 }
1301 else if (fmt[i] == 'E')
1302 {
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1318
1319 int
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1321 {
1322 unsigned int regno, endregno;
1323
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1329
1330 recurse:
1331 switch (GET_CODE (x))
1332 {
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1339
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1347
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1353
1354 case MEM:
1355 {
1356 const char *fmt;
1357 int i;
1358
1359 if (MEM_P (in))
1360 return 1;
1361
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1365 {
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1368 }
1369 else if (fmt[i] == 'E')
1370 {
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1375 }
1376
1377 return 0;
1378 }
1379
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1384
1385 case PARALLEL:
1386 {
1387 int i;
1388
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1395 }
1396
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1400 }
1401 }
1402 \f
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1406
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1411
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1414
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1417 {
1418 int i;
1419
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1422
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1424 {
1425 rtx dest = SET_DEST (x);
1426
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1433
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1437 {
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1441 }
1442 else
1443 (*fun) (dest, x, data);
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1449 }
1450 \f
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1455
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1459
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1462 {
1463 rtx body = *pbody;
1464 int i;
1465
1466 switch (GET_CODE (body))
1467 {
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1472
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1477
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1482
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1486
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1491
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1495
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1499
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1505
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1510
1511 case SET:
1512 {
1513 rtx dest = SET_DEST (body);
1514
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1518
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1520 {
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1523 }
1524
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1527
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1530 }
1531 return;
1532
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1537 }
1538 }
1539 \f
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1543
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1547
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1552
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1556
1557 int
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1559 {
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1562
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1566
1567 gcc_assert (REG_P (x));
1568
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1574
1575 return 1;
1576 }
1577
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1581
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1584 {
1585 unsigned int regno, endregno;
1586
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1593
1594 if (!REG_P (dest))
1595 return false;
1596
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1600 }
1601
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1604
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1607 {
1608 if (GET_CODE (dest) == PARALLEL)
1609 {
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1614
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1616 {
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1621 }
1622
1623 return false;
1624 }
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1627 }
1628
1629 /* Utility function for dead_or_set_p to check an individual register. */
1630
1631 int
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1633 {
1634 const_rtx pattern;
1635
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1639
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1643
1644 pattern = PATTERN (insn);
1645
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1648
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1652 {
1653 int i;
1654
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1656 {
1657 rtx body = XVECEXP (pattern, 0, i);
1658
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1661
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1673
1674 rtx
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1676 {
1677 rtx link;
1678
1679 gcc_assert (insn);
1680
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1685 {
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1690 }
1691
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1696 }
1697
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1702
1703 rtx
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1705 {
1706 rtx link;
1707
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1711
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1721 }
1722
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1725
1726 rtx
1727 find_reg_equal_equiv_note (const_rtx insn)
1728 {
1729 rtx link;
1730
1731 if (!INSN_P (insn))
1732 return 0;
1733
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1737 {
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1742
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1747 }
1748 return NULL;
1749 }
1750
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1754
1755 rtx
1756 find_constant_src (const_rtx insn)
1757 {
1758 rtx note, set, x;
1759
1760 set = single_set (insn);
1761 if (set)
1762 {
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1766 }
1767
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1771
1772 return NULL_RTX;
1773 }
1774
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1777
1778 int
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1780 {
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1785
1786 gcc_assert (datum);
1787
1788 if (!REG_P (datum))
1789 {
1790 rtx link;
1791
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1798 }
1799 else
1800 {
1801 unsigned int regno = REGNO (datum);
1802
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1805
1806 if (regno < FIRST_PSEUDO_REGISTER)
1807 {
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1810
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1822
1823 int
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1825 {
1826 rtx link;
1827
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1830
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1834
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1836 {
1837 rtx op, reg;
1838
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /* Return true if INSN is a call to a pure function. */
1850
1851 int
1852 pure_call_p (const_rtx insn)
1853 {
1854 const_rtx link;
1855
1856 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1857 return 0;
1858
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1861 {
1862 rtx u, m;
1863
1864 if (GET_CODE (u = XEXP (link, 0)) == USE
1865 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1866 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1867 return 1;
1868 }
1869
1870 return 0;
1871 }
1872 \f
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1874
1875 void
1876 remove_note (rtx insn, const_rtx note)
1877 {
1878 rtx link;
1879
1880 if (note == NULL_RTX)
1881 return;
1882
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1888 {
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1891 }
1892
1893 switch (REG_NOTE_KIND (note))
1894 {
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1908 {
1909 rtx *loc;
1910
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1913 {
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1919 }
1920 }
1921
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1925
1926 int
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1928 {
1929 const_rtx x;
1930
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1934
1935 return 0;
1936 }
1937
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1940
1941 A simple equality test is used to determine if NODE matches. */
1942
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1945 {
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1948
1949 while (temp)
1950 {
1951 if (node == XEXP (temp, 0))
1952 {
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1958
1959 return;
1960 }
1961
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1964 }
1965 }
1966 \f
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1971
1972 int
1973 volatile_insn_p (const_rtx x)
1974 {
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1977 {
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1995
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
1999
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2004
2005 default:
2006 break;
2007 }
2008
2009 /* Recursively scan the operands of this expression. */
2010
2011 {
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2014
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2016 {
2017 if (fmt[i] == 'e')
2018 {
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2021 }
2022 else if (fmt[i] == 'E')
2023 {
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 }
2031 return 0;
2032 }
2033
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2036
2037 int
2038 volatile_refs_p (const_rtx x)
2039 {
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2042 {
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2058
2059 case UNSPEC_VOLATILE:
2060 return 1;
2061
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2067
2068 default:
2069 break;
2070 }
2071
2072 /* Recursively scan the operands of this expression. */
2073
2074 {
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2077
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2079 {
2080 if (fmt[i] == 'e')
2081 {
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2084 }
2085 else if (fmt[i] == 'E')
2086 {
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2091 }
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2099
2100 int
2101 side_effects_p (const_rtx x)
2102 {
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2120
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2126
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2137
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2143
2144 default:
2145 break;
2146 }
2147
2148 /* Recursively scan the operands of this expression. */
2149
2150 {
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2153
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155 {
2156 if (fmt[i] == 'e')
2157 {
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2160 }
2161 else if (fmt[i] == 'E')
2162 {
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2167 }
2168 }
2169 }
2170 return 0;
2171 }
2172 \f
2173 enum may_trap_p_flags
2174 {
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2177 };
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2184
2185 static int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2187 {
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2192
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2197 {
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2211
2212 case ASM_INPUT:
2213 case UNSPEC_VOLATILE:
2214 case TRAP_IF:
2215 return 1;
2216
2217 case ASM_OPERANDS:
2218 return MEM_VOLATILE_P (x);
2219
2220 /* Memory ref can trap unless it's a static var or a stack slot. */
2221 case MEM:
2222 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2223 reference; moving it out of condition might cause its address
2224 become invalid. */
2225 !(flags & MTP_AFTER_MOVE)
2226 && MEM_NOTRAP_P (x)
2227 && (!STRICT_ALIGNMENT || !unaligned_mems))
2228 return 0;
2229 return
2230 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2231
2232 /* Division by a non-constant might trap. */
2233 case DIV:
2234 case MOD:
2235 case UDIV:
2236 case UMOD:
2237 if (HONOR_SNANS (GET_MODE (x)))
2238 return 1;
2239 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2240 return flag_trapping_math;
2241 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2242 return 1;
2243 break;
2244
2245 case EXPR_LIST:
2246 /* An EXPR_LIST is used to represent a function call. This
2247 certainly may trap. */
2248 return 1;
2249
2250 case GE:
2251 case GT:
2252 case LE:
2253 case LT:
2254 case LTGT:
2255 case COMPARE:
2256 /* Some floating point comparisons may trap. */
2257 if (!flag_trapping_math)
2258 break;
2259 /* ??? There is no machine independent way to check for tests that trap
2260 when COMPARE is used, though many targets do make this distinction.
2261 For instance, sparc uses CCFPE for compares which generate exceptions
2262 and CCFP for compares which do not generate exceptions. */
2263 if (HONOR_NANS (GET_MODE (x)))
2264 return 1;
2265 /* But often the compare has some CC mode, so check operand
2266 modes as well. */
2267 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2268 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2269 return 1;
2270 break;
2271
2272 case EQ:
2273 case NE:
2274 if (HONOR_SNANS (GET_MODE (x)))
2275 return 1;
2276 /* Often comparison is CC mode, so check operand modes. */
2277 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2278 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2279 return 1;
2280 break;
2281
2282 case FIX:
2283 /* Conversion of floating point might trap. */
2284 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2285 return 1;
2286 break;
2287
2288 case NEG:
2289 case ABS:
2290 case SUBREG:
2291 /* These operations don't trap even with floating point. */
2292 break;
2293
2294 default:
2295 /* Any floating arithmetic may trap. */
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2297 && flag_trapping_math)
2298 return 1;
2299 }
2300
2301 fmt = GET_RTX_FORMAT (code);
2302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2303 {
2304 if (fmt[i] == 'e')
2305 {
2306 if (may_trap_p_1 (XEXP (x, i), flags))
2307 return 1;
2308 }
2309 else if (fmt[i] == 'E')
2310 {
2311 int j;
2312 for (j = 0; j < XVECLEN (x, i); j++)
2313 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2314 return 1;
2315 }
2316 }
2317 return 0;
2318 }
2319
2320 /* Return nonzero if evaluating rtx X might cause a trap. */
2321
2322 int
2323 may_trap_p (const_rtx x)
2324 {
2325 return may_trap_p_1 (x, 0);
2326 }
2327
2328 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2329 is moved from its current location by some optimization. */
2330
2331 int
2332 may_trap_after_code_motion_p (const_rtx x)
2333 {
2334 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2335 }
2336
2337 /* Same as above, but additionally return nonzero if evaluating rtx X might
2338 cause a fault. We define a fault for the purpose of this function as a
2339 erroneous execution condition that cannot be encountered during the normal
2340 execution of a valid program; the typical example is an unaligned memory
2341 access on a strict alignment machine. The compiler guarantees that it
2342 doesn't generate code that will fault from a valid program, but this
2343 guarantee doesn't mean anything for individual instructions. Consider
2344 the following example:
2345
2346 struct S { int d; union { char *cp; int *ip; }; };
2347
2348 int foo(struct S *s)
2349 {
2350 if (s->d == 1)
2351 return *s->ip;
2352 else
2353 return *s->cp;
2354 }
2355
2356 on a strict alignment machine. In a valid program, foo will never be
2357 invoked on a structure for which d is equal to 1 and the underlying
2358 unique field of the union not aligned on a 4-byte boundary, but the
2359 expression *s->ip might cause a fault if considered individually.
2360
2361 At the RTL level, potentially problematic expressions will almost always
2362 verify may_trap_p; for example, the above dereference can be emitted as
2363 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2364 However, suppose that foo is inlined in a caller that causes s->cp to
2365 point to a local character variable and guarantees that s->d is not set
2366 to 1; foo may have been effectively translated into pseudo-RTL as:
2367
2368 if ((reg:SI) == 1)
2369 (set (reg:SI) (mem:SI (%fp - 7)))
2370 else
2371 (set (reg:QI) (mem:QI (%fp - 7)))
2372
2373 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2374 memory reference to a stack slot, but it will certainly cause a fault
2375 on a strict alignment machine. */
2376
2377 int
2378 may_trap_or_fault_p (const_rtx x)
2379 {
2380 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2381 }
2382 \f
2383 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2384 i.e., an inequality. */
2385
2386 int
2387 inequality_comparisons_p (const_rtx x)
2388 {
2389 const char *fmt;
2390 int len, i;
2391 const enum rtx_code code = GET_CODE (x);
2392
2393 switch (code)
2394 {
2395 case REG:
2396 case SCRATCH:
2397 case PC:
2398 case CC0:
2399 case CONST_INT:
2400 case CONST_DOUBLE:
2401 case CONST_FIXED:
2402 case CONST_VECTOR:
2403 case CONST:
2404 case LABEL_REF:
2405 case SYMBOL_REF:
2406 return 0;
2407
2408 case LT:
2409 case LTU:
2410 case GT:
2411 case GTU:
2412 case LE:
2413 case LEU:
2414 case GE:
2415 case GEU:
2416 return 1;
2417
2418 default:
2419 break;
2420 }
2421
2422 len = GET_RTX_LENGTH (code);
2423 fmt = GET_RTX_FORMAT (code);
2424
2425 for (i = 0; i < len; i++)
2426 {
2427 if (fmt[i] == 'e')
2428 {
2429 if (inequality_comparisons_p (XEXP (x, i)))
2430 return 1;
2431 }
2432 else if (fmt[i] == 'E')
2433 {
2434 int j;
2435 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2436 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2437 return 1;
2438 }
2439 }
2440
2441 return 0;
2442 }
2443 \f
2444 /* Replace any occurrence of FROM in X with TO. The function does
2445 not enter into CONST_DOUBLE for the replace.
2446
2447 Note that copying is not done so X must not be shared unless all copies
2448 are to be modified. */
2449
2450 rtx
2451 replace_rtx (rtx x, rtx from, rtx to)
2452 {
2453 int i, j;
2454 const char *fmt;
2455
2456 /* The following prevents loops occurrence when we change MEM in
2457 CONST_DOUBLE onto the same CONST_DOUBLE. */
2458 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2459 return x;
2460
2461 if (x == from)
2462 return to;
2463
2464 /* Allow this function to make replacements in EXPR_LISTs. */
2465 if (x == 0)
2466 return 0;
2467
2468 if (GET_CODE (x) == SUBREG)
2469 {
2470 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2471
2472 if (GET_CODE (new) == CONST_INT)
2473 {
2474 x = simplify_subreg (GET_MODE (x), new,
2475 GET_MODE (SUBREG_REG (x)),
2476 SUBREG_BYTE (x));
2477 gcc_assert (x);
2478 }
2479 else
2480 SUBREG_REG (x) = new;
2481
2482 return x;
2483 }
2484 else if (GET_CODE (x) == ZERO_EXTEND)
2485 {
2486 rtx new = replace_rtx (XEXP (x, 0), from, to);
2487
2488 if (GET_CODE (new) == CONST_INT)
2489 {
2490 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2491 new, GET_MODE (XEXP (x, 0)));
2492 gcc_assert (x);
2493 }
2494 else
2495 XEXP (x, 0) = new;
2496
2497 return x;
2498 }
2499
2500 fmt = GET_RTX_FORMAT (GET_CODE (x));
2501 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2502 {
2503 if (fmt[i] == 'e')
2504 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2505 else if (fmt[i] == 'E')
2506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2507 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2508 }
2509
2510 return x;
2511 }
2512 \f
2513 /* Replace occurrences of the old label in *X with the new one.
2514 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2515
2516 int
2517 replace_label (rtx *x, void *data)
2518 {
2519 rtx l = *x;
2520 rtx old_label = ((replace_label_data *) data)->r1;
2521 rtx new_label = ((replace_label_data *) data)->r2;
2522 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2523
2524 if (l == NULL_RTX)
2525 return 0;
2526
2527 if (GET_CODE (l) == SYMBOL_REF
2528 && CONSTANT_POOL_ADDRESS_P (l))
2529 {
2530 rtx c = get_pool_constant (l);
2531 if (rtx_referenced_p (old_label, c))
2532 {
2533 rtx new_c, new_l;
2534 replace_label_data *d = (replace_label_data *) data;
2535
2536 /* Create a copy of constant C; replace the label inside
2537 but do not update LABEL_NUSES because uses in constant pool
2538 are not counted. */
2539 new_c = copy_rtx (c);
2540 d->update_label_nuses = false;
2541 for_each_rtx (&new_c, replace_label, data);
2542 d->update_label_nuses = update_label_nuses;
2543
2544 /* Add the new constant NEW_C to constant pool and replace
2545 the old reference to constant by new reference. */
2546 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2547 *x = replace_rtx (l, l, new_l);
2548 }
2549 return 0;
2550 }
2551
2552 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2553 field. This is not handled by for_each_rtx because it doesn't
2554 handle unprinted ('0') fields. */
2555 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2556 JUMP_LABEL (l) = new_label;
2557
2558 if ((GET_CODE (l) == LABEL_REF
2559 || GET_CODE (l) == INSN_LIST)
2560 && XEXP (l, 0) == old_label)
2561 {
2562 XEXP (l, 0) = new_label;
2563 if (update_label_nuses)
2564 {
2565 ++LABEL_NUSES (new_label);
2566 --LABEL_NUSES (old_label);
2567 }
2568 return 0;
2569 }
2570
2571 return 0;
2572 }
2573
2574 /* When *BODY is equal to X or X is directly referenced by *BODY
2575 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2576 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2577
2578 static int
2579 rtx_referenced_p_1 (rtx *body, void *x)
2580 {
2581 rtx y = (rtx) x;
2582
2583 if (*body == NULL_RTX)
2584 return y == NULL_RTX;
2585
2586 /* Return true if a label_ref *BODY refers to label Y. */
2587 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2588 return XEXP (*body, 0) == y;
2589
2590 /* If *BODY is a reference to pool constant traverse the constant. */
2591 if (GET_CODE (*body) == SYMBOL_REF
2592 && CONSTANT_POOL_ADDRESS_P (*body))
2593 return rtx_referenced_p (y, get_pool_constant (*body));
2594
2595 /* By default, compare the RTL expressions. */
2596 return rtx_equal_p (*body, y);
2597 }
2598
2599 /* Return true if X is referenced in BODY. */
2600
2601 int
2602 rtx_referenced_p (rtx x, rtx body)
2603 {
2604 return for_each_rtx (&body, rtx_referenced_p_1, x);
2605 }
2606
2607 /* If INSN is a tablejump return true and store the label (before jump table) to
2608 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2609
2610 bool
2611 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2612 {
2613 rtx label, table;
2614
2615 if (JUMP_P (insn)
2616 && (label = JUMP_LABEL (insn)) != NULL_RTX
2617 && (table = next_active_insn (label)) != NULL_RTX
2618 && JUMP_P (table)
2619 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2620 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2621 {
2622 if (labelp)
2623 *labelp = label;
2624 if (tablep)
2625 *tablep = table;
2626 return true;
2627 }
2628 return false;
2629 }
2630
2631 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2632 constant that is not in the constant pool and not in the condition
2633 of an IF_THEN_ELSE. */
2634
2635 static int
2636 computed_jump_p_1 (const_rtx x)
2637 {
2638 const enum rtx_code code = GET_CODE (x);
2639 int i, j;
2640 const char *fmt;
2641
2642 switch (code)
2643 {
2644 case LABEL_REF:
2645 case PC:
2646 return 0;
2647
2648 case CONST:
2649 case CONST_INT:
2650 case CONST_DOUBLE:
2651 case CONST_FIXED:
2652 case CONST_VECTOR:
2653 case SYMBOL_REF:
2654 case REG:
2655 return 1;
2656
2657 case MEM:
2658 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2659 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2660
2661 case IF_THEN_ELSE:
2662 return (computed_jump_p_1 (XEXP (x, 1))
2663 || computed_jump_p_1 (XEXP (x, 2)));
2664
2665 default:
2666 break;
2667 }
2668
2669 fmt = GET_RTX_FORMAT (code);
2670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 {
2672 if (fmt[i] == 'e'
2673 && computed_jump_p_1 (XEXP (x, i)))
2674 return 1;
2675
2676 else if (fmt[i] == 'E')
2677 for (j = 0; j < XVECLEN (x, i); j++)
2678 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2679 return 1;
2680 }
2681
2682 return 0;
2683 }
2684
2685 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2686
2687 Tablejumps and casesi insns are not considered indirect jumps;
2688 we can recognize them by a (use (label_ref)). */
2689
2690 int
2691 computed_jump_p (const_rtx insn)
2692 {
2693 int i;
2694 if (JUMP_P (insn))
2695 {
2696 rtx pat = PATTERN (insn);
2697
2698 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2699 if (JUMP_LABEL (insn) != NULL)
2700 return 0;
2701
2702 if (GET_CODE (pat) == PARALLEL)
2703 {
2704 int len = XVECLEN (pat, 0);
2705 int has_use_labelref = 0;
2706
2707 for (i = len - 1; i >= 0; i--)
2708 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2709 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2710 == LABEL_REF))
2711 has_use_labelref = 1;
2712
2713 if (! has_use_labelref)
2714 for (i = len - 1; i >= 0; i--)
2715 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2716 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2717 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2718 return 1;
2719 }
2720 else if (GET_CODE (pat) == SET
2721 && SET_DEST (pat) == pc_rtx
2722 && computed_jump_p_1 (SET_SRC (pat)))
2723 return 1;
2724 }
2725 return 0;
2726 }
2727
2728 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2729 calls. Processes the subexpressions of EXP and passes them to F. */
2730 static int
2731 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2732 {
2733 int result, i, j;
2734 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2735 rtx *x;
2736
2737 for (; format[n] != '\0'; n++)
2738 {
2739 switch (format[n])
2740 {
2741 case 'e':
2742 /* Call F on X. */
2743 x = &XEXP (exp, n);
2744 result = (*f) (x, data);
2745 if (result == -1)
2746 /* Do not traverse sub-expressions. */
2747 continue;
2748 else if (result != 0)
2749 /* Stop the traversal. */
2750 return result;
2751
2752 if (*x == NULL_RTX)
2753 /* There are no sub-expressions. */
2754 continue;
2755
2756 i = non_rtx_starting_operands[GET_CODE (*x)];
2757 if (i >= 0)
2758 {
2759 result = for_each_rtx_1 (*x, i, f, data);
2760 if (result != 0)
2761 return result;
2762 }
2763 break;
2764
2765 case 'V':
2766 case 'E':
2767 if (XVEC (exp, n) == 0)
2768 continue;
2769 for (j = 0; j < XVECLEN (exp, n); ++j)
2770 {
2771 /* Call F on X. */
2772 x = &XVECEXP (exp, n, j);
2773 result = (*f) (x, data);
2774 if (result == -1)
2775 /* Do not traverse sub-expressions. */
2776 continue;
2777 else if (result != 0)
2778 /* Stop the traversal. */
2779 return result;
2780
2781 if (*x == NULL_RTX)
2782 /* There are no sub-expressions. */
2783 continue;
2784
2785 i = non_rtx_starting_operands[GET_CODE (*x)];
2786 if (i >= 0)
2787 {
2788 result = for_each_rtx_1 (*x, i, f, data);
2789 if (result != 0)
2790 return result;
2791 }
2792 }
2793 break;
2794
2795 default:
2796 /* Nothing to do. */
2797 break;
2798 }
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Traverse X via depth-first search, calling F for each
2805 sub-expression (including X itself). F is also passed the DATA.
2806 If F returns -1, do not traverse sub-expressions, but continue
2807 traversing the rest of the tree. If F ever returns any other
2808 nonzero value, stop the traversal, and return the value returned
2809 by F. Otherwise, return 0. This function does not traverse inside
2810 tree structure that contains RTX_EXPRs, or into sub-expressions
2811 whose format code is `0' since it is not known whether or not those
2812 codes are actually RTL.
2813
2814 This routine is very general, and could (should?) be used to
2815 implement many of the other routines in this file. */
2816
2817 int
2818 for_each_rtx (rtx *x, rtx_function f, void *data)
2819 {
2820 int result;
2821 int i;
2822
2823 /* Call F on X. */
2824 result = (*f) (x, data);
2825 if (result == -1)
2826 /* Do not traverse sub-expressions. */
2827 return 0;
2828 else if (result != 0)
2829 /* Stop the traversal. */
2830 return result;
2831
2832 if (*x == NULL_RTX)
2833 /* There are no sub-expressions. */
2834 return 0;
2835
2836 i = non_rtx_starting_operands[GET_CODE (*x)];
2837 if (i < 0)
2838 return 0;
2839
2840 return for_each_rtx_1 (*x, i, f, data);
2841 }
2842
2843
2844 /* Searches X for any reference to REGNO, returning the rtx of the
2845 reference found if any. Otherwise, returns NULL_RTX. */
2846
2847 rtx
2848 regno_use_in (unsigned int regno, rtx x)
2849 {
2850 const char *fmt;
2851 int i, j;
2852 rtx tem;
2853
2854 if (REG_P (x) && REGNO (x) == regno)
2855 return x;
2856
2857 fmt = GET_RTX_FORMAT (GET_CODE (x));
2858 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2859 {
2860 if (fmt[i] == 'e')
2861 {
2862 if ((tem = regno_use_in (regno, XEXP (x, i))))
2863 return tem;
2864 }
2865 else if (fmt[i] == 'E')
2866 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2867 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2868 return tem;
2869 }
2870
2871 return NULL_RTX;
2872 }
2873
2874 /* Return a value indicating whether OP, an operand of a commutative
2875 operation, is preferred as the first or second operand. The higher
2876 the value, the stronger the preference for being the first operand.
2877 We use negative values to indicate a preference for the first operand
2878 and positive values for the second operand. */
2879
2880 int
2881 commutative_operand_precedence (rtx op)
2882 {
2883 enum rtx_code code = GET_CODE (op);
2884
2885 /* Constants always come the second operand. Prefer "nice" constants. */
2886 if (code == CONST_INT)
2887 return -8;
2888 if (code == CONST_DOUBLE)
2889 return -7;
2890 if (code == CONST_FIXED)
2891 return -7;
2892 op = avoid_constant_pool_reference (op);
2893 code = GET_CODE (op);
2894
2895 switch (GET_RTX_CLASS (code))
2896 {
2897 case RTX_CONST_OBJ:
2898 if (code == CONST_INT)
2899 return -6;
2900 if (code == CONST_DOUBLE)
2901 return -5;
2902 if (code == CONST_FIXED)
2903 return -5;
2904 return -4;
2905
2906 case RTX_EXTRA:
2907 /* SUBREGs of objects should come second. */
2908 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2909 return -3;
2910 return 0;
2911
2912 case RTX_OBJ:
2913 /* Complex expressions should be the first, so decrease priority
2914 of objects. Prefer pointer objects over non pointer objects. */
2915 if ((REG_P (op) && REG_POINTER (op))
2916 || (MEM_P (op) && MEM_POINTER (op)))
2917 return -1;
2918 return -2;
2919
2920 case RTX_COMM_ARITH:
2921 /* Prefer operands that are themselves commutative to be first.
2922 This helps to make things linear. In particular,
2923 (and (and (reg) (reg)) (not (reg))) is canonical. */
2924 return 4;
2925
2926 case RTX_BIN_ARITH:
2927 /* If only one operand is a binary expression, it will be the first
2928 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2929 is canonical, although it will usually be further simplified. */
2930 return 2;
2931
2932 case RTX_UNARY:
2933 /* Then prefer NEG and NOT. */
2934 if (code == NEG || code == NOT)
2935 return 1;
2936
2937 default:
2938 return 0;
2939 }
2940 }
2941
2942 /* Return 1 iff it is necessary to swap operands of commutative operation
2943 in order to canonicalize expression. */
2944
2945 bool
2946 swap_commutative_operands_p (rtx x, rtx y)
2947 {
2948 return (commutative_operand_precedence (x)
2949 < commutative_operand_precedence (y));
2950 }
2951
2952 /* Return 1 if X is an autoincrement side effect and the register is
2953 not the stack pointer. */
2954 int
2955 auto_inc_p (const_rtx x)
2956 {
2957 switch (GET_CODE (x))
2958 {
2959 case PRE_INC:
2960 case POST_INC:
2961 case PRE_DEC:
2962 case POST_DEC:
2963 case PRE_MODIFY:
2964 case POST_MODIFY:
2965 /* There are no REG_INC notes for SP. */
2966 if (XEXP (x, 0) != stack_pointer_rtx)
2967 return 1;
2968 default:
2969 break;
2970 }
2971 return 0;
2972 }
2973
2974 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2975 int
2976 loc_mentioned_in_p (rtx *loc, const_rtx in)
2977 {
2978 enum rtx_code code;
2979 const char *fmt;
2980 int i, j;
2981
2982 if (!in)
2983 return 0;
2984
2985 code = GET_CODE (in);
2986 fmt = GET_RTX_FORMAT (code);
2987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2988 {
2989 if (loc == &in->u.fld[i].rt_rtx)
2990 return 1;
2991 if (fmt[i] == 'e')
2992 {
2993 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2994 return 1;
2995 }
2996 else if (fmt[i] == 'E')
2997 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2998 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2999 return 1;
3000 }
3001 return 0;
3002 }
3003
3004 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3005 and SUBREG_BYTE, return the bit offset where the subreg begins
3006 (counting from the least significant bit of the operand). */
3007
3008 unsigned int
3009 subreg_lsb_1 (enum machine_mode outer_mode,
3010 enum machine_mode inner_mode,
3011 unsigned int subreg_byte)
3012 {
3013 unsigned int bitpos;
3014 unsigned int byte;
3015 unsigned int word;
3016
3017 /* A paradoxical subreg begins at bit position 0. */
3018 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3019 return 0;
3020
3021 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3022 /* If the subreg crosses a word boundary ensure that
3023 it also begins and ends on a word boundary. */
3024 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3025 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3026 && (subreg_byte % UNITS_PER_WORD
3027 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3028
3029 if (WORDS_BIG_ENDIAN)
3030 word = (GET_MODE_SIZE (inner_mode)
3031 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3032 else
3033 word = subreg_byte / UNITS_PER_WORD;
3034 bitpos = word * BITS_PER_WORD;
3035
3036 if (BYTES_BIG_ENDIAN)
3037 byte = (GET_MODE_SIZE (inner_mode)
3038 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3039 else
3040 byte = subreg_byte % UNITS_PER_WORD;
3041 bitpos += byte * BITS_PER_UNIT;
3042
3043 return bitpos;
3044 }
3045
3046 /* Given a subreg X, return the bit offset where the subreg begins
3047 (counting from the least significant bit of the reg). */
3048
3049 unsigned int
3050 subreg_lsb (const_rtx x)
3051 {
3052 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3053 SUBREG_BYTE (x));
3054 }
3055
3056 /* Fill in information about a subreg of a hard register.
3057 xregno - A regno of an inner hard subreg_reg (or what will become one).
3058 xmode - The mode of xregno.
3059 offset - The byte offset.
3060 ymode - The mode of a top level SUBREG (or what may become one).
3061 info - Pointer to structure to fill in. */
3062 static void
3063 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3064 unsigned int offset, enum machine_mode ymode,
3065 struct subreg_info *info)
3066 {
3067 int nregs_xmode, nregs_ymode;
3068 int mode_multiple, nregs_multiple;
3069 int offset_adj, y_offset, y_offset_adj;
3070 int regsize_xmode, regsize_ymode;
3071 bool rknown;
3072
3073 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3074
3075 rknown = false;
3076
3077 /* If there are holes in a non-scalar mode in registers, we expect
3078 that it is made up of its units concatenated together. */
3079 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3080 {
3081 enum machine_mode xmode_unit;
3082
3083 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3084 if (GET_MODE_INNER (xmode) == VOIDmode)
3085 xmode_unit = xmode;
3086 else
3087 xmode_unit = GET_MODE_INNER (xmode);
3088 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3089 gcc_assert (nregs_xmode
3090 == (GET_MODE_NUNITS (xmode)
3091 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3092 gcc_assert (hard_regno_nregs[xregno][xmode]
3093 == (hard_regno_nregs[xregno][xmode_unit]
3094 * GET_MODE_NUNITS (xmode)));
3095
3096 /* You can only ask for a SUBREG of a value with holes in the middle
3097 if you don't cross the holes. (Such a SUBREG should be done by
3098 picking a different register class, or doing it in memory if
3099 necessary.) An example of a value with holes is XCmode on 32-bit
3100 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3101 3 for each part, but in memory it's two 128-bit parts.
3102 Padding is assumed to be at the end (not necessarily the 'high part')
3103 of each unit. */
3104 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3105 < GET_MODE_NUNITS (xmode))
3106 && (offset / GET_MODE_SIZE (xmode_unit)
3107 != ((offset + GET_MODE_SIZE (ymode) - 1)
3108 / GET_MODE_SIZE (xmode_unit))))
3109 {
3110 info->representable_p = false;
3111 rknown = true;
3112 }
3113 }
3114 else
3115 nregs_xmode = hard_regno_nregs[xregno][xmode];
3116
3117 nregs_ymode = hard_regno_nregs[xregno][ymode];
3118
3119 /* Paradoxical subregs are otherwise valid. */
3120 if (!rknown
3121 && offset == 0
3122 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3123 {
3124 info->representable_p = true;
3125 /* If this is a big endian paradoxical subreg, which uses more
3126 actual hard registers than the original register, we must
3127 return a negative offset so that we find the proper highpart
3128 of the register. */
3129 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3130 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3131 info->offset = nregs_xmode - nregs_ymode;
3132 else
3133 info->offset = 0;
3134 info->nregs = nregs_ymode;
3135 return;
3136 }
3137
3138 /* If registers store different numbers of bits in the different
3139 modes, we cannot generally form this subreg. */
3140 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3141 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3142 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3143 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3144 {
3145 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3146 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3147 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3148 {
3149 info->representable_p = false;
3150 info->nregs
3151 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3152 info->offset = offset / regsize_xmode;
3153 return;
3154 }
3155 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3156 {
3157 info->representable_p = false;
3158 info->nregs
3159 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3160 info->offset = offset / regsize_xmode;
3161 return;
3162 }
3163 }
3164
3165 /* Lowpart subregs are otherwise valid. */
3166 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3167 {
3168 info->representable_p = true;
3169 rknown = true;
3170
3171 if (offset == 0 || nregs_xmode == nregs_ymode)
3172 {
3173 info->offset = 0;
3174 info->nregs = nregs_ymode;
3175 return;
3176 }
3177 }
3178
3179 /* This should always pass, otherwise we don't know how to verify
3180 the constraint. These conditions may be relaxed but
3181 subreg_regno_offset would need to be redesigned. */
3182 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3183 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3184
3185 /* The XMODE value can be seen as a vector of NREGS_XMODE
3186 values. The subreg must represent a lowpart of given field.
3187 Compute what field it is. */
3188 offset_adj = offset;
3189 offset_adj -= subreg_lowpart_offset (ymode,
3190 mode_for_size (GET_MODE_BITSIZE (xmode)
3191 / nregs_xmode,
3192 MODE_INT, 0));
3193
3194 /* Size of ymode must not be greater than the size of xmode. */
3195 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3196 gcc_assert (mode_multiple != 0);
3197
3198 y_offset = offset / GET_MODE_SIZE (ymode);
3199 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3200 nregs_multiple = nregs_xmode / nregs_ymode;
3201
3202 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3203 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3204
3205 if (!rknown)
3206 {
3207 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3208 rknown = true;
3209 }
3210 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3211 info->nregs = nregs_ymode;
3212 }
3213
3214 /* This function returns the regno offset of a subreg expression.
3215 xregno - A regno of an inner hard subreg_reg (or what will become one).
3216 xmode - The mode of xregno.
3217 offset - The byte offset.
3218 ymode - The mode of a top level SUBREG (or what may become one).
3219 RETURN - The regno offset which would be used. */
3220 unsigned int
3221 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3222 unsigned int offset, enum machine_mode ymode)
3223 {
3224 struct subreg_info info;
3225 subreg_get_info (xregno, xmode, offset, ymode, &info);
3226 return info.offset;
3227 }
3228
3229 /* This function returns true when the offset is representable via
3230 subreg_offset in the given regno.
3231 xregno - A regno of an inner hard subreg_reg (or what will become one).
3232 xmode - The mode of xregno.
3233 offset - The byte offset.
3234 ymode - The mode of a top level SUBREG (or what may become one).
3235 RETURN - Whether the offset is representable. */
3236 bool
3237 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3238 unsigned int offset, enum machine_mode ymode)
3239 {
3240 struct subreg_info info;
3241 subreg_get_info (xregno, xmode, offset, ymode, &info);
3242 return info.representable_p;
3243 }
3244
3245 /* Return the final regno that a subreg expression refers to. */
3246 unsigned int
3247 subreg_regno (const_rtx x)
3248 {
3249 unsigned int ret;
3250 rtx subreg = SUBREG_REG (x);
3251 int regno = REGNO (subreg);
3252
3253 ret = regno + subreg_regno_offset (regno,
3254 GET_MODE (subreg),
3255 SUBREG_BYTE (x),
3256 GET_MODE (x));
3257 return ret;
3258
3259 }
3260
3261 /* Return the number of registers that a subreg expression refers
3262 to. */
3263 unsigned int
3264 subreg_nregs (const_rtx x)
3265 {
3266 struct subreg_info info;
3267 rtx subreg = SUBREG_REG (x);
3268 int regno = REGNO (subreg);
3269
3270 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3271 &info);
3272 return info.nregs;
3273 }
3274
3275 struct parms_set_data
3276 {
3277 int nregs;
3278 HARD_REG_SET regs;
3279 };
3280
3281 /* Helper function for noticing stores to parameter registers. */
3282 static void
3283 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3284 {
3285 struct parms_set_data *d = data;
3286 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3287 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3288 {
3289 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3290 d->nregs--;
3291 }
3292 }
3293
3294 /* Look backward for first parameter to be loaded.
3295 Note that loads of all parameters will not necessarily be
3296 found if CSE has eliminated some of them (e.g., an argument
3297 to the outer function is passed down as a parameter).
3298 Do not skip BOUNDARY. */
3299 rtx
3300 find_first_parameter_load (rtx call_insn, rtx boundary)
3301 {
3302 struct parms_set_data parm;
3303 rtx p, before, first_set;
3304
3305 /* Since different machines initialize their parameter registers
3306 in different orders, assume nothing. Collect the set of all
3307 parameter registers. */
3308 CLEAR_HARD_REG_SET (parm.regs);
3309 parm.nregs = 0;
3310 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3311 if (GET_CODE (XEXP (p, 0)) == USE
3312 && REG_P (XEXP (XEXP (p, 0), 0)))
3313 {
3314 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3315
3316 /* We only care about registers which can hold function
3317 arguments. */
3318 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3319 continue;
3320
3321 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3322 parm.nregs++;
3323 }
3324 before = call_insn;
3325 first_set = call_insn;
3326
3327 /* Search backward for the first set of a register in this set. */
3328 while (parm.nregs && before != boundary)
3329 {
3330 before = PREV_INSN (before);
3331
3332 /* It is possible that some loads got CSEed from one call to
3333 another. Stop in that case. */
3334 if (CALL_P (before))
3335 break;
3336
3337 /* Our caller needs either ensure that we will find all sets
3338 (in case code has not been optimized yet), or take care
3339 for possible labels in a way by setting boundary to preceding
3340 CODE_LABEL. */
3341 if (LABEL_P (before))
3342 {
3343 gcc_assert (before == boundary);
3344 break;
3345 }
3346
3347 if (INSN_P (before))
3348 {
3349 int nregs_old = parm.nregs;
3350 note_stores (PATTERN (before), parms_set, &parm);
3351 /* If we found something that did not set a parameter reg,
3352 we're done. Do not keep going, as that might result
3353 in hoisting an insn before the setting of a pseudo
3354 that is used by the hoisted insn. */
3355 if (nregs_old != parm.nregs)
3356 first_set = before;
3357 else
3358 break;
3359 }
3360 }
3361 return first_set;
3362 }
3363
3364 /* Return true if we should avoid inserting code between INSN and preceding
3365 call instruction. */
3366
3367 bool
3368 keep_with_call_p (const_rtx insn)
3369 {
3370 rtx set;
3371
3372 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3373 {
3374 if (REG_P (SET_DEST (set))
3375 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3376 && fixed_regs[REGNO (SET_DEST (set))]
3377 && general_operand (SET_SRC (set), VOIDmode))
3378 return true;
3379 if (REG_P (SET_SRC (set))
3380 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3381 && REG_P (SET_DEST (set))
3382 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3383 return true;
3384 /* There may be a stack pop just after the call and before the store
3385 of the return register. Search for the actual store when deciding
3386 if we can break or not. */
3387 if (SET_DEST (set) == stack_pointer_rtx)
3388 {
3389 /* This CONST_CAST is okay because next_nonnote_insn just
3390 returns it's argument and we assign it to a const_rtx
3391 variable. */
3392 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3393 if (i2 && keep_with_call_p (i2))
3394 return true;
3395 }
3396 }
3397 return false;
3398 }
3399
3400 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3401 to non-complex jumps. That is, direct unconditional, conditional,
3402 and tablejumps, but not computed jumps or returns. It also does
3403 not apply to the fallthru case of a conditional jump. */
3404
3405 bool
3406 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3407 {
3408 rtx tmp = JUMP_LABEL (jump_insn);
3409
3410 if (label == tmp)
3411 return true;
3412
3413 if (tablejump_p (jump_insn, NULL, &tmp))
3414 {
3415 rtvec vec = XVEC (PATTERN (tmp),
3416 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3417 int i, veclen = GET_NUM_ELEM (vec);
3418
3419 for (i = 0; i < veclen; ++i)
3420 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3421 return true;
3422 }
3423
3424 return false;
3425 }
3426
3427 \f
3428 /* Return an estimate of the cost of computing rtx X.
3429 One use is in cse, to decide which expression to keep in the hash table.
3430 Another is in rtl generation, to pick the cheapest way to multiply.
3431 Other uses like the latter are expected in the future. */
3432
3433 int
3434 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3435 {
3436 int i, j;
3437 enum rtx_code code;
3438 const char *fmt;
3439 int total;
3440
3441 if (x == 0)
3442 return 0;
3443
3444 /* Compute the default costs of certain things.
3445 Note that targetm.rtx_costs can override the defaults. */
3446
3447 code = GET_CODE (x);
3448 switch (code)
3449 {
3450 case MULT:
3451 total = COSTS_N_INSNS (5);
3452 break;
3453 case DIV:
3454 case UDIV:
3455 case MOD:
3456 case UMOD:
3457 total = COSTS_N_INSNS (7);
3458 break;
3459 case USE:
3460 /* Used in combine.c as a marker. */
3461 total = 0;
3462 break;
3463 default:
3464 total = COSTS_N_INSNS (1);
3465 }
3466
3467 switch (code)
3468 {
3469 case REG:
3470 return 0;
3471
3472 case SUBREG:
3473 total = 0;
3474 /* If we can't tie these modes, make this expensive. The larger
3475 the mode, the more expensive it is. */
3476 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3477 return COSTS_N_INSNS (2
3478 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3479 break;
3480
3481 default:
3482 if (targetm.rtx_costs (x, code, outer_code, &total))
3483 return total;
3484 break;
3485 }
3486
3487 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3488 which is already in total. */
3489
3490 fmt = GET_RTX_FORMAT (code);
3491 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3492 if (fmt[i] == 'e')
3493 total += rtx_cost (XEXP (x, i), code);
3494 else if (fmt[i] == 'E')
3495 for (j = 0; j < XVECLEN (x, i); j++)
3496 total += rtx_cost (XVECEXP (x, i, j), code);
3497
3498 return total;
3499 }
3500 \f
3501 /* Return cost of address expression X.
3502 Expect that X is properly formed address reference. */
3503
3504 int
3505 address_cost (rtx x, enum machine_mode mode)
3506 {
3507 /* We may be asked for cost of various unusual addresses, such as operands
3508 of push instruction. It is not worthwhile to complicate writing
3509 of the target hook by such cases. */
3510
3511 if (!memory_address_p (mode, x))
3512 return 1000;
3513
3514 return targetm.address_cost (x);
3515 }
3516
3517 /* If the target doesn't override, compute the cost as with arithmetic. */
3518
3519 int
3520 default_address_cost (rtx x)
3521 {
3522 return rtx_cost (x, MEM);
3523 }
3524 \f
3525
3526 unsigned HOST_WIDE_INT
3527 nonzero_bits (const_rtx x, enum machine_mode mode)
3528 {
3529 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3530 }
3531
3532 unsigned int
3533 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3534 {
3535 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3536 }
3537
3538 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3539 It avoids exponential behavior in nonzero_bits1 when X has
3540 identical subexpressions on the first or the second level. */
3541
3542 static unsigned HOST_WIDE_INT
3543 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3544 enum machine_mode known_mode,
3545 unsigned HOST_WIDE_INT known_ret)
3546 {
3547 if (x == known_x && mode == known_mode)
3548 return known_ret;
3549
3550 /* Try to find identical subexpressions. If found call
3551 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3552 precomputed value for the subexpression as KNOWN_RET. */
3553
3554 if (ARITHMETIC_P (x))
3555 {
3556 rtx x0 = XEXP (x, 0);
3557 rtx x1 = XEXP (x, 1);
3558
3559 /* Check the first level. */
3560 if (x0 == x1)
3561 return nonzero_bits1 (x, mode, x0, mode,
3562 cached_nonzero_bits (x0, mode, known_x,
3563 known_mode, known_ret));
3564
3565 /* Check the second level. */
3566 if (ARITHMETIC_P (x0)
3567 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3568 return nonzero_bits1 (x, mode, x1, mode,
3569 cached_nonzero_bits (x1, mode, known_x,
3570 known_mode, known_ret));
3571
3572 if (ARITHMETIC_P (x1)
3573 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3574 return nonzero_bits1 (x, mode, x0, mode,
3575 cached_nonzero_bits (x0, mode, known_x,
3576 known_mode, known_ret));
3577 }
3578
3579 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3580 }
3581
3582 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3583 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3584 is less useful. We can't allow both, because that results in exponential
3585 run time recursion. There is a nullstone testcase that triggered
3586 this. This macro avoids accidental uses of num_sign_bit_copies. */
3587 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3588
3589 /* Given an expression, X, compute which bits in X can be nonzero.
3590 We don't care about bits outside of those defined in MODE.
3591
3592 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3593 an arithmetic operation, we can do better. */
3594
3595 static unsigned HOST_WIDE_INT
3596 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3597 enum machine_mode known_mode,
3598 unsigned HOST_WIDE_INT known_ret)
3599 {
3600 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3601 unsigned HOST_WIDE_INT inner_nz;
3602 enum rtx_code code;
3603 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3604
3605 /* For floating-point values, assume all bits are needed. */
3606 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3607 return nonzero;
3608
3609 /* If X is wider than MODE, use its mode instead. */
3610 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3611 {
3612 mode = GET_MODE (x);
3613 nonzero = GET_MODE_MASK (mode);
3614 mode_width = GET_MODE_BITSIZE (mode);
3615 }
3616
3617 if (mode_width > HOST_BITS_PER_WIDE_INT)
3618 /* Our only callers in this case look for single bit values. So
3619 just return the mode mask. Those tests will then be false. */
3620 return nonzero;
3621
3622 #ifndef WORD_REGISTER_OPERATIONS
3623 /* If MODE is wider than X, but both are a single word for both the host
3624 and target machines, we can compute this from which bits of the
3625 object might be nonzero in its own mode, taking into account the fact
3626 that on many CISC machines, accessing an object in a wider mode
3627 causes the high-order bits to become undefined. So they are
3628 not known to be zero. */
3629
3630 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3631 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3632 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3633 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3634 {
3635 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3636 known_x, known_mode, known_ret);
3637 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3638 return nonzero;
3639 }
3640 #endif
3641
3642 code = GET_CODE (x);
3643 switch (code)
3644 {
3645 case REG:
3646 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3647 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3648 all the bits above ptr_mode are known to be zero. */
3649 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3650 && REG_POINTER (x))
3651 nonzero &= GET_MODE_MASK (ptr_mode);
3652 #endif
3653
3654 /* Include declared information about alignment of pointers. */
3655 /* ??? We don't properly preserve REG_POINTER changes across
3656 pointer-to-integer casts, so we can't trust it except for
3657 things that we know must be pointers. See execute/960116-1.c. */
3658 if ((x == stack_pointer_rtx
3659 || x == frame_pointer_rtx
3660 || x == arg_pointer_rtx)
3661 && REGNO_POINTER_ALIGN (REGNO (x)))
3662 {
3663 unsigned HOST_WIDE_INT alignment
3664 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3665
3666 #ifdef PUSH_ROUNDING
3667 /* If PUSH_ROUNDING is defined, it is possible for the
3668 stack to be momentarily aligned only to that amount,
3669 so we pick the least alignment. */
3670 if (x == stack_pointer_rtx && PUSH_ARGS)
3671 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3672 alignment);
3673 #endif
3674
3675 nonzero &= ~(alignment - 1);
3676 }
3677
3678 {
3679 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3680 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3681 known_mode, known_ret,
3682 &nonzero_for_hook);
3683
3684 if (new)
3685 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3686 known_mode, known_ret);
3687
3688 return nonzero_for_hook;
3689 }
3690
3691 case CONST_INT:
3692 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3693 /* If X is negative in MODE, sign-extend the value. */
3694 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3695 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3696 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3697 #endif
3698
3699 return INTVAL (x);
3700
3701 case MEM:
3702 #ifdef LOAD_EXTEND_OP
3703 /* In many, if not most, RISC machines, reading a byte from memory
3704 zeros the rest of the register. Noticing that fact saves a lot
3705 of extra zero-extends. */
3706 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3707 nonzero &= GET_MODE_MASK (GET_MODE (x));
3708 #endif
3709 break;
3710
3711 case EQ: case NE:
3712 case UNEQ: case LTGT:
3713 case GT: case GTU: case UNGT:
3714 case LT: case LTU: case UNLT:
3715 case GE: case GEU: case UNGE:
3716 case LE: case LEU: case UNLE:
3717 case UNORDERED: case ORDERED:
3718 /* If this produces an integer result, we know which bits are set.
3719 Code here used to clear bits outside the mode of X, but that is
3720 now done above. */
3721 /* Mind that MODE is the mode the caller wants to look at this
3722 operation in, and not the actual operation mode. We can wind
3723 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3724 that describes the results of a vector compare. */
3725 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3726 && mode_width <= HOST_BITS_PER_WIDE_INT)
3727 nonzero = STORE_FLAG_VALUE;
3728 break;
3729
3730 case NEG:
3731 #if 0
3732 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3733 and num_sign_bit_copies. */
3734 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3735 == GET_MODE_BITSIZE (GET_MODE (x)))
3736 nonzero = 1;
3737 #endif
3738
3739 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3740 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3741 break;
3742
3743 case ABS:
3744 #if 0
3745 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3746 and num_sign_bit_copies. */
3747 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3748 == GET_MODE_BITSIZE (GET_MODE (x)))
3749 nonzero = 1;
3750 #endif
3751 break;
3752
3753 case TRUNCATE:
3754 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3755 known_x, known_mode, known_ret)
3756 & GET_MODE_MASK (mode));
3757 break;
3758
3759 case ZERO_EXTEND:
3760 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3761 known_x, known_mode, known_ret);
3762 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3763 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3764 break;
3765
3766 case SIGN_EXTEND:
3767 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3768 Otherwise, show all the bits in the outer mode but not the inner
3769 may be nonzero. */
3770 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3771 known_x, known_mode, known_ret);
3772 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3773 {
3774 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3775 if (inner_nz
3776 & (((HOST_WIDE_INT) 1
3777 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3778 inner_nz |= (GET_MODE_MASK (mode)
3779 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3780 }
3781
3782 nonzero &= inner_nz;
3783 break;
3784
3785 case AND:
3786 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3787 known_x, known_mode, known_ret)
3788 & cached_nonzero_bits (XEXP (x, 1), mode,
3789 known_x, known_mode, known_ret);
3790 break;
3791
3792 case XOR: case IOR:
3793 case UMIN: case UMAX: case SMIN: case SMAX:
3794 {
3795 unsigned HOST_WIDE_INT nonzero0 =
3796 cached_nonzero_bits (XEXP (x, 0), mode,
3797 known_x, known_mode, known_ret);
3798
3799 /* Don't call nonzero_bits for the second time if it cannot change
3800 anything. */
3801 if ((nonzero & nonzero0) != nonzero)
3802 nonzero &= nonzero0
3803 | cached_nonzero_bits (XEXP (x, 1), mode,
3804 known_x, known_mode, known_ret);
3805 }
3806 break;
3807
3808 case PLUS: case MINUS:
3809 case MULT:
3810 case DIV: case UDIV:
3811 case MOD: case UMOD:
3812 /* We can apply the rules of arithmetic to compute the number of
3813 high- and low-order zero bits of these operations. We start by
3814 computing the width (position of the highest-order nonzero bit)
3815 and the number of low-order zero bits for each value. */
3816 {
3817 unsigned HOST_WIDE_INT nz0 =
3818 cached_nonzero_bits (XEXP (x, 0), mode,
3819 known_x, known_mode, known_ret);
3820 unsigned HOST_WIDE_INT nz1 =
3821 cached_nonzero_bits (XEXP (x, 1), mode,
3822 known_x, known_mode, known_ret);
3823 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3824 int width0 = floor_log2 (nz0) + 1;
3825 int width1 = floor_log2 (nz1) + 1;
3826 int low0 = floor_log2 (nz0 & -nz0);
3827 int low1 = floor_log2 (nz1 & -nz1);
3828 HOST_WIDE_INT op0_maybe_minusp
3829 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3830 HOST_WIDE_INT op1_maybe_minusp
3831 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3832 unsigned int result_width = mode_width;
3833 int result_low = 0;
3834
3835 switch (code)
3836 {
3837 case PLUS:
3838 result_width = MAX (width0, width1) + 1;
3839 result_low = MIN (low0, low1);
3840 break;
3841 case MINUS:
3842 result_low = MIN (low0, low1);
3843 break;
3844 case MULT:
3845 result_width = width0 + width1;
3846 result_low = low0 + low1;
3847 break;
3848 case DIV:
3849 if (width1 == 0)
3850 break;
3851 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3852 result_width = width0;
3853 break;
3854 case UDIV:
3855 if (width1 == 0)
3856 break;
3857 result_width = width0;
3858 break;
3859 case MOD:
3860 if (width1 == 0)
3861 break;
3862 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3863 result_width = MIN (width0, width1);
3864 result_low = MIN (low0, low1);
3865 break;
3866 case UMOD:
3867 if (width1 == 0)
3868 break;
3869 result_width = MIN (width0, width1);
3870 result_low = MIN (low0, low1);
3871 break;
3872 default:
3873 gcc_unreachable ();
3874 }
3875
3876 if (result_width < mode_width)
3877 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3878
3879 if (result_low > 0)
3880 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3881
3882 #ifdef POINTERS_EXTEND_UNSIGNED
3883 /* If pointers extend unsigned and this is an addition or subtraction
3884 to a pointer in Pmode, all the bits above ptr_mode are known to be
3885 zero. */
3886 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3887 && (code == PLUS || code == MINUS)
3888 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3889 nonzero &= GET_MODE_MASK (ptr_mode);
3890 #endif
3891 }
3892 break;
3893
3894 case ZERO_EXTRACT:
3895 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3896 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3897 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3898 break;
3899
3900 case SUBREG:
3901 /* If this is a SUBREG formed for a promoted variable that has
3902 been zero-extended, we know that at least the high-order bits
3903 are zero, though others might be too. */
3904
3905 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3906 nonzero = GET_MODE_MASK (GET_MODE (x))
3907 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3908 known_x, known_mode, known_ret);
3909
3910 /* If the inner mode is a single word for both the host and target
3911 machines, we can compute this from which bits of the inner
3912 object might be nonzero. */
3913 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3914 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3915 <= HOST_BITS_PER_WIDE_INT))
3916 {
3917 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3918 known_x, known_mode, known_ret);
3919
3920 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3921 /* If this is a typical RISC machine, we only have to worry
3922 about the way loads are extended. */
3923 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3924 ? (((nonzero
3925 & (((unsigned HOST_WIDE_INT) 1
3926 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3927 != 0))
3928 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3929 || !MEM_P (SUBREG_REG (x)))
3930 #endif
3931 {
3932 /* On many CISC machines, accessing an object in a wider mode
3933 causes the high-order bits to become undefined. So they are
3934 not known to be zero. */
3935 if (GET_MODE_SIZE (GET_MODE (x))
3936 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3937 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3938 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3939 }
3940 }
3941 break;
3942
3943 case ASHIFTRT:
3944 case LSHIFTRT:
3945 case ASHIFT:
3946 case ROTATE:
3947 /* The nonzero bits are in two classes: any bits within MODE
3948 that aren't in GET_MODE (x) are always significant. The rest of the
3949 nonzero bits are those that are significant in the operand of
3950 the shift when shifted the appropriate number of bits. This
3951 shows that high-order bits are cleared by the right shift and
3952 low-order bits by left shifts. */
3953 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3954 && INTVAL (XEXP (x, 1)) >= 0
3955 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3956 {
3957 enum machine_mode inner_mode = GET_MODE (x);
3958 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3959 int count = INTVAL (XEXP (x, 1));
3960 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3961 unsigned HOST_WIDE_INT op_nonzero =
3962 cached_nonzero_bits (XEXP (x, 0), mode,
3963 known_x, known_mode, known_ret);
3964 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3965 unsigned HOST_WIDE_INT outer = 0;
3966
3967 if (mode_width > width)
3968 outer = (op_nonzero & nonzero & ~mode_mask);
3969
3970 if (code == LSHIFTRT)
3971 inner >>= count;
3972 else if (code == ASHIFTRT)
3973 {
3974 inner >>= count;
3975
3976 /* If the sign bit may have been nonzero before the shift, we
3977 need to mark all the places it could have been copied to
3978 by the shift as possibly nonzero. */
3979 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3980 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3981 }
3982 else if (code == ASHIFT)
3983 inner <<= count;
3984 else
3985 inner = ((inner << (count % width)
3986 | (inner >> (width - (count % width)))) & mode_mask);
3987
3988 nonzero &= (outer | inner);
3989 }
3990 break;
3991
3992 case FFS:
3993 case POPCOUNT:
3994 /* This is at most the number of bits in the mode. */
3995 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
3996 break;
3997
3998 case CLZ:
3999 /* If CLZ has a known value at zero, then the nonzero bits are
4000 that value, plus the number of bits in the mode minus one. */
4001 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4002 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4003 else
4004 nonzero = -1;
4005 break;
4006
4007 case CTZ:
4008 /* If CTZ has a known value at zero, then the nonzero bits are
4009 that value, plus the number of bits in the mode minus one. */
4010 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4011 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4012 else
4013 nonzero = -1;
4014 break;
4015
4016 case PARITY:
4017 nonzero = 1;
4018 break;
4019
4020 case IF_THEN_ELSE:
4021 {
4022 unsigned HOST_WIDE_INT nonzero_true =
4023 cached_nonzero_bits (XEXP (x, 1), mode,
4024 known_x, known_mode, known_ret);
4025
4026 /* Don't call nonzero_bits for the second time if it cannot change
4027 anything. */
4028 if ((nonzero & nonzero_true) != nonzero)
4029 nonzero &= nonzero_true
4030 | cached_nonzero_bits (XEXP (x, 2), mode,
4031 known_x, known_mode, known_ret);
4032 }
4033 break;
4034
4035 default:
4036 break;
4037 }
4038
4039 return nonzero;
4040 }
4041
4042 /* See the macro definition above. */
4043 #undef cached_num_sign_bit_copies
4044
4045 \f
4046 /* The function cached_num_sign_bit_copies is a wrapper around
4047 num_sign_bit_copies1. It avoids exponential behavior in
4048 num_sign_bit_copies1 when X has identical subexpressions on the
4049 first or the second level. */
4050
4051 static unsigned int
4052 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4053 enum machine_mode known_mode,
4054 unsigned int known_ret)
4055 {
4056 if (x == known_x && mode == known_mode)
4057 return known_ret;
4058
4059 /* Try to find identical subexpressions. If found call
4060 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4061 the precomputed value for the subexpression as KNOWN_RET. */
4062
4063 if (ARITHMETIC_P (x))
4064 {
4065 rtx x0 = XEXP (x, 0);
4066 rtx x1 = XEXP (x, 1);
4067
4068 /* Check the first level. */
4069 if (x0 == x1)
4070 return
4071 num_sign_bit_copies1 (x, mode, x0, mode,
4072 cached_num_sign_bit_copies (x0, mode, known_x,
4073 known_mode,
4074 known_ret));
4075
4076 /* Check the second level. */
4077 if (ARITHMETIC_P (x0)
4078 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4079 return
4080 num_sign_bit_copies1 (x, mode, x1, mode,
4081 cached_num_sign_bit_copies (x1, mode, known_x,
4082 known_mode,
4083 known_ret));
4084
4085 if (ARITHMETIC_P (x1)
4086 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4087 return
4088 num_sign_bit_copies1 (x, mode, x0, mode,
4089 cached_num_sign_bit_copies (x0, mode, known_x,
4090 known_mode,
4091 known_ret));
4092 }
4093
4094 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4095 }
4096
4097 /* Return the number of bits at the high-order end of X that are known to
4098 be equal to the sign bit. X will be used in mode MODE; if MODE is
4099 VOIDmode, X will be used in its own mode. The returned value will always
4100 be between 1 and the number of bits in MODE. */
4101
4102 static unsigned int
4103 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4104 enum machine_mode known_mode,
4105 unsigned int known_ret)
4106 {
4107 enum rtx_code code = GET_CODE (x);
4108 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4109 int num0, num1, result;
4110 unsigned HOST_WIDE_INT nonzero;
4111
4112 /* If we weren't given a mode, use the mode of X. If the mode is still
4113 VOIDmode, we don't know anything. Likewise if one of the modes is
4114 floating-point. */
4115
4116 if (mode == VOIDmode)
4117 mode = GET_MODE (x);
4118
4119 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4120 return 1;
4121
4122 /* For a smaller object, just ignore the high bits. */
4123 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4124 {
4125 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4126 known_x, known_mode, known_ret);
4127 return MAX (1,
4128 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4129 }
4130
4131 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4132 {
4133 #ifndef WORD_REGISTER_OPERATIONS
4134 /* If this machine does not do all register operations on the entire
4135 register and MODE is wider than the mode of X, we can say nothing
4136 at all about the high-order bits. */
4137 return 1;
4138 #else
4139 /* Likewise on machines that do, if the mode of the object is smaller
4140 than a word and loads of that size don't sign extend, we can say
4141 nothing about the high order bits. */
4142 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4143 #ifdef LOAD_EXTEND_OP
4144 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4145 #endif
4146 )
4147 return 1;
4148 #endif
4149 }
4150
4151 switch (code)
4152 {
4153 case REG:
4154
4155 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4156 /* If pointers extend signed and this is a pointer in Pmode, say that
4157 all the bits above ptr_mode are known to be sign bit copies. */
4158 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4159 && REG_POINTER (x))
4160 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4161 #endif
4162
4163 {
4164 unsigned int copies_for_hook = 1, copies = 1;
4165 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4166 known_mode, known_ret,
4167 &copies_for_hook);
4168
4169 if (new)
4170 copies = cached_num_sign_bit_copies (new, mode, known_x,
4171 known_mode, known_ret);
4172
4173 if (copies > 1 || copies_for_hook > 1)
4174 return MAX (copies, copies_for_hook);
4175
4176 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4177 }
4178 break;
4179
4180 case MEM:
4181 #ifdef LOAD_EXTEND_OP
4182 /* Some RISC machines sign-extend all loads of smaller than a word. */
4183 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4184 return MAX (1, ((int) bitwidth
4185 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4186 #endif
4187 break;
4188
4189 case CONST_INT:
4190 /* If the constant is negative, take its 1's complement and remask.
4191 Then see how many zero bits we have. */
4192 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4193 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4194 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4195 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4196
4197 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4198
4199 case SUBREG:
4200 /* If this is a SUBREG for a promoted object that is sign-extended
4201 and we are looking at it in a wider mode, we know that at least the
4202 high-order bits are known to be sign bit copies. */
4203
4204 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4205 {
4206 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4207 known_x, known_mode, known_ret);
4208 return MAX ((int) bitwidth
4209 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4210 num0);
4211 }
4212
4213 /* For a smaller object, just ignore the high bits. */
4214 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4215 {
4216 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4217 known_x, known_mode, known_ret);
4218 return MAX (1, (num0
4219 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4220 - bitwidth)));
4221 }
4222
4223 #ifdef WORD_REGISTER_OPERATIONS
4224 #ifdef LOAD_EXTEND_OP
4225 /* For paradoxical SUBREGs on machines where all register operations
4226 affect the entire register, just look inside. Note that we are
4227 passing MODE to the recursive call, so the number of sign bit copies
4228 will remain relative to that mode, not the inner mode. */
4229
4230 /* This works only if loads sign extend. Otherwise, if we get a
4231 reload for the inner part, it may be loaded from the stack, and
4232 then we lose all sign bit copies that existed before the store
4233 to the stack. */
4234
4235 if ((GET_MODE_SIZE (GET_MODE (x))
4236 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4237 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4238 && MEM_P (SUBREG_REG (x)))
4239 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4240 known_x, known_mode, known_ret);
4241 #endif
4242 #endif
4243 break;
4244
4245 case SIGN_EXTRACT:
4246 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4247 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4248 break;
4249
4250 case SIGN_EXTEND:
4251 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4252 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4253 known_x, known_mode, known_ret));
4254
4255 case TRUNCATE:
4256 /* For a smaller object, just ignore the high bits. */
4257 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4258 known_x, known_mode, known_ret);
4259 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4260 - bitwidth)));
4261
4262 case NOT:
4263 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4264 known_x, known_mode, known_ret);
4265
4266 case ROTATE: case ROTATERT:
4267 /* If we are rotating left by a number of bits less than the number
4268 of sign bit copies, we can just subtract that amount from the
4269 number. */
4270 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4271 && INTVAL (XEXP (x, 1)) >= 0
4272 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4273 {
4274 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4275 known_x, known_mode, known_ret);
4276 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4277 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4278 }
4279 break;
4280
4281 case NEG:
4282 /* In general, this subtracts one sign bit copy. But if the value
4283 is known to be positive, the number of sign bit copies is the
4284 same as that of the input. Finally, if the input has just one bit
4285 that might be nonzero, all the bits are copies of the sign bit. */
4286 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4287 known_x, known_mode, known_ret);
4288 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4289 return num0 > 1 ? num0 - 1 : 1;
4290
4291 nonzero = nonzero_bits (XEXP (x, 0), mode);
4292 if (nonzero == 1)
4293 return bitwidth;
4294
4295 if (num0 > 1
4296 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4297 num0--;
4298
4299 return num0;
4300
4301 case IOR: case AND: case XOR:
4302 case SMIN: case SMAX: case UMIN: case UMAX:
4303 /* Logical operations will preserve the number of sign-bit copies.
4304 MIN and MAX operations always return one of the operands. */
4305 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4306 known_x, known_mode, known_ret);
4307 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4308 known_x, known_mode, known_ret);
4309
4310 /* If num1 is clearing some of the top bits then regardless of
4311 the other term, we are guaranteed to have at least that many
4312 high-order zero bits. */
4313 if (code == AND
4314 && num1 > 1
4315 && bitwidth <= HOST_BITS_PER_WIDE_INT
4316 && GET_CODE (XEXP (x, 1)) == CONST_INT
4317 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4318 return num1;
4319
4320 /* Similarly for IOR when setting high-order bits. */
4321 if (code == IOR
4322 && num1 > 1
4323 && bitwidth <= HOST_BITS_PER_WIDE_INT
4324 && GET_CODE (XEXP (x, 1)) == CONST_INT
4325 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4326 return num1;
4327
4328 return MIN (num0, num1);
4329
4330 case PLUS: case MINUS:
4331 /* For addition and subtraction, we can have a 1-bit carry. However,
4332 if we are subtracting 1 from a positive number, there will not
4333 be such a carry. Furthermore, if the positive number is known to
4334 be 0 or 1, we know the result is either -1 or 0. */
4335
4336 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4337 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4338 {
4339 nonzero = nonzero_bits (XEXP (x, 0), mode);
4340 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4341 return (nonzero == 1 || nonzero == 0 ? bitwidth
4342 : bitwidth - floor_log2 (nonzero) - 1);
4343 }
4344
4345 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4346 known_x, known_mode, known_ret);
4347 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4348 known_x, known_mode, known_ret);
4349 result = MAX (1, MIN (num0, num1) - 1);
4350
4351 #ifdef POINTERS_EXTEND_UNSIGNED
4352 /* If pointers extend signed and this is an addition or subtraction
4353 to a pointer in Pmode, all the bits above ptr_mode are known to be
4354 sign bit copies. */
4355 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4356 && (code == PLUS || code == MINUS)
4357 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4358 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4359 - GET_MODE_BITSIZE (ptr_mode) + 1),
4360 result);
4361 #endif
4362 return result;
4363
4364 case MULT:
4365 /* The number of bits of the product is the sum of the number of
4366 bits of both terms. However, unless one of the terms if known
4367 to be positive, we must allow for an additional bit since negating
4368 a negative number can remove one sign bit copy. */
4369
4370 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4371 known_x, known_mode, known_ret);
4372 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4373 known_x, known_mode, known_ret);
4374
4375 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4376 if (result > 0
4377 && (bitwidth > HOST_BITS_PER_WIDE_INT
4378 || (((nonzero_bits (XEXP (x, 0), mode)
4379 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4380 && ((nonzero_bits (XEXP (x, 1), mode)
4381 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4382 result--;
4383
4384 return MAX (1, result);
4385
4386 case UDIV:
4387 /* The result must be <= the first operand. If the first operand
4388 has the high bit set, we know nothing about the number of sign
4389 bit copies. */
4390 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4391 return 1;
4392 else if ((nonzero_bits (XEXP (x, 0), mode)
4393 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4394 return 1;
4395 else
4396 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4397 known_x, known_mode, known_ret);
4398
4399 case UMOD:
4400 /* The result must be <= the second operand. */
4401 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4402 known_x, known_mode, known_ret);
4403
4404 case DIV:
4405 /* Similar to unsigned division, except that we have to worry about
4406 the case where the divisor is negative, in which case we have
4407 to add 1. */
4408 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4409 known_x, known_mode, known_ret);
4410 if (result > 1
4411 && (bitwidth > HOST_BITS_PER_WIDE_INT
4412 || (nonzero_bits (XEXP (x, 1), mode)
4413 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4414 result--;
4415
4416 return result;
4417
4418 case MOD:
4419 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4420 known_x, known_mode, known_ret);
4421 if (result > 1
4422 && (bitwidth > HOST_BITS_PER_WIDE_INT
4423 || (nonzero_bits (XEXP (x, 1), mode)
4424 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4425 result--;
4426
4427 return result;
4428
4429 case ASHIFTRT:
4430 /* Shifts by a constant add to the number of bits equal to the
4431 sign bit. */
4432 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4433 known_x, known_mode, known_ret);
4434 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4435 && INTVAL (XEXP (x, 1)) > 0)
4436 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4437
4438 return num0;
4439
4440 case ASHIFT:
4441 /* Left shifts destroy copies. */
4442 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4443 || INTVAL (XEXP (x, 1)) < 0
4444 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4445 return 1;
4446
4447 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4448 known_x, known_mode, known_ret);
4449 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4450
4451 case IF_THEN_ELSE:
4452 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4453 known_x, known_mode, known_ret);
4454 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4455 known_x, known_mode, known_ret);
4456 return MIN (num0, num1);
4457
4458 case EQ: case NE: case GE: case GT: case LE: case LT:
4459 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4460 case GEU: case GTU: case LEU: case LTU:
4461 case UNORDERED: case ORDERED:
4462 /* If the constant is negative, take its 1's complement and remask.
4463 Then see how many zero bits we have. */
4464 nonzero = STORE_FLAG_VALUE;
4465 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4466 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4467 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4468
4469 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4470
4471 default:
4472 break;
4473 }
4474
4475 /* If we haven't been able to figure it out by one of the above rules,
4476 see if some of the high-order bits are known to be zero. If so,
4477 count those bits and return one less than that amount. If we can't
4478 safely compute the mask for this mode, always return BITWIDTH. */
4479
4480 bitwidth = GET_MODE_BITSIZE (mode);
4481 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4482 return 1;
4483
4484 nonzero = nonzero_bits (x, mode);
4485 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4486 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4487 }
4488
4489 /* Calculate the rtx_cost of a single instruction. A return value of
4490 zero indicates an instruction pattern without a known cost. */
4491
4492 int
4493 insn_rtx_cost (rtx pat)
4494 {
4495 int i, cost;
4496 rtx set;
4497
4498 /* Extract the single set rtx from the instruction pattern.
4499 We can't use single_set since we only have the pattern. */
4500 if (GET_CODE (pat) == SET)
4501 set = pat;
4502 else if (GET_CODE (pat) == PARALLEL)
4503 {
4504 set = NULL_RTX;
4505 for (i = 0; i < XVECLEN (pat, 0); i++)
4506 {
4507 rtx x = XVECEXP (pat, 0, i);
4508 if (GET_CODE (x) == SET)
4509 {
4510 if (set)
4511 return 0;
4512 set = x;
4513 }
4514 }
4515 if (!set)
4516 return 0;
4517 }
4518 else
4519 return 0;
4520
4521 cost = rtx_cost (SET_SRC (set), SET);
4522 return cost > 0 ? cost : COSTS_N_INSNS (1);
4523 }
4524
4525 /* Given an insn INSN and condition COND, return the condition in a
4526 canonical form to simplify testing by callers. Specifically:
4527
4528 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4529 (2) Both operands will be machine operands; (cc0) will have been replaced.
4530 (3) If an operand is a constant, it will be the second operand.
4531 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4532 for GE, GEU, and LEU.
4533
4534 If the condition cannot be understood, or is an inequality floating-point
4535 comparison which needs to be reversed, 0 will be returned.
4536
4537 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4538
4539 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4540 insn used in locating the condition was found. If a replacement test
4541 of the condition is desired, it should be placed in front of that
4542 insn and we will be sure that the inputs are still valid.
4543
4544 If WANT_REG is nonzero, we wish the condition to be relative to that
4545 register, if possible. Therefore, do not canonicalize the condition
4546 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4547 to be a compare to a CC mode register.
4548
4549 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4550 and at INSN. */
4551
4552 rtx
4553 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4554 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4555 {
4556 enum rtx_code code;
4557 rtx prev = insn;
4558 const_rtx set;
4559 rtx tem;
4560 rtx op0, op1;
4561 int reverse_code = 0;
4562 enum machine_mode mode;
4563 basic_block bb = BLOCK_FOR_INSN (insn);
4564
4565 code = GET_CODE (cond);
4566 mode = GET_MODE (cond);
4567 op0 = XEXP (cond, 0);
4568 op1 = XEXP (cond, 1);
4569
4570 if (reverse)
4571 code = reversed_comparison_code (cond, insn);
4572 if (code == UNKNOWN)
4573 return 0;
4574
4575 if (earliest)
4576 *earliest = insn;
4577
4578 /* If we are comparing a register with zero, see if the register is set
4579 in the previous insn to a COMPARE or a comparison operation. Perform
4580 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4581 in cse.c */
4582
4583 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4584 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4585 && op1 == CONST0_RTX (GET_MODE (op0))
4586 && op0 != want_reg)
4587 {
4588 /* Set nonzero when we find something of interest. */
4589 rtx x = 0;
4590
4591 #ifdef HAVE_cc0
4592 /* If comparison with cc0, import actual comparison from compare
4593 insn. */
4594 if (op0 == cc0_rtx)
4595 {
4596 if ((prev = prev_nonnote_insn (prev)) == 0
4597 || !NONJUMP_INSN_P (prev)
4598 || (set = single_set (prev)) == 0
4599 || SET_DEST (set) != cc0_rtx)
4600 return 0;
4601
4602 op0 = SET_SRC (set);
4603 op1 = CONST0_RTX (GET_MODE (op0));
4604 if (earliest)
4605 *earliest = prev;
4606 }
4607 #endif
4608
4609 /* If this is a COMPARE, pick up the two things being compared. */
4610 if (GET_CODE (op0) == COMPARE)
4611 {
4612 op1 = XEXP (op0, 1);
4613 op0 = XEXP (op0, 0);
4614 continue;
4615 }
4616 else if (!REG_P (op0))
4617 break;
4618
4619 /* Go back to the previous insn. Stop if it is not an INSN. We also
4620 stop if it isn't a single set or if it has a REG_INC note because
4621 we don't want to bother dealing with it. */
4622
4623 if ((prev = prev_nonnote_insn (prev)) == 0
4624 || !NONJUMP_INSN_P (prev)
4625 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4626 /* In cfglayout mode, there do not have to be labels at the
4627 beginning of a block, or jumps at the end, so the previous
4628 conditions would not stop us when we reach bb boundary. */
4629 || BLOCK_FOR_INSN (prev) != bb)
4630 break;
4631
4632 set = set_of (op0, prev);
4633
4634 if (set
4635 && (GET_CODE (set) != SET
4636 || !rtx_equal_p (SET_DEST (set), op0)))
4637 break;
4638
4639 /* If this is setting OP0, get what it sets it to if it looks
4640 relevant. */
4641 if (set)
4642 {
4643 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4644 #ifdef FLOAT_STORE_FLAG_VALUE
4645 REAL_VALUE_TYPE fsfv;
4646 #endif
4647
4648 /* ??? We may not combine comparisons done in a CCmode with
4649 comparisons not done in a CCmode. This is to aid targets
4650 like Alpha that have an IEEE compliant EQ instruction, and
4651 a non-IEEE compliant BEQ instruction. The use of CCmode is
4652 actually artificial, simply to prevent the combination, but
4653 should not affect other platforms.
4654
4655 However, we must allow VOIDmode comparisons to match either
4656 CCmode or non-CCmode comparison, because some ports have
4657 modeless comparisons inside branch patterns.
4658
4659 ??? This mode check should perhaps look more like the mode check
4660 in simplify_comparison in combine. */
4661
4662 if ((GET_CODE (SET_SRC (set)) == COMPARE
4663 || (((code == NE
4664 || (code == LT
4665 && GET_MODE_CLASS (inner_mode) == MODE_INT
4666 && (GET_MODE_BITSIZE (inner_mode)
4667 <= HOST_BITS_PER_WIDE_INT)
4668 && (STORE_FLAG_VALUE
4669 & ((HOST_WIDE_INT) 1
4670 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4671 #ifdef FLOAT_STORE_FLAG_VALUE
4672 || (code == LT
4673 && SCALAR_FLOAT_MODE_P (inner_mode)
4674 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4675 REAL_VALUE_NEGATIVE (fsfv)))
4676 #endif
4677 ))
4678 && COMPARISON_P (SET_SRC (set))))
4679 && (((GET_MODE_CLASS (mode) == MODE_CC)
4680 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4681 || mode == VOIDmode || inner_mode == VOIDmode))
4682 x = SET_SRC (set);
4683 else if (((code == EQ
4684 || (code == GE
4685 && (GET_MODE_BITSIZE (inner_mode)
4686 <= HOST_BITS_PER_WIDE_INT)
4687 && GET_MODE_CLASS (inner_mode) == MODE_INT
4688 && (STORE_FLAG_VALUE
4689 & ((HOST_WIDE_INT) 1
4690 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4691 #ifdef FLOAT_STORE_FLAG_VALUE
4692 || (code == GE
4693 && SCALAR_FLOAT_MODE_P (inner_mode)
4694 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4695 REAL_VALUE_NEGATIVE (fsfv)))
4696 #endif
4697 ))
4698 && COMPARISON_P (SET_SRC (set))
4699 && (((GET_MODE_CLASS (mode) == MODE_CC)
4700 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4701 || mode == VOIDmode || inner_mode == VOIDmode))
4702
4703 {
4704 reverse_code = 1;
4705 x = SET_SRC (set);
4706 }
4707 else
4708 break;
4709 }
4710
4711 else if (reg_set_p (op0, prev))
4712 /* If this sets OP0, but not directly, we have to give up. */
4713 break;
4714
4715 if (x)
4716 {
4717 /* If the caller is expecting the condition to be valid at INSN,
4718 make sure X doesn't change before INSN. */
4719 if (valid_at_insn_p)
4720 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4721 break;
4722 if (COMPARISON_P (x))
4723 code = GET_CODE (x);
4724 if (reverse_code)
4725 {
4726 code = reversed_comparison_code (x, prev);
4727 if (code == UNKNOWN)
4728 return 0;
4729 reverse_code = 0;
4730 }
4731
4732 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4733 if (earliest)
4734 *earliest = prev;
4735 }
4736 }
4737
4738 /* If constant is first, put it last. */
4739 if (CONSTANT_P (op0))
4740 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4741
4742 /* If OP0 is the result of a comparison, we weren't able to find what
4743 was really being compared, so fail. */
4744 if (!allow_cc_mode
4745 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4746 return 0;
4747
4748 /* Canonicalize any ordered comparison with integers involving equality
4749 if we can do computations in the relevant mode and we do not
4750 overflow. */
4751
4752 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4753 && GET_CODE (op1) == CONST_INT
4754 && GET_MODE (op0) != VOIDmode
4755 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4756 {
4757 HOST_WIDE_INT const_val = INTVAL (op1);
4758 unsigned HOST_WIDE_INT uconst_val = const_val;
4759 unsigned HOST_WIDE_INT max_val
4760 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4761
4762 switch (code)
4763 {
4764 case LE:
4765 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4766 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4767 break;
4768
4769 /* When cross-compiling, const_val might be sign-extended from
4770 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4771 case GE:
4772 if ((HOST_WIDE_INT) (const_val & max_val)
4773 != (((HOST_WIDE_INT) 1
4774 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4775 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4776 break;
4777
4778 case LEU:
4779 if (uconst_val < max_val)
4780 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4781 break;
4782
4783 case GEU:
4784 if (uconst_val != 0)
4785 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4786 break;
4787
4788 default:
4789 break;
4790 }
4791 }
4792
4793 /* Never return CC0; return zero instead. */
4794 if (CC0_P (op0))
4795 return 0;
4796
4797 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4798 }
4799
4800 /* Given a jump insn JUMP, return the condition that will cause it to branch
4801 to its JUMP_LABEL. If the condition cannot be understood, or is an
4802 inequality floating-point comparison which needs to be reversed, 0 will
4803 be returned.
4804
4805 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4806 insn used in locating the condition was found. If a replacement test
4807 of the condition is desired, it should be placed in front of that
4808 insn and we will be sure that the inputs are still valid. If EARLIEST
4809 is null, the returned condition will be valid at INSN.
4810
4811 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4812 compare CC mode register.
4813
4814 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4815
4816 rtx
4817 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4818 {
4819 rtx cond;
4820 int reverse;
4821 rtx set;
4822
4823 /* If this is not a standard conditional jump, we can't parse it. */
4824 if (!JUMP_P (jump)
4825 || ! any_condjump_p (jump))
4826 return 0;
4827 set = pc_set (jump);
4828
4829 cond = XEXP (SET_SRC (set), 0);
4830
4831 /* If this branches to JUMP_LABEL when the condition is false, reverse
4832 the condition. */
4833 reverse
4834 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4835 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4836
4837 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4838 allow_cc_mode, valid_at_insn_p);
4839 }
4840
4841 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4842 TARGET_MODE_REP_EXTENDED.
4843
4844 Note that we assume that the property of
4845 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4846 narrower than mode B. I.e., if A is a mode narrower than B then in
4847 order to be able to operate on it in mode B, mode A needs to
4848 satisfy the requirements set by the representation of mode B. */
4849
4850 static void
4851 init_num_sign_bit_copies_in_rep (void)
4852 {
4853 enum machine_mode mode, in_mode;
4854
4855 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4856 in_mode = GET_MODE_WIDER_MODE (mode))
4857 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4858 mode = GET_MODE_WIDER_MODE (mode))
4859 {
4860 enum machine_mode i;
4861
4862 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4863 extends to the next widest mode. */
4864 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4865 || GET_MODE_WIDER_MODE (mode) == in_mode);
4866
4867 /* We are in in_mode. Count how many bits outside of mode
4868 have to be copies of the sign-bit. */
4869 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4870 {
4871 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4872
4873 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4874 /* We can only check sign-bit copies starting from the
4875 top-bit. In order to be able to check the bits we
4876 have already seen we pretend that subsequent bits
4877 have to be sign-bit copies too. */
4878 || num_sign_bit_copies_in_rep [in_mode][mode])
4879 num_sign_bit_copies_in_rep [in_mode][mode]
4880 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4881 }
4882 }
4883 }
4884
4885 /* Suppose that truncation from the machine mode of X to MODE is not a
4886 no-op. See if there is anything special about X so that we can
4887 assume it already contains a truncated value of MODE. */
4888
4889 bool
4890 truncated_to_mode (enum machine_mode mode, const_rtx x)
4891 {
4892 /* This register has already been used in MODE without explicit
4893 truncation. */
4894 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4895 return true;
4896
4897 /* See if we already satisfy the requirements of MODE. If yes we
4898 can just switch to MODE. */
4899 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4900 && (num_sign_bit_copies (x, GET_MODE (x))
4901 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4902 return true;
4903
4904 return false;
4905 }
4906 \f
4907 /* Initialize non_rtx_starting_operands, which is used to speed up
4908 for_each_rtx. */
4909 void
4910 init_rtlanal (void)
4911 {
4912 int i;
4913 for (i = 0; i < NUM_RTX_CODE; i++)
4914 {
4915 const char *format = GET_RTX_FORMAT (i);
4916 const char *first = strpbrk (format, "eEV");
4917 non_rtx_starting_operands[i] = first ? first - format : -1;
4918 }
4919
4920 init_num_sign_bit_copies_in_rep ();
4921 }
4922 \f
4923 /* Check whether this is a constant pool constant. */
4924 bool
4925 constant_pool_constant_p (rtx x)
4926 {
4927 x = avoid_constant_pool_reference (x);
4928 return GET_CODE (x) == CONST_DOUBLE;
4929 }
4930