ra-conflict.c: New file.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007 Free Software
4 Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Information about a subreg of a hard register. */
43 struct subreg_info
44 {
45 /* Offset of first hard register involved in the subreg. */
46 int offset;
47 /* Number of hard registers involved in the subreg. */
48 int nregs;
49 /* Whether this subreg can be represented as a hard reg with the new
50 mode. */
51 bool representable_p;
52 };
53
54 /* Forward declarations */
55 static void set_of_1 (rtx, const_rtx, void *);
56 static bool covers_regno_p (const_rtx, unsigned int);
57 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
58 static int rtx_referenced_p_1 (rtx *, void *);
59 static int computed_jump_p_1 (const_rtx);
60 static void parms_set (rtx, const_rtx, void *);
61 static void subreg_get_info (unsigned int, enum machine_mode,
62 unsigned int, enum machine_mode,
63 struct subreg_info *);
64
65 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
66 const_rtx, enum machine_mode,
67 unsigned HOST_WIDE_INT);
68 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
69 const_rtx, enum machine_mode,
70 unsigned HOST_WIDE_INT);
71 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
72 enum machine_mode,
73 unsigned int);
74 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
75 enum machine_mode, unsigned int);
76
77 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
78 -1 if a code has no such operand. */
79 static int non_rtx_starting_operands[NUM_RTX_CODE];
80
81 /* Bit flags that specify the machine subtype we are compiling for.
82 Bits are tested using macros TARGET_... defined in the tm.h file
83 and set by `-m...' switches. Must be defined in rtlanal.c. */
84
85 int target_flags;
86
87 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
88 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
89 SIGN_EXTEND then while narrowing we also have to enforce the
90 representation and sign-extend the value to mode DESTINATION_REP.
91
92 If the value is already sign-extended to DESTINATION_REP mode we
93 can just switch to DESTINATION mode on it. For each pair of
94 integral modes SOURCE and DESTINATION, when truncating from SOURCE
95 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
96 contains the number of high-order bits in SOURCE that have to be
97 copies of the sign-bit so that we can do this mode-switch to
98 DESTINATION. */
99
100 static unsigned int
101 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
102 \f
103 /* Return 1 if the value of X is unstable
104 (would be different at a different point in the program).
105 The frame pointer, arg pointer, etc. are considered stable
106 (within one function) and so is anything marked `unchanging'. */
107
108 int
109 rtx_unstable_p (const_rtx x)
110 {
111 const RTX_CODE code = GET_CODE (x);
112 int i;
113 const char *fmt;
114
115 switch (code)
116 {
117 case MEM:
118 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
119
120 case CONST:
121 case CONST_INT:
122 case CONST_DOUBLE:
123 case CONST_FIXED:
124 case CONST_VECTOR:
125 case SYMBOL_REF:
126 case LABEL_REF:
127 return 0;
128
129 case REG:
130 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
131 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
132 /* The arg pointer varies if it is not a fixed register. */
133 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
134 return 0;
135 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
136 /* ??? When call-clobbered, the value is stable modulo the restore
137 that must happen after a call. This currently screws up local-alloc
138 into believing that the restore is not needed. */
139 if (x == pic_offset_table_rtx)
140 return 0;
141 #endif
142 return 1;
143
144 case ASM_OPERANDS:
145 if (MEM_VOLATILE_P (x))
146 return 1;
147
148 /* Fall through. */
149
150 default:
151 break;
152 }
153
154 fmt = GET_RTX_FORMAT (code);
155 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
156 if (fmt[i] == 'e')
157 {
158 if (rtx_unstable_p (XEXP (x, i)))
159 return 1;
160 }
161 else if (fmt[i] == 'E')
162 {
163 int j;
164 for (j = 0; j < XVECLEN (x, i); j++)
165 if (rtx_unstable_p (XVECEXP (x, i, j)))
166 return 1;
167 }
168
169 return 0;
170 }
171
172 /* Return 1 if X has a value that can vary even between two
173 executions of the program. 0 means X can be compared reliably
174 against certain constants or near-constants.
175 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
176 zero, we are slightly more conservative.
177 The frame pointer and the arg pointer are considered constant. */
178
179 bool
180 rtx_varies_p (const_rtx x, bool for_alias)
181 {
182 RTX_CODE code;
183 int i;
184 const char *fmt;
185
186 if (!x)
187 return 0;
188
189 code = GET_CODE (x);
190 switch (code)
191 {
192 case MEM:
193 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
194
195 case CONST:
196 case CONST_INT:
197 case CONST_DOUBLE:
198 case CONST_FIXED:
199 case CONST_VECTOR:
200 case SYMBOL_REF:
201 case LABEL_REF:
202 return 0;
203
204 case REG:
205 /* Note that we have to test for the actual rtx used for the frame
206 and arg pointers and not just the register number in case we have
207 eliminated the frame and/or arg pointer and are using it
208 for pseudos. */
209 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
210 /* The arg pointer varies if it is not a fixed register. */
211 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
212 return 0;
213 if (x == pic_offset_table_rtx
214 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
215 /* ??? When call-clobbered, the value is stable modulo the restore
216 that must happen after a call. This currently screws up
217 local-alloc into believing that the restore is not needed, so we
218 must return 0 only if we are called from alias analysis. */
219 && for_alias
220 #endif
221 )
222 return 0;
223 return 1;
224
225 case LO_SUM:
226 /* The operand 0 of a LO_SUM is considered constant
227 (in fact it is related specifically to operand 1)
228 during alias analysis. */
229 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
230 || rtx_varies_p (XEXP (x, 1), for_alias);
231
232 case ASM_OPERANDS:
233 if (MEM_VOLATILE_P (x))
234 return 1;
235
236 /* Fall through. */
237
238 default:
239 break;
240 }
241
242 fmt = GET_RTX_FORMAT (code);
243 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
244 if (fmt[i] == 'e')
245 {
246 if (rtx_varies_p (XEXP (x, i), for_alias))
247 return 1;
248 }
249 else if (fmt[i] == 'E')
250 {
251 int j;
252 for (j = 0; j < XVECLEN (x, i); j++)
253 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
254 return 1;
255 }
256
257 return 0;
258 }
259
260 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
261 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
262 whether nonzero is returned for unaligned memory accesses on strict
263 alignment machines. */
264
265 static int
266 rtx_addr_can_trap_p_1 (const_rtx x, enum machine_mode mode, bool unaligned_mems)
267 {
268 enum rtx_code code = GET_CODE (x);
269
270 switch (code)
271 {
272 case SYMBOL_REF:
273 return SYMBOL_REF_WEAK (x);
274
275 case LABEL_REF:
276 return 0;
277
278 case REG:
279 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
280 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
281 || x == stack_pointer_rtx
282 /* The arg pointer varies if it is not a fixed register. */
283 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
284 return 0;
285 /* All of the virtual frame registers are stack references. */
286 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
287 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
288 return 0;
289 return 1;
290
291 case CONST:
292 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
293
294 case PLUS:
295 /* An address is assumed not to trap if:
296 - it is an address that can't trap plus a constant integer,
297 with the proper remainder modulo the mode size if we are
298 considering unaligned memory references. */
299 if (!rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems)
300 && GET_CODE (XEXP (x, 1)) == CONST_INT)
301 {
302 HOST_WIDE_INT offset;
303
304 if (!STRICT_ALIGNMENT
305 || !unaligned_mems
306 || GET_MODE_SIZE (mode) == 0)
307 return 0;
308
309 offset = INTVAL (XEXP (x, 1));
310
311 #ifdef SPARC_STACK_BOUNDARY_HACK
312 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
313 the real alignment of %sp. However, when it does this, the
314 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
315 if (SPARC_STACK_BOUNDARY_HACK
316 && (XEXP (x, 0) == stack_pointer_rtx
317 || XEXP (x, 0) == hard_frame_pointer_rtx))
318 offset -= STACK_POINTER_OFFSET;
319 #endif
320
321 return offset % GET_MODE_SIZE (mode) != 0;
322 }
323
324 /* - or it is the pic register plus a constant. */
325 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
326 return 0;
327
328 return 1;
329
330 case LO_SUM:
331 case PRE_MODIFY:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 1), mode, unaligned_mems);
333
334 case PRE_DEC:
335 case PRE_INC:
336 case POST_DEC:
337 case POST_INC:
338 case POST_MODIFY:
339 return rtx_addr_can_trap_p_1 (XEXP (x, 0), mode, unaligned_mems);
340
341 default:
342 break;
343 }
344
345 /* If it isn't one of the case above, it can cause a trap. */
346 return 1;
347 }
348
349 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
350
351 int
352 rtx_addr_can_trap_p (const_rtx x)
353 {
354 return rtx_addr_can_trap_p_1 (x, VOIDmode, false);
355 }
356
357 /* Return true if X is an address that is known to not be zero. */
358
359 bool
360 nonzero_address_p (const_rtx x)
361 {
362 const enum rtx_code code = GET_CODE (x);
363
364 switch (code)
365 {
366 case SYMBOL_REF:
367 return !SYMBOL_REF_WEAK (x);
368
369 case LABEL_REF:
370 return true;
371
372 case REG:
373 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
374 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
375 || x == stack_pointer_rtx
376 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
377 return true;
378 /* All of the virtual frame registers are stack references. */
379 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
380 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
381 return true;
382 return false;
383
384 case CONST:
385 return nonzero_address_p (XEXP (x, 0));
386
387 case PLUS:
388 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
389 return nonzero_address_p (XEXP (x, 0));
390 /* Handle PIC references. */
391 else if (XEXP (x, 0) == pic_offset_table_rtx
392 && CONSTANT_P (XEXP (x, 1)))
393 return true;
394 return false;
395
396 case PRE_MODIFY:
397 /* Similar to the above; allow positive offsets. Further, since
398 auto-inc is only allowed in memories, the register must be a
399 pointer. */
400 if (GET_CODE (XEXP (x, 1)) == CONST_INT
401 && INTVAL (XEXP (x, 1)) > 0)
402 return true;
403 return nonzero_address_p (XEXP (x, 0));
404
405 case PRE_INC:
406 /* Similarly. Further, the offset is always positive. */
407 return true;
408
409 case PRE_DEC:
410 case POST_DEC:
411 case POST_INC:
412 case POST_MODIFY:
413 return nonzero_address_p (XEXP (x, 0));
414
415 case LO_SUM:
416 return nonzero_address_p (XEXP (x, 1));
417
418 default:
419 break;
420 }
421
422 /* If it isn't one of the case above, might be zero. */
423 return false;
424 }
425
426 /* Return 1 if X refers to a memory location whose address
427 cannot be compared reliably with constant addresses,
428 or if X refers to a BLKmode memory object.
429 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
430 zero, we are slightly more conservative. */
431
432 bool
433 rtx_addr_varies_p (const_rtx x, bool for_alias)
434 {
435 enum rtx_code code;
436 int i;
437 const char *fmt;
438
439 if (x == 0)
440 return 0;
441
442 code = GET_CODE (x);
443 if (code == MEM)
444 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
445
446 fmt = GET_RTX_FORMAT (code);
447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
448 if (fmt[i] == 'e')
449 {
450 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
451 return 1;
452 }
453 else if (fmt[i] == 'E')
454 {
455 int j;
456 for (j = 0; j < XVECLEN (x, i); j++)
457 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
458 return 1;
459 }
460 return 0;
461 }
462 \f
463 /* Return the value of the integer term in X, if one is apparent;
464 otherwise return 0.
465 Only obvious integer terms are detected.
466 This is used in cse.c with the `related_value' field. */
467
468 HOST_WIDE_INT
469 get_integer_term (const_rtx x)
470 {
471 if (GET_CODE (x) == CONST)
472 x = XEXP (x, 0);
473
474 if (GET_CODE (x) == MINUS
475 && GET_CODE (XEXP (x, 1)) == CONST_INT)
476 return - INTVAL (XEXP (x, 1));
477 if (GET_CODE (x) == PLUS
478 && GET_CODE (XEXP (x, 1)) == CONST_INT)
479 return INTVAL (XEXP (x, 1));
480 return 0;
481 }
482
483 /* If X is a constant, return the value sans apparent integer term;
484 otherwise return 0.
485 Only obvious integer terms are detected. */
486
487 rtx
488 get_related_value (const_rtx x)
489 {
490 if (GET_CODE (x) != CONST)
491 return 0;
492 x = XEXP (x, 0);
493 if (GET_CODE (x) == PLUS
494 && GET_CODE (XEXP (x, 1)) == CONST_INT)
495 return XEXP (x, 0);
496 else if (GET_CODE (x) == MINUS
497 && GET_CODE (XEXP (x, 1)) == CONST_INT)
498 return XEXP (x, 0);
499 return 0;
500 }
501 \f
502 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
503 to somewhere in the same object or object_block as SYMBOL. */
504
505 bool
506 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
507 {
508 tree decl;
509
510 if (GET_CODE (symbol) != SYMBOL_REF)
511 return false;
512
513 if (offset == 0)
514 return true;
515
516 if (offset > 0)
517 {
518 if (CONSTANT_POOL_ADDRESS_P (symbol)
519 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
520 return true;
521
522 decl = SYMBOL_REF_DECL (symbol);
523 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
524 return true;
525 }
526
527 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
528 && SYMBOL_REF_BLOCK (symbol)
529 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
530 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
531 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
532 return true;
533
534 return false;
535 }
536
537 /* Split X into a base and a constant offset, storing them in *BASE_OUT
538 and *OFFSET_OUT respectively. */
539
540 void
541 split_const (rtx x, rtx *base_out, rtx *offset_out)
542 {
543 if (GET_CODE (x) == CONST)
544 {
545 x = XEXP (x, 0);
546 if (GET_CODE (x) == PLUS && GET_CODE (XEXP (x, 1)) == CONST_INT)
547 {
548 *base_out = XEXP (x, 0);
549 *offset_out = XEXP (x, 1);
550 return;
551 }
552 }
553 *base_out = x;
554 *offset_out = const0_rtx;
555 }
556 \f
557 /* Return the number of places FIND appears within X. If COUNT_DEST is
558 zero, we do not count occurrences inside the destination of a SET. */
559
560 int
561 count_occurrences (const_rtx x, const_rtx find, int count_dest)
562 {
563 int i, j;
564 enum rtx_code code;
565 const char *format_ptr;
566 int count;
567
568 if (x == find)
569 return 1;
570
571 code = GET_CODE (x);
572
573 switch (code)
574 {
575 case REG:
576 case CONST_INT:
577 case CONST_DOUBLE:
578 case CONST_FIXED:
579 case CONST_VECTOR:
580 case SYMBOL_REF:
581 case CODE_LABEL:
582 case PC:
583 case CC0:
584 return 0;
585
586 case EXPR_LIST:
587 count = count_occurrences (XEXP (x, 0), find, count_dest);
588 if (XEXP (x, 1))
589 count += count_occurrences (XEXP (x, 1), find, count_dest);
590 return count;
591
592 case MEM:
593 if (MEM_P (find) && rtx_equal_p (x, find))
594 return 1;
595 break;
596
597 case SET:
598 if (SET_DEST (x) == find && ! count_dest)
599 return count_occurrences (SET_SRC (x), find, count_dest);
600 break;
601
602 default:
603 break;
604 }
605
606 format_ptr = GET_RTX_FORMAT (code);
607 count = 0;
608
609 for (i = 0; i < GET_RTX_LENGTH (code); i++)
610 {
611 switch (*format_ptr++)
612 {
613 case 'e':
614 count += count_occurrences (XEXP (x, i), find, count_dest);
615 break;
616
617 case 'E':
618 for (j = 0; j < XVECLEN (x, i); j++)
619 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
620 break;
621 }
622 }
623 return count;
624 }
625
626 \f
627 /* Nonzero if register REG appears somewhere within IN.
628 Also works if REG is not a register; in this case it checks
629 for a subexpression of IN that is Lisp "equal" to REG. */
630
631 int
632 reg_mentioned_p (const_rtx reg, const_rtx in)
633 {
634 const char *fmt;
635 int i;
636 enum rtx_code code;
637
638 if (in == 0)
639 return 0;
640
641 if (reg == in)
642 return 1;
643
644 if (GET_CODE (in) == LABEL_REF)
645 return reg == XEXP (in, 0);
646
647 code = GET_CODE (in);
648
649 switch (code)
650 {
651 /* Compare registers by number. */
652 case REG:
653 return REG_P (reg) && REGNO (in) == REGNO (reg);
654
655 /* These codes have no constituent expressions
656 and are unique. */
657 case SCRATCH:
658 case CC0:
659 case PC:
660 return 0;
661
662 case CONST_INT:
663 case CONST_VECTOR:
664 case CONST_DOUBLE:
665 case CONST_FIXED:
666 /* These are kept unique for a given value. */
667 return 0;
668
669 default:
670 break;
671 }
672
673 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
674 return 1;
675
676 fmt = GET_RTX_FORMAT (code);
677
678 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
679 {
680 if (fmt[i] == 'E')
681 {
682 int j;
683 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
684 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
685 return 1;
686 }
687 else if (fmt[i] == 'e'
688 && reg_mentioned_p (reg, XEXP (in, i)))
689 return 1;
690 }
691 return 0;
692 }
693 \f
694 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
695 no CODE_LABEL insn. */
696
697 int
698 no_labels_between_p (const_rtx beg, const_rtx end)
699 {
700 rtx p;
701 if (beg == end)
702 return 0;
703 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
704 if (LABEL_P (p))
705 return 0;
706 return 1;
707 }
708
709 /* Nonzero if register REG is used in an insn between
710 FROM_INSN and TO_INSN (exclusive of those two). */
711
712 int
713 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
714 {
715 rtx insn;
716
717 if (from_insn == to_insn)
718 return 0;
719
720 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
721 if (INSN_P (insn)
722 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
723 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
724 return 1;
725 return 0;
726 }
727 \f
728 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
729 is entirely replaced by a new value and the only use is as a SET_DEST,
730 we do not consider it a reference. */
731
732 int
733 reg_referenced_p (const_rtx x, const_rtx body)
734 {
735 int i;
736
737 switch (GET_CODE (body))
738 {
739 case SET:
740 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
741 return 1;
742
743 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
744 of a REG that occupies all of the REG, the insn references X if
745 it is mentioned in the destination. */
746 if (GET_CODE (SET_DEST (body)) != CC0
747 && GET_CODE (SET_DEST (body)) != PC
748 && !REG_P (SET_DEST (body))
749 && ! (GET_CODE (SET_DEST (body)) == SUBREG
750 && REG_P (SUBREG_REG (SET_DEST (body)))
751 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
752 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
753 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
754 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
755 && reg_overlap_mentioned_p (x, SET_DEST (body)))
756 return 1;
757 return 0;
758
759 case ASM_OPERANDS:
760 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
761 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
762 return 1;
763 return 0;
764
765 case CALL:
766 case USE:
767 case IF_THEN_ELSE:
768 return reg_overlap_mentioned_p (x, body);
769
770 case TRAP_IF:
771 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
772
773 case PREFETCH:
774 return reg_overlap_mentioned_p (x, XEXP (body, 0));
775
776 case UNSPEC:
777 case UNSPEC_VOLATILE:
778 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
779 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
780 return 1;
781 return 0;
782
783 case PARALLEL:
784 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
785 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
786 return 1;
787 return 0;
788
789 case CLOBBER:
790 if (MEM_P (XEXP (body, 0)))
791 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
792 return 1;
793 return 0;
794
795 case COND_EXEC:
796 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
797 return 1;
798 return reg_referenced_p (x, COND_EXEC_CODE (body));
799
800 default:
801 return 0;
802 }
803 }
804 \f
805 /* Nonzero if register REG is set or clobbered in an insn between
806 FROM_INSN and TO_INSN (exclusive of those two). */
807
808 int
809 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
810 {
811 const_rtx insn;
812
813 if (from_insn == to_insn)
814 return 0;
815
816 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
817 if (INSN_P (insn) && reg_set_p (reg, insn))
818 return 1;
819 return 0;
820 }
821
822 /* Internals of reg_set_between_p. */
823 int
824 reg_set_p (const_rtx reg, const_rtx insn)
825 {
826 /* We can be passed an insn or part of one. If we are passed an insn,
827 check if a side-effect of the insn clobbers REG. */
828 if (INSN_P (insn)
829 && (FIND_REG_INC_NOTE (insn, reg)
830 || (CALL_P (insn)
831 && ((REG_P (reg)
832 && REGNO (reg) < FIRST_PSEUDO_REGISTER
833 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
834 GET_MODE (reg), REGNO (reg)))
835 || MEM_P (reg)
836 || find_reg_fusage (insn, CLOBBER, reg)))))
837 return 1;
838
839 return set_of (reg, insn) != NULL_RTX;
840 }
841
842 /* Similar to reg_set_between_p, but check all registers in X. Return 0
843 only if none of them are modified between START and END. Return 1 if
844 X contains a MEM; this routine does usememory aliasing. */
845
846 int
847 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
848 {
849 const enum rtx_code code = GET_CODE (x);
850 const char *fmt;
851 int i, j;
852 rtx insn;
853
854 if (start == end)
855 return 0;
856
857 switch (code)
858 {
859 case CONST_INT:
860 case CONST_DOUBLE:
861 case CONST_FIXED:
862 case CONST_VECTOR:
863 case CONST:
864 case SYMBOL_REF:
865 case LABEL_REF:
866 return 0;
867
868 case PC:
869 case CC0:
870 return 1;
871
872 case MEM:
873 if (modified_between_p (XEXP (x, 0), start, end))
874 return 1;
875 if (MEM_READONLY_P (x))
876 return 0;
877 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
878 if (memory_modified_in_insn_p (x, insn))
879 return 1;
880 return 0;
881 break;
882
883 case REG:
884 return reg_set_between_p (x, start, end);
885
886 default:
887 break;
888 }
889
890 fmt = GET_RTX_FORMAT (code);
891 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
892 {
893 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
894 return 1;
895
896 else if (fmt[i] == 'E')
897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
898 if (modified_between_p (XVECEXP (x, i, j), start, end))
899 return 1;
900 }
901
902 return 0;
903 }
904
905 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
906 of them are modified in INSN. Return 1 if X contains a MEM; this routine
907 does use memory aliasing. */
908
909 int
910 modified_in_p (const_rtx x, const_rtx insn)
911 {
912 const enum rtx_code code = GET_CODE (x);
913 const char *fmt;
914 int i, j;
915
916 switch (code)
917 {
918 case CONST_INT:
919 case CONST_DOUBLE:
920 case CONST_FIXED:
921 case CONST_VECTOR:
922 case CONST:
923 case SYMBOL_REF:
924 case LABEL_REF:
925 return 0;
926
927 case PC:
928 case CC0:
929 return 1;
930
931 case MEM:
932 if (modified_in_p (XEXP (x, 0), insn))
933 return 1;
934 if (MEM_READONLY_P (x))
935 return 0;
936 if (memory_modified_in_insn_p (x, insn))
937 return 1;
938 return 0;
939 break;
940
941 case REG:
942 return reg_set_p (x, insn);
943
944 default:
945 break;
946 }
947
948 fmt = GET_RTX_FORMAT (code);
949 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
950 {
951 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
952 return 1;
953
954 else if (fmt[i] == 'E')
955 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
956 if (modified_in_p (XVECEXP (x, i, j), insn))
957 return 1;
958 }
959
960 return 0;
961 }
962 \f
963 /* Helper function for set_of. */
964 struct set_of_data
965 {
966 const_rtx found;
967 const_rtx pat;
968 };
969
970 static void
971 set_of_1 (rtx x, const_rtx pat, void *data1)
972 {
973 struct set_of_data *const data = (struct set_of_data *) (data1);
974 if (rtx_equal_p (x, data->pat)
975 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
976 data->found = pat;
977 }
978
979 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
980 (either directly or via STRICT_LOW_PART and similar modifiers). */
981 const_rtx
982 set_of (const_rtx pat, const_rtx insn)
983 {
984 struct set_of_data data;
985 data.found = NULL_RTX;
986 data.pat = pat;
987 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
988 return data.found;
989 }
990 \f
991 /* Given an INSN, return a SET expression if this insn has only a single SET.
992 It may also have CLOBBERs, USEs, or SET whose output
993 will not be used, which we ignore. */
994
995 rtx
996 single_set_2 (const_rtx insn, const_rtx pat)
997 {
998 rtx set = NULL;
999 int set_verified = 1;
1000 int i;
1001
1002 if (GET_CODE (pat) == PARALLEL)
1003 {
1004 for (i = 0; i < XVECLEN (pat, 0); i++)
1005 {
1006 rtx sub = XVECEXP (pat, 0, i);
1007 switch (GET_CODE (sub))
1008 {
1009 case USE:
1010 case CLOBBER:
1011 break;
1012
1013 case SET:
1014 /* We can consider insns having multiple sets, where all
1015 but one are dead as single set insns. In common case
1016 only single set is present in the pattern so we want
1017 to avoid checking for REG_UNUSED notes unless necessary.
1018
1019 When we reach set first time, we just expect this is
1020 the single set we are looking for and only when more
1021 sets are found in the insn, we check them. */
1022 if (!set_verified)
1023 {
1024 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1025 && !side_effects_p (set))
1026 set = NULL;
1027 else
1028 set_verified = 1;
1029 }
1030 if (!set)
1031 set = sub, set_verified = 0;
1032 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1033 || side_effects_p (sub))
1034 return NULL_RTX;
1035 break;
1036
1037 default:
1038 return NULL_RTX;
1039 }
1040 }
1041 }
1042 return set;
1043 }
1044
1045 /* Given an INSN, return nonzero if it has more than one SET, else return
1046 zero. */
1047
1048 int
1049 multiple_sets (const_rtx insn)
1050 {
1051 int found;
1052 int i;
1053
1054 /* INSN must be an insn. */
1055 if (! INSN_P (insn))
1056 return 0;
1057
1058 /* Only a PARALLEL can have multiple SETs. */
1059 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1060 {
1061 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1062 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1063 {
1064 /* If we have already found a SET, then return now. */
1065 if (found)
1066 return 1;
1067 else
1068 found = 1;
1069 }
1070 }
1071
1072 /* Either zero or one SET. */
1073 return 0;
1074 }
1075 \f
1076 /* Return nonzero if the destination of SET equals the source
1077 and there are no side effects. */
1078
1079 int
1080 set_noop_p (const_rtx set)
1081 {
1082 rtx src = SET_SRC (set);
1083 rtx dst = SET_DEST (set);
1084
1085 if (dst == pc_rtx && src == pc_rtx)
1086 return 1;
1087
1088 if (MEM_P (dst) && MEM_P (src))
1089 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1090
1091 if (GET_CODE (dst) == ZERO_EXTRACT)
1092 return rtx_equal_p (XEXP (dst, 0), src)
1093 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1094 && !side_effects_p (src);
1095
1096 if (GET_CODE (dst) == STRICT_LOW_PART)
1097 dst = XEXP (dst, 0);
1098
1099 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1100 {
1101 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1102 return 0;
1103 src = SUBREG_REG (src);
1104 dst = SUBREG_REG (dst);
1105 }
1106
1107 return (REG_P (src) && REG_P (dst)
1108 && REGNO (src) == REGNO (dst));
1109 }
1110 \f
1111 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1112 value to itself. */
1113
1114 int
1115 noop_move_p (const_rtx insn)
1116 {
1117 rtx pat = PATTERN (insn);
1118
1119 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1120 return 1;
1121
1122 /* Insns carrying these notes are useful later on. */
1123 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1124 return 0;
1125
1126 /* For now treat an insn with a REG_RETVAL note as a
1127 a special insn which should not be considered a no-op. */
1128 if (find_reg_note (insn, REG_RETVAL, NULL_RTX))
1129 return 0;
1130
1131 if (GET_CODE (pat) == SET && set_noop_p (pat))
1132 return 1;
1133
1134 if (GET_CODE (pat) == PARALLEL)
1135 {
1136 int i;
1137 /* If nothing but SETs of registers to themselves,
1138 this insn can also be deleted. */
1139 for (i = 0; i < XVECLEN (pat, 0); i++)
1140 {
1141 rtx tem = XVECEXP (pat, 0, i);
1142
1143 if (GET_CODE (tem) == USE
1144 || GET_CODE (tem) == CLOBBER)
1145 continue;
1146
1147 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1148 return 0;
1149 }
1150
1151 return 1;
1152 }
1153 return 0;
1154 }
1155 \f
1156
1157 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1158 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1159 If the object was modified, if we hit a partial assignment to X, or hit a
1160 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1161 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1162 be the src. */
1163
1164 rtx
1165 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1166 {
1167 rtx p;
1168
1169 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1170 p = PREV_INSN (p))
1171 if (INSN_P (p))
1172 {
1173 rtx set = single_set (p);
1174 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1175
1176 if (set && rtx_equal_p (x, SET_DEST (set)))
1177 {
1178 rtx src = SET_SRC (set);
1179
1180 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1181 src = XEXP (note, 0);
1182
1183 if ((valid_to == NULL_RTX
1184 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1185 /* Reject hard registers because we don't usually want
1186 to use them; we'd rather use a pseudo. */
1187 && (! (REG_P (src)
1188 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1189 {
1190 *pinsn = p;
1191 return src;
1192 }
1193 }
1194
1195 /* If set in non-simple way, we don't have a value. */
1196 if (reg_set_p (x, p))
1197 break;
1198 }
1199
1200 return x;
1201 }
1202 \f
1203 /* Return nonzero if register in range [REGNO, ENDREGNO)
1204 appears either explicitly or implicitly in X
1205 other than being stored into.
1206
1207 References contained within the substructure at LOC do not count.
1208 LOC may be zero, meaning don't ignore anything. */
1209
1210 int
1211 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1212 rtx *loc)
1213 {
1214 int i;
1215 unsigned int x_regno;
1216 RTX_CODE code;
1217 const char *fmt;
1218
1219 repeat:
1220 /* The contents of a REG_NONNEG note is always zero, so we must come here
1221 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1222 if (x == 0)
1223 return 0;
1224
1225 code = GET_CODE (x);
1226
1227 switch (code)
1228 {
1229 case REG:
1230 x_regno = REGNO (x);
1231
1232 /* If we modifying the stack, frame, or argument pointer, it will
1233 clobber a virtual register. In fact, we could be more precise,
1234 but it isn't worth it. */
1235 if ((x_regno == STACK_POINTER_REGNUM
1236 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1237 || x_regno == ARG_POINTER_REGNUM
1238 #endif
1239 || x_regno == FRAME_POINTER_REGNUM)
1240 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1241 return 1;
1242
1243 return endregno > x_regno && regno < END_REGNO (x);
1244
1245 case SUBREG:
1246 /* If this is a SUBREG of a hard reg, we can see exactly which
1247 registers are being modified. Otherwise, handle normally. */
1248 if (REG_P (SUBREG_REG (x))
1249 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1250 {
1251 unsigned int inner_regno = subreg_regno (x);
1252 unsigned int inner_endregno
1253 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1254 ? subreg_nregs (x) : 1);
1255
1256 return endregno > inner_regno && regno < inner_endregno;
1257 }
1258 break;
1259
1260 case CLOBBER:
1261 case SET:
1262 if (&SET_DEST (x) != loc
1263 /* Note setting a SUBREG counts as referring to the REG it is in for
1264 a pseudo but not for hard registers since we can
1265 treat each word individually. */
1266 && ((GET_CODE (SET_DEST (x)) == SUBREG
1267 && loc != &SUBREG_REG (SET_DEST (x))
1268 && REG_P (SUBREG_REG (SET_DEST (x)))
1269 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1270 && refers_to_regno_p (regno, endregno,
1271 SUBREG_REG (SET_DEST (x)), loc))
1272 || (!REG_P (SET_DEST (x))
1273 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1274 return 1;
1275
1276 if (code == CLOBBER || loc == &SET_SRC (x))
1277 return 0;
1278 x = SET_SRC (x);
1279 goto repeat;
1280
1281 default:
1282 break;
1283 }
1284
1285 /* X does not match, so try its subexpressions. */
1286
1287 fmt = GET_RTX_FORMAT (code);
1288 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1289 {
1290 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1291 {
1292 if (i == 0)
1293 {
1294 x = XEXP (x, 0);
1295 goto repeat;
1296 }
1297 else
1298 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1299 return 1;
1300 }
1301 else if (fmt[i] == 'E')
1302 {
1303 int j;
1304 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1305 if (loc != &XVECEXP (x, i, j)
1306 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1307 return 1;
1308 }
1309 }
1310 return 0;
1311 }
1312
1313 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1314 we check if any register number in X conflicts with the relevant register
1315 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1316 contains a MEM (we don't bother checking for memory addresses that can't
1317 conflict because we expect this to be a rare case. */
1318
1319 int
1320 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1321 {
1322 unsigned int regno, endregno;
1323
1324 /* If either argument is a constant, then modifying X can not
1325 affect IN. Here we look at IN, we can profitably combine
1326 CONSTANT_P (x) with the switch statement below. */
1327 if (CONSTANT_P (in))
1328 return 0;
1329
1330 recurse:
1331 switch (GET_CODE (x))
1332 {
1333 case STRICT_LOW_PART:
1334 case ZERO_EXTRACT:
1335 case SIGN_EXTRACT:
1336 /* Overly conservative. */
1337 x = XEXP (x, 0);
1338 goto recurse;
1339
1340 case SUBREG:
1341 regno = REGNO (SUBREG_REG (x));
1342 if (regno < FIRST_PSEUDO_REGISTER)
1343 regno = subreg_regno (x);
1344 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1345 ? subreg_nregs (x) : 1);
1346 goto do_reg;
1347
1348 case REG:
1349 regno = REGNO (x);
1350 endregno = END_REGNO (x);
1351 do_reg:
1352 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1353
1354 case MEM:
1355 {
1356 const char *fmt;
1357 int i;
1358
1359 if (MEM_P (in))
1360 return 1;
1361
1362 fmt = GET_RTX_FORMAT (GET_CODE (in));
1363 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1364 if (fmt[i] == 'e')
1365 {
1366 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1367 return 1;
1368 }
1369 else if (fmt[i] == 'E')
1370 {
1371 int j;
1372 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1373 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1374 return 1;
1375 }
1376
1377 return 0;
1378 }
1379
1380 case SCRATCH:
1381 case PC:
1382 case CC0:
1383 return reg_mentioned_p (x, in);
1384
1385 case PARALLEL:
1386 {
1387 int i;
1388
1389 /* If any register in here refers to it we return true. */
1390 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1391 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1392 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1393 return 1;
1394 return 0;
1395 }
1396
1397 default:
1398 gcc_assert (CONSTANT_P (x));
1399 return 0;
1400 }
1401 }
1402 \f
1403 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1404 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1405 ignored by note_stores, but passed to FUN.
1406
1407 FUN receives three arguments:
1408 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1409 2. the SET or CLOBBER rtx that does the store,
1410 3. the pointer DATA provided to note_stores.
1411
1412 If the item being stored in or clobbered is a SUBREG of a hard register,
1413 the SUBREG will be passed. */
1414
1415 void
1416 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1417 {
1418 int i;
1419
1420 if (GET_CODE (x) == COND_EXEC)
1421 x = COND_EXEC_CODE (x);
1422
1423 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1424 {
1425 rtx dest = SET_DEST (x);
1426
1427 while ((GET_CODE (dest) == SUBREG
1428 && (!REG_P (SUBREG_REG (dest))
1429 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1430 || GET_CODE (dest) == ZERO_EXTRACT
1431 || GET_CODE (dest) == STRICT_LOW_PART)
1432 dest = XEXP (dest, 0);
1433
1434 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1435 each of whose first operand is a register. */
1436 if (GET_CODE (dest) == PARALLEL)
1437 {
1438 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1439 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1440 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1441 }
1442 else
1443 (*fun) (dest, x, data);
1444 }
1445
1446 else if (GET_CODE (x) == PARALLEL)
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 note_stores (XVECEXP (x, 0, i), fun, data);
1449 }
1450 \f
1451 /* Like notes_stores, but call FUN for each expression that is being
1452 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1453 FUN for each expression, not any interior subexpressions. FUN receives a
1454 pointer to the expression and the DATA passed to this function.
1455
1456 Note that this is not quite the same test as that done in reg_referenced_p
1457 since that considers something as being referenced if it is being
1458 partially set, while we do not. */
1459
1460 void
1461 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1462 {
1463 rtx body = *pbody;
1464 int i;
1465
1466 switch (GET_CODE (body))
1467 {
1468 case COND_EXEC:
1469 (*fun) (&COND_EXEC_TEST (body), data);
1470 note_uses (&COND_EXEC_CODE (body), fun, data);
1471 return;
1472
1473 case PARALLEL:
1474 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1475 note_uses (&XVECEXP (body, 0, i), fun, data);
1476 return;
1477
1478 case SEQUENCE:
1479 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1480 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1481 return;
1482
1483 case USE:
1484 (*fun) (&XEXP (body, 0), data);
1485 return;
1486
1487 case ASM_OPERANDS:
1488 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1489 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1490 return;
1491
1492 case TRAP_IF:
1493 (*fun) (&TRAP_CONDITION (body), data);
1494 return;
1495
1496 case PREFETCH:
1497 (*fun) (&XEXP (body, 0), data);
1498 return;
1499
1500 case UNSPEC:
1501 case UNSPEC_VOLATILE:
1502 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1503 (*fun) (&XVECEXP (body, 0, i), data);
1504 return;
1505
1506 case CLOBBER:
1507 if (MEM_P (XEXP (body, 0)))
1508 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1509 return;
1510
1511 case SET:
1512 {
1513 rtx dest = SET_DEST (body);
1514
1515 /* For sets we replace everything in source plus registers in memory
1516 expression in store and operands of a ZERO_EXTRACT. */
1517 (*fun) (&SET_SRC (body), data);
1518
1519 if (GET_CODE (dest) == ZERO_EXTRACT)
1520 {
1521 (*fun) (&XEXP (dest, 1), data);
1522 (*fun) (&XEXP (dest, 2), data);
1523 }
1524
1525 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1526 dest = XEXP (dest, 0);
1527
1528 if (MEM_P (dest))
1529 (*fun) (&XEXP (dest, 0), data);
1530 }
1531 return;
1532
1533 default:
1534 /* All the other possibilities never store. */
1535 (*fun) (pbody, data);
1536 return;
1537 }
1538 }
1539 \f
1540 /* Return nonzero if X's old contents don't survive after INSN.
1541 This will be true if X is (cc0) or if X is a register and
1542 X dies in INSN or because INSN entirely sets X.
1543
1544 "Entirely set" means set directly and not through a SUBREG, or
1545 ZERO_EXTRACT, so no trace of the old contents remains.
1546 Likewise, REG_INC does not count.
1547
1548 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1549 but for this use that makes no difference, since regs don't overlap
1550 during their lifetimes. Therefore, this function may be used
1551 at any time after deaths have been computed.
1552
1553 If REG is a hard reg that occupies multiple machine registers, this
1554 function will only return 1 if each of those registers will be replaced
1555 by INSN. */
1556
1557 int
1558 dead_or_set_p (const_rtx insn, const_rtx x)
1559 {
1560 unsigned int regno, end_regno;
1561 unsigned int i;
1562
1563 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1564 if (GET_CODE (x) == CC0)
1565 return 1;
1566
1567 gcc_assert (REG_P (x));
1568
1569 regno = REGNO (x);
1570 end_regno = END_REGNO (x);
1571 for (i = regno; i < end_regno; i++)
1572 if (! dead_or_set_regno_p (insn, i))
1573 return 0;
1574
1575 return 1;
1576 }
1577
1578 /* Return TRUE iff DEST is a register or subreg of a register and
1579 doesn't change the number of words of the inner register, and any
1580 part of the register is TEST_REGNO. */
1581
1582 static bool
1583 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1584 {
1585 unsigned int regno, endregno;
1586
1587 if (GET_CODE (dest) == SUBREG
1588 && (((GET_MODE_SIZE (GET_MODE (dest))
1589 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1590 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1591 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1592 dest = SUBREG_REG (dest);
1593
1594 if (!REG_P (dest))
1595 return false;
1596
1597 regno = REGNO (dest);
1598 endregno = END_REGNO (dest);
1599 return (test_regno >= regno && test_regno < endregno);
1600 }
1601
1602 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1603 any member matches the covers_regno_no_parallel_p criteria. */
1604
1605 static bool
1606 covers_regno_p (const_rtx dest, unsigned int test_regno)
1607 {
1608 if (GET_CODE (dest) == PARALLEL)
1609 {
1610 /* Some targets place small structures in registers for return
1611 values of functions, and those registers are wrapped in
1612 PARALLELs that we may see as the destination of a SET. */
1613 int i;
1614
1615 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1616 {
1617 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1618 if (inner != NULL_RTX
1619 && covers_regno_no_parallel_p (inner, test_regno))
1620 return true;
1621 }
1622
1623 return false;
1624 }
1625 else
1626 return covers_regno_no_parallel_p (dest, test_regno);
1627 }
1628
1629 /* Utility function for dead_or_set_p to check an individual register. */
1630
1631 int
1632 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1633 {
1634 const_rtx pattern;
1635
1636 /* See if there is a death note for something that includes TEST_REGNO. */
1637 if (find_regno_note (insn, REG_DEAD, test_regno))
1638 return 1;
1639
1640 if (CALL_P (insn)
1641 && find_regno_fusage (insn, CLOBBER, test_regno))
1642 return 1;
1643
1644 pattern = PATTERN (insn);
1645
1646 if (GET_CODE (pattern) == COND_EXEC)
1647 pattern = COND_EXEC_CODE (pattern);
1648
1649 if (GET_CODE (pattern) == SET)
1650 return covers_regno_p (SET_DEST (pattern), test_regno);
1651 else if (GET_CODE (pattern) == PARALLEL)
1652 {
1653 int i;
1654
1655 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1656 {
1657 rtx body = XVECEXP (pattern, 0, i);
1658
1659 if (GET_CODE (body) == COND_EXEC)
1660 body = COND_EXEC_CODE (body);
1661
1662 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1663 && covers_regno_p (SET_DEST (body), test_regno))
1664 return 1;
1665 }
1666 }
1667
1668 return 0;
1669 }
1670
1671 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1672 If DATUM is nonzero, look for one whose datum is DATUM. */
1673
1674 rtx
1675 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1676 {
1677 rtx link;
1678
1679 gcc_assert (insn);
1680
1681 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1682 if (! INSN_P (insn))
1683 return 0;
1684 if (datum == 0)
1685 {
1686 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1687 if (REG_NOTE_KIND (link) == kind)
1688 return link;
1689 return 0;
1690 }
1691
1692 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1693 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1694 return link;
1695 return 0;
1696 }
1697
1698 /* Return the reg-note of kind KIND in insn INSN which applies to register
1699 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1700 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1701 it might be the case that the note overlaps REGNO. */
1702
1703 rtx
1704 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1705 {
1706 rtx link;
1707
1708 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1709 if (! INSN_P (insn))
1710 return 0;
1711
1712 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1713 if (REG_NOTE_KIND (link) == kind
1714 /* Verify that it is a register, so that scratch and MEM won't cause a
1715 problem here. */
1716 && REG_P (XEXP (link, 0))
1717 && REGNO (XEXP (link, 0)) <= regno
1718 && END_REGNO (XEXP (link, 0)) > regno)
1719 return link;
1720 return 0;
1721 }
1722
1723 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1724 has such a note. */
1725
1726 rtx
1727 find_reg_equal_equiv_note (const_rtx insn)
1728 {
1729 rtx link;
1730
1731 if (!INSN_P (insn))
1732 return 0;
1733
1734 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1735 if (REG_NOTE_KIND (link) == REG_EQUAL
1736 || REG_NOTE_KIND (link) == REG_EQUIV)
1737 {
1738 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1739 insns that have multiple sets. Checking single_set to
1740 make sure of this is not the proper check, as explained
1741 in the comment in set_unique_reg_note.
1742
1743 This should be changed into an assert. */
1744 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1745 return 0;
1746 return link;
1747 }
1748 return NULL;
1749 }
1750
1751 /* Check whether INSN is a single_set whose source is known to be
1752 equivalent to a constant. Return that constant if so, otherwise
1753 return null. */
1754
1755 rtx
1756 find_constant_src (const_rtx insn)
1757 {
1758 rtx note, set, x;
1759
1760 set = single_set (insn);
1761 if (set)
1762 {
1763 x = avoid_constant_pool_reference (SET_SRC (set));
1764 if (CONSTANT_P (x))
1765 return x;
1766 }
1767
1768 note = find_reg_equal_equiv_note (insn);
1769 if (note && CONSTANT_P (XEXP (note, 0)))
1770 return XEXP (note, 0);
1771
1772 return NULL_RTX;
1773 }
1774
1775 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1776 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1777
1778 int
1779 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1780 {
1781 /* If it's not a CALL_INSN, it can't possibly have a
1782 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1783 if (!CALL_P (insn))
1784 return 0;
1785
1786 gcc_assert (datum);
1787
1788 if (!REG_P (datum))
1789 {
1790 rtx link;
1791
1792 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1793 link;
1794 link = XEXP (link, 1))
1795 if (GET_CODE (XEXP (link, 0)) == code
1796 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1797 return 1;
1798 }
1799 else
1800 {
1801 unsigned int regno = REGNO (datum);
1802
1803 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1804 to pseudo registers, so don't bother checking. */
1805
1806 if (regno < FIRST_PSEUDO_REGISTER)
1807 {
1808 unsigned int end_regno = END_HARD_REGNO (datum);
1809 unsigned int i;
1810
1811 for (i = regno; i < end_regno; i++)
1812 if (find_regno_fusage (insn, code, i))
1813 return 1;
1814 }
1815 }
1816
1817 return 0;
1818 }
1819
1820 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1821 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1822
1823 int
1824 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1825 {
1826 rtx link;
1827
1828 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1829 to pseudo registers, so don't bother checking. */
1830
1831 if (regno >= FIRST_PSEUDO_REGISTER
1832 || !CALL_P (insn) )
1833 return 0;
1834
1835 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1836 {
1837 rtx op, reg;
1838
1839 if (GET_CODE (op = XEXP (link, 0)) == code
1840 && REG_P (reg = XEXP (op, 0))
1841 && REGNO (reg) <= regno
1842 && END_HARD_REGNO (reg) > regno)
1843 return 1;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /* Return true if INSN is a call to a pure function. */
1850
1851 int
1852 pure_call_p (const_rtx insn)
1853 {
1854 const_rtx link;
1855
1856 if (!CALL_P (insn) || ! CONST_OR_PURE_CALL_P (insn))
1857 return 0;
1858
1859 /* Look for the note that differentiates const and pure functions. */
1860 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1861 {
1862 rtx u, m;
1863
1864 if (GET_CODE (u = XEXP (link, 0)) == USE
1865 && MEM_P (m = XEXP (u, 0)) && GET_MODE (m) == BLKmode
1866 && GET_CODE (XEXP (m, 0)) == SCRATCH)
1867 return 1;
1868 }
1869
1870 return 0;
1871 }
1872 \f
1873 /* Remove register note NOTE from the REG_NOTES of INSN. */
1874
1875 void
1876 remove_note (rtx insn, const_rtx note)
1877 {
1878 rtx link;
1879
1880 if (note == NULL_RTX)
1881 return;
1882
1883 if (REG_NOTES (insn) == note)
1884 REG_NOTES (insn) = XEXP (note, 1);
1885 else
1886 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1887 if (XEXP (link, 1) == note)
1888 {
1889 XEXP (link, 1) = XEXP (note, 1);
1890 break;
1891 }
1892
1893 switch (REG_NOTE_KIND (note))
1894 {
1895 case REG_EQUAL:
1896 case REG_EQUIV:
1897 df_notes_rescan (insn);
1898 break;
1899 default:
1900 break;
1901 }
1902 }
1903
1904 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1905
1906 void
1907 remove_reg_equal_equiv_notes (rtx insn)
1908 {
1909 rtx *loc;
1910
1911 loc = &REG_NOTES (insn);
1912 while (*loc)
1913 {
1914 enum reg_note kind = REG_NOTE_KIND (*loc);
1915 if (kind == REG_EQUAL || kind == REG_EQUIV)
1916 *loc = XEXP (*loc, 1);
1917 else
1918 loc = &XEXP (*loc, 1);
1919 }
1920 }
1921
1922 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1923 return 1 if it is found. A simple equality test is used to determine if
1924 NODE matches. */
1925
1926 int
1927 in_expr_list_p (const_rtx listp, const_rtx node)
1928 {
1929 const_rtx x;
1930
1931 for (x = listp; x; x = XEXP (x, 1))
1932 if (node == XEXP (x, 0))
1933 return 1;
1934
1935 return 0;
1936 }
1937
1938 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1939 remove that entry from the list if it is found.
1940
1941 A simple equality test is used to determine if NODE matches. */
1942
1943 void
1944 remove_node_from_expr_list (const_rtx node, rtx *listp)
1945 {
1946 rtx temp = *listp;
1947 rtx prev = NULL_RTX;
1948
1949 while (temp)
1950 {
1951 if (node == XEXP (temp, 0))
1952 {
1953 /* Splice the node out of the list. */
1954 if (prev)
1955 XEXP (prev, 1) = XEXP (temp, 1);
1956 else
1957 *listp = XEXP (temp, 1);
1958
1959 return;
1960 }
1961
1962 prev = temp;
1963 temp = XEXP (temp, 1);
1964 }
1965 }
1966 \f
1967 /* Nonzero if X contains any volatile instructions. These are instructions
1968 which may cause unpredictable machine state instructions, and thus no
1969 instructions should be moved or combined across them. This includes
1970 only volatile asms and UNSPEC_VOLATILE instructions. */
1971
1972 int
1973 volatile_insn_p (const_rtx x)
1974 {
1975 const RTX_CODE code = GET_CODE (x);
1976 switch (code)
1977 {
1978 case LABEL_REF:
1979 case SYMBOL_REF:
1980 case CONST_INT:
1981 case CONST:
1982 case CONST_DOUBLE:
1983 case CONST_FIXED:
1984 case CONST_VECTOR:
1985 case CC0:
1986 case PC:
1987 case REG:
1988 case SCRATCH:
1989 case CLOBBER:
1990 case ADDR_VEC:
1991 case ADDR_DIFF_VEC:
1992 case CALL:
1993 case MEM:
1994 return 0;
1995
1996 case UNSPEC_VOLATILE:
1997 /* case TRAP_IF: This isn't clear yet. */
1998 return 1;
1999
2000 case ASM_INPUT:
2001 case ASM_OPERANDS:
2002 if (MEM_VOLATILE_P (x))
2003 return 1;
2004
2005 default:
2006 break;
2007 }
2008
2009 /* Recursively scan the operands of this expression. */
2010
2011 {
2012 const char *const fmt = GET_RTX_FORMAT (code);
2013 int i;
2014
2015 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2016 {
2017 if (fmt[i] == 'e')
2018 {
2019 if (volatile_insn_p (XEXP (x, i)))
2020 return 1;
2021 }
2022 else if (fmt[i] == 'E')
2023 {
2024 int j;
2025 for (j = 0; j < XVECLEN (x, i); j++)
2026 if (volatile_insn_p (XVECEXP (x, i, j)))
2027 return 1;
2028 }
2029 }
2030 }
2031 return 0;
2032 }
2033
2034 /* Nonzero if X contains any volatile memory references
2035 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2036
2037 int
2038 volatile_refs_p (const_rtx x)
2039 {
2040 const RTX_CODE code = GET_CODE (x);
2041 switch (code)
2042 {
2043 case LABEL_REF:
2044 case SYMBOL_REF:
2045 case CONST_INT:
2046 case CONST:
2047 case CONST_DOUBLE:
2048 case CONST_FIXED:
2049 case CONST_VECTOR:
2050 case CC0:
2051 case PC:
2052 case REG:
2053 case SCRATCH:
2054 case CLOBBER:
2055 case ADDR_VEC:
2056 case ADDR_DIFF_VEC:
2057 return 0;
2058
2059 case UNSPEC_VOLATILE:
2060 return 1;
2061
2062 case MEM:
2063 case ASM_INPUT:
2064 case ASM_OPERANDS:
2065 if (MEM_VOLATILE_P (x))
2066 return 1;
2067
2068 default:
2069 break;
2070 }
2071
2072 /* Recursively scan the operands of this expression. */
2073
2074 {
2075 const char *const fmt = GET_RTX_FORMAT (code);
2076 int i;
2077
2078 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2079 {
2080 if (fmt[i] == 'e')
2081 {
2082 if (volatile_refs_p (XEXP (x, i)))
2083 return 1;
2084 }
2085 else if (fmt[i] == 'E')
2086 {
2087 int j;
2088 for (j = 0; j < XVECLEN (x, i); j++)
2089 if (volatile_refs_p (XVECEXP (x, i, j)))
2090 return 1;
2091 }
2092 }
2093 }
2094 return 0;
2095 }
2096
2097 /* Similar to above, except that it also rejects register pre- and post-
2098 incrementing. */
2099
2100 int
2101 side_effects_p (const_rtx x)
2102 {
2103 const RTX_CODE code = GET_CODE (x);
2104 switch (code)
2105 {
2106 case LABEL_REF:
2107 case SYMBOL_REF:
2108 case CONST_INT:
2109 case CONST:
2110 case CONST_DOUBLE:
2111 case CONST_FIXED:
2112 case CONST_VECTOR:
2113 case CC0:
2114 case PC:
2115 case REG:
2116 case SCRATCH:
2117 case ADDR_VEC:
2118 case ADDR_DIFF_VEC:
2119 return 0;
2120
2121 case CLOBBER:
2122 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2123 when some combination can't be done. If we see one, don't think
2124 that we can simplify the expression. */
2125 return (GET_MODE (x) != VOIDmode);
2126
2127 case PRE_INC:
2128 case PRE_DEC:
2129 case POST_INC:
2130 case POST_DEC:
2131 case PRE_MODIFY:
2132 case POST_MODIFY:
2133 case CALL:
2134 case UNSPEC_VOLATILE:
2135 /* case TRAP_IF: This isn't clear yet. */
2136 return 1;
2137
2138 case MEM:
2139 case ASM_INPUT:
2140 case ASM_OPERANDS:
2141 if (MEM_VOLATILE_P (x))
2142 return 1;
2143
2144 default:
2145 break;
2146 }
2147
2148 /* Recursively scan the operands of this expression. */
2149
2150 {
2151 const char *fmt = GET_RTX_FORMAT (code);
2152 int i;
2153
2154 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2155 {
2156 if (fmt[i] == 'e')
2157 {
2158 if (side_effects_p (XEXP (x, i)))
2159 return 1;
2160 }
2161 else if (fmt[i] == 'E')
2162 {
2163 int j;
2164 for (j = 0; j < XVECLEN (x, i); j++)
2165 if (side_effects_p (XVECEXP (x, i, j)))
2166 return 1;
2167 }
2168 }
2169 }
2170 return 0;
2171 }
2172 \f
2173 enum may_trap_p_flags
2174 {
2175 MTP_UNALIGNED_MEMS = 1,
2176 MTP_AFTER_MOVE = 2
2177 };
2178 /* Return nonzero if evaluating rtx X might cause a trap.
2179 (FLAGS & MTP_UNALIGNED_MEMS) controls whether nonzero is returned for
2180 unaligned memory accesses on strict alignment machines. If
2181 (FLAGS & AFTER_MOVE) is true, returns nonzero even in case the expression
2182 cannot trap at its current location, but it might become trapping if moved
2183 elsewhere. */
2184
2185 static int
2186 may_trap_p_1 (const_rtx x, unsigned flags)
2187 {
2188 int i;
2189 enum rtx_code code;
2190 const char *fmt;
2191 bool unaligned_mems = (flags & MTP_UNALIGNED_MEMS) != 0;
2192
2193 if (x == 0)
2194 return 0;
2195 code = GET_CODE (x);
2196 switch (code)
2197 {
2198 /* Handle these cases quickly. */
2199 case CONST_INT:
2200 case CONST_DOUBLE:
2201 case CONST_FIXED:
2202 case CONST_VECTOR:
2203 case SYMBOL_REF:
2204 case LABEL_REF:
2205 case CONST:
2206 case PC:
2207 case CC0:
2208 case REG:
2209 case SCRATCH:
2210 return 0;
2211
2212 case ASM_INPUT:
2213 case UNSPEC_VOLATILE:
2214 case TRAP_IF:
2215 return 1;
2216
2217 case ASM_OPERANDS:
2218 return MEM_VOLATILE_P (x);
2219
2220 /* Memory ref can trap unless it's a static var or a stack slot. */
2221 case MEM:
2222 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2223 reference; moving it out of condition might cause its address
2224 become invalid. */
2225 !(flags & MTP_AFTER_MOVE)
2226 && MEM_NOTRAP_P (x)
2227 && (!STRICT_ALIGNMENT || !unaligned_mems))
2228 return 0;
2229 return
2230 rtx_addr_can_trap_p_1 (XEXP (x, 0), GET_MODE (x), unaligned_mems);
2231
2232 /* Division by a non-constant might trap. */
2233 case DIV:
2234 case MOD:
2235 case UDIV:
2236 case UMOD:
2237 if (HONOR_SNANS (GET_MODE (x)))
2238 return 1;
2239 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2240 return flag_trapping_math;
2241 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2242 return 1;
2243 break;
2244
2245 case EXPR_LIST:
2246 /* An EXPR_LIST is used to represent a function call. This
2247 certainly may trap. */
2248 return 1;
2249
2250 case GE:
2251 case GT:
2252 case LE:
2253 case LT:
2254 case LTGT:
2255 case COMPARE:
2256 /* Some floating point comparisons may trap. */
2257 if (!flag_trapping_math)
2258 break;
2259 /* ??? There is no machine independent way to check for tests that trap
2260 when COMPARE is used, though many targets do make this distinction.
2261 For instance, sparc uses CCFPE for compares which generate exceptions
2262 and CCFP for compares which do not generate exceptions. */
2263 if (HONOR_NANS (GET_MODE (x)))
2264 return 1;
2265 /* But often the compare has some CC mode, so check operand
2266 modes as well. */
2267 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2268 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2269 return 1;
2270 break;
2271
2272 case EQ:
2273 case NE:
2274 if (HONOR_SNANS (GET_MODE (x)))
2275 return 1;
2276 /* Often comparison is CC mode, so check operand modes. */
2277 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2278 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2279 return 1;
2280 break;
2281
2282 case FIX:
2283 /* Conversion of floating point might trap. */
2284 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2285 return 1;
2286 break;
2287
2288 case NEG:
2289 case ABS:
2290 case SUBREG:
2291 /* These operations don't trap even with floating point. */
2292 break;
2293
2294 default:
2295 /* Any floating arithmetic may trap. */
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2297 && flag_trapping_math)
2298 return 1;
2299 }
2300
2301 fmt = GET_RTX_FORMAT (code);
2302 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2303 {
2304 if (fmt[i] == 'e')
2305 {
2306 if (may_trap_p_1 (XEXP (x, i), flags))
2307 return 1;
2308 }
2309 else if (fmt[i] == 'E')
2310 {
2311 int j;
2312 for (j = 0; j < XVECLEN (x, i); j++)
2313 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2314 return 1;
2315 }
2316 }
2317 return 0;
2318 }
2319
2320 /* Return nonzero if evaluating rtx X might cause a trap. */
2321
2322 int
2323 may_trap_p (const_rtx x)
2324 {
2325 return may_trap_p_1 (x, 0);
2326 }
2327
2328 /* Return nonzero if evaluating rtx X might cause a trap, when the expression
2329 is moved from its current location by some optimization. */
2330
2331 int
2332 may_trap_after_code_motion_p (const_rtx x)
2333 {
2334 return may_trap_p_1 (x, MTP_AFTER_MOVE);
2335 }
2336
2337 /* Same as above, but additionally return nonzero if evaluating rtx X might
2338 cause a fault. We define a fault for the purpose of this function as a
2339 erroneous execution condition that cannot be encountered during the normal
2340 execution of a valid program; the typical example is an unaligned memory
2341 access on a strict alignment machine. The compiler guarantees that it
2342 doesn't generate code that will fault from a valid program, but this
2343 guarantee doesn't mean anything for individual instructions. Consider
2344 the following example:
2345
2346 struct S { int d; union { char *cp; int *ip; }; };
2347
2348 int foo(struct S *s)
2349 {
2350 if (s->d == 1)
2351 return *s->ip;
2352 else
2353 return *s->cp;
2354 }
2355
2356 on a strict alignment machine. In a valid program, foo will never be
2357 invoked on a structure for which d is equal to 1 and the underlying
2358 unique field of the union not aligned on a 4-byte boundary, but the
2359 expression *s->ip might cause a fault if considered individually.
2360
2361 At the RTL level, potentially problematic expressions will almost always
2362 verify may_trap_p; for example, the above dereference can be emitted as
2363 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2364 However, suppose that foo is inlined in a caller that causes s->cp to
2365 point to a local character variable and guarantees that s->d is not set
2366 to 1; foo may have been effectively translated into pseudo-RTL as:
2367
2368 if ((reg:SI) == 1)
2369 (set (reg:SI) (mem:SI (%fp - 7)))
2370 else
2371 (set (reg:QI) (mem:QI (%fp - 7)))
2372
2373 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2374 memory reference to a stack slot, but it will certainly cause a fault
2375 on a strict alignment machine. */
2376
2377 int
2378 may_trap_or_fault_p (const_rtx x)
2379 {
2380 return may_trap_p_1 (x, MTP_UNALIGNED_MEMS);
2381 }
2382 \f
2383 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2384 i.e., an inequality. */
2385
2386 int
2387 inequality_comparisons_p (const_rtx x)
2388 {
2389 const char *fmt;
2390 int len, i;
2391 const enum rtx_code code = GET_CODE (x);
2392
2393 switch (code)
2394 {
2395 case REG:
2396 case SCRATCH:
2397 case PC:
2398 case CC0:
2399 case CONST_INT:
2400 case CONST_DOUBLE:
2401 case CONST_FIXED:
2402 case CONST_VECTOR:
2403 case CONST:
2404 case LABEL_REF:
2405 case SYMBOL_REF:
2406 return 0;
2407
2408 case LT:
2409 case LTU:
2410 case GT:
2411 case GTU:
2412 case LE:
2413 case LEU:
2414 case GE:
2415 case GEU:
2416 return 1;
2417
2418 default:
2419 break;
2420 }
2421
2422 len = GET_RTX_LENGTH (code);
2423 fmt = GET_RTX_FORMAT (code);
2424
2425 for (i = 0; i < len; i++)
2426 {
2427 if (fmt[i] == 'e')
2428 {
2429 if (inequality_comparisons_p (XEXP (x, i)))
2430 return 1;
2431 }
2432 else if (fmt[i] == 'E')
2433 {
2434 int j;
2435 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2436 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2437 return 1;
2438 }
2439 }
2440
2441 return 0;
2442 }
2443 \f
2444 /* Replace any occurrence of FROM in X with TO. The function does
2445 not enter into CONST_DOUBLE for the replace.
2446
2447 Note that copying is not done so X must not be shared unless all copies
2448 are to be modified. */
2449
2450 rtx
2451 replace_rtx (rtx x, rtx from, rtx to)
2452 {
2453 int i, j;
2454 const char *fmt;
2455
2456 /* The following prevents loops occurrence when we change MEM in
2457 CONST_DOUBLE onto the same CONST_DOUBLE. */
2458 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2459 return x;
2460
2461 if (x == from)
2462 return to;
2463
2464 /* Allow this function to make replacements in EXPR_LISTs. */
2465 if (x == 0)
2466 return 0;
2467
2468 if (GET_CODE (x) == SUBREG)
2469 {
2470 rtx new = replace_rtx (SUBREG_REG (x), from, to);
2471
2472 if (GET_CODE (new) == CONST_INT)
2473 {
2474 x = simplify_subreg (GET_MODE (x), new,
2475 GET_MODE (SUBREG_REG (x)),
2476 SUBREG_BYTE (x));
2477 gcc_assert (x);
2478 }
2479 else
2480 SUBREG_REG (x) = new;
2481
2482 return x;
2483 }
2484 else if (GET_CODE (x) == ZERO_EXTEND)
2485 {
2486 rtx new = replace_rtx (XEXP (x, 0), from, to);
2487
2488 if (GET_CODE (new) == CONST_INT)
2489 {
2490 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2491 new, GET_MODE (XEXP (x, 0)));
2492 gcc_assert (x);
2493 }
2494 else
2495 XEXP (x, 0) = new;
2496
2497 return x;
2498 }
2499
2500 fmt = GET_RTX_FORMAT (GET_CODE (x));
2501 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2502 {
2503 if (fmt[i] == 'e')
2504 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2505 else if (fmt[i] == 'E')
2506 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2507 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2508 }
2509
2510 return x;
2511 }
2512 \f
2513 /* Replace occurrences of the old label in *X with the new one.
2514 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2515
2516 int
2517 replace_label (rtx *x, void *data)
2518 {
2519 rtx l = *x;
2520 rtx old_label = ((replace_label_data *) data)->r1;
2521 rtx new_label = ((replace_label_data *) data)->r2;
2522 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2523
2524 if (l == NULL_RTX)
2525 return 0;
2526
2527 if (GET_CODE (l) == SYMBOL_REF
2528 && CONSTANT_POOL_ADDRESS_P (l))
2529 {
2530 rtx c = get_pool_constant (l);
2531 if (rtx_referenced_p (old_label, c))
2532 {
2533 rtx new_c, new_l;
2534 replace_label_data *d = (replace_label_data *) data;
2535
2536 /* Create a copy of constant C; replace the label inside
2537 but do not update LABEL_NUSES because uses in constant pool
2538 are not counted. */
2539 new_c = copy_rtx (c);
2540 d->update_label_nuses = false;
2541 for_each_rtx (&new_c, replace_label, data);
2542 d->update_label_nuses = update_label_nuses;
2543
2544 /* Add the new constant NEW_C to constant pool and replace
2545 the old reference to constant by new reference. */
2546 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2547 *x = replace_rtx (l, l, new_l);
2548 }
2549 return 0;
2550 }
2551
2552 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2553 field. This is not handled by for_each_rtx because it doesn't
2554 handle unprinted ('0') fields. */
2555 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2556 JUMP_LABEL (l) = new_label;
2557
2558 if ((GET_CODE (l) == LABEL_REF
2559 || GET_CODE (l) == INSN_LIST)
2560 && XEXP (l, 0) == old_label)
2561 {
2562 XEXP (l, 0) = new_label;
2563 if (update_label_nuses)
2564 {
2565 ++LABEL_NUSES (new_label);
2566 --LABEL_NUSES (old_label);
2567 }
2568 return 0;
2569 }
2570
2571 return 0;
2572 }
2573
2574 /* When *BODY is equal to X or X is directly referenced by *BODY
2575 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2576 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2577
2578 static int
2579 rtx_referenced_p_1 (rtx *body, void *x)
2580 {
2581 rtx y = (rtx) x;
2582
2583 if (*body == NULL_RTX)
2584 return y == NULL_RTX;
2585
2586 /* Return true if a label_ref *BODY refers to label Y. */
2587 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2588 return XEXP (*body, 0) == y;
2589
2590 /* If *BODY is a reference to pool constant traverse the constant. */
2591 if (GET_CODE (*body) == SYMBOL_REF
2592 && CONSTANT_POOL_ADDRESS_P (*body))
2593 return rtx_referenced_p (y, get_pool_constant (*body));
2594
2595 /* By default, compare the RTL expressions. */
2596 return rtx_equal_p (*body, y);
2597 }
2598
2599 /* Return true if X is referenced in BODY. */
2600
2601 int
2602 rtx_referenced_p (rtx x, rtx body)
2603 {
2604 return for_each_rtx (&body, rtx_referenced_p_1, x);
2605 }
2606
2607 /* If INSN is a tablejump return true and store the label (before jump table) to
2608 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2609
2610 bool
2611 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2612 {
2613 rtx label, table;
2614
2615 if (JUMP_P (insn)
2616 && (label = JUMP_LABEL (insn)) != NULL_RTX
2617 && (table = next_active_insn (label)) != NULL_RTX
2618 && JUMP_P (table)
2619 && (GET_CODE (PATTERN (table)) == ADDR_VEC
2620 || GET_CODE (PATTERN (table)) == ADDR_DIFF_VEC))
2621 {
2622 if (labelp)
2623 *labelp = label;
2624 if (tablep)
2625 *tablep = table;
2626 return true;
2627 }
2628 return false;
2629 }
2630
2631 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2632 constant that is not in the constant pool and not in the condition
2633 of an IF_THEN_ELSE. */
2634
2635 static int
2636 computed_jump_p_1 (const_rtx x)
2637 {
2638 const enum rtx_code code = GET_CODE (x);
2639 int i, j;
2640 const char *fmt;
2641
2642 switch (code)
2643 {
2644 case LABEL_REF:
2645 case PC:
2646 return 0;
2647
2648 case CONST:
2649 case CONST_INT:
2650 case CONST_DOUBLE:
2651 case CONST_FIXED:
2652 case CONST_VECTOR:
2653 case SYMBOL_REF:
2654 case REG:
2655 return 1;
2656
2657 case MEM:
2658 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2659 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2660
2661 case IF_THEN_ELSE:
2662 return (computed_jump_p_1 (XEXP (x, 1))
2663 || computed_jump_p_1 (XEXP (x, 2)));
2664
2665 default:
2666 break;
2667 }
2668
2669 fmt = GET_RTX_FORMAT (code);
2670 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2671 {
2672 if (fmt[i] == 'e'
2673 && computed_jump_p_1 (XEXP (x, i)))
2674 return 1;
2675
2676 else if (fmt[i] == 'E')
2677 for (j = 0; j < XVECLEN (x, i); j++)
2678 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2679 return 1;
2680 }
2681
2682 return 0;
2683 }
2684
2685 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2686
2687 Tablejumps and casesi insns are not considered indirect jumps;
2688 we can recognize them by a (use (label_ref)). */
2689
2690 int
2691 computed_jump_p (const_rtx insn)
2692 {
2693 int i;
2694 if (JUMP_P (insn))
2695 {
2696 rtx pat = PATTERN (insn);
2697
2698 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2699 if (JUMP_LABEL (insn) != NULL)
2700 return 0;
2701
2702 if (GET_CODE (pat) == PARALLEL)
2703 {
2704 int len = XVECLEN (pat, 0);
2705 int has_use_labelref = 0;
2706
2707 for (i = len - 1; i >= 0; i--)
2708 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2709 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2710 == LABEL_REF))
2711 has_use_labelref = 1;
2712
2713 if (! has_use_labelref)
2714 for (i = len - 1; i >= 0; i--)
2715 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2716 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2717 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2718 return 1;
2719 }
2720 else if (GET_CODE (pat) == SET
2721 && SET_DEST (pat) == pc_rtx
2722 && computed_jump_p_1 (SET_SRC (pat)))
2723 return 1;
2724 }
2725 return 0;
2726 }
2727
2728 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2729 calls. Processes the subexpressions of EXP and passes them to F. */
2730 static int
2731 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2732 {
2733 int result, i, j;
2734 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2735 rtx *x;
2736
2737 for (; format[n] != '\0'; n++)
2738 {
2739 switch (format[n])
2740 {
2741 case 'e':
2742 /* Call F on X. */
2743 x = &XEXP (exp, n);
2744 result = (*f) (x, data);
2745 if (result == -1)
2746 /* Do not traverse sub-expressions. */
2747 continue;
2748 else if (result != 0)
2749 /* Stop the traversal. */
2750 return result;
2751
2752 if (*x == NULL_RTX)
2753 /* There are no sub-expressions. */
2754 continue;
2755
2756 i = non_rtx_starting_operands[GET_CODE (*x)];
2757 if (i >= 0)
2758 {
2759 result = for_each_rtx_1 (*x, i, f, data);
2760 if (result != 0)
2761 return result;
2762 }
2763 break;
2764
2765 case 'V':
2766 case 'E':
2767 if (XVEC (exp, n) == 0)
2768 continue;
2769 for (j = 0; j < XVECLEN (exp, n); ++j)
2770 {
2771 /* Call F on X. */
2772 x = &XVECEXP (exp, n, j);
2773 result = (*f) (x, data);
2774 if (result == -1)
2775 /* Do not traverse sub-expressions. */
2776 continue;
2777 else if (result != 0)
2778 /* Stop the traversal. */
2779 return result;
2780
2781 if (*x == NULL_RTX)
2782 /* There are no sub-expressions. */
2783 continue;
2784
2785 i = non_rtx_starting_operands[GET_CODE (*x)];
2786 if (i >= 0)
2787 {
2788 result = for_each_rtx_1 (*x, i, f, data);
2789 if (result != 0)
2790 return result;
2791 }
2792 }
2793 break;
2794
2795 default:
2796 /* Nothing to do. */
2797 break;
2798 }
2799 }
2800
2801 return 0;
2802 }
2803
2804 /* Traverse X via depth-first search, calling F for each
2805 sub-expression (including X itself). F is also passed the DATA.
2806 If F returns -1, do not traverse sub-expressions, but continue
2807 traversing the rest of the tree. If F ever returns any other
2808 nonzero value, stop the traversal, and return the value returned
2809 by F. Otherwise, return 0. This function does not traverse inside
2810 tree structure that contains RTX_EXPRs, or into sub-expressions
2811 whose format code is `0' since it is not known whether or not those
2812 codes are actually RTL.
2813
2814 This routine is very general, and could (should?) be used to
2815 implement many of the other routines in this file. */
2816
2817 int
2818 for_each_rtx (rtx *x, rtx_function f, void *data)
2819 {
2820 int result;
2821 int i;
2822
2823 /* Call F on X. */
2824 result = (*f) (x, data);
2825 if (result == -1)
2826 /* Do not traverse sub-expressions. */
2827 return 0;
2828 else if (result != 0)
2829 /* Stop the traversal. */
2830 return result;
2831
2832 if (*x == NULL_RTX)
2833 /* There are no sub-expressions. */
2834 return 0;
2835
2836 i = non_rtx_starting_operands[GET_CODE (*x)];
2837 if (i < 0)
2838 return 0;
2839
2840 return for_each_rtx_1 (*x, i, f, data);
2841 }
2842
2843
2844 /* Searches X for any reference to REGNO, returning the rtx of the
2845 reference found if any. Otherwise, returns NULL_RTX. */
2846
2847 rtx
2848 regno_use_in (unsigned int regno, rtx x)
2849 {
2850 const char *fmt;
2851 int i, j;
2852 rtx tem;
2853
2854 if (REG_P (x) && REGNO (x) == regno)
2855 return x;
2856
2857 fmt = GET_RTX_FORMAT (GET_CODE (x));
2858 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2859 {
2860 if (fmt[i] == 'e')
2861 {
2862 if ((tem = regno_use_in (regno, XEXP (x, i))))
2863 return tem;
2864 }
2865 else if (fmt[i] == 'E')
2866 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2867 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2868 return tem;
2869 }
2870
2871 return NULL_RTX;
2872 }
2873
2874 /* Return a value indicating whether OP, an operand of a commutative
2875 operation, is preferred as the first or second operand. The higher
2876 the value, the stronger the preference for being the first operand.
2877 We use negative values to indicate a preference for the first operand
2878 and positive values for the second operand. */
2879
2880 int
2881 commutative_operand_precedence (rtx op)
2882 {
2883 enum rtx_code code = GET_CODE (op);
2884
2885 /* Constants always come the second operand. Prefer "nice" constants. */
2886 if (code == CONST_INT)
2887 return -8;
2888 if (code == CONST_DOUBLE)
2889 return -7;
2890 if (code == CONST_FIXED)
2891 return -7;
2892 op = avoid_constant_pool_reference (op);
2893 code = GET_CODE (op);
2894
2895 switch (GET_RTX_CLASS (code))
2896 {
2897 case RTX_CONST_OBJ:
2898 if (code == CONST_INT)
2899 return -6;
2900 if (code == CONST_DOUBLE)
2901 return -5;
2902 if (code == CONST_FIXED)
2903 return -5;
2904 return -4;
2905
2906 case RTX_EXTRA:
2907 /* SUBREGs of objects should come second. */
2908 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2909 return -3;
2910 return 0;
2911
2912 case RTX_OBJ:
2913 /* Complex expressions should be the first, so decrease priority
2914 of objects. Prefer pointer objects over non pointer objects. */
2915 if ((REG_P (op) && REG_POINTER (op))
2916 || (MEM_P (op) && MEM_POINTER (op)))
2917 return -1;
2918 return -2;
2919
2920 case RTX_COMM_ARITH:
2921 /* Prefer operands that are themselves commutative to be first.
2922 This helps to make things linear. In particular,
2923 (and (and (reg) (reg)) (not (reg))) is canonical. */
2924 return 4;
2925
2926 case RTX_BIN_ARITH:
2927 /* If only one operand is a binary expression, it will be the first
2928 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2929 is canonical, although it will usually be further simplified. */
2930 return 2;
2931
2932 case RTX_UNARY:
2933 /* Then prefer NEG and NOT. */
2934 if (code == NEG || code == NOT)
2935 return 1;
2936
2937 default:
2938 return 0;
2939 }
2940 }
2941
2942 /* Return 1 iff it is necessary to swap operands of commutative operation
2943 in order to canonicalize expression. */
2944
2945 bool
2946 swap_commutative_operands_p (rtx x, rtx y)
2947 {
2948 return (commutative_operand_precedence (x)
2949 < commutative_operand_precedence (y));
2950 }
2951
2952 /* Return 1 if X is an autoincrement side effect and the register is
2953 not the stack pointer. */
2954 int
2955 auto_inc_p (const_rtx x)
2956 {
2957 switch (GET_CODE (x))
2958 {
2959 case PRE_INC:
2960 case POST_INC:
2961 case PRE_DEC:
2962 case POST_DEC:
2963 case PRE_MODIFY:
2964 case POST_MODIFY:
2965 /* There are no REG_INC notes for SP. */
2966 if (XEXP (x, 0) != stack_pointer_rtx)
2967 return 1;
2968 default:
2969 break;
2970 }
2971 return 0;
2972 }
2973
2974 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
2975 int
2976 loc_mentioned_in_p (rtx *loc, const_rtx in)
2977 {
2978 enum rtx_code code;
2979 const char *fmt;
2980 int i, j;
2981
2982 if (!in)
2983 return 0;
2984
2985 code = GET_CODE (in);
2986 fmt = GET_RTX_FORMAT (code);
2987 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2988 {
2989 if (loc == &in->u.fld[i].rt_rtx)
2990 return 1;
2991 if (fmt[i] == 'e')
2992 {
2993 if (loc_mentioned_in_p (loc, XEXP (in, i)))
2994 return 1;
2995 }
2996 else if (fmt[i] == 'E')
2997 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
2998 if (loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
2999 return 1;
3000 }
3001 return 0;
3002 }
3003
3004 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3005 and SUBREG_BYTE, return the bit offset where the subreg begins
3006 (counting from the least significant bit of the operand). */
3007
3008 unsigned int
3009 subreg_lsb_1 (enum machine_mode outer_mode,
3010 enum machine_mode inner_mode,
3011 unsigned int subreg_byte)
3012 {
3013 unsigned int bitpos;
3014 unsigned int byte;
3015 unsigned int word;
3016
3017 /* A paradoxical subreg begins at bit position 0. */
3018 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3019 return 0;
3020
3021 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3022 /* If the subreg crosses a word boundary ensure that
3023 it also begins and ends on a word boundary. */
3024 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3025 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3026 && (subreg_byte % UNITS_PER_WORD
3027 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3028
3029 if (WORDS_BIG_ENDIAN)
3030 word = (GET_MODE_SIZE (inner_mode)
3031 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3032 else
3033 word = subreg_byte / UNITS_PER_WORD;
3034 bitpos = word * BITS_PER_WORD;
3035
3036 if (BYTES_BIG_ENDIAN)
3037 byte = (GET_MODE_SIZE (inner_mode)
3038 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3039 else
3040 byte = subreg_byte % UNITS_PER_WORD;
3041 bitpos += byte * BITS_PER_UNIT;
3042
3043 return bitpos;
3044 }
3045
3046 /* Given a subreg X, return the bit offset where the subreg begins
3047 (counting from the least significant bit of the reg). */
3048
3049 unsigned int
3050 subreg_lsb (const_rtx x)
3051 {
3052 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3053 SUBREG_BYTE (x));
3054 }
3055
3056 /* Fill in information about a subreg of a hard register.
3057 xregno - A regno of an inner hard subreg_reg (or what will become one).
3058 xmode - The mode of xregno.
3059 offset - The byte offset.
3060 ymode - The mode of a top level SUBREG (or what may become one).
3061 info - Pointer to structure to fill in. */
3062 static void
3063 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3064 unsigned int offset, enum machine_mode ymode,
3065 struct subreg_info *info)
3066 {
3067 int nregs_xmode, nregs_ymode;
3068 int mode_multiple, nregs_multiple;
3069 int offset_adj, y_offset, y_offset_adj;
3070 int regsize_xmode, regsize_ymode;
3071 bool rknown;
3072
3073 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3074
3075 rknown = false;
3076
3077 /* If there are holes in a non-scalar mode in registers, we expect
3078 that it is made up of its units concatenated together. */
3079 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3080 {
3081 enum machine_mode xmode_unit;
3082
3083 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3084 if (GET_MODE_INNER (xmode) == VOIDmode)
3085 xmode_unit = xmode;
3086 else
3087 xmode_unit = GET_MODE_INNER (xmode);
3088 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3089 gcc_assert (nregs_xmode
3090 == (GET_MODE_NUNITS (xmode)
3091 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3092 gcc_assert (hard_regno_nregs[xregno][xmode]
3093 == (hard_regno_nregs[xregno][xmode_unit]
3094 * GET_MODE_NUNITS (xmode)));
3095
3096 /* You can only ask for a SUBREG of a value with holes in the middle
3097 if you don't cross the holes. (Such a SUBREG should be done by
3098 picking a different register class, or doing it in memory if
3099 necessary.) An example of a value with holes is XCmode on 32-bit
3100 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3101 3 for each part, but in memory it's two 128-bit parts.
3102 Padding is assumed to be at the end (not necessarily the 'high part')
3103 of each unit. */
3104 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3105 < GET_MODE_NUNITS (xmode))
3106 && (offset / GET_MODE_SIZE (xmode_unit)
3107 != ((offset + GET_MODE_SIZE (ymode) - 1)
3108 / GET_MODE_SIZE (xmode_unit))))
3109 {
3110 info->representable_p = false;
3111 rknown = true;
3112 }
3113 }
3114 else
3115 nregs_xmode = hard_regno_nregs[xregno][xmode];
3116
3117 nregs_ymode = hard_regno_nregs[xregno][ymode];
3118
3119 /* Paradoxical subregs are otherwise valid. */
3120 if (!rknown
3121 && offset == 0
3122 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3123 {
3124 info->representable_p = true;
3125 /* If this is a big endian paradoxical subreg, which uses more
3126 actual hard registers than the original register, we must
3127 return a negative offset so that we find the proper highpart
3128 of the register. */
3129 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3130 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3131 info->offset = nregs_xmode - nregs_ymode;
3132 else
3133 info->offset = 0;
3134 info->nregs = nregs_ymode;
3135 return;
3136 }
3137
3138 /* If registers store different numbers of bits in the different
3139 modes, we cannot generally form this subreg. */
3140 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3141 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3142 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3143 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3144 {
3145 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3146 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3147 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3148 {
3149 info->representable_p = false;
3150 info->nregs
3151 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3152 info->offset = offset / regsize_xmode;
3153 return;
3154 }
3155 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3156 {
3157 info->representable_p = false;
3158 info->nregs
3159 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3160 info->offset = offset / regsize_xmode;
3161 return;
3162 }
3163 }
3164
3165 /* Lowpart subregs are otherwise valid. */
3166 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3167 {
3168 info->representable_p = true;
3169 rknown = true;
3170
3171 if (offset == 0 || nregs_xmode == nregs_ymode)
3172 {
3173 info->offset = 0;
3174 info->nregs = nregs_ymode;
3175 return;
3176 }
3177 }
3178
3179 /* This should always pass, otherwise we don't know how to verify
3180 the constraint. These conditions may be relaxed but
3181 subreg_regno_offset would need to be redesigned. */
3182 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3183 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3184
3185 /* The XMODE value can be seen as a vector of NREGS_XMODE
3186 values. The subreg must represent a lowpart of given field.
3187 Compute what field it is. */
3188 offset_adj = offset;
3189 offset_adj -= subreg_lowpart_offset (ymode,
3190 mode_for_size (GET_MODE_BITSIZE (xmode)
3191 / nregs_xmode,
3192 MODE_INT, 0));
3193
3194 /* Size of ymode must not be greater than the size of xmode. */
3195 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3196 gcc_assert (mode_multiple != 0);
3197
3198 y_offset = offset / GET_MODE_SIZE (ymode);
3199 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3200 nregs_multiple = nregs_xmode / nregs_ymode;
3201
3202 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3203 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3204
3205 if (!rknown)
3206 {
3207 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3208 rknown = true;
3209 }
3210 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3211 info->nregs = nregs_ymode;
3212 }
3213
3214 /* This function returns the regno offset of a subreg expression.
3215 xregno - A regno of an inner hard subreg_reg (or what will become one).
3216 xmode - The mode of xregno.
3217 offset - The byte offset.
3218 ymode - The mode of a top level SUBREG (or what may become one).
3219 RETURN - The regno offset which would be used. */
3220 unsigned int
3221 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3222 unsigned int offset, enum machine_mode ymode)
3223 {
3224 struct subreg_info info;
3225 subreg_get_info (xregno, xmode, offset, ymode, &info);
3226 return info.offset;
3227 }
3228
3229 /* This function returns true when the offset is representable via
3230 subreg_offset in the given regno.
3231 xregno - A regno of an inner hard subreg_reg (or what will become one).
3232 xmode - The mode of xregno.
3233 offset - The byte offset.
3234 ymode - The mode of a top level SUBREG (or what may become one).
3235 RETURN - Whether the offset is representable. */
3236 bool
3237 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3238 unsigned int offset, enum machine_mode ymode)
3239 {
3240 struct subreg_info info;
3241 subreg_get_info (xregno, xmode, offset, ymode, &info);
3242 return info.representable_p;
3243 }
3244
3245 /* Return the final regno that a subreg expression refers to. */
3246 unsigned int
3247 subreg_regno (const_rtx x)
3248 {
3249 unsigned int ret;
3250 rtx subreg = SUBREG_REG (x);
3251 int regno = REGNO (subreg);
3252
3253 ret = regno + subreg_regno_offset (regno,
3254 GET_MODE (subreg),
3255 SUBREG_BYTE (x),
3256 GET_MODE (x));
3257 return ret;
3258
3259 }
3260
3261 /* Return the number of registers that a subreg expression refers
3262 to. */
3263 unsigned int
3264 subreg_nregs (const_rtx x)
3265 {
3266 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3267 }
3268
3269 /* Return the number of registers that a subreg REG with REGNO
3270 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3271 changed so that the regno can be passed in. */
3272
3273 unsigned int
3274 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3275 {
3276 struct subreg_info info;
3277 rtx subreg = SUBREG_REG (x);
3278
3279 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3280 &info);
3281 return info.nregs;
3282 }
3283
3284
3285 struct parms_set_data
3286 {
3287 int nregs;
3288 HARD_REG_SET regs;
3289 };
3290
3291 /* Helper function for noticing stores to parameter registers. */
3292 static void
3293 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3294 {
3295 struct parms_set_data *d = data;
3296 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3297 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3298 {
3299 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3300 d->nregs--;
3301 }
3302 }
3303
3304 /* Look backward for first parameter to be loaded.
3305 Note that loads of all parameters will not necessarily be
3306 found if CSE has eliminated some of them (e.g., an argument
3307 to the outer function is passed down as a parameter).
3308 Do not skip BOUNDARY. */
3309 rtx
3310 find_first_parameter_load (rtx call_insn, rtx boundary)
3311 {
3312 struct parms_set_data parm;
3313 rtx p, before, first_set;
3314
3315 /* Since different machines initialize their parameter registers
3316 in different orders, assume nothing. Collect the set of all
3317 parameter registers. */
3318 CLEAR_HARD_REG_SET (parm.regs);
3319 parm.nregs = 0;
3320 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3321 if (GET_CODE (XEXP (p, 0)) == USE
3322 && REG_P (XEXP (XEXP (p, 0), 0)))
3323 {
3324 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3325
3326 /* We only care about registers which can hold function
3327 arguments. */
3328 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3329 continue;
3330
3331 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3332 parm.nregs++;
3333 }
3334 before = call_insn;
3335 first_set = call_insn;
3336
3337 /* Search backward for the first set of a register in this set. */
3338 while (parm.nregs && before != boundary)
3339 {
3340 before = PREV_INSN (before);
3341
3342 /* It is possible that some loads got CSEed from one call to
3343 another. Stop in that case. */
3344 if (CALL_P (before))
3345 break;
3346
3347 /* Our caller needs either ensure that we will find all sets
3348 (in case code has not been optimized yet), or take care
3349 for possible labels in a way by setting boundary to preceding
3350 CODE_LABEL. */
3351 if (LABEL_P (before))
3352 {
3353 gcc_assert (before == boundary);
3354 break;
3355 }
3356
3357 if (INSN_P (before))
3358 {
3359 int nregs_old = parm.nregs;
3360 note_stores (PATTERN (before), parms_set, &parm);
3361 /* If we found something that did not set a parameter reg,
3362 we're done. Do not keep going, as that might result
3363 in hoisting an insn before the setting of a pseudo
3364 that is used by the hoisted insn. */
3365 if (nregs_old != parm.nregs)
3366 first_set = before;
3367 else
3368 break;
3369 }
3370 }
3371 return first_set;
3372 }
3373
3374 /* Return true if we should avoid inserting code between INSN and preceding
3375 call instruction. */
3376
3377 bool
3378 keep_with_call_p (const_rtx insn)
3379 {
3380 rtx set;
3381
3382 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3383 {
3384 if (REG_P (SET_DEST (set))
3385 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3386 && fixed_regs[REGNO (SET_DEST (set))]
3387 && general_operand (SET_SRC (set), VOIDmode))
3388 return true;
3389 if (REG_P (SET_SRC (set))
3390 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3391 && REG_P (SET_DEST (set))
3392 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3393 return true;
3394 /* There may be a stack pop just after the call and before the store
3395 of the return register. Search for the actual store when deciding
3396 if we can break or not. */
3397 if (SET_DEST (set) == stack_pointer_rtx)
3398 {
3399 /* This CONST_CAST is okay because next_nonnote_insn just
3400 returns it's argument and we assign it to a const_rtx
3401 variable. */
3402 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3403 if (i2 && keep_with_call_p (i2))
3404 return true;
3405 }
3406 }
3407 return false;
3408 }
3409
3410 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3411 to non-complex jumps. That is, direct unconditional, conditional,
3412 and tablejumps, but not computed jumps or returns. It also does
3413 not apply to the fallthru case of a conditional jump. */
3414
3415 bool
3416 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3417 {
3418 rtx tmp = JUMP_LABEL (jump_insn);
3419
3420 if (label == tmp)
3421 return true;
3422
3423 if (tablejump_p (jump_insn, NULL, &tmp))
3424 {
3425 rtvec vec = XVEC (PATTERN (tmp),
3426 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3427 int i, veclen = GET_NUM_ELEM (vec);
3428
3429 for (i = 0; i < veclen; ++i)
3430 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3431 return true;
3432 }
3433
3434 return false;
3435 }
3436
3437 \f
3438 /* Return an estimate of the cost of computing rtx X.
3439 One use is in cse, to decide which expression to keep in the hash table.
3440 Another is in rtl generation, to pick the cheapest way to multiply.
3441 Other uses like the latter are expected in the future. */
3442
3443 int
3444 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED)
3445 {
3446 int i, j;
3447 enum rtx_code code;
3448 const char *fmt;
3449 int total;
3450
3451 if (x == 0)
3452 return 0;
3453
3454 /* Compute the default costs of certain things.
3455 Note that targetm.rtx_costs can override the defaults. */
3456
3457 code = GET_CODE (x);
3458 switch (code)
3459 {
3460 case MULT:
3461 total = COSTS_N_INSNS (5);
3462 break;
3463 case DIV:
3464 case UDIV:
3465 case MOD:
3466 case UMOD:
3467 total = COSTS_N_INSNS (7);
3468 break;
3469 case USE:
3470 /* Used in combine.c as a marker. */
3471 total = 0;
3472 break;
3473 default:
3474 total = COSTS_N_INSNS (1);
3475 }
3476
3477 switch (code)
3478 {
3479 case REG:
3480 return 0;
3481
3482 case SUBREG:
3483 total = 0;
3484 /* If we can't tie these modes, make this expensive. The larger
3485 the mode, the more expensive it is. */
3486 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3487 return COSTS_N_INSNS (2
3488 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3489 break;
3490
3491 default:
3492 if (targetm.rtx_costs (x, code, outer_code, &total))
3493 return total;
3494 break;
3495 }
3496
3497 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3498 which is already in total. */
3499
3500 fmt = GET_RTX_FORMAT (code);
3501 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3502 if (fmt[i] == 'e')
3503 total += rtx_cost (XEXP (x, i), code);
3504 else if (fmt[i] == 'E')
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 total += rtx_cost (XVECEXP (x, i, j), code);
3507
3508 return total;
3509 }
3510 \f
3511 /* Return cost of address expression X.
3512 Expect that X is properly formed address reference. */
3513
3514 int
3515 address_cost (rtx x, enum machine_mode mode)
3516 {
3517 /* We may be asked for cost of various unusual addresses, such as operands
3518 of push instruction. It is not worthwhile to complicate writing
3519 of the target hook by such cases. */
3520
3521 if (!memory_address_p (mode, x))
3522 return 1000;
3523
3524 return targetm.address_cost (x);
3525 }
3526
3527 /* If the target doesn't override, compute the cost as with arithmetic. */
3528
3529 int
3530 default_address_cost (rtx x)
3531 {
3532 return rtx_cost (x, MEM);
3533 }
3534 \f
3535
3536 unsigned HOST_WIDE_INT
3537 nonzero_bits (const_rtx x, enum machine_mode mode)
3538 {
3539 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3540 }
3541
3542 unsigned int
3543 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3544 {
3545 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3546 }
3547
3548 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3549 It avoids exponential behavior in nonzero_bits1 when X has
3550 identical subexpressions on the first or the second level. */
3551
3552 static unsigned HOST_WIDE_INT
3553 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3554 enum machine_mode known_mode,
3555 unsigned HOST_WIDE_INT known_ret)
3556 {
3557 if (x == known_x && mode == known_mode)
3558 return known_ret;
3559
3560 /* Try to find identical subexpressions. If found call
3561 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3562 precomputed value for the subexpression as KNOWN_RET. */
3563
3564 if (ARITHMETIC_P (x))
3565 {
3566 rtx x0 = XEXP (x, 0);
3567 rtx x1 = XEXP (x, 1);
3568
3569 /* Check the first level. */
3570 if (x0 == x1)
3571 return nonzero_bits1 (x, mode, x0, mode,
3572 cached_nonzero_bits (x0, mode, known_x,
3573 known_mode, known_ret));
3574
3575 /* Check the second level. */
3576 if (ARITHMETIC_P (x0)
3577 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3578 return nonzero_bits1 (x, mode, x1, mode,
3579 cached_nonzero_bits (x1, mode, known_x,
3580 known_mode, known_ret));
3581
3582 if (ARITHMETIC_P (x1)
3583 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3584 return nonzero_bits1 (x, mode, x0, mode,
3585 cached_nonzero_bits (x0, mode, known_x,
3586 known_mode, known_ret));
3587 }
3588
3589 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3590 }
3591
3592 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3593 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3594 is less useful. We can't allow both, because that results in exponential
3595 run time recursion. There is a nullstone testcase that triggered
3596 this. This macro avoids accidental uses of num_sign_bit_copies. */
3597 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3598
3599 /* Given an expression, X, compute which bits in X can be nonzero.
3600 We don't care about bits outside of those defined in MODE.
3601
3602 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3603 an arithmetic operation, we can do better. */
3604
3605 static unsigned HOST_WIDE_INT
3606 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3607 enum machine_mode known_mode,
3608 unsigned HOST_WIDE_INT known_ret)
3609 {
3610 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3611 unsigned HOST_WIDE_INT inner_nz;
3612 enum rtx_code code;
3613 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3614
3615 /* For floating-point values, assume all bits are needed. */
3616 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode))
3617 return nonzero;
3618
3619 /* If X is wider than MODE, use its mode instead. */
3620 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3621 {
3622 mode = GET_MODE (x);
3623 nonzero = GET_MODE_MASK (mode);
3624 mode_width = GET_MODE_BITSIZE (mode);
3625 }
3626
3627 if (mode_width > HOST_BITS_PER_WIDE_INT)
3628 /* Our only callers in this case look for single bit values. So
3629 just return the mode mask. Those tests will then be false. */
3630 return nonzero;
3631
3632 #ifndef WORD_REGISTER_OPERATIONS
3633 /* If MODE is wider than X, but both are a single word for both the host
3634 and target machines, we can compute this from which bits of the
3635 object might be nonzero in its own mode, taking into account the fact
3636 that on many CISC machines, accessing an object in a wider mode
3637 causes the high-order bits to become undefined. So they are
3638 not known to be zero. */
3639
3640 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3641 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3642 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3643 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3644 {
3645 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3646 known_x, known_mode, known_ret);
3647 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3648 return nonzero;
3649 }
3650 #endif
3651
3652 code = GET_CODE (x);
3653 switch (code)
3654 {
3655 case REG:
3656 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3657 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3658 all the bits above ptr_mode are known to be zero. */
3659 if (POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3660 && REG_POINTER (x))
3661 nonzero &= GET_MODE_MASK (ptr_mode);
3662 #endif
3663
3664 /* Include declared information about alignment of pointers. */
3665 /* ??? We don't properly preserve REG_POINTER changes across
3666 pointer-to-integer casts, so we can't trust it except for
3667 things that we know must be pointers. See execute/960116-1.c. */
3668 if ((x == stack_pointer_rtx
3669 || x == frame_pointer_rtx
3670 || x == arg_pointer_rtx)
3671 && REGNO_POINTER_ALIGN (REGNO (x)))
3672 {
3673 unsigned HOST_WIDE_INT alignment
3674 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3675
3676 #ifdef PUSH_ROUNDING
3677 /* If PUSH_ROUNDING is defined, it is possible for the
3678 stack to be momentarily aligned only to that amount,
3679 so we pick the least alignment. */
3680 if (x == stack_pointer_rtx && PUSH_ARGS)
3681 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3682 alignment);
3683 #endif
3684
3685 nonzero &= ~(alignment - 1);
3686 }
3687
3688 {
3689 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3690 rtx new = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3691 known_mode, known_ret,
3692 &nonzero_for_hook);
3693
3694 if (new)
3695 nonzero_for_hook &= cached_nonzero_bits (new, mode, known_x,
3696 known_mode, known_ret);
3697
3698 return nonzero_for_hook;
3699 }
3700
3701 case CONST_INT:
3702 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3703 /* If X is negative in MODE, sign-extend the value. */
3704 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3705 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3706 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3707 #endif
3708
3709 return INTVAL (x);
3710
3711 case MEM:
3712 #ifdef LOAD_EXTEND_OP
3713 /* In many, if not most, RISC machines, reading a byte from memory
3714 zeros the rest of the register. Noticing that fact saves a lot
3715 of extra zero-extends. */
3716 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3717 nonzero &= GET_MODE_MASK (GET_MODE (x));
3718 #endif
3719 break;
3720
3721 case EQ: case NE:
3722 case UNEQ: case LTGT:
3723 case GT: case GTU: case UNGT:
3724 case LT: case LTU: case UNLT:
3725 case GE: case GEU: case UNGE:
3726 case LE: case LEU: case UNLE:
3727 case UNORDERED: case ORDERED:
3728 /* If this produces an integer result, we know which bits are set.
3729 Code here used to clear bits outside the mode of X, but that is
3730 now done above. */
3731 /* Mind that MODE is the mode the caller wants to look at this
3732 operation in, and not the actual operation mode. We can wind
3733 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3734 that describes the results of a vector compare. */
3735 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3736 && mode_width <= HOST_BITS_PER_WIDE_INT)
3737 nonzero = STORE_FLAG_VALUE;
3738 break;
3739
3740 case NEG:
3741 #if 0
3742 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3743 and num_sign_bit_copies. */
3744 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3745 == GET_MODE_BITSIZE (GET_MODE (x)))
3746 nonzero = 1;
3747 #endif
3748
3749 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3750 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3751 break;
3752
3753 case ABS:
3754 #if 0
3755 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3756 and num_sign_bit_copies. */
3757 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3758 == GET_MODE_BITSIZE (GET_MODE (x)))
3759 nonzero = 1;
3760 #endif
3761 break;
3762
3763 case TRUNCATE:
3764 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3765 known_x, known_mode, known_ret)
3766 & GET_MODE_MASK (mode));
3767 break;
3768
3769 case ZERO_EXTEND:
3770 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3771 known_x, known_mode, known_ret);
3772 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3773 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3774 break;
3775
3776 case SIGN_EXTEND:
3777 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3778 Otherwise, show all the bits in the outer mode but not the inner
3779 may be nonzero. */
3780 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3781 known_x, known_mode, known_ret);
3782 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3783 {
3784 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3785 if (inner_nz
3786 & (((HOST_WIDE_INT) 1
3787 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3788 inner_nz |= (GET_MODE_MASK (mode)
3789 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3790 }
3791
3792 nonzero &= inner_nz;
3793 break;
3794
3795 case AND:
3796 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3797 known_x, known_mode, known_ret)
3798 & cached_nonzero_bits (XEXP (x, 1), mode,
3799 known_x, known_mode, known_ret);
3800 break;
3801
3802 case XOR: case IOR:
3803 case UMIN: case UMAX: case SMIN: case SMAX:
3804 {
3805 unsigned HOST_WIDE_INT nonzero0 =
3806 cached_nonzero_bits (XEXP (x, 0), mode,
3807 known_x, known_mode, known_ret);
3808
3809 /* Don't call nonzero_bits for the second time if it cannot change
3810 anything. */
3811 if ((nonzero & nonzero0) != nonzero)
3812 nonzero &= nonzero0
3813 | cached_nonzero_bits (XEXP (x, 1), mode,
3814 known_x, known_mode, known_ret);
3815 }
3816 break;
3817
3818 case PLUS: case MINUS:
3819 case MULT:
3820 case DIV: case UDIV:
3821 case MOD: case UMOD:
3822 /* We can apply the rules of arithmetic to compute the number of
3823 high- and low-order zero bits of these operations. We start by
3824 computing the width (position of the highest-order nonzero bit)
3825 and the number of low-order zero bits for each value. */
3826 {
3827 unsigned HOST_WIDE_INT nz0 =
3828 cached_nonzero_bits (XEXP (x, 0), mode,
3829 known_x, known_mode, known_ret);
3830 unsigned HOST_WIDE_INT nz1 =
3831 cached_nonzero_bits (XEXP (x, 1), mode,
3832 known_x, known_mode, known_ret);
3833 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3834 int width0 = floor_log2 (nz0) + 1;
3835 int width1 = floor_log2 (nz1) + 1;
3836 int low0 = floor_log2 (nz0 & -nz0);
3837 int low1 = floor_log2 (nz1 & -nz1);
3838 HOST_WIDE_INT op0_maybe_minusp
3839 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3840 HOST_WIDE_INT op1_maybe_minusp
3841 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3842 unsigned int result_width = mode_width;
3843 int result_low = 0;
3844
3845 switch (code)
3846 {
3847 case PLUS:
3848 result_width = MAX (width0, width1) + 1;
3849 result_low = MIN (low0, low1);
3850 break;
3851 case MINUS:
3852 result_low = MIN (low0, low1);
3853 break;
3854 case MULT:
3855 result_width = width0 + width1;
3856 result_low = low0 + low1;
3857 break;
3858 case DIV:
3859 if (width1 == 0)
3860 break;
3861 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3862 result_width = width0;
3863 break;
3864 case UDIV:
3865 if (width1 == 0)
3866 break;
3867 result_width = width0;
3868 break;
3869 case MOD:
3870 if (width1 == 0)
3871 break;
3872 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3873 result_width = MIN (width0, width1);
3874 result_low = MIN (low0, low1);
3875 break;
3876 case UMOD:
3877 if (width1 == 0)
3878 break;
3879 result_width = MIN (width0, width1);
3880 result_low = MIN (low0, low1);
3881 break;
3882 default:
3883 gcc_unreachable ();
3884 }
3885
3886 if (result_width < mode_width)
3887 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3888
3889 if (result_low > 0)
3890 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3891
3892 #ifdef POINTERS_EXTEND_UNSIGNED
3893 /* If pointers extend unsigned and this is an addition or subtraction
3894 to a pointer in Pmode, all the bits above ptr_mode are known to be
3895 zero. */
3896 if (POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3897 && (code == PLUS || code == MINUS)
3898 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3899 nonzero &= GET_MODE_MASK (ptr_mode);
3900 #endif
3901 }
3902 break;
3903
3904 case ZERO_EXTRACT:
3905 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3906 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3907 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
3908 break;
3909
3910 case SUBREG:
3911 /* If this is a SUBREG formed for a promoted variable that has
3912 been zero-extended, we know that at least the high-order bits
3913 are zero, though others might be too. */
3914
3915 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
3916 nonzero = GET_MODE_MASK (GET_MODE (x))
3917 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
3918 known_x, known_mode, known_ret);
3919
3920 /* If the inner mode is a single word for both the host and target
3921 machines, we can compute this from which bits of the inner
3922 object might be nonzero. */
3923 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
3924 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
3925 <= HOST_BITS_PER_WIDE_INT))
3926 {
3927 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
3928 known_x, known_mode, known_ret);
3929
3930 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
3931 /* If this is a typical RISC machine, we only have to worry
3932 about the way loads are extended. */
3933 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
3934 ? (((nonzero
3935 & (((unsigned HOST_WIDE_INT) 1
3936 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
3937 != 0))
3938 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
3939 || !MEM_P (SUBREG_REG (x)))
3940 #endif
3941 {
3942 /* On many CISC machines, accessing an object in a wider mode
3943 causes the high-order bits to become undefined. So they are
3944 not known to be zero. */
3945 if (GET_MODE_SIZE (GET_MODE (x))
3946 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3947 nonzero |= (GET_MODE_MASK (GET_MODE (x))
3948 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
3949 }
3950 }
3951 break;
3952
3953 case ASHIFTRT:
3954 case LSHIFTRT:
3955 case ASHIFT:
3956 case ROTATE:
3957 /* The nonzero bits are in two classes: any bits within MODE
3958 that aren't in GET_MODE (x) are always significant. The rest of the
3959 nonzero bits are those that are significant in the operand of
3960 the shift when shifted the appropriate number of bits. This
3961 shows that high-order bits are cleared by the right shift and
3962 low-order bits by left shifts. */
3963 if (GET_CODE (XEXP (x, 1)) == CONST_INT
3964 && INTVAL (XEXP (x, 1)) >= 0
3965 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
3966 {
3967 enum machine_mode inner_mode = GET_MODE (x);
3968 unsigned int width = GET_MODE_BITSIZE (inner_mode);
3969 int count = INTVAL (XEXP (x, 1));
3970 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
3971 unsigned HOST_WIDE_INT op_nonzero =
3972 cached_nonzero_bits (XEXP (x, 0), mode,
3973 known_x, known_mode, known_ret);
3974 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
3975 unsigned HOST_WIDE_INT outer = 0;
3976
3977 if (mode_width > width)
3978 outer = (op_nonzero & nonzero & ~mode_mask);
3979
3980 if (code == LSHIFTRT)
3981 inner >>= count;
3982 else if (code == ASHIFTRT)
3983 {
3984 inner >>= count;
3985
3986 /* If the sign bit may have been nonzero before the shift, we
3987 need to mark all the places it could have been copied to
3988 by the shift as possibly nonzero. */
3989 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
3990 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
3991 }
3992 else if (code == ASHIFT)
3993 inner <<= count;
3994 else
3995 inner = ((inner << (count % width)
3996 | (inner >> (width - (count % width)))) & mode_mask);
3997
3998 nonzero &= (outer | inner);
3999 }
4000 break;
4001
4002 case FFS:
4003 case POPCOUNT:
4004 /* This is at most the number of bits in the mode. */
4005 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4006 break;
4007
4008 case CLZ:
4009 /* If CLZ has a known value at zero, then the nonzero bits are
4010 that value, plus the number of bits in the mode minus one. */
4011 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4012 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4013 else
4014 nonzero = -1;
4015 break;
4016
4017 case CTZ:
4018 /* If CTZ has a known value at zero, then the nonzero bits are
4019 that value, plus the number of bits in the mode minus one. */
4020 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4021 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4022 else
4023 nonzero = -1;
4024 break;
4025
4026 case PARITY:
4027 nonzero = 1;
4028 break;
4029
4030 case IF_THEN_ELSE:
4031 {
4032 unsigned HOST_WIDE_INT nonzero_true =
4033 cached_nonzero_bits (XEXP (x, 1), mode,
4034 known_x, known_mode, known_ret);
4035
4036 /* Don't call nonzero_bits for the second time if it cannot change
4037 anything. */
4038 if ((nonzero & nonzero_true) != nonzero)
4039 nonzero &= nonzero_true
4040 | cached_nonzero_bits (XEXP (x, 2), mode,
4041 known_x, known_mode, known_ret);
4042 }
4043 break;
4044
4045 default:
4046 break;
4047 }
4048
4049 return nonzero;
4050 }
4051
4052 /* See the macro definition above. */
4053 #undef cached_num_sign_bit_copies
4054
4055 \f
4056 /* The function cached_num_sign_bit_copies is a wrapper around
4057 num_sign_bit_copies1. It avoids exponential behavior in
4058 num_sign_bit_copies1 when X has identical subexpressions on the
4059 first or the second level. */
4060
4061 static unsigned int
4062 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4063 enum machine_mode known_mode,
4064 unsigned int known_ret)
4065 {
4066 if (x == known_x && mode == known_mode)
4067 return known_ret;
4068
4069 /* Try to find identical subexpressions. If found call
4070 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4071 the precomputed value for the subexpression as KNOWN_RET. */
4072
4073 if (ARITHMETIC_P (x))
4074 {
4075 rtx x0 = XEXP (x, 0);
4076 rtx x1 = XEXP (x, 1);
4077
4078 /* Check the first level. */
4079 if (x0 == x1)
4080 return
4081 num_sign_bit_copies1 (x, mode, x0, mode,
4082 cached_num_sign_bit_copies (x0, mode, known_x,
4083 known_mode,
4084 known_ret));
4085
4086 /* Check the second level. */
4087 if (ARITHMETIC_P (x0)
4088 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4089 return
4090 num_sign_bit_copies1 (x, mode, x1, mode,
4091 cached_num_sign_bit_copies (x1, mode, known_x,
4092 known_mode,
4093 known_ret));
4094
4095 if (ARITHMETIC_P (x1)
4096 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4097 return
4098 num_sign_bit_copies1 (x, mode, x0, mode,
4099 cached_num_sign_bit_copies (x0, mode, known_x,
4100 known_mode,
4101 known_ret));
4102 }
4103
4104 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4105 }
4106
4107 /* Return the number of bits at the high-order end of X that are known to
4108 be equal to the sign bit. X will be used in mode MODE; if MODE is
4109 VOIDmode, X will be used in its own mode. The returned value will always
4110 be between 1 and the number of bits in MODE. */
4111
4112 static unsigned int
4113 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4114 enum machine_mode known_mode,
4115 unsigned int known_ret)
4116 {
4117 enum rtx_code code = GET_CODE (x);
4118 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4119 int num0, num1, result;
4120 unsigned HOST_WIDE_INT nonzero;
4121
4122 /* If we weren't given a mode, use the mode of X. If the mode is still
4123 VOIDmode, we don't know anything. Likewise if one of the modes is
4124 floating-point. */
4125
4126 if (mode == VOIDmode)
4127 mode = GET_MODE (x);
4128
4129 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x)))
4130 return 1;
4131
4132 /* For a smaller object, just ignore the high bits. */
4133 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4134 {
4135 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4136 known_x, known_mode, known_ret);
4137 return MAX (1,
4138 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4139 }
4140
4141 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4142 {
4143 #ifndef WORD_REGISTER_OPERATIONS
4144 /* If this machine does not do all register operations on the entire
4145 register and MODE is wider than the mode of X, we can say nothing
4146 at all about the high-order bits. */
4147 return 1;
4148 #else
4149 /* Likewise on machines that do, if the mode of the object is smaller
4150 than a word and loads of that size don't sign extend, we can say
4151 nothing about the high order bits. */
4152 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4153 #ifdef LOAD_EXTEND_OP
4154 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4155 #endif
4156 )
4157 return 1;
4158 #endif
4159 }
4160
4161 switch (code)
4162 {
4163 case REG:
4164
4165 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4166 /* If pointers extend signed and this is a pointer in Pmode, say that
4167 all the bits above ptr_mode are known to be sign bit copies. */
4168 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode && mode == Pmode
4169 && REG_POINTER (x))
4170 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4171 #endif
4172
4173 {
4174 unsigned int copies_for_hook = 1, copies = 1;
4175 rtx new = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4176 known_mode, known_ret,
4177 &copies_for_hook);
4178
4179 if (new)
4180 copies = cached_num_sign_bit_copies (new, mode, known_x,
4181 known_mode, known_ret);
4182
4183 if (copies > 1 || copies_for_hook > 1)
4184 return MAX (copies, copies_for_hook);
4185
4186 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4187 }
4188 break;
4189
4190 case MEM:
4191 #ifdef LOAD_EXTEND_OP
4192 /* Some RISC machines sign-extend all loads of smaller than a word. */
4193 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4194 return MAX (1, ((int) bitwidth
4195 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4196 #endif
4197 break;
4198
4199 case CONST_INT:
4200 /* If the constant is negative, take its 1's complement and remask.
4201 Then see how many zero bits we have. */
4202 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4203 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4204 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4205 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4206
4207 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4208
4209 case SUBREG:
4210 /* If this is a SUBREG for a promoted object that is sign-extended
4211 and we are looking at it in a wider mode, we know that at least the
4212 high-order bits are known to be sign bit copies. */
4213
4214 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4215 {
4216 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4217 known_x, known_mode, known_ret);
4218 return MAX ((int) bitwidth
4219 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4220 num0);
4221 }
4222
4223 /* For a smaller object, just ignore the high bits. */
4224 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4225 {
4226 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4227 known_x, known_mode, known_ret);
4228 return MAX (1, (num0
4229 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4230 - bitwidth)));
4231 }
4232
4233 #ifdef WORD_REGISTER_OPERATIONS
4234 #ifdef LOAD_EXTEND_OP
4235 /* For paradoxical SUBREGs on machines where all register operations
4236 affect the entire register, just look inside. Note that we are
4237 passing MODE to the recursive call, so the number of sign bit copies
4238 will remain relative to that mode, not the inner mode. */
4239
4240 /* This works only if loads sign extend. Otherwise, if we get a
4241 reload for the inner part, it may be loaded from the stack, and
4242 then we lose all sign bit copies that existed before the store
4243 to the stack. */
4244
4245 if ((GET_MODE_SIZE (GET_MODE (x))
4246 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4247 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4248 && MEM_P (SUBREG_REG (x)))
4249 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4250 known_x, known_mode, known_ret);
4251 #endif
4252 #endif
4253 break;
4254
4255 case SIGN_EXTRACT:
4256 if (GET_CODE (XEXP (x, 1)) == CONST_INT)
4257 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4258 break;
4259
4260 case SIGN_EXTEND:
4261 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4262 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4263 known_x, known_mode, known_ret));
4264
4265 case TRUNCATE:
4266 /* For a smaller object, just ignore the high bits. */
4267 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4268 known_x, known_mode, known_ret);
4269 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4270 - bitwidth)));
4271
4272 case NOT:
4273 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4274 known_x, known_mode, known_ret);
4275
4276 case ROTATE: case ROTATERT:
4277 /* If we are rotating left by a number of bits less than the number
4278 of sign bit copies, we can just subtract that amount from the
4279 number. */
4280 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4281 && INTVAL (XEXP (x, 1)) >= 0
4282 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4283 {
4284 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4285 known_x, known_mode, known_ret);
4286 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4287 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4288 }
4289 break;
4290
4291 case NEG:
4292 /* In general, this subtracts one sign bit copy. But if the value
4293 is known to be positive, the number of sign bit copies is the
4294 same as that of the input. Finally, if the input has just one bit
4295 that might be nonzero, all the bits are copies of the sign bit. */
4296 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4297 known_x, known_mode, known_ret);
4298 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4299 return num0 > 1 ? num0 - 1 : 1;
4300
4301 nonzero = nonzero_bits (XEXP (x, 0), mode);
4302 if (nonzero == 1)
4303 return bitwidth;
4304
4305 if (num0 > 1
4306 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4307 num0--;
4308
4309 return num0;
4310
4311 case IOR: case AND: case XOR:
4312 case SMIN: case SMAX: case UMIN: case UMAX:
4313 /* Logical operations will preserve the number of sign-bit copies.
4314 MIN and MAX operations always return one of the operands. */
4315 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4316 known_x, known_mode, known_ret);
4317 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4318 known_x, known_mode, known_ret);
4319
4320 /* If num1 is clearing some of the top bits then regardless of
4321 the other term, we are guaranteed to have at least that many
4322 high-order zero bits. */
4323 if (code == AND
4324 && num1 > 1
4325 && bitwidth <= HOST_BITS_PER_WIDE_INT
4326 && GET_CODE (XEXP (x, 1)) == CONST_INT
4327 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4328 return num1;
4329
4330 /* Similarly for IOR when setting high-order bits. */
4331 if (code == IOR
4332 && num1 > 1
4333 && bitwidth <= HOST_BITS_PER_WIDE_INT
4334 && GET_CODE (XEXP (x, 1)) == CONST_INT
4335 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4336 return num1;
4337
4338 return MIN (num0, num1);
4339
4340 case PLUS: case MINUS:
4341 /* For addition and subtraction, we can have a 1-bit carry. However,
4342 if we are subtracting 1 from a positive number, there will not
4343 be such a carry. Furthermore, if the positive number is known to
4344 be 0 or 1, we know the result is either -1 or 0. */
4345
4346 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4347 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4348 {
4349 nonzero = nonzero_bits (XEXP (x, 0), mode);
4350 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4351 return (nonzero == 1 || nonzero == 0 ? bitwidth
4352 : bitwidth - floor_log2 (nonzero) - 1);
4353 }
4354
4355 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4356 known_x, known_mode, known_ret);
4357 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4358 known_x, known_mode, known_ret);
4359 result = MAX (1, MIN (num0, num1) - 1);
4360
4361 #ifdef POINTERS_EXTEND_UNSIGNED
4362 /* If pointers extend signed and this is an addition or subtraction
4363 to a pointer in Pmode, all the bits above ptr_mode are known to be
4364 sign bit copies. */
4365 if (! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4366 && (code == PLUS || code == MINUS)
4367 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4368 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4369 - GET_MODE_BITSIZE (ptr_mode) + 1),
4370 result);
4371 #endif
4372 return result;
4373
4374 case MULT:
4375 /* The number of bits of the product is the sum of the number of
4376 bits of both terms. However, unless one of the terms if known
4377 to be positive, we must allow for an additional bit since negating
4378 a negative number can remove one sign bit copy. */
4379
4380 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4381 known_x, known_mode, known_ret);
4382 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4383 known_x, known_mode, known_ret);
4384
4385 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4386 if (result > 0
4387 && (bitwidth > HOST_BITS_PER_WIDE_INT
4388 || (((nonzero_bits (XEXP (x, 0), mode)
4389 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4390 && ((nonzero_bits (XEXP (x, 1), mode)
4391 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4392 result--;
4393
4394 return MAX (1, result);
4395
4396 case UDIV:
4397 /* The result must be <= the first operand. If the first operand
4398 has the high bit set, we know nothing about the number of sign
4399 bit copies. */
4400 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4401 return 1;
4402 else if ((nonzero_bits (XEXP (x, 0), mode)
4403 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4404 return 1;
4405 else
4406 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4407 known_x, known_mode, known_ret);
4408
4409 case UMOD:
4410 /* The result must be <= the second operand. */
4411 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4412 known_x, known_mode, known_ret);
4413
4414 case DIV:
4415 /* Similar to unsigned division, except that we have to worry about
4416 the case where the divisor is negative, in which case we have
4417 to add 1. */
4418 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4419 known_x, known_mode, known_ret);
4420 if (result > 1
4421 && (bitwidth > HOST_BITS_PER_WIDE_INT
4422 || (nonzero_bits (XEXP (x, 1), mode)
4423 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4424 result--;
4425
4426 return result;
4427
4428 case MOD:
4429 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4430 known_x, known_mode, known_ret);
4431 if (result > 1
4432 && (bitwidth > HOST_BITS_PER_WIDE_INT
4433 || (nonzero_bits (XEXP (x, 1), mode)
4434 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4435 result--;
4436
4437 return result;
4438
4439 case ASHIFTRT:
4440 /* Shifts by a constant add to the number of bits equal to the
4441 sign bit. */
4442 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4443 known_x, known_mode, known_ret);
4444 if (GET_CODE (XEXP (x, 1)) == CONST_INT
4445 && INTVAL (XEXP (x, 1)) > 0)
4446 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4447
4448 return num0;
4449
4450 case ASHIFT:
4451 /* Left shifts destroy copies. */
4452 if (GET_CODE (XEXP (x, 1)) != CONST_INT
4453 || INTVAL (XEXP (x, 1)) < 0
4454 || INTVAL (XEXP (x, 1)) >= (int) bitwidth)
4455 return 1;
4456
4457 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4458 known_x, known_mode, known_ret);
4459 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4460
4461 case IF_THEN_ELSE:
4462 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4463 known_x, known_mode, known_ret);
4464 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4465 known_x, known_mode, known_ret);
4466 return MIN (num0, num1);
4467
4468 case EQ: case NE: case GE: case GT: case LE: case LT:
4469 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4470 case GEU: case GTU: case LEU: case LTU:
4471 case UNORDERED: case ORDERED:
4472 /* If the constant is negative, take its 1's complement and remask.
4473 Then see how many zero bits we have. */
4474 nonzero = STORE_FLAG_VALUE;
4475 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4476 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4477 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4478
4479 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4480
4481 default:
4482 break;
4483 }
4484
4485 /* If we haven't been able to figure it out by one of the above rules,
4486 see if some of the high-order bits are known to be zero. If so,
4487 count those bits and return one less than that amount. If we can't
4488 safely compute the mask for this mode, always return BITWIDTH. */
4489
4490 bitwidth = GET_MODE_BITSIZE (mode);
4491 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4492 return 1;
4493
4494 nonzero = nonzero_bits (x, mode);
4495 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4496 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4497 }
4498
4499 /* Calculate the rtx_cost of a single instruction. A return value of
4500 zero indicates an instruction pattern without a known cost. */
4501
4502 int
4503 insn_rtx_cost (rtx pat)
4504 {
4505 int i, cost;
4506 rtx set;
4507
4508 /* Extract the single set rtx from the instruction pattern.
4509 We can't use single_set since we only have the pattern. */
4510 if (GET_CODE (pat) == SET)
4511 set = pat;
4512 else if (GET_CODE (pat) == PARALLEL)
4513 {
4514 set = NULL_RTX;
4515 for (i = 0; i < XVECLEN (pat, 0); i++)
4516 {
4517 rtx x = XVECEXP (pat, 0, i);
4518 if (GET_CODE (x) == SET)
4519 {
4520 if (set)
4521 return 0;
4522 set = x;
4523 }
4524 }
4525 if (!set)
4526 return 0;
4527 }
4528 else
4529 return 0;
4530
4531 cost = rtx_cost (SET_SRC (set), SET);
4532 return cost > 0 ? cost : COSTS_N_INSNS (1);
4533 }
4534
4535 /* Given an insn INSN and condition COND, return the condition in a
4536 canonical form to simplify testing by callers. Specifically:
4537
4538 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4539 (2) Both operands will be machine operands; (cc0) will have been replaced.
4540 (3) If an operand is a constant, it will be the second operand.
4541 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4542 for GE, GEU, and LEU.
4543
4544 If the condition cannot be understood, or is an inequality floating-point
4545 comparison which needs to be reversed, 0 will be returned.
4546
4547 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4548
4549 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4550 insn used in locating the condition was found. If a replacement test
4551 of the condition is desired, it should be placed in front of that
4552 insn and we will be sure that the inputs are still valid.
4553
4554 If WANT_REG is nonzero, we wish the condition to be relative to that
4555 register, if possible. Therefore, do not canonicalize the condition
4556 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4557 to be a compare to a CC mode register.
4558
4559 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4560 and at INSN. */
4561
4562 rtx
4563 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4564 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4565 {
4566 enum rtx_code code;
4567 rtx prev = insn;
4568 const_rtx set;
4569 rtx tem;
4570 rtx op0, op1;
4571 int reverse_code = 0;
4572 enum machine_mode mode;
4573 basic_block bb = BLOCK_FOR_INSN (insn);
4574
4575 code = GET_CODE (cond);
4576 mode = GET_MODE (cond);
4577 op0 = XEXP (cond, 0);
4578 op1 = XEXP (cond, 1);
4579
4580 if (reverse)
4581 code = reversed_comparison_code (cond, insn);
4582 if (code == UNKNOWN)
4583 return 0;
4584
4585 if (earliest)
4586 *earliest = insn;
4587
4588 /* If we are comparing a register with zero, see if the register is set
4589 in the previous insn to a COMPARE or a comparison operation. Perform
4590 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4591 in cse.c */
4592
4593 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4594 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4595 && op1 == CONST0_RTX (GET_MODE (op0))
4596 && op0 != want_reg)
4597 {
4598 /* Set nonzero when we find something of interest. */
4599 rtx x = 0;
4600
4601 #ifdef HAVE_cc0
4602 /* If comparison with cc0, import actual comparison from compare
4603 insn. */
4604 if (op0 == cc0_rtx)
4605 {
4606 if ((prev = prev_nonnote_insn (prev)) == 0
4607 || !NONJUMP_INSN_P (prev)
4608 || (set = single_set (prev)) == 0
4609 || SET_DEST (set) != cc0_rtx)
4610 return 0;
4611
4612 op0 = SET_SRC (set);
4613 op1 = CONST0_RTX (GET_MODE (op0));
4614 if (earliest)
4615 *earliest = prev;
4616 }
4617 #endif
4618
4619 /* If this is a COMPARE, pick up the two things being compared. */
4620 if (GET_CODE (op0) == COMPARE)
4621 {
4622 op1 = XEXP (op0, 1);
4623 op0 = XEXP (op0, 0);
4624 continue;
4625 }
4626 else if (!REG_P (op0))
4627 break;
4628
4629 /* Go back to the previous insn. Stop if it is not an INSN. We also
4630 stop if it isn't a single set or if it has a REG_INC note because
4631 we don't want to bother dealing with it. */
4632
4633 if ((prev = prev_nonnote_insn (prev)) == 0
4634 || !NONJUMP_INSN_P (prev)
4635 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4636 /* In cfglayout mode, there do not have to be labels at the
4637 beginning of a block, or jumps at the end, so the previous
4638 conditions would not stop us when we reach bb boundary. */
4639 || BLOCK_FOR_INSN (prev) != bb)
4640 break;
4641
4642 set = set_of (op0, prev);
4643
4644 if (set
4645 && (GET_CODE (set) != SET
4646 || !rtx_equal_p (SET_DEST (set), op0)))
4647 break;
4648
4649 /* If this is setting OP0, get what it sets it to if it looks
4650 relevant. */
4651 if (set)
4652 {
4653 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4654 #ifdef FLOAT_STORE_FLAG_VALUE
4655 REAL_VALUE_TYPE fsfv;
4656 #endif
4657
4658 /* ??? We may not combine comparisons done in a CCmode with
4659 comparisons not done in a CCmode. This is to aid targets
4660 like Alpha that have an IEEE compliant EQ instruction, and
4661 a non-IEEE compliant BEQ instruction. The use of CCmode is
4662 actually artificial, simply to prevent the combination, but
4663 should not affect other platforms.
4664
4665 However, we must allow VOIDmode comparisons to match either
4666 CCmode or non-CCmode comparison, because some ports have
4667 modeless comparisons inside branch patterns.
4668
4669 ??? This mode check should perhaps look more like the mode check
4670 in simplify_comparison in combine. */
4671
4672 if ((GET_CODE (SET_SRC (set)) == COMPARE
4673 || (((code == NE
4674 || (code == LT
4675 && GET_MODE_CLASS (inner_mode) == MODE_INT
4676 && (GET_MODE_BITSIZE (inner_mode)
4677 <= HOST_BITS_PER_WIDE_INT)
4678 && (STORE_FLAG_VALUE
4679 & ((HOST_WIDE_INT) 1
4680 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4681 #ifdef FLOAT_STORE_FLAG_VALUE
4682 || (code == LT
4683 && SCALAR_FLOAT_MODE_P (inner_mode)
4684 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4685 REAL_VALUE_NEGATIVE (fsfv)))
4686 #endif
4687 ))
4688 && COMPARISON_P (SET_SRC (set))))
4689 && (((GET_MODE_CLASS (mode) == MODE_CC)
4690 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4691 || mode == VOIDmode || inner_mode == VOIDmode))
4692 x = SET_SRC (set);
4693 else if (((code == EQ
4694 || (code == GE
4695 && (GET_MODE_BITSIZE (inner_mode)
4696 <= HOST_BITS_PER_WIDE_INT)
4697 && GET_MODE_CLASS (inner_mode) == MODE_INT
4698 && (STORE_FLAG_VALUE
4699 & ((HOST_WIDE_INT) 1
4700 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4701 #ifdef FLOAT_STORE_FLAG_VALUE
4702 || (code == GE
4703 && SCALAR_FLOAT_MODE_P (inner_mode)
4704 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4705 REAL_VALUE_NEGATIVE (fsfv)))
4706 #endif
4707 ))
4708 && COMPARISON_P (SET_SRC (set))
4709 && (((GET_MODE_CLASS (mode) == MODE_CC)
4710 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4711 || mode == VOIDmode || inner_mode == VOIDmode))
4712
4713 {
4714 reverse_code = 1;
4715 x = SET_SRC (set);
4716 }
4717 else
4718 break;
4719 }
4720
4721 else if (reg_set_p (op0, prev))
4722 /* If this sets OP0, but not directly, we have to give up. */
4723 break;
4724
4725 if (x)
4726 {
4727 /* If the caller is expecting the condition to be valid at INSN,
4728 make sure X doesn't change before INSN. */
4729 if (valid_at_insn_p)
4730 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4731 break;
4732 if (COMPARISON_P (x))
4733 code = GET_CODE (x);
4734 if (reverse_code)
4735 {
4736 code = reversed_comparison_code (x, prev);
4737 if (code == UNKNOWN)
4738 return 0;
4739 reverse_code = 0;
4740 }
4741
4742 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4743 if (earliest)
4744 *earliest = prev;
4745 }
4746 }
4747
4748 /* If constant is first, put it last. */
4749 if (CONSTANT_P (op0))
4750 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4751
4752 /* If OP0 is the result of a comparison, we weren't able to find what
4753 was really being compared, so fail. */
4754 if (!allow_cc_mode
4755 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4756 return 0;
4757
4758 /* Canonicalize any ordered comparison with integers involving equality
4759 if we can do computations in the relevant mode and we do not
4760 overflow. */
4761
4762 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4763 && GET_CODE (op1) == CONST_INT
4764 && GET_MODE (op0) != VOIDmode
4765 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4766 {
4767 HOST_WIDE_INT const_val = INTVAL (op1);
4768 unsigned HOST_WIDE_INT uconst_val = const_val;
4769 unsigned HOST_WIDE_INT max_val
4770 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4771
4772 switch (code)
4773 {
4774 case LE:
4775 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4776 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4777 break;
4778
4779 /* When cross-compiling, const_val might be sign-extended from
4780 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4781 case GE:
4782 if ((HOST_WIDE_INT) (const_val & max_val)
4783 != (((HOST_WIDE_INT) 1
4784 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4785 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4786 break;
4787
4788 case LEU:
4789 if (uconst_val < max_val)
4790 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4791 break;
4792
4793 case GEU:
4794 if (uconst_val != 0)
4795 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4796 break;
4797
4798 default:
4799 break;
4800 }
4801 }
4802
4803 /* Never return CC0; return zero instead. */
4804 if (CC0_P (op0))
4805 return 0;
4806
4807 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4808 }
4809
4810 /* Given a jump insn JUMP, return the condition that will cause it to branch
4811 to its JUMP_LABEL. If the condition cannot be understood, or is an
4812 inequality floating-point comparison which needs to be reversed, 0 will
4813 be returned.
4814
4815 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4816 insn used in locating the condition was found. If a replacement test
4817 of the condition is desired, it should be placed in front of that
4818 insn and we will be sure that the inputs are still valid. If EARLIEST
4819 is null, the returned condition will be valid at INSN.
4820
4821 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4822 compare CC mode register.
4823
4824 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4825
4826 rtx
4827 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4828 {
4829 rtx cond;
4830 int reverse;
4831 rtx set;
4832
4833 /* If this is not a standard conditional jump, we can't parse it. */
4834 if (!JUMP_P (jump)
4835 || ! any_condjump_p (jump))
4836 return 0;
4837 set = pc_set (jump);
4838
4839 cond = XEXP (SET_SRC (set), 0);
4840
4841 /* If this branches to JUMP_LABEL when the condition is false, reverse
4842 the condition. */
4843 reverse
4844 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4845 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4846
4847 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4848 allow_cc_mode, valid_at_insn_p);
4849 }
4850
4851 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4852 TARGET_MODE_REP_EXTENDED.
4853
4854 Note that we assume that the property of
4855 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4856 narrower than mode B. I.e., if A is a mode narrower than B then in
4857 order to be able to operate on it in mode B, mode A needs to
4858 satisfy the requirements set by the representation of mode B. */
4859
4860 static void
4861 init_num_sign_bit_copies_in_rep (void)
4862 {
4863 enum machine_mode mode, in_mode;
4864
4865 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4866 in_mode = GET_MODE_WIDER_MODE (mode))
4867 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4868 mode = GET_MODE_WIDER_MODE (mode))
4869 {
4870 enum machine_mode i;
4871
4872 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4873 extends to the next widest mode. */
4874 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4875 || GET_MODE_WIDER_MODE (mode) == in_mode);
4876
4877 /* We are in in_mode. Count how many bits outside of mode
4878 have to be copies of the sign-bit. */
4879 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4880 {
4881 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4882
4883 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
4884 /* We can only check sign-bit copies starting from the
4885 top-bit. In order to be able to check the bits we
4886 have already seen we pretend that subsequent bits
4887 have to be sign-bit copies too. */
4888 || num_sign_bit_copies_in_rep [in_mode][mode])
4889 num_sign_bit_copies_in_rep [in_mode][mode]
4890 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
4891 }
4892 }
4893 }
4894
4895 /* Suppose that truncation from the machine mode of X to MODE is not a
4896 no-op. See if there is anything special about X so that we can
4897 assume it already contains a truncated value of MODE. */
4898
4899 bool
4900 truncated_to_mode (enum machine_mode mode, const_rtx x)
4901 {
4902 /* This register has already been used in MODE without explicit
4903 truncation. */
4904 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
4905 return true;
4906
4907 /* See if we already satisfy the requirements of MODE. If yes we
4908 can just switch to MODE. */
4909 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
4910 && (num_sign_bit_copies (x, GET_MODE (x))
4911 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
4912 return true;
4913
4914 return false;
4915 }
4916 \f
4917 /* Initialize non_rtx_starting_operands, which is used to speed up
4918 for_each_rtx. */
4919 void
4920 init_rtlanal (void)
4921 {
4922 int i;
4923 for (i = 0; i < NUM_RTX_CODE; i++)
4924 {
4925 const char *format = GET_RTX_FORMAT (i);
4926 const char *first = strpbrk (format, "eEV");
4927 non_rtx_starting_operands[i] = first ? first - format : -1;
4928 }
4929
4930 init_num_sign_bit_copies_in_rep ();
4931 }
4932 \f
4933 /* Check whether this is a constant pool constant. */
4934 bool
4935 constant_pool_constant_p (rtx x)
4936 {
4937 x = avoid_constant_pool_reference (x);
4938 return GET_CODE (x) == CONST_DOUBLE;
4939 }
4940