re PR middle-end/70245 (Miscompilation of ICU on i386 with atom tuning starting with...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "target.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "predict.h"
29 #include "df.h"
30 #include "tm_p.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
34 #include "recog.h"
35 #include "addresses.h"
36 #include "rtl-iter.h"
37
38 /* Forward declarations */
39 static void set_of_1 (rtx, const_rtx, void *);
40 static bool covers_regno_p (const_rtx, unsigned int);
41 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
42 static int computed_jump_p_1 (const_rtx);
43 static void parms_set (rtx, const_rtx, void *);
44
45 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, machine_mode,
46 const_rtx, machine_mode,
47 unsigned HOST_WIDE_INT);
48 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, machine_mode,
49 const_rtx, machine_mode,
50 unsigned HOST_WIDE_INT);
51 static unsigned int cached_num_sign_bit_copies (const_rtx, machine_mode, const_rtx,
52 machine_mode,
53 unsigned int);
54 static unsigned int num_sign_bit_copies1 (const_rtx, machine_mode, const_rtx,
55 machine_mode, unsigned int);
56
57 rtx_subrtx_bound_info rtx_all_subrtx_bounds[NUM_RTX_CODE];
58 rtx_subrtx_bound_info rtx_nonconst_subrtx_bounds[NUM_RTX_CODE];
59
60 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
61 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
62 SIGN_EXTEND then while narrowing we also have to enforce the
63 representation and sign-extend the value to mode DESTINATION_REP.
64
65 If the value is already sign-extended to DESTINATION_REP mode we
66 can just switch to DESTINATION mode on it. For each pair of
67 integral modes SOURCE and DESTINATION, when truncating from SOURCE
68 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
69 contains the number of high-order bits in SOURCE that have to be
70 copies of the sign-bit so that we can do this mode-switch to
71 DESTINATION. */
72
73 static unsigned int
74 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
75 \f
76 /* Store X into index I of ARRAY. ARRAY is known to have at least I
77 elements. Return the new base of ARRAY. */
78
79 template <typename T>
80 typename T::value_type *
81 generic_subrtx_iterator <T>::add_single_to_queue (array_type &array,
82 value_type *base,
83 size_t i, value_type x)
84 {
85 if (base == array.stack)
86 {
87 if (i < LOCAL_ELEMS)
88 {
89 base[i] = x;
90 return base;
91 }
92 gcc_checking_assert (i == LOCAL_ELEMS);
93 /* A previous iteration might also have moved from the stack to the
94 heap, in which case the heap array will already be big enough. */
95 if (vec_safe_length (array.heap) <= i)
96 vec_safe_grow (array.heap, i + 1);
97 base = array.heap->address ();
98 memcpy (base, array.stack, sizeof (array.stack));
99 base[LOCAL_ELEMS] = x;
100 return base;
101 }
102 unsigned int length = array.heap->length ();
103 if (length > i)
104 {
105 gcc_checking_assert (base == array.heap->address ());
106 base[i] = x;
107 return base;
108 }
109 else
110 {
111 gcc_checking_assert (i == length);
112 vec_safe_push (array.heap, x);
113 return array.heap->address ();
114 }
115 }
116
117 /* Add the subrtxes of X to worklist ARRAY, starting at END. Return the
118 number of elements added to the worklist. */
119
120 template <typename T>
121 size_t
122 generic_subrtx_iterator <T>::add_subrtxes_to_queue (array_type &array,
123 value_type *base,
124 size_t end, rtx_type x)
125 {
126 enum rtx_code code = GET_CODE (x);
127 const char *format = GET_RTX_FORMAT (code);
128 size_t orig_end = end;
129 if (__builtin_expect (INSN_P (x), false))
130 {
131 /* Put the pattern at the top of the queue, since that's what
132 we're likely to want most. It also allows for the SEQUENCE
133 code below. */
134 for (int i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; --i)
135 if (format[i] == 'e')
136 {
137 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
138 if (__builtin_expect (end < LOCAL_ELEMS, true))
139 base[end++] = subx;
140 else
141 base = add_single_to_queue (array, base, end++, subx);
142 }
143 }
144 else
145 for (int i = 0; format[i]; ++i)
146 if (format[i] == 'e')
147 {
148 value_type subx = T::get_value (x->u.fld[i].rt_rtx);
149 if (__builtin_expect (end < LOCAL_ELEMS, true))
150 base[end++] = subx;
151 else
152 base = add_single_to_queue (array, base, end++, subx);
153 }
154 else if (format[i] == 'E')
155 {
156 unsigned int length = GET_NUM_ELEM (x->u.fld[i].rt_rtvec);
157 rtx *vec = x->u.fld[i].rt_rtvec->elem;
158 if (__builtin_expect (end + length <= LOCAL_ELEMS, true))
159 for (unsigned int j = 0; j < length; j++)
160 base[end++] = T::get_value (vec[j]);
161 else
162 for (unsigned int j = 0; j < length; j++)
163 base = add_single_to_queue (array, base, end++,
164 T::get_value (vec[j]));
165 if (code == SEQUENCE && end == length)
166 /* If the subrtxes of the sequence fill the entire array then
167 we know that no other parts of a containing insn are queued.
168 The caller is therefore iterating over the sequence as a
169 PATTERN (...), so we also want the patterns of the
170 subinstructions. */
171 for (unsigned int j = 0; j < length; j++)
172 {
173 typename T::rtx_type x = T::get_rtx (base[j]);
174 if (INSN_P (x))
175 base[j] = T::get_value (PATTERN (x));
176 }
177 }
178 return end - orig_end;
179 }
180
181 template <typename T>
182 void
183 generic_subrtx_iterator <T>::free_array (array_type &array)
184 {
185 vec_free (array.heap);
186 }
187
188 template <typename T>
189 const size_t generic_subrtx_iterator <T>::LOCAL_ELEMS;
190
191 template class generic_subrtx_iterator <const_rtx_accessor>;
192 template class generic_subrtx_iterator <rtx_var_accessor>;
193 template class generic_subrtx_iterator <rtx_ptr_accessor>;
194
195 /* Return 1 if the value of X is unstable
196 (would be different at a different point in the program).
197 The frame pointer, arg pointer, etc. are considered stable
198 (within one function) and so is anything marked `unchanging'. */
199
200 int
201 rtx_unstable_p (const_rtx x)
202 {
203 const RTX_CODE code = GET_CODE (x);
204 int i;
205 const char *fmt;
206
207 switch (code)
208 {
209 case MEM:
210 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
211
212 case CONST:
213 CASE_CONST_ANY:
214 case SYMBOL_REF:
215 case LABEL_REF:
216 return 0;
217
218 case REG:
219 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
220 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
221 /* The arg pointer varies if it is not a fixed register. */
222 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
223 return 0;
224 /* ??? When call-clobbered, the value is stable modulo the restore
225 that must happen after a call. This currently screws up local-alloc
226 into believing that the restore is not needed. */
227 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
228 return 0;
229 return 1;
230
231 case ASM_OPERANDS:
232 if (MEM_VOLATILE_P (x))
233 return 1;
234
235 /* Fall through. */
236
237 default:
238 break;
239 }
240
241 fmt = GET_RTX_FORMAT (code);
242 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
243 if (fmt[i] == 'e')
244 {
245 if (rtx_unstable_p (XEXP (x, i)))
246 return 1;
247 }
248 else if (fmt[i] == 'E')
249 {
250 int j;
251 for (j = 0; j < XVECLEN (x, i); j++)
252 if (rtx_unstable_p (XVECEXP (x, i, j)))
253 return 1;
254 }
255
256 return 0;
257 }
258
259 /* Return 1 if X has a value that can vary even between two
260 executions of the program. 0 means X can be compared reliably
261 against certain constants or near-constants.
262 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
263 zero, we are slightly more conservative.
264 The frame pointer and the arg pointer are considered constant. */
265
266 bool
267 rtx_varies_p (const_rtx x, bool for_alias)
268 {
269 RTX_CODE code;
270 int i;
271 const char *fmt;
272
273 if (!x)
274 return 0;
275
276 code = GET_CODE (x);
277 switch (code)
278 {
279 case MEM:
280 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
281
282 case CONST:
283 CASE_CONST_ANY:
284 case SYMBOL_REF:
285 case LABEL_REF:
286 return 0;
287
288 case REG:
289 /* Note that we have to test for the actual rtx used for the frame
290 and arg pointers and not just the register number in case we have
291 eliminated the frame and/or arg pointer and are using it
292 for pseudos. */
293 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
294 /* The arg pointer varies if it is not a fixed register. */
295 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
296 return 0;
297 if (x == pic_offset_table_rtx
298 /* ??? When call-clobbered, the value is stable modulo the restore
299 that must happen after a call. This currently screws up
300 local-alloc into believing that the restore is not needed, so we
301 must return 0 only if we are called from alias analysis. */
302 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
303 return 0;
304 return 1;
305
306 case LO_SUM:
307 /* The operand 0 of a LO_SUM is considered constant
308 (in fact it is related specifically to operand 1)
309 during alias analysis. */
310 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
311 || rtx_varies_p (XEXP (x, 1), for_alias);
312
313 case ASM_OPERANDS:
314 if (MEM_VOLATILE_P (x))
315 return 1;
316
317 /* Fall through. */
318
319 default:
320 break;
321 }
322
323 fmt = GET_RTX_FORMAT (code);
324 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
325 if (fmt[i] == 'e')
326 {
327 if (rtx_varies_p (XEXP (x, i), for_alias))
328 return 1;
329 }
330 else if (fmt[i] == 'E')
331 {
332 int j;
333 for (j = 0; j < XVECLEN (x, i); j++)
334 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
335 return 1;
336 }
337
338 return 0;
339 }
340
341 /* Compute an approximation for the offset between the register
342 FROM and TO for the current function, as it was at the start
343 of the routine. */
344
345 static HOST_WIDE_INT
346 get_initial_register_offset (int from, int to)
347 {
348 #ifdef ELIMINABLE_REGS
349 static const struct elim_table_t
350 {
351 const int from;
352 const int to;
353 } table[] = ELIMINABLE_REGS;
354 HOST_WIDE_INT offset1, offset2;
355 unsigned int i, j;
356
357 if (to == from)
358 return 0;
359
360 /* It is not safe to call INITIAL_ELIMINATION_OFFSET
361 before the reload pass. We need to give at least
362 an estimation for the resulting frame size. */
363 if (! reload_completed)
364 {
365 offset1 = crtl->outgoing_args_size + get_frame_size ();
366 #if !STACK_GROWS_DOWNWARD
367 offset1 = - offset1;
368 #endif
369 if (to == STACK_POINTER_REGNUM)
370 return offset1;
371 else if (from == STACK_POINTER_REGNUM)
372 return - offset1;
373 else
374 return 0;
375 }
376
377 for (i = 0; i < ARRAY_SIZE (table); i++)
378 if (table[i].from == from)
379 {
380 if (table[i].to == to)
381 {
382 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
383 offset1);
384 return offset1;
385 }
386 for (j = 0; j < ARRAY_SIZE (table); j++)
387 {
388 if (table[j].to == to
389 && table[j].from == table[i].to)
390 {
391 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
392 offset1);
393 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
394 offset2);
395 return offset1 + offset2;
396 }
397 if (table[j].from == to
398 && table[j].to == table[i].to)
399 {
400 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
401 offset1);
402 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
403 offset2);
404 return offset1 - offset2;
405 }
406 }
407 }
408 else if (table[i].to == from)
409 {
410 if (table[i].from == to)
411 {
412 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
413 offset1);
414 return - offset1;
415 }
416 for (j = 0; j < ARRAY_SIZE (table); j++)
417 {
418 if (table[j].to == to
419 && table[j].from == table[i].from)
420 {
421 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
422 offset1);
423 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
424 offset2);
425 return - offset1 + offset2;
426 }
427 if (table[j].from == to
428 && table[j].to == table[i].from)
429 {
430 INITIAL_ELIMINATION_OFFSET (table[i].from, table[i].to,
431 offset1);
432 INITIAL_ELIMINATION_OFFSET (table[j].from, table[j].to,
433 offset2);
434 return - offset1 - offset2;
435 }
436 }
437 }
438
439 /* If the requested register combination was not found,
440 try a different more simple combination. */
441 if (from == ARG_POINTER_REGNUM)
442 return get_initial_register_offset (HARD_FRAME_POINTER_REGNUM, to);
443 else if (to == ARG_POINTER_REGNUM)
444 return get_initial_register_offset (from, HARD_FRAME_POINTER_REGNUM);
445 else if (from == HARD_FRAME_POINTER_REGNUM)
446 return get_initial_register_offset (FRAME_POINTER_REGNUM, to);
447 else if (to == HARD_FRAME_POINTER_REGNUM)
448 return get_initial_register_offset (from, FRAME_POINTER_REGNUM);
449 else
450 return 0;
451
452 #else
453 HOST_WIDE_INT offset;
454
455 if (to == from)
456 return 0;
457
458 if (reload_completed)
459 {
460 INITIAL_FRAME_POINTER_OFFSET (offset);
461 }
462 else
463 {
464 offset = crtl->outgoing_args_size + get_frame_size ();
465 #if !STACK_GROWS_DOWNWARD
466 offset = - offset;
467 #endif
468 }
469
470 if (to == STACK_POINTER_REGNUM)
471 return offset;
472 else if (from == STACK_POINTER_REGNUM)
473 return - offset;
474 else
475 return 0;
476
477 #endif
478 }
479
480 /* Return nonzero if the use of X+OFFSET as an address in a MEM with SIZE
481 bytes can cause a trap. MODE is the mode of the MEM (not that of X) and
482 UNALIGNED_MEMS controls whether nonzero is returned for unaligned memory
483 references on strict alignment machines. */
484
485 static int
486 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
487 machine_mode mode, bool unaligned_mems)
488 {
489 enum rtx_code code = GET_CODE (x);
490
491 /* The offset must be a multiple of the mode size if we are considering
492 unaligned memory references on strict alignment machines. */
493 if (STRICT_ALIGNMENT && unaligned_mems && GET_MODE_SIZE (mode) != 0)
494 {
495 HOST_WIDE_INT actual_offset = offset;
496
497 #ifdef SPARC_STACK_BOUNDARY_HACK
498 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
499 the real alignment of %sp. However, when it does this, the
500 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
501 if (SPARC_STACK_BOUNDARY_HACK
502 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
503 actual_offset -= STACK_POINTER_OFFSET;
504 #endif
505
506 if (actual_offset % GET_MODE_SIZE (mode) != 0)
507 return 1;
508 }
509
510 switch (code)
511 {
512 case SYMBOL_REF:
513 if (SYMBOL_REF_WEAK (x))
514 return 1;
515 if (!CONSTANT_POOL_ADDRESS_P (x))
516 {
517 tree decl;
518 HOST_WIDE_INT decl_size;
519
520 if (offset < 0)
521 return 1;
522 if (size == 0)
523 size = GET_MODE_SIZE (mode);
524 if (size == 0)
525 return offset != 0;
526
527 /* If the size of the access or of the symbol is unknown,
528 assume the worst. */
529 decl = SYMBOL_REF_DECL (x);
530
531 /* Else check that the access is in bounds. TODO: restructure
532 expr_size/tree_expr_size/int_expr_size and just use the latter. */
533 if (!decl)
534 decl_size = -1;
535 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
536 decl_size = (tree_fits_shwi_p (DECL_SIZE_UNIT (decl))
537 ? tree_to_shwi (DECL_SIZE_UNIT (decl))
538 : -1);
539 else if (TREE_CODE (decl) == STRING_CST)
540 decl_size = TREE_STRING_LENGTH (decl);
541 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
542 decl_size = int_size_in_bytes (TREE_TYPE (decl));
543 else
544 decl_size = -1;
545
546 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
547 }
548
549 return 0;
550
551 case LABEL_REF:
552 return 0;
553
554 case REG:
555 /* Stack references are assumed not to trap, but we need to deal with
556 nonsensical offsets. */
557 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
558 || x == stack_pointer_rtx
559 /* The arg pointer varies if it is not a fixed register. */
560 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
561 {
562 #ifdef RED_ZONE_SIZE
563 HOST_WIDE_INT red_zone_size = RED_ZONE_SIZE;
564 #else
565 HOST_WIDE_INT red_zone_size = 0;
566 #endif
567 HOST_WIDE_INT stack_boundary = PREFERRED_STACK_BOUNDARY
568 / BITS_PER_UNIT;
569 HOST_WIDE_INT low_bound, high_bound;
570
571 if (size == 0)
572 size = GET_MODE_SIZE (mode);
573
574 if (x == frame_pointer_rtx)
575 {
576 if (FRAME_GROWS_DOWNWARD)
577 {
578 high_bound = STARTING_FRAME_OFFSET;
579 low_bound = high_bound - get_frame_size ();
580 }
581 else
582 {
583 low_bound = STARTING_FRAME_OFFSET;
584 high_bound = low_bound + get_frame_size ();
585 }
586 }
587 else if (x == hard_frame_pointer_rtx)
588 {
589 HOST_WIDE_INT sp_offset
590 = get_initial_register_offset (STACK_POINTER_REGNUM,
591 HARD_FRAME_POINTER_REGNUM);
592 HOST_WIDE_INT ap_offset
593 = get_initial_register_offset (ARG_POINTER_REGNUM,
594 HARD_FRAME_POINTER_REGNUM);
595
596 #if STACK_GROWS_DOWNWARD
597 low_bound = sp_offset - red_zone_size - stack_boundary;
598 high_bound = ap_offset
599 + FIRST_PARM_OFFSET (current_function_decl)
600 #if !ARGS_GROW_DOWNWARD
601 + crtl->args.size
602 #endif
603 + stack_boundary;
604 #else
605 high_bound = sp_offset + red_zone_size + stack_boundary;
606 low_bound = ap_offset
607 + FIRST_PARM_OFFSET (current_function_decl)
608 #if ARGS_GROW_DOWNWARD
609 - crtl->args.size
610 #endif
611 - stack_boundary;
612 #endif
613 }
614 else if (x == stack_pointer_rtx)
615 {
616 HOST_WIDE_INT ap_offset
617 = get_initial_register_offset (ARG_POINTER_REGNUM,
618 STACK_POINTER_REGNUM);
619
620 #if STACK_GROWS_DOWNWARD
621 low_bound = - red_zone_size - stack_boundary;
622 high_bound = ap_offset
623 + FIRST_PARM_OFFSET (current_function_decl)
624 #if !ARGS_GROW_DOWNWARD
625 + crtl->args.size
626 #endif
627 + stack_boundary;
628 #else
629 high_bound = red_zone_size + stack_boundary;
630 low_bound = ap_offset
631 + FIRST_PARM_OFFSET (current_function_decl)
632 #if ARGS_GROW_DOWNWARD
633 - crtl->args.size
634 #endif
635 - stack_boundary;
636 #endif
637 }
638 else
639 {
640 /* We assume that accesses are safe to at least the
641 next stack boundary.
642 Examples are varargs and __builtin_return_address. */
643 #if ARGS_GROW_DOWNWARD
644 high_bound = FIRST_PARM_OFFSET (current_function_decl)
645 + stack_boundary;
646 low_bound = FIRST_PARM_OFFSET (current_function_decl)
647 - crtl->args.size - stack_boundary;
648 #else
649 low_bound = FIRST_PARM_OFFSET (current_function_decl)
650 - stack_boundary;
651 high_bound = FIRST_PARM_OFFSET (current_function_decl)
652 + crtl->args.size + stack_boundary;
653 #endif
654 }
655
656 if (offset >= low_bound && offset <= high_bound - size)
657 return 0;
658 return 1;
659 }
660 /* All of the virtual frame registers are stack references. */
661 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
662 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
663 return 0;
664 return 1;
665
666 case CONST:
667 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
668 mode, unaligned_mems);
669
670 case PLUS:
671 /* An address is assumed not to trap if:
672 - it is the pic register plus a constant. */
673 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
674 return 0;
675
676 /* - or it is an address that can't trap plus a constant integer. */
677 if (CONST_INT_P (XEXP (x, 1))
678 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
679 size, mode, unaligned_mems))
680 return 0;
681
682 return 1;
683
684 case LO_SUM:
685 case PRE_MODIFY:
686 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
687 mode, unaligned_mems);
688
689 case PRE_DEC:
690 case PRE_INC:
691 case POST_DEC:
692 case POST_INC:
693 case POST_MODIFY:
694 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
695 mode, unaligned_mems);
696
697 default:
698 break;
699 }
700
701 /* If it isn't one of the case above, it can cause a trap. */
702 return 1;
703 }
704
705 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
706
707 int
708 rtx_addr_can_trap_p (const_rtx x)
709 {
710 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
711 }
712
713 /* Return true if X is an address that is known to not be zero. */
714
715 bool
716 nonzero_address_p (const_rtx x)
717 {
718 const enum rtx_code code = GET_CODE (x);
719
720 switch (code)
721 {
722 case SYMBOL_REF:
723 return flag_delete_null_pointer_checks && !SYMBOL_REF_WEAK (x);
724
725 case LABEL_REF:
726 return true;
727
728 case REG:
729 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
730 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
731 || x == stack_pointer_rtx
732 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
733 return true;
734 /* All of the virtual frame registers are stack references. */
735 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
736 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
737 return true;
738 return false;
739
740 case CONST:
741 return nonzero_address_p (XEXP (x, 0));
742
743 case PLUS:
744 /* Handle PIC references. */
745 if (XEXP (x, 0) == pic_offset_table_rtx
746 && CONSTANT_P (XEXP (x, 1)))
747 return true;
748 return false;
749
750 case PRE_MODIFY:
751 /* Similar to the above; allow positive offsets. Further, since
752 auto-inc is only allowed in memories, the register must be a
753 pointer. */
754 if (CONST_INT_P (XEXP (x, 1))
755 && INTVAL (XEXP (x, 1)) > 0)
756 return true;
757 return nonzero_address_p (XEXP (x, 0));
758
759 case PRE_INC:
760 /* Similarly. Further, the offset is always positive. */
761 return true;
762
763 case PRE_DEC:
764 case POST_DEC:
765 case POST_INC:
766 case POST_MODIFY:
767 return nonzero_address_p (XEXP (x, 0));
768
769 case LO_SUM:
770 return nonzero_address_p (XEXP (x, 1));
771
772 default:
773 break;
774 }
775
776 /* If it isn't one of the case above, might be zero. */
777 return false;
778 }
779
780 /* Return 1 if X refers to a memory location whose address
781 cannot be compared reliably with constant addresses,
782 or if X refers to a BLKmode memory object.
783 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
784 zero, we are slightly more conservative. */
785
786 bool
787 rtx_addr_varies_p (const_rtx x, bool for_alias)
788 {
789 enum rtx_code code;
790 int i;
791 const char *fmt;
792
793 if (x == 0)
794 return 0;
795
796 code = GET_CODE (x);
797 if (code == MEM)
798 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
799
800 fmt = GET_RTX_FORMAT (code);
801 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
802 if (fmt[i] == 'e')
803 {
804 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
805 return 1;
806 }
807 else if (fmt[i] == 'E')
808 {
809 int j;
810 for (j = 0; j < XVECLEN (x, i); j++)
811 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
812 return 1;
813 }
814 return 0;
815 }
816 \f
817 /* Return the CALL in X if there is one. */
818
819 rtx
820 get_call_rtx_from (rtx x)
821 {
822 if (INSN_P (x))
823 x = PATTERN (x);
824 if (GET_CODE (x) == PARALLEL)
825 x = XVECEXP (x, 0, 0);
826 if (GET_CODE (x) == SET)
827 x = SET_SRC (x);
828 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
829 return x;
830 return NULL_RTX;
831 }
832 \f
833 /* Return the value of the integer term in X, if one is apparent;
834 otherwise return 0.
835 Only obvious integer terms are detected.
836 This is used in cse.c with the `related_value' field. */
837
838 HOST_WIDE_INT
839 get_integer_term (const_rtx x)
840 {
841 if (GET_CODE (x) == CONST)
842 x = XEXP (x, 0);
843
844 if (GET_CODE (x) == MINUS
845 && CONST_INT_P (XEXP (x, 1)))
846 return - INTVAL (XEXP (x, 1));
847 if (GET_CODE (x) == PLUS
848 && CONST_INT_P (XEXP (x, 1)))
849 return INTVAL (XEXP (x, 1));
850 return 0;
851 }
852
853 /* If X is a constant, return the value sans apparent integer term;
854 otherwise return 0.
855 Only obvious integer terms are detected. */
856
857 rtx
858 get_related_value (const_rtx x)
859 {
860 if (GET_CODE (x) != CONST)
861 return 0;
862 x = XEXP (x, 0);
863 if (GET_CODE (x) == PLUS
864 && CONST_INT_P (XEXP (x, 1)))
865 return XEXP (x, 0);
866 else if (GET_CODE (x) == MINUS
867 && CONST_INT_P (XEXP (x, 1)))
868 return XEXP (x, 0);
869 return 0;
870 }
871 \f
872 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
873 to somewhere in the same object or object_block as SYMBOL. */
874
875 bool
876 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
877 {
878 tree decl;
879
880 if (GET_CODE (symbol) != SYMBOL_REF)
881 return false;
882
883 if (offset == 0)
884 return true;
885
886 if (offset > 0)
887 {
888 if (CONSTANT_POOL_ADDRESS_P (symbol)
889 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
890 return true;
891
892 decl = SYMBOL_REF_DECL (symbol);
893 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
894 return true;
895 }
896
897 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
898 && SYMBOL_REF_BLOCK (symbol)
899 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
900 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
901 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
902 return true;
903
904 return false;
905 }
906
907 /* Split X into a base and a constant offset, storing them in *BASE_OUT
908 and *OFFSET_OUT respectively. */
909
910 void
911 split_const (rtx x, rtx *base_out, rtx *offset_out)
912 {
913 if (GET_CODE (x) == CONST)
914 {
915 x = XEXP (x, 0);
916 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
917 {
918 *base_out = XEXP (x, 0);
919 *offset_out = XEXP (x, 1);
920 return;
921 }
922 }
923 *base_out = x;
924 *offset_out = const0_rtx;
925 }
926 \f
927 /* Return the number of places FIND appears within X. If COUNT_DEST is
928 zero, we do not count occurrences inside the destination of a SET. */
929
930 int
931 count_occurrences (const_rtx x, const_rtx find, int count_dest)
932 {
933 int i, j;
934 enum rtx_code code;
935 const char *format_ptr;
936 int count;
937
938 if (x == find)
939 return 1;
940
941 code = GET_CODE (x);
942
943 switch (code)
944 {
945 case REG:
946 CASE_CONST_ANY:
947 case SYMBOL_REF:
948 case CODE_LABEL:
949 case PC:
950 case CC0:
951 return 0;
952
953 case EXPR_LIST:
954 count = count_occurrences (XEXP (x, 0), find, count_dest);
955 if (XEXP (x, 1))
956 count += count_occurrences (XEXP (x, 1), find, count_dest);
957 return count;
958
959 case MEM:
960 if (MEM_P (find) && rtx_equal_p (x, find))
961 return 1;
962 break;
963
964 case SET:
965 if (SET_DEST (x) == find && ! count_dest)
966 return count_occurrences (SET_SRC (x), find, count_dest);
967 break;
968
969 default:
970 break;
971 }
972
973 format_ptr = GET_RTX_FORMAT (code);
974 count = 0;
975
976 for (i = 0; i < GET_RTX_LENGTH (code); i++)
977 {
978 switch (*format_ptr++)
979 {
980 case 'e':
981 count += count_occurrences (XEXP (x, i), find, count_dest);
982 break;
983
984 case 'E':
985 for (j = 0; j < XVECLEN (x, i); j++)
986 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
987 break;
988 }
989 }
990 return count;
991 }
992
993 \f
994 /* Return TRUE if OP is a register or subreg of a register that
995 holds an unsigned quantity. Otherwise, return FALSE. */
996
997 bool
998 unsigned_reg_p (rtx op)
999 {
1000 if (REG_P (op)
1001 && REG_EXPR (op)
1002 && TYPE_UNSIGNED (TREE_TYPE (REG_EXPR (op))))
1003 return true;
1004
1005 if (GET_CODE (op) == SUBREG
1006 && SUBREG_PROMOTED_SIGN (op))
1007 return true;
1008
1009 return false;
1010 }
1011
1012 \f
1013 /* Nonzero if register REG appears somewhere within IN.
1014 Also works if REG is not a register; in this case it checks
1015 for a subexpression of IN that is Lisp "equal" to REG. */
1016
1017 int
1018 reg_mentioned_p (const_rtx reg, const_rtx in)
1019 {
1020 const char *fmt;
1021 int i;
1022 enum rtx_code code;
1023
1024 if (in == 0)
1025 return 0;
1026
1027 if (reg == in)
1028 return 1;
1029
1030 if (GET_CODE (in) == LABEL_REF)
1031 return reg == LABEL_REF_LABEL (in);
1032
1033 code = GET_CODE (in);
1034
1035 switch (code)
1036 {
1037 /* Compare registers by number. */
1038 case REG:
1039 return REG_P (reg) && REGNO (in) == REGNO (reg);
1040
1041 /* These codes have no constituent expressions
1042 and are unique. */
1043 case SCRATCH:
1044 case CC0:
1045 case PC:
1046 return 0;
1047
1048 CASE_CONST_ANY:
1049 /* These are kept unique for a given value. */
1050 return 0;
1051
1052 default:
1053 break;
1054 }
1055
1056 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
1057 return 1;
1058
1059 fmt = GET_RTX_FORMAT (code);
1060
1061 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1062 {
1063 if (fmt[i] == 'E')
1064 {
1065 int j;
1066 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
1067 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
1068 return 1;
1069 }
1070 else if (fmt[i] == 'e'
1071 && reg_mentioned_p (reg, XEXP (in, i)))
1072 return 1;
1073 }
1074 return 0;
1075 }
1076 \f
1077 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
1078 no CODE_LABEL insn. */
1079
1080 int
1081 no_labels_between_p (const rtx_insn *beg, const rtx_insn *end)
1082 {
1083 rtx_insn *p;
1084 if (beg == end)
1085 return 0;
1086 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
1087 if (LABEL_P (p))
1088 return 0;
1089 return 1;
1090 }
1091
1092 /* Nonzero if register REG is used in an insn between
1093 FROM_INSN and TO_INSN (exclusive of those two). */
1094
1095 int
1096 reg_used_between_p (const_rtx reg, const rtx_insn *from_insn,
1097 const rtx_insn *to_insn)
1098 {
1099 rtx_insn *insn;
1100
1101 if (from_insn == to_insn)
1102 return 0;
1103
1104 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1105 if (NONDEBUG_INSN_P (insn)
1106 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
1107 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
1108 return 1;
1109 return 0;
1110 }
1111 \f
1112 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
1113 is entirely replaced by a new value and the only use is as a SET_DEST,
1114 we do not consider it a reference. */
1115
1116 int
1117 reg_referenced_p (const_rtx x, const_rtx body)
1118 {
1119 int i;
1120
1121 switch (GET_CODE (body))
1122 {
1123 case SET:
1124 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
1125 return 1;
1126
1127 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
1128 of a REG that occupies all of the REG, the insn references X if
1129 it is mentioned in the destination. */
1130 if (GET_CODE (SET_DEST (body)) != CC0
1131 && GET_CODE (SET_DEST (body)) != PC
1132 && !REG_P (SET_DEST (body))
1133 && ! (GET_CODE (SET_DEST (body)) == SUBREG
1134 && REG_P (SUBREG_REG (SET_DEST (body)))
1135 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
1136 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
1137 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
1138 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
1139 && reg_overlap_mentioned_p (x, SET_DEST (body)))
1140 return 1;
1141 return 0;
1142
1143 case ASM_OPERANDS:
1144 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1145 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
1146 return 1;
1147 return 0;
1148
1149 case CALL:
1150 case USE:
1151 case IF_THEN_ELSE:
1152 return reg_overlap_mentioned_p (x, body);
1153
1154 case TRAP_IF:
1155 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
1156
1157 case PREFETCH:
1158 return reg_overlap_mentioned_p (x, XEXP (body, 0));
1159
1160 case UNSPEC:
1161 case UNSPEC_VOLATILE:
1162 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1163 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
1164 return 1;
1165 return 0;
1166
1167 case PARALLEL:
1168 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1169 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
1170 return 1;
1171 return 0;
1172
1173 case CLOBBER:
1174 if (MEM_P (XEXP (body, 0)))
1175 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
1176 return 1;
1177 return 0;
1178
1179 case COND_EXEC:
1180 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
1181 return 1;
1182 return reg_referenced_p (x, COND_EXEC_CODE (body));
1183
1184 default:
1185 return 0;
1186 }
1187 }
1188 \f
1189 /* Nonzero if register REG is set or clobbered in an insn between
1190 FROM_INSN and TO_INSN (exclusive of those two). */
1191
1192 int
1193 reg_set_between_p (const_rtx reg, const rtx_insn *from_insn,
1194 const rtx_insn *to_insn)
1195 {
1196 const rtx_insn *insn;
1197
1198 if (from_insn == to_insn)
1199 return 0;
1200
1201 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
1202 if (INSN_P (insn) && reg_set_p (reg, insn))
1203 return 1;
1204 return 0;
1205 }
1206
1207 /* Return true if REG is set or clobbered inside INSN. */
1208
1209 int
1210 reg_set_p (const_rtx reg, const_rtx insn)
1211 {
1212 /* After delay slot handling, call and branch insns might be in a
1213 sequence. Check all the elements there. */
1214 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == SEQUENCE)
1215 {
1216 for (int i = 0; i < XVECLEN (PATTERN (insn), 0); ++i)
1217 if (reg_set_p (reg, XVECEXP (PATTERN (insn), 0, i)))
1218 return true;
1219
1220 return false;
1221 }
1222
1223 /* We can be passed an insn or part of one. If we are passed an insn,
1224 check if a side-effect of the insn clobbers REG. */
1225 if (INSN_P (insn)
1226 && (FIND_REG_INC_NOTE (insn, reg)
1227 || (CALL_P (insn)
1228 && ((REG_P (reg)
1229 && REGNO (reg) < FIRST_PSEUDO_REGISTER
1230 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
1231 GET_MODE (reg), REGNO (reg)))
1232 || MEM_P (reg)
1233 || find_reg_fusage (insn, CLOBBER, reg)))))
1234 return true;
1235
1236 return set_of (reg, insn) != NULL_RTX;
1237 }
1238
1239 /* Similar to reg_set_between_p, but check all registers in X. Return 0
1240 only if none of them are modified between START and END. Return 1 if
1241 X contains a MEM; this routine does use memory aliasing. */
1242
1243 int
1244 modified_between_p (const_rtx x, const rtx_insn *start, const rtx_insn *end)
1245 {
1246 const enum rtx_code code = GET_CODE (x);
1247 const char *fmt;
1248 int i, j;
1249 rtx_insn *insn;
1250
1251 if (start == end)
1252 return 0;
1253
1254 switch (code)
1255 {
1256 CASE_CONST_ANY:
1257 case CONST:
1258 case SYMBOL_REF:
1259 case LABEL_REF:
1260 return 0;
1261
1262 case PC:
1263 case CC0:
1264 return 1;
1265
1266 case MEM:
1267 if (modified_between_p (XEXP (x, 0), start, end))
1268 return 1;
1269 if (MEM_READONLY_P (x))
1270 return 0;
1271 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
1272 if (memory_modified_in_insn_p (x, insn))
1273 return 1;
1274 return 0;
1275 break;
1276
1277 case REG:
1278 return reg_set_between_p (x, start, end);
1279
1280 default:
1281 break;
1282 }
1283
1284 fmt = GET_RTX_FORMAT (code);
1285 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1286 {
1287 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
1288 return 1;
1289
1290 else if (fmt[i] == 'E')
1291 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1292 if (modified_between_p (XVECEXP (x, i, j), start, end))
1293 return 1;
1294 }
1295
1296 return 0;
1297 }
1298
1299 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
1300 of them are modified in INSN. Return 1 if X contains a MEM; this routine
1301 does use memory aliasing. */
1302
1303 int
1304 modified_in_p (const_rtx x, const_rtx insn)
1305 {
1306 const enum rtx_code code = GET_CODE (x);
1307 const char *fmt;
1308 int i, j;
1309
1310 switch (code)
1311 {
1312 CASE_CONST_ANY:
1313 case CONST:
1314 case SYMBOL_REF:
1315 case LABEL_REF:
1316 return 0;
1317
1318 case PC:
1319 case CC0:
1320 return 1;
1321
1322 case MEM:
1323 if (modified_in_p (XEXP (x, 0), insn))
1324 return 1;
1325 if (MEM_READONLY_P (x))
1326 return 0;
1327 if (memory_modified_in_insn_p (x, insn))
1328 return 1;
1329 return 0;
1330 break;
1331
1332 case REG:
1333 return reg_set_p (x, insn);
1334
1335 default:
1336 break;
1337 }
1338
1339 fmt = GET_RTX_FORMAT (code);
1340 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1341 {
1342 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
1343 return 1;
1344
1345 else if (fmt[i] == 'E')
1346 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1347 if (modified_in_p (XVECEXP (x, i, j), insn))
1348 return 1;
1349 }
1350
1351 return 0;
1352 }
1353 \f
1354 /* Helper function for set_of. */
1355 struct set_of_data
1356 {
1357 const_rtx found;
1358 const_rtx pat;
1359 };
1360
1361 static void
1362 set_of_1 (rtx x, const_rtx pat, void *data1)
1363 {
1364 struct set_of_data *const data = (struct set_of_data *) (data1);
1365 if (rtx_equal_p (x, data->pat)
1366 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1367 data->found = pat;
1368 }
1369
1370 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1371 (either directly or via STRICT_LOW_PART and similar modifiers). */
1372 const_rtx
1373 set_of (const_rtx pat, const_rtx insn)
1374 {
1375 struct set_of_data data;
1376 data.found = NULL_RTX;
1377 data.pat = pat;
1378 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1379 return data.found;
1380 }
1381
1382 /* Add all hard register in X to *PSET. */
1383 void
1384 find_all_hard_regs (const_rtx x, HARD_REG_SET *pset)
1385 {
1386 subrtx_iterator::array_type array;
1387 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
1388 {
1389 const_rtx x = *iter;
1390 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1391 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1392 }
1393 }
1394
1395 /* This function, called through note_stores, collects sets and
1396 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1397 by DATA. */
1398 void
1399 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1400 {
1401 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1402 if (REG_P (x) && HARD_REGISTER_P (x))
1403 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1404 }
1405
1406 /* Examine INSN, and compute the set of hard registers written by it.
1407 Store it in *PSET. Should only be called after reload. */
1408 void
1409 find_all_hard_reg_sets (const rtx_insn *insn, HARD_REG_SET *pset, bool implicit)
1410 {
1411 rtx link;
1412
1413 CLEAR_HARD_REG_SET (*pset);
1414 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1415 if (CALL_P (insn))
1416 {
1417 if (implicit)
1418 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1419
1420 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1421 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1422 }
1423 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1424 if (REG_NOTE_KIND (link) == REG_INC)
1425 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1426 }
1427
1428 /* Like record_hard_reg_sets, but called through note_uses. */
1429 void
1430 record_hard_reg_uses (rtx *px, void *data)
1431 {
1432 find_all_hard_regs (*px, (HARD_REG_SET *) data);
1433 }
1434 \f
1435 /* Given an INSN, return a SET expression if this insn has only a single SET.
1436 It may also have CLOBBERs, USEs, or SET whose output
1437 will not be used, which we ignore. */
1438
1439 rtx
1440 single_set_2 (const rtx_insn *insn, const_rtx pat)
1441 {
1442 rtx set = NULL;
1443 int set_verified = 1;
1444 int i;
1445
1446 if (GET_CODE (pat) == PARALLEL)
1447 {
1448 for (i = 0; i < XVECLEN (pat, 0); i++)
1449 {
1450 rtx sub = XVECEXP (pat, 0, i);
1451 switch (GET_CODE (sub))
1452 {
1453 case USE:
1454 case CLOBBER:
1455 break;
1456
1457 case SET:
1458 /* We can consider insns having multiple sets, where all
1459 but one are dead as single set insns. In common case
1460 only single set is present in the pattern so we want
1461 to avoid checking for REG_UNUSED notes unless necessary.
1462
1463 When we reach set first time, we just expect this is
1464 the single set we are looking for and only when more
1465 sets are found in the insn, we check them. */
1466 if (!set_verified)
1467 {
1468 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1469 && !side_effects_p (set))
1470 set = NULL;
1471 else
1472 set_verified = 1;
1473 }
1474 if (!set)
1475 set = sub, set_verified = 0;
1476 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1477 || side_effects_p (sub))
1478 return NULL_RTX;
1479 break;
1480
1481 default:
1482 return NULL_RTX;
1483 }
1484 }
1485 }
1486 return set;
1487 }
1488
1489 /* Given an INSN, return nonzero if it has more than one SET, else return
1490 zero. */
1491
1492 int
1493 multiple_sets (const_rtx insn)
1494 {
1495 int found;
1496 int i;
1497
1498 /* INSN must be an insn. */
1499 if (! INSN_P (insn))
1500 return 0;
1501
1502 /* Only a PARALLEL can have multiple SETs. */
1503 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1504 {
1505 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1506 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1507 {
1508 /* If we have already found a SET, then return now. */
1509 if (found)
1510 return 1;
1511 else
1512 found = 1;
1513 }
1514 }
1515
1516 /* Either zero or one SET. */
1517 return 0;
1518 }
1519 \f
1520 /* Return nonzero if the destination of SET equals the source
1521 and there are no side effects. */
1522
1523 int
1524 set_noop_p (const_rtx set)
1525 {
1526 rtx src = SET_SRC (set);
1527 rtx dst = SET_DEST (set);
1528
1529 if (dst == pc_rtx && src == pc_rtx)
1530 return 1;
1531
1532 if (MEM_P (dst) && MEM_P (src))
1533 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1534
1535 if (GET_CODE (dst) == ZERO_EXTRACT)
1536 return rtx_equal_p (XEXP (dst, 0), src)
1537 && !BITS_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1538 && !side_effects_p (src);
1539
1540 if (GET_CODE (dst) == STRICT_LOW_PART)
1541 dst = XEXP (dst, 0);
1542
1543 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1544 {
1545 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1546 return 0;
1547 src = SUBREG_REG (src);
1548 dst = SUBREG_REG (dst);
1549 }
1550
1551 /* It is a NOOP if destination overlaps with selected src vector
1552 elements. */
1553 if (GET_CODE (src) == VEC_SELECT
1554 && REG_P (XEXP (src, 0)) && REG_P (dst)
1555 && HARD_REGISTER_P (XEXP (src, 0))
1556 && HARD_REGISTER_P (dst))
1557 {
1558 int i;
1559 rtx par = XEXP (src, 1);
1560 rtx src0 = XEXP (src, 0);
1561 int c0 = INTVAL (XVECEXP (par, 0, 0));
1562 HOST_WIDE_INT offset = GET_MODE_UNIT_SIZE (GET_MODE (src0)) * c0;
1563
1564 for (i = 1; i < XVECLEN (par, 0); i++)
1565 if (INTVAL (XVECEXP (par, 0, i)) != c0 + i)
1566 return 0;
1567 return
1568 simplify_subreg_regno (REGNO (src0), GET_MODE (src0),
1569 offset, GET_MODE (dst)) == (int) REGNO (dst);
1570 }
1571
1572 return (REG_P (src) && REG_P (dst)
1573 && REGNO (src) == REGNO (dst));
1574 }
1575 \f
1576 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1577 value to itself. */
1578
1579 int
1580 noop_move_p (const rtx_insn *insn)
1581 {
1582 rtx pat = PATTERN (insn);
1583
1584 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1585 return 1;
1586
1587 /* Insns carrying these notes are useful later on. */
1588 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1589 return 0;
1590
1591 /* Check the code to be executed for COND_EXEC. */
1592 if (GET_CODE (pat) == COND_EXEC)
1593 pat = COND_EXEC_CODE (pat);
1594
1595 if (GET_CODE (pat) == SET && set_noop_p (pat))
1596 return 1;
1597
1598 if (GET_CODE (pat) == PARALLEL)
1599 {
1600 int i;
1601 /* If nothing but SETs of registers to themselves,
1602 this insn can also be deleted. */
1603 for (i = 0; i < XVECLEN (pat, 0); i++)
1604 {
1605 rtx tem = XVECEXP (pat, 0, i);
1606
1607 if (GET_CODE (tem) == USE
1608 || GET_CODE (tem) == CLOBBER)
1609 continue;
1610
1611 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1612 return 0;
1613 }
1614
1615 return 1;
1616 }
1617 return 0;
1618 }
1619 \f
1620
1621 /* Return nonzero if register in range [REGNO, ENDREGNO)
1622 appears either explicitly or implicitly in X
1623 other than being stored into.
1624
1625 References contained within the substructure at LOC do not count.
1626 LOC may be zero, meaning don't ignore anything. */
1627
1628 bool
1629 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1630 rtx *loc)
1631 {
1632 int i;
1633 unsigned int x_regno;
1634 RTX_CODE code;
1635 const char *fmt;
1636
1637 repeat:
1638 /* The contents of a REG_NONNEG note is always zero, so we must come here
1639 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1640 if (x == 0)
1641 return false;
1642
1643 code = GET_CODE (x);
1644
1645 switch (code)
1646 {
1647 case REG:
1648 x_regno = REGNO (x);
1649
1650 /* If we modifying the stack, frame, or argument pointer, it will
1651 clobber a virtual register. In fact, we could be more precise,
1652 but it isn't worth it. */
1653 if ((x_regno == STACK_POINTER_REGNUM
1654 || (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1655 && x_regno == ARG_POINTER_REGNUM)
1656 || x_regno == FRAME_POINTER_REGNUM)
1657 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1658 return true;
1659
1660 return endregno > x_regno && regno < END_REGNO (x);
1661
1662 case SUBREG:
1663 /* If this is a SUBREG of a hard reg, we can see exactly which
1664 registers are being modified. Otherwise, handle normally. */
1665 if (REG_P (SUBREG_REG (x))
1666 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1667 {
1668 unsigned int inner_regno = subreg_regno (x);
1669 unsigned int inner_endregno
1670 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1671 ? subreg_nregs (x) : 1);
1672
1673 return endregno > inner_regno && regno < inner_endregno;
1674 }
1675 break;
1676
1677 case CLOBBER:
1678 case SET:
1679 if (&SET_DEST (x) != loc
1680 /* Note setting a SUBREG counts as referring to the REG it is in for
1681 a pseudo but not for hard registers since we can
1682 treat each word individually. */
1683 && ((GET_CODE (SET_DEST (x)) == SUBREG
1684 && loc != &SUBREG_REG (SET_DEST (x))
1685 && REG_P (SUBREG_REG (SET_DEST (x)))
1686 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1687 && refers_to_regno_p (regno, endregno,
1688 SUBREG_REG (SET_DEST (x)), loc))
1689 || (!REG_P (SET_DEST (x))
1690 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1691 return true;
1692
1693 if (code == CLOBBER || loc == &SET_SRC (x))
1694 return false;
1695 x = SET_SRC (x);
1696 goto repeat;
1697
1698 default:
1699 break;
1700 }
1701
1702 /* X does not match, so try its subexpressions. */
1703
1704 fmt = GET_RTX_FORMAT (code);
1705 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1706 {
1707 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1708 {
1709 if (i == 0)
1710 {
1711 x = XEXP (x, 0);
1712 goto repeat;
1713 }
1714 else
1715 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1716 return true;
1717 }
1718 else if (fmt[i] == 'E')
1719 {
1720 int j;
1721 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1722 if (loc != &XVECEXP (x, i, j)
1723 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1724 return true;
1725 }
1726 }
1727 return false;
1728 }
1729
1730 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1731 we check if any register number in X conflicts with the relevant register
1732 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1733 contains a MEM (we don't bother checking for memory addresses that can't
1734 conflict because we expect this to be a rare case. */
1735
1736 int
1737 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1738 {
1739 unsigned int regno, endregno;
1740
1741 /* If either argument is a constant, then modifying X can not
1742 affect IN. Here we look at IN, we can profitably combine
1743 CONSTANT_P (x) with the switch statement below. */
1744 if (CONSTANT_P (in))
1745 return 0;
1746
1747 recurse:
1748 switch (GET_CODE (x))
1749 {
1750 case STRICT_LOW_PART:
1751 case ZERO_EXTRACT:
1752 case SIGN_EXTRACT:
1753 /* Overly conservative. */
1754 x = XEXP (x, 0);
1755 goto recurse;
1756
1757 case SUBREG:
1758 regno = REGNO (SUBREG_REG (x));
1759 if (regno < FIRST_PSEUDO_REGISTER)
1760 regno = subreg_regno (x);
1761 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1762 ? subreg_nregs (x) : 1);
1763 goto do_reg;
1764
1765 case REG:
1766 regno = REGNO (x);
1767 endregno = END_REGNO (x);
1768 do_reg:
1769 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1770
1771 case MEM:
1772 {
1773 const char *fmt;
1774 int i;
1775
1776 if (MEM_P (in))
1777 return 1;
1778
1779 fmt = GET_RTX_FORMAT (GET_CODE (in));
1780 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1781 if (fmt[i] == 'e')
1782 {
1783 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1784 return 1;
1785 }
1786 else if (fmt[i] == 'E')
1787 {
1788 int j;
1789 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1790 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1791 return 1;
1792 }
1793
1794 return 0;
1795 }
1796
1797 case SCRATCH:
1798 case PC:
1799 case CC0:
1800 return reg_mentioned_p (x, in);
1801
1802 case PARALLEL:
1803 {
1804 int i;
1805
1806 /* If any register in here refers to it we return true. */
1807 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1808 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1809 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1810 return 1;
1811 return 0;
1812 }
1813
1814 default:
1815 gcc_assert (CONSTANT_P (x));
1816 return 0;
1817 }
1818 }
1819 \f
1820 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1821 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1822 ignored by note_stores, but passed to FUN.
1823
1824 FUN receives three arguments:
1825 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1826 2. the SET or CLOBBER rtx that does the store,
1827 3. the pointer DATA provided to note_stores.
1828
1829 If the item being stored in or clobbered is a SUBREG of a hard register,
1830 the SUBREG will be passed. */
1831
1832 void
1833 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1834 {
1835 int i;
1836
1837 if (GET_CODE (x) == COND_EXEC)
1838 x = COND_EXEC_CODE (x);
1839
1840 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1841 {
1842 rtx dest = SET_DEST (x);
1843
1844 while ((GET_CODE (dest) == SUBREG
1845 && (!REG_P (SUBREG_REG (dest))
1846 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1847 || GET_CODE (dest) == ZERO_EXTRACT
1848 || GET_CODE (dest) == STRICT_LOW_PART)
1849 dest = XEXP (dest, 0);
1850
1851 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1852 each of whose first operand is a register. */
1853 if (GET_CODE (dest) == PARALLEL)
1854 {
1855 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1856 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1857 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1858 }
1859 else
1860 (*fun) (dest, x, data);
1861 }
1862
1863 else if (GET_CODE (x) == PARALLEL)
1864 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1865 note_stores (XVECEXP (x, 0, i), fun, data);
1866 }
1867 \f
1868 /* Like notes_stores, but call FUN for each expression that is being
1869 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1870 FUN for each expression, not any interior subexpressions. FUN receives a
1871 pointer to the expression and the DATA passed to this function.
1872
1873 Note that this is not quite the same test as that done in reg_referenced_p
1874 since that considers something as being referenced if it is being
1875 partially set, while we do not. */
1876
1877 void
1878 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1879 {
1880 rtx body = *pbody;
1881 int i;
1882
1883 switch (GET_CODE (body))
1884 {
1885 case COND_EXEC:
1886 (*fun) (&COND_EXEC_TEST (body), data);
1887 note_uses (&COND_EXEC_CODE (body), fun, data);
1888 return;
1889
1890 case PARALLEL:
1891 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1892 note_uses (&XVECEXP (body, 0, i), fun, data);
1893 return;
1894
1895 case SEQUENCE:
1896 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1897 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1898 return;
1899
1900 case USE:
1901 (*fun) (&XEXP (body, 0), data);
1902 return;
1903
1904 case ASM_OPERANDS:
1905 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1906 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1907 return;
1908
1909 case TRAP_IF:
1910 (*fun) (&TRAP_CONDITION (body), data);
1911 return;
1912
1913 case PREFETCH:
1914 (*fun) (&XEXP (body, 0), data);
1915 return;
1916
1917 case UNSPEC:
1918 case UNSPEC_VOLATILE:
1919 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1920 (*fun) (&XVECEXP (body, 0, i), data);
1921 return;
1922
1923 case CLOBBER:
1924 if (MEM_P (XEXP (body, 0)))
1925 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1926 return;
1927
1928 case SET:
1929 {
1930 rtx dest = SET_DEST (body);
1931
1932 /* For sets we replace everything in source plus registers in memory
1933 expression in store and operands of a ZERO_EXTRACT. */
1934 (*fun) (&SET_SRC (body), data);
1935
1936 if (GET_CODE (dest) == ZERO_EXTRACT)
1937 {
1938 (*fun) (&XEXP (dest, 1), data);
1939 (*fun) (&XEXP (dest, 2), data);
1940 }
1941
1942 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1943 dest = XEXP (dest, 0);
1944
1945 if (MEM_P (dest))
1946 (*fun) (&XEXP (dest, 0), data);
1947 }
1948 return;
1949
1950 default:
1951 /* All the other possibilities never store. */
1952 (*fun) (pbody, data);
1953 return;
1954 }
1955 }
1956 \f
1957 /* Return nonzero if X's old contents don't survive after INSN.
1958 This will be true if X is (cc0) or if X is a register and
1959 X dies in INSN or because INSN entirely sets X.
1960
1961 "Entirely set" means set directly and not through a SUBREG, or
1962 ZERO_EXTRACT, so no trace of the old contents remains.
1963 Likewise, REG_INC does not count.
1964
1965 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1966 but for this use that makes no difference, since regs don't overlap
1967 during their lifetimes. Therefore, this function may be used
1968 at any time after deaths have been computed.
1969
1970 If REG is a hard reg that occupies multiple machine registers, this
1971 function will only return 1 if each of those registers will be replaced
1972 by INSN. */
1973
1974 int
1975 dead_or_set_p (const_rtx insn, const_rtx x)
1976 {
1977 unsigned int regno, end_regno;
1978 unsigned int i;
1979
1980 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1981 if (GET_CODE (x) == CC0)
1982 return 1;
1983
1984 gcc_assert (REG_P (x));
1985
1986 regno = REGNO (x);
1987 end_regno = END_REGNO (x);
1988 for (i = regno; i < end_regno; i++)
1989 if (! dead_or_set_regno_p (insn, i))
1990 return 0;
1991
1992 return 1;
1993 }
1994
1995 /* Return TRUE iff DEST is a register or subreg of a register and
1996 doesn't change the number of words of the inner register, and any
1997 part of the register is TEST_REGNO. */
1998
1999 static bool
2000 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
2001 {
2002 unsigned int regno, endregno;
2003
2004 if (GET_CODE (dest) == SUBREG
2005 && (((GET_MODE_SIZE (GET_MODE (dest))
2006 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
2007 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
2008 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
2009 dest = SUBREG_REG (dest);
2010
2011 if (!REG_P (dest))
2012 return false;
2013
2014 regno = REGNO (dest);
2015 endregno = END_REGNO (dest);
2016 return (test_regno >= regno && test_regno < endregno);
2017 }
2018
2019 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
2020 any member matches the covers_regno_no_parallel_p criteria. */
2021
2022 static bool
2023 covers_regno_p (const_rtx dest, unsigned int test_regno)
2024 {
2025 if (GET_CODE (dest) == PARALLEL)
2026 {
2027 /* Some targets place small structures in registers for return
2028 values of functions, and those registers are wrapped in
2029 PARALLELs that we may see as the destination of a SET. */
2030 int i;
2031
2032 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2033 {
2034 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
2035 if (inner != NULL_RTX
2036 && covers_regno_no_parallel_p (inner, test_regno))
2037 return true;
2038 }
2039
2040 return false;
2041 }
2042 else
2043 return covers_regno_no_parallel_p (dest, test_regno);
2044 }
2045
2046 /* Utility function for dead_or_set_p to check an individual register. */
2047
2048 int
2049 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
2050 {
2051 const_rtx pattern;
2052
2053 /* See if there is a death note for something that includes TEST_REGNO. */
2054 if (find_regno_note (insn, REG_DEAD, test_regno))
2055 return 1;
2056
2057 if (CALL_P (insn)
2058 && find_regno_fusage (insn, CLOBBER, test_regno))
2059 return 1;
2060
2061 pattern = PATTERN (insn);
2062
2063 /* If a COND_EXEC is not executed, the value survives. */
2064 if (GET_CODE (pattern) == COND_EXEC)
2065 return 0;
2066
2067 if (GET_CODE (pattern) == SET)
2068 return covers_regno_p (SET_DEST (pattern), test_regno);
2069 else if (GET_CODE (pattern) == PARALLEL)
2070 {
2071 int i;
2072
2073 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
2074 {
2075 rtx body = XVECEXP (pattern, 0, i);
2076
2077 if (GET_CODE (body) == COND_EXEC)
2078 body = COND_EXEC_CODE (body);
2079
2080 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
2081 && covers_regno_p (SET_DEST (body), test_regno))
2082 return 1;
2083 }
2084 }
2085
2086 return 0;
2087 }
2088
2089 /* Return the reg-note of kind KIND in insn INSN, if there is one.
2090 If DATUM is nonzero, look for one whose datum is DATUM. */
2091
2092 rtx
2093 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
2094 {
2095 rtx link;
2096
2097 gcc_checking_assert (insn);
2098
2099 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2100 if (! INSN_P (insn))
2101 return 0;
2102 if (datum == 0)
2103 {
2104 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2105 if (REG_NOTE_KIND (link) == kind)
2106 return link;
2107 return 0;
2108 }
2109
2110 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2111 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
2112 return link;
2113 return 0;
2114 }
2115
2116 /* Return the reg-note of kind KIND in insn INSN which applies to register
2117 number REGNO, if any. Return 0 if there is no such reg-note. Note that
2118 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
2119 it might be the case that the note overlaps REGNO. */
2120
2121 rtx
2122 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
2123 {
2124 rtx link;
2125
2126 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
2127 if (! INSN_P (insn))
2128 return 0;
2129
2130 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2131 if (REG_NOTE_KIND (link) == kind
2132 /* Verify that it is a register, so that scratch and MEM won't cause a
2133 problem here. */
2134 && REG_P (XEXP (link, 0))
2135 && REGNO (XEXP (link, 0)) <= regno
2136 && END_REGNO (XEXP (link, 0)) > regno)
2137 return link;
2138 return 0;
2139 }
2140
2141 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
2142 has such a note. */
2143
2144 rtx
2145 find_reg_equal_equiv_note (const_rtx insn)
2146 {
2147 rtx link;
2148
2149 if (!INSN_P (insn))
2150 return 0;
2151
2152 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2153 if (REG_NOTE_KIND (link) == REG_EQUAL
2154 || REG_NOTE_KIND (link) == REG_EQUIV)
2155 {
2156 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
2157 insns that have multiple sets. Checking single_set to
2158 make sure of this is not the proper check, as explained
2159 in the comment in set_unique_reg_note.
2160
2161 This should be changed into an assert. */
2162 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
2163 return 0;
2164 return link;
2165 }
2166 return NULL;
2167 }
2168
2169 /* Check whether INSN is a single_set whose source is known to be
2170 equivalent to a constant. Return that constant if so, otherwise
2171 return null. */
2172
2173 rtx
2174 find_constant_src (const rtx_insn *insn)
2175 {
2176 rtx note, set, x;
2177
2178 set = single_set (insn);
2179 if (set)
2180 {
2181 x = avoid_constant_pool_reference (SET_SRC (set));
2182 if (CONSTANT_P (x))
2183 return x;
2184 }
2185
2186 note = find_reg_equal_equiv_note (insn);
2187 if (note && CONSTANT_P (XEXP (note, 0)))
2188 return XEXP (note, 0);
2189
2190 return NULL_RTX;
2191 }
2192
2193 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
2194 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2195
2196 int
2197 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
2198 {
2199 /* If it's not a CALL_INSN, it can't possibly have a
2200 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
2201 if (!CALL_P (insn))
2202 return 0;
2203
2204 gcc_assert (datum);
2205
2206 if (!REG_P (datum))
2207 {
2208 rtx link;
2209
2210 for (link = CALL_INSN_FUNCTION_USAGE (insn);
2211 link;
2212 link = XEXP (link, 1))
2213 if (GET_CODE (XEXP (link, 0)) == code
2214 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
2215 return 1;
2216 }
2217 else
2218 {
2219 unsigned int regno = REGNO (datum);
2220
2221 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2222 to pseudo registers, so don't bother checking. */
2223
2224 if (regno < FIRST_PSEUDO_REGISTER)
2225 {
2226 unsigned int end_regno = END_REGNO (datum);
2227 unsigned int i;
2228
2229 for (i = regno; i < end_regno; i++)
2230 if (find_regno_fusage (insn, code, i))
2231 return 1;
2232 }
2233 }
2234
2235 return 0;
2236 }
2237
2238 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
2239 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
2240
2241 int
2242 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
2243 {
2244 rtx link;
2245
2246 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
2247 to pseudo registers, so don't bother checking. */
2248
2249 if (regno >= FIRST_PSEUDO_REGISTER
2250 || !CALL_P (insn) )
2251 return 0;
2252
2253 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2254 {
2255 rtx op, reg;
2256
2257 if (GET_CODE (op = XEXP (link, 0)) == code
2258 && REG_P (reg = XEXP (op, 0))
2259 && REGNO (reg) <= regno
2260 && END_REGNO (reg) > regno)
2261 return 1;
2262 }
2263
2264 return 0;
2265 }
2266
2267 \f
2268 /* Return true if KIND is an integer REG_NOTE. */
2269
2270 static bool
2271 int_reg_note_p (enum reg_note kind)
2272 {
2273 return kind == REG_BR_PROB;
2274 }
2275
2276 /* Allocate a register note with kind KIND and datum DATUM. LIST is
2277 stored as the pointer to the next register note. */
2278
2279 rtx
2280 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
2281 {
2282 rtx note;
2283
2284 gcc_checking_assert (!int_reg_note_p (kind));
2285 switch (kind)
2286 {
2287 case REG_CC_SETTER:
2288 case REG_CC_USER:
2289 case REG_LABEL_TARGET:
2290 case REG_LABEL_OPERAND:
2291 case REG_TM:
2292 /* These types of register notes use an INSN_LIST rather than an
2293 EXPR_LIST, so that copying is done right and dumps look
2294 better. */
2295 note = alloc_INSN_LIST (datum, list);
2296 PUT_REG_NOTE_KIND (note, kind);
2297 break;
2298
2299 default:
2300 note = alloc_EXPR_LIST (kind, datum, list);
2301 break;
2302 }
2303
2304 return note;
2305 }
2306
2307 /* Add register note with kind KIND and datum DATUM to INSN. */
2308
2309 void
2310 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
2311 {
2312 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
2313 }
2314
2315 /* Add an integer register note with kind KIND and datum DATUM to INSN. */
2316
2317 void
2318 add_int_reg_note (rtx insn, enum reg_note kind, int datum)
2319 {
2320 gcc_checking_assert (int_reg_note_p (kind));
2321 REG_NOTES (insn) = gen_rtx_INT_LIST ((machine_mode) kind,
2322 datum, REG_NOTES (insn));
2323 }
2324
2325 /* Add a register note like NOTE to INSN. */
2326
2327 void
2328 add_shallow_copy_of_reg_note (rtx_insn *insn, rtx note)
2329 {
2330 if (GET_CODE (note) == INT_LIST)
2331 add_int_reg_note (insn, REG_NOTE_KIND (note), XINT (note, 0));
2332 else
2333 add_reg_note (insn, REG_NOTE_KIND (note), XEXP (note, 0));
2334 }
2335
2336 /* Remove register note NOTE from the REG_NOTES of INSN. */
2337
2338 void
2339 remove_note (rtx insn, const_rtx note)
2340 {
2341 rtx link;
2342
2343 if (note == NULL_RTX)
2344 return;
2345
2346 if (REG_NOTES (insn) == note)
2347 REG_NOTES (insn) = XEXP (note, 1);
2348 else
2349 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2350 if (XEXP (link, 1) == note)
2351 {
2352 XEXP (link, 1) = XEXP (note, 1);
2353 break;
2354 }
2355
2356 switch (REG_NOTE_KIND (note))
2357 {
2358 case REG_EQUAL:
2359 case REG_EQUIV:
2360 df_notes_rescan (as_a <rtx_insn *> (insn));
2361 break;
2362 default:
2363 break;
2364 }
2365 }
2366
2367 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
2368
2369 void
2370 remove_reg_equal_equiv_notes (rtx_insn *insn)
2371 {
2372 rtx *loc;
2373
2374 loc = &REG_NOTES (insn);
2375 while (*loc)
2376 {
2377 enum reg_note kind = REG_NOTE_KIND (*loc);
2378 if (kind == REG_EQUAL || kind == REG_EQUIV)
2379 *loc = XEXP (*loc, 1);
2380 else
2381 loc = &XEXP (*loc, 1);
2382 }
2383 }
2384
2385 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
2386
2387 void
2388 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
2389 {
2390 df_ref eq_use;
2391
2392 if (!df)
2393 return;
2394
2395 /* This loop is a little tricky. We cannot just go down the chain because
2396 it is being modified by some actions in the loop. So we just iterate
2397 over the head. We plan to drain the list anyway. */
2398 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2399 {
2400 rtx_insn *insn = DF_REF_INSN (eq_use);
2401 rtx note = find_reg_equal_equiv_note (insn);
2402
2403 /* This assert is generally triggered when someone deletes a REG_EQUAL
2404 or REG_EQUIV note by hacking the list manually rather than calling
2405 remove_note. */
2406 gcc_assert (note);
2407
2408 remove_note (insn, note);
2409 }
2410 }
2411
2412 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2413 return 1 if it is found. A simple equality test is used to determine if
2414 NODE matches. */
2415
2416 bool
2417 in_insn_list_p (const rtx_insn_list *listp, const rtx_insn *node)
2418 {
2419 const_rtx x;
2420
2421 for (x = listp; x; x = XEXP (x, 1))
2422 if (node == XEXP (x, 0))
2423 return true;
2424
2425 return false;
2426 }
2427
2428 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2429 remove that entry from the list if it is found.
2430
2431 A simple equality test is used to determine if NODE matches. */
2432
2433 void
2434 remove_node_from_expr_list (const_rtx node, rtx_expr_list **listp)
2435 {
2436 rtx_expr_list *temp = *listp;
2437 rtx_expr_list *prev = NULL;
2438
2439 while (temp)
2440 {
2441 if (node == temp->element ())
2442 {
2443 /* Splice the node out of the list. */
2444 if (prev)
2445 XEXP (prev, 1) = temp->next ();
2446 else
2447 *listp = temp->next ();
2448
2449 return;
2450 }
2451
2452 prev = temp;
2453 temp = temp->next ();
2454 }
2455 }
2456
2457 /* Search LISTP (an INSN_LIST) for an entry whose first operand is NODE and
2458 remove that entry from the list if it is found.
2459
2460 A simple equality test is used to determine if NODE matches. */
2461
2462 void
2463 remove_node_from_insn_list (const rtx_insn *node, rtx_insn_list **listp)
2464 {
2465 rtx_insn_list *temp = *listp;
2466 rtx_insn_list *prev = NULL;
2467
2468 while (temp)
2469 {
2470 if (node == temp->insn ())
2471 {
2472 /* Splice the node out of the list. */
2473 if (prev)
2474 XEXP (prev, 1) = temp->next ();
2475 else
2476 *listp = temp->next ();
2477
2478 return;
2479 }
2480
2481 prev = temp;
2482 temp = temp->next ();
2483 }
2484 }
2485 \f
2486 /* Nonzero if X contains any volatile instructions. These are instructions
2487 which may cause unpredictable machine state instructions, and thus no
2488 instructions or register uses should be moved or combined across them.
2489 This includes only volatile asms and UNSPEC_VOLATILE instructions. */
2490
2491 int
2492 volatile_insn_p (const_rtx x)
2493 {
2494 const RTX_CODE code = GET_CODE (x);
2495 switch (code)
2496 {
2497 case LABEL_REF:
2498 case SYMBOL_REF:
2499 case CONST:
2500 CASE_CONST_ANY:
2501 case CC0:
2502 case PC:
2503 case REG:
2504 case SCRATCH:
2505 case CLOBBER:
2506 case ADDR_VEC:
2507 case ADDR_DIFF_VEC:
2508 case CALL:
2509 case MEM:
2510 return 0;
2511
2512 case UNSPEC_VOLATILE:
2513 return 1;
2514
2515 case ASM_INPUT:
2516 case ASM_OPERANDS:
2517 if (MEM_VOLATILE_P (x))
2518 return 1;
2519
2520 default:
2521 break;
2522 }
2523
2524 /* Recursively scan the operands of this expression. */
2525
2526 {
2527 const char *const fmt = GET_RTX_FORMAT (code);
2528 int i;
2529
2530 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2531 {
2532 if (fmt[i] == 'e')
2533 {
2534 if (volatile_insn_p (XEXP (x, i)))
2535 return 1;
2536 }
2537 else if (fmt[i] == 'E')
2538 {
2539 int j;
2540 for (j = 0; j < XVECLEN (x, i); j++)
2541 if (volatile_insn_p (XVECEXP (x, i, j)))
2542 return 1;
2543 }
2544 }
2545 }
2546 return 0;
2547 }
2548
2549 /* Nonzero if X contains any volatile memory references
2550 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2551
2552 int
2553 volatile_refs_p (const_rtx x)
2554 {
2555 const RTX_CODE code = GET_CODE (x);
2556 switch (code)
2557 {
2558 case LABEL_REF:
2559 case SYMBOL_REF:
2560 case CONST:
2561 CASE_CONST_ANY:
2562 case CC0:
2563 case PC:
2564 case REG:
2565 case SCRATCH:
2566 case CLOBBER:
2567 case ADDR_VEC:
2568 case ADDR_DIFF_VEC:
2569 return 0;
2570
2571 case UNSPEC_VOLATILE:
2572 return 1;
2573
2574 case MEM:
2575 case ASM_INPUT:
2576 case ASM_OPERANDS:
2577 if (MEM_VOLATILE_P (x))
2578 return 1;
2579
2580 default:
2581 break;
2582 }
2583
2584 /* Recursively scan the operands of this expression. */
2585
2586 {
2587 const char *const fmt = GET_RTX_FORMAT (code);
2588 int i;
2589
2590 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2591 {
2592 if (fmt[i] == 'e')
2593 {
2594 if (volatile_refs_p (XEXP (x, i)))
2595 return 1;
2596 }
2597 else if (fmt[i] == 'E')
2598 {
2599 int j;
2600 for (j = 0; j < XVECLEN (x, i); j++)
2601 if (volatile_refs_p (XVECEXP (x, i, j)))
2602 return 1;
2603 }
2604 }
2605 }
2606 return 0;
2607 }
2608
2609 /* Similar to above, except that it also rejects register pre- and post-
2610 incrementing. */
2611
2612 int
2613 side_effects_p (const_rtx x)
2614 {
2615 const RTX_CODE code = GET_CODE (x);
2616 switch (code)
2617 {
2618 case LABEL_REF:
2619 case SYMBOL_REF:
2620 case CONST:
2621 CASE_CONST_ANY:
2622 case CC0:
2623 case PC:
2624 case REG:
2625 case SCRATCH:
2626 case ADDR_VEC:
2627 case ADDR_DIFF_VEC:
2628 case VAR_LOCATION:
2629 return 0;
2630
2631 case CLOBBER:
2632 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2633 when some combination can't be done. If we see one, don't think
2634 that we can simplify the expression. */
2635 return (GET_MODE (x) != VOIDmode);
2636
2637 case PRE_INC:
2638 case PRE_DEC:
2639 case POST_INC:
2640 case POST_DEC:
2641 case PRE_MODIFY:
2642 case POST_MODIFY:
2643 case CALL:
2644 case UNSPEC_VOLATILE:
2645 return 1;
2646
2647 case MEM:
2648 case ASM_INPUT:
2649 case ASM_OPERANDS:
2650 if (MEM_VOLATILE_P (x))
2651 return 1;
2652
2653 default:
2654 break;
2655 }
2656
2657 /* Recursively scan the operands of this expression. */
2658
2659 {
2660 const char *fmt = GET_RTX_FORMAT (code);
2661 int i;
2662
2663 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2664 {
2665 if (fmt[i] == 'e')
2666 {
2667 if (side_effects_p (XEXP (x, i)))
2668 return 1;
2669 }
2670 else if (fmt[i] == 'E')
2671 {
2672 int j;
2673 for (j = 0; j < XVECLEN (x, i); j++)
2674 if (side_effects_p (XVECEXP (x, i, j)))
2675 return 1;
2676 }
2677 }
2678 }
2679 return 0;
2680 }
2681 \f
2682 /* Return nonzero if evaluating rtx X might cause a trap.
2683 FLAGS controls how to consider MEMs. A nonzero means the context
2684 of the access may have changed from the original, such that the
2685 address may have become invalid. */
2686
2687 int
2688 may_trap_p_1 (const_rtx x, unsigned flags)
2689 {
2690 int i;
2691 enum rtx_code code;
2692 const char *fmt;
2693
2694 /* We make no distinction currently, but this function is part of
2695 the internal target-hooks ABI so we keep the parameter as
2696 "unsigned flags". */
2697 bool code_changed = flags != 0;
2698
2699 if (x == 0)
2700 return 0;
2701 code = GET_CODE (x);
2702 switch (code)
2703 {
2704 /* Handle these cases quickly. */
2705 CASE_CONST_ANY:
2706 case SYMBOL_REF:
2707 case LABEL_REF:
2708 case CONST:
2709 case PC:
2710 case CC0:
2711 case REG:
2712 case SCRATCH:
2713 return 0;
2714
2715 case UNSPEC:
2716 return targetm.unspec_may_trap_p (x, flags);
2717
2718 case UNSPEC_VOLATILE:
2719 case ASM_INPUT:
2720 case TRAP_IF:
2721 return 1;
2722
2723 case ASM_OPERANDS:
2724 return MEM_VOLATILE_P (x);
2725
2726 /* Memory ref can trap unless it's a static var or a stack slot. */
2727 case MEM:
2728 /* Recognize specific pattern of stack checking probes. */
2729 if (flag_stack_check
2730 && MEM_VOLATILE_P (x)
2731 && XEXP (x, 0) == stack_pointer_rtx)
2732 return 1;
2733 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2734 reference; moving it out of context such as when moving code
2735 when optimizing, might cause its address to become invalid. */
2736 code_changed
2737 || !MEM_NOTRAP_P (x))
2738 {
2739 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2740 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2741 GET_MODE (x), code_changed);
2742 }
2743
2744 return 0;
2745
2746 /* Division by a non-constant might trap. */
2747 case DIV:
2748 case MOD:
2749 case UDIV:
2750 case UMOD:
2751 if (HONOR_SNANS (x))
2752 return 1;
2753 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2754 return flag_trapping_math;
2755 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2756 return 1;
2757 break;
2758
2759 case EXPR_LIST:
2760 /* An EXPR_LIST is used to represent a function call. This
2761 certainly may trap. */
2762 return 1;
2763
2764 case GE:
2765 case GT:
2766 case LE:
2767 case LT:
2768 case LTGT:
2769 case COMPARE:
2770 /* Some floating point comparisons may trap. */
2771 if (!flag_trapping_math)
2772 break;
2773 /* ??? There is no machine independent way to check for tests that trap
2774 when COMPARE is used, though many targets do make this distinction.
2775 For instance, sparc uses CCFPE for compares which generate exceptions
2776 and CCFP for compares which do not generate exceptions. */
2777 if (HONOR_NANS (x))
2778 return 1;
2779 /* But often the compare has some CC mode, so check operand
2780 modes as well. */
2781 if (HONOR_NANS (XEXP (x, 0))
2782 || HONOR_NANS (XEXP (x, 1)))
2783 return 1;
2784 break;
2785
2786 case EQ:
2787 case NE:
2788 if (HONOR_SNANS (x))
2789 return 1;
2790 /* Often comparison is CC mode, so check operand modes. */
2791 if (HONOR_SNANS (XEXP (x, 0))
2792 || HONOR_SNANS (XEXP (x, 1)))
2793 return 1;
2794 break;
2795
2796 case FIX:
2797 /* Conversion of floating point might trap. */
2798 if (flag_trapping_math && HONOR_NANS (XEXP (x, 0)))
2799 return 1;
2800 break;
2801
2802 case NEG:
2803 case ABS:
2804 case SUBREG:
2805 /* These operations don't trap even with floating point. */
2806 break;
2807
2808 default:
2809 /* Any floating arithmetic may trap. */
2810 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)) && flag_trapping_math)
2811 return 1;
2812 }
2813
2814 fmt = GET_RTX_FORMAT (code);
2815 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2816 {
2817 if (fmt[i] == 'e')
2818 {
2819 if (may_trap_p_1 (XEXP (x, i), flags))
2820 return 1;
2821 }
2822 else if (fmt[i] == 'E')
2823 {
2824 int j;
2825 for (j = 0; j < XVECLEN (x, i); j++)
2826 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2827 return 1;
2828 }
2829 }
2830 return 0;
2831 }
2832
2833 /* Return nonzero if evaluating rtx X might cause a trap. */
2834
2835 int
2836 may_trap_p (const_rtx x)
2837 {
2838 return may_trap_p_1 (x, 0);
2839 }
2840
2841 /* Same as above, but additionally return nonzero if evaluating rtx X might
2842 cause a fault. We define a fault for the purpose of this function as a
2843 erroneous execution condition that cannot be encountered during the normal
2844 execution of a valid program; the typical example is an unaligned memory
2845 access on a strict alignment machine. The compiler guarantees that it
2846 doesn't generate code that will fault from a valid program, but this
2847 guarantee doesn't mean anything for individual instructions. Consider
2848 the following example:
2849
2850 struct S { int d; union { char *cp; int *ip; }; };
2851
2852 int foo(struct S *s)
2853 {
2854 if (s->d == 1)
2855 return *s->ip;
2856 else
2857 return *s->cp;
2858 }
2859
2860 on a strict alignment machine. In a valid program, foo will never be
2861 invoked on a structure for which d is equal to 1 and the underlying
2862 unique field of the union not aligned on a 4-byte boundary, but the
2863 expression *s->ip might cause a fault if considered individually.
2864
2865 At the RTL level, potentially problematic expressions will almost always
2866 verify may_trap_p; for example, the above dereference can be emitted as
2867 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2868 However, suppose that foo is inlined in a caller that causes s->cp to
2869 point to a local character variable and guarantees that s->d is not set
2870 to 1; foo may have been effectively translated into pseudo-RTL as:
2871
2872 if ((reg:SI) == 1)
2873 (set (reg:SI) (mem:SI (%fp - 7)))
2874 else
2875 (set (reg:QI) (mem:QI (%fp - 7)))
2876
2877 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2878 memory reference to a stack slot, but it will certainly cause a fault
2879 on a strict alignment machine. */
2880
2881 int
2882 may_trap_or_fault_p (const_rtx x)
2883 {
2884 return may_trap_p_1 (x, 1);
2885 }
2886 \f
2887 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2888 i.e., an inequality. */
2889
2890 int
2891 inequality_comparisons_p (const_rtx x)
2892 {
2893 const char *fmt;
2894 int len, i;
2895 const enum rtx_code code = GET_CODE (x);
2896
2897 switch (code)
2898 {
2899 case REG:
2900 case SCRATCH:
2901 case PC:
2902 case CC0:
2903 CASE_CONST_ANY:
2904 case CONST:
2905 case LABEL_REF:
2906 case SYMBOL_REF:
2907 return 0;
2908
2909 case LT:
2910 case LTU:
2911 case GT:
2912 case GTU:
2913 case LE:
2914 case LEU:
2915 case GE:
2916 case GEU:
2917 return 1;
2918
2919 default:
2920 break;
2921 }
2922
2923 len = GET_RTX_LENGTH (code);
2924 fmt = GET_RTX_FORMAT (code);
2925
2926 for (i = 0; i < len; i++)
2927 {
2928 if (fmt[i] == 'e')
2929 {
2930 if (inequality_comparisons_p (XEXP (x, i)))
2931 return 1;
2932 }
2933 else if (fmt[i] == 'E')
2934 {
2935 int j;
2936 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2937 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2938 return 1;
2939 }
2940 }
2941
2942 return 0;
2943 }
2944 \f
2945 /* Replace any occurrence of FROM in X with TO. The function does
2946 not enter into CONST_DOUBLE for the replace.
2947
2948 Note that copying is not done so X must not be shared unless all copies
2949 are to be modified. */
2950
2951 rtx
2952 replace_rtx (rtx x, rtx from, rtx to)
2953 {
2954 int i, j;
2955 const char *fmt;
2956
2957 if (x == from)
2958 return to;
2959
2960 /* Allow this function to make replacements in EXPR_LISTs. */
2961 if (x == 0)
2962 return 0;
2963
2964 if (GET_CODE (x) == REG)
2965 {
2966 if (GET_CODE (from) == REG
2967 && REGNO (x) == REGNO (from))
2968 {
2969 gcc_assert (GET_MODE (x) == GET_MODE (from));
2970 return to;
2971 }
2972 }
2973 else if (GET_CODE (x) == SUBREG)
2974 {
2975 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2976
2977 if (CONST_INT_P (new_rtx))
2978 {
2979 x = simplify_subreg (GET_MODE (x), new_rtx,
2980 GET_MODE (SUBREG_REG (x)),
2981 SUBREG_BYTE (x));
2982 gcc_assert (x);
2983 }
2984 else
2985 SUBREG_REG (x) = new_rtx;
2986
2987 return x;
2988 }
2989 else if (GET_CODE (x) == ZERO_EXTEND)
2990 {
2991 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2992
2993 if (CONST_INT_P (new_rtx))
2994 {
2995 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2996 new_rtx, GET_MODE (XEXP (x, 0)));
2997 gcc_assert (x);
2998 }
2999 else
3000 XEXP (x, 0) = new_rtx;
3001
3002 return x;
3003 }
3004
3005 fmt = GET_RTX_FORMAT (GET_CODE (x));
3006 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3007 {
3008 if (fmt[i] == 'e')
3009 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
3010 else if (fmt[i] == 'E')
3011 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3012 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
3013 }
3014
3015 return x;
3016 }
3017 \f
3018 /* Replace occurrences of the OLD_LABEL in *LOC with NEW_LABEL. Also track
3019 the change in LABEL_NUSES if UPDATE_LABEL_NUSES. */
3020
3021 void
3022 replace_label (rtx *loc, rtx old_label, rtx new_label, bool update_label_nuses)
3023 {
3024 /* Handle jump tables specially, since ADDR_{DIFF_,}VECs can be long. */
3025 rtx x = *loc;
3026 if (JUMP_TABLE_DATA_P (x))
3027 {
3028 x = PATTERN (x);
3029 rtvec vec = XVEC (x, GET_CODE (x) == ADDR_DIFF_VEC);
3030 int len = GET_NUM_ELEM (vec);
3031 for (int i = 0; i < len; ++i)
3032 {
3033 rtx ref = RTVEC_ELT (vec, i);
3034 if (XEXP (ref, 0) == old_label)
3035 {
3036 XEXP (ref, 0) = new_label;
3037 if (update_label_nuses)
3038 {
3039 ++LABEL_NUSES (new_label);
3040 --LABEL_NUSES (old_label);
3041 }
3042 }
3043 }
3044 return;
3045 }
3046
3047 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
3048 field. This is not handled by the iterator because it doesn't
3049 handle unprinted ('0') fields. */
3050 if (JUMP_P (x) && JUMP_LABEL (x) == old_label)
3051 JUMP_LABEL (x) = new_label;
3052
3053 subrtx_ptr_iterator::array_type array;
3054 FOR_EACH_SUBRTX_PTR (iter, array, loc, ALL)
3055 {
3056 rtx *loc = *iter;
3057 if (rtx x = *loc)
3058 {
3059 if (GET_CODE (x) == SYMBOL_REF
3060 && CONSTANT_POOL_ADDRESS_P (x))
3061 {
3062 rtx c = get_pool_constant (x);
3063 if (rtx_referenced_p (old_label, c))
3064 {
3065 /* Create a copy of constant C; replace the label inside
3066 but do not update LABEL_NUSES because uses in constant pool
3067 are not counted. */
3068 rtx new_c = copy_rtx (c);
3069 replace_label (&new_c, old_label, new_label, false);
3070
3071 /* Add the new constant NEW_C to constant pool and replace
3072 the old reference to constant by new reference. */
3073 rtx new_mem = force_const_mem (get_pool_mode (x), new_c);
3074 *loc = replace_rtx (x, x, XEXP (new_mem, 0));
3075 }
3076 }
3077
3078 if ((GET_CODE (x) == LABEL_REF
3079 || GET_CODE (x) == INSN_LIST)
3080 && XEXP (x, 0) == old_label)
3081 {
3082 XEXP (x, 0) = new_label;
3083 if (update_label_nuses)
3084 {
3085 ++LABEL_NUSES (new_label);
3086 --LABEL_NUSES (old_label);
3087 }
3088 }
3089 }
3090 }
3091 }
3092
3093 void
3094 replace_label_in_insn (rtx_insn *insn, rtx old_label, rtx new_label,
3095 bool update_label_nuses)
3096 {
3097 rtx insn_as_rtx = insn;
3098 replace_label (&insn_as_rtx, old_label, new_label, update_label_nuses);
3099 gcc_checking_assert (insn_as_rtx == insn);
3100 }
3101
3102 /* Return true if X is referenced in BODY. */
3103
3104 bool
3105 rtx_referenced_p (const_rtx x, const_rtx body)
3106 {
3107 subrtx_iterator::array_type array;
3108 FOR_EACH_SUBRTX (iter, array, body, ALL)
3109 if (const_rtx y = *iter)
3110 {
3111 /* Check if a label_ref Y refers to label X. */
3112 if (GET_CODE (y) == LABEL_REF
3113 && LABEL_P (x)
3114 && LABEL_REF_LABEL (y) == x)
3115 return true;
3116
3117 if (rtx_equal_p (x, y))
3118 return true;
3119
3120 /* If Y is a reference to pool constant traverse the constant. */
3121 if (GET_CODE (y) == SYMBOL_REF
3122 && CONSTANT_POOL_ADDRESS_P (y))
3123 iter.substitute (get_pool_constant (y));
3124 }
3125 return false;
3126 }
3127
3128 /* If INSN is a tablejump return true and store the label (before jump table) to
3129 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
3130
3131 bool
3132 tablejump_p (const rtx_insn *insn, rtx *labelp, rtx_jump_table_data **tablep)
3133 {
3134 rtx label;
3135 rtx_insn *table;
3136
3137 if (!JUMP_P (insn))
3138 return false;
3139
3140 label = JUMP_LABEL (insn);
3141 if (label != NULL_RTX && !ANY_RETURN_P (label)
3142 && (table = NEXT_INSN (as_a <rtx_insn *> (label))) != NULL_RTX
3143 && JUMP_TABLE_DATA_P (table))
3144 {
3145 if (labelp)
3146 *labelp = label;
3147 if (tablep)
3148 *tablep = as_a <rtx_jump_table_data *> (table);
3149 return true;
3150 }
3151 return false;
3152 }
3153
3154 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
3155 constant that is not in the constant pool and not in the condition
3156 of an IF_THEN_ELSE. */
3157
3158 static int
3159 computed_jump_p_1 (const_rtx x)
3160 {
3161 const enum rtx_code code = GET_CODE (x);
3162 int i, j;
3163 const char *fmt;
3164
3165 switch (code)
3166 {
3167 case LABEL_REF:
3168 case PC:
3169 return 0;
3170
3171 case CONST:
3172 CASE_CONST_ANY:
3173 case SYMBOL_REF:
3174 case REG:
3175 return 1;
3176
3177 case MEM:
3178 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
3179 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
3180
3181 case IF_THEN_ELSE:
3182 return (computed_jump_p_1 (XEXP (x, 1))
3183 || computed_jump_p_1 (XEXP (x, 2)));
3184
3185 default:
3186 break;
3187 }
3188
3189 fmt = GET_RTX_FORMAT (code);
3190 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3191 {
3192 if (fmt[i] == 'e'
3193 && computed_jump_p_1 (XEXP (x, i)))
3194 return 1;
3195
3196 else if (fmt[i] == 'E')
3197 for (j = 0; j < XVECLEN (x, i); j++)
3198 if (computed_jump_p_1 (XVECEXP (x, i, j)))
3199 return 1;
3200 }
3201
3202 return 0;
3203 }
3204
3205 /* Return nonzero if INSN is an indirect jump (aka computed jump).
3206
3207 Tablejumps and casesi insns are not considered indirect jumps;
3208 we can recognize them by a (use (label_ref)). */
3209
3210 int
3211 computed_jump_p (const rtx_insn *insn)
3212 {
3213 int i;
3214 if (JUMP_P (insn))
3215 {
3216 rtx pat = PATTERN (insn);
3217
3218 /* If we have a JUMP_LABEL set, we're not a computed jump. */
3219 if (JUMP_LABEL (insn) != NULL)
3220 return 0;
3221
3222 if (GET_CODE (pat) == PARALLEL)
3223 {
3224 int len = XVECLEN (pat, 0);
3225 int has_use_labelref = 0;
3226
3227 for (i = len - 1; i >= 0; i--)
3228 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
3229 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
3230 == LABEL_REF))
3231 {
3232 has_use_labelref = 1;
3233 break;
3234 }
3235
3236 if (! has_use_labelref)
3237 for (i = len - 1; i >= 0; i--)
3238 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
3239 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
3240 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
3241 return 1;
3242 }
3243 else if (GET_CODE (pat) == SET
3244 && SET_DEST (pat) == pc_rtx
3245 && computed_jump_p_1 (SET_SRC (pat)))
3246 return 1;
3247 }
3248 return 0;
3249 }
3250
3251 \f
3252
3253 /* MEM has a PRE/POST-INC/DEC/MODIFY address X. Extract the operands of
3254 the equivalent add insn and pass the result to FN, using DATA as the
3255 final argument. */
3256
3257 static int
3258 for_each_inc_dec_find_inc_dec (rtx mem, for_each_inc_dec_fn fn, void *data)
3259 {
3260 rtx x = XEXP (mem, 0);
3261 switch (GET_CODE (x))
3262 {
3263 case PRE_INC:
3264 case POST_INC:
3265 {
3266 int size = GET_MODE_SIZE (GET_MODE (mem));
3267 rtx r1 = XEXP (x, 0);
3268 rtx c = gen_int_mode (size, GET_MODE (r1));
3269 return fn (mem, x, r1, r1, c, data);
3270 }
3271
3272 case PRE_DEC:
3273 case POST_DEC:
3274 {
3275 int size = GET_MODE_SIZE (GET_MODE (mem));
3276 rtx r1 = XEXP (x, 0);
3277 rtx c = gen_int_mode (-size, GET_MODE (r1));
3278 return fn (mem, x, r1, r1, c, data);
3279 }
3280
3281 case PRE_MODIFY:
3282 case POST_MODIFY:
3283 {
3284 rtx r1 = XEXP (x, 0);
3285 rtx add = XEXP (x, 1);
3286 return fn (mem, x, r1, add, NULL, data);
3287 }
3288
3289 default:
3290 gcc_unreachable ();
3291 }
3292 }
3293
3294 /* Traverse *LOC looking for MEMs that have autoinc addresses.
3295 For each such autoinc operation found, call FN, passing it
3296 the innermost enclosing MEM, the operation itself, the RTX modified
3297 by the operation, two RTXs (the second may be NULL) that, once
3298 added, represent the value to be held by the modified RTX
3299 afterwards, and DATA. FN is to return 0 to continue the
3300 traversal or any other value to have it returned to the caller of
3301 for_each_inc_dec. */
3302
3303 int
3304 for_each_inc_dec (rtx x,
3305 for_each_inc_dec_fn fn,
3306 void *data)
3307 {
3308 subrtx_var_iterator::array_type array;
3309 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
3310 {
3311 rtx mem = *iter;
3312 if (mem
3313 && MEM_P (mem)
3314 && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
3315 {
3316 int res = for_each_inc_dec_find_inc_dec (mem, fn, data);
3317 if (res != 0)
3318 return res;
3319 iter.skip_subrtxes ();
3320 }
3321 }
3322 return 0;
3323 }
3324
3325 \f
3326 /* Searches X for any reference to REGNO, returning the rtx of the
3327 reference found if any. Otherwise, returns NULL_RTX. */
3328
3329 rtx
3330 regno_use_in (unsigned int regno, rtx x)
3331 {
3332 const char *fmt;
3333 int i, j;
3334 rtx tem;
3335
3336 if (REG_P (x) && REGNO (x) == regno)
3337 return x;
3338
3339 fmt = GET_RTX_FORMAT (GET_CODE (x));
3340 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3341 {
3342 if (fmt[i] == 'e')
3343 {
3344 if ((tem = regno_use_in (regno, XEXP (x, i))))
3345 return tem;
3346 }
3347 else if (fmt[i] == 'E')
3348 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3349 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3350 return tem;
3351 }
3352
3353 return NULL_RTX;
3354 }
3355
3356 /* Return a value indicating whether OP, an operand of a commutative
3357 operation, is preferred as the first or second operand. The more
3358 positive the value, the stronger the preference for being the first
3359 operand. */
3360
3361 int
3362 commutative_operand_precedence (rtx op)
3363 {
3364 enum rtx_code code = GET_CODE (op);
3365
3366 /* Constants always become the second operand. Prefer "nice" constants. */
3367 if (code == CONST_INT)
3368 return -8;
3369 if (code == CONST_WIDE_INT)
3370 return -7;
3371 if (code == CONST_DOUBLE)
3372 return -7;
3373 if (code == CONST_FIXED)
3374 return -7;
3375 op = avoid_constant_pool_reference (op);
3376 code = GET_CODE (op);
3377
3378 switch (GET_RTX_CLASS (code))
3379 {
3380 case RTX_CONST_OBJ:
3381 if (code == CONST_INT)
3382 return -6;
3383 if (code == CONST_WIDE_INT)
3384 return -6;
3385 if (code == CONST_DOUBLE)
3386 return -5;
3387 if (code == CONST_FIXED)
3388 return -5;
3389 return -4;
3390
3391 case RTX_EXTRA:
3392 /* SUBREGs of objects should come second. */
3393 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3394 return -3;
3395 return 0;
3396
3397 case RTX_OBJ:
3398 /* Complex expressions should be the first, so decrease priority
3399 of objects. Prefer pointer objects over non pointer objects. */
3400 if ((REG_P (op) && REG_POINTER (op))
3401 || (MEM_P (op) && MEM_POINTER (op)))
3402 return -1;
3403 return -2;
3404
3405 case RTX_COMM_ARITH:
3406 /* Prefer operands that are themselves commutative to be first.
3407 This helps to make things linear. In particular,
3408 (and (and (reg) (reg)) (not (reg))) is canonical. */
3409 return 4;
3410
3411 case RTX_BIN_ARITH:
3412 /* If only one operand is a binary expression, it will be the first
3413 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3414 is canonical, although it will usually be further simplified. */
3415 return 2;
3416
3417 case RTX_UNARY:
3418 /* Then prefer NEG and NOT. */
3419 if (code == NEG || code == NOT)
3420 return 1;
3421
3422 default:
3423 return 0;
3424 }
3425 }
3426
3427 /* Return 1 iff it is necessary to swap operands of commutative operation
3428 in order to canonicalize expression. */
3429
3430 bool
3431 swap_commutative_operands_p (rtx x, rtx y)
3432 {
3433 return (commutative_operand_precedence (x)
3434 < commutative_operand_precedence (y));
3435 }
3436
3437 /* Return 1 if X is an autoincrement side effect and the register is
3438 not the stack pointer. */
3439 int
3440 auto_inc_p (const_rtx x)
3441 {
3442 switch (GET_CODE (x))
3443 {
3444 case PRE_INC:
3445 case POST_INC:
3446 case PRE_DEC:
3447 case POST_DEC:
3448 case PRE_MODIFY:
3449 case POST_MODIFY:
3450 /* There are no REG_INC notes for SP. */
3451 if (XEXP (x, 0) != stack_pointer_rtx)
3452 return 1;
3453 default:
3454 break;
3455 }
3456 return 0;
3457 }
3458
3459 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3460 int
3461 loc_mentioned_in_p (rtx *loc, const_rtx in)
3462 {
3463 enum rtx_code code;
3464 const char *fmt;
3465 int i, j;
3466
3467 if (!in)
3468 return 0;
3469
3470 code = GET_CODE (in);
3471 fmt = GET_RTX_FORMAT (code);
3472 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3473 {
3474 if (fmt[i] == 'e')
3475 {
3476 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3477 return 1;
3478 }
3479 else if (fmt[i] == 'E')
3480 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3481 if (loc == &XVECEXP (in, i, j)
3482 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3483 return 1;
3484 }
3485 return 0;
3486 }
3487
3488 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3489 and SUBREG_BYTE, return the bit offset where the subreg begins
3490 (counting from the least significant bit of the operand). */
3491
3492 unsigned int
3493 subreg_lsb_1 (machine_mode outer_mode,
3494 machine_mode inner_mode,
3495 unsigned int subreg_byte)
3496 {
3497 unsigned int bitpos;
3498 unsigned int byte;
3499 unsigned int word;
3500
3501 /* A paradoxical subreg begins at bit position 0. */
3502 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3503 return 0;
3504
3505 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3506 /* If the subreg crosses a word boundary ensure that
3507 it also begins and ends on a word boundary. */
3508 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3509 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3510 && (subreg_byte % UNITS_PER_WORD
3511 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3512
3513 if (WORDS_BIG_ENDIAN)
3514 word = (GET_MODE_SIZE (inner_mode)
3515 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3516 else
3517 word = subreg_byte / UNITS_PER_WORD;
3518 bitpos = word * BITS_PER_WORD;
3519
3520 if (BYTES_BIG_ENDIAN)
3521 byte = (GET_MODE_SIZE (inner_mode)
3522 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3523 else
3524 byte = subreg_byte % UNITS_PER_WORD;
3525 bitpos += byte * BITS_PER_UNIT;
3526
3527 return bitpos;
3528 }
3529
3530 /* Given a subreg X, return the bit offset where the subreg begins
3531 (counting from the least significant bit of the reg). */
3532
3533 unsigned int
3534 subreg_lsb (const_rtx x)
3535 {
3536 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3537 SUBREG_BYTE (x));
3538 }
3539
3540 /* Fill in information about a subreg of a hard register.
3541 xregno - A regno of an inner hard subreg_reg (or what will become one).
3542 xmode - The mode of xregno.
3543 offset - The byte offset.
3544 ymode - The mode of a top level SUBREG (or what may become one).
3545 info - Pointer to structure to fill in.
3546
3547 Rather than considering one particular inner register (and thus one
3548 particular "outer" register) in isolation, this function really uses
3549 XREGNO as a model for a sequence of isomorphic hard registers. Thus the
3550 function does not check whether adding INFO->offset to XREGNO gives
3551 a valid hard register; even if INFO->offset + XREGNO is out of range,
3552 there might be another register of the same type that is in range.
3553 Likewise it doesn't check whether HARD_REGNO_MODE_OK accepts the new
3554 register, since that can depend on things like whether the final
3555 register number is even or odd. Callers that want to check whether
3556 this particular subreg can be replaced by a simple (reg ...) should
3557 use simplify_subreg_regno. */
3558
3559 void
3560 subreg_get_info (unsigned int xregno, machine_mode xmode,
3561 unsigned int offset, machine_mode ymode,
3562 struct subreg_info *info)
3563 {
3564 int nregs_xmode, nregs_ymode;
3565 int mode_multiple, nregs_multiple;
3566 int offset_adj, y_offset, y_offset_adj;
3567 int regsize_xmode, regsize_ymode;
3568 bool rknown;
3569
3570 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3571
3572 rknown = false;
3573
3574 /* If there are holes in a non-scalar mode in registers, we expect
3575 that it is made up of its units concatenated together. */
3576 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3577 {
3578 machine_mode xmode_unit;
3579
3580 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3581 xmode_unit = GET_MODE_INNER (xmode);
3582 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3583 gcc_assert (nregs_xmode
3584 == (GET_MODE_NUNITS (xmode)
3585 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3586 gcc_assert (hard_regno_nregs[xregno][xmode]
3587 == (hard_regno_nregs[xregno][xmode_unit]
3588 * GET_MODE_NUNITS (xmode)));
3589
3590 /* You can only ask for a SUBREG of a value with holes in the middle
3591 if you don't cross the holes. (Such a SUBREG should be done by
3592 picking a different register class, or doing it in memory if
3593 necessary.) An example of a value with holes is XCmode on 32-bit
3594 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3595 3 for each part, but in memory it's two 128-bit parts.
3596 Padding is assumed to be at the end (not necessarily the 'high part')
3597 of each unit. */
3598 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3599 < GET_MODE_NUNITS (xmode))
3600 && (offset / GET_MODE_SIZE (xmode_unit)
3601 != ((offset + GET_MODE_SIZE (ymode) - 1)
3602 / GET_MODE_SIZE (xmode_unit))))
3603 {
3604 info->representable_p = false;
3605 rknown = true;
3606 }
3607 }
3608 else
3609 nregs_xmode = hard_regno_nregs[xregno][xmode];
3610
3611 nregs_ymode = hard_regno_nregs[xregno][ymode];
3612
3613 /* Paradoxical subregs are otherwise valid. */
3614 if (!rknown
3615 && offset == 0
3616 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3617 {
3618 info->representable_p = true;
3619 /* If this is a big endian paradoxical subreg, which uses more
3620 actual hard registers than the original register, we must
3621 return a negative offset so that we find the proper highpart
3622 of the register. */
3623 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3624 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3625 info->offset = nregs_xmode - nregs_ymode;
3626 else
3627 info->offset = 0;
3628 info->nregs = nregs_ymode;
3629 return;
3630 }
3631
3632 /* If registers store different numbers of bits in the different
3633 modes, we cannot generally form this subreg. */
3634 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3635 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3636 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3637 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3638 {
3639 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3640 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3641 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3642 {
3643 info->representable_p = false;
3644 info->nregs
3645 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3646 info->offset = offset / regsize_xmode;
3647 return;
3648 }
3649 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3650 {
3651 info->representable_p = false;
3652 info->nregs
3653 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3654 info->offset = offset / regsize_xmode;
3655 return;
3656 }
3657 /* Quick exit for the simple and common case of extracting whole
3658 subregisters from a multiregister value. */
3659 /* ??? It would be better to integrate this into the code below,
3660 if we can generalize the concept enough and figure out how
3661 odd-sized modes can coexist with the other weird cases we support. */
3662 if (!rknown
3663 && WORDS_BIG_ENDIAN == REG_WORDS_BIG_ENDIAN
3664 && regsize_xmode == regsize_ymode
3665 && (offset % regsize_ymode) == 0)
3666 {
3667 info->representable_p = true;
3668 info->nregs = nregs_ymode;
3669 info->offset = offset / regsize_ymode;
3670 gcc_assert (info->offset + info->nregs <= nregs_xmode);
3671 return;
3672 }
3673 }
3674
3675 /* Lowpart subregs are otherwise valid. */
3676 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3677 {
3678 info->representable_p = true;
3679 rknown = true;
3680
3681 if (offset == 0 || nregs_xmode == nregs_ymode)
3682 {
3683 info->offset = 0;
3684 info->nregs = nregs_ymode;
3685 return;
3686 }
3687 }
3688
3689 /* This should always pass, otherwise we don't know how to verify
3690 the constraint. These conditions may be relaxed but
3691 subreg_regno_offset would need to be redesigned. */
3692 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3693 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3694
3695 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3696 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3697 {
3698 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3699 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3700 HOST_WIDE_INT off_low = offset & (ysize - 1);
3701 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3702 offset = (xsize - ysize - off_high) | off_low;
3703 }
3704 /* The XMODE value can be seen as a vector of NREGS_XMODE
3705 values. The subreg must represent a lowpart of given field.
3706 Compute what field it is. */
3707 offset_adj = offset;
3708 offset_adj -= subreg_lowpart_offset (ymode,
3709 mode_for_size (GET_MODE_BITSIZE (xmode)
3710 / nregs_xmode,
3711 MODE_INT, 0));
3712
3713 /* Size of ymode must not be greater than the size of xmode. */
3714 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3715 gcc_assert (mode_multiple != 0);
3716
3717 y_offset = offset / GET_MODE_SIZE (ymode);
3718 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3719 nregs_multiple = nregs_xmode / nregs_ymode;
3720
3721 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3722 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3723
3724 if (!rknown)
3725 {
3726 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3727 rknown = true;
3728 }
3729 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3730 info->nregs = nregs_ymode;
3731 }
3732
3733 /* This function returns the regno offset of a subreg expression.
3734 xregno - A regno of an inner hard subreg_reg (or what will become one).
3735 xmode - The mode of xregno.
3736 offset - The byte offset.
3737 ymode - The mode of a top level SUBREG (or what may become one).
3738 RETURN - The regno offset which would be used. */
3739 unsigned int
3740 subreg_regno_offset (unsigned int xregno, machine_mode xmode,
3741 unsigned int offset, machine_mode ymode)
3742 {
3743 struct subreg_info info;
3744 subreg_get_info (xregno, xmode, offset, ymode, &info);
3745 return info.offset;
3746 }
3747
3748 /* This function returns true when the offset is representable via
3749 subreg_offset in the given regno.
3750 xregno - A regno of an inner hard subreg_reg (or what will become one).
3751 xmode - The mode of xregno.
3752 offset - The byte offset.
3753 ymode - The mode of a top level SUBREG (or what may become one).
3754 RETURN - Whether the offset is representable. */
3755 bool
3756 subreg_offset_representable_p (unsigned int xregno, machine_mode xmode,
3757 unsigned int offset, machine_mode ymode)
3758 {
3759 struct subreg_info info;
3760 subreg_get_info (xregno, xmode, offset, ymode, &info);
3761 return info.representable_p;
3762 }
3763
3764 /* Return the number of a YMODE register to which
3765
3766 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3767
3768 can be simplified. Return -1 if the subreg can't be simplified.
3769
3770 XREGNO is a hard register number. */
3771
3772 int
3773 simplify_subreg_regno (unsigned int xregno, machine_mode xmode,
3774 unsigned int offset, machine_mode ymode)
3775 {
3776 struct subreg_info info;
3777 unsigned int yregno;
3778
3779 #ifdef CANNOT_CHANGE_MODE_CLASS
3780 /* Give the backend a chance to disallow the mode change. */
3781 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3782 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3783 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode)
3784 /* We can use mode change in LRA for some transformations. */
3785 && ! lra_in_progress)
3786 return -1;
3787 #endif
3788
3789 /* We shouldn't simplify stack-related registers. */
3790 if ((!reload_completed || frame_pointer_needed)
3791 && xregno == FRAME_POINTER_REGNUM)
3792 return -1;
3793
3794 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3795 && xregno == ARG_POINTER_REGNUM)
3796 return -1;
3797
3798 if (xregno == STACK_POINTER_REGNUM
3799 /* We should convert hard stack register in LRA if it is
3800 possible. */
3801 && ! lra_in_progress)
3802 return -1;
3803
3804 /* Try to get the register offset. */
3805 subreg_get_info (xregno, xmode, offset, ymode, &info);
3806 if (!info.representable_p)
3807 return -1;
3808
3809 /* Make sure that the offsetted register value is in range. */
3810 yregno = xregno + info.offset;
3811 if (!HARD_REGISTER_NUM_P (yregno))
3812 return -1;
3813
3814 /* See whether (reg:YMODE YREGNO) is valid.
3815
3816 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3817 This is a kludge to work around how complex FP arguments are passed
3818 on IA-64 and should be fixed. See PR target/49226. */
3819 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3820 && HARD_REGNO_MODE_OK (xregno, xmode))
3821 return -1;
3822
3823 return (int) yregno;
3824 }
3825
3826 /* Return the final regno that a subreg expression refers to. */
3827 unsigned int
3828 subreg_regno (const_rtx x)
3829 {
3830 unsigned int ret;
3831 rtx subreg = SUBREG_REG (x);
3832 int regno = REGNO (subreg);
3833
3834 ret = regno + subreg_regno_offset (regno,
3835 GET_MODE (subreg),
3836 SUBREG_BYTE (x),
3837 GET_MODE (x));
3838 return ret;
3839
3840 }
3841
3842 /* Return the number of registers that a subreg expression refers
3843 to. */
3844 unsigned int
3845 subreg_nregs (const_rtx x)
3846 {
3847 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3848 }
3849
3850 /* Return the number of registers that a subreg REG with REGNO
3851 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3852 changed so that the regno can be passed in. */
3853
3854 unsigned int
3855 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3856 {
3857 struct subreg_info info;
3858 rtx subreg = SUBREG_REG (x);
3859
3860 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3861 &info);
3862 return info.nregs;
3863 }
3864
3865
3866 struct parms_set_data
3867 {
3868 int nregs;
3869 HARD_REG_SET regs;
3870 };
3871
3872 /* Helper function for noticing stores to parameter registers. */
3873 static void
3874 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3875 {
3876 struct parms_set_data *const d = (struct parms_set_data *) data;
3877 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3878 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3879 {
3880 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3881 d->nregs--;
3882 }
3883 }
3884
3885 /* Look backward for first parameter to be loaded.
3886 Note that loads of all parameters will not necessarily be
3887 found if CSE has eliminated some of them (e.g., an argument
3888 to the outer function is passed down as a parameter).
3889 Do not skip BOUNDARY. */
3890 rtx_insn *
3891 find_first_parameter_load (rtx_insn *call_insn, rtx_insn *boundary)
3892 {
3893 struct parms_set_data parm;
3894 rtx p;
3895 rtx_insn *before, *first_set;
3896
3897 /* Since different machines initialize their parameter registers
3898 in different orders, assume nothing. Collect the set of all
3899 parameter registers. */
3900 CLEAR_HARD_REG_SET (parm.regs);
3901 parm.nregs = 0;
3902 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3903 if (GET_CODE (XEXP (p, 0)) == USE
3904 && REG_P (XEXP (XEXP (p, 0), 0)))
3905 {
3906 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3907
3908 /* We only care about registers which can hold function
3909 arguments. */
3910 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3911 continue;
3912
3913 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3914 parm.nregs++;
3915 }
3916 before = call_insn;
3917 first_set = call_insn;
3918
3919 /* Search backward for the first set of a register in this set. */
3920 while (parm.nregs && before != boundary)
3921 {
3922 before = PREV_INSN (before);
3923
3924 /* It is possible that some loads got CSEed from one call to
3925 another. Stop in that case. */
3926 if (CALL_P (before))
3927 break;
3928
3929 /* Our caller needs either ensure that we will find all sets
3930 (in case code has not been optimized yet), or take care
3931 for possible labels in a way by setting boundary to preceding
3932 CODE_LABEL. */
3933 if (LABEL_P (before))
3934 {
3935 gcc_assert (before == boundary);
3936 break;
3937 }
3938
3939 if (INSN_P (before))
3940 {
3941 int nregs_old = parm.nregs;
3942 note_stores (PATTERN (before), parms_set, &parm);
3943 /* If we found something that did not set a parameter reg,
3944 we're done. Do not keep going, as that might result
3945 in hoisting an insn before the setting of a pseudo
3946 that is used by the hoisted insn. */
3947 if (nregs_old != parm.nregs)
3948 first_set = before;
3949 else
3950 break;
3951 }
3952 }
3953 return first_set;
3954 }
3955
3956 /* Return true if we should avoid inserting code between INSN and preceding
3957 call instruction. */
3958
3959 bool
3960 keep_with_call_p (const rtx_insn *insn)
3961 {
3962 rtx set;
3963
3964 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3965 {
3966 if (REG_P (SET_DEST (set))
3967 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3968 && fixed_regs[REGNO (SET_DEST (set))]
3969 && general_operand (SET_SRC (set), VOIDmode))
3970 return true;
3971 if (REG_P (SET_SRC (set))
3972 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3973 && REG_P (SET_DEST (set))
3974 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3975 return true;
3976 /* There may be a stack pop just after the call and before the store
3977 of the return register. Search for the actual store when deciding
3978 if we can break or not. */
3979 if (SET_DEST (set) == stack_pointer_rtx)
3980 {
3981 /* This CONST_CAST is okay because next_nonnote_insn just
3982 returns its argument and we assign it to a const_rtx
3983 variable. */
3984 const rtx_insn *i2
3985 = next_nonnote_insn (const_cast<rtx_insn *> (insn));
3986 if (i2 && keep_with_call_p (i2))
3987 return true;
3988 }
3989 }
3990 return false;
3991 }
3992
3993 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3994 to non-complex jumps. That is, direct unconditional, conditional,
3995 and tablejumps, but not computed jumps or returns. It also does
3996 not apply to the fallthru case of a conditional jump. */
3997
3998 bool
3999 label_is_jump_target_p (const_rtx label, const rtx_insn *jump_insn)
4000 {
4001 rtx tmp = JUMP_LABEL (jump_insn);
4002 rtx_jump_table_data *table;
4003
4004 if (label == tmp)
4005 return true;
4006
4007 if (tablejump_p (jump_insn, NULL, &table))
4008 {
4009 rtvec vec = table->get_labels ();
4010 int i, veclen = GET_NUM_ELEM (vec);
4011
4012 for (i = 0; i < veclen; ++i)
4013 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
4014 return true;
4015 }
4016
4017 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
4018 return true;
4019
4020 return false;
4021 }
4022
4023 \f
4024 /* Return an estimate of the cost of computing rtx X.
4025 One use is in cse, to decide which expression to keep in the hash table.
4026 Another is in rtl generation, to pick the cheapest way to multiply.
4027 Other uses like the latter are expected in the future.
4028
4029 X appears as operand OPNO in an expression with code OUTER_CODE.
4030 SPEED specifies whether costs optimized for speed or size should
4031 be returned. */
4032
4033 int
4034 rtx_cost (rtx x, machine_mode mode, enum rtx_code outer_code,
4035 int opno, bool speed)
4036 {
4037 int i, j;
4038 enum rtx_code code;
4039 const char *fmt;
4040 int total;
4041 int factor;
4042
4043 if (x == 0)
4044 return 0;
4045
4046 if (GET_MODE (x) != VOIDmode)
4047 mode = GET_MODE (x);
4048
4049 /* A size N times larger than UNITS_PER_WORD likely needs N times as
4050 many insns, taking N times as long. */
4051 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4052 if (factor == 0)
4053 factor = 1;
4054
4055 /* Compute the default costs of certain things.
4056 Note that targetm.rtx_costs can override the defaults. */
4057
4058 code = GET_CODE (x);
4059 switch (code)
4060 {
4061 case MULT:
4062 /* Multiplication has time-complexity O(N*N), where N is the
4063 number of units (translated from digits) when using
4064 schoolbook long multiplication. */
4065 total = factor * factor * COSTS_N_INSNS (5);
4066 break;
4067 case DIV:
4068 case UDIV:
4069 case MOD:
4070 case UMOD:
4071 /* Similarly, complexity for schoolbook long division. */
4072 total = factor * factor * COSTS_N_INSNS (7);
4073 break;
4074 case USE:
4075 /* Used in combine.c as a marker. */
4076 total = 0;
4077 break;
4078 case SET:
4079 /* A SET doesn't have a mode, so let's look at the SET_DEST to get
4080 the mode for the factor. */
4081 mode = GET_MODE (SET_DEST (x));
4082 factor = GET_MODE_SIZE (mode) / UNITS_PER_WORD;
4083 if (factor == 0)
4084 factor = 1;
4085 /* Pass through. */
4086 default:
4087 total = factor * COSTS_N_INSNS (1);
4088 }
4089
4090 switch (code)
4091 {
4092 case REG:
4093 return 0;
4094
4095 case SUBREG:
4096 total = 0;
4097 /* If we can't tie these modes, make this expensive. The larger
4098 the mode, the more expensive it is. */
4099 if (! MODES_TIEABLE_P (mode, GET_MODE (SUBREG_REG (x))))
4100 return COSTS_N_INSNS (2 + factor);
4101 break;
4102
4103 default:
4104 if (targetm.rtx_costs (x, mode, outer_code, opno, &total, speed))
4105 return total;
4106 break;
4107 }
4108
4109 /* Sum the costs of the sub-rtx's, plus cost of this operation,
4110 which is already in total. */
4111
4112 fmt = GET_RTX_FORMAT (code);
4113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4114 if (fmt[i] == 'e')
4115 total += rtx_cost (XEXP (x, i), mode, code, i, speed);
4116 else if (fmt[i] == 'E')
4117 for (j = 0; j < XVECLEN (x, i); j++)
4118 total += rtx_cost (XVECEXP (x, i, j), mode, code, i, speed);
4119
4120 return total;
4121 }
4122
4123 /* Fill in the structure C with information about both speed and size rtx
4124 costs for X, which is operand OPNO in an expression with code OUTER. */
4125
4126 void
4127 get_full_rtx_cost (rtx x, machine_mode mode, enum rtx_code outer, int opno,
4128 struct full_rtx_costs *c)
4129 {
4130 c->speed = rtx_cost (x, mode, outer, opno, true);
4131 c->size = rtx_cost (x, mode, outer, opno, false);
4132 }
4133
4134 \f
4135 /* Return cost of address expression X.
4136 Expect that X is properly formed address reference.
4137
4138 SPEED parameter specify whether costs optimized for speed or size should
4139 be returned. */
4140
4141 int
4142 address_cost (rtx x, machine_mode mode, addr_space_t as, bool speed)
4143 {
4144 /* We may be asked for cost of various unusual addresses, such as operands
4145 of push instruction. It is not worthwhile to complicate writing
4146 of the target hook by such cases. */
4147
4148 if (!memory_address_addr_space_p (mode, x, as))
4149 return 1000;
4150
4151 return targetm.address_cost (x, mode, as, speed);
4152 }
4153
4154 /* If the target doesn't override, compute the cost as with arithmetic. */
4155
4156 int
4157 default_address_cost (rtx x, machine_mode, addr_space_t, bool speed)
4158 {
4159 return rtx_cost (x, Pmode, MEM, 0, speed);
4160 }
4161 \f
4162
4163 unsigned HOST_WIDE_INT
4164 nonzero_bits (const_rtx x, machine_mode mode)
4165 {
4166 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
4167 }
4168
4169 unsigned int
4170 num_sign_bit_copies (const_rtx x, machine_mode mode)
4171 {
4172 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
4173 }
4174
4175 /* Return true if nonzero_bits1 might recurse into both operands
4176 of X. */
4177
4178 static inline bool
4179 nonzero_bits_binary_arith_p (const_rtx x)
4180 {
4181 if (!ARITHMETIC_P (x))
4182 return false;
4183 switch (GET_CODE (x))
4184 {
4185 case AND:
4186 case XOR:
4187 case IOR:
4188 case UMIN:
4189 case UMAX:
4190 case SMIN:
4191 case SMAX:
4192 case PLUS:
4193 case MINUS:
4194 case MULT:
4195 case DIV:
4196 case UDIV:
4197 case MOD:
4198 case UMOD:
4199 return true;
4200 default:
4201 return false;
4202 }
4203 }
4204
4205 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
4206 It avoids exponential behavior in nonzero_bits1 when X has
4207 identical subexpressions on the first or the second level. */
4208
4209 static unsigned HOST_WIDE_INT
4210 cached_nonzero_bits (const_rtx x, machine_mode mode, const_rtx known_x,
4211 machine_mode known_mode,
4212 unsigned HOST_WIDE_INT known_ret)
4213 {
4214 if (x == known_x && mode == known_mode)
4215 return known_ret;
4216
4217 /* Try to find identical subexpressions. If found call
4218 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
4219 precomputed value for the subexpression as KNOWN_RET. */
4220
4221 if (nonzero_bits_binary_arith_p (x))
4222 {
4223 rtx x0 = XEXP (x, 0);
4224 rtx x1 = XEXP (x, 1);
4225
4226 /* Check the first level. */
4227 if (x0 == x1)
4228 return nonzero_bits1 (x, mode, x0, mode,
4229 cached_nonzero_bits (x0, mode, known_x,
4230 known_mode, known_ret));
4231
4232 /* Check the second level. */
4233 if (nonzero_bits_binary_arith_p (x0)
4234 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4235 return nonzero_bits1 (x, mode, x1, mode,
4236 cached_nonzero_bits (x1, mode, known_x,
4237 known_mode, known_ret));
4238
4239 if (nonzero_bits_binary_arith_p (x1)
4240 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4241 return nonzero_bits1 (x, mode, x0, mode,
4242 cached_nonzero_bits (x0, mode, known_x,
4243 known_mode, known_ret));
4244 }
4245
4246 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
4247 }
4248
4249 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
4250 We don't let nonzero_bits recur into num_sign_bit_copies, because that
4251 is less useful. We can't allow both, because that results in exponential
4252 run time recursion. There is a nullstone testcase that triggered
4253 this. This macro avoids accidental uses of num_sign_bit_copies. */
4254 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
4255
4256 /* Given an expression, X, compute which bits in X can be nonzero.
4257 We don't care about bits outside of those defined in MODE.
4258
4259 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
4260 an arithmetic operation, we can do better. */
4261
4262 static unsigned HOST_WIDE_INT
4263 nonzero_bits1 (const_rtx x, machine_mode mode, const_rtx known_x,
4264 machine_mode known_mode,
4265 unsigned HOST_WIDE_INT known_ret)
4266 {
4267 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
4268 unsigned HOST_WIDE_INT inner_nz;
4269 enum rtx_code code;
4270 machine_mode inner_mode;
4271 unsigned int mode_width = GET_MODE_PRECISION (mode);
4272
4273 /* For floating-point and vector values, assume all bits are needed. */
4274 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
4275 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4276 return nonzero;
4277
4278 /* If X is wider than MODE, use its mode instead. */
4279 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
4280 {
4281 mode = GET_MODE (x);
4282 nonzero = GET_MODE_MASK (mode);
4283 mode_width = GET_MODE_PRECISION (mode);
4284 }
4285
4286 if (mode_width > HOST_BITS_PER_WIDE_INT)
4287 /* Our only callers in this case look for single bit values. So
4288 just return the mode mask. Those tests will then be false. */
4289 return nonzero;
4290
4291 /* If MODE is wider than X, but both are a single word for both the host
4292 and target machines, we can compute this from which bits of the
4293 object might be nonzero in its own mode, taking into account the fact
4294 that on many CISC machines, accessing an object in a wider mode
4295 causes the high-order bits to become undefined. So they are
4296 not known to be zero. */
4297
4298 if (!WORD_REGISTER_OPERATIONS
4299 && GET_MODE (x) != VOIDmode
4300 && GET_MODE (x) != mode
4301 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
4302 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
4303 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
4304 {
4305 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
4306 known_x, known_mode, known_ret);
4307 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
4308 return nonzero;
4309 }
4310
4311 /* Please keep nonzero_bits_binary_arith_p above in sync with
4312 the code in the switch below. */
4313 code = GET_CODE (x);
4314 switch (code)
4315 {
4316 case REG:
4317 #if defined(POINTERS_EXTEND_UNSIGNED)
4318 /* If pointers extend unsigned and this is a pointer in Pmode, say that
4319 all the bits above ptr_mode are known to be zero. */
4320 /* As we do not know which address space the pointer is referring to,
4321 we can do this only if the target does not support different pointer
4322 or address modes depending on the address space. */
4323 if (target_default_pointer_address_modes_p ()
4324 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4325 && REG_POINTER (x)
4326 && !targetm.have_ptr_extend ())
4327 nonzero &= GET_MODE_MASK (ptr_mode);
4328 #endif
4329
4330 /* Include declared information about alignment of pointers. */
4331 /* ??? We don't properly preserve REG_POINTER changes across
4332 pointer-to-integer casts, so we can't trust it except for
4333 things that we know must be pointers. See execute/960116-1.c. */
4334 if ((x == stack_pointer_rtx
4335 || x == frame_pointer_rtx
4336 || x == arg_pointer_rtx)
4337 && REGNO_POINTER_ALIGN (REGNO (x)))
4338 {
4339 unsigned HOST_WIDE_INT alignment
4340 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
4341
4342 #ifdef PUSH_ROUNDING
4343 /* If PUSH_ROUNDING is defined, it is possible for the
4344 stack to be momentarily aligned only to that amount,
4345 so we pick the least alignment. */
4346 if (x == stack_pointer_rtx && PUSH_ARGS)
4347 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
4348 alignment);
4349 #endif
4350
4351 nonzero &= ~(alignment - 1);
4352 }
4353
4354 {
4355 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
4356 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4357 known_mode, known_ret,
4358 &nonzero_for_hook);
4359
4360 if (new_rtx)
4361 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4362 known_mode, known_ret);
4363
4364 return nonzero_for_hook;
4365 }
4366
4367 case CONST_INT:
4368 /* If X is negative in MODE, sign-extend the value. */
4369 if (SHORT_IMMEDIATES_SIGN_EXTEND && INTVAL (x) > 0
4370 && mode_width < BITS_PER_WORD
4371 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4372 != 0)
4373 return UINTVAL (x) | (HOST_WIDE_INT_M1U << mode_width);
4374
4375 return UINTVAL (x);
4376
4377 case MEM:
4378 #ifdef LOAD_EXTEND_OP
4379 /* In many, if not most, RISC machines, reading a byte from memory
4380 zeros the rest of the register. Noticing that fact saves a lot
4381 of extra zero-extends. */
4382 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4383 nonzero &= GET_MODE_MASK (GET_MODE (x));
4384 #endif
4385 break;
4386
4387 case EQ: case NE:
4388 case UNEQ: case LTGT:
4389 case GT: case GTU: case UNGT:
4390 case LT: case LTU: case UNLT:
4391 case GE: case GEU: case UNGE:
4392 case LE: case LEU: case UNLE:
4393 case UNORDERED: case ORDERED:
4394 /* If this produces an integer result, we know which bits are set.
4395 Code here used to clear bits outside the mode of X, but that is
4396 now done above. */
4397 /* Mind that MODE is the mode the caller wants to look at this
4398 operation in, and not the actual operation mode. We can wind
4399 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4400 that describes the results of a vector compare. */
4401 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4402 && mode_width <= HOST_BITS_PER_WIDE_INT)
4403 nonzero = STORE_FLAG_VALUE;
4404 break;
4405
4406 case NEG:
4407 #if 0
4408 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4409 and num_sign_bit_copies. */
4410 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4411 == GET_MODE_PRECISION (GET_MODE (x)))
4412 nonzero = 1;
4413 #endif
4414
4415 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4416 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4417 break;
4418
4419 case ABS:
4420 #if 0
4421 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4422 and num_sign_bit_copies. */
4423 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4424 == GET_MODE_PRECISION (GET_MODE (x)))
4425 nonzero = 1;
4426 #endif
4427 break;
4428
4429 case TRUNCATE:
4430 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4431 known_x, known_mode, known_ret)
4432 & GET_MODE_MASK (mode));
4433 break;
4434
4435 case ZERO_EXTEND:
4436 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4437 known_x, known_mode, known_ret);
4438 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4439 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4440 break;
4441
4442 case SIGN_EXTEND:
4443 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4444 Otherwise, show all the bits in the outer mode but not the inner
4445 may be nonzero. */
4446 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4447 known_x, known_mode, known_ret);
4448 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4449 {
4450 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4451 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4452 inner_nz |= (GET_MODE_MASK (mode)
4453 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4454 }
4455
4456 nonzero &= inner_nz;
4457 break;
4458
4459 case AND:
4460 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4461 known_x, known_mode, known_ret)
4462 & cached_nonzero_bits (XEXP (x, 1), mode,
4463 known_x, known_mode, known_ret);
4464 break;
4465
4466 case XOR: case IOR:
4467 case UMIN: case UMAX: case SMIN: case SMAX:
4468 {
4469 unsigned HOST_WIDE_INT nonzero0
4470 = cached_nonzero_bits (XEXP (x, 0), mode,
4471 known_x, known_mode, known_ret);
4472
4473 /* Don't call nonzero_bits for the second time if it cannot change
4474 anything. */
4475 if ((nonzero & nonzero0) != nonzero)
4476 nonzero &= nonzero0
4477 | cached_nonzero_bits (XEXP (x, 1), mode,
4478 known_x, known_mode, known_ret);
4479 }
4480 break;
4481
4482 case PLUS: case MINUS:
4483 case MULT:
4484 case DIV: case UDIV:
4485 case MOD: case UMOD:
4486 /* We can apply the rules of arithmetic to compute the number of
4487 high- and low-order zero bits of these operations. We start by
4488 computing the width (position of the highest-order nonzero bit)
4489 and the number of low-order zero bits for each value. */
4490 {
4491 unsigned HOST_WIDE_INT nz0
4492 = cached_nonzero_bits (XEXP (x, 0), mode,
4493 known_x, known_mode, known_ret);
4494 unsigned HOST_WIDE_INT nz1
4495 = cached_nonzero_bits (XEXP (x, 1), mode,
4496 known_x, known_mode, known_ret);
4497 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4498 int width0 = floor_log2 (nz0) + 1;
4499 int width1 = floor_log2 (nz1) + 1;
4500 int low0 = floor_log2 (nz0 & -nz0);
4501 int low1 = floor_log2 (nz1 & -nz1);
4502 unsigned HOST_WIDE_INT op0_maybe_minusp
4503 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4504 unsigned HOST_WIDE_INT op1_maybe_minusp
4505 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4506 unsigned int result_width = mode_width;
4507 int result_low = 0;
4508
4509 switch (code)
4510 {
4511 case PLUS:
4512 result_width = MAX (width0, width1) + 1;
4513 result_low = MIN (low0, low1);
4514 break;
4515 case MINUS:
4516 result_low = MIN (low0, low1);
4517 break;
4518 case MULT:
4519 result_width = width0 + width1;
4520 result_low = low0 + low1;
4521 break;
4522 case DIV:
4523 if (width1 == 0)
4524 break;
4525 if (!op0_maybe_minusp && !op1_maybe_minusp)
4526 result_width = width0;
4527 break;
4528 case UDIV:
4529 if (width1 == 0)
4530 break;
4531 result_width = width0;
4532 break;
4533 case MOD:
4534 if (width1 == 0)
4535 break;
4536 if (!op0_maybe_minusp && !op1_maybe_minusp)
4537 result_width = MIN (width0, width1);
4538 result_low = MIN (low0, low1);
4539 break;
4540 case UMOD:
4541 if (width1 == 0)
4542 break;
4543 result_width = MIN (width0, width1);
4544 result_low = MIN (low0, low1);
4545 break;
4546 default:
4547 gcc_unreachable ();
4548 }
4549
4550 if (result_width < mode_width)
4551 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4552
4553 if (result_low > 0)
4554 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4555 }
4556 break;
4557
4558 case ZERO_EXTRACT:
4559 if (CONST_INT_P (XEXP (x, 1))
4560 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4561 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4562 break;
4563
4564 case SUBREG:
4565 /* If this is a SUBREG formed for a promoted variable that has
4566 been zero-extended, we know that at least the high-order bits
4567 are zero, though others might be too. */
4568
4569 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x))
4570 nonzero = GET_MODE_MASK (GET_MODE (x))
4571 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4572 known_x, known_mode, known_ret);
4573
4574 inner_mode = GET_MODE (SUBREG_REG (x));
4575 /* If the inner mode is a single word for both the host and target
4576 machines, we can compute this from which bits of the inner
4577 object might be nonzero. */
4578 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4579 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4580 {
4581 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4582 known_x, known_mode, known_ret);
4583
4584 #if WORD_REGISTER_OPERATIONS && defined (LOAD_EXTEND_OP)
4585 /* If this is a typical RISC machine, we only have to worry
4586 about the way loads are extended. */
4587 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4588 ? val_signbit_known_set_p (inner_mode, nonzero)
4589 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4590 || !MEM_P (SUBREG_REG (x)))
4591 #endif
4592 {
4593 /* On many CISC machines, accessing an object in a wider mode
4594 causes the high-order bits to become undefined. So they are
4595 not known to be zero. */
4596 if (GET_MODE_PRECISION (GET_MODE (x))
4597 > GET_MODE_PRECISION (inner_mode))
4598 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4599 & ~GET_MODE_MASK (inner_mode));
4600 }
4601 }
4602 break;
4603
4604 case ASHIFTRT:
4605 case LSHIFTRT:
4606 case ASHIFT:
4607 case ROTATE:
4608 /* The nonzero bits are in two classes: any bits within MODE
4609 that aren't in GET_MODE (x) are always significant. The rest of the
4610 nonzero bits are those that are significant in the operand of
4611 the shift when shifted the appropriate number of bits. This
4612 shows that high-order bits are cleared by the right shift and
4613 low-order bits by left shifts. */
4614 if (CONST_INT_P (XEXP (x, 1))
4615 && INTVAL (XEXP (x, 1)) >= 0
4616 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4617 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4618 {
4619 machine_mode inner_mode = GET_MODE (x);
4620 unsigned int width = GET_MODE_PRECISION (inner_mode);
4621 int count = INTVAL (XEXP (x, 1));
4622 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4623 unsigned HOST_WIDE_INT op_nonzero
4624 = cached_nonzero_bits (XEXP (x, 0), mode,
4625 known_x, known_mode, known_ret);
4626 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4627 unsigned HOST_WIDE_INT outer = 0;
4628
4629 if (mode_width > width)
4630 outer = (op_nonzero & nonzero & ~mode_mask);
4631
4632 if (code == LSHIFTRT)
4633 inner >>= count;
4634 else if (code == ASHIFTRT)
4635 {
4636 inner >>= count;
4637
4638 /* If the sign bit may have been nonzero before the shift, we
4639 need to mark all the places it could have been copied to
4640 by the shift as possibly nonzero. */
4641 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4642 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4643 << (width - count);
4644 }
4645 else if (code == ASHIFT)
4646 inner <<= count;
4647 else
4648 inner = ((inner << (count % width)
4649 | (inner >> (width - (count % width)))) & mode_mask);
4650
4651 nonzero &= (outer | inner);
4652 }
4653 break;
4654
4655 case FFS:
4656 case POPCOUNT:
4657 /* This is at most the number of bits in the mode. */
4658 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4659 break;
4660
4661 case CLZ:
4662 /* If CLZ has a known value at zero, then the nonzero bits are
4663 that value, plus the number of bits in the mode minus one. */
4664 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4665 nonzero
4666 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4667 else
4668 nonzero = -1;
4669 break;
4670
4671 case CTZ:
4672 /* If CTZ has a known value at zero, then the nonzero bits are
4673 that value, plus the number of bits in the mode minus one. */
4674 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4675 nonzero
4676 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4677 else
4678 nonzero = -1;
4679 break;
4680
4681 case CLRSB:
4682 /* This is at most the number of bits in the mode minus 1. */
4683 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4684 break;
4685
4686 case PARITY:
4687 nonzero = 1;
4688 break;
4689
4690 case IF_THEN_ELSE:
4691 {
4692 unsigned HOST_WIDE_INT nonzero_true
4693 = cached_nonzero_bits (XEXP (x, 1), mode,
4694 known_x, known_mode, known_ret);
4695
4696 /* Don't call nonzero_bits for the second time if it cannot change
4697 anything. */
4698 if ((nonzero & nonzero_true) != nonzero)
4699 nonzero &= nonzero_true
4700 | cached_nonzero_bits (XEXP (x, 2), mode,
4701 known_x, known_mode, known_ret);
4702 }
4703 break;
4704
4705 default:
4706 break;
4707 }
4708
4709 return nonzero;
4710 }
4711
4712 /* See the macro definition above. */
4713 #undef cached_num_sign_bit_copies
4714
4715 \f
4716 /* Return true if num_sign_bit_copies1 might recurse into both operands
4717 of X. */
4718
4719 static inline bool
4720 num_sign_bit_copies_binary_arith_p (const_rtx x)
4721 {
4722 if (!ARITHMETIC_P (x))
4723 return false;
4724 switch (GET_CODE (x))
4725 {
4726 case IOR:
4727 case AND:
4728 case XOR:
4729 case SMIN:
4730 case SMAX:
4731 case UMIN:
4732 case UMAX:
4733 case PLUS:
4734 case MINUS:
4735 case MULT:
4736 return true;
4737 default:
4738 return false;
4739 }
4740 }
4741
4742 /* The function cached_num_sign_bit_copies is a wrapper around
4743 num_sign_bit_copies1. It avoids exponential behavior in
4744 num_sign_bit_copies1 when X has identical subexpressions on the
4745 first or the second level. */
4746
4747 static unsigned int
4748 cached_num_sign_bit_copies (const_rtx x, machine_mode mode, const_rtx known_x,
4749 machine_mode known_mode,
4750 unsigned int known_ret)
4751 {
4752 if (x == known_x && mode == known_mode)
4753 return known_ret;
4754
4755 /* Try to find identical subexpressions. If found call
4756 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4757 the precomputed value for the subexpression as KNOWN_RET. */
4758
4759 if (num_sign_bit_copies_binary_arith_p (x))
4760 {
4761 rtx x0 = XEXP (x, 0);
4762 rtx x1 = XEXP (x, 1);
4763
4764 /* Check the first level. */
4765 if (x0 == x1)
4766 return
4767 num_sign_bit_copies1 (x, mode, x0, mode,
4768 cached_num_sign_bit_copies (x0, mode, known_x,
4769 known_mode,
4770 known_ret));
4771
4772 /* Check the second level. */
4773 if (num_sign_bit_copies_binary_arith_p (x0)
4774 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4775 return
4776 num_sign_bit_copies1 (x, mode, x1, mode,
4777 cached_num_sign_bit_copies (x1, mode, known_x,
4778 known_mode,
4779 known_ret));
4780
4781 if (num_sign_bit_copies_binary_arith_p (x1)
4782 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4783 return
4784 num_sign_bit_copies1 (x, mode, x0, mode,
4785 cached_num_sign_bit_copies (x0, mode, known_x,
4786 known_mode,
4787 known_ret));
4788 }
4789
4790 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4791 }
4792
4793 /* Return the number of bits at the high-order end of X that are known to
4794 be equal to the sign bit. X will be used in mode MODE; if MODE is
4795 VOIDmode, X will be used in its own mode. The returned value will always
4796 be between 1 and the number of bits in MODE. */
4797
4798 static unsigned int
4799 num_sign_bit_copies1 (const_rtx x, machine_mode mode, const_rtx known_x,
4800 machine_mode known_mode,
4801 unsigned int known_ret)
4802 {
4803 enum rtx_code code = GET_CODE (x);
4804 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4805 int num0, num1, result;
4806 unsigned HOST_WIDE_INT nonzero;
4807
4808 /* If we weren't given a mode, use the mode of X. If the mode is still
4809 VOIDmode, we don't know anything. Likewise if one of the modes is
4810 floating-point. */
4811
4812 if (mode == VOIDmode)
4813 mode = GET_MODE (x);
4814
4815 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4816 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4817 return 1;
4818
4819 /* For a smaller object, just ignore the high bits. */
4820 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4821 {
4822 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4823 known_x, known_mode, known_ret);
4824 return MAX (1,
4825 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4826 }
4827
4828 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4829 {
4830 /* If this machine does not do all register operations on the entire
4831 register and MODE is wider than the mode of X, we can say nothing
4832 at all about the high-order bits. */
4833 if (!WORD_REGISTER_OPERATIONS)
4834 return 1;
4835
4836 /* Likewise on machines that do, if the mode of the object is smaller
4837 than a word and loads of that size don't sign extend, we can say
4838 nothing about the high order bits. */
4839 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4840 #ifdef LOAD_EXTEND_OP
4841 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4842 #endif
4843 )
4844 return 1;
4845 }
4846
4847 /* Please keep num_sign_bit_copies_binary_arith_p above in sync with
4848 the code in the switch below. */
4849 switch (code)
4850 {
4851 case REG:
4852
4853 #if defined(POINTERS_EXTEND_UNSIGNED)
4854 /* If pointers extend signed and this is a pointer in Pmode, say that
4855 all the bits above ptr_mode are known to be sign bit copies. */
4856 /* As we do not know which address space the pointer is referring to,
4857 we can do this only if the target does not support different pointer
4858 or address modes depending on the address space. */
4859 if (target_default_pointer_address_modes_p ()
4860 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4861 && mode == Pmode && REG_POINTER (x)
4862 && !targetm.have_ptr_extend ())
4863 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4864 #endif
4865
4866 {
4867 unsigned int copies_for_hook = 1, copies = 1;
4868 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4869 known_mode, known_ret,
4870 &copies_for_hook);
4871
4872 if (new_rtx)
4873 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4874 known_mode, known_ret);
4875
4876 if (copies > 1 || copies_for_hook > 1)
4877 return MAX (copies, copies_for_hook);
4878
4879 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4880 }
4881 break;
4882
4883 case MEM:
4884 #ifdef LOAD_EXTEND_OP
4885 /* Some RISC machines sign-extend all loads of smaller than a word. */
4886 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4887 return MAX (1, ((int) bitwidth
4888 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4889 #endif
4890 break;
4891
4892 case CONST_INT:
4893 /* If the constant is negative, take its 1's complement and remask.
4894 Then see how many zero bits we have. */
4895 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4896 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4897 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4898 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4899
4900 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4901
4902 case SUBREG:
4903 /* If this is a SUBREG for a promoted object that is sign-extended
4904 and we are looking at it in a wider mode, we know that at least the
4905 high-order bits are known to be sign bit copies. */
4906
4907 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_SIGNED_P (x))
4908 {
4909 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4910 known_x, known_mode, known_ret);
4911 return MAX ((int) bitwidth
4912 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4913 num0);
4914 }
4915
4916 /* For a smaller object, just ignore the high bits. */
4917 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4918 {
4919 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4920 known_x, known_mode, known_ret);
4921 return MAX (1, (num0
4922 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4923 - bitwidth)));
4924 }
4925
4926 #ifdef LOAD_EXTEND_OP
4927 /* For paradoxical SUBREGs on machines where all register operations
4928 affect the entire register, just look inside. Note that we are
4929 passing MODE to the recursive call, so the number of sign bit copies
4930 will remain relative to that mode, not the inner mode. */
4931
4932 /* This works only if loads sign extend. Otherwise, if we get a
4933 reload for the inner part, it may be loaded from the stack, and
4934 then we lose all sign bit copies that existed before the store
4935 to the stack. */
4936
4937 if (WORD_REGISTER_OPERATIONS
4938 && paradoxical_subreg_p (x)
4939 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4940 && MEM_P (SUBREG_REG (x)))
4941 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4942 known_x, known_mode, known_ret);
4943 #endif
4944 break;
4945
4946 case SIGN_EXTRACT:
4947 if (CONST_INT_P (XEXP (x, 1)))
4948 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4949 break;
4950
4951 case SIGN_EXTEND:
4952 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4953 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4954 known_x, known_mode, known_ret));
4955
4956 case TRUNCATE:
4957 /* For a smaller object, just ignore the high bits. */
4958 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4959 known_x, known_mode, known_ret);
4960 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4961 - bitwidth)));
4962
4963 case NOT:
4964 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4965 known_x, known_mode, known_ret);
4966
4967 case ROTATE: case ROTATERT:
4968 /* If we are rotating left by a number of bits less than the number
4969 of sign bit copies, we can just subtract that amount from the
4970 number. */
4971 if (CONST_INT_P (XEXP (x, 1))
4972 && INTVAL (XEXP (x, 1)) >= 0
4973 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4974 {
4975 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4976 known_x, known_mode, known_ret);
4977 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4978 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4979 }
4980 break;
4981
4982 case NEG:
4983 /* In general, this subtracts one sign bit copy. But if the value
4984 is known to be positive, the number of sign bit copies is the
4985 same as that of the input. Finally, if the input has just one bit
4986 that might be nonzero, all the bits are copies of the sign bit. */
4987 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4988 known_x, known_mode, known_ret);
4989 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4990 return num0 > 1 ? num0 - 1 : 1;
4991
4992 nonzero = nonzero_bits (XEXP (x, 0), mode);
4993 if (nonzero == 1)
4994 return bitwidth;
4995
4996 if (num0 > 1
4997 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4998 num0--;
4999
5000 return num0;
5001
5002 case IOR: case AND: case XOR:
5003 case SMIN: case SMAX: case UMIN: case UMAX:
5004 /* Logical operations will preserve the number of sign-bit copies.
5005 MIN and MAX operations always return one of the operands. */
5006 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5007 known_x, known_mode, known_ret);
5008 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5009 known_x, known_mode, known_ret);
5010
5011 /* If num1 is clearing some of the top bits then regardless of
5012 the other term, we are guaranteed to have at least that many
5013 high-order zero bits. */
5014 if (code == AND
5015 && num1 > 1
5016 && bitwidth <= HOST_BITS_PER_WIDE_INT
5017 && CONST_INT_P (XEXP (x, 1))
5018 && (UINTVAL (XEXP (x, 1))
5019 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
5020 return num1;
5021
5022 /* Similarly for IOR when setting high-order bits. */
5023 if (code == IOR
5024 && num1 > 1
5025 && bitwidth <= HOST_BITS_PER_WIDE_INT
5026 && CONST_INT_P (XEXP (x, 1))
5027 && (UINTVAL (XEXP (x, 1))
5028 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5029 return num1;
5030
5031 return MIN (num0, num1);
5032
5033 case PLUS: case MINUS:
5034 /* For addition and subtraction, we can have a 1-bit carry. However,
5035 if we are subtracting 1 from a positive number, there will not
5036 be such a carry. Furthermore, if the positive number is known to
5037 be 0 or 1, we know the result is either -1 or 0. */
5038
5039 if (code == PLUS && XEXP (x, 1) == constm1_rtx
5040 && bitwidth <= HOST_BITS_PER_WIDE_INT)
5041 {
5042 nonzero = nonzero_bits (XEXP (x, 0), mode);
5043 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
5044 return (nonzero == 1 || nonzero == 0 ? bitwidth
5045 : bitwidth - floor_log2 (nonzero) - 1);
5046 }
5047
5048 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5049 known_x, known_mode, known_ret);
5050 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5051 known_x, known_mode, known_ret);
5052 result = MAX (1, MIN (num0, num1) - 1);
5053
5054 return result;
5055
5056 case MULT:
5057 /* The number of bits of the product is the sum of the number of
5058 bits of both terms. However, unless one of the terms if known
5059 to be positive, we must allow for an additional bit since negating
5060 a negative number can remove one sign bit copy. */
5061
5062 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5063 known_x, known_mode, known_ret);
5064 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5065 known_x, known_mode, known_ret);
5066
5067 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
5068 if (result > 0
5069 && (bitwidth > HOST_BITS_PER_WIDE_INT
5070 || (((nonzero_bits (XEXP (x, 0), mode)
5071 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5072 && ((nonzero_bits (XEXP (x, 1), mode)
5073 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
5074 != 0))))
5075 result--;
5076
5077 return MAX (1, result);
5078
5079 case UDIV:
5080 /* The result must be <= the first operand. If the first operand
5081 has the high bit set, we know nothing about the number of sign
5082 bit copies. */
5083 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5084 return 1;
5085 else if ((nonzero_bits (XEXP (x, 0), mode)
5086 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5087 return 1;
5088 else
5089 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
5090 known_x, known_mode, known_ret);
5091
5092 case UMOD:
5093 /* The result must be <= the second operand. If the second operand
5094 has (or just might have) the high bit set, we know nothing about
5095 the number of sign bit copies. */
5096 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5097 return 1;
5098 else if ((nonzero_bits (XEXP (x, 1), mode)
5099 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5100 return 1;
5101 else
5102 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
5103 known_x, known_mode, known_ret);
5104
5105 case DIV:
5106 /* Similar to unsigned division, except that we have to worry about
5107 the case where the divisor is negative, in which case we have
5108 to add 1. */
5109 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5110 known_x, known_mode, known_ret);
5111 if (result > 1
5112 && (bitwidth > HOST_BITS_PER_WIDE_INT
5113 || (nonzero_bits (XEXP (x, 1), mode)
5114 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5115 result--;
5116
5117 return result;
5118
5119 case MOD:
5120 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5121 known_x, known_mode, known_ret);
5122 if (result > 1
5123 && (bitwidth > HOST_BITS_PER_WIDE_INT
5124 || (nonzero_bits (XEXP (x, 1), mode)
5125 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
5126 result--;
5127
5128 return result;
5129
5130 case ASHIFTRT:
5131 /* Shifts by a constant add to the number of bits equal to the
5132 sign bit. */
5133 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5134 known_x, known_mode, known_ret);
5135 if (CONST_INT_P (XEXP (x, 1))
5136 && INTVAL (XEXP (x, 1)) > 0
5137 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
5138 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
5139
5140 return num0;
5141
5142 case ASHIFT:
5143 /* Left shifts destroy copies. */
5144 if (!CONST_INT_P (XEXP (x, 1))
5145 || INTVAL (XEXP (x, 1)) < 0
5146 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
5147 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
5148 return 1;
5149
5150 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
5151 known_x, known_mode, known_ret);
5152 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
5153
5154 case IF_THEN_ELSE:
5155 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
5156 known_x, known_mode, known_ret);
5157 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
5158 known_x, known_mode, known_ret);
5159 return MIN (num0, num1);
5160
5161 case EQ: case NE: case GE: case GT: case LE: case LT:
5162 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
5163 case GEU: case GTU: case LEU: case LTU:
5164 case UNORDERED: case ORDERED:
5165 /* If the constant is negative, take its 1's complement and remask.
5166 Then see how many zero bits we have. */
5167 nonzero = STORE_FLAG_VALUE;
5168 if (bitwidth <= HOST_BITS_PER_WIDE_INT
5169 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
5170 nonzero = (~nonzero) & GET_MODE_MASK (mode);
5171
5172 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
5173
5174 default:
5175 break;
5176 }
5177
5178 /* If we haven't been able to figure it out by one of the above rules,
5179 see if some of the high-order bits are known to be zero. If so,
5180 count those bits and return one less than that amount. If we can't
5181 safely compute the mask for this mode, always return BITWIDTH. */
5182
5183 bitwidth = GET_MODE_PRECISION (mode);
5184 if (bitwidth > HOST_BITS_PER_WIDE_INT)
5185 return 1;
5186
5187 nonzero = nonzero_bits (x, mode);
5188 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
5189 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
5190 }
5191
5192 /* Calculate the rtx_cost of a single instruction. A return value of
5193 zero indicates an instruction pattern without a known cost. */
5194
5195 int
5196 insn_rtx_cost (rtx pat, bool speed)
5197 {
5198 int i, cost;
5199 rtx set;
5200
5201 /* Extract the single set rtx from the instruction pattern.
5202 We can't use single_set since we only have the pattern. */
5203 if (GET_CODE (pat) == SET)
5204 set = pat;
5205 else if (GET_CODE (pat) == PARALLEL)
5206 {
5207 set = NULL_RTX;
5208 for (i = 0; i < XVECLEN (pat, 0); i++)
5209 {
5210 rtx x = XVECEXP (pat, 0, i);
5211 if (GET_CODE (x) == SET)
5212 {
5213 if (set)
5214 return 0;
5215 set = x;
5216 }
5217 }
5218 if (!set)
5219 return 0;
5220 }
5221 else
5222 return 0;
5223
5224 cost = set_src_cost (SET_SRC (set), GET_MODE (SET_DEST (set)), speed);
5225 return cost > 0 ? cost : COSTS_N_INSNS (1);
5226 }
5227
5228 /* Returns estimate on cost of computing SEQ. */
5229
5230 unsigned
5231 seq_cost (const rtx_insn *seq, bool speed)
5232 {
5233 unsigned cost = 0;
5234 rtx set;
5235
5236 for (; seq; seq = NEXT_INSN (seq))
5237 {
5238 set = single_set (seq);
5239 if (set)
5240 cost += set_rtx_cost (set, speed);
5241 else
5242 cost++;
5243 }
5244
5245 return cost;
5246 }
5247
5248 /* Given an insn INSN and condition COND, return the condition in a
5249 canonical form to simplify testing by callers. Specifically:
5250
5251 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
5252 (2) Both operands will be machine operands; (cc0) will have been replaced.
5253 (3) If an operand is a constant, it will be the second operand.
5254 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
5255 for GE, GEU, and LEU.
5256
5257 If the condition cannot be understood, or is an inequality floating-point
5258 comparison which needs to be reversed, 0 will be returned.
5259
5260 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
5261
5262 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5263 insn used in locating the condition was found. If a replacement test
5264 of the condition is desired, it should be placed in front of that
5265 insn and we will be sure that the inputs are still valid.
5266
5267 If WANT_REG is nonzero, we wish the condition to be relative to that
5268 register, if possible. Therefore, do not canonicalize the condition
5269 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
5270 to be a compare to a CC mode register.
5271
5272 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
5273 and at INSN. */
5274
5275 rtx
5276 canonicalize_condition (rtx_insn *insn, rtx cond, int reverse,
5277 rtx_insn **earliest,
5278 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
5279 {
5280 enum rtx_code code;
5281 rtx_insn *prev = insn;
5282 const_rtx set;
5283 rtx tem;
5284 rtx op0, op1;
5285 int reverse_code = 0;
5286 machine_mode mode;
5287 basic_block bb = BLOCK_FOR_INSN (insn);
5288
5289 code = GET_CODE (cond);
5290 mode = GET_MODE (cond);
5291 op0 = XEXP (cond, 0);
5292 op1 = XEXP (cond, 1);
5293
5294 if (reverse)
5295 code = reversed_comparison_code (cond, insn);
5296 if (code == UNKNOWN)
5297 return 0;
5298
5299 if (earliest)
5300 *earliest = insn;
5301
5302 /* If we are comparing a register with zero, see if the register is set
5303 in the previous insn to a COMPARE or a comparison operation. Perform
5304 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
5305 in cse.c */
5306
5307 while ((GET_RTX_CLASS (code) == RTX_COMPARE
5308 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
5309 && op1 == CONST0_RTX (GET_MODE (op0))
5310 && op0 != want_reg)
5311 {
5312 /* Set nonzero when we find something of interest. */
5313 rtx x = 0;
5314
5315 /* If comparison with cc0, import actual comparison from compare
5316 insn. */
5317 if (op0 == cc0_rtx)
5318 {
5319 if ((prev = prev_nonnote_insn (prev)) == 0
5320 || !NONJUMP_INSN_P (prev)
5321 || (set = single_set (prev)) == 0
5322 || SET_DEST (set) != cc0_rtx)
5323 return 0;
5324
5325 op0 = SET_SRC (set);
5326 op1 = CONST0_RTX (GET_MODE (op0));
5327 if (earliest)
5328 *earliest = prev;
5329 }
5330
5331 /* If this is a COMPARE, pick up the two things being compared. */
5332 if (GET_CODE (op0) == COMPARE)
5333 {
5334 op1 = XEXP (op0, 1);
5335 op0 = XEXP (op0, 0);
5336 continue;
5337 }
5338 else if (!REG_P (op0))
5339 break;
5340
5341 /* Go back to the previous insn. Stop if it is not an INSN. We also
5342 stop if it isn't a single set or if it has a REG_INC note because
5343 we don't want to bother dealing with it. */
5344
5345 prev = prev_nonnote_nondebug_insn (prev);
5346
5347 if (prev == 0
5348 || !NONJUMP_INSN_P (prev)
5349 || FIND_REG_INC_NOTE (prev, NULL_RTX)
5350 /* In cfglayout mode, there do not have to be labels at the
5351 beginning of a block, or jumps at the end, so the previous
5352 conditions would not stop us when we reach bb boundary. */
5353 || BLOCK_FOR_INSN (prev) != bb)
5354 break;
5355
5356 set = set_of (op0, prev);
5357
5358 if (set
5359 && (GET_CODE (set) != SET
5360 || !rtx_equal_p (SET_DEST (set), op0)))
5361 break;
5362
5363 /* If this is setting OP0, get what it sets it to if it looks
5364 relevant. */
5365 if (set)
5366 {
5367 machine_mode inner_mode = GET_MODE (SET_DEST (set));
5368 #ifdef FLOAT_STORE_FLAG_VALUE
5369 REAL_VALUE_TYPE fsfv;
5370 #endif
5371
5372 /* ??? We may not combine comparisons done in a CCmode with
5373 comparisons not done in a CCmode. This is to aid targets
5374 like Alpha that have an IEEE compliant EQ instruction, and
5375 a non-IEEE compliant BEQ instruction. The use of CCmode is
5376 actually artificial, simply to prevent the combination, but
5377 should not affect other platforms.
5378
5379 However, we must allow VOIDmode comparisons to match either
5380 CCmode or non-CCmode comparison, because some ports have
5381 modeless comparisons inside branch patterns.
5382
5383 ??? This mode check should perhaps look more like the mode check
5384 in simplify_comparison in combine. */
5385 if (((GET_MODE_CLASS (mode) == MODE_CC)
5386 != (GET_MODE_CLASS (inner_mode) == MODE_CC))
5387 && mode != VOIDmode
5388 && inner_mode != VOIDmode)
5389 break;
5390 if (GET_CODE (SET_SRC (set)) == COMPARE
5391 || (((code == NE
5392 || (code == LT
5393 && val_signbit_known_set_p (inner_mode,
5394 STORE_FLAG_VALUE))
5395 #ifdef FLOAT_STORE_FLAG_VALUE
5396 || (code == LT
5397 && SCALAR_FLOAT_MODE_P (inner_mode)
5398 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5399 REAL_VALUE_NEGATIVE (fsfv)))
5400 #endif
5401 ))
5402 && COMPARISON_P (SET_SRC (set))))
5403 x = SET_SRC (set);
5404 else if (((code == EQ
5405 || (code == GE
5406 && val_signbit_known_set_p (inner_mode,
5407 STORE_FLAG_VALUE))
5408 #ifdef FLOAT_STORE_FLAG_VALUE
5409 || (code == GE
5410 && SCALAR_FLOAT_MODE_P (inner_mode)
5411 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5412 REAL_VALUE_NEGATIVE (fsfv)))
5413 #endif
5414 ))
5415 && COMPARISON_P (SET_SRC (set)))
5416 {
5417 reverse_code = 1;
5418 x = SET_SRC (set);
5419 }
5420 else if ((code == EQ || code == NE)
5421 && GET_CODE (SET_SRC (set)) == XOR)
5422 /* Handle sequences like:
5423
5424 (set op0 (xor X Y))
5425 ...(eq|ne op0 (const_int 0))...
5426
5427 in which case:
5428
5429 (eq op0 (const_int 0)) reduces to (eq X Y)
5430 (ne op0 (const_int 0)) reduces to (ne X Y)
5431
5432 This is the form used by MIPS16, for example. */
5433 x = SET_SRC (set);
5434 else
5435 break;
5436 }
5437
5438 else if (reg_set_p (op0, prev))
5439 /* If this sets OP0, but not directly, we have to give up. */
5440 break;
5441
5442 if (x)
5443 {
5444 /* If the caller is expecting the condition to be valid at INSN,
5445 make sure X doesn't change before INSN. */
5446 if (valid_at_insn_p)
5447 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5448 break;
5449 if (COMPARISON_P (x))
5450 code = GET_CODE (x);
5451 if (reverse_code)
5452 {
5453 code = reversed_comparison_code (x, prev);
5454 if (code == UNKNOWN)
5455 return 0;
5456 reverse_code = 0;
5457 }
5458
5459 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5460 if (earliest)
5461 *earliest = prev;
5462 }
5463 }
5464
5465 /* If constant is first, put it last. */
5466 if (CONSTANT_P (op0))
5467 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5468
5469 /* If OP0 is the result of a comparison, we weren't able to find what
5470 was really being compared, so fail. */
5471 if (!allow_cc_mode
5472 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5473 return 0;
5474
5475 /* Canonicalize any ordered comparison with integers involving equality
5476 if we can do computations in the relevant mode and we do not
5477 overflow. */
5478
5479 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5480 && CONST_INT_P (op1)
5481 && GET_MODE (op0) != VOIDmode
5482 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5483 {
5484 HOST_WIDE_INT const_val = INTVAL (op1);
5485 unsigned HOST_WIDE_INT uconst_val = const_val;
5486 unsigned HOST_WIDE_INT max_val
5487 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5488
5489 switch (code)
5490 {
5491 case LE:
5492 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5493 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5494 break;
5495
5496 /* When cross-compiling, const_val might be sign-extended from
5497 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5498 case GE:
5499 if ((const_val & max_val)
5500 != ((unsigned HOST_WIDE_INT) 1
5501 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5502 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5503 break;
5504
5505 case LEU:
5506 if (uconst_val < max_val)
5507 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5508 break;
5509
5510 case GEU:
5511 if (uconst_val != 0)
5512 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5513 break;
5514
5515 default:
5516 break;
5517 }
5518 }
5519
5520 /* Never return CC0; return zero instead. */
5521 if (CC0_P (op0))
5522 return 0;
5523
5524 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5525 }
5526
5527 /* Given a jump insn JUMP, return the condition that will cause it to branch
5528 to its JUMP_LABEL. If the condition cannot be understood, or is an
5529 inequality floating-point comparison which needs to be reversed, 0 will
5530 be returned.
5531
5532 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5533 insn used in locating the condition was found. If a replacement test
5534 of the condition is desired, it should be placed in front of that
5535 insn and we will be sure that the inputs are still valid. If EARLIEST
5536 is null, the returned condition will be valid at INSN.
5537
5538 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5539 compare CC mode register.
5540
5541 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5542
5543 rtx
5544 get_condition (rtx_insn *jump, rtx_insn **earliest, int allow_cc_mode,
5545 int valid_at_insn_p)
5546 {
5547 rtx cond;
5548 int reverse;
5549 rtx set;
5550
5551 /* If this is not a standard conditional jump, we can't parse it. */
5552 if (!JUMP_P (jump)
5553 || ! any_condjump_p (jump))
5554 return 0;
5555 set = pc_set (jump);
5556
5557 cond = XEXP (SET_SRC (set), 0);
5558
5559 /* If this branches to JUMP_LABEL when the condition is false, reverse
5560 the condition. */
5561 reverse
5562 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5563 && LABEL_REF_LABEL (XEXP (SET_SRC (set), 2)) == JUMP_LABEL (jump);
5564
5565 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5566 allow_cc_mode, valid_at_insn_p);
5567 }
5568
5569 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5570 TARGET_MODE_REP_EXTENDED.
5571
5572 Note that we assume that the property of
5573 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5574 narrower than mode B. I.e., if A is a mode narrower than B then in
5575 order to be able to operate on it in mode B, mode A needs to
5576 satisfy the requirements set by the representation of mode B. */
5577
5578 static void
5579 init_num_sign_bit_copies_in_rep (void)
5580 {
5581 machine_mode mode, in_mode;
5582
5583 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5584 in_mode = GET_MODE_WIDER_MODE (mode))
5585 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5586 mode = GET_MODE_WIDER_MODE (mode))
5587 {
5588 machine_mode i;
5589
5590 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5591 extends to the next widest mode. */
5592 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5593 || GET_MODE_WIDER_MODE (mode) == in_mode);
5594
5595 /* We are in in_mode. Count how many bits outside of mode
5596 have to be copies of the sign-bit. */
5597 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5598 {
5599 machine_mode wider = GET_MODE_WIDER_MODE (i);
5600
5601 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5602 /* We can only check sign-bit copies starting from the
5603 top-bit. In order to be able to check the bits we
5604 have already seen we pretend that subsequent bits
5605 have to be sign-bit copies too. */
5606 || num_sign_bit_copies_in_rep [in_mode][mode])
5607 num_sign_bit_copies_in_rep [in_mode][mode]
5608 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5609 }
5610 }
5611 }
5612
5613 /* Suppose that truncation from the machine mode of X to MODE is not a
5614 no-op. See if there is anything special about X so that we can
5615 assume it already contains a truncated value of MODE. */
5616
5617 bool
5618 truncated_to_mode (machine_mode mode, const_rtx x)
5619 {
5620 /* This register has already been used in MODE without explicit
5621 truncation. */
5622 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5623 return true;
5624
5625 /* See if we already satisfy the requirements of MODE. If yes we
5626 can just switch to MODE. */
5627 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5628 && (num_sign_bit_copies (x, GET_MODE (x))
5629 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5630 return true;
5631
5632 return false;
5633 }
5634 \f
5635 /* Return true if RTX code CODE has a single sequence of zero or more
5636 "e" operands and no rtvec operands. Initialize its rtx_all_subrtx_bounds
5637 entry in that case. */
5638
5639 static bool
5640 setup_reg_subrtx_bounds (unsigned int code)
5641 {
5642 const char *format = GET_RTX_FORMAT ((enum rtx_code) code);
5643 unsigned int i = 0;
5644 for (; format[i] != 'e'; ++i)
5645 {
5646 if (!format[i])
5647 /* No subrtxes. Leave start and count as 0. */
5648 return true;
5649 if (format[i] == 'E' || format[i] == 'V')
5650 return false;
5651 }
5652
5653 /* Record the sequence of 'e's. */
5654 rtx_all_subrtx_bounds[code].start = i;
5655 do
5656 ++i;
5657 while (format[i] == 'e');
5658 rtx_all_subrtx_bounds[code].count = i - rtx_all_subrtx_bounds[code].start;
5659 /* rtl-iter.h relies on this. */
5660 gcc_checking_assert (rtx_all_subrtx_bounds[code].count <= 3);
5661
5662 for (; format[i]; ++i)
5663 if (format[i] == 'E' || format[i] == 'V' || format[i] == 'e')
5664 return false;
5665
5666 return true;
5667 }
5668
5669 /* Initialize rtx_all_subrtx_bounds. */
5670 void
5671 init_rtlanal (void)
5672 {
5673 int i;
5674 for (i = 0; i < NUM_RTX_CODE; i++)
5675 {
5676 if (!setup_reg_subrtx_bounds (i))
5677 rtx_all_subrtx_bounds[i].count = UCHAR_MAX;
5678 if (GET_RTX_CLASS (i) != RTX_CONST_OBJ)
5679 rtx_nonconst_subrtx_bounds[i] = rtx_all_subrtx_bounds[i];
5680 }
5681
5682 init_num_sign_bit_copies_in_rep ();
5683 }
5684 \f
5685 /* Check whether this is a constant pool constant. */
5686 bool
5687 constant_pool_constant_p (rtx x)
5688 {
5689 x = avoid_constant_pool_reference (x);
5690 return CONST_DOUBLE_P (x);
5691 }
5692 \f
5693 /* If M is a bitmask that selects a field of low-order bits within an item but
5694 not the entire word, return the length of the field. Return -1 otherwise.
5695 M is used in machine mode MODE. */
5696
5697 int
5698 low_bitmask_len (machine_mode mode, unsigned HOST_WIDE_INT m)
5699 {
5700 if (mode != VOIDmode)
5701 {
5702 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5703 return -1;
5704 m &= GET_MODE_MASK (mode);
5705 }
5706
5707 return exact_log2 (m + 1);
5708 }
5709
5710 /* Return the mode of MEM's address. */
5711
5712 machine_mode
5713 get_address_mode (rtx mem)
5714 {
5715 machine_mode mode;
5716
5717 gcc_assert (MEM_P (mem));
5718 mode = GET_MODE (XEXP (mem, 0));
5719 if (mode != VOIDmode)
5720 return mode;
5721 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
5722 }
5723 \f
5724 /* Split up a CONST_DOUBLE or integer constant rtx
5725 into two rtx's for single words,
5726 storing in *FIRST the word that comes first in memory in the target
5727 and in *SECOND the other.
5728
5729 TODO: This function needs to be rewritten to work on any size
5730 integer. */
5731
5732 void
5733 split_double (rtx value, rtx *first, rtx *second)
5734 {
5735 if (CONST_INT_P (value))
5736 {
5737 if (HOST_BITS_PER_WIDE_INT >= (2 * BITS_PER_WORD))
5738 {
5739 /* In this case the CONST_INT holds both target words.
5740 Extract the bits from it into two word-sized pieces.
5741 Sign extend each half to HOST_WIDE_INT. */
5742 unsigned HOST_WIDE_INT low, high;
5743 unsigned HOST_WIDE_INT mask, sign_bit, sign_extend;
5744 unsigned bits_per_word = BITS_PER_WORD;
5745
5746 /* Set sign_bit to the most significant bit of a word. */
5747 sign_bit = 1;
5748 sign_bit <<= bits_per_word - 1;
5749
5750 /* Set mask so that all bits of the word are set. We could
5751 have used 1 << BITS_PER_WORD instead of basing the
5752 calculation on sign_bit. However, on machines where
5753 HOST_BITS_PER_WIDE_INT == BITS_PER_WORD, it could cause a
5754 compiler warning, even though the code would never be
5755 executed. */
5756 mask = sign_bit << 1;
5757 mask--;
5758
5759 /* Set sign_extend as any remaining bits. */
5760 sign_extend = ~mask;
5761
5762 /* Pick the lower word and sign-extend it. */
5763 low = INTVAL (value);
5764 low &= mask;
5765 if (low & sign_bit)
5766 low |= sign_extend;
5767
5768 /* Pick the higher word, shifted to the least significant
5769 bits, and sign-extend it. */
5770 high = INTVAL (value);
5771 high >>= bits_per_word - 1;
5772 high >>= 1;
5773 high &= mask;
5774 if (high & sign_bit)
5775 high |= sign_extend;
5776
5777 /* Store the words in the target machine order. */
5778 if (WORDS_BIG_ENDIAN)
5779 {
5780 *first = GEN_INT (high);
5781 *second = GEN_INT (low);
5782 }
5783 else
5784 {
5785 *first = GEN_INT (low);
5786 *second = GEN_INT (high);
5787 }
5788 }
5789 else
5790 {
5791 /* The rule for using CONST_INT for a wider mode
5792 is that we regard the value as signed.
5793 So sign-extend it. */
5794 rtx high = (INTVAL (value) < 0 ? constm1_rtx : const0_rtx);
5795 if (WORDS_BIG_ENDIAN)
5796 {
5797 *first = high;
5798 *second = value;
5799 }
5800 else
5801 {
5802 *first = value;
5803 *second = high;
5804 }
5805 }
5806 }
5807 else if (GET_CODE (value) == CONST_WIDE_INT)
5808 {
5809 /* All of this is scary code and needs to be converted to
5810 properly work with any size integer. */
5811 gcc_assert (CONST_WIDE_INT_NUNITS (value) == 2);
5812 if (WORDS_BIG_ENDIAN)
5813 {
5814 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5815 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5816 }
5817 else
5818 {
5819 *first = GEN_INT (CONST_WIDE_INT_ELT (value, 0));
5820 *second = GEN_INT (CONST_WIDE_INT_ELT (value, 1));
5821 }
5822 }
5823 else if (!CONST_DOUBLE_P (value))
5824 {
5825 if (WORDS_BIG_ENDIAN)
5826 {
5827 *first = const0_rtx;
5828 *second = value;
5829 }
5830 else
5831 {
5832 *first = value;
5833 *second = const0_rtx;
5834 }
5835 }
5836 else if (GET_MODE (value) == VOIDmode
5837 /* This is the old way we did CONST_DOUBLE integers. */
5838 || GET_MODE_CLASS (GET_MODE (value)) == MODE_INT)
5839 {
5840 /* In an integer, the words are defined as most and least significant.
5841 So order them by the target's convention. */
5842 if (WORDS_BIG_ENDIAN)
5843 {
5844 *first = GEN_INT (CONST_DOUBLE_HIGH (value));
5845 *second = GEN_INT (CONST_DOUBLE_LOW (value));
5846 }
5847 else
5848 {
5849 *first = GEN_INT (CONST_DOUBLE_LOW (value));
5850 *second = GEN_INT (CONST_DOUBLE_HIGH (value));
5851 }
5852 }
5853 else
5854 {
5855 long l[2];
5856
5857 /* Note, this converts the REAL_VALUE_TYPE to the target's
5858 format, splits up the floating point double and outputs
5859 exactly 32 bits of it into each of l[0] and l[1] --
5860 not necessarily BITS_PER_WORD bits. */
5861 REAL_VALUE_TO_TARGET_DOUBLE (*CONST_DOUBLE_REAL_VALUE (value), l);
5862
5863 /* If 32 bits is an entire word for the target, but not for the host,
5864 then sign-extend on the host so that the number will look the same
5865 way on the host that it would on the target. See for instance
5866 simplify_unary_operation. The #if is needed to avoid compiler
5867 warnings. */
5868
5869 #if HOST_BITS_PER_LONG > 32
5870 if (BITS_PER_WORD < HOST_BITS_PER_LONG && BITS_PER_WORD == 32)
5871 {
5872 if (l[0] & ((long) 1 << 31))
5873 l[0] |= ((unsigned long) (-1) << 32);
5874 if (l[1] & ((long) 1 << 31))
5875 l[1] |= ((unsigned long) (-1) << 32);
5876 }
5877 #endif
5878
5879 *first = GEN_INT (l[0]);
5880 *second = GEN_INT (l[1]);
5881 }
5882 }
5883
5884 /* Return true if X is a sign_extract or zero_extract from the least
5885 significant bit. */
5886
5887 static bool
5888 lsb_bitfield_op_p (rtx x)
5889 {
5890 if (GET_RTX_CLASS (GET_CODE (x)) == RTX_BITFIELD_OPS)
5891 {
5892 machine_mode mode = GET_MODE (XEXP (x, 0));
5893 HOST_WIDE_INT len = INTVAL (XEXP (x, 1));
5894 HOST_WIDE_INT pos = INTVAL (XEXP (x, 2));
5895
5896 return (pos == (BITS_BIG_ENDIAN ? GET_MODE_PRECISION (mode) - len : 0));
5897 }
5898 return false;
5899 }
5900
5901 /* Strip outer address "mutations" from LOC and return a pointer to the
5902 inner value. If OUTER_CODE is nonnull, store the code of the innermost
5903 stripped expression there.
5904
5905 "Mutations" either convert between modes or apply some kind of
5906 extension, truncation or alignment. */
5907
5908 rtx *
5909 strip_address_mutations (rtx *loc, enum rtx_code *outer_code)
5910 {
5911 for (;;)
5912 {
5913 enum rtx_code code = GET_CODE (*loc);
5914 if (GET_RTX_CLASS (code) == RTX_UNARY)
5915 /* Things like SIGN_EXTEND, ZERO_EXTEND and TRUNCATE can be
5916 used to convert between pointer sizes. */
5917 loc = &XEXP (*loc, 0);
5918 else if (lsb_bitfield_op_p (*loc))
5919 /* A [SIGN|ZERO]_EXTRACT from the least significant bit effectively
5920 acts as a combined truncation and extension. */
5921 loc = &XEXP (*loc, 0);
5922 else if (code == AND && CONST_INT_P (XEXP (*loc, 1)))
5923 /* (and ... (const_int -X)) is used to align to X bytes. */
5924 loc = &XEXP (*loc, 0);
5925 else if (code == SUBREG
5926 && !OBJECT_P (SUBREG_REG (*loc))
5927 && subreg_lowpart_p (*loc))
5928 /* (subreg (operator ...) ...) inside and is used for mode
5929 conversion too. */
5930 loc = &SUBREG_REG (*loc);
5931 else
5932 return loc;
5933 if (outer_code)
5934 *outer_code = code;
5935 }
5936 }
5937
5938 /* Return true if CODE applies some kind of scale. The scaled value is
5939 is the first operand and the scale is the second. */
5940
5941 static bool
5942 binary_scale_code_p (enum rtx_code code)
5943 {
5944 return (code == MULT
5945 || code == ASHIFT
5946 /* Needed by ARM targets. */
5947 || code == ASHIFTRT
5948 || code == LSHIFTRT
5949 || code == ROTATE
5950 || code == ROTATERT);
5951 }
5952
5953 /* If *INNER can be interpreted as a base, return a pointer to the inner term
5954 (see address_info). Return null otherwise. */
5955
5956 static rtx *
5957 get_base_term (rtx *inner)
5958 {
5959 if (GET_CODE (*inner) == LO_SUM)
5960 inner = strip_address_mutations (&XEXP (*inner, 0));
5961 if (REG_P (*inner)
5962 || MEM_P (*inner)
5963 || GET_CODE (*inner) == SUBREG
5964 || GET_CODE (*inner) == SCRATCH)
5965 return inner;
5966 return 0;
5967 }
5968
5969 /* If *INNER can be interpreted as an index, return a pointer to the inner term
5970 (see address_info). Return null otherwise. */
5971
5972 static rtx *
5973 get_index_term (rtx *inner)
5974 {
5975 /* At present, only constant scales are allowed. */
5976 if (binary_scale_code_p (GET_CODE (*inner)) && CONSTANT_P (XEXP (*inner, 1)))
5977 inner = strip_address_mutations (&XEXP (*inner, 0));
5978 if (REG_P (*inner)
5979 || MEM_P (*inner)
5980 || GET_CODE (*inner) == SUBREG
5981 || GET_CODE (*inner) == SCRATCH)
5982 return inner;
5983 return 0;
5984 }
5985
5986 /* Set the segment part of address INFO to LOC, given that INNER is the
5987 unmutated value. */
5988
5989 static void
5990 set_address_segment (struct address_info *info, rtx *loc, rtx *inner)
5991 {
5992 gcc_assert (!info->segment);
5993 info->segment = loc;
5994 info->segment_term = inner;
5995 }
5996
5997 /* Set the base part of address INFO to LOC, given that INNER is the
5998 unmutated value. */
5999
6000 static void
6001 set_address_base (struct address_info *info, rtx *loc, rtx *inner)
6002 {
6003 gcc_assert (!info->base);
6004 info->base = loc;
6005 info->base_term = inner;
6006 }
6007
6008 /* Set the index part of address INFO to LOC, given that INNER is the
6009 unmutated value. */
6010
6011 static void
6012 set_address_index (struct address_info *info, rtx *loc, rtx *inner)
6013 {
6014 gcc_assert (!info->index);
6015 info->index = loc;
6016 info->index_term = inner;
6017 }
6018
6019 /* Set the displacement part of address INFO to LOC, given that INNER
6020 is the constant term. */
6021
6022 static void
6023 set_address_disp (struct address_info *info, rtx *loc, rtx *inner)
6024 {
6025 gcc_assert (!info->disp);
6026 info->disp = loc;
6027 info->disp_term = inner;
6028 }
6029
6030 /* INFO->INNER describes a {PRE,POST}_{INC,DEC} address. Set up the
6031 rest of INFO accordingly. */
6032
6033 static void
6034 decompose_incdec_address (struct address_info *info)
6035 {
6036 info->autoinc_p = true;
6037
6038 rtx *base = &XEXP (*info->inner, 0);
6039 set_address_base (info, base, base);
6040 gcc_checking_assert (info->base == info->base_term);
6041
6042 /* These addresses are only valid when the size of the addressed
6043 value is known. */
6044 gcc_checking_assert (info->mode != VOIDmode);
6045 }
6046
6047 /* INFO->INNER describes a {PRE,POST}_MODIFY address. Set up the rest
6048 of INFO accordingly. */
6049
6050 static void
6051 decompose_automod_address (struct address_info *info)
6052 {
6053 info->autoinc_p = true;
6054
6055 rtx *base = &XEXP (*info->inner, 0);
6056 set_address_base (info, base, base);
6057 gcc_checking_assert (info->base == info->base_term);
6058
6059 rtx plus = XEXP (*info->inner, 1);
6060 gcc_assert (GET_CODE (plus) == PLUS);
6061
6062 info->base_term2 = &XEXP (plus, 0);
6063 gcc_checking_assert (rtx_equal_p (*info->base_term, *info->base_term2));
6064
6065 rtx *step = &XEXP (plus, 1);
6066 rtx *inner_step = strip_address_mutations (step);
6067 if (CONSTANT_P (*inner_step))
6068 set_address_disp (info, step, inner_step);
6069 else
6070 set_address_index (info, step, inner_step);
6071 }
6072
6073 /* Treat *LOC as a tree of PLUS operands and store pointers to the summed
6074 values in [PTR, END). Return a pointer to the end of the used array. */
6075
6076 static rtx **
6077 extract_plus_operands (rtx *loc, rtx **ptr, rtx **end)
6078 {
6079 rtx x = *loc;
6080 if (GET_CODE (x) == PLUS)
6081 {
6082 ptr = extract_plus_operands (&XEXP (x, 0), ptr, end);
6083 ptr = extract_plus_operands (&XEXP (x, 1), ptr, end);
6084 }
6085 else
6086 {
6087 gcc_assert (ptr != end);
6088 *ptr++ = loc;
6089 }
6090 return ptr;
6091 }
6092
6093 /* Evaluate the likelihood of X being a base or index value, returning
6094 positive if it is likely to be a base, negative if it is likely to be
6095 an index, and 0 if we can't tell. Make the magnitude of the return
6096 value reflect the amount of confidence we have in the answer.
6097
6098 MODE, AS, OUTER_CODE and INDEX_CODE are as for ok_for_base_p_1. */
6099
6100 static int
6101 baseness (rtx x, machine_mode mode, addr_space_t as,
6102 enum rtx_code outer_code, enum rtx_code index_code)
6103 {
6104 /* Believe *_POINTER unless the address shape requires otherwise. */
6105 if (REG_P (x) && REG_POINTER (x))
6106 return 2;
6107 if (MEM_P (x) && MEM_POINTER (x))
6108 return 2;
6109
6110 if (REG_P (x) && HARD_REGISTER_P (x))
6111 {
6112 /* X is a hard register. If it only fits one of the base
6113 or index classes, choose that interpretation. */
6114 int regno = REGNO (x);
6115 bool base_p = ok_for_base_p_1 (regno, mode, as, outer_code, index_code);
6116 bool index_p = REGNO_OK_FOR_INDEX_P (regno);
6117 if (base_p != index_p)
6118 return base_p ? 1 : -1;
6119 }
6120 return 0;
6121 }
6122
6123 /* INFO->INNER describes a normal, non-automodified address.
6124 Fill in the rest of INFO accordingly. */
6125
6126 static void
6127 decompose_normal_address (struct address_info *info)
6128 {
6129 /* Treat the address as the sum of up to four values. */
6130 rtx *ops[4];
6131 size_t n_ops = extract_plus_operands (info->inner, ops,
6132 ops + ARRAY_SIZE (ops)) - ops;
6133
6134 /* If there is more than one component, any base component is in a PLUS. */
6135 if (n_ops > 1)
6136 info->base_outer_code = PLUS;
6137
6138 /* Try to classify each sum operand now. Leave those that could be
6139 either a base or an index in OPS. */
6140 rtx *inner_ops[4];
6141 size_t out = 0;
6142 for (size_t in = 0; in < n_ops; ++in)
6143 {
6144 rtx *loc = ops[in];
6145 rtx *inner = strip_address_mutations (loc);
6146 if (CONSTANT_P (*inner))
6147 set_address_disp (info, loc, inner);
6148 else if (GET_CODE (*inner) == UNSPEC)
6149 set_address_segment (info, loc, inner);
6150 else
6151 {
6152 /* The only other possibilities are a base or an index. */
6153 rtx *base_term = get_base_term (inner);
6154 rtx *index_term = get_index_term (inner);
6155 gcc_assert (base_term || index_term);
6156 if (!base_term)
6157 set_address_index (info, loc, index_term);
6158 else if (!index_term)
6159 set_address_base (info, loc, base_term);
6160 else
6161 {
6162 gcc_assert (base_term == index_term);
6163 ops[out] = loc;
6164 inner_ops[out] = base_term;
6165 ++out;
6166 }
6167 }
6168 }
6169
6170 /* Classify the remaining OPS members as bases and indexes. */
6171 if (out == 1)
6172 {
6173 /* If we haven't seen a base or an index yet, assume that this is
6174 the base. If we were confident that another term was the base
6175 or index, treat the remaining operand as the other kind. */
6176 if (!info->base)
6177 set_address_base (info, ops[0], inner_ops[0]);
6178 else
6179 set_address_index (info, ops[0], inner_ops[0]);
6180 }
6181 else if (out == 2)
6182 {
6183 /* In the event of a tie, assume the base comes first. */
6184 if (baseness (*inner_ops[0], info->mode, info->as, PLUS,
6185 GET_CODE (*ops[1]))
6186 >= baseness (*inner_ops[1], info->mode, info->as, PLUS,
6187 GET_CODE (*ops[0])))
6188 {
6189 set_address_base (info, ops[0], inner_ops[0]);
6190 set_address_index (info, ops[1], inner_ops[1]);
6191 }
6192 else
6193 {
6194 set_address_base (info, ops[1], inner_ops[1]);
6195 set_address_index (info, ops[0], inner_ops[0]);
6196 }
6197 }
6198 else
6199 gcc_assert (out == 0);
6200 }
6201
6202 /* Describe address *LOC in *INFO. MODE is the mode of the addressed value,
6203 or VOIDmode if not known. AS is the address space associated with LOC.
6204 OUTER_CODE is MEM if *LOC is a MEM address and ADDRESS otherwise. */
6205
6206 void
6207 decompose_address (struct address_info *info, rtx *loc, machine_mode mode,
6208 addr_space_t as, enum rtx_code outer_code)
6209 {
6210 memset (info, 0, sizeof (*info));
6211 info->mode = mode;
6212 info->as = as;
6213 info->addr_outer_code = outer_code;
6214 info->outer = loc;
6215 info->inner = strip_address_mutations (loc, &outer_code);
6216 info->base_outer_code = outer_code;
6217 switch (GET_CODE (*info->inner))
6218 {
6219 case PRE_DEC:
6220 case PRE_INC:
6221 case POST_DEC:
6222 case POST_INC:
6223 decompose_incdec_address (info);
6224 break;
6225
6226 case PRE_MODIFY:
6227 case POST_MODIFY:
6228 decompose_automod_address (info);
6229 break;
6230
6231 default:
6232 decompose_normal_address (info);
6233 break;
6234 }
6235 }
6236
6237 /* Describe address operand LOC in INFO. */
6238
6239 void
6240 decompose_lea_address (struct address_info *info, rtx *loc)
6241 {
6242 decompose_address (info, loc, VOIDmode, ADDR_SPACE_GENERIC, ADDRESS);
6243 }
6244
6245 /* Describe the address of MEM X in INFO. */
6246
6247 void
6248 decompose_mem_address (struct address_info *info, rtx x)
6249 {
6250 gcc_assert (MEM_P (x));
6251 decompose_address (info, &XEXP (x, 0), GET_MODE (x),
6252 MEM_ADDR_SPACE (x), MEM);
6253 }
6254
6255 /* Update INFO after a change to the address it describes. */
6256
6257 void
6258 update_address (struct address_info *info)
6259 {
6260 decompose_address (info, info->outer, info->mode, info->as,
6261 info->addr_outer_code);
6262 }
6263
6264 /* Return the scale applied to *INFO->INDEX_TERM, or 0 if the index is
6265 more complicated than that. */
6266
6267 HOST_WIDE_INT
6268 get_index_scale (const struct address_info *info)
6269 {
6270 rtx index = *info->index;
6271 if (GET_CODE (index) == MULT
6272 && CONST_INT_P (XEXP (index, 1))
6273 && info->index_term == &XEXP (index, 0))
6274 return INTVAL (XEXP (index, 1));
6275
6276 if (GET_CODE (index) == ASHIFT
6277 && CONST_INT_P (XEXP (index, 1))
6278 && info->index_term == &XEXP (index, 0))
6279 return (HOST_WIDE_INT) 1 << INTVAL (XEXP (index, 1));
6280
6281 if (info->index == info->index_term)
6282 return 1;
6283
6284 return 0;
6285 }
6286
6287 /* Return the "index code" of INFO, in the form required by
6288 ok_for_base_p_1. */
6289
6290 enum rtx_code
6291 get_index_code (const struct address_info *info)
6292 {
6293 if (info->index)
6294 return GET_CODE (*info->index);
6295
6296 if (info->disp)
6297 return GET_CODE (*info->disp);
6298
6299 return SCRATCH;
6300 }
6301
6302 /* Return true if RTL X contains a SYMBOL_REF. */
6303
6304 bool
6305 contains_symbol_ref_p (const_rtx x)
6306 {
6307 subrtx_iterator::array_type array;
6308 FOR_EACH_SUBRTX (iter, array, x, ALL)
6309 if (SYMBOL_REF_P (*iter))
6310 return true;
6311
6312 return false;
6313 }
6314
6315 /* Return true if RTL X contains a SYMBOL_REF or LABEL_REF. */
6316
6317 bool
6318 contains_symbolic_reference_p (const_rtx x)
6319 {
6320 subrtx_iterator::array_type array;
6321 FOR_EACH_SUBRTX (iter, array, x, ALL)
6322 if (SYMBOL_REF_P (*iter) || GET_CODE (*iter) == LABEL_REF)
6323 return true;
6324
6325 return false;
6326 }
6327
6328 /* Return true if X contains a thread-local symbol. */
6329
6330 bool
6331 tls_referenced_p (const_rtx x)
6332 {
6333 if (!targetm.have_tls)
6334 return false;
6335
6336 subrtx_iterator::array_type array;
6337 FOR_EACH_SUBRTX (iter, array, x, ALL)
6338 if (GET_CODE (*iter) == SYMBOL_REF && SYMBOL_REF_TLS_MODEL (*iter) != 0)
6339 return true;
6340 return false;
6341 }