tm.texi (TARGET_ADDR_SPACE_POINTER_MODE): Document.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "toplev.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "real.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Bit flags that specify the machine subtype we are compiling for.
67 Bits are tested using macros TARGET_... defined in the tm.h file
68 and set by `-m...' switches. Must be defined in rtlanal.c. */
69
70 int target_flags;
71
72 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
73 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
74 SIGN_EXTEND then while narrowing we also have to enforce the
75 representation and sign-extend the value to mode DESTINATION_REP.
76
77 If the value is already sign-extended to DESTINATION_REP mode we
78 can just switch to DESTINATION mode on it. For each pair of
79 integral modes SOURCE and DESTINATION, when truncating from SOURCE
80 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
81 contains the number of high-order bits in SOURCE that have to be
82 copies of the sign-bit so that we can do this mode-switch to
83 DESTINATION. */
84
85 static unsigned int
86 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
87 \f
88 /* Return 1 if the value of X is unstable
89 (would be different at a different point in the program).
90 The frame pointer, arg pointer, etc. are considered stable
91 (within one function) and so is anything marked `unchanging'. */
92
93 int
94 rtx_unstable_p (const_rtx x)
95 {
96 const RTX_CODE code = GET_CODE (x);
97 int i;
98 const char *fmt;
99
100 switch (code)
101 {
102 case MEM:
103 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
104
105 case CONST:
106 case CONST_INT:
107 case CONST_DOUBLE:
108 case CONST_FIXED:
109 case CONST_VECTOR:
110 case SYMBOL_REF:
111 case LABEL_REF:
112 return 0;
113
114 case REG:
115 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
116 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
117 /* The arg pointer varies if it is not a fixed register. */
118 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
119 return 0;
120 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
121 /* ??? When call-clobbered, the value is stable modulo the restore
122 that must happen after a call. This currently screws up local-alloc
123 into believing that the restore is not needed. */
124 if (x == pic_offset_table_rtx)
125 return 0;
126 #endif
127 return 1;
128
129 case ASM_OPERANDS:
130 if (MEM_VOLATILE_P (x))
131 return 1;
132
133 /* Fall through. */
134
135 default:
136 break;
137 }
138
139 fmt = GET_RTX_FORMAT (code);
140 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
141 if (fmt[i] == 'e')
142 {
143 if (rtx_unstable_p (XEXP (x, i)))
144 return 1;
145 }
146 else if (fmt[i] == 'E')
147 {
148 int j;
149 for (j = 0; j < XVECLEN (x, i); j++)
150 if (rtx_unstable_p (XVECEXP (x, i, j)))
151 return 1;
152 }
153
154 return 0;
155 }
156
157 /* Return 1 if X has a value that can vary even between two
158 executions of the program. 0 means X can be compared reliably
159 against certain constants or near-constants.
160 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
161 zero, we are slightly more conservative.
162 The frame pointer and the arg pointer are considered constant. */
163
164 bool
165 rtx_varies_p (const_rtx x, bool for_alias)
166 {
167 RTX_CODE code;
168 int i;
169 const char *fmt;
170
171 if (!x)
172 return 0;
173
174 code = GET_CODE (x);
175 switch (code)
176 {
177 case MEM:
178 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
179
180 case CONST:
181 case CONST_INT:
182 case CONST_DOUBLE:
183 case CONST_FIXED:
184 case CONST_VECTOR:
185 case SYMBOL_REF:
186 case LABEL_REF:
187 return 0;
188
189 case REG:
190 /* Note that we have to test for the actual rtx used for the frame
191 and arg pointers and not just the register number in case we have
192 eliminated the frame and/or arg pointer and are using it
193 for pseudos. */
194 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
195 /* The arg pointer varies if it is not a fixed register. */
196 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
197 return 0;
198 if (x == pic_offset_table_rtx
199 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
200 /* ??? When call-clobbered, the value is stable modulo the restore
201 that must happen after a call. This currently screws up
202 local-alloc into believing that the restore is not needed, so we
203 must return 0 only if we are called from alias analysis. */
204 && for_alias
205 #endif
206 )
207 return 0;
208 return 1;
209
210 case LO_SUM:
211 /* The operand 0 of a LO_SUM is considered constant
212 (in fact it is related specifically to operand 1)
213 during alias analysis. */
214 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
215 || rtx_varies_p (XEXP (x, 1), for_alias);
216
217 case ASM_OPERANDS:
218 if (MEM_VOLATILE_P (x))
219 return 1;
220
221 /* Fall through. */
222
223 default:
224 break;
225 }
226
227 fmt = GET_RTX_FORMAT (code);
228 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
229 if (fmt[i] == 'e')
230 {
231 if (rtx_varies_p (XEXP (x, i), for_alias))
232 return 1;
233 }
234 else if (fmt[i] == 'E')
235 {
236 int j;
237 for (j = 0; j < XVECLEN (x, i); j++)
238 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
239 return 1;
240 }
241
242 return 0;
243 }
244
245 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
246 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
247 whether nonzero is returned for unaligned memory accesses on strict
248 alignment machines. */
249
250 static int
251 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
252 enum machine_mode mode, bool unaligned_mems)
253 {
254 enum rtx_code code = GET_CODE (x);
255
256 if (STRICT_ALIGNMENT
257 && unaligned_mems
258 && GET_MODE_SIZE (mode) != 0)
259 {
260 HOST_WIDE_INT actual_offset = offset;
261 #ifdef SPARC_STACK_BOUNDARY_HACK
262 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
263 the real alignment of %sp. However, when it does this, the
264 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
265 if (SPARC_STACK_BOUNDARY_HACK
266 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
267 actual_offset -= STACK_POINTER_OFFSET;
268 #endif
269
270 if (actual_offset % GET_MODE_SIZE (mode) != 0)
271 return 1;
272 }
273
274 switch (code)
275 {
276 case SYMBOL_REF:
277 if (SYMBOL_REF_WEAK (x))
278 return 1;
279 if (!CONSTANT_POOL_ADDRESS_P (x))
280 {
281 tree decl;
282 HOST_WIDE_INT decl_size;
283
284 if (offset < 0)
285 return 1;
286 if (size == 0)
287 size = GET_MODE_SIZE (mode);
288 if (size == 0)
289 return offset != 0;
290
291 /* If the size of the access or of the symbol is unknown,
292 assume the worst. */
293 decl = SYMBOL_REF_DECL (x);
294
295 /* Else check that the access is in bounds. TODO: restructure
296 expr_size/tree_expr_size/int_expr_size and just use the latter. */
297 if (!decl)
298 decl_size = -1;
299 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
300 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
301 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
302 : -1);
303 else if (TREE_CODE (decl) == STRING_CST)
304 decl_size = TREE_STRING_LENGTH (decl);
305 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
306 decl_size = int_size_in_bytes (TREE_TYPE (decl));
307 else
308 decl_size = -1;
309
310 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
311 }
312
313 return 0;
314
315 case LABEL_REF:
316 return 0;
317
318 case REG:
319 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
320 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
321 || x == stack_pointer_rtx
322 /* The arg pointer varies if it is not a fixed register. */
323 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
324 return 0;
325 /* All of the virtual frame registers are stack references. */
326 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
327 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
328 return 0;
329 return 1;
330
331 case CONST:
332 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
333 mode, unaligned_mems);
334
335 case PLUS:
336 /* An address is assumed not to trap if:
337 - it is the pic register plus a constant. */
338 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
339 return 0;
340
341 /* - or it is an address that can't trap plus a constant integer,
342 with the proper remainder modulo the mode size if we are
343 considering unaligned memory references. */
344 if (CONST_INT_P (XEXP (x, 1))
345 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
346 size, mode, unaligned_mems))
347 return 0;
348
349 return 1;
350
351 case LO_SUM:
352 case PRE_MODIFY:
353 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
354 mode, unaligned_mems);
355
356 case PRE_DEC:
357 case PRE_INC:
358 case POST_DEC:
359 case POST_INC:
360 case POST_MODIFY:
361 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
362 mode, unaligned_mems);
363
364 default:
365 break;
366 }
367
368 /* If it isn't one of the case above, it can cause a trap. */
369 return 1;
370 }
371
372 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
373
374 int
375 rtx_addr_can_trap_p (const_rtx x)
376 {
377 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
378 }
379
380 /* Return true if X is an address that is known to not be zero. */
381
382 bool
383 nonzero_address_p (const_rtx x)
384 {
385 const enum rtx_code code = GET_CODE (x);
386
387 switch (code)
388 {
389 case SYMBOL_REF:
390 return !SYMBOL_REF_WEAK (x);
391
392 case LABEL_REF:
393 return true;
394
395 case REG:
396 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
397 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
398 || x == stack_pointer_rtx
399 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
400 return true;
401 /* All of the virtual frame registers are stack references. */
402 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
403 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
404 return true;
405 return false;
406
407 case CONST:
408 return nonzero_address_p (XEXP (x, 0));
409
410 case PLUS:
411 if (CONST_INT_P (XEXP (x, 1)))
412 return nonzero_address_p (XEXP (x, 0));
413 /* Handle PIC references. */
414 else if (XEXP (x, 0) == pic_offset_table_rtx
415 && CONSTANT_P (XEXP (x, 1)))
416 return true;
417 return false;
418
419 case PRE_MODIFY:
420 /* Similar to the above; allow positive offsets. Further, since
421 auto-inc is only allowed in memories, the register must be a
422 pointer. */
423 if (CONST_INT_P (XEXP (x, 1))
424 && INTVAL (XEXP (x, 1)) > 0)
425 return true;
426 return nonzero_address_p (XEXP (x, 0));
427
428 case PRE_INC:
429 /* Similarly. Further, the offset is always positive. */
430 return true;
431
432 case PRE_DEC:
433 case POST_DEC:
434 case POST_INC:
435 case POST_MODIFY:
436 return nonzero_address_p (XEXP (x, 0));
437
438 case LO_SUM:
439 return nonzero_address_p (XEXP (x, 1));
440
441 default:
442 break;
443 }
444
445 /* If it isn't one of the case above, might be zero. */
446 return false;
447 }
448
449 /* Return 1 if X refers to a memory location whose address
450 cannot be compared reliably with constant addresses,
451 or if X refers to a BLKmode memory object.
452 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
453 zero, we are slightly more conservative. */
454
455 bool
456 rtx_addr_varies_p (const_rtx x, bool for_alias)
457 {
458 enum rtx_code code;
459 int i;
460 const char *fmt;
461
462 if (x == 0)
463 return 0;
464
465 code = GET_CODE (x);
466 if (code == MEM)
467 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
468
469 fmt = GET_RTX_FORMAT (code);
470 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
471 if (fmt[i] == 'e')
472 {
473 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
474 return 1;
475 }
476 else if (fmt[i] == 'E')
477 {
478 int j;
479 for (j = 0; j < XVECLEN (x, i); j++)
480 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
481 return 1;
482 }
483 return 0;
484 }
485 \f
486 /* Return the value of the integer term in X, if one is apparent;
487 otherwise return 0.
488 Only obvious integer terms are detected.
489 This is used in cse.c with the `related_value' field. */
490
491 HOST_WIDE_INT
492 get_integer_term (const_rtx x)
493 {
494 if (GET_CODE (x) == CONST)
495 x = XEXP (x, 0);
496
497 if (GET_CODE (x) == MINUS
498 && CONST_INT_P (XEXP (x, 1)))
499 return - INTVAL (XEXP (x, 1));
500 if (GET_CODE (x) == PLUS
501 && CONST_INT_P (XEXP (x, 1)))
502 return INTVAL (XEXP (x, 1));
503 return 0;
504 }
505
506 /* If X is a constant, return the value sans apparent integer term;
507 otherwise return 0.
508 Only obvious integer terms are detected. */
509
510 rtx
511 get_related_value (const_rtx x)
512 {
513 if (GET_CODE (x) != CONST)
514 return 0;
515 x = XEXP (x, 0);
516 if (GET_CODE (x) == PLUS
517 && CONST_INT_P (XEXP (x, 1)))
518 return XEXP (x, 0);
519 else if (GET_CODE (x) == MINUS
520 && CONST_INT_P (XEXP (x, 1)))
521 return XEXP (x, 0);
522 return 0;
523 }
524 \f
525 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
526 to somewhere in the same object or object_block as SYMBOL. */
527
528 bool
529 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
530 {
531 tree decl;
532
533 if (GET_CODE (symbol) != SYMBOL_REF)
534 return false;
535
536 if (offset == 0)
537 return true;
538
539 if (offset > 0)
540 {
541 if (CONSTANT_POOL_ADDRESS_P (symbol)
542 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
543 return true;
544
545 decl = SYMBOL_REF_DECL (symbol);
546 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
547 return true;
548 }
549
550 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
551 && SYMBOL_REF_BLOCK (symbol)
552 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
553 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
554 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
555 return true;
556
557 return false;
558 }
559
560 /* Split X into a base and a constant offset, storing them in *BASE_OUT
561 and *OFFSET_OUT respectively. */
562
563 void
564 split_const (rtx x, rtx *base_out, rtx *offset_out)
565 {
566 if (GET_CODE (x) == CONST)
567 {
568 x = XEXP (x, 0);
569 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
570 {
571 *base_out = XEXP (x, 0);
572 *offset_out = XEXP (x, 1);
573 return;
574 }
575 }
576 *base_out = x;
577 *offset_out = const0_rtx;
578 }
579 \f
580 /* Return the number of places FIND appears within X. If COUNT_DEST is
581 zero, we do not count occurrences inside the destination of a SET. */
582
583 int
584 count_occurrences (const_rtx x, const_rtx find, int count_dest)
585 {
586 int i, j;
587 enum rtx_code code;
588 const char *format_ptr;
589 int count;
590
591 if (x == find)
592 return 1;
593
594 code = GET_CODE (x);
595
596 switch (code)
597 {
598 case REG:
599 case CONST_INT:
600 case CONST_DOUBLE:
601 case CONST_FIXED:
602 case CONST_VECTOR:
603 case SYMBOL_REF:
604 case CODE_LABEL:
605 case PC:
606 case CC0:
607 return 0;
608
609 case EXPR_LIST:
610 count = count_occurrences (XEXP (x, 0), find, count_dest);
611 if (XEXP (x, 1))
612 count += count_occurrences (XEXP (x, 1), find, count_dest);
613 return count;
614
615 case MEM:
616 if (MEM_P (find) && rtx_equal_p (x, find))
617 return 1;
618 break;
619
620 case SET:
621 if (SET_DEST (x) == find && ! count_dest)
622 return count_occurrences (SET_SRC (x), find, count_dest);
623 break;
624
625 default:
626 break;
627 }
628
629 format_ptr = GET_RTX_FORMAT (code);
630 count = 0;
631
632 for (i = 0; i < GET_RTX_LENGTH (code); i++)
633 {
634 switch (*format_ptr++)
635 {
636 case 'e':
637 count += count_occurrences (XEXP (x, i), find, count_dest);
638 break;
639
640 case 'E':
641 for (j = 0; j < XVECLEN (x, i); j++)
642 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
643 break;
644 }
645 }
646 return count;
647 }
648
649 \f
650 /* Nonzero if register REG appears somewhere within IN.
651 Also works if REG is not a register; in this case it checks
652 for a subexpression of IN that is Lisp "equal" to REG. */
653
654 int
655 reg_mentioned_p (const_rtx reg, const_rtx in)
656 {
657 const char *fmt;
658 int i;
659 enum rtx_code code;
660
661 if (in == 0)
662 return 0;
663
664 if (reg == in)
665 return 1;
666
667 if (GET_CODE (in) == LABEL_REF)
668 return reg == XEXP (in, 0);
669
670 code = GET_CODE (in);
671
672 switch (code)
673 {
674 /* Compare registers by number. */
675 case REG:
676 return REG_P (reg) && REGNO (in) == REGNO (reg);
677
678 /* These codes have no constituent expressions
679 and are unique. */
680 case SCRATCH:
681 case CC0:
682 case PC:
683 return 0;
684
685 case CONST_INT:
686 case CONST_VECTOR:
687 case CONST_DOUBLE:
688 case CONST_FIXED:
689 /* These are kept unique for a given value. */
690 return 0;
691
692 default:
693 break;
694 }
695
696 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
697 return 1;
698
699 fmt = GET_RTX_FORMAT (code);
700
701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
702 {
703 if (fmt[i] == 'E')
704 {
705 int j;
706 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
707 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
708 return 1;
709 }
710 else if (fmt[i] == 'e'
711 && reg_mentioned_p (reg, XEXP (in, i)))
712 return 1;
713 }
714 return 0;
715 }
716 \f
717 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
718 no CODE_LABEL insn. */
719
720 int
721 no_labels_between_p (const_rtx beg, const_rtx end)
722 {
723 rtx p;
724 if (beg == end)
725 return 0;
726 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
727 if (LABEL_P (p))
728 return 0;
729 return 1;
730 }
731
732 /* Nonzero if register REG is used in an insn between
733 FROM_INSN and TO_INSN (exclusive of those two). */
734
735 int
736 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
737 {
738 rtx insn;
739
740 if (from_insn == to_insn)
741 return 0;
742
743 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
744 if (NONDEBUG_INSN_P (insn)
745 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
746 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
747 return 1;
748 return 0;
749 }
750 \f
751 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
752 is entirely replaced by a new value and the only use is as a SET_DEST,
753 we do not consider it a reference. */
754
755 int
756 reg_referenced_p (const_rtx x, const_rtx body)
757 {
758 int i;
759
760 switch (GET_CODE (body))
761 {
762 case SET:
763 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
764 return 1;
765
766 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
767 of a REG that occupies all of the REG, the insn references X if
768 it is mentioned in the destination. */
769 if (GET_CODE (SET_DEST (body)) != CC0
770 && GET_CODE (SET_DEST (body)) != PC
771 && !REG_P (SET_DEST (body))
772 && ! (GET_CODE (SET_DEST (body)) == SUBREG
773 && REG_P (SUBREG_REG (SET_DEST (body)))
774 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
775 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
776 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
777 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
778 && reg_overlap_mentioned_p (x, SET_DEST (body)))
779 return 1;
780 return 0;
781
782 case ASM_OPERANDS:
783 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
784 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
785 return 1;
786 return 0;
787
788 case CALL:
789 case USE:
790 case IF_THEN_ELSE:
791 return reg_overlap_mentioned_p (x, body);
792
793 case TRAP_IF:
794 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
795
796 case PREFETCH:
797 return reg_overlap_mentioned_p (x, XEXP (body, 0));
798
799 case UNSPEC:
800 case UNSPEC_VOLATILE:
801 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
802 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
803 return 1;
804 return 0;
805
806 case PARALLEL:
807 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
808 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
809 return 1;
810 return 0;
811
812 case CLOBBER:
813 if (MEM_P (XEXP (body, 0)))
814 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
815 return 1;
816 return 0;
817
818 case COND_EXEC:
819 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
820 return 1;
821 return reg_referenced_p (x, COND_EXEC_CODE (body));
822
823 default:
824 return 0;
825 }
826 }
827 \f
828 /* Nonzero if register REG is set or clobbered in an insn between
829 FROM_INSN and TO_INSN (exclusive of those two). */
830
831 int
832 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
833 {
834 const_rtx insn;
835
836 if (from_insn == to_insn)
837 return 0;
838
839 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
840 if (INSN_P (insn) && reg_set_p (reg, insn))
841 return 1;
842 return 0;
843 }
844
845 /* Internals of reg_set_between_p. */
846 int
847 reg_set_p (const_rtx reg, const_rtx insn)
848 {
849 /* We can be passed an insn or part of one. If we are passed an insn,
850 check if a side-effect of the insn clobbers REG. */
851 if (INSN_P (insn)
852 && (FIND_REG_INC_NOTE (insn, reg)
853 || (CALL_P (insn)
854 && ((REG_P (reg)
855 && REGNO (reg) < FIRST_PSEUDO_REGISTER
856 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
857 GET_MODE (reg), REGNO (reg)))
858 || MEM_P (reg)
859 || find_reg_fusage (insn, CLOBBER, reg)))))
860 return 1;
861
862 return set_of (reg, insn) != NULL_RTX;
863 }
864
865 /* Similar to reg_set_between_p, but check all registers in X. Return 0
866 only if none of them are modified between START and END. Return 1 if
867 X contains a MEM; this routine does use memory aliasing. */
868
869 int
870 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
871 {
872 const enum rtx_code code = GET_CODE (x);
873 const char *fmt;
874 int i, j;
875 rtx insn;
876
877 if (start == end)
878 return 0;
879
880 switch (code)
881 {
882 case CONST_INT:
883 case CONST_DOUBLE:
884 case CONST_FIXED:
885 case CONST_VECTOR:
886 case CONST:
887 case SYMBOL_REF:
888 case LABEL_REF:
889 return 0;
890
891 case PC:
892 case CC0:
893 return 1;
894
895 case MEM:
896 if (modified_between_p (XEXP (x, 0), start, end))
897 return 1;
898 if (MEM_READONLY_P (x))
899 return 0;
900 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
901 if (memory_modified_in_insn_p (x, insn))
902 return 1;
903 return 0;
904 break;
905
906 case REG:
907 return reg_set_between_p (x, start, end);
908
909 default:
910 break;
911 }
912
913 fmt = GET_RTX_FORMAT (code);
914 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
915 {
916 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
917 return 1;
918
919 else if (fmt[i] == 'E')
920 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
921 if (modified_between_p (XVECEXP (x, i, j), start, end))
922 return 1;
923 }
924
925 return 0;
926 }
927
928 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
929 of them are modified in INSN. Return 1 if X contains a MEM; this routine
930 does use memory aliasing. */
931
932 int
933 modified_in_p (const_rtx x, const_rtx insn)
934 {
935 const enum rtx_code code = GET_CODE (x);
936 const char *fmt;
937 int i, j;
938
939 switch (code)
940 {
941 case CONST_INT:
942 case CONST_DOUBLE:
943 case CONST_FIXED:
944 case CONST_VECTOR:
945 case CONST:
946 case SYMBOL_REF:
947 case LABEL_REF:
948 return 0;
949
950 case PC:
951 case CC0:
952 return 1;
953
954 case MEM:
955 if (modified_in_p (XEXP (x, 0), insn))
956 return 1;
957 if (MEM_READONLY_P (x))
958 return 0;
959 if (memory_modified_in_insn_p (x, insn))
960 return 1;
961 return 0;
962 break;
963
964 case REG:
965 return reg_set_p (x, insn);
966
967 default:
968 break;
969 }
970
971 fmt = GET_RTX_FORMAT (code);
972 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
973 {
974 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
975 return 1;
976
977 else if (fmt[i] == 'E')
978 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
979 if (modified_in_p (XVECEXP (x, i, j), insn))
980 return 1;
981 }
982
983 return 0;
984 }
985 \f
986 /* Helper function for set_of. */
987 struct set_of_data
988 {
989 const_rtx found;
990 const_rtx pat;
991 };
992
993 static void
994 set_of_1 (rtx x, const_rtx pat, void *data1)
995 {
996 struct set_of_data *const data = (struct set_of_data *) (data1);
997 if (rtx_equal_p (x, data->pat)
998 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
999 data->found = pat;
1000 }
1001
1002 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1003 (either directly or via STRICT_LOW_PART and similar modifiers). */
1004 const_rtx
1005 set_of (const_rtx pat, const_rtx insn)
1006 {
1007 struct set_of_data data;
1008 data.found = NULL_RTX;
1009 data.pat = pat;
1010 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1011 return data.found;
1012 }
1013 \f
1014 /* Given an INSN, return a SET expression if this insn has only a single SET.
1015 It may also have CLOBBERs, USEs, or SET whose output
1016 will not be used, which we ignore. */
1017
1018 rtx
1019 single_set_2 (const_rtx insn, const_rtx pat)
1020 {
1021 rtx set = NULL;
1022 int set_verified = 1;
1023 int i;
1024
1025 if (GET_CODE (pat) == PARALLEL)
1026 {
1027 for (i = 0; i < XVECLEN (pat, 0); i++)
1028 {
1029 rtx sub = XVECEXP (pat, 0, i);
1030 switch (GET_CODE (sub))
1031 {
1032 case USE:
1033 case CLOBBER:
1034 break;
1035
1036 case SET:
1037 /* We can consider insns having multiple sets, where all
1038 but one are dead as single set insns. In common case
1039 only single set is present in the pattern so we want
1040 to avoid checking for REG_UNUSED notes unless necessary.
1041
1042 When we reach set first time, we just expect this is
1043 the single set we are looking for and only when more
1044 sets are found in the insn, we check them. */
1045 if (!set_verified)
1046 {
1047 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1048 && !side_effects_p (set))
1049 set = NULL;
1050 else
1051 set_verified = 1;
1052 }
1053 if (!set)
1054 set = sub, set_verified = 0;
1055 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1056 || side_effects_p (sub))
1057 return NULL_RTX;
1058 break;
1059
1060 default:
1061 return NULL_RTX;
1062 }
1063 }
1064 }
1065 return set;
1066 }
1067
1068 /* Given an INSN, return nonzero if it has more than one SET, else return
1069 zero. */
1070
1071 int
1072 multiple_sets (const_rtx insn)
1073 {
1074 int found;
1075 int i;
1076
1077 /* INSN must be an insn. */
1078 if (! INSN_P (insn))
1079 return 0;
1080
1081 /* Only a PARALLEL can have multiple SETs. */
1082 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1083 {
1084 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1085 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1086 {
1087 /* If we have already found a SET, then return now. */
1088 if (found)
1089 return 1;
1090 else
1091 found = 1;
1092 }
1093 }
1094
1095 /* Either zero or one SET. */
1096 return 0;
1097 }
1098 \f
1099 /* Return nonzero if the destination of SET equals the source
1100 and there are no side effects. */
1101
1102 int
1103 set_noop_p (const_rtx set)
1104 {
1105 rtx src = SET_SRC (set);
1106 rtx dst = SET_DEST (set);
1107
1108 if (dst == pc_rtx && src == pc_rtx)
1109 return 1;
1110
1111 if (MEM_P (dst) && MEM_P (src))
1112 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1113
1114 if (GET_CODE (dst) == ZERO_EXTRACT)
1115 return rtx_equal_p (XEXP (dst, 0), src)
1116 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1117 && !side_effects_p (src);
1118
1119 if (GET_CODE (dst) == STRICT_LOW_PART)
1120 dst = XEXP (dst, 0);
1121
1122 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1123 {
1124 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1125 return 0;
1126 src = SUBREG_REG (src);
1127 dst = SUBREG_REG (dst);
1128 }
1129
1130 return (REG_P (src) && REG_P (dst)
1131 && REGNO (src) == REGNO (dst));
1132 }
1133 \f
1134 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1135 value to itself. */
1136
1137 int
1138 noop_move_p (const_rtx insn)
1139 {
1140 rtx pat = PATTERN (insn);
1141
1142 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1143 return 1;
1144
1145 /* Insns carrying these notes are useful later on. */
1146 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1147 return 0;
1148
1149 if (GET_CODE (pat) == SET && set_noop_p (pat))
1150 return 1;
1151
1152 if (GET_CODE (pat) == PARALLEL)
1153 {
1154 int i;
1155 /* If nothing but SETs of registers to themselves,
1156 this insn can also be deleted. */
1157 for (i = 0; i < XVECLEN (pat, 0); i++)
1158 {
1159 rtx tem = XVECEXP (pat, 0, i);
1160
1161 if (GET_CODE (tem) == USE
1162 || GET_CODE (tem) == CLOBBER)
1163 continue;
1164
1165 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1166 return 0;
1167 }
1168
1169 return 1;
1170 }
1171 return 0;
1172 }
1173 \f
1174
1175 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1176 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1177 If the object was modified, if we hit a partial assignment to X, or hit a
1178 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1179 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1180 be the src. */
1181
1182 rtx
1183 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1184 {
1185 rtx p;
1186
1187 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1188 p = PREV_INSN (p))
1189 if (INSN_P (p))
1190 {
1191 rtx set = single_set (p);
1192 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1193
1194 if (set && rtx_equal_p (x, SET_DEST (set)))
1195 {
1196 rtx src = SET_SRC (set);
1197
1198 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1199 src = XEXP (note, 0);
1200
1201 if ((valid_to == NULL_RTX
1202 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1203 /* Reject hard registers because we don't usually want
1204 to use them; we'd rather use a pseudo. */
1205 && (! (REG_P (src)
1206 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1207 {
1208 *pinsn = p;
1209 return src;
1210 }
1211 }
1212
1213 /* If set in non-simple way, we don't have a value. */
1214 if (reg_set_p (x, p))
1215 break;
1216 }
1217
1218 return x;
1219 }
1220 \f
1221 /* Return nonzero if register in range [REGNO, ENDREGNO)
1222 appears either explicitly or implicitly in X
1223 other than being stored into.
1224
1225 References contained within the substructure at LOC do not count.
1226 LOC may be zero, meaning don't ignore anything. */
1227
1228 int
1229 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1230 rtx *loc)
1231 {
1232 int i;
1233 unsigned int x_regno;
1234 RTX_CODE code;
1235 const char *fmt;
1236
1237 repeat:
1238 /* The contents of a REG_NONNEG note is always zero, so we must come here
1239 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1240 if (x == 0)
1241 return 0;
1242
1243 code = GET_CODE (x);
1244
1245 switch (code)
1246 {
1247 case REG:
1248 x_regno = REGNO (x);
1249
1250 /* If we modifying the stack, frame, or argument pointer, it will
1251 clobber a virtual register. In fact, we could be more precise,
1252 but it isn't worth it. */
1253 if ((x_regno == STACK_POINTER_REGNUM
1254 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1255 || x_regno == ARG_POINTER_REGNUM
1256 #endif
1257 || x_regno == FRAME_POINTER_REGNUM)
1258 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1259 return 1;
1260
1261 return endregno > x_regno && regno < END_REGNO (x);
1262
1263 case SUBREG:
1264 /* If this is a SUBREG of a hard reg, we can see exactly which
1265 registers are being modified. Otherwise, handle normally. */
1266 if (REG_P (SUBREG_REG (x))
1267 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1268 {
1269 unsigned int inner_regno = subreg_regno (x);
1270 unsigned int inner_endregno
1271 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1272 ? subreg_nregs (x) : 1);
1273
1274 return endregno > inner_regno && regno < inner_endregno;
1275 }
1276 break;
1277
1278 case CLOBBER:
1279 case SET:
1280 if (&SET_DEST (x) != loc
1281 /* Note setting a SUBREG counts as referring to the REG it is in for
1282 a pseudo but not for hard registers since we can
1283 treat each word individually. */
1284 && ((GET_CODE (SET_DEST (x)) == SUBREG
1285 && loc != &SUBREG_REG (SET_DEST (x))
1286 && REG_P (SUBREG_REG (SET_DEST (x)))
1287 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1288 && refers_to_regno_p (regno, endregno,
1289 SUBREG_REG (SET_DEST (x)), loc))
1290 || (!REG_P (SET_DEST (x))
1291 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1292 return 1;
1293
1294 if (code == CLOBBER || loc == &SET_SRC (x))
1295 return 0;
1296 x = SET_SRC (x);
1297 goto repeat;
1298
1299 default:
1300 break;
1301 }
1302
1303 /* X does not match, so try its subexpressions. */
1304
1305 fmt = GET_RTX_FORMAT (code);
1306 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1307 {
1308 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1309 {
1310 if (i == 0)
1311 {
1312 x = XEXP (x, 0);
1313 goto repeat;
1314 }
1315 else
1316 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1317 return 1;
1318 }
1319 else if (fmt[i] == 'E')
1320 {
1321 int j;
1322 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1323 if (loc != &XVECEXP (x, i, j)
1324 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1325 return 1;
1326 }
1327 }
1328 return 0;
1329 }
1330
1331 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1332 we check if any register number in X conflicts with the relevant register
1333 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1334 contains a MEM (we don't bother checking for memory addresses that can't
1335 conflict because we expect this to be a rare case. */
1336
1337 int
1338 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1339 {
1340 unsigned int regno, endregno;
1341
1342 /* If either argument is a constant, then modifying X can not
1343 affect IN. Here we look at IN, we can profitably combine
1344 CONSTANT_P (x) with the switch statement below. */
1345 if (CONSTANT_P (in))
1346 return 0;
1347
1348 recurse:
1349 switch (GET_CODE (x))
1350 {
1351 case STRICT_LOW_PART:
1352 case ZERO_EXTRACT:
1353 case SIGN_EXTRACT:
1354 /* Overly conservative. */
1355 x = XEXP (x, 0);
1356 goto recurse;
1357
1358 case SUBREG:
1359 regno = REGNO (SUBREG_REG (x));
1360 if (regno < FIRST_PSEUDO_REGISTER)
1361 regno = subreg_regno (x);
1362 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1363 ? subreg_nregs (x) : 1);
1364 goto do_reg;
1365
1366 case REG:
1367 regno = REGNO (x);
1368 endregno = END_REGNO (x);
1369 do_reg:
1370 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1371
1372 case MEM:
1373 {
1374 const char *fmt;
1375 int i;
1376
1377 if (MEM_P (in))
1378 return 1;
1379
1380 fmt = GET_RTX_FORMAT (GET_CODE (in));
1381 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1382 if (fmt[i] == 'e')
1383 {
1384 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1385 return 1;
1386 }
1387 else if (fmt[i] == 'E')
1388 {
1389 int j;
1390 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1391 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1392 return 1;
1393 }
1394
1395 return 0;
1396 }
1397
1398 case SCRATCH:
1399 case PC:
1400 case CC0:
1401 return reg_mentioned_p (x, in);
1402
1403 case PARALLEL:
1404 {
1405 int i;
1406
1407 /* If any register in here refers to it we return true. */
1408 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1409 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1410 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1411 return 1;
1412 return 0;
1413 }
1414
1415 default:
1416 gcc_assert (CONSTANT_P (x));
1417 return 0;
1418 }
1419 }
1420 \f
1421 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1422 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1423 ignored by note_stores, but passed to FUN.
1424
1425 FUN receives three arguments:
1426 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1427 2. the SET or CLOBBER rtx that does the store,
1428 3. the pointer DATA provided to note_stores.
1429
1430 If the item being stored in or clobbered is a SUBREG of a hard register,
1431 the SUBREG will be passed. */
1432
1433 void
1434 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1435 {
1436 int i;
1437
1438 if (GET_CODE (x) == COND_EXEC)
1439 x = COND_EXEC_CODE (x);
1440
1441 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1442 {
1443 rtx dest = SET_DEST (x);
1444
1445 while ((GET_CODE (dest) == SUBREG
1446 && (!REG_P (SUBREG_REG (dest))
1447 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1448 || GET_CODE (dest) == ZERO_EXTRACT
1449 || GET_CODE (dest) == STRICT_LOW_PART)
1450 dest = XEXP (dest, 0);
1451
1452 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1453 each of whose first operand is a register. */
1454 if (GET_CODE (dest) == PARALLEL)
1455 {
1456 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1457 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1458 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1459 }
1460 else
1461 (*fun) (dest, x, data);
1462 }
1463
1464 else if (GET_CODE (x) == PARALLEL)
1465 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1466 note_stores (XVECEXP (x, 0, i), fun, data);
1467 }
1468 \f
1469 /* Like notes_stores, but call FUN for each expression that is being
1470 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1471 FUN for each expression, not any interior subexpressions. FUN receives a
1472 pointer to the expression and the DATA passed to this function.
1473
1474 Note that this is not quite the same test as that done in reg_referenced_p
1475 since that considers something as being referenced if it is being
1476 partially set, while we do not. */
1477
1478 void
1479 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1480 {
1481 rtx body = *pbody;
1482 int i;
1483
1484 switch (GET_CODE (body))
1485 {
1486 case COND_EXEC:
1487 (*fun) (&COND_EXEC_TEST (body), data);
1488 note_uses (&COND_EXEC_CODE (body), fun, data);
1489 return;
1490
1491 case PARALLEL:
1492 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1493 note_uses (&XVECEXP (body, 0, i), fun, data);
1494 return;
1495
1496 case SEQUENCE:
1497 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1498 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1499 return;
1500
1501 case USE:
1502 (*fun) (&XEXP (body, 0), data);
1503 return;
1504
1505 case ASM_OPERANDS:
1506 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1507 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1508 return;
1509
1510 case TRAP_IF:
1511 (*fun) (&TRAP_CONDITION (body), data);
1512 return;
1513
1514 case PREFETCH:
1515 (*fun) (&XEXP (body, 0), data);
1516 return;
1517
1518 case UNSPEC:
1519 case UNSPEC_VOLATILE:
1520 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1521 (*fun) (&XVECEXP (body, 0, i), data);
1522 return;
1523
1524 case CLOBBER:
1525 if (MEM_P (XEXP (body, 0)))
1526 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1527 return;
1528
1529 case SET:
1530 {
1531 rtx dest = SET_DEST (body);
1532
1533 /* For sets we replace everything in source plus registers in memory
1534 expression in store and operands of a ZERO_EXTRACT. */
1535 (*fun) (&SET_SRC (body), data);
1536
1537 if (GET_CODE (dest) == ZERO_EXTRACT)
1538 {
1539 (*fun) (&XEXP (dest, 1), data);
1540 (*fun) (&XEXP (dest, 2), data);
1541 }
1542
1543 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1544 dest = XEXP (dest, 0);
1545
1546 if (MEM_P (dest))
1547 (*fun) (&XEXP (dest, 0), data);
1548 }
1549 return;
1550
1551 default:
1552 /* All the other possibilities never store. */
1553 (*fun) (pbody, data);
1554 return;
1555 }
1556 }
1557 \f
1558 /* Return nonzero if X's old contents don't survive after INSN.
1559 This will be true if X is (cc0) or if X is a register and
1560 X dies in INSN or because INSN entirely sets X.
1561
1562 "Entirely set" means set directly and not through a SUBREG, or
1563 ZERO_EXTRACT, so no trace of the old contents remains.
1564 Likewise, REG_INC does not count.
1565
1566 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1567 but for this use that makes no difference, since regs don't overlap
1568 during their lifetimes. Therefore, this function may be used
1569 at any time after deaths have been computed.
1570
1571 If REG is a hard reg that occupies multiple machine registers, this
1572 function will only return 1 if each of those registers will be replaced
1573 by INSN. */
1574
1575 int
1576 dead_or_set_p (const_rtx insn, const_rtx x)
1577 {
1578 unsigned int regno, end_regno;
1579 unsigned int i;
1580
1581 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1582 if (GET_CODE (x) == CC0)
1583 return 1;
1584
1585 gcc_assert (REG_P (x));
1586
1587 regno = REGNO (x);
1588 end_regno = END_REGNO (x);
1589 for (i = regno; i < end_regno; i++)
1590 if (! dead_or_set_regno_p (insn, i))
1591 return 0;
1592
1593 return 1;
1594 }
1595
1596 /* Return TRUE iff DEST is a register or subreg of a register and
1597 doesn't change the number of words of the inner register, and any
1598 part of the register is TEST_REGNO. */
1599
1600 static bool
1601 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1602 {
1603 unsigned int regno, endregno;
1604
1605 if (GET_CODE (dest) == SUBREG
1606 && (((GET_MODE_SIZE (GET_MODE (dest))
1607 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1608 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1609 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1610 dest = SUBREG_REG (dest);
1611
1612 if (!REG_P (dest))
1613 return false;
1614
1615 regno = REGNO (dest);
1616 endregno = END_REGNO (dest);
1617 return (test_regno >= regno && test_regno < endregno);
1618 }
1619
1620 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1621 any member matches the covers_regno_no_parallel_p criteria. */
1622
1623 static bool
1624 covers_regno_p (const_rtx dest, unsigned int test_regno)
1625 {
1626 if (GET_CODE (dest) == PARALLEL)
1627 {
1628 /* Some targets place small structures in registers for return
1629 values of functions, and those registers are wrapped in
1630 PARALLELs that we may see as the destination of a SET. */
1631 int i;
1632
1633 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1634 {
1635 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1636 if (inner != NULL_RTX
1637 && covers_regno_no_parallel_p (inner, test_regno))
1638 return true;
1639 }
1640
1641 return false;
1642 }
1643 else
1644 return covers_regno_no_parallel_p (dest, test_regno);
1645 }
1646
1647 /* Utility function for dead_or_set_p to check an individual register. */
1648
1649 int
1650 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1651 {
1652 const_rtx pattern;
1653
1654 /* See if there is a death note for something that includes TEST_REGNO. */
1655 if (find_regno_note (insn, REG_DEAD, test_regno))
1656 return 1;
1657
1658 if (CALL_P (insn)
1659 && find_regno_fusage (insn, CLOBBER, test_regno))
1660 return 1;
1661
1662 pattern = PATTERN (insn);
1663
1664 if (GET_CODE (pattern) == COND_EXEC)
1665 pattern = COND_EXEC_CODE (pattern);
1666
1667 if (GET_CODE (pattern) == SET)
1668 return covers_regno_p (SET_DEST (pattern), test_regno);
1669 else if (GET_CODE (pattern) == PARALLEL)
1670 {
1671 int i;
1672
1673 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1674 {
1675 rtx body = XVECEXP (pattern, 0, i);
1676
1677 if (GET_CODE (body) == COND_EXEC)
1678 body = COND_EXEC_CODE (body);
1679
1680 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1681 && covers_regno_p (SET_DEST (body), test_regno))
1682 return 1;
1683 }
1684 }
1685
1686 return 0;
1687 }
1688
1689 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1690 If DATUM is nonzero, look for one whose datum is DATUM. */
1691
1692 rtx
1693 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1694 {
1695 rtx link;
1696
1697 gcc_assert (insn);
1698
1699 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1700 if (! INSN_P (insn))
1701 return 0;
1702 if (datum == 0)
1703 {
1704 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1705 if (REG_NOTE_KIND (link) == kind)
1706 return link;
1707 return 0;
1708 }
1709
1710 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1711 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1712 return link;
1713 return 0;
1714 }
1715
1716 /* Return the reg-note of kind KIND in insn INSN which applies to register
1717 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1718 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1719 it might be the case that the note overlaps REGNO. */
1720
1721 rtx
1722 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1723 {
1724 rtx link;
1725
1726 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1727 if (! INSN_P (insn))
1728 return 0;
1729
1730 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1731 if (REG_NOTE_KIND (link) == kind
1732 /* Verify that it is a register, so that scratch and MEM won't cause a
1733 problem here. */
1734 && REG_P (XEXP (link, 0))
1735 && REGNO (XEXP (link, 0)) <= regno
1736 && END_REGNO (XEXP (link, 0)) > regno)
1737 return link;
1738 return 0;
1739 }
1740
1741 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1742 has such a note. */
1743
1744 rtx
1745 find_reg_equal_equiv_note (const_rtx insn)
1746 {
1747 rtx link;
1748
1749 if (!INSN_P (insn))
1750 return 0;
1751
1752 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1753 if (REG_NOTE_KIND (link) == REG_EQUAL
1754 || REG_NOTE_KIND (link) == REG_EQUIV)
1755 {
1756 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1757 insns that have multiple sets. Checking single_set to
1758 make sure of this is not the proper check, as explained
1759 in the comment in set_unique_reg_note.
1760
1761 This should be changed into an assert. */
1762 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1763 return 0;
1764 return link;
1765 }
1766 return NULL;
1767 }
1768
1769 /* Check whether INSN is a single_set whose source is known to be
1770 equivalent to a constant. Return that constant if so, otherwise
1771 return null. */
1772
1773 rtx
1774 find_constant_src (const_rtx insn)
1775 {
1776 rtx note, set, x;
1777
1778 set = single_set (insn);
1779 if (set)
1780 {
1781 x = avoid_constant_pool_reference (SET_SRC (set));
1782 if (CONSTANT_P (x))
1783 return x;
1784 }
1785
1786 note = find_reg_equal_equiv_note (insn);
1787 if (note && CONSTANT_P (XEXP (note, 0)))
1788 return XEXP (note, 0);
1789
1790 return NULL_RTX;
1791 }
1792
1793 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1794 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1795
1796 int
1797 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1798 {
1799 /* If it's not a CALL_INSN, it can't possibly have a
1800 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1801 if (!CALL_P (insn))
1802 return 0;
1803
1804 gcc_assert (datum);
1805
1806 if (!REG_P (datum))
1807 {
1808 rtx link;
1809
1810 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1811 link;
1812 link = XEXP (link, 1))
1813 if (GET_CODE (XEXP (link, 0)) == code
1814 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1815 return 1;
1816 }
1817 else
1818 {
1819 unsigned int regno = REGNO (datum);
1820
1821 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1822 to pseudo registers, so don't bother checking. */
1823
1824 if (regno < FIRST_PSEUDO_REGISTER)
1825 {
1826 unsigned int end_regno = END_HARD_REGNO (datum);
1827 unsigned int i;
1828
1829 for (i = regno; i < end_regno; i++)
1830 if (find_regno_fusage (insn, code, i))
1831 return 1;
1832 }
1833 }
1834
1835 return 0;
1836 }
1837
1838 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1839 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1840
1841 int
1842 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1843 {
1844 rtx link;
1845
1846 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1847 to pseudo registers, so don't bother checking. */
1848
1849 if (regno >= FIRST_PSEUDO_REGISTER
1850 || !CALL_P (insn) )
1851 return 0;
1852
1853 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1854 {
1855 rtx op, reg;
1856
1857 if (GET_CODE (op = XEXP (link, 0)) == code
1858 && REG_P (reg = XEXP (op, 0))
1859 && REGNO (reg) <= regno
1860 && END_HARD_REGNO (reg) > regno)
1861 return 1;
1862 }
1863
1864 return 0;
1865 }
1866
1867 \f
1868 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1869 stored as the pointer to the next register note. */
1870
1871 rtx
1872 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1873 {
1874 rtx note;
1875
1876 switch (kind)
1877 {
1878 case REG_CC_SETTER:
1879 case REG_CC_USER:
1880 case REG_LABEL_TARGET:
1881 case REG_LABEL_OPERAND:
1882 /* These types of register notes use an INSN_LIST rather than an
1883 EXPR_LIST, so that copying is done right and dumps look
1884 better. */
1885 note = alloc_INSN_LIST (datum, list);
1886 PUT_REG_NOTE_KIND (note, kind);
1887 break;
1888
1889 default:
1890 note = alloc_EXPR_LIST (kind, datum, list);
1891 break;
1892 }
1893
1894 return note;
1895 }
1896
1897 /* Add register note with kind KIND and datum DATUM to INSN. */
1898
1899 void
1900 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1901 {
1902 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1903 }
1904
1905 /* Remove register note NOTE from the REG_NOTES of INSN. */
1906
1907 void
1908 remove_note (rtx insn, const_rtx note)
1909 {
1910 rtx link;
1911
1912 if (note == NULL_RTX)
1913 return;
1914
1915 if (REG_NOTES (insn) == note)
1916 REG_NOTES (insn) = XEXP (note, 1);
1917 else
1918 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1919 if (XEXP (link, 1) == note)
1920 {
1921 XEXP (link, 1) = XEXP (note, 1);
1922 break;
1923 }
1924
1925 switch (REG_NOTE_KIND (note))
1926 {
1927 case REG_EQUAL:
1928 case REG_EQUIV:
1929 df_notes_rescan (insn);
1930 break;
1931 default:
1932 break;
1933 }
1934 }
1935
1936 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1937
1938 void
1939 remove_reg_equal_equiv_notes (rtx insn)
1940 {
1941 rtx *loc;
1942
1943 loc = &REG_NOTES (insn);
1944 while (*loc)
1945 {
1946 enum reg_note kind = REG_NOTE_KIND (*loc);
1947 if (kind == REG_EQUAL || kind == REG_EQUIV)
1948 *loc = XEXP (*loc, 1);
1949 else
1950 loc = &XEXP (*loc, 1);
1951 }
1952 }
1953
1954 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1955 return 1 if it is found. A simple equality test is used to determine if
1956 NODE matches. */
1957
1958 int
1959 in_expr_list_p (const_rtx listp, const_rtx node)
1960 {
1961 const_rtx x;
1962
1963 for (x = listp; x; x = XEXP (x, 1))
1964 if (node == XEXP (x, 0))
1965 return 1;
1966
1967 return 0;
1968 }
1969
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 remove that entry from the list if it is found.
1972
1973 A simple equality test is used to determine if NODE matches. */
1974
1975 void
1976 remove_node_from_expr_list (const_rtx node, rtx *listp)
1977 {
1978 rtx temp = *listp;
1979 rtx prev = NULL_RTX;
1980
1981 while (temp)
1982 {
1983 if (node == XEXP (temp, 0))
1984 {
1985 /* Splice the node out of the list. */
1986 if (prev)
1987 XEXP (prev, 1) = XEXP (temp, 1);
1988 else
1989 *listp = XEXP (temp, 1);
1990
1991 return;
1992 }
1993
1994 prev = temp;
1995 temp = XEXP (temp, 1);
1996 }
1997 }
1998 \f
1999 /* Nonzero if X contains any volatile instructions. These are instructions
2000 which may cause unpredictable machine state instructions, and thus no
2001 instructions should be moved or combined across them. This includes
2002 only volatile asms and UNSPEC_VOLATILE instructions. */
2003
2004 int
2005 volatile_insn_p (const_rtx x)
2006 {
2007 const RTX_CODE code = GET_CODE (x);
2008 switch (code)
2009 {
2010 case LABEL_REF:
2011 case SYMBOL_REF:
2012 case CONST_INT:
2013 case CONST:
2014 case CONST_DOUBLE:
2015 case CONST_FIXED:
2016 case CONST_VECTOR:
2017 case CC0:
2018 case PC:
2019 case REG:
2020 case SCRATCH:
2021 case CLOBBER:
2022 case ADDR_VEC:
2023 case ADDR_DIFF_VEC:
2024 case CALL:
2025 case MEM:
2026 return 0;
2027
2028 case UNSPEC_VOLATILE:
2029 /* case TRAP_IF: This isn't clear yet. */
2030 return 1;
2031
2032 case ASM_INPUT:
2033 case ASM_OPERANDS:
2034 if (MEM_VOLATILE_P (x))
2035 return 1;
2036
2037 default:
2038 break;
2039 }
2040
2041 /* Recursively scan the operands of this expression. */
2042
2043 {
2044 const char *const fmt = GET_RTX_FORMAT (code);
2045 int i;
2046
2047 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2048 {
2049 if (fmt[i] == 'e')
2050 {
2051 if (volatile_insn_p (XEXP (x, i)))
2052 return 1;
2053 }
2054 else if (fmt[i] == 'E')
2055 {
2056 int j;
2057 for (j = 0; j < XVECLEN (x, i); j++)
2058 if (volatile_insn_p (XVECEXP (x, i, j)))
2059 return 1;
2060 }
2061 }
2062 }
2063 return 0;
2064 }
2065
2066 /* Nonzero if X contains any volatile memory references
2067 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2068
2069 int
2070 volatile_refs_p (const_rtx x)
2071 {
2072 const RTX_CODE code = GET_CODE (x);
2073 switch (code)
2074 {
2075 case LABEL_REF:
2076 case SYMBOL_REF:
2077 case CONST_INT:
2078 case CONST:
2079 case CONST_DOUBLE:
2080 case CONST_FIXED:
2081 case CONST_VECTOR:
2082 case CC0:
2083 case PC:
2084 case REG:
2085 case SCRATCH:
2086 case CLOBBER:
2087 case ADDR_VEC:
2088 case ADDR_DIFF_VEC:
2089 return 0;
2090
2091 case UNSPEC_VOLATILE:
2092 return 1;
2093
2094 case MEM:
2095 case ASM_INPUT:
2096 case ASM_OPERANDS:
2097 if (MEM_VOLATILE_P (x))
2098 return 1;
2099
2100 default:
2101 break;
2102 }
2103
2104 /* Recursively scan the operands of this expression. */
2105
2106 {
2107 const char *const fmt = GET_RTX_FORMAT (code);
2108 int i;
2109
2110 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2111 {
2112 if (fmt[i] == 'e')
2113 {
2114 if (volatile_refs_p (XEXP (x, i)))
2115 return 1;
2116 }
2117 else if (fmt[i] == 'E')
2118 {
2119 int j;
2120 for (j = 0; j < XVECLEN (x, i); j++)
2121 if (volatile_refs_p (XVECEXP (x, i, j)))
2122 return 1;
2123 }
2124 }
2125 }
2126 return 0;
2127 }
2128
2129 /* Similar to above, except that it also rejects register pre- and post-
2130 incrementing. */
2131
2132 int
2133 side_effects_p (const_rtx x)
2134 {
2135 const RTX_CODE code = GET_CODE (x);
2136 switch (code)
2137 {
2138 case LABEL_REF:
2139 case SYMBOL_REF:
2140 case CONST_INT:
2141 case CONST:
2142 case CONST_DOUBLE:
2143 case CONST_FIXED:
2144 case CONST_VECTOR:
2145 case CC0:
2146 case PC:
2147 case REG:
2148 case SCRATCH:
2149 case ADDR_VEC:
2150 case ADDR_DIFF_VEC:
2151 case VAR_LOCATION:
2152 return 0;
2153
2154 case CLOBBER:
2155 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2156 when some combination can't be done. If we see one, don't think
2157 that we can simplify the expression. */
2158 return (GET_MODE (x) != VOIDmode);
2159
2160 case PRE_INC:
2161 case PRE_DEC:
2162 case POST_INC:
2163 case POST_DEC:
2164 case PRE_MODIFY:
2165 case POST_MODIFY:
2166 case CALL:
2167 case UNSPEC_VOLATILE:
2168 /* case TRAP_IF: This isn't clear yet. */
2169 return 1;
2170
2171 case MEM:
2172 case ASM_INPUT:
2173 case ASM_OPERANDS:
2174 if (MEM_VOLATILE_P (x))
2175 return 1;
2176
2177 default:
2178 break;
2179 }
2180
2181 /* Recursively scan the operands of this expression. */
2182
2183 {
2184 const char *fmt = GET_RTX_FORMAT (code);
2185 int i;
2186
2187 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2188 {
2189 if (fmt[i] == 'e')
2190 {
2191 if (side_effects_p (XEXP (x, i)))
2192 return 1;
2193 }
2194 else if (fmt[i] == 'E')
2195 {
2196 int j;
2197 for (j = 0; j < XVECLEN (x, i); j++)
2198 if (side_effects_p (XVECEXP (x, i, j)))
2199 return 1;
2200 }
2201 }
2202 }
2203 return 0;
2204 }
2205 \f
2206 /* Return nonzero if evaluating rtx X might cause a trap.
2207 FLAGS controls how to consider MEMs. A nonzero means the context
2208 of the access may have changed from the original, such that the
2209 address may have become invalid. */
2210
2211 int
2212 may_trap_p_1 (const_rtx x, unsigned flags)
2213 {
2214 int i;
2215 enum rtx_code code;
2216 const char *fmt;
2217
2218 /* We make no distinction currently, but this function is part of
2219 the internal target-hooks ABI so we keep the parameter as
2220 "unsigned flags". */
2221 bool code_changed = flags != 0;
2222
2223 if (x == 0)
2224 return 0;
2225 code = GET_CODE (x);
2226 switch (code)
2227 {
2228 /* Handle these cases quickly. */
2229 case CONST_INT:
2230 case CONST_DOUBLE:
2231 case CONST_FIXED:
2232 case CONST_VECTOR:
2233 case SYMBOL_REF:
2234 case LABEL_REF:
2235 case CONST:
2236 case PC:
2237 case CC0:
2238 case REG:
2239 case SCRATCH:
2240 return 0;
2241
2242 case UNSPEC:
2243 case UNSPEC_VOLATILE:
2244 return targetm.unspec_may_trap_p (x, flags);
2245
2246 case ASM_INPUT:
2247 case TRAP_IF:
2248 return 1;
2249
2250 case ASM_OPERANDS:
2251 return MEM_VOLATILE_P (x);
2252
2253 /* Memory ref can trap unless it's a static var or a stack slot. */
2254 case MEM:
2255 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2256 reference; moving it out of context such as when moving code
2257 when optimizing, might cause its address to become invalid. */
2258 code_changed
2259 || !MEM_NOTRAP_P (x))
2260 {
2261 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2262 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2263 GET_MODE (x), code_changed);
2264 }
2265
2266 return 0;
2267
2268 /* Division by a non-constant might trap. */
2269 case DIV:
2270 case MOD:
2271 case UDIV:
2272 case UMOD:
2273 if (HONOR_SNANS (GET_MODE (x)))
2274 return 1;
2275 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2276 return flag_trapping_math;
2277 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2278 return 1;
2279 break;
2280
2281 case EXPR_LIST:
2282 /* An EXPR_LIST is used to represent a function call. This
2283 certainly may trap. */
2284 return 1;
2285
2286 case GE:
2287 case GT:
2288 case LE:
2289 case LT:
2290 case LTGT:
2291 case COMPARE:
2292 /* Some floating point comparisons may trap. */
2293 if (!flag_trapping_math)
2294 break;
2295 /* ??? There is no machine independent way to check for tests that trap
2296 when COMPARE is used, though many targets do make this distinction.
2297 For instance, sparc uses CCFPE for compares which generate exceptions
2298 and CCFP for compares which do not generate exceptions. */
2299 if (HONOR_NANS (GET_MODE (x)))
2300 return 1;
2301 /* But often the compare has some CC mode, so check operand
2302 modes as well. */
2303 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2304 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2305 return 1;
2306 break;
2307
2308 case EQ:
2309 case NE:
2310 if (HONOR_SNANS (GET_MODE (x)))
2311 return 1;
2312 /* Often comparison is CC mode, so check operand modes. */
2313 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2314 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2315 return 1;
2316 break;
2317
2318 case FIX:
2319 /* Conversion of floating point might trap. */
2320 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2321 return 1;
2322 break;
2323
2324 case NEG:
2325 case ABS:
2326 case SUBREG:
2327 /* These operations don't trap even with floating point. */
2328 break;
2329
2330 default:
2331 /* Any floating arithmetic may trap. */
2332 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2333 && flag_trapping_math)
2334 return 1;
2335 }
2336
2337 fmt = GET_RTX_FORMAT (code);
2338 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2339 {
2340 if (fmt[i] == 'e')
2341 {
2342 if (may_trap_p_1 (XEXP (x, i), flags))
2343 return 1;
2344 }
2345 else if (fmt[i] == 'E')
2346 {
2347 int j;
2348 for (j = 0; j < XVECLEN (x, i); j++)
2349 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2350 return 1;
2351 }
2352 }
2353 return 0;
2354 }
2355
2356 /* Return nonzero if evaluating rtx X might cause a trap. */
2357
2358 int
2359 may_trap_p (const_rtx x)
2360 {
2361 return may_trap_p_1 (x, 0);
2362 }
2363
2364 /* Same as above, but additionally return nonzero if evaluating rtx X might
2365 cause a fault. We define a fault for the purpose of this function as a
2366 erroneous execution condition that cannot be encountered during the normal
2367 execution of a valid program; the typical example is an unaligned memory
2368 access on a strict alignment machine. The compiler guarantees that it
2369 doesn't generate code that will fault from a valid program, but this
2370 guarantee doesn't mean anything for individual instructions. Consider
2371 the following example:
2372
2373 struct S { int d; union { char *cp; int *ip; }; };
2374
2375 int foo(struct S *s)
2376 {
2377 if (s->d == 1)
2378 return *s->ip;
2379 else
2380 return *s->cp;
2381 }
2382
2383 on a strict alignment machine. In a valid program, foo will never be
2384 invoked on a structure for which d is equal to 1 and the underlying
2385 unique field of the union not aligned on a 4-byte boundary, but the
2386 expression *s->ip might cause a fault if considered individually.
2387
2388 At the RTL level, potentially problematic expressions will almost always
2389 verify may_trap_p; for example, the above dereference can be emitted as
2390 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2391 However, suppose that foo is inlined in a caller that causes s->cp to
2392 point to a local character variable and guarantees that s->d is not set
2393 to 1; foo may have been effectively translated into pseudo-RTL as:
2394
2395 if ((reg:SI) == 1)
2396 (set (reg:SI) (mem:SI (%fp - 7)))
2397 else
2398 (set (reg:QI) (mem:QI (%fp - 7)))
2399
2400 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2401 memory reference to a stack slot, but it will certainly cause a fault
2402 on a strict alignment machine. */
2403
2404 int
2405 may_trap_or_fault_p (const_rtx x)
2406 {
2407 return may_trap_p_1 (x, 1);
2408 }
2409 \f
2410 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2411 i.e., an inequality. */
2412
2413 int
2414 inequality_comparisons_p (const_rtx x)
2415 {
2416 const char *fmt;
2417 int len, i;
2418 const enum rtx_code code = GET_CODE (x);
2419
2420 switch (code)
2421 {
2422 case REG:
2423 case SCRATCH:
2424 case PC:
2425 case CC0:
2426 case CONST_INT:
2427 case CONST_DOUBLE:
2428 case CONST_FIXED:
2429 case CONST_VECTOR:
2430 case CONST:
2431 case LABEL_REF:
2432 case SYMBOL_REF:
2433 return 0;
2434
2435 case LT:
2436 case LTU:
2437 case GT:
2438 case GTU:
2439 case LE:
2440 case LEU:
2441 case GE:
2442 case GEU:
2443 return 1;
2444
2445 default:
2446 break;
2447 }
2448
2449 len = GET_RTX_LENGTH (code);
2450 fmt = GET_RTX_FORMAT (code);
2451
2452 for (i = 0; i < len; i++)
2453 {
2454 if (fmt[i] == 'e')
2455 {
2456 if (inequality_comparisons_p (XEXP (x, i)))
2457 return 1;
2458 }
2459 else if (fmt[i] == 'E')
2460 {
2461 int j;
2462 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2463 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2464 return 1;
2465 }
2466 }
2467
2468 return 0;
2469 }
2470 \f
2471 /* Replace any occurrence of FROM in X with TO. The function does
2472 not enter into CONST_DOUBLE for the replace.
2473
2474 Note that copying is not done so X must not be shared unless all copies
2475 are to be modified. */
2476
2477 rtx
2478 replace_rtx (rtx x, rtx from, rtx to)
2479 {
2480 int i, j;
2481 const char *fmt;
2482
2483 /* The following prevents loops occurrence when we change MEM in
2484 CONST_DOUBLE onto the same CONST_DOUBLE. */
2485 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2486 return x;
2487
2488 if (x == from)
2489 return to;
2490
2491 /* Allow this function to make replacements in EXPR_LISTs. */
2492 if (x == 0)
2493 return 0;
2494
2495 if (GET_CODE (x) == SUBREG)
2496 {
2497 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2498
2499 if (CONST_INT_P (new_rtx))
2500 {
2501 x = simplify_subreg (GET_MODE (x), new_rtx,
2502 GET_MODE (SUBREG_REG (x)),
2503 SUBREG_BYTE (x));
2504 gcc_assert (x);
2505 }
2506 else
2507 SUBREG_REG (x) = new_rtx;
2508
2509 return x;
2510 }
2511 else if (GET_CODE (x) == ZERO_EXTEND)
2512 {
2513 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2514
2515 if (CONST_INT_P (new_rtx))
2516 {
2517 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2518 new_rtx, GET_MODE (XEXP (x, 0)));
2519 gcc_assert (x);
2520 }
2521 else
2522 XEXP (x, 0) = new_rtx;
2523
2524 return x;
2525 }
2526
2527 fmt = GET_RTX_FORMAT (GET_CODE (x));
2528 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2529 {
2530 if (fmt[i] == 'e')
2531 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2532 else if (fmt[i] == 'E')
2533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2534 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2535 }
2536
2537 return x;
2538 }
2539 \f
2540 /* Replace occurrences of the old label in *X with the new one.
2541 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2542
2543 int
2544 replace_label (rtx *x, void *data)
2545 {
2546 rtx l = *x;
2547 rtx old_label = ((replace_label_data *) data)->r1;
2548 rtx new_label = ((replace_label_data *) data)->r2;
2549 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2550
2551 if (l == NULL_RTX)
2552 return 0;
2553
2554 if (GET_CODE (l) == SYMBOL_REF
2555 && CONSTANT_POOL_ADDRESS_P (l))
2556 {
2557 rtx c = get_pool_constant (l);
2558 if (rtx_referenced_p (old_label, c))
2559 {
2560 rtx new_c, new_l;
2561 replace_label_data *d = (replace_label_data *) data;
2562
2563 /* Create a copy of constant C; replace the label inside
2564 but do not update LABEL_NUSES because uses in constant pool
2565 are not counted. */
2566 new_c = copy_rtx (c);
2567 d->update_label_nuses = false;
2568 for_each_rtx (&new_c, replace_label, data);
2569 d->update_label_nuses = update_label_nuses;
2570
2571 /* Add the new constant NEW_C to constant pool and replace
2572 the old reference to constant by new reference. */
2573 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2574 *x = replace_rtx (l, l, new_l);
2575 }
2576 return 0;
2577 }
2578
2579 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2580 field. This is not handled by for_each_rtx because it doesn't
2581 handle unprinted ('0') fields. */
2582 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2583 JUMP_LABEL (l) = new_label;
2584
2585 if ((GET_CODE (l) == LABEL_REF
2586 || GET_CODE (l) == INSN_LIST)
2587 && XEXP (l, 0) == old_label)
2588 {
2589 XEXP (l, 0) = new_label;
2590 if (update_label_nuses)
2591 {
2592 ++LABEL_NUSES (new_label);
2593 --LABEL_NUSES (old_label);
2594 }
2595 return 0;
2596 }
2597
2598 return 0;
2599 }
2600
2601 /* When *BODY is equal to X or X is directly referenced by *BODY
2602 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2603 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2604
2605 static int
2606 rtx_referenced_p_1 (rtx *body, void *x)
2607 {
2608 rtx y = (rtx) x;
2609
2610 if (*body == NULL_RTX)
2611 return y == NULL_RTX;
2612
2613 /* Return true if a label_ref *BODY refers to label Y. */
2614 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2615 return XEXP (*body, 0) == y;
2616
2617 /* If *BODY is a reference to pool constant traverse the constant. */
2618 if (GET_CODE (*body) == SYMBOL_REF
2619 && CONSTANT_POOL_ADDRESS_P (*body))
2620 return rtx_referenced_p (y, get_pool_constant (*body));
2621
2622 /* By default, compare the RTL expressions. */
2623 return rtx_equal_p (*body, y);
2624 }
2625
2626 /* Return true if X is referenced in BODY. */
2627
2628 int
2629 rtx_referenced_p (rtx x, rtx body)
2630 {
2631 return for_each_rtx (&body, rtx_referenced_p_1, x);
2632 }
2633
2634 /* If INSN is a tablejump return true and store the label (before jump table) to
2635 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2636
2637 bool
2638 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2639 {
2640 rtx label, table;
2641
2642 if (JUMP_P (insn)
2643 && (label = JUMP_LABEL (insn)) != NULL_RTX
2644 && (table = next_active_insn (label)) != NULL_RTX
2645 && JUMP_TABLE_DATA_P (table))
2646 {
2647 if (labelp)
2648 *labelp = label;
2649 if (tablep)
2650 *tablep = table;
2651 return true;
2652 }
2653 return false;
2654 }
2655
2656 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2657 constant that is not in the constant pool and not in the condition
2658 of an IF_THEN_ELSE. */
2659
2660 static int
2661 computed_jump_p_1 (const_rtx x)
2662 {
2663 const enum rtx_code code = GET_CODE (x);
2664 int i, j;
2665 const char *fmt;
2666
2667 switch (code)
2668 {
2669 case LABEL_REF:
2670 case PC:
2671 return 0;
2672
2673 case CONST:
2674 case CONST_INT:
2675 case CONST_DOUBLE:
2676 case CONST_FIXED:
2677 case CONST_VECTOR:
2678 case SYMBOL_REF:
2679 case REG:
2680 return 1;
2681
2682 case MEM:
2683 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2684 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2685
2686 case IF_THEN_ELSE:
2687 return (computed_jump_p_1 (XEXP (x, 1))
2688 || computed_jump_p_1 (XEXP (x, 2)));
2689
2690 default:
2691 break;
2692 }
2693
2694 fmt = GET_RTX_FORMAT (code);
2695 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2696 {
2697 if (fmt[i] == 'e'
2698 && computed_jump_p_1 (XEXP (x, i)))
2699 return 1;
2700
2701 else if (fmt[i] == 'E')
2702 for (j = 0; j < XVECLEN (x, i); j++)
2703 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2704 return 1;
2705 }
2706
2707 return 0;
2708 }
2709
2710 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2711
2712 Tablejumps and casesi insns are not considered indirect jumps;
2713 we can recognize them by a (use (label_ref)). */
2714
2715 int
2716 computed_jump_p (const_rtx insn)
2717 {
2718 int i;
2719 if (JUMP_P (insn))
2720 {
2721 rtx pat = PATTERN (insn);
2722
2723 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2724 if (JUMP_LABEL (insn) != NULL)
2725 return 0;
2726
2727 if (GET_CODE (pat) == PARALLEL)
2728 {
2729 int len = XVECLEN (pat, 0);
2730 int has_use_labelref = 0;
2731
2732 for (i = len - 1; i >= 0; i--)
2733 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2734 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2735 == LABEL_REF))
2736 has_use_labelref = 1;
2737
2738 if (! has_use_labelref)
2739 for (i = len - 1; i >= 0; i--)
2740 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2741 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2742 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2743 return 1;
2744 }
2745 else if (GET_CODE (pat) == SET
2746 && SET_DEST (pat) == pc_rtx
2747 && computed_jump_p_1 (SET_SRC (pat)))
2748 return 1;
2749 }
2750 return 0;
2751 }
2752
2753 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2754 calls. Processes the subexpressions of EXP and passes them to F. */
2755 static int
2756 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2757 {
2758 int result, i, j;
2759 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2760 rtx *x;
2761
2762 for (; format[n] != '\0'; n++)
2763 {
2764 switch (format[n])
2765 {
2766 case 'e':
2767 /* Call F on X. */
2768 x = &XEXP (exp, n);
2769 result = (*f) (x, data);
2770 if (result == -1)
2771 /* Do not traverse sub-expressions. */
2772 continue;
2773 else if (result != 0)
2774 /* Stop the traversal. */
2775 return result;
2776
2777 if (*x == NULL_RTX)
2778 /* There are no sub-expressions. */
2779 continue;
2780
2781 i = non_rtx_starting_operands[GET_CODE (*x)];
2782 if (i >= 0)
2783 {
2784 result = for_each_rtx_1 (*x, i, f, data);
2785 if (result != 0)
2786 return result;
2787 }
2788 break;
2789
2790 case 'V':
2791 case 'E':
2792 if (XVEC (exp, n) == 0)
2793 continue;
2794 for (j = 0; j < XVECLEN (exp, n); ++j)
2795 {
2796 /* Call F on X. */
2797 x = &XVECEXP (exp, n, j);
2798 result = (*f) (x, data);
2799 if (result == -1)
2800 /* Do not traverse sub-expressions. */
2801 continue;
2802 else if (result != 0)
2803 /* Stop the traversal. */
2804 return result;
2805
2806 if (*x == NULL_RTX)
2807 /* There are no sub-expressions. */
2808 continue;
2809
2810 i = non_rtx_starting_operands[GET_CODE (*x)];
2811 if (i >= 0)
2812 {
2813 result = for_each_rtx_1 (*x, i, f, data);
2814 if (result != 0)
2815 return result;
2816 }
2817 }
2818 break;
2819
2820 default:
2821 /* Nothing to do. */
2822 break;
2823 }
2824 }
2825
2826 return 0;
2827 }
2828
2829 /* Traverse X via depth-first search, calling F for each
2830 sub-expression (including X itself). F is also passed the DATA.
2831 If F returns -1, do not traverse sub-expressions, but continue
2832 traversing the rest of the tree. If F ever returns any other
2833 nonzero value, stop the traversal, and return the value returned
2834 by F. Otherwise, return 0. This function does not traverse inside
2835 tree structure that contains RTX_EXPRs, or into sub-expressions
2836 whose format code is `0' since it is not known whether or not those
2837 codes are actually RTL.
2838
2839 This routine is very general, and could (should?) be used to
2840 implement many of the other routines in this file. */
2841
2842 int
2843 for_each_rtx (rtx *x, rtx_function f, void *data)
2844 {
2845 int result;
2846 int i;
2847
2848 /* Call F on X. */
2849 result = (*f) (x, data);
2850 if (result == -1)
2851 /* Do not traverse sub-expressions. */
2852 return 0;
2853 else if (result != 0)
2854 /* Stop the traversal. */
2855 return result;
2856
2857 if (*x == NULL_RTX)
2858 /* There are no sub-expressions. */
2859 return 0;
2860
2861 i = non_rtx_starting_operands[GET_CODE (*x)];
2862 if (i < 0)
2863 return 0;
2864
2865 return for_each_rtx_1 (*x, i, f, data);
2866 }
2867
2868
2869 /* Searches X for any reference to REGNO, returning the rtx of the
2870 reference found if any. Otherwise, returns NULL_RTX. */
2871
2872 rtx
2873 regno_use_in (unsigned int regno, rtx x)
2874 {
2875 const char *fmt;
2876 int i, j;
2877 rtx tem;
2878
2879 if (REG_P (x) && REGNO (x) == regno)
2880 return x;
2881
2882 fmt = GET_RTX_FORMAT (GET_CODE (x));
2883 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2884 {
2885 if (fmt[i] == 'e')
2886 {
2887 if ((tem = regno_use_in (regno, XEXP (x, i))))
2888 return tem;
2889 }
2890 else if (fmt[i] == 'E')
2891 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2892 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2893 return tem;
2894 }
2895
2896 return NULL_RTX;
2897 }
2898
2899 /* Return a value indicating whether OP, an operand of a commutative
2900 operation, is preferred as the first or second operand. The higher
2901 the value, the stronger the preference for being the first operand.
2902 We use negative values to indicate a preference for the first operand
2903 and positive values for the second operand. */
2904
2905 int
2906 commutative_operand_precedence (rtx op)
2907 {
2908 enum rtx_code code = GET_CODE (op);
2909
2910 /* Constants always come the second operand. Prefer "nice" constants. */
2911 if (code == CONST_INT)
2912 return -8;
2913 if (code == CONST_DOUBLE)
2914 return -7;
2915 if (code == CONST_FIXED)
2916 return -7;
2917 op = avoid_constant_pool_reference (op);
2918 code = GET_CODE (op);
2919
2920 switch (GET_RTX_CLASS (code))
2921 {
2922 case RTX_CONST_OBJ:
2923 if (code == CONST_INT)
2924 return -6;
2925 if (code == CONST_DOUBLE)
2926 return -5;
2927 if (code == CONST_FIXED)
2928 return -5;
2929 return -4;
2930
2931 case RTX_EXTRA:
2932 /* SUBREGs of objects should come second. */
2933 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2934 return -3;
2935 return 0;
2936
2937 case RTX_OBJ:
2938 /* Complex expressions should be the first, so decrease priority
2939 of objects. Prefer pointer objects over non pointer objects. */
2940 if ((REG_P (op) && REG_POINTER (op))
2941 || (MEM_P (op) && MEM_POINTER (op)))
2942 return -1;
2943 return -2;
2944
2945 case RTX_COMM_ARITH:
2946 /* Prefer operands that are themselves commutative to be first.
2947 This helps to make things linear. In particular,
2948 (and (and (reg) (reg)) (not (reg))) is canonical. */
2949 return 4;
2950
2951 case RTX_BIN_ARITH:
2952 /* If only one operand is a binary expression, it will be the first
2953 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2954 is canonical, although it will usually be further simplified. */
2955 return 2;
2956
2957 case RTX_UNARY:
2958 /* Then prefer NEG and NOT. */
2959 if (code == NEG || code == NOT)
2960 return 1;
2961
2962 default:
2963 return 0;
2964 }
2965 }
2966
2967 /* Return 1 iff it is necessary to swap operands of commutative operation
2968 in order to canonicalize expression. */
2969
2970 bool
2971 swap_commutative_operands_p (rtx x, rtx y)
2972 {
2973 return (commutative_operand_precedence (x)
2974 < commutative_operand_precedence (y));
2975 }
2976
2977 /* Return 1 if X is an autoincrement side effect and the register is
2978 not the stack pointer. */
2979 int
2980 auto_inc_p (const_rtx x)
2981 {
2982 switch (GET_CODE (x))
2983 {
2984 case PRE_INC:
2985 case POST_INC:
2986 case PRE_DEC:
2987 case POST_DEC:
2988 case PRE_MODIFY:
2989 case POST_MODIFY:
2990 /* There are no REG_INC notes for SP. */
2991 if (XEXP (x, 0) != stack_pointer_rtx)
2992 return 1;
2993 default:
2994 break;
2995 }
2996 return 0;
2997 }
2998
2999 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3000 int
3001 loc_mentioned_in_p (rtx *loc, const_rtx in)
3002 {
3003 enum rtx_code code;
3004 const char *fmt;
3005 int i, j;
3006
3007 if (!in)
3008 return 0;
3009
3010 code = GET_CODE (in);
3011 fmt = GET_RTX_FORMAT (code);
3012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3013 {
3014 if (fmt[i] == 'e')
3015 {
3016 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3017 return 1;
3018 }
3019 else if (fmt[i] == 'E')
3020 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3021 if (loc == &XVECEXP (in, i, j)
3022 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3023 return 1;
3024 }
3025 return 0;
3026 }
3027
3028 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3029 and SUBREG_BYTE, return the bit offset where the subreg begins
3030 (counting from the least significant bit of the operand). */
3031
3032 unsigned int
3033 subreg_lsb_1 (enum machine_mode outer_mode,
3034 enum machine_mode inner_mode,
3035 unsigned int subreg_byte)
3036 {
3037 unsigned int bitpos;
3038 unsigned int byte;
3039 unsigned int word;
3040
3041 /* A paradoxical subreg begins at bit position 0. */
3042 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3043 return 0;
3044
3045 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3046 /* If the subreg crosses a word boundary ensure that
3047 it also begins and ends on a word boundary. */
3048 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3049 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3050 && (subreg_byte % UNITS_PER_WORD
3051 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3052
3053 if (WORDS_BIG_ENDIAN)
3054 word = (GET_MODE_SIZE (inner_mode)
3055 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3056 else
3057 word = subreg_byte / UNITS_PER_WORD;
3058 bitpos = word * BITS_PER_WORD;
3059
3060 if (BYTES_BIG_ENDIAN)
3061 byte = (GET_MODE_SIZE (inner_mode)
3062 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3063 else
3064 byte = subreg_byte % UNITS_PER_WORD;
3065 bitpos += byte * BITS_PER_UNIT;
3066
3067 return bitpos;
3068 }
3069
3070 /* Given a subreg X, return the bit offset where the subreg begins
3071 (counting from the least significant bit of the reg). */
3072
3073 unsigned int
3074 subreg_lsb (const_rtx x)
3075 {
3076 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3077 SUBREG_BYTE (x));
3078 }
3079
3080 /* Fill in information about a subreg of a hard register.
3081 xregno - A regno of an inner hard subreg_reg (or what will become one).
3082 xmode - The mode of xregno.
3083 offset - The byte offset.
3084 ymode - The mode of a top level SUBREG (or what may become one).
3085 info - Pointer to structure to fill in. */
3086 void
3087 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3088 unsigned int offset, enum machine_mode ymode,
3089 struct subreg_info *info)
3090 {
3091 int nregs_xmode, nregs_ymode;
3092 int mode_multiple, nregs_multiple;
3093 int offset_adj, y_offset, y_offset_adj;
3094 int regsize_xmode, regsize_ymode;
3095 bool rknown;
3096
3097 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3098
3099 rknown = false;
3100
3101 /* If there are holes in a non-scalar mode in registers, we expect
3102 that it is made up of its units concatenated together. */
3103 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3104 {
3105 enum machine_mode xmode_unit;
3106
3107 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3108 if (GET_MODE_INNER (xmode) == VOIDmode)
3109 xmode_unit = xmode;
3110 else
3111 xmode_unit = GET_MODE_INNER (xmode);
3112 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3113 gcc_assert (nregs_xmode
3114 == (GET_MODE_NUNITS (xmode)
3115 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3116 gcc_assert (hard_regno_nregs[xregno][xmode]
3117 == (hard_regno_nregs[xregno][xmode_unit]
3118 * GET_MODE_NUNITS (xmode)));
3119
3120 /* You can only ask for a SUBREG of a value with holes in the middle
3121 if you don't cross the holes. (Such a SUBREG should be done by
3122 picking a different register class, or doing it in memory if
3123 necessary.) An example of a value with holes is XCmode on 32-bit
3124 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3125 3 for each part, but in memory it's two 128-bit parts.
3126 Padding is assumed to be at the end (not necessarily the 'high part')
3127 of each unit. */
3128 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3129 < GET_MODE_NUNITS (xmode))
3130 && (offset / GET_MODE_SIZE (xmode_unit)
3131 != ((offset + GET_MODE_SIZE (ymode) - 1)
3132 / GET_MODE_SIZE (xmode_unit))))
3133 {
3134 info->representable_p = false;
3135 rknown = true;
3136 }
3137 }
3138 else
3139 nregs_xmode = hard_regno_nregs[xregno][xmode];
3140
3141 nregs_ymode = hard_regno_nregs[xregno][ymode];
3142
3143 /* Paradoxical subregs are otherwise valid. */
3144 if (!rknown
3145 && offset == 0
3146 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3147 {
3148 info->representable_p = true;
3149 /* If this is a big endian paradoxical subreg, which uses more
3150 actual hard registers than the original register, we must
3151 return a negative offset so that we find the proper highpart
3152 of the register. */
3153 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3154 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3155 info->offset = nregs_xmode - nregs_ymode;
3156 else
3157 info->offset = 0;
3158 info->nregs = nregs_ymode;
3159 return;
3160 }
3161
3162 /* If registers store different numbers of bits in the different
3163 modes, we cannot generally form this subreg. */
3164 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3165 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3166 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3167 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3168 {
3169 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3170 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3171 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3172 {
3173 info->representable_p = false;
3174 info->nregs
3175 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3176 info->offset = offset / regsize_xmode;
3177 return;
3178 }
3179 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3180 {
3181 info->representable_p = false;
3182 info->nregs
3183 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3184 info->offset = offset / regsize_xmode;
3185 return;
3186 }
3187 }
3188
3189 /* Lowpart subregs are otherwise valid. */
3190 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3191 {
3192 info->representable_p = true;
3193 rknown = true;
3194
3195 if (offset == 0 || nregs_xmode == nregs_ymode)
3196 {
3197 info->offset = 0;
3198 info->nregs = nregs_ymode;
3199 return;
3200 }
3201 }
3202
3203 /* This should always pass, otherwise we don't know how to verify
3204 the constraint. These conditions may be relaxed but
3205 subreg_regno_offset would need to be redesigned. */
3206 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3207 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3208
3209 /* The XMODE value can be seen as a vector of NREGS_XMODE
3210 values. The subreg must represent a lowpart of given field.
3211 Compute what field it is. */
3212 offset_adj = offset;
3213 offset_adj -= subreg_lowpart_offset (ymode,
3214 mode_for_size (GET_MODE_BITSIZE (xmode)
3215 / nregs_xmode,
3216 MODE_INT, 0));
3217
3218 /* Size of ymode must not be greater than the size of xmode. */
3219 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3220 gcc_assert (mode_multiple != 0);
3221
3222 y_offset = offset / GET_MODE_SIZE (ymode);
3223 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3224 nregs_multiple = nregs_xmode / nregs_ymode;
3225
3226 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3227 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3228
3229 if (!rknown)
3230 {
3231 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3232 rknown = true;
3233 }
3234 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3235 info->nregs = nregs_ymode;
3236 }
3237
3238 /* This function returns the regno offset of a subreg expression.
3239 xregno - A regno of an inner hard subreg_reg (or what will become one).
3240 xmode - The mode of xregno.
3241 offset - The byte offset.
3242 ymode - The mode of a top level SUBREG (or what may become one).
3243 RETURN - The regno offset which would be used. */
3244 unsigned int
3245 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3246 unsigned int offset, enum machine_mode ymode)
3247 {
3248 struct subreg_info info;
3249 subreg_get_info (xregno, xmode, offset, ymode, &info);
3250 return info.offset;
3251 }
3252
3253 /* This function returns true when the offset is representable via
3254 subreg_offset in the given regno.
3255 xregno - A regno of an inner hard subreg_reg (or what will become one).
3256 xmode - The mode of xregno.
3257 offset - The byte offset.
3258 ymode - The mode of a top level SUBREG (or what may become one).
3259 RETURN - Whether the offset is representable. */
3260 bool
3261 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3262 unsigned int offset, enum machine_mode ymode)
3263 {
3264 struct subreg_info info;
3265 subreg_get_info (xregno, xmode, offset, ymode, &info);
3266 return info.representable_p;
3267 }
3268
3269 /* Return the number of a YMODE register to which
3270
3271 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3272
3273 can be simplified. Return -1 if the subreg can't be simplified.
3274
3275 XREGNO is a hard register number. */
3276
3277 int
3278 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3279 unsigned int offset, enum machine_mode ymode)
3280 {
3281 struct subreg_info info;
3282 unsigned int yregno;
3283
3284 #ifdef CANNOT_CHANGE_MODE_CLASS
3285 /* Give the backend a chance to disallow the mode change. */
3286 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3287 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3288 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3289 return -1;
3290 #endif
3291
3292 /* We shouldn't simplify stack-related registers. */
3293 if ((!reload_completed || frame_pointer_needed)
3294 && (xregno == FRAME_POINTER_REGNUM
3295 || xregno == HARD_FRAME_POINTER_REGNUM))
3296 return -1;
3297
3298 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3299 && xregno == ARG_POINTER_REGNUM)
3300 return -1;
3301
3302 if (xregno == STACK_POINTER_REGNUM)
3303 return -1;
3304
3305 /* Try to get the register offset. */
3306 subreg_get_info (xregno, xmode, offset, ymode, &info);
3307 if (!info.representable_p)
3308 return -1;
3309
3310 /* Make sure that the offsetted register value is in range. */
3311 yregno = xregno + info.offset;
3312 if (!HARD_REGISTER_NUM_P (yregno))
3313 return -1;
3314
3315 /* See whether (reg:YMODE YREGNO) is valid.
3316
3317 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3318 This is a kludge to work around how float/complex arguments are passed
3319 on 32-bit SPARC and should be fixed. */
3320 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3321 && HARD_REGNO_MODE_OK (xregno, xmode))
3322 return -1;
3323
3324 return (int) yregno;
3325 }
3326
3327 /* Return the final regno that a subreg expression refers to. */
3328 unsigned int
3329 subreg_regno (const_rtx x)
3330 {
3331 unsigned int ret;
3332 rtx subreg = SUBREG_REG (x);
3333 int regno = REGNO (subreg);
3334
3335 ret = regno + subreg_regno_offset (regno,
3336 GET_MODE (subreg),
3337 SUBREG_BYTE (x),
3338 GET_MODE (x));
3339 return ret;
3340
3341 }
3342
3343 /* Return the number of registers that a subreg expression refers
3344 to. */
3345 unsigned int
3346 subreg_nregs (const_rtx x)
3347 {
3348 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3349 }
3350
3351 /* Return the number of registers that a subreg REG with REGNO
3352 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3353 changed so that the regno can be passed in. */
3354
3355 unsigned int
3356 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3357 {
3358 struct subreg_info info;
3359 rtx subreg = SUBREG_REG (x);
3360
3361 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3362 &info);
3363 return info.nregs;
3364 }
3365
3366
3367 struct parms_set_data
3368 {
3369 int nregs;
3370 HARD_REG_SET regs;
3371 };
3372
3373 /* Helper function for noticing stores to parameter registers. */
3374 static void
3375 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3376 {
3377 struct parms_set_data *const d = (struct parms_set_data *) data;
3378 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3379 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3380 {
3381 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3382 d->nregs--;
3383 }
3384 }
3385
3386 /* Look backward for first parameter to be loaded.
3387 Note that loads of all parameters will not necessarily be
3388 found if CSE has eliminated some of them (e.g., an argument
3389 to the outer function is passed down as a parameter).
3390 Do not skip BOUNDARY. */
3391 rtx
3392 find_first_parameter_load (rtx call_insn, rtx boundary)
3393 {
3394 struct parms_set_data parm;
3395 rtx p, before, first_set;
3396
3397 /* Since different machines initialize their parameter registers
3398 in different orders, assume nothing. Collect the set of all
3399 parameter registers. */
3400 CLEAR_HARD_REG_SET (parm.regs);
3401 parm.nregs = 0;
3402 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3403 if (GET_CODE (XEXP (p, 0)) == USE
3404 && REG_P (XEXP (XEXP (p, 0), 0)))
3405 {
3406 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3407
3408 /* We only care about registers which can hold function
3409 arguments. */
3410 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3411 continue;
3412
3413 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3414 parm.nregs++;
3415 }
3416 before = call_insn;
3417 first_set = call_insn;
3418
3419 /* Search backward for the first set of a register in this set. */
3420 while (parm.nregs && before != boundary)
3421 {
3422 before = PREV_INSN (before);
3423
3424 /* It is possible that some loads got CSEed from one call to
3425 another. Stop in that case. */
3426 if (CALL_P (before))
3427 break;
3428
3429 /* Our caller needs either ensure that we will find all sets
3430 (in case code has not been optimized yet), or take care
3431 for possible labels in a way by setting boundary to preceding
3432 CODE_LABEL. */
3433 if (LABEL_P (before))
3434 {
3435 gcc_assert (before == boundary);
3436 break;
3437 }
3438
3439 if (INSN_P (before))
3440 {
3441 int nregs_old = parm.nregs;
3442 note_stores (PATTERN (before), parms_set, &parm);
3443 /* If we found something that did not set a parameter reg,
3444 we're done. Do not keep going, as that might result
3445 in hoisting an insn before the setting of a pseudo
3446 that is used by the hoisted insn. */
3447 if (nregs_old != parm.nregs)
3448 first_set = before;
3449 else
3450 break;
3451 }
3452 }
3453 return first_set;
3454 }
3455
3456 /* Return true if we should avoid inserting code between INSN and preceding
3457 call instruction. */
3458
3459 bool
3460 keep_with_call_p (const_rtx insn)
3461 {
3462 rtx set;
3463
3464 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3465 {
3466 if (REG_P (SET_DEST (set))
3467 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3468 && fixed_regs[REGNO (SET_DEST (set))]
3469 && general_operand (SET_SRC (set), VOIDmode))
3470 return true;
3471 if (REG_P (SET_SRC (set))
3472 && FUNCTION_VALUE_REGNO_P (REGNO (SET_SRC (set)))
3473 && REG_P (SET_DEST (set))
3474 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3475 return true;
3476 /* There may be a stack pop just after the call and before the store
3477 of the return register. Search for the actual store when deciding
3478 if we can break or not. */
3479 if (SET_DEST (set) == stack_pointer_rtx)
3480 {
3481 /* This CONST_CAST is okay because next_nonnote_insn just
3482 returns its argument and we assign it to a const_rtx
3483 variable. */
3484 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3485 if (i2 && keep_with_call_p (i2))
3486 return true;
3487 }
3488 }
3489 return false;
3490 }
3491
3492 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3493 to non-complex jumps. That is, direct unconditional, conditional,
3494 and tablejumps, but not computed jumps or returns. It also does
3495 not apply to the fallthru case of a conditional jump. */
3496
3497 bool
3498 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3499 {
3500 rtx tmp = JUMP_LABEL (jump_insn);
3501
3502 if (label == tmp)
3503 return true;
3504
3505 if (tablejump_p (jump_insn, NULL, &tmp))
3506 {
3507 rtvec vec = XVEC (PATTERN (tmp),
3508 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3509 int i, veclen = GET_NUM_ELEM (vec);
3510
3511 for (i = 0; i < veclen; ++i)
3512 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3513 return true;
3514 }
3515
3516 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3517 return true;
3518
3519 return false;
3520 }
3521
3522 \f
3523 /* Return an estimate of the cost of computing rtx X.
3524 One use is in cse, to decide which expression to keep in the hash table.
3525 Another is in rtl generation, to pick the cheapest way to multiply.
3526 Other uses like the latter are expected in the future.
3527
3528 SPEED parameter specify whether costs optimized for speed or size should
3529 be returned. */
3530
3531 int
3532 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3533 {
3534 int i, j;
3535 enum rtx_code code;
3536 const char *fmt;
3537 int total;
3538
3539 if (x == 0)
3540 return 0;
3541
3542 /* Compute the default costs of certain things.
3543 Note that targetm.rtx_costs can override the defaults. */
3544
3545 code = GET_CODE (x);
3546 switch (code)
3547 {
3548 case MULT:
3549 total = COSTS_N_INSNS (5);
3550 break;
3551 case DIV:
3552 case UDIV:
3553 case MOD:
3554 case UMOD:
3555 total = COSTS_N_INSNS (7);
3556 break;
3557 case USE:
3558 /* Used in combine.c as a marker. */
3559 total = 0;
3560 break;
3561 default:
3562 total = COSTS_N_INSNS (1);
3563 }
3564
3565 switch (code)
3566 {
3567 case REG:
3568 return 0;
3569
3570 case SUBREG:
3571 total = 0;
3572 /* If we can't tie these modes, make this expensive. The larger
3573 the mode, the more expensive it is. */
3574 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3575 return COSTS_N_INSNS (2
3576 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3577 break;
3578
3579 default:
3580 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3581 return total;
3582 break;
3583 }
3584
3585 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3586 which is already in total. */
3587
3588 fmt = GET_RTX_FORMAT (code);
3589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3590 if (fmt[i] == 'e')
3591 total += rtx_cost (XEXP (x, i), code, speed);
3592 else if (fmt[i] == 'E')
3593 for (j = 0; j < XVECLEN (x, i); j++)
3594 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3595
3596 return total;
3597 }
3598 \f
3599 /* Return cost of address expression X.
3600 Expect that X is properly formed address reference.
3601
3602 SPEED parameter specify whether costs optimized for speed or size should
3603 be returned. */
3604
3605 int
3606 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3607 {
3608 /* We may be asked for cost of various unusual addresses, such as operands
3609 of push instruction. It is not worthwhile to complicate writing
3610 of the target hook by such cases. */
3611
3612 if (!memory_address_addr_space_p (mode, x, as))
3613 return 1000;
3614
3615 return targetm.address_cost (x, speed);
3616 }
3617
3618 /* If the target doesn't override, compute the cost as with arithmetic. */
3619
3620 int
3621 default_address_cost (rtx x, bool speed)
3622 {
3623 return rtx_cost (x, MEM, speed);
3624 }
3625 \f
3626
3627 unsigned HOST_WIDE_INT
3628 nonzero_bits (const_rtx x, enum machine_mode mode)
3629 {
3630 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3631 }
3632
3633 unsigned int
3634 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3635 {
3636 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3637 }
3638
3639 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3640 It avoids exponential behavior in nonzero_bits1 when X has
3641 identical subexpressions on the first or the second level. */
3642
3643 static unsigned HOST_WIDE_INT
3644 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3645 enum machine_mode known_mode,
3646 unsigned HOST_WIDE_INT known_ret)
3647 {
3648 if (x == known_x && mode == known_mode)
3649 return known_ret;
3650
3651 /* Try to find identical subexpressions. If found call
3652 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3653 precomputed value for the subexpression as KNOWN_RET. */
3654
3655 if (ARITHMETIC_P (x))
3656 {
3657 rtx x0 = XEXP (x, 0);
3658 rtx x1 = XEXP (x, 1);
3659
3660 /* Check the first level. */
3661 if (x0 == x1)
3662 return nonzero_bits1 (x, mode, x0, mode,
3663 cached_nonzero_bits (x0, mode, known_x,
3664 known_mode, known_ret));
3665
3666 /* Check the second level. */
3667 if (ARITHMETIC_P (x0)
3668 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3669 return nonzero_bits1 (x, mode, x1, mode,
3670 cached_nonzero_bits (x1, mode, known_x,
3671 known_mode, known_ret));
3672
3673 if (ARITHMETIC_P (x1)
3674 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3675 return nonzero_bits1 (x, mode, x0, mode,
3676 cached_nonzero_bits (x0, mode, known_x,
3677 known_mode, known_ret));
3678 }
3679
3680 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3681 }
3682
3683 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3684 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3685 is less useful. We can't allow both, because that results in exponential
3686 run time recursion. There is a nullstone testcase that triggered
3687 this. This macro avoids accidental uses of num_sign_bit_copies. */
3688 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3689
3690 /* Given an expression, X, compute which bits in X can be nonzero.
3691 We don't care about bits outside of those defined in MODE.
3692
3693 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3694 an arithmetic operation, we can do better. */
3695
3696 static unsigned HOST_WIDE_INT
3697 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3698 enum machine_mode known_mode,
3699 unsigned HOST_WIDE_INT known_ret)
3700 {
3701 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3702 unsigned HOST_WIDE_INT inner_nz;
3703 enum rtx_code code;
3704 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3705
3706 /* For floating-point and vector values, assume all bits are needed. */
3707 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3708 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3709 return nonzero;
3710
3711 /* If X is wider than MODE, use its mode instead. */
3712 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3713 {
3714 mode = GET_MODE (x);
3715 nonzero = GET_MODE_MASK (mode);
3716 mode_width = GET_MODE_BITSIZE (mode);
3717 }
3718
3719 if (mode_width > HOST_BITS_PER_WIDE_INT)
3720 /* Our only callers in this case look for single bit values. So
3721 just return the mode mask. Those tests will then be false. */
3722 return nonzero;
3723
3724 #ifndef WORD_REGISTER_OPERATIONS
3725 /* If MODE is wider than X, but both are a single word for both the host
3726 and target machines, we can compute this from which bits of the
3727 object might be nonzero in its own mode, taking into account the fact
3728 that on many CISC machines, accessing an object in a wider mode
3729 causes the high-order bits to become undefined. So they are
3730 not known to be zero. */
3731
3732 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3733 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3734 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3735 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3736 {
3737 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3738 known_x, known_mode, known_ret);
3739 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3740 return nonzero;
3741 }
3742 #endif
3743
3744 code = GET_CODE (x);
3745 switch (code)
3746 {
3747 case REG:
3748 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3749 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3750 all the bits above ptr_mode are known to be zero. */
3751 /* As we do not know which address space the pointer is refering to,
3752 we can do this only if the target does not support different pointer
3753 or address modes depending on the address space. */
3754 if (target_default_pointer_address_modes_p ()
3755 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3756 && REG_POINTER (x))
3757 nonzero &= GET_MODE_MASK (ptr_mode);
3758 #endif
3759
3760 /* Include declared information about alignment of pointers. */
3761 /* ??? We don't properly preserve REG_POINTER changes across
3762 pointer-to-integer casts, so we can't trust it except for
3763 things that we know must be pointers. See execute/960116-1.c. */
3764 if ((x == stack_pointer_rtx
3765 || x == frame_pointer_rtx
3766 || x == arg_pointer_rtx)
3767 && REGNO_POINTER_ALIGN (REGNO (x)))
3768 {
3769 unsigned HOST_WIDE_INT alignment
3770 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3771
3772 #ifdef PUSH_ROUNDING
3773 /* If PUSH_ROUNDING is defined, it is possible for the
3774 stack to be momentarily aligned only to that amount,
3775 so we pick the least alignment. */
3776 if (x == stack_pointer_rtx && PUSH_ARGS)
3777 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3778 alignment);
3779 #endif
3780
3781 nonzero &= ~(alignment - 1);
3782 }
3783
3784 {
3785 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3786 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3787 known_mode, known_ret,
3788 &nonzero_for_hook);
3789
3790 if (new_rtx)
3791 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3792 known_mode, known_ret);
3793
3794 return nonzero_for_hook;
3795 }
3796
3797 case CONST_INT:
3798 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3799 /* If X is negative in MODE, sign-extend the value. */
3800 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3801 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3802 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3803 #endif
3804
3805 return INTVAL (x);
3806
3807 case MEM:
3808 #ifdef LOAD_EXTEND_OP
3809 /* In many, if not most, RISC machines, reading a byte from memory
3810 zeros the rest of the register. Noticing that fact saves a lot
3811 of extra zero-extends. */
3812 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3813 nonzero &= GET_MODE_MASK (GET_MODE (x));
3814 #endif
3815 break;
3816
3817 case EQ: case NE:
3818 case UNEQ: case LTGT:
3819 case GT: case GTU: case UNGT:
3820 case LT: case LTU: case UNLT:
3821 case GE: case GEU: case UNGE:
3822 case LE: case LEU: case UNLE:
3823 case UNORDERED: case ORDERED:
3824 /* If this produces an integer result, we know which bits are set.
3825 Code here used to clear bits outside the mode of X, but that is
3826 now done above. */
3827 /* Mind that MODE is the mode the caller wants to look at this
3828 operation in, and not the actual operation mode. We can wind
3829 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3830 that describes the results of a vector compare. */
3831 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3832 && mode_width <= HOST_BITS_PER_WIDE_INT)
3833 nonzero = STORE_FLAG_VALUE;
3834 break;
3835
3836 case NEG:
3837 #if 0
3838 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3839 and num_sign_bit_copies. */
3840 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3841 == GET_MODE_BITSIZE (GET_MODE (x)))
3842 nonzero = 1;
3843 #endif
3844
3845 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3846 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3847 break;
3848
3849 case ABS:
3850 #if 0
3851 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3852 and num_sign_bit_copies. */
3853 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3854 == GET_MODE_BITSIZE (GET_MODE (x)))
3855 nonzero = 1;
3856 #endif
3857 break;
3858
3859 case TRUNCATE:
3860 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3861 known_x, known_mode, known_ret)
3862 & GET_MODE_MASK (mode));
3863 break;
3864
3865 case ZERO_EXTEND:
3866 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3867 known_x, known_mode, known_ret);
3868 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3869 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3870 break;
3871
3872 case SIGN_EXTEND:
3873 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3874 Otherwise, show all the bits in the outer mode but not the inner
3875 may be nonzero. */
3876 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3877 known_x, known_mode, known_ret);
3878 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3879 {
3880 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3881 if (inner_nz
3882 & (((HOST_WIDE_INT) 1
3883 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3884 inner_nz |= (GET_MODE_MASK (mode)
3885 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3886 }
3887
3888 nonzero &= inner_nz;
3889 break;
3890
3891 case AND:
3892 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3893 known_x, known_mode, known_ret)
3894 & cached_nonzero_bits (XEXP (x, 1), mode,
3895 known_x, known_mode, known_ret);
3896 break;
3897
3898 case XOR: case IOR:
3899 case UMIN: case UMAX: case SMIN: case SMAX:
3900 {
3901 unsigned HOST_WIDE_INT nonzero0 =
3902 cached_nonzero_bits (XEXP (x, 0), mode,
3903 known_x, known_mode, known_ret);
3904
3905 /* Don't call nonzero_bits for the second time if it cannot change
3906 anything. */
3907 if ((nonzero & nonzero0) != nonzero)
3908 nonzero &= nonzero0
3909 | cached_nonzero_bits (XEXP (x, 1), mode,
3910 known_x, known_mode, known_ret);
3911 }
3912 break;
3913
3914 case PLUS: case MINUS:
3915 case MULT:
3916 case DIV: case UDIV:
3917 case MOD: case UMOD:
3918 /* We can apply the rules of arithmetic to compute the number of
3919 high- and low-order zero bits of these operations. We start by
3920 computing the width (position of the highest-order nonzero bit)
3921 and the number of low-order zero bits for each value. */
3922 {
3923 unsigned HOST_WIDE_INT nz0 =
3924 cached_nonzero_bits (XEXP (x, 0), mode,
3925 known_x, known_mode, known_ret);
3926 unsigned HOST_WIDE_INT nz1 =
3927 cached_nonzero_bits (XEXP (x, 1), mode,
3928 known_x, known_mode, known_ret);
3929 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3930 int width0 = floor_log2 (nz0) + 1;
3931 int width1 = floor_log2 (nz1) + 1;
3932 int low0 = floor_log2 (nz0 & -nz0);
3933 int low1 = floor_log2 (nz1 & -nz1);
3934 HOST_WIDE_INT op0_maybe_minusp
3935 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3936 HOST_WIDE_INT op1_maybe_minusp
3937 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3938 unsigned int result_width = mode_width;
3939 int result_low = 0;
3940
3941 switch (code)
3942 {
3943 case PLUS:
3944 result_width = MAX (width0, width1) + 1;
3945 result_low = MIN (low0, low1);
3946 break;
3947 case MINUS:
3948 result_low = MIN (low0, low1);
3949 break;
3950 case MULT:
3951 result_width = width0 + width1;
3952 result_low = low0 + low1;
3953 break;
3954 case DIV:
3955 if (width1 == 0)
3956 break;
3957 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3958 result_width = width0;
3959 break;
3960 case UDIV:
3961 if (width1 == 0)
3962 break;
3963 result_width = width0;
3964 break;
3965 case MOD:
3966 if (width1 == 0)
3967 break;
3968 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3969 result_width = MIN (width0, width1);
3970 result_low = MIN (low0, low1);
3971 break;
3972 case UMOD:
3973 if (width1 == 0)
3974 break;
3975 result_width = MIN (width0, width1);
3976 result_low = MIN (low0, low1);
3977 break;
3978 default:
3979 gcc_unreachable ();
3980 }
3981
3982 if (result_width < mode_width)
3983 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3984
3985 if (result_low > 0)
3986 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3987
3988 #ifdef POINTERS_EXTEND_UNSIGNED
3989 /* If pointers extend unsigned and this is an addition or subtraction
3990 to a pointer in Pmode, all the bits above ptr_mode are known to be
3991 zero. */
3992 /* As we do not know which address space the pointer is refering to,
3993 we can do this only if the target does not support different pointer
3994 or address modes depending on the address space. */
3995 if (target_default_pointer_address_modes_p ()
3996 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
3997 && (code == PLUS || code == MINUS)
3998 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
3999 nonzero &= GET_MODE_MASK (ptr_mode);
4000 #endif
4001 }
4002 break;
4003
4004 case ZERO_EXTRACT:
4005 if (CONST_INT_P (XEXP (x, 1))
4006 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4007 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4008 break;
4009
4010 case SUBREG:
4011 /* If this is a SUBREG formed for a promoted variable that has
4012 been zero-extended, we know that at least the high-order bits
4013 are zero, though others might be too. */
4014
4015 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4016 nonzero = GET_MODE_MASK (GET_MODE (x))
4017 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4018 known_x, known_mode, known_ret);
4019
4020 /* If the inner mode is a single word for both the host and target
4021 machines, we can compute this from which bits of the inner
4022 object might be nonzero. */
4023 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4024 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4025 <= HOST_BITS_PER_WIDE_INT))
4026 {
4027 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4028 known_x, known_mode, known_ret);
4029
4030 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4031 /* If this is a typical RISC machine, we only have to worry
4032 about the way loads are extended. */
4033 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4034 ? (((nonzero
4035 & (((unsigned HOST_WIDE_INT) 1
4036 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4037 != 0))
4038 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4039 || !MEM_P (SUBREG_REG (x)))
4040 #endif
4041 {
4042 /* On many CISC machines, accessing an object in a wider mode
4043 causes the high-order bits to become undefined. So they are
4044 not known to be zero. */
4045 if (GET_MODE_SIZE (GET_MODE (x))
4046 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4047 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4048 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4049 }
4050 }
4051 break;
4052
4053 case ASHIFTRT:
4054 case LSHIFTRT:
4055 case ASHIFT:
4056 case ROTATE:
4057 /* The nonzero bits are in two classes: any bits within MODE
4058 that aren't in GET_MODE (x) are always significant. The rest of the
4059 nonzero bits are those that are significant in the operand of
4060 the shift when shifted the appropriate number of bits. This
4061 shows that high-order bits are cleared by the right shift and
4062 low-order bits by left shifts. */
4063 if (CONST_INT_P (XEXP (x, 1))
4064 && INTVAL (XEXP (x, 1)) >= 0
4065 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4066 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4067 {
4068 enum machine_mode inner_mode = GET_MODE (x);
4069 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4070 int count = INTVAL (XEXP (x, 1));
4071 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4072 unsigned HOST_WIDE_INT op_nonzero =
4073 cached_nonzero_bits (XEXP (x, 0), mode,
4074 known_x, known_mode, known_ret);
4075 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4076 unsigned HOST_WIDE_INT outer = 0;
4077
4078 if (mode_width > width)
4079 outer = (op_nonzero & nonzero & ~mode_mask);
4080
4081 if (code == LSHIFTRT)
4082 inner >>= count;
4083 else if (code == ASHIFTRT)
4084 {
4085 inner >>= count;
4086
4087 /* If the sign bit may have been nonzero before the shift, we
4088 need to mark all the places it could have been copied to
4089 by the shift as possibly nonzero. */
4090 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4091 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4092 }
4093 else if (code == ASHIFT)
4094 inner <<= count;
4095 else
4096 inner = ((inner << (count % width)
4097 | (inner >> (width - (count % width)))) & mode_mask);
4098
4099 nonzero &= (outer | inner);
4100 }
4101 break;
4102
4103 case FFS:
4104 case POPCOUNT:
4105 /* This is at most the number of bits in the mode. */
4106 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4107 break;
4108
4109 case CLZ:
4110 /* If CLZ has a known value at zero, then the nonzero bits are
4111 that value, plus the number of bits in the mode minus one. */
4112 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4113 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4114 else
4115 nonzero = -1;
4116 break;
4117
4118 case CTZ:
4119 /* If CTZ has a known value at zero, then the nonzero bits are
4120 that value, plus the number of bits in the mode minus one. */
4121 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4122 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4123 else
4124 nonzero = -1;
4125 break;
4126
4127 case PARITY:
4128 nonzero = 1;
4129 break;
4130
4131 case IF_THEN_ELSE:
4132 {
4133 unsigned HOST_WIDE_INT nonzero_true =
4134 cached_nonzero_bits (XEXP (x, 1), mode,
4135 known_x, known_mode, known_ret);
4136
4137 /* Don't call nonzero_bits for the second time if it cannot change
4138 anything. */
4139 if ((nonzero & nonzero_true) != nonzero)
4140 nonzero &= nonzero_true
4141 | cached_nonzero_bits (XEXP (x, 2), mode,
4142 known_x, known_mode, known_ret);
4143 }
4144 break;
4145
4146 default:
4147 break;
4148 }
4149
4150 return nonzero;
4151 }
4152
4153 /* See the macro definition above. */
4154 #undef cached_num_sign_bit_copies
4155
4156 \f
4157 /* The function cached_num_sign_bit_copies is a wrapper around
4158 num_sign_bit_copies1. It avoids exponential behavior in
4159 num_sign_bit_copies1 when X has identical subexpressions on the
4160 first or the second level. */
4161
4162 static unsigned int
4163 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4164 enum machine_mode known_mode,
4165 unsigned int known_ret)
4166 {
4167 if (x == known_x && mode == known_mode)
4168 return known_ret;
4169
4170 /* Try to find identical subexpressions. If found call
4171 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4172 the precomputed value for the subexpression as KNOWN_RET. */
4173
4174 if (ARITHMETIC_P (x))
4175 {
4176 rtx x0 = XEXP (x, 0);
4177 rtx x1 = XEXP (x, 1);
4178
4179 /* Check the first level. */
4180 if (x0 == x1)
4181 return
4182 num_sign_bit_copies1 (x, mode, x0, mode,
4183 cached_num_sign_bit_copies (x0, mode, known_x,
4184 known_mode,
4185 known_ret));
4186
4187 /* Check the second level. */
4188 if (ARITHMETIC_P (x0)
4189 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4190 return
4191 num_sign_bit_copies1 (x, mode, x1, mode,
4192 cached_num_sign_bit_copies (x1, mode, known_x,
4193 known_mode,
4194 known_ret));
4195
4196 if (ARITHMETIC_P (x1)
4197 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4198 return
4199 num_sign_bit_copies1 (x, mode, x0, mode,
4200 cached_num_sign_bit_copies (x0, mode, known_x,
4201 known_mode,
4202 known_ret));
4203 }
4204
4205 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4206 }
4207
4208 /* Return the number of bits at the high-order end of X that are known to
4209 be equal to the sign bit. X will be used in mode MODE; if MODE is
4210 VOIDmode, X will be used in its own mode. The returned value will always
4211 be between 1 and the number of bits in MODE. */
4212
4213 static unsigned int
4214 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4215 enum machine_mode known_mode,
4216 unsigned int known_ret)
4217 {
4218 enum rtx_code code = GET_CODE (x);
4219 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4220 int num0, num1, result;
4221 unsigned HOST_WIDE_INT nonzero;
4222
4223 /* If we weren't given a mode, use the mode of X. If the mode is still
4224 VOIDmode, we don't know anything. Likewise if one of the modes is
4225 floating-point. */
4226
4227 if (mode == VOIDmode)
4228 mode = GET_MODE (x);
4229
4230 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4231 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4232 return 1;
4233
4234 /* For a smaller object, just ignore the high bits. */
4235 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4236 {
4237 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4238 known_x, known_mode, known_ret);
4239 return MAX (1,
4240 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4241 }
4242
4243 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4244 {
4245 #ifndef WORD_REGISTER_OPERATIONS
4246 /* If this machine does not do all register operations on the entire
4247 register and MODE is wider than the mode of X, we can say nothing
4248 at all about the high-order bits. */
4249 return 1;
4250 #else
4251 /* Likewise on machines that do, if the mode of the object is smaller
4252 than a word and loads of that size don't sign extend, we can say
4253 nothing about the high order bits. */
4254 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4255 #ifdef LOAD_EXTEND_OP
4256 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4257 #endif
4258 )
4259 return 1;
4260 #endif
4261 }
4262
4263 switch (code)
4264 {
4265 case REG:
4266
4267 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4268 /* If pointers extend signed and this is a pointer in Pmode, say that
4269 all the bits above ptr_mode are known to be sign bit copies. */
4270 /* As we do not know which address space the pointer is refering to,
4271 we can do this only if the target does not support different pointer
4272 or address modes depending on the address space. */
4273 if (target_default_pointer_address_modes_p ()
4274 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4275 && mode == Pmode && REG_POINTER (x))
4276 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4277 #endif
4278
4279 {
4280 unsigned int copies_for_hook = 1, copies = 1;
4281 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4282 known_mode, known_ret,
4283 &copies_for_hook);
4284
4285 if (new_rtx)
4286 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4287 known_mode, known_ret);
4288
4289 if (copies > 1 || copies_for_hook > 1)
4290 return MAX (copies, copies_for_hook);
4291
4292 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4293 }
4294 break;
4295
4296 case MEM:
4297 #ifdef LOAD_EXTEND_OP
4298 /* Some RISC machines sign-extend all loads of smaller than a word. */
4299 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4300 return MAX (1, ((int) bitwidth
4301 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4302 #endif
4303 break;
4304
4305 case CONST_INT:
4306 /* If the constant is negative, take its 1's complement and remask.
4307 Then see how many zero bits we have. */
4308 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4309 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4310 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4311 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4312
4313 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4314
4315 case SUBREG:
4316 /* If this is a SUBREG for a promoted object that is sign-extended
4317 and we are looking at it in a wider mode, we know that at least the
4318 high-order bits are known to be sign bit copies. */
4319
4320 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4321 {
4322 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4323 known_x, known_mode, known_ret);
4324 return MAX ((int) bitwidth
4325 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4326 num0);
4327 }
4328
4329 /* For a smaller object, just ignore the high bits. */
4330 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4331 {
4332 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4333 known_x, known_mode, known_ret);
4334 return MAX (1, (num0
4335 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4336 - bitwidth)));
4337 }
4338
4339 #ifdef WORD_REGISTER_OPERATIONS
4340 #ifdef LOAD_EXTEND_OP
4341 /* For paradoxical SUBREGs on machines where all register operations
4342 affect the entire register, just look inside. Note that we are
4343 passing MODE to the recursive call, so the number of sign bit copies
4344 will remain relative to that mode, not the inner mode. */
4345
4346 /* This works only if loads sign extend. Otherwise, if we get a
4347 reload for the inner part, it may be loaded from the stack, and
4348 then we lose all sign bit copies that existed before the store
4349 to the stack. */
4350
4351 if ((GET_MODE_SIZE (GET_MODE (x))
4352 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4353 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4354 && MEM_P (SUBREG_REG (x)))
4355 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4356 known_x, known_mode, known_ret);
4357 #endif
4358 #endif
4359 break;
4360
4361 case SIGN_EXTRACT:
4362 if (CONST_INT_P (XEXP (x, 1)))
4363 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4364 break;
4365
4366 case SIGN_EXTEND:
4367 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4368 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4369 known_x, known_mode, known_ret));
4370
4371 case TRUNCATE:
4372 /* For a smaller object, just ignore the high bits. */
4373 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4374 known_x, known_mode, known_ret);
4375 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4376 - bitwidth)));
4377
4378 case NOT:
4379 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4380 known_x, known_mode, known_ret);
4381
4382 case ROTATE: case ROTATERT:
4383 /* If we are rotating left by a number of bits less than the number
4384 of sign bit copies, we can just subtract that amount from the
4385 number. */
4386 if (CONST_INT_P (XEXP (x, 1))
4387 && INTVAL (XEXP (x, 1)) >= 0
4388 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4389 {
4390 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4391 known_x, known_mode, known_ret);
4392 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4393 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4394 }
4395 break;
4396
4397 case NEG:
4398 /* In general, this subtracts one sign bit copy. But if the value
4399 is known to be positive, the number of sign bit copies is the
4400 same as that of the input. Finally, if the input has just one bit
4401 that might be nonzero, all the bits are copies of the sign bit. */
4402 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4403 known_x, known_mode, known_ret);
4404 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4405 return num0 > 1 ? num0 - 1 : 1;
4406
4407 nonzero = nonzero_bits (XEXP (x, 0), mode);
4408 if (nonzero == 1)
4409 return bitwidth;
4410
4411 if (num0 > 1
4412 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4413 num0--;
4414
4415 return num0;
4416
4417 case IOR: case AND: case XOR:
4418 case SMIN: case SMAX: case UMIN: case UMAX:
4419 /* Logical operations will preserve the number of sign-bit copies.
4420 MIN and MAX operations always return one of the operands. */
4421 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4422 known_x, known_mode, known_ret);
4423 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4424 known_x, known_mode, known_ret);
4425
4426 /* If num1 is clearing some of the top bits then regardless of
4427 the other term, we are guaranteed to have at least that many
4428 high-order zero bits. */
4429 if (code == AND
4430 && num1 > 1
4431 && bitwidth <= HOST_BITS_PER_WIDE_INT
4432 && CONST_INT_P (XEXP (x, 1))
4433 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4434 return num1;
4435
4436 /* Similarly for IOR when setting high-order bits. */
4437 if (code == IOR
4438 && num1 > 1
4439 && bitwidth <= HOST_BITS_PER_WIDE_INT
4440 && CONST_INT_P (XEXP (x, 1))
4441 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4442 return num1;
4443
4444 return MIN (num0, num1);
4445
4446 case PLUS: case MINUS:
4447 /* For addition and subtraction, we can have a 1-bit carry. However,
4448 if we are subtracting 1 from a positive number, there will not
4449 be such a carry. Furthermore, if the positive number is known to
4450 be 0 or 1, we know the result is either -1 or 0. */
4451
4452 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4453 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4454 {
4455 nonzero = nonzero_bits (XEXP (x, 0), mode);
4456 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4457 return (nonzero == 1 || nonzero == 0 ? bitwidth
4458 : bitwidth - floor_log2 (nonzero) - 1);
4459 }
4460
4461 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4462 known_x, known_mode, known_ret);
4463 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4464 known_x, known_mode, known_ret);
4465 result = MAX (1, MIN (num0, num1) - 1);
4466
4467 #ifdef POINTERS_EXTEND_UNSIGNED
4468 /* If pointers extend signed and this is an addition or subtraction
4469 to a pointer in Pmode, all the bits above ptr_mode are known to be
4470 sign bit copies. */
4471 /* As we do not know which address space the pointer is refering to,
4472 we can do this only if the target does not support different pointer
4473 or address modes depending on the address space. */
4474 if (target_default_pointer_address_modes_p ()
4475 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4476 && (code == PLUS || code == MINUS)
4477 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4478 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4479 - GET_MODE_BITSIZE (ptr_mode) + 1),
4480 result);
4481 #endif
4482 return result;
4483
4484 case MULT:
4485 /* The number of bits of the product is the sum of the number of
4486 bits of both terms. However, unless one of the terms if known
4487 to be positive, we must allow for an additional bit since negating
4488 a negative number can remove one sign bit copy. */
4489
4490 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4491 known_x, known_mode, known_ret);
4492 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4493 known_x, known_mode, known_ret);
4494
4495 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4496 if (result > 0
4497 && (bitwidth > HOST_BITS_PER_WIDE_INT
4498 || (((nonzero_bits (XEXP (x, 0), mode)
4499 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4500 && ((nonzero_bits (XEXP (x, 1), mode)
4501 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4502 result--;
4503
4504 return MAX (1, result);
4505
4506 case UDIV:
4507 /* The result must be <= the first operand. If the first operand
4508 has the high bit set, we know nothing about the number of sign
4509 bit copies. */
4510 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4511 return 1;
4512 else if ((nonzero_bits (XEXP (x, 0), mode)
4513 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4514 return 1;
4515 else
4516 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4517 known_x, known_mode, known_ret);
4518
4519 case UMOD:
4520 /* The result must be <= the second operand. */
4521 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4522 known_x, known_mode, known_ret);
4523
4524 case DIV:
4525 /* Similar to unsigned division, except that we have to worry about
4526 the case where the divisor is negative, in which case we have
4527 to add 1. */
4528 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4529 known_x, known_mode, known_ret);
4530 if (result > 1
4531 && (bitwidth > HOST_BITS_PER_WIDE_INT
4532 || (nonzero_bits (XEXP (x, 1), mode)
4533 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4534 result--;
4535
4536 return result;
4537
4538 case MOD:
4539 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4540 known_x, known_mode, known_ret);
4541 if (result > 1
4542 && (bitwidth > HOST_BITS_PER_WIDE_INT
4543 || (nonzero_bits (XEXP (x, 1), mode)
4544 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4545 result--;
4546
4547 return result;
4548
4549 case ASHIFTRT:
4550 /* Shifts by a constant add to the number of bits equal to the
4551 sign bit. */
4552 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4553 known_x, known_mode, known_ret);
4554 if (CONST_INT_P (XEXP (x, 1))
4555 && INTVAL (XEXP (x, 1)) > 0
4556 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4557 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4558
4559 return num0;
4560
4561 case ASHIFT:
4562 /* Left shifts destroy copies. */
4563 if (!CONST_INT_P (XEXP (x, 1))
4564 || INTVAL (XEXP (x, 1)) < 0
4565 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4566 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4567 return 1;
4568
4569 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4570 known_x, known_mode, known_ret);
4571 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4572
4573 case IF_THEN_ELSE:
4574 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4575 known_x, known_mode, known_ret);
4576 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4577 known_x, known_mode, known_ret);
4578 return MIN (num0, num1);
4579
4580 case EQ: case NE: case GE: case GT: case LE: case LT:
4581 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4582 case GEU: case GTU: case LEU: case LTU:
4583 case UNORDERED: case ORDERED:
4584 /* If the constant is negative, take its 1's complement and remask.
4585 Then see how many zero bits we have. */
4586 nonzero = STORE_FLAG_VALUE;
4587 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4588 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4589 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4590
4591 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4592
4593 default:
4594 break;
4595 }
4596
4597 /* If we haven't been able to figure it out by one of the above rules,
4598 see if some of the high-order bits are known to be zero. If so,
4599 count those bits and return one less than that amount. If we can't
4600 safely compute the mask for this mode, always return BITWIDTH. */
4601
4602 bitwidth = GET_MODE_BITSIZE (mode);
4603 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4604 return 1;
4605
4606 nonzero = nonzero_bits (x, mode);
4607 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4608 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4609 }
4610
4611 /* Calculate the rtx_cost of a single instruction. A return value of
4612 zero indicates an instruction pattern without a known cost. */
4613
4614 int
4615 insn_rtx_cost (rtx pat, bool speed)
4616 {
4617 int i, cost;
4618 rtx set;
4619
4620 /* Extract the single set rtx from the instruction pattern.
4621 We can't use single_set since we only have the pattern. */
4622 if (GET_CODE (pat) == SET)
4623 set = pat;
4624 else if (GET_CODE (pat) == PARALLEL)
4625 {
4626 set = NULL_RTX;
4627 for (i = 0; i < XVECLEN (pat, 0); i++)
4628 {
4629 rtx x = XVECEXP (pat, 0, i);
4630 if (GET_CODE (x) == SET)
4631 {
4632 if (set)
4633 return 0;
4634 set = x;
4635 }
4636 }
4637 if (!set)
4638 return 0;
4639 }
4640 else
4641 return 0;
4642
4643 cost = rtx_cost (SET_SRC (set), SET, speed);
4644 return cost > 0 ? cost : COSTS_N_INSNS (1);
4645 }
4646
4647 /* Given an insn INSN and condition COND, return the condition in a
4648 canonical form to simplify testing by callers. Specifically:
4649
4650 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4651 (2) Both operands will be machine operands; (cc0) will have been replaced.
4652 (3) If an operand is a constant, it will be the second operand.
4653 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4654 for GE, GEU, and LEU.
4655
4656 If the condition cannot be understood, or is an inequality floating-point
4657 comparison which needs to be reversed, 0 will be returned.
4658
4659 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4660
4661 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4662 insn used in locating the condition was found. If a replacement test
4663 of the condition is desired, it should be placed in front of that
4664 insn and we will be sure that the inputs are still valid.
4665
4666 If WANT_REG is nonzero, we wish the condition to be relative to that
4667 register, if possible. Therefore, do not canonicalize the condition
4668 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4669 to be a compare to a CC mode register.
4670
4671 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4672 and at INSN. */
4673
4674 rtx
4675 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4676 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4677 {
4678 enum rtx_code code;
4679 rtx prev = insn;
4680 const_rtx set;
4681 rtx tem;
4682 rtx op0, op1;
4683 int reverse_code = 0;
4684 enum machine_mode mode;
4685 basic_block bb = BLOCK_FOR_INSN (insn);
4686
4687 code = GET_CODE (cond);
4688 mode = GET_MODE (cond);
4689 op0 = XEXP (cond, 0);
4690 op1 = XEXP (cond, 1);
4691
4692 if (reverse)
4693 code = reversed_comparison_code (cond, insn);
4694 if (code == UNKNOWN)
4695 return 0;
4696
4697 if (earliest)
4698 *earliest = insn;
4699
4700 /* If we are comparing a register with zero, see if the register is set
4701 in the previous insn to a COMPARE or a comparison operation. Perform
4702 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4703 in cse.c */
4704
4705 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4706 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4707 && op1 == CONST0_RTX (GET_MODE (op0))
4708 && op0 != want_reg)
4709 {
4710 /* Set nonzero when we find something of interest. */
4711 rtx x = 0;
4712
4713 #ifdef HAVE_cc0
4714 /* If comparison with cc0, import actual comparison from compare
4715 insn. */
4716 if (op0 == cc0_rtx)
4717 {
4718 if ((prev = prev_nonnote_insn (prev)) == 0
4719 || !NONJUMP_INSN_P (prev)
4720 || (set = single_set (prev)) == 0
4721 || SET_DEST (set) != cc0_rtx)
4722 return 0;
4723
4724 op0 = SET_SRC (set);
4725 op1 = CONST0_RTX (GET_MODE (op0));
4726 if (earliest)
4727 *earliest = prev;
4728 }
4729 #endif
4730
4731 /* If this is a COMPARE, pick up the two things being compared. */
4732 if (GET_CODE (op0) == COMPARE)
4733 {
4734 op1 = XEXP (op0, 1);
4735 op0 = XEXP (op0, 0);
4736 continue;
4737 }
4738 else if (!REG_P (op0))
4739 break;
4740
4741 /* Go back to the previous insn. Stop if it is not an INSN. We also
4742 stop if it isn't a single set or if it has a REG_INC note because
4743 we don't want to bother dealing with it. */
4744
4745 do
4746 prev = prev_nonnote_insn (prev);
4747 while (prev && DEBUG_INSN_P (prev));
4748
4749 if (prev == 0
4750 || !NONJUMP_INSN_P (prev)
4751 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4752 /* In cfglayout mode, there do not have to be labels at the
4753 beginning of a block, or jumps at the end, so the previous
4754 conditions would not stop us when we reach bb boundary. */
4755 || BLOCK_FOR_INSN (prev) != bb)
4756 break;
4757
4758 set = set_of (op0, prev);
4759
4760 if (set
4761 && (GET_CODE (set) != SET
4762 || !rtx_equal_p (SET_DEST (set), op0)))
4763 break;
4764
4765 /* If this is setting OP0, get what it sets it to if it looks
4766 relevant. */
4767 if (set)
4768 {
4769 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4770 #ifdef FLOAT_STORE_FLAG_VALUE
4771 REAL_VALUE_TYPE fsfv;
4772 #endif
4773
4774 /* ??? We may not combine comparisons done in a CCmode with
4775 comparisons not done in a CCmode. This is to aid targets
4776 like Alpha that have an IEEE compliant EQ instruction, and
4777 a non-IEEE compliant BEQ instruction. The use of CCmode is
4778 actually artificial, simply to prevent the combination, but
4779 should not affect other platforms.
4780
4781 However, we must allow VOIDmode comparisons to match either
4782 CCmode or non-CCmode comparison, because some ports have
4783 modeless comparisons inside branch patterns.
4784
4785 ??? This mode check should perhaps look more like the mode check
4786 in simplify_comparison in combine. */
4787
4788 if ((GET_CODE (SET_SRC (set)) == COMPARE
4789 || (((code == NE
4790 || (code == LT
4791 && GET_MODE_CLASS (inner_mode) == MODE_INT
4792 && (GET_MODE_BITSIZE (inner_mode)
4793 <= HOST_BITS_PER_WIDE_INT)
4794 && (STORE_FLAG_VALUE
4795 & ((HOST_WIDE_INT) 1
4796 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4797 #ifdef FLOAT_STORE_FLAG_VALUE
4798 || (code == LT
4799 && SCALAR_FLOAT_MODE_P (inner_mode)
4800 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4801 REAL_VALUE_NEGATIVE (fsfv)))
4802 #endif
4803 ))
4804 && COMPARISON_P (SET_SRC (set))))
4805 && (((GET_MODE_CLASS (mode) == MODE_CC)
4806 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4807 || mode == VOIDmode || inner_mode == VOIDmode))
4808 x = SET_SRC (set);
4809 else if (((code == EQ
4810 || (code == GE
4811 && (GET_MODE_BITSIZE (inner_mode)
4812 <= HOST_BITS_PER_WIDE_INT)
4813 && GET_MODE_CLASS (inner_mode) == MODE_INT
4814 && (STORE_FLAG_VALUE
4815 & ((HOST_WIDE_INT) 1
4816 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4817 #ifdef FLOAT_STORE_FLAG_VALUE
4818 || (code == GE
4819 && SCALAR_FLOAT_MODE_P (inner_mode)
4820 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4821 REAL_VALUE_NEGATIVE (fsfv)))
4822 #endif
4823 ))
4824 && COMPARISON_P (SET_SRC (set))
4825 && (((GET_MODE_CLASS (mode) == MODE_CC)
4826 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4827 || mode == VOIDmode || inner_mode == VOIDmode))
4828
4829 {
4830 reverse_code = 1;
4831 x = SET_SRC (set);
4832 }
4833 else
4834 break;
4835 }
4836
4837 else if (reg_set_p (op0, prev))
4838 /* If this sets OP0, but not directly, we have to give up. */
4839 break;
4840
4841 if (x)
4842 {
4843 /* If the caller is expecting the condition to be valid at INSN,
4844 make sure X doesn't change before INSN. */
4845 if (valid_at_insn_p)
4846 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4847 break;
4848 if (COMPARISON_P (x))
4849 code = GET_CODE (x);
4850 if (reverse_code)
4851 {
4852 code = reversed_comparison_code (x, prev);
4853 if (code == UNKNOWN)
4854 return 0;
4855 reverse_code = 0;
4856 }
4857
4858 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4859 if (earliest)
4860 *earliest = prev;
4861 }
4862 }
4863
4864 /* If constant is first, put it last. */
4865 if (CONSTANT_P (op0))
4866 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4867
4868 /* If OP0 is the result of a comparison, we weren't able to find what
4869 was really being compared, so fail. */
4870 if (!allow_cc_mode
4871 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4872 return 0;
4873
4874 /* Canonicalize any ordered comparison with integers involving equality
4875 if we can do computations in the relevant mode and we do not
4876 overflow. */
4877
4878 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4879 && CONST_INT_P (op1)
4880 && GET_MODE (op0) != VOIDmode
4881 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4882 {
4883 HOST_WIDE_INT const_val = INTVAL (op1);
4884 unsigned HOST_WIDE_INT uconst_val = const_val;
4885 unsigned HOST_WIDE_INT max_val
4886 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4887
4888 switch (code)
4889 {
4890 case LE:
4891 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4892 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4893 break;
4894
4895 /* When cross-compiling, const_val might be sign-extended from
4896 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4897 case GE:
4898 if ((HOST_WIDE_INT) (const_val & max_val)
4899 != (((HOST_WIDE_INT) 1
4900 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4901 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4902 break;
4903
4904 case LEU:
4905 if (uconst_val < max_val)
4906 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4907 break;
4908
4909 case GEU:
4910 if (uconst_val != 0)
4911 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4912 break;
4913
4914 default:
4915 break;
4916 }
4917 }
4918
4919 /* Never return CC0; return zero instead. */
4920 if (CC0_P (op0))
4921 return 0;
4922
4923 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4924 }
4925
4926 /* Given a jump insn JUMP, return the condition that will cause it to branch
4927 to its JUMP_LABEL. If the condition cannot be understood, or is an
4928 inequality floating-point comparison which needs to be reversed, 0 will
4929 be returned.
4930
4931 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4932 insn used in locating the condition was found. If a replacement test
4933 of the condition is desired, it should be placed in front of that
4934 insn and we will be sure that the inputs are still valid. If EARLIEST
4935 is null, the returned condition will be valid at INSN.
4936
4937 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4938 compare CC mode register.
4939
4940 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4941
4942 rtx
4943 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4944 {
4945 rtx cond;
4946 int reverse;
4947 rtx set;
4948
4949 /* If this is not a standard conditional jump, we can't parse it. */
4950 if (!JUMP_P (jump)
4951 || ! any_condjump_p (jump))
4952 return 0;
4953 set = pc_set (jump);
4954
4955 cond = XEXP (SET_SRC (set), 0);
4956
4957 /* If this branches to JUMP_LABEL when the condition is false, reverse
4958 the condition. */
4959 reverse
4960 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4961 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4962
4963 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4964 allow_cc_mode, valid_at_insn_p);
4965 }
4966
4967 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4968 TARGET_MODE_REP_EXTENDED.
4969
4970 Note that we assume that the property of
4971 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4972 narrower than mode B. I.e., if A is a mode narrower than B then in
4973 order to be able to operate on it in mode B, mode A needs to
4974 satisfy the requirements set by the representation of mode B. */
4975
4976 static void
4977 init_num_sign_bit_copies_in_rep (void)
4978 {
4979 enum machine_mode mode, in_mode;
4980
4981 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4982 in_mode = GET_MODE_WIDER_MODE (mode))
4983 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4984 mode = GET_MODE_WIDER_MODE (mode))
4985 {
4986 enum machine_mode i;
4987
4988 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
4989 extends to the next widest mode. */
4990 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
4991 || GET_MODE_WIDER_MODE (mode) == in_mode);
4992
4993 /* We are in in_mode. Count how many bits outside of mode
4994 have to be copies of the sign-bit. */
4995 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
4996 {
4997 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
4998
4999 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5000 /* We can only check sign-bit copies starting from the
5001 top-bit. In order to be able to check the bits we
5002 have already seen we pretend that subsequent bits
5003 have to be sign-bit copies too. */
5004 || num_sign_bit_copies_in_rep [in_mode][mode])
5005 num_sign_bit_copies_in_rep [in_mode][mode]
5006 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5007 }
5008 }
5009 }
5010
5011 /* Suppose that truncation from the machine mode of X to MODE is not a
5012 no-op. See if there is anything special about X so that we can
5013 assume it already contains a truncated value of MODE. */
5014
5015 bool
5016 truncated_to_mode (enum machine_mode mode, const_rtx x)
5017 {
5018 /* This register has already been used in MODE without explicit
5019 truncation. */
5020 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5021 return true;
5022
5023 /* See if we already satisfy the requirements of MODE. If yes we
5024 can just switch to MODE. */
5025 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5026 && (num_sign_bit_copies (x, GET_MODE (x))
5027 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5028 return true;
5029
5030 return false;
5031 }
5032 \f
5033 /* Initialize non_rtx_starting_operands, which is used to speed up
5034 for_each_rtx. */
5035 void
5036 init_rtlanal (void)
5037 {
5038 int i;
5039 for (i = 0; i < NUM_RTX_CODE; i++)
5040 {
5041 const char *format = GET_RTX_FORMAT (i);
5042 const char *first = strpbrk (format, "eEV");
5043 non_rtx_starting_operands[i] = first ? first - format : -1;
5044 }
5045
5046 init_num_sign_bit_copies_in_rep ();
5047 }
5048 \f
5049 /* Check whether this is a constant pool constant. */
5050 bool
5051 constant_pool_constant_p (rtx x)
5052 {
5053 x = avoid_constant_pool_reference (x);
5054 return GET_CODE (x) == CONST_DOUBLE;
5055 }
5056 \f
5057 /* If M is a bitmask that selects a field of low-order bits within an item but
5058 not the entire word, return the length of the field. Return -1 otherwise.
5059 M is used in machine mode MODE. */
5060
5061 int
5062 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5063 {
5064 if (mode != VOIDmode)
5065 {
5066 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5067 return -1;
5068 m &= GET_MODE_MASK (mode);
5069 }
5070
5071 return exact_log2 (m + 1);
5072 }