reg-notes.def (DEP_CONTROL): New.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010,
4 2011 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
70
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
78
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 \f
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
86
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
93
94 switch (code)
95 {
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
107
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
120
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
124
125 /* Fall through. */
126
127 default:
128 break;
129 }
130
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
134 {
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
137 }
138 else if (fmt[i] == 'E')
139 {
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
144 }
145
146 return 0;
147 }
148
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
155
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159 RTX_CODE code;
160 int i;
161 const char *fmt;
162
163 if (!x)
164 return 0;
165
166 code = GET_CODE (x);
167 switch (code)
168 {
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
180
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
198
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
205
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
209
210 /* Fall through. */
211
212 default:
213 break;
214 }
215
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
219 {
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
222 }
223 else if (fmt[i] == 'E')
224 {
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
229 }
230
231 return 0;
232 }
233
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
238
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
242 {
243 enum rtx_code code = GET_CODE (x);
244
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
248 {
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
261 }
262
263 switch (code)
264 {
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
269 {
270 tree decl;
271 HOST_WIDE_INT decl_size;
272
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
279
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
283
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
298
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300 }
301
302 return 0;
303
304 case LABEL_REF:
305 return 0;
306
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
319
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
323
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
329
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
337
338 return 1;
339
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
344
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
352
353 default:
354 break;
355 }
356
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
359 }
360
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
362
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368
369 /* Return true if X is an address that is known to not be zero. */
370
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374 const enum rtx_code code = GET_CODE (x);
375
376 switch (code)
377 {
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
380
381 case LABEL_REF:
382 return true;
383
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
395
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
398
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
407
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
416
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
420
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
426
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
429
430 default:
431 break;
432 }
433
434 /* If it isn't one of the case above, might be zero. */
435 return false;
436 }
437
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
443
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447 enum rtx_code code;
448 int i;
449 const char *fmt;
450
451 if (x == 0)
452 return 0;
453
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
461 {
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
464 }
465 else if (fmt[i] == 'E')
466 {
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
471 }
472 return 0;
473 }
474 \f
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
479
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
485
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
493 }
494
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
498
499 rtx
500 get_related_value (const_rtx x)
501 {
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
512 }
513 \f
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
516
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520 tree decl;
521
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
524
525 if (offset == 0)
526 return true;
527
528 if (offset > 0)
529 {
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
533
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
537 }
538
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
545
546 return false;
547 }
548
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
551
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555 if (GET_CODE (x) == CONST)
556 {
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 {
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
563 }
564 }
565 *base_out = x;
566 *offset_out = const0_rtx;
567 }
568 \f
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
571
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
579
580 if (x == find)
581 return 1;
582
583 code = GET_CODE (x);
584
585 switch (code)
586 {
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
597
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
603
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
608
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
613
614 default:
615 break;
616 }
617
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
620
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
622 {
623 switch (*format_ptr++)
624 {
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
628
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
633 }
634 }
635 return count;
636 }
637
638 \f
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
642
643 int
644 reg_mentioned_p (const_rtx reg, const_rtx in)
645 {
646 const char *fmt;
647 int i;
648 enum rtx_code code;
649
650 if (in == 0)
651 return 0;
652
653 if (reg == in)
654 return 1;
655
656 if (GET_CODE (in) == LABEL_REF)
657 return reg == XEXP (in, 0);
658
659 code = GET_CODE (in);
660
661 switch (code)
662 {
663 /* Compare registers by number. */
664 case REG:
665 return REG_P (reg) && REGNO (in) == REGNO (reg);
666
667 /* These codes have no constituent expressions
668 and are unique. */
669 case SCRATCH:
670 case CC0:
671 case PC:
672 return 0;
673
674 case CONST_INT:
675 case CONST_VECTOR:
676 case CONST_DOUBLE:
677 case CONST_FIXED:
678 /* These are kept unique for a given value. */
679 return 0;
680
681 default:
682 break;
683 }
684
685 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686 return 1;
687
688 fmt = GET_RTX_FORMAT (code);
689
690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
691 {
692 if (fmt[i] == 'E')
693 {
694 int j;
695 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 return 1;
698 }
699 else if (fmt[i] == 'e'
700 && reg_mentioned_p (reg, XEXP (in, i)))
701 return 1;
702 }
703 return 0;
704 }
705 \f
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
708
709 int
710 no_labels_between_p (const_rtx beg, const_rtx end)
711 {
712 rtx p;
713 if (beg == end)
714 return 0;
715 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716 if (LABEL_P (p))
717 return 0;
718 return 1;
719 }
720
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
723
724 int
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
726 {
727 rtx insn;
728
729 if (from_insn == to_insn)
730 return 0;
731
732 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733 if (NONDEBUG_INSN_P (insn)
734 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736 return 1;
737 return 0;
738 }
739 \f
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
743
744 int
745 reg_referenced_p (const_rtx x, const_rtx body)
746 {
747 int i;
748
749 switch (GET_CODE (body))
750 {
751 case SET:
752 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 return 1;
754
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body)) != CC0
759 && GET_CODE (SET_DEST (body)) != PC
760 && !REG_P (SET_DEST (body))
761 && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 return 1;
769 return 0;
770
771 case ASM_OPERANDS:
772 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 return 1;
775 return 0;
776
777 case CALL:
778 case USE:
779 case IF_THEN_ELSE:
780 return reg_overlap_mentioned_p (x, body);
781
782 case TRAP_IF:
783 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
784
785 case PREFETCH:
786 return reg_overlap_mentioned_p (x, XEXP (body, 0));
787
788 case UNSPEC:
789 case UNSPEC_VOLATILE:
790 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 return 1;
793 return 0;
794
795 case PARALLEL:
796 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 return 1;
799 return 0;
800
801 case CLOBBER:
802 if (MEM_P (XEXP (body, 0)))
803 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 return 1;
805 return 0;
806
807 case COND_EXEC:
808 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 return 1;
810 return reg_referenced_p (x, COND_EXEC_CODE (body));
811
812 default:
813 return 0;
814 }
815 }
816 \f
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
819
820 int
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
822 {
823 const_rtx insn;
824
825 if (from_insn == to_insn)
826 return 0;
827
828 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829 if (INSN_P (insn) && reg_set_p (reg, insn))
830 return 1;
831 return 0;
832 }
833
834 /* Internals of reg_set_between_p. */
835 int
836 reg_set_p (const_rtx reg, const_rtx insn)
837 {
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
840 if (INSN_P (insn)
841 && (FIND_REG_INC_NOTE (insn, reg)
842 || (CALL_P (insn)
843 && ((REG_P (reg)
844 && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 GET_MODE (reg), REGNO (reg)))
847 || MEM_P (reg)
848 || find_reg_fusage (insn, CLOBBER, reg)))))
849 return 1;
850
851 return set_of (reg, insn) != NULL_RTX;
852 }
853
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
857
858 int
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
860 {
861 const enum rtx_code code = GET_CODE (x);
862 const char *fmt;
863 int i, j;
864 rtx insn;
865
866 if (start == end)
867 return 0;
868
869 switch (code)
870 {
871 case CONST_INT:
872 case CONST_DOUBLE:
873 case CONST_FIXED:
874 case CONST_VECTOR:
875 case CONST:
876 case SYMBOL_REF:
877 case LABEL_REF:
878 return 0;
879
880 case PC:
881 case CC0:
882 return 1;
883
884 case MEM:
885 if (modified_between_p (XEXP (x, 0), start, end))
886 return 1;
887 if (MEM_READONLY_P (x))
888 return 0;
889 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 if (memory_modified_in_insn_p (x, insn))
891 return 1;
892 return 0;
893 break;
894
895 case REG:
896 return reg_set_between_p (x, start, end);
897
898 default:
899 break;
900 }
901
902 fmt = GET_RTX_FORMAT (code);
903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
904 {
905 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 return 1;
907
908 else if (fmt[i] == 'E')
909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 if (modified_between_p (XVECEXP (x, i, j), start, end))
911 return 1;
912 }
913
914 return 0;
915 }
916
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
920
921 int
922 modified_in_p (const_rtx x, const_rtx insn)
923 {
924 const enum rtx_code code = GET_CODE (x);
925 const char *fmt;
926 int i, j;
927
928 switch (code)
929 {
930 case CONST_INT:
931 case CONST_DOUBLE:
932 case CONST_FIXED:
933 case CONST_VECTOR:
934 case CONST:
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return 0;
938
939 case PC:
940 case CC0:
941 return 1;
942
943 case MEM:
944 if (modified_in_p (XEXP (x, 0), insn))
945 return 1;
946 if (MEM_READONLY_P (x))
947 return 0;
948 if (memory_modified_in_insn_p (x, insn))
949 return 1;
950 return 0;
951 break;
952
953 case REG:
954 return reg_set_p (x, insn);
955
956 default:
957 break;
958 }
959
960 fmt = GET_RTX_FORMAT (code);
961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
962 {
963 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 return 1;
965
966 else if (fmt[i] == 'E')
967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 if (modified_in_p (XVECEXP (x, i, j), insn))
969 return 1;
970 }
971
972 return 0;
973 }
974 \f
975 /* Helper function for set_of. */
976 struct set_of_data
977 {
978 const_rtx found;
979 const_rtx pat;
980 };
981
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
984 {
985 struct set_of_data *const data = (struct set_of_data *) (data1);
986 if (rtx_equal_p (x, data->pat)
987 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988 data->found = pat;
989 }
990
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
995 {
996 struct set_of_data data;
997 data.found = NULL_RTX;
998 data.pat = pat;
999 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000 return data.found;
1001 }
1002
1003 /* This function, called through note_stores, collects sets and
1004 clobbers of hard registers in a HARD_REG_SET, which is pointed to
1005 by DATA. */
1006 void
1007 record_hard_reg_sets (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
1008 {
1009 HARD_REG_SET *pset = (HARD_REG_SET *)data;
1010 if (REG_P (x) && HARD_REGISTER_P (x))
1011 add_to_hard_reg_set (pset, GET_MODE (x), REGNO (x));
1012 }
1013
1014 /* Examine INSN, and compute the set of hard registers written by it.
1015 Store it in *PSET. Should only be called after reload. */
1016 void
1017 find_all_hard_reg_sets (const_rtx insn, HARD_REG_SET *pset)
1018 {
1019 rtx link;
1020
1021 CLEAR_HARD_REG_SET (*pset);
1022 note_stores (PATTERN (insn), record_hard_reg_sets, pset);
1023 if (CALL_P (insn))
1024 IOR_HARD_REG_SET (*pset, call_used_reg_set);
1025 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1026 if (REG_NOTE_KIND (link) == REG_INC)
1027 record_hard_reg_sets (XEXP (link, 0), NULL, pset);
1028 }
1029
1030 /* A for_each_rtx subroutine of record_hard_reg_uses. */
1031 static int
1032 record_hard_reg_uses_1 (rtx *px, void *data)
1033 {
1034 rtx x = *px;
1035 HARD_REG_SET *pused = (HARD_REG_SET *)data;
1036
1037 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
1038 {
1039 int nregs = hard_regno_nregs[REGNO (x)][GET_MODE (x)];
1040 while (nregs-- > 0)
1041 SET_HARD_REG_BIT (*pused, REGNO (x) + nregs);
1042 }
1043 return 0;
1044 }
1045
1046 /* Like record_hard_reg_sets, but called through note_uses. */
1047 void
1048 record_hard_reg_uses (rtx *px, void *data)
1049 {
1050 for_each_rtx (px, record_hard_reg_uses_1, data);
1051 }
1052 \f
1053 /* Given an INSN, return a SET expression if this insn has only a single SET.
1054 It may also have CLOBBERs, USEs, or SET whose output
1055 will not be used, which we ignore. */
1056
1057 rtx
1058 single_set_2 (const_rtx insn, const_rtx pat)
1059 {
1060 rtx set = NULL;
1061 int set_verified = 1;
1062 int i;
1063
1064 if (GET_CODE (pat) == PARALLEL)
1065 {
1066 for (i = 0; i < XVECLEN (pat, 0); i++)
1067 {
1068 rtx sub = XVECEXP (pat, 0, i);
1069 switch (GET_CODE (sub))
1070 {
1071 case USE:
1072 case CLOBBER:
1073 break;
1074
1075 case SET:
1076 /* We can consider insns having multiple sets, where all
1077 but one are dead as single set insns. In common case
1078 only single set is present in the pattern so we want
1079 to avoid checking for REG_UNUSED notes unless necessary.
1080
1081 When we reach set first time, we just expect this is
1082 the single set we are looking for and only when more
1083 sets are found in the insn, we check them. */
1084 if (!set_verified)
1085 {
1086 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1087 && !side_effects_p (set))
1088 set = NULL;
1089 else
1090 set_verified = 1;
1091 }
1092 if (!set)
1093 set = sub, set_verified = 0;
1094 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1095 || side_effects_p (sub))
1096 return NULL_RTX;
1097 break;
1098
1099 default:
1100 return NULL_RTX;
1101 }
1102 }
1103 }
1104 return set;
1105 }
1106
1107 /* Given an INSN, return nonzero if it has more than one SET, else return
1108 zero. */
1109
1110 int
1111 multiple_sets (const_rtx insn)
1112 {
1113 int found;
1114 int i;
1115
1116 /* INSN must be an insn. */
1117 if (! INSN_P (insn))
1118 return 0;
1119
1120 /* Only a PARALLEL can have multiple SETs. */
1121 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1122 {
1123 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1124 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1125 {
1126 /* If we have already found a SET, then return now. */
1127 if (found)
1128 return 1;
1129 else
1130 found = 1;
1131 }
1132 }
1133
1134 /* Either zero or one SET. */
1135 return 0;
1136 }
1137 \f
1138 /* Return nonzero if the destination of SET equals the source
1139 and there are no side effects. */
1140
1141 int
1142 set_noop_p (const_rtx set)
1143 {
1144 rtx src = SET_SRC (set);
1145 rtx dst = SET_DEST (set);
1146
1147 if (dst == pc_rtx && src == pc_rtx)
1148 return 1;
1149
1150 if (MEM_P (dst) && MEM_P (src))
1151 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1152
1153 if (GET_CODE (dst) == ZERO_EXTRACT)
1154 return rtx_equal_p (XEXP (dst, 0), src)
1155 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1156 && !side_effects_p (src);
1157
1158 if (GET_CODE (dst) == STRICT_LOW_PART)
1159 dst = XEXP (dst, 0);
1160
1161 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1162 {
1163 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1164 return 0;
1165 src = SUBREG_REG (src);
1166 dst = SUBREG_REG (dst);
1167 }
1168
1169 return (REG_P (src) && REG_P (dst)
1170 && REGNO (src) == REGNO (dst));
1171 }
1172 \f
1173 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1174 value to itself. */
1175
1176 int
1177 noop_move_p (const_rtx insn)
1178 {
1179 rtx pat = PATTERN (insn);
1180
1181 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1182 return 1;
1183
1184 /* Insns carrying these notes are useful later on. */
1185 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1186 return 0;
1187
1188 if (GET_CODE (pat) == SET && set_noop_p (pat))
1189 return 1;
1190
1191 if (GET_CODE (pat) == PARALLEL)
1192 {
1193 int i;
1194 /* If nothing but SETs of registers to themselves,
1195 this insn can also be deleted. */
1196 for (i = 0; i < XVECLEN (pat, 0); i++)
1197 {
1198 rtx tem = XVECEXP (pat, 0, i);
1199
1200 if (GET_CODE (tem) == USE
1201 || GET_CODE (tem) == CLOBBER)
1202 continue;
1203
1204 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1205 return 0;
1206 }
1207
1208 return 1;
1209 }
1210 return 0;
1211 }
1212 \f
1213
1214 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1215 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1216 If the object was modified, if we hit a partial assignment to X, or hit a
1217 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1218 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1219 be the src. */
1220
1221 rtx
1222 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1223 {
1224 rtx p;
1225
1226 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1227 p = PREV_INSN (p))
1228 if (INSN_P (p))
1229 {
1230 rtx set = single_set (p);
1231 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1232
1233 if (set && rtx_equal_p (x, SET_DEST (set)))
1234 {
1235 rtx src = SET_SRC (set);
1236
1237 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1238 src = XEXP (note, 0);
1239
1240 if ((valid_to == NULL_RTX
1241 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1242 /* Reject hard registers because we don't usually want
1243 to use them; we'd rather use a pseudo. */
1244 && (! (REG_P (src)
1245 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1246 {
1247 *pinsn = p;
1248 return src;
1249 }
1250 }
1251
1252 /* If set in non-simple way, we don't have a value. */
1253 if (reg_set_p (x, p))
1254 break;
1255 }
1256
1257 return x;
1258 }
1259 \f
1260 /* Return nonzero if register in range [REGNO, ENDREGNO)
1261 appears either explicitly or implicitly in X
1262 other than being stored into.
1263
1264 References contained within the substructure at LOC do not count.
1265 LOC may be zero, meaning don't ignore anything. */
1266
1267 int
1268 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1269 rtx *loc)
1270 {
1271 int i;
1272 unsigned int x_regno;
1273 RTX_CODE code;
1274 const char *fmt;
1275
1276 repeat:
1277 /* The contents of a REG_NONNEG note is always zero, so we must come here
1278 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1279 if (x == 0)
1280 return 0;
1281
1282 code = GET_CODE (x);
1283
1284 switch (code)
1285 {
1286 case REG:
1287 x_regno = REGNO (x);
1288
1289 /* If we modifying the stack, frame, or argument pointer, it will
1290 clobber a virtual register. In fact, we could be more precise,
1291 but it isn't worth it. */
1292 if ((x_regno == STACK_POINTER_REGNUM
1293 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1294 || x_regno == ARG_POINTER_REGNUM
1295 #endif
1296 || x_regno == FRAME_POINTER_REGNUM)
1297 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1298 return 1;
1299
1300 return endregno > x_regno && regno < END_REGNO (x);
1301
1302 case SUBREG:
1303 /* If this is a SUBREG of a hard reg, we can see exactly which
1304 registers are being modified. Otherwise, handle normally. */
1305 if (REG_P (SUBREG_REG (x))
1306 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1307 {
1308 unsigned int inner_regno = subreg_regno (x);
1309 unsigned int inner_endregno
1310 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1311 ? subreg_nregs (x) : 1);
1312
1313 return endregno > inner_regno && regno < inner_endregno;
1314 }
1315 break;
1316
1317 case CLOBBER:
1318 case SET:
1319 if (&SET_DEST (x) != loc
1320 /* Note setting a SUBREG counts as referring to the REG it is in for
1321 a pseudo but not for hard registers since we can
1322 treat each word individually. */
1323 && ((GET_CODE (SET_DEST (x)) == SUBREG
1324 && loc != &SUBREG_REG (SET_DEST (x))
1325 && REG_P (SUBREG_REG (SET_DEST (x)))
1326 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1327 && refers_to_regno_p (regno, endregno,
1328 SUBREG_REG (SET_DEST (x)), loc))
1329 || (!REG_P (SET_DEST (x))
1330 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1331 return 1;
1332
1333 if (code == CLOBBER || loc == &SET_SRC (x))
1334 return 0;
1335 x = SET_SRC (x);
1336 goto repeat;
1337
1338 default:
1339 break;
1340 }
1341
1342 /* X does not match, so try its subexpressions. */
1343
1344 fmt = GET_RTX_FORMAT (code);
1345 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1346 {
1347 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1348 {
1349 if (i == 0)
1350 {
1351 x = XEXP (x, 0);
1352 goto repeat;
1353 }
1354 else
1355 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1356 return 1;
1357 }
1358 else if (fmt[i] == 'E')
1359 {
1360 int j;
1361 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1362 if (loc != &XVECEXP (x, i, j)
1363 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1364 return 1;
1365 }
1366 }
1367 return 0;
1368 }
1369
1370 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1371 we check if any register number in X conflicts with the relevant register
1372 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1373 contains a MEM (we don't bother checking for memory addresses that can't
1374 conflict because we expect this to be a rare case. */
1375
1376 int
1377 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1378 {
1379 unsigned int regno, endregno;
1380
1381 /* If either argument is a constant, then modifying X can not
1382 affect IN. Here we look at IN, we can profitably combine
1383 CONSTANT_P (x) with the switch statement below. */
1384 if (CONSTANT_P (in))
1385 return 0;
1386
1387 recurse:
1388 switch (GET_CODE (x))
1389 {
1390 case STRICT_LOW_PART:
1391 case ZERO_EXTRACT:
1392 case SIGN_EXTRACT:
1393 /* Overly conservative. */
1394 x = XEXP (x, 0);
1395 goto recurse;
1396
1397 case SUBREG:
1398 regno = REGNO (SUBREG_REG (x));
1399 if (regno < FIRST_PSEUDO_REGISTER)
1400 regno = subreg_regno (x);
1401 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1402 ? subreg_nregs (x) : 1);
1403 goto do_reg;
1404
1405 case REG:
1406 regno = REGNO (x);
1407 endregno = END_REGNO (x);
1408 do_reg:
1409 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1410
1411 case MEM:
1412 {
1413 const char *fmt;
1414 int i;
1415
1416 if (MEM_P (in))
1417 return 1;
1418
1419 fmt = GET_RTX_FORMAT (GET_CODE (in));
1420 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1421 if (fmt[i] == 'e')
1422 {
1423 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1424 return 1;
1425 }
1426 else if (fmt[i] == 'E')
1427 {
1428 int j;
1429 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1430 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1431 return 1;
1432 }
1433
1434 return 0;
1435 }
1436
1437 case SCRATCH:
1438 case PC:
1439 case CC0:
1440 return reg_mentioned_p (x, in);
1441
1442 case PARALLEL:
1443 {
1444 int i;
1445
1446 /* If any register in here refers to it we return true. */
1447 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1448 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1449 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1450 return 1;
1451 return 0;
1452 }
1453
1454 default:
1455 gcc_assert (CONSTANT_P (x));
1456 return 0;
1457 }
1458 }
1459 \f
1460 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1461 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1462 ignored by note_stores, but passed to FUN.
1463
1464 FUN receives three arguments:
1465 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1466 2. the SET or CLOBBER rtx that does the store,
1467 3. the pointer DATA provided to note_stores.
1468
1469 If the item being stored in or clobbered is a SUBREG of a hard register,
1470 the SUBREG will be passed. */
1471
1472 void
1473 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1474 {
1475 int i;
1476
1477 if (GET_CODE (x) == COND_EXEC)
1478 x = COND_EXEC_CODE (x);
1479
1480 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1481 {
1482 rtx dest = SET_DEST (x);
1483
1484 while ((GET_CODE (dest) == SUBREG
1485 && (!REG_P (SUBREG_REG (dest))
1486 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1487 || GET_CODE (dest) == ZERO_EXTRACT
1488 || GET_CODE (dest) == STRICT_LOW_PART)
1489 dest = XEXP (dest, 0);
1490
1491 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1492 each of whose first operand is a register. */
1493 if (GET_CODE (dest) == PARALLEL)
1494 {
1495 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1496 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1497 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1498 }
1499 else
1500 (*fun) (dest, x, data);
1501 }
1502
1503 else if (GET_CODE (x) == PARALLEL)
1504 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1505 note_stores (XVECEXP (x, 0, i), fun, data);
1506 }
1507 \f
1508 /* Like notes_stores, but call FUN for each expression that is being
1509 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1510 FUN for each expression, not any interior subexpressions. FUN receives a
1511 pointer to the expression and the DATA passed to this function.
1512
1513 Note that this is not quite the same test as that done in reg_referenced_p
1514 since that considers something as being referenced if it is being
1515 partially set, while we do not. */
1516
1517 void
1518 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1519 {
1520 rtx body = *pbody;
1521 int i;
1522
1523 switch (GET_CODE (body))
1524 {
1525 case COND_EXEC:
1526 (*fun) (&COND_EXEC_TEST (body), data);
1527 note_uses (&COND_EXEC_CODE (body), fun, data);
1528 return;
1529
1530 case PARALLEL:
1531 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1532 note_uses (&XVECEXP (body, 0, i), fun, data);
1533 return;
1534
1535 case SEQUENCE:
1536 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1537 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1538 return;
1539
1540 case USE:
1541 (*fun) (&XEXP (body, 0), data);
1542 return;
1543
1544 case ASM_OPERANDS:
1545 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1546 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1547 return;
1548
1549 case TRAP_IF:
1550 (*fun) (&TRAP_CONDITION (body), data);
1551 return;
1552
1553 case PREFETCH:
1554 (*fun) (&XEXP (body, 0), data);
1555 return;
1556
1557 case UNSPEC:
1558 case UNSPEC_VOLATILE:
1559 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1560 (*fun) (&XVECEXP (body, 0, i), data);
1561 return;
1562
1563 case CLOBBER:
1564 if (MEM_P (XEXP (body, 0)))
1565 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1566 return;
1567
1568 case SET:
1569 {
1570 rtx dest = SET_DEST (body);
1571
1572 /* For sets we replace everything in source plus registers in memory
1573 expression in store and operands of a ZERO_EXTRACT. */
1574 (*fun) (&SET_SRC (body), data);
1575
1576 if (GET_CODE (dest) == ZERO_EXTRACT)
1577 {
1578 (*fun) (&XEXP (dest, 1), data);
1579 (*fun) (&XEXP (dest, 2), data);
1580 }
1581
1582 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1583 dest = XEXP (dest, 0);
1584
1585 if (MEM_P (dest))
1586 (*fun) (&XEXP (dest, 0), data);
1587 }
1588 return;
1589
1590 default:
1591 /* All the other possibilities never store. */
1592 (*fun) (pbody, data);
1593 return;
1594 }
1595 }
1596 \f
1597 /* Return nonzero if X's old contents don't survive after INSN.
1598 This will be true if X is (cc0) or if X is a register and
1599 X dies in INSN or because INSN entirely sets X.
1600
1601 "Entirely set" means set directly and not through a SUBREG, or
1602 ZERO_EXTRACT, so no trace of the old contents remains.
1603 Likewise, REG_INC does not count.
1604
1605 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1606 but for this use that makes no difference, since regs don't overlap
1607 during their lifetimes. Therefore, this function may be used
1608 at any time after deaths have been computed.
1609
1610 If REG is a hard reg that occupies multiple machine registers, this
1611 function will only return 1 if each of those registers will be replaced
1612 by INSN. */
1613
1614 int
1615 dead_or_set_p (const_rtx insn, const_rtx x)
1616 {
1617 unsigned int regno, end_regno;
1618 unsigned int i;
1619
1620 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1621 if (GET_CODE (x) == CC0)
1622 return 1;
1623
1624 gcc_assert (REG_P (x));
1625
1626 regno = REGNO (x);
1627 end_regno = END_REGNO (x);
1628 for (i = regno; i < end_regno; i++)
1629 if (! dead_or_set_regno_p (insn, i))
1630 return 0;
1631
1632 return 1;
1633 }
1634
1635 /* Return TRUE iff DEST is a register or subreg of a register and
1636 doesn't change the number of words of the inner register, and any
1637 part of the register is TEST_REGNO. */
1638
1639 static bool
1640 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1641 {
1642 unsigned int regno, endregno;
1643
1644 if (GET_CODE (dest) == SUBREG
1645 && (((GET_MODE_SIZE (GET_MODE (dest))
1646 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1647 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1648 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1649 dest = SUBREG_REG (dest);
1650
1651 if (!REG_P (dest))
1652 return false;
1653
1654 regno = REGNO (dest);
1655 endregno = END_REGNO (dest);
1656 return (test_regno >= regno && test_regno < endregno);
1657 }
1658
1659 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1660 any member matches the covers_regno_no_parallel_p criteria. */
1661
1662 static bool
1663 covers_regno_p (const_rtx dest, unsigned int test_regno)
1664 {
1665 if (GET_CODE (dest) == PARALLEL)
1666 {
1667 /* Some targets place small structures in registers for return
1668 values of functions, and those registers are wrapped in
1669 PARALLELs that we may see as the destination of a SET. */
1670 int i;
1671
1672 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1673 {
1674 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1675 if (inner != NULL_RTX
1676 && covers_regno_no_parallel_p (inner, test_regno))
1677 return true;
1678 }
1679
1680 return false;
1681 }
1682 else
1683 return covers_regno_no_parallel_p (dest, test_regno);
1684 }
1685
1686 /* Utility function for dead_or_set_p to check an individual register. */
1687
1688 int
1689 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1690 {
1691 const_rtx pattern;
1692
1693 /* See if there is a death note for something that includes TEST_REGNO. */
1694 if (find_regno_note (insn, REG_DEAD, test_regno))
1695 return 1;
1696
1697 if (CALL_P (insn)
1698 && find_regno_fusage (insn, CLOBBER, test_regno))
1699 return 1;
1700
1701 pattern = PATTERN (insn);
1702
1703 if (GET_CODE (pattern) == COND_EXEC)
1704 pattern = COND_EXEC_CODE (pattern);
1705
1706 if (GET_CODE (pattern) == SET)
1707 return covers_regno_p (SET_DEST (pattern), test_regno);
1708 else if (GET_CODE (pattern) == PARALLEL)
1709 {
1710 int i;
1711
1712 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1713 {
1714 rtx body = XVECEXP (pattern, 0, i);
1715
1716 if (GET_CODE (body) == COND_EXEC)
1717 body = COND_EXEC_CODE (body);
1718
1719 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1720 && covers_regno_p (SET_DEST (body), test_regno))
1721 return 1;
1722 }
1723 }
1724
1725 return 0;
1726 }
1727
1728 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1729 If DATUM is nonzero, look for one whose datum is DATUM. */
1730
1731 rtx
1732 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1733 {
1734 rtx link;
1735
1736 gcc_checking_assert (insn);
1737
1738 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1739 if (! INSN_P (insn))
1740 return 0;
1741 if (datum == 0)
1742 {
1743 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1744 if (REG_NOTE_KIND (link) == kind)
1745 return link;
1746 return 0;
1747 }
1748
1749 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1750 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1751 return link;
1752 return 0;
1753 }
1754
1755 /* Return the reg-note of kind KIND in insn INSN which applies to register
1756 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1757 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1758 it might be the case that the note overlaps REGNO. */
1759
1760 rtx
1761 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1762 {
1763 rtx link;
1764
1765 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1766 if (! INSN_P (insn))
1767 return 0;
1768
1769 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1770 if (REG_NOTE_KIND (link) == kind
1771 /* Verify that it is a register, so that scratch and MEM won't cause a
1772 problem here. */
1773 && REG_P (XEXP (link, 0))
1774 && REGNO (XEXP (link, 0)) <= regno
1775 && END_REGNO (XEXP (link, 0)) > regno)
1776 return link;
1777 return 0;
1778 }
1779
1780 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1781 has such a note. */
1782
1783 rtx
1784 find_reg_equal_equiv_note (const_rtx insn)
1785 {
1786 rtx link;
1787
1788 if (!INSN_P (insn))
1789 return 0;
1790
1791 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1792 if (REG_NOTE_KIND (link) == REG_EQUAL
1793 || REG_NOTE_KIND (link) == REG_EQUIV)
1794 {
1795 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1796 insns that have multiple sets. Checking single_set to
1797 make sure of this is not the proper check, as explained
1798 in the comment in set_unique_reg_note.
1799
1800 This should be changed into an assert. */
1801 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1802 return 0;
1803 return link;
1804 }
1805 return NULL;
1806 }
1807
1808 /* Check whether INSN is a single_set whose source is known to be
1809 equivalent to a constant. Return that constant if so, otherwise
1810 return null. */
1811
1812 rtx
1813 find_constant_src (const_rtx insn)
1814 {
1815 rtx note, set, x;
1816
1817 set = single_set (insn);
1818 if (set)
1819 {
1820 x = avoid_constant_pool_reference (SET_SRC (set));
1821 if (CONSTANT_P (x))
1822 return x;
1823 }
1824
1825 note = find_reg_equal_equiv_note (insn);
1826 if (note && CONSTANT_P (XEXP (note, 0)))
1827 return XEXP (note, 0);
1828
1829 return NULL_RTX;
1830 }
1831
1832 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1833 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1834
1835 int
1836 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1837 {
1838 /* If it's not a CALL_INSN, it can't possibly have a
1839 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1840 if (!CALL_P (insn))
1841 return 0;
1842
1843 gcc_assert (datum);
1844
1845 if (!REG_P (datum))
1846 {
1847 rtx link;
1848
1849 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1850 link;
1851 link = XEXP (link, 1))
1852 if (GET_CODE (XEXP (link, 0)) == code
1853 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1854 return 1;
1855 }
1856 else
1857 {
1858 unsigned int regno = REGNO (datum);
1859
1860 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1861 to pseudo registers, so don't bother checking. */
1862
1863 if (regno < FIRST_PSEUDO_REGISTER)
1864 {
1865 unsigned int end_regno = END_HARD_REGNO (datum);
1866 unsigned int i;
1867
1868 for (i = regno; i < end_regno; i++)
1869 if (find_regno_fusage (insn, code, i))
1870 return 1;
1871 }
1872 }
1873
1874 return 0;
1875 }
1876
1877 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1878 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1879
1880 int
1881 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1882 {
1883 rtx link;
1884
1885 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1886 to pseudo registers, so don't bother checking. */
1887
1888 if (regno >= FIRST_PSEUDO_REGISTER
1889 || !CALL_P (insn) )
1890 return 0;
1891
1892 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1893 {
1894 rtx op, reg;
1895
1896 if (GET_CODE (op = XEXP (link, 0)) == code
1897 && REG_P (reg = XEXP (op, 0))
1898 && REGNO (reg) <= regno
1899 && END_HARD_REGNO (reg) > regno)
1900 return 1;
1901 }
1902
1903 return 0;
1904 }
1905
1906 \f
1907 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1908 stored as the pointer to the next register note. */
1909
1910 rtx
1911 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1912 {
1913 rtx note;
1914
1915 switch (kind)
1916 {
1917 case REG_CC_SETTER:
1918 case REG_CC_USER:
1919 case REG_LABEL_TARGET:
1920 case REG_LABEL_OPERAND:
1921 /* These types of register notes use an INSN_LIST rather than an
1922 EXPR_LIST, so that copying is done right and dumps look
1923 better. */
1924 note = alloc_INSN_LIST (datum, list);
1925 PUT_REG_NOTE_KIND (note, kind);
1926 break;
1927
1928 default:
1929 note = alloc_EXPR_LIST (kind, datum, list);
1930 break;
1931 }
1932
1933 return note;
1934 }
1935
1936 /* Add register note with kind KIND and datum DATUM to INSN. */
1937
1938 void
1939 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1940 {
1941 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1942 }
1943
1944 /* Remove register note NOTE from the REG_NOTES of INSN. */
1945
1946 void
1947 remove_note (rtx insn, const_rtx note)
1948 {
1949 rtx link;
1950
1951 if (note == NULL_RTX)
1952 return;
1953
1954 if (REG_NOTES (insn) == note)
1955 REG_NOTES (insn) = XEXP (note, 1);
1956 else
1957 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1958 if (XEXP (link, 1) == note)
1959 {
1960 XEXP (link, 1) = XEXP (note, 1);
1961 break;
1962 }
1963
1964 switch (REG_NOTE_KIND (note))
1965 {
1966 case REG_EQUAL:
1967 case REG_EQUIV:
1968 df_notes_rescan (insn);
1969 break;
1970 default:
1971 break;
1972 }
1973 }
1974
1975 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1976
1977 void
1978 remove_reg_equal_equiv_notes (rtx insn)
1979 {
1980 rtx *loc;
1981
1982 loc = &REG_NOTES (insn);
1983 while (*loc)
1984 {
1985 enum reg_note kind = REG_NOTE_KIND (*loc);
1986 if (kind == REG_EQUAL || kind == REG_EQUIV)
1987 *loc = XEXP (*loc, 1);
1988 else
1989 loc = &XEXP (*loc, 1);
1990 }
1991 }
1992
1993 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1994
1995 void
1996 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1997 {
1998 df_ref eq_use;
1999
2000 if (!df)
2001 return;
2002
2003 /* This loop is a little tricky. We cannot just go down the chain because
2004 it is being modified by some actions in the loop. So we just iterate
2005 over the head. We plan to drain the list anyway. */
2006 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
2007 {
2008 rtx insn = DF_REF_INSN (eq_use);
2009 rtx note = find_reg_equal_equiv_note (insn);
2010
2011 /* This assert is generally triggered when someone deletes a REG_EQUAL
2012 or REG_EQUIV note by hacking the list manually rather than calling
2013 remove_note. */
2014 gcc_assert (note);
2015
2016 remove_note (insn, note);
2017 }
2018 }
2019
2020 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2021 return 1 if it is found. A simple equality test is used to determine if
2022 NODE matches. */
2023
2024 int
2025 in_expr_list_p (const_rtx listp, const_rtx node)
2026 {
2027 const_rtx x;
2028
2029 for (x = listp; x; x = XEXP (x, 1))
2030 if (node == XEXP (x, 0))
2031 return 1;
2032
2033 return 0;
2034 }
2035
2036 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
2037 remove that entry from the list if it is found.
2038
2039 A simple equality test is used to determine if NODE matches. */
2040
2041 void
2042 remove_node_from_expr_list (const_rtx node, rtx *listp)
2043 {
2044 rtx temp = *listp;
2045 rtx prev = NULL_RTX;
2046
2047 while (temp)
2048 {
2049 if (node == XEXP (temp, 0))
2050 {
2051 /* Splice the node out of the list. */
2052 if (prev)
2053 XEXP (prev, 1) = XEXP (temp, 1);
2054 else
2055 *listp = XEXP (temp, 1);
2056
2057 return;
2058 }
2059
2060 prev = temp;
2061 temp = XEXP (temp, 1);
2062 }
2063 }
2064 \f
2065 /* Nonzero if X contains any volatile instructions. These are instructions
2066 which may cause unpredictable machine state instructions, and thus no
2067 instructions should be moved or combined across them. This includes
2068 only volatile asms and UNSPEC_VOLATILE instructions. */
2069
2070 int
2071 volatile_insn_p (const_rtx x)
2072 {
2073 const RTX_CODE code = GET_CODE (x);
2074 switch (code)
2075 {
2076 case LABEL_REF:
2077 case SYMBOL_REF:
2078 case CONST_INT:
2079 case CONST:
2080 case CONST_DOUBLE:
2081 case CONST_FIXED:
2082 case CONST_VECTOR:
2083 case CC0:
2084 case PC:
2085 case REG:
2086 case SCRATCH:
2087 case CLOBBER:
2088 case ADDR_VEC:
2089 case ADDR_DIFF_VEC:
2090 case CALL:
2091 case MEM:
2092 return 0;
2093
2094 case UNSPEC_VOLATILE:
2095 /* case TRAP_IF: This isn't clear yet. */
2096 return 1;
2097
2098 case ASM_INPUT:
2099 case ASM_OPERANDS:
2100 if (MEM_VOLATILE_P (x))
2101 return 1;
2102
2103 default:
2104 break;
2105 }
2106
2107 /* Recursively scan the operands of this expression. */
2108
2109 {
2110 const char *const fmt = GET_RTX_FORMAT (code);
2111 int i;
2112
2113 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2114 {
2115 if (fmt[i] == 'e')
2116 {
2117 if (volatile_insn_p (XEXP (x, i)))
2118 return 1;
2119 }
2120 else if (fmt[i] == 'E')
2121 {
2122 int j;
2123 for (j = 0; j < XVECLEN (x, i); j++)
2124 if (volatile_insn_p (XVECEXP (x, i, j)))
2125 return 1;
2126 }
2127 }
2128 }
2129 return 0;
2130 }
2131
2132 /* Nonzero if X contains any volatile memory references
2133 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2134
2135 int
2136 volatile_refs_p (const_rtx x)
2137 {
2138 const RTX_CODE code = GET_CODE (x);
2139 switch (code)
2140 {
2141 case LABEL_REF:
2142 case SYMBOL_REF:
2143 case CONST_INT:
2144 case CONST:
2145 case CONST_DOUBLE:
2146 case CONST_FIXED:
2147 case CONST_VECTOR:
2148 case CC0:
2149 case PC:
2150 case REG:
2151 case SCRATCH:
2152 case CLOBBER:
2153 case ADDR_VEC:
2154 case ADDR_DIFF_VEC:
2155 return 0;
2156
2157 case UNSPEC_VOLATILE:
2158 return 1;
2159
2160 case MEM:
2161 case ASM_INPUT:
2162 case ASM_OPERANDS:
2163 if (MEM_VOLATILE_P (x))
2164 return 1;
2165
2166 default:
2167 break;
2168 }
2169
2170 /* Recursively scan the operands of this expression. */
2171
2172 {
2173 const char *const fmt = GET_RTX_FORMAT (code);
2174 int i;
2175
2176 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2177 {
2178 if (fmt[i] == 'e')
2179 {
2180 if (volatile_refs_p (XEXP (x, i)))
2181 return 1;
2182 }
2183 else if (fmt[i] == 'E')
2184 {
2185 int j;
2186 for (j = 0; j < XVECLEN (x, i); j++)
2187 if (volatile_refs_p (XVECEXP (x, i, j)))
2188 return 1;
2189 }
2190 }
2191 }
2192 return 0;
2193 }
2194
2195 /* Similar to above, except that it also rejects register pre- and post-
2196 incrementing. */
2197
2198 int
2199 side_effects_p (const_rtx x)
2200 {
2201 const RTX_CODE code = GET_CODE (x);
2202 switch (code)
2203 {
2204 case LABEL_REF:
2205 case SYMBOL_REF:
2206 case CONST_INT:
2207 case CONST:
2208 case CONST_DOUBLE:
2209 case CONST_FIXED:
2210 case CONST_VECTOR:
2211 case CC0:
2212 case PC:
2213 case REG:
2214 case SCRATCH:
2215 case ADDR_VEC:
2216 case ADDR_DIFF_VEC:
2217 case VAR_LOCATION:
2218 return 0;
2219
2220 case CLOBBER:
2221 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2222 when some combination can't be done. If we see one, don't think
2223 that we can simplify the expression. */
2224 return (GET_MODE (x) != VOIDmode);
2225
2226 case PRE_INC:
2227 case PRE_DEC:
2228 case POST_INC:
2229 case POST_DEC:
2230 case PRE_MODIFY:
2231 case POST_MODIFY:
2232 case CALL:
2233 case UNSPEC_VOLATILE:
2234 /* case TRAP_IF: This isn't clear yet. */
2235 return 1;
2236
2237 case MEM:
2238 case ASM_INPUT:
2239 case ASM_OPERANDS:
2240 if (MEM_VOLATILE_P (x))
2241 return 1;
2242
2243 default:
2244 break;
2245 }
2246
2247 /* Recursively scan the operands of this expression. */
2248
2249 {
2250 const char *fmt = GET_RTX_FORMAT (code);
2251 int i;
2252
2253 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2254 {
2255 if (fmt[i] == 'e')
2256 {
2257 if (side_effects_p (XEXP (x, i)))
2258 return 1;
2259 }
2260 else if (fmt[i] == 'E')
2261 {
2262 int j;
2263 for (j = 0; j < XVECLEN (x, i); j++)
2264 if (side_effects_p (XVECEXP (x, i, j)))
2265 return 1;
2266 }
2267 }
2268 }
2269 return 0;
2270 }
2271 \f
2272 /* Return nonzero if evaluating rtx X might cause a trap.
2273 FLAGS controls how to consider MEMs. A nonzero means the context
2274 of the access may have changed from the original, such that the
2275 address may have become invalid. */
2276
2277 int
2278 may_trap_p_1 (const_rtx x, unsigned flags)
2279 {
2280 int i;
2281 enum rtx_code code;
2282 const char *fmt;
2283
2284 /* We make no distinction currently, but this function is part of
2285 the internal target-hooks ABI so we keep the parameter as
2286 "unsigned flags". */
2287 bool code_changed = flags != 0;
2288
2289 if (x == 0)
2290 return 0;
2291 code = GET_CODE (x);
2292 switch (code)
2293 {
2294 /* Handle these cases quickly. */
2295 case CONST_INT:
2296 case CONST_DOUBLE:
2297 case CONST_FIXED:
2298 case CONST_VECTOR:
2299 case SYMBOL_REF:
2300 case LABEL_REF:
2301 case CONST:
2302 case PC:
2303 case CC0:
2304 case REG:
2305 case SCRATCH:
2306 return 0;
2307
2308 case UNSPEC:
2309 case UNSPEC_VOLATILE:
2310 return targetm.unspec_may_trap_p (x, flags);
2311
2312 case ASM_INPUT:
2313 case TRAP_IF:
2314 return 1;
2315
2316 case ASM_OPERANDS:
2317 return MEM_VOLATILE_P (x);
2318
2319 /* Memory ref can trap unless it's a static var or a stack slot. */
2320 case MEM:
2321 /* Recognize specific pattern of stack checking probes. */
2322 if (flag_stack_check
2323 && MEM_VOLATILE_P (x)
2324 && XEXP (x, 0) == stack_pointer_rtx)
2325 return 1;
2326 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2327 reference; moving it out of context such as when moving code
2328 when optimizing, might cause its address to become invalid. */
2329 code_changed
2330 || !MEM_NOTRAP_P (x))
2331 {
2332 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2333 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2334 GET_MODE (x), code_changed);
2335 }
2336
2337 return 0;
2338
2339 /* Division by a non-constant might trap. */
2340 case DIV:
2341 case MOD:
2342 case UDIV:
2343 case UMOD:
2344 if (HONOR_SNANS (GET_MODE (x)))
2345 return 1;
2346 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2347 return flag_trapping_math;
2348 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2349 return 1;
2350 break;
2351
2352 case EXPR_LIST:
2353 /* An EXPR_LIST is used to represent a function call. This
2354 certainly may trap. */
2355 return 1;
2356
2357 case GE:
2358 case GT:
2359 case LE:
2360 case LT:
2361 case LTGT:
2362 case COMPARE:
2363 /* Some floating point comparisons may trap. */
2364 if (!flag_trapping_math)
2365 break;
2366 /* ??? There is no machine independent way to check for tests that trap
2367 when COMPARE is used, though many targets do make this distinction.
2368 For instance, sparc uses CCFPE for compares which generate exceptions
2369 and CCFP for compares which do not generate exceptions. */
2370 if (HONOR_NANS (GET_MODE (x)))
2371 return 1;
2372 /* But often the compare has some CC mode, so check operand
2373 modes as well. */
2374 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2375 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2376 return 1;
2377 break;
2378
2379 case EQ:
2380 case NE:
2381 if (HONOR_SNANS (GET_MODE (x)))
2382 return 1;
2383 /* Often comparison is CC mode, so check operand modes. */
2384 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2385 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2386 return 1;
2387 break;
2388
2389 case FIX:
2390 /* Conversion of floating point might trap. */
2391 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2392 return 1;
2393 break;
2394
2395 case NEG:
2396 case ABS:
2397 case SUBREG:
2398 /* These operations don't trap even with floating point. */
2399 break;
2400
2401 default:
2402 /* Any floating arithmetic may trap. */
2403 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2404 && flag_trapping_math)
2405 return 1;
2406 }
2407
2408 fmt = GET_RTX_FORMAT (code);
2409 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2410 {
2411 if (fmt[i] == 'e')
2412 {
2413 if (may_trap_p_1 (XEXP (x, i), flags))
2414 return 1;
2415 }
2416 else if (fmt[i] == 'E')
2417 {
2418 int j;
2419 for (j = 0; j < XVECLEN (x, i); j++)
2420 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2421 return 1;
2422 }
2423 }
2424 return 0;
2425 }
2426
2427 /* Return nonzero if evaluating rtx X might cause a trap. */
2428
2429 int
2430 may_trap_p (const_rtx x)
2431 {
2432 return may_trap_p_1 (x, 0);
2433 }
2434
2435 /* Same as above, but additionally return nonzero if evaluating rtx X might
2436 cause a fault. We define a fault for the purpose of this function as a
2437 erroneous execution condition that cannot be encountered during the normal
2438 execution of a valid program; the typical example is an unaligned memory
2439 access on a strict alignment machine. The compiler guarantees that it
2440 doesn't generate code that will fault from a valid program, but this
2441 guarantee doesn't mean anything for individual instructions. Consider
2442 the following example:
2443
2444 struct S { int d; union { char *cp; int *ip; }; };
2445
2446 int foo(struct S *s)
2447 {
2448 if (s->d == 1)
2449 return *s->ip;
2450 else
2451 return *s->cp;
2452 }
2453
2454 on a strict alignment machine. In a valid program, foo will never be
2455 invoked on a structure for which d is equal to 1 and the underlying
2456 unique field of the union not aligned on a 4-byte boundary, but the
2457 expression *s->ip might cause a fault if considered individually.
2458
2459 At the RTL level, potentially problematic expressions will almost always
2460 verify may_trap_p; for example, the above dereference can be emitted as
2461 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2462 However, suppose that foo is inlined in a caller that causes s->cp to
2463 point to a local character variable and guarantees that s->d is not set
2464 to 1; foo may have been effectively translated into pseudo-RTL as:
2465
2466 if ((reg:SI) == 1)
2467 (set (reg:SI) (mem:SI (%fp - 7)))
2468 else
2469 (set (reg:QI) (mem:QI (%fp - 7)))
2470
2471 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2472 memory reference to a stack slot, but it will certainly cause a fault
2473 on a strict alignment machine. */
2474
2475 int
2476 may_trap_or_fault_p (const_rtx x)
2477 {
2478 return may_trap_p_1 (x, 1);
2479 }
2480 \f
2481 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2482 i.e., an inequality. */
2483
2484 int
2485 inequality_comparisons_p (const_rtx x)
2486 {
2487 const char *fmt;
2488 int len, i;
2489 const enum rtx_code code = GET_CODE (x);
2490
2491 switch (code)
2492 {
2493 case REG:
2494 case SCRATCH:
2495 case PC:
2496 case CC0:
2497 case CONST_INT:
2498 case CONST_DOUBLE:
2499 case CONST_FIXED:
2500 case CONST_VECTOR:
2501 case CONST:
2502 case LABEL_REF:
2503 case SYMBOL_REF:
2504 return 0;
2505
2506 case LT:
2507 case LTU:
2508 case GT:
2509 case GTU:
2510 case LE:
2511 case LEU:
2512 case GE:
2513 case GEU:
2514 return 1;
2515
2516 default:
2517 break;
2518 }
2519
2520 len = GET_RTX_LENGTH (code);
2521 fmt = GET_RTX_FORMAT (code);
2522
2523 for (i = 0; i < len; i++)
2524 {
2525 if (fmt[i] == 'e')
2526 {
2527 if (inequality_comparisons_p (XEXP (x, i)))
2528 return 1;
2529 }
2530 else if (fmt[i] == 'E')
2531 {
2532 int j;
2533 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2534 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2535 return 1;
2536 }
2537 }
2538
2539 return 0;
2540 }
2541 \f
2542 /* Replace any occurrence of FROM in X with TO. The function does
2543 not enter into CONST_DOUBLE for the replace.
2544
2545 Note that copying is not done so X must not be shared unless all copies
2546 are to be modified. */
2547
2548 rtx
2549 replace_rtx (rtx x, rtx from, rtx to)
2550 {
2551 int i, j;
2552 const char *fmt;
2553
2554 /* The following prevents loops occurrence when we change MEM in
2555 CONST_DOUBLE onto the same CONST_DOUBLE. */
2556 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2557 return x;
2558
2559 if (x == from)
2560 return to;
2561
2562 /* Allow this function to make replacements in EXPR_LISTs. */
2563 if (x == 0)
2564 return 0;
2565
2566 if (GET_CODE (x) == SUBREG)
2567 {
2568 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2569
2570 if (CONST_INT_P (new_rtx))
2571 {
2572 x = simplify_subreg (GET_MODE (x), new_rtx,
2573 GET_MODE (SUBREG_REG (x)),
2574 SUBREG_BYTE (x));
2575 gcc_assert (x);
2576 }
2577 else
2578 SUBREG_REG (x) = new_rtx;
2579
2580 return x;
2581 }
2582 else if (GET_CODE (x) == ZERO_EXTEND)
2583 {
2584 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2585
2586 if (CONST_INT_P (new_rtx))
2587 {
2588 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2589 new_rtx, GET_MODE (XEXP (x, 0)));
2590 gcc_assert (x);
2591 }
2592 else
2593 XEXP (x, 0) = new_rtx;
2594
2595 return x;
2596 }
2597
2598 fmt = GET_RTX_FORMAT (GET_CODE (x));
2599 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2600 {
2601 if (fmt[i] == 'e')
2602 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2603 else if (fmt[i] == 'E')
2604 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2605 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2606 }
2607
2608 return x;
2609 }
2610 \f
2611 /* Replace occurrences of the old label in *X with the new one.
2612 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2613
2614 int
2615 replace_label (rtx *x, void *data)
2616 {
2617 rtx l = *x;
2618 rtx old_label = ((replace_label_data *) data)->r1;
2619 rtx new_label = ((replace_label_data *) data)->r2;
2620 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2621
2622 if (l == NULL_RTX)
2623 return 0;
2624
2625 if (GET_CODE (l) == SYMBOL_REF
2626 && CONSTANT_POOL_ADDRESS_P (l))
2627 {
2628 rtx c = get_pool_constant (l);
2629 if (rtx_referenced_p (old_label, c))
2630 {
2631 rtx new_c, new_l;
2632 replace_label_data *d = (replace_label_data *) data;
2633
2634 /* Create a copy of constant C; replace the label inside
2635 but do not update LABEL_NUSES because uses in constant pool
2636 are not counted. */
2637 new_c = copy_rtx (c);
2638 d->update_label_nuses = false;
2639 for_each_rtx (&new_c, replace_label, data);
2640 d->update_label_nuses = update_label_nuses;
2641
2642 /* Add the new constant NEW_C to constant pool and replace
2643 the old reference to constant by new reference. */
2644 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2645 *x = replace_rtx (l, l, new_l);
2646 }
2647 return 0;
2648 }
2649
2650 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2651 field. This is not handled by for_each_rtx because it doesn't
2652 handle unprinted ('0') fields. */
2653 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2654 JUMP_LABEL (l) = new_label;
2655
2656 if ((GET_CODE (l) == LABEL_REF
2657 || GET_CODE (l) == INSN_LIST)
2658 && XEXP (l, 0) == old_label)
2659 {
2660 XEXP (l, 0) = new_label;
2661 if (update_label_nuses)
2662 {
2663 ++LABEL_NUSES (new_label);
2664 --LABEL_NUSES (old_label);
2665 }
2666 return 0;
2667 }
2668
2669 return 0;
2670 }
2671
2672 /* When *BODY is equal to X or X is directly referenced by *BODY
2673 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2674 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2675
2676 static int
2677 rtx_referenced_p_1 (rtx *body, void *x)
2678 {
2679 rtx y = (rtx) x;
2680
2681 if (*body == NULL_RTX)
2682 return y == NULL_RTX;
2683
2684 /* Return true if a label_ref *BODY refers to label Y. */
2685 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2686 return XEXP (*body, 0) == y;
2687
2688 /* If *BODY is a reference to pool constant traverse the constant. */
2689 if (GET_CODE (*body) == SYMBOL_REF
2690 && CONSTANT_POOL_ADDRESS_P (*body))
2691 return rtx_referenced_p (y, get_pool_constant (*body));
2692
2693 /* By default, compare the RTL expressions. */
2694 return rtx_equal_p (*body, y);
2695 }
2696
2697 /* Return true if X is referenced in BODY. */
2698
2699 int
2700 rtx_referenced_p (rtx x, rtx body)
2701 {
2702 return for_each_rtx (&body, rtx_referenced_p_1, x);
2703 }
2704
2705 /* If INSN is a tablejump return true and store the label (before jump table) to
2706 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2707
2708 bool
2709 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2710 {
2711 rtx label, table;
2712
2713 if (!JUMP_P (insn))
2714 return false;
2715
2716 label = JUMP_LABEL (insn);
2717 if (label != NULL_RTX && !ANY_RETURN_P (label)
2718 && (table = next_active_insn (label)) != NULL_RTX
2719 && JUMP_TABLE_DATA_P (table))
2720 {
2721 if (labelp)
2722 *labelp = label;
2723 if (tablep)
2724 *tablep = table;
2725 return true;
2726 }
2727 return false;
2728 }
2729
2730 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2731 constant that is not in the constant pool and not in the condition
2732 of an IF_THEN_ELSE. */
2733
2734 static int
2735 computed_jump_p_1 (const_rtx x)
2736 {
2737 const enum rtx_code code = GET_CODE (x);
2738 int i, j;
2739 const char *fmt;
2740
2741 switch (code)
2742 {
2743 case LABEL_REF:
2744 case PC:
2745 return 0;
2746
2747 case CONST:
2748 case CONST_INT:
2749 case CONST_DOUBLE:
2750 case CONST_FIXED:
2751 case CONST_VECTOR:
2752 case SYMBOL_REF:
2753 case REG:
2754 return 1;
2755
2756 case MEM:
2757 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2758 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2759
2760 case IF_THEN_ELSE:
2761 return (computed_jump_p_1 (XEXP (x, 1))
2762 || computed_jump_p_1 (XEXP (x, 2)));
2763
2764 default:
2765 break;
2766 }
2767
2768 fmt = GET_RTX_FORMAT (code);
2769 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2770 {
2771 if (fmt[i] == 'e'
2772 && computed_jump_p_1 (XEXP (x, i)))
2773 return 1;
2774
2775 else if (fmt[i] == 'E')
2776 for (j = 0; j < XVECLEN (x, i); j++)
2777 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2778 return 1;
2779 }
2780
2781 return 0;
2782 }
2783
2784 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2785
2786 Tablejumps and casesi insns are not considered indirect jumps;
2787 we can recognize them by a (use (label_ref)). */
2788
2789 int
2790 computed_jump_p (const_rtx insn)
2791 {
2792 int i;
2793 if (JUMP_P (insn))
2794 {
2795 rtx pat = PATTERN (insn);
2796
2797 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2798 if (JUMP_LABEL (insn) != NULL)
2799 return 0;
2800
2801 if (GET_CODE (pat) == PARALLEL)
2802 {
2803 int len = XVECLEN (pat, 0);
2804 int has_use_labelref = 0;
2805
2806 for (i = len - 1; i >= 0; i--)
2807 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2808 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2809 == LABEL_REF))
2810 has_use_labelref = 1;
2811
2812 if (! has_use_labelref)
2813 for (i = len - 1; i >= 0; i--)
2814 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2815 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2816 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2817 return 1;
2818 }
2819 else if (GET_CODE (pat) == SET
2820 && SET_DEST (pat) == pc_rtx
2821 && computed_jump_p_1 (SET_SRC (pat)))
2822 return 1;
2823 }
2824 return 0;
2825 }
2826
2827 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2828 calls. Processes the subexpressions of EXP and passes them to F. */
2829 static int
2830 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2831 {
2832 int result, i, j;
2833 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2834 rtx *x;
2835
2836 for (; format[n] != '\0'; n++)
2837 {
2838 switch (format[n])
2839 {
2840 case 'e':
2841 /* Call F on X. */
2842 x = &XEXP (exp, n);
2843 result = (*f) (x, data);
2844 if (result == -1)
2845 /* Do not traverse sub-expressions. */
2846 continue;
2847 else if (result != 0)
2848 /* Stop the traversal. */
2849 return result;
2850
2851 if (*x == NULL_RTX)
2852 /* There are no sub-expressions. */
2853 continue;
2854
2855 i = non_rtx_starting_operands[GET_CODE (*x)];
2856 if (i >= 0)
2857 {
2858 result = for_each_rtx_1 (*x, i, f, data);
2859 if (result != 0)
2860 return result;
2861 }
2862 break;
2863
2864 case 'V':
2865 case 'E':
2866 if (XVEC (exp, n) == 0)
2867 continue;
2868 for (j = 0; j < XVECLEN (exp, n); ++j)
2869 {
2870 /* Call F on X. */
2871 x = &XVECEXP (exp, n, j);
2872 result = (*f) (x, data);
2873 if (result == -1)
2874 /* Do not traverse sub-expressions. */
2875 continue;
2876 else if (result != 0)
2877 /* Stop the traversal. */
2878 return result;
2879
2880 if (*x == NULL_RTX)
2881 /* There are no sub-expressions. */
2882 continue;
2883
2884 i = non_rtx_starting_operands[GET_CODE (*x)];
2885 if (i >= 0)
2886 {
2887 result = for_each_rtx_1 (*x, i, f, data);
2888 if (result != 0)
2889 return result;
2890 }
2891 }
2892 break;
2893
2894 default:
2895 /* Nothing to do. */
2896 break;
2897 }
2898 }
2899
2900 return 0;
2901 }
2902
2903 /* Traverse X via depth-first search, calling F for each
2904 sub-expression (including X itself). F is also passed the DATA.
2905 If F returns -1, do not traverse sub-expressions, but continue
2906 traversing the rest of the tree. If F ever returns any other
2907 nonzero value, stop the traversal, and return the value returned
2908 by F. Otherwise, return 0. This function does not traverse inside
2909 tree structure that contains RTX_EXPRs, or into sub-expressions
2910 whose format code is `0' since it is not known whether or not those
2911 codes are actually RTL.
2912
2913 This routine is very general, and could (should?) be used to
2914 implement many of the other routines in this file. */
2915
2916 int
2917 for_each_rtx (rtx *x, rtx_function f, void *data)
2918 {
2919 int result;
2920 int i;
2921
2922 /* Call F on X. */
2923 result = (*f) (x, data);
2924 if (result == -1)
2925 /* Do not traverse sub-expressions. */
2926 return 0;
2927 else if (result != 0)
2928 /* Stop the traversal. */
2929 return result;
2930
2931 if (*x == NULL_RTX)
2932 /* There are no sub-expressions. */
2933 return 0;
2934
2935 i = non_rtx_starting_operands[GET_CODE (*x)];
2936 if (i < 0)
2937 return 0;
2938
2939 return for_each_rtx_1 (*x, i, f, data);
2940 }
2941
2942 \f
2943
2944 /* Data structure that holds the internal state communicated between
2945 for_each_inc_dec, for_each_inc_dec_find_mem and
2946 for_each_inc_dec_find_inc_dec. */
2947
2948 struct for_each_inc_dec_ops {
2949 /* The function to be called for each autoinc operation found. */
2950 for_each_inc_dec_fn fn;
2951 /* The opaque argument to be passed to it. */
2952 void *arg;
2953 /* The MEM we're visiting, if any. */
2954 rtx mem;
2955 };
2956
2957 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2958
2959 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2960 operands of the equivalent add insn and pass the result to the
2961 operator specified by *D. */
2962
2963 static int
2964 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2965 {
2966 rtx x = *r;
2967 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2968
2969 switch (GET_CODE (x))
2970 {
2971 case PRE_INC:
2972 case POST_INC:
2973 {
2974 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2975 rtx r1 = XEXP (x, 0);
2976 rtx c = gen_int_mode (size, GET_MODE (r1));
2977 return data->fn (data->mem, x, r1, r1, c, data->arg);
2978 }
2979
2980 case PRE_DEC:
2981 case POST_DEC:
2982 {
2983 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2984 rtx r1 = XEXP (x, 0);
2985 rtx c = gen_int_mode (-size, GET_MODE (r1));
2986 return data->fn (data->mem, x, r1, r1, c, data->arg);
2987 }
2988
2989 case PRE_MODIFY:
2990 case POST_MODIFY:
2991 {
2992 rtx r1 = XEXP (x, 0);
2993 rtx add = XEXP (x, 1);
2994 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2995 }
2996
2997 case MEM:
2998 {
2999 rtx save = data->mem;
3000 int ret = for_each_inc_dec_find_mem (r, d);
3001 data->mem = save;
3002 return ret;
3003 }
3004
3005 default:
3006 return 0;
3007 }
3008 }
3009
3010 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
3011 address, extract the operands of the equivalent add insn and pass
3012 the result to the operator specified by *D. */
3013
3014 static int
3015 for_each_inc_dec_find_mem (rtx *r, void *d)
3016 {
3017 rtx x = *r;
3018 if (x != NULL_RTX && MEM_P (x))
3019 {
3020 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
3021 int result;
3022
3023 data->mem = x;
3024
3025 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
3026 data);
3027 if (result)
3028 return result;
3029
3030 return -1;
3031 }
3032 return 0;
3033 }
3034
3035 /* Traverse *X looking for MEMs, and for autoinc operations within
3036 them. For each such autoinc operation found, call FN, passing it
3037 the innermost enclosing MEM, the operation itself, the RTX modified
3038 by the operation, two RTXs (the second may be NULL) that, once
3039 added, represent the value to be held by the modified RTX
3040 afterwards, and ARG. FN is to return -1 to skip looking for other
3041 autoinc operations within the visited operation, 0 to continue the
3042 traversal, or any other value to have it returned to the caller of
3043 for_each_inc_dec. */
3044
3045 int
3046 for_each_inc_dec (rtx *x,
3047 for_each_inc_dec_fn fn,
3048 void *arg)
3049 {
3050 struct for_each_inc_dec_ops data;
3051
3052 data.fn = fn;
3053 data.arg = arg;
3054 data.mem = NULL;
3055
3056 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3057 }
3058
3059 \f
3060 /* Searches X for any reference to REGNO, returning the rtx of the
3061 reference found if any. Otherwise, returns NULL_RTX. */
3062
3063 rtx
3064 regno_use_in (unsigned int regno, rtx x)
3065 {
3066 const char *fmt;
3067 int i, j;
3068 rtx tem;
3069
3070 if (REG_P (x) && REGNO (x) == regno)
3071 return x;
3072
3073 fmt = GET_RTX_FORMAT (GET_CODE (x));
3074 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3075 {
3076 if (fmt[i] == 'e')
3077 {
3078 if ((tem = regno_use_in (regno, XEXP (x, i))))
3079 return tem;
3080 }
3081 else if (fmt[i] == 'E')
3082 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3083 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3084 return tem;
3085 }
3086
3087 return NULL_RTX;
3088 }
3089
3090 /* Return a value indicating whether OP, an operand of a commutative
3091 operation, is preferred as the first or second operand. The higher
3092 the value, the stronger the preference for being the first operand.
3093 We use negative values to indicate a preference for the first operand
3094 and positive values for the second operand. */
3095
3096 int
3097 commutative_operand_precedence (rtx op)
3098 {
3099 enum rtx_code code = GET_CODE (op);
3100
3101 /* Constants always come the second operand. Prefer "nice" constants. */
3102 if (code == CONST_INT)
3103 return -8;
3104 if (code == CONST_DOUBLE)
3105 return -7;
3106 if (code == CONST_FIXED)
3107 return -7;
3108 op = avoid_constant_pool_reference (op);
3109 code = GET_CODE (op);
3110
3111 switch (GET_RTX_CLASS (code))
3112 {
3113 case RTX_CONST_OBJ:
3114 if (code == CONST_INT)
3115 return -6;
3116 if (code == CONST_DOUBLE)
3117 return -5;
3118 if (code == CONST_FIXED)
3119 return -5;
3120 return -4;
3121
3122 case RTX_EXTRA:
3123 /* SUBREGs of objects should come second. */
3124 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3125 return -3;
3126 return 0;
3127
3128 case RTX_OBJ:
3129 /* Complex expressions should be the first, so decrease priority
3130 of objects. Prefer pointer objects over non pointer objects. */
3131 if ((REG_P (op) && REG_POINTER (op))
3132 || (MEM_P (op) && MEM_POINTER (op)))
3133 return -1;
3134 return -2;
3135
3136 case RTX_COMM_ARITH:
3137 /* Prefer operands that are themselves commutative to be first.
3138 This helps to make things linear. In particular,
3139 (and (and (reg) (reg)) (not (reg))) is canonical. */
3140 return 4;
3141
3142 case RTX_BIN_ARITH:
3143 /* If only one operand is a binary expression, it will be the first
3144 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3145 is canonical, although it will usually be further simplified. */
3146 return 2;
3147
3148 case RTX_UNARY:
3149 /* Then prefer NEG and NOT. */
3150 if (code == NEG || code == NOT)
3151 return 1;
3152
3153 default:
3154 return 0;
3155 }
3156 }
3157
3158 /* Return 1 iff it is necessary to swap operands of commutative operation
3159 in order to canonicalize expression. */
3160
3161 bool
3162 swap_commutative_operands_p (rtx x, rtx y)
3163 {
3164 return (commutative_operand_precedence (x)
3165 < commutative_operand_precedence (y));
3166 }
3167
3168 /* Return 1 if X is an autoincrement side effect and the register is
3169 not the stack pointer. */
3170 int
3171 auto_inc_p (const_rtx x)
3172 {
3173 switch (GET_CODE (x))
3174 {
3175 case PRE_INC:
3176 case POST_INC:
3177 case PRE_DEC:
3178 case POST_DEC:
3179 case PRE_MODIFY:
3180 case POST_MODIFY:
3181 /* There are no REG_INC notes for SP. */
3182 if (XEXP (x, 0) != stack_pointer_rtx)
3183 return 1;
3184 default:
3185 break;
3186 }
3187 return 0;
3188 }
3189
3190 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3191 int
3192 loc_mentioned_in_p (rtx *loc, const_rtx in)
3193 {
3194 enum rtx_code code;
3195 const char *fmt;
3196 int i, j;
3197
3198 if (!in)
3199 return 0;
3200
3201 code = GET_CODE (in);
3202 fmt = GET_RTX_FORMAT (code);
3203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3204 {
3205 if (fmt[i] == 'e')
3206 {
3207 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3208 return 1;
3209 }
3210 else if (fmt[i] == 'E')
3211 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3212 if (loc == &XVECEXP (in, i, j)
3213 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3214 return 1;
3215 }
3216 return 0;
3217 }
3218
3219 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3220 and SUBREG_BYTE, return the bit offset where the subreg begins
3221 (counting from the least significant bit of the operand). */
3222
3223 unsigned int
3224 subreg_lsb_1 (enum machine_mode outer_mode,
3225 enum machine_mode inner_mode,
3226 unsigned int subreg_byte)
3227 {
3228 unsigned int bitpos;
3229 unsigned int byte;
3230 unsigned int word;
3231
3232 /* A paradoxical subreg begins at bit position 0. */
3233 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3234 return 0;
3235
3236 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3237 /* If the subreg crosses a word boundary ensure that
3238 it also begins and ends on a word boundary. */
3239 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3240 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3241 && (subreg_byte % UNITS_PER_WORD
3242 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3243
3244 if (WORDS_BIG_ENDIAN)
3245 word = (GET_MODE_SIZE (inner_mode)
3246 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3247 else
3248 word = subreg_byte / UNITS_PER_WORD;
3249 bitpos = word * BITS_PER_WORD;
3250
3251 if (BYTES_BIG_ENDIAN)
3252 byte = (GET_MODE_SIZE (inner_mode)
3253 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3254 else
3255 byte = subreg_byte % UNITS_PER_WORD;
3256 bitpos += byte * BITS_PER_UNIT;
3257
3258 return bitpos;
3259 }
3260
3261 /* Given a subreg X, return the bit offset where the subreg begins
3262 (counting from the least significant bit of the reg). */
3263
3264 unsigned int
3265 subreg_lsb (const_rtx x)
3266 {
3267 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3268 SUBREG_BYTE (x));
3269 }
3270
3271 /* Fill in information about a subreg of a hard register.
3272 xregno - A regno of an inner hard subreg_reg (or what will become one).
3273 xmode - The mode of xregno.
3274 offset - The byte offset.
3275 ymode - The mode of a top level SUBREG (or what may become one).
3276 info - Pointer to structure to fill in. */
3277 void
3278 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3279 unsigned int offset, enum machine_mode ymode,
3280 struct subreg_info *info)
3281 {
3282 int nregs_xmode, nregs_ymode;
3283 int mode_multiple, nregs_multiple;
3284 int offset_adj, y_offset, y_offset_adj;
3285 int regsize_xmode, regsize_ymode;
3286 bool rknown;
3287
3288 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3289
3290 rknown = false;
3291
3292 /* If there are holes in a non-scalar mode in registers, we expect
3293 that it is made up of its units concatenated together. */
3294 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3295 {
3296 enum machine_mode xmode_unit;
3297
3298 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3299 if (GET_MODE_INNER (xmode) == VOIDmode)
3300 xmode_unit = xmode;
3301 else
3302 xmode_unit = GET_MODE_INNER (xmode);
3303 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3304 gcc_assert (nregs_xmode
3305 == (GET_MODE_NUNITS (xmode)
3306 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3307 gcc_assert (hard_regno_nregs[xregno][xmode]
3308 == (hard_regno_nregs[xregno][xmode_unit]
3309 * GET_MODE_NUNITS (xmode)));
3310
3311 /* You can only ask for a SUBREG of a value with holes in the middle
3312 if you don't cross the holes. (Such a SUBREG should be done by
3313 picking a different register class, or doing it in memory if
3314 necessary.) An example of a value with holes is XCmode on 32-bit
3315 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3316 3 for each part, but in memory it's two 128-bit parts.
3317 Padding is assumed to be at the end (not necessarily the 'high part')
3318 of each unit. */
3319 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3320 < GET_MODE_NUNITS (xmode))
3321 && (offset / GET_MODE_SIZE (xmode_unit)
3322 != ((offset + GET_MODE_SIZE (ymode) - 1)
3323 / GET_MODE_SIZE (xmode_unit))))
3324 {
3325 info->representable_p = false;
3326 rknown = true;
3327 }
3328 }
3329 else
3330 nregs_xmode = hard_regno_nregs[xregno][xmode];
3331
3332 nregs_ymode = hard_regno_nregs[xregno][ymode];
3333
3334 /* Paradoxical subregs are otherwise valid. */
3335 if (!rknown
3336 && offset == 0
3337 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3338 {
3339 info->representable_p = true;
3340 /* If this is a big endian paradoxical subreg, which uses more
3341 actual hard registers than the original register, we must
3342 return a negative offset so that we find the proper highpart
3343 of the register. */
3344 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3345 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3346 info->offset = nregs_xmode - nregs_ymode;
3347 else
3348 info->offset = 0;
3349 info->nregs = nregs_ymode;
3350 return;
3351 }
3352
3353 /* If registers store different numbers of bits in the different
3354 modes, we cannot generally form this subreg. */
3355 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3356 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3357 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3358 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3359 {
3360 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3361 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3362 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3363 {
3364 info->representable_p = false;
3365 info->nregs
3366 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3367 info->offset = offset / regsize_xmode;
3368 return;
3369 }
3370 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3371 {
3372 info->representable_p = false;
3373 info->nregs
3374 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3375 info->offset = offset / regsize_xmode;
3376 return;
3377 }
3378 }
3379
3380 /* Lowpart subregs are otherwise valid. */
3381 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3382 {
3383 info->representable_p = true;
3384 rknown = true;
3385
3386 if (offset == 0 || nregs_xmode == nregs_ymode)
3387 {
3388 info->offset = 0;
3389 info->nregs = nregs_ymode;
3390 return;
3391 }
3392 }
3393
3394 /* This should always pass, otherwise we don't know how to verify
3395 the constraint. These conditions may be relaxed but
3396 subreg_regno_offset would need to be redesigned. */
3397 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3398 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3399
3400 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3401 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3402 {
3403 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3404 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3405 HOST_WIDE_INT off_low = offset & (ysize - 1);
3406 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3407 offset = (xsize - ysize - off_high) | off_low;
3408 }
3409 /* The XMODE value can be seen as a vector of NREGS_XMODE
3410 values. The subreg must represent a lowpart of given field.
3411 Compute what field it is. */
3412 offset_adj = offset;
3413 offset_adj -= subreg_lowpart_offset (ymode,
3414 mode_for_size (GET_MODE_BITSIZE (xmode)
3415 / nregs_xmode,
3416 MODE_INT, 0));
3417
3418 /* Size of ymode must not be greater than the size of xmode. */
3419 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3420 gcc_assert (mode_multiple != 0);
3421
3422 y_offset = offset / GET_MODE_SIZE (ymode);
3423 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3424 nregs_multiple = nregs_xmode / nregs_ymode;
3425
3426 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3427 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3428
3429 if (!rknown)
3430 {
3431 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3432 rknown = true;
3433 }
3434 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3435 info->nregs = nregs_ymode;
3436 }
3437
3438 /* This function returns the regno offset of a subreg expression.
3439 xregno - A regno of an inner hard subreg_reg (or what will become one).
3440 xmode - The mode of xregno.
3441 offset - The byte offset.
3442 ymode - The mode of a top level SUBREG (or what may become one).
3443 RETURN - The regno offset which would be used. */
3444 unsigned int
3445 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3446 unsigned int offset, enum machine_mode ymode)
3447 {
3448 struct subreg_info info;
3449 subreg_get_info (xregno, xmode, offset, ymode, &info);
3450 return info.offset;
3451 }
3452
3453 /* This function returns true when the offset is representable via
3454 subreg_offset in the given regno.
3455 xregno - A regno of an inner hard subreg_reg (or what will become one).
3456 xmode - The mode of xregno.
3457 offset - The byte offset.
3458 ymode - The mode of a top level SUBREG (or what may become one).
3459 RETURN - Whether the offset is representable. */
3460 bool
3461 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3462 unsigned int offset, enum machine_mode ymode)
3463 {
3464 struct subreg_info info;
3465 subreg_get_info (xregno, xmode, offset, ymode, &info);
3466 return info.representable_p;
3467 }
3468
3469 /* Return the number of a YMODE register to which
3470
3471 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3472
3473 can be simplified. Return -1 if the subreg can't be simplified.
3474
3475 XREGNO is a hard register number. */
3476
3477 int
3478 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3479 unsigned int offset, enum machine_mode ymode)
3480 {
3481 struct subreg_info info;
3482 unsigned int yregno;
3483
3484 #ifdef CANNOT_CHANGE_MODE_CLASS
3485 /* Give the backend a chance to disallow the mode change. */
3486 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3487 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3488 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3489 return -1;
3490 #endif
3491
3492 /* We shouldn't simplify stack-related registers. */
3493 if ((!reload_completed || frame_pointer_needed)
3494 && xregno == FRAME_POINTER_REGNUM)
3495 return -1;
3496
3497 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3498 && xregno == ARG_POINTER_REGNUM)
3499 return -1;
3500
3501 if (xregno == STACK_POINTER_REGNUM)
3502 return -1;
3503
3504 /* Try to get the register offset. */
3505 subreg_get_info (xregno, xmode, offset, ymode, &info);
3506 if (!info.representable_p)
3507 return -1;
3508
3509 /* Make sure that the offsetted register value is in range. */
3510 yregno = xregno + info.offset;
3511 if (!HARD_REGISTER_NUM_P (yregno))
3512 return -1;
3513
3514 /* See whether (reg:YMODE YREGNO) is valid.
3515
3516 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3517 This is a kludge to work around how complex FP arguments are passed
3518 on IA-64 and should be fixed. See PR target/49226. */
3519 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3520 && HARD_REGNO_MODE_OK (xregno, xmode))
3521 return -1;
3522
3523 return (int) yregno;
3524 }
3525
3526 /* Return the final regno that a subreg expression refers to. */
3527 unsigned int
3528 subreg_regno (const_rtx x)
3529 {
3530 unsigned int ret;
3531 rtx subreg = SUBREG_REG (x);
3532 int regno = REGNO (subreg);
3533
3534 ret = regno + subreg_regno_offset (regno,
3535 GET_MODE (subreg),
3536 SUBREG_BYTE (x),
3537 GET_MODE (x));
3538 return ret;
3539
3540 }
3541
3542 /* Return the number of registers that a subreg expression refers
3543 to. */
3544 unsigned int
3545 subreg_nregs (const_rtx x)
3546 {
3547 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3548 }
3549
3550 /* Return the number of registers that a subreg REG with REGNO
3551 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3552 changed so that the regno can be passed in. */
3553
3554 unsigned int
3555 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3556 {
3557 struct subreg_info info;
3558 rtx subreg = SUBREG_REG (x);
3559
3560 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3561 &info);
3562 return info.nregs;
3563 }
3564
3565
3566 struct parms_set_data
3567 {
3568 int nregs;
3569 HARD_REG_SET regs;
3570 };
3571
3572 /* Helper function for noticing stores to parameter registers. */
3573 static void
3574 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3575 {
3576 struct parms_set_data *const d = (struct parms_set_data *) data;
3577 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3578 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3579 {
3580 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3581 d->nregs--;
3582 }
3583 }
3584
3585 /* Look backward for first parameter to be loaded.
3586 Note that loads of all parameters will not necessarily be
3587 found if CSE has eliminated some of them (e.g., an argument
3588 to the outer function is passed down as a parameter).
3589 Do not skip BOUNDARY. */
3590 rtx
3591 find_first_parameter_load (rtx call_insn, rtx boundary)
3592 {
3593 struct parms_set_data parm;
3594 rtx p, before, first_set;
3595
3596 /* Since different machines initialize their parameter registers
3597 in different orders, assume nothing. Collect the set of all
3598 parameter registers. */
3599 CLEAR_HARD_REG_SET (parm.regs);
3600 parm.nregs = 0;
3601 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3602 if (GET_CODE (XEXP (p, 0)) == USE
3603 && REG_P (XEXP (XEXP (p, 0), 0)))
3604 {
3605 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3606
3607 /* We only care about registers which can hold function
3608 arguments. */
3609 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3610 continue;
3611
3612 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3613 parm.nregs++;
3614 }
3615 before = call_insn;
3616 first_set = call_insn;
3617
3618 /* Search backward for the first set of a register in this set. */
3619 while (parm.nregs && before != boundary)
3620 {
3621 before = PREV_INSN (before);
3622
3623 /* It is possible that some loads got CSEed from one call to
3624 another. Stop in that case. */
3625 if (CALL_P (before))
3626 break;
3627
3628 /* Our caller needs either ensure that we will find all sets
3629 (in case code has not been optimized yet), or take care
3630 for possible labels in a way by setting boundary to preceding
3631 CODE_LABEL. */
3632 if (LABEL_P (before))
3633 {
3634 gcc_assert (before == boundary);
3635 break;
3636 }
3637
3638 if (INSN_P (before))
3639 {
3640 int nregs_old = parm.nregs;
3641 note_stores (PATTERN (before), parms_set, &parm);
3642 /* If we found something that did not set a parameter reg,
3643 we're done. Do not keep going, as that might result
3644 in hoisting an insn before the setting of a pseudo
3645 that is used by the hoisted insn. */
3646 if (nregs_old != parm.nregs)
3647 first_set = before;
3648 else
3649 break;
3650 }
3651 }
3652 return first_set;
3653 }
3654
3655 /* Return true if we should avoid inserting code between INSN and preceding
3656 call instruction. */
3657
3658 bool
3659 keep_with_call_p (const_rtx insn)
3660 {
3661 rtx set;
3662
3663 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3664 {
3665 if (REG_P (SET_DEST (set))
3666 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3667 && fixed_regs[REGNO (SET_DEST (set))]
3668 && general_operand (SET_SRC (set), VOIDmode))
3669 return true;
3670 if (REG_P (SET_SRC (set))
3671 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3672 && REG_P (SET_DEST (set))
3673 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3674 return true;
3675 /* There may be a stack pop just after the call and before the store
3676 of the return register. Search for the actual store when deciding
3677 if we can break or not. */
3678 if (SET_DEST (set) == stack_pointer_rtx)
3679 {
3680 /* This CONST_CAST is okay because next_nonnote_insn just
3681 returns its argument and we assign it to a const_rtx
3682 variable. */
3683 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3684 if (i2 && keep_with_call_p (i2))
3685 return true;
3686 }
3687 }
3688 return false;
3689 }
3690
3691 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3692 to non-complex jumps. That is, direct unconditional, conditional,
3693 and tablejumps, but not computed jumps or returns. It also does
3694 not apply to the fallthru case of a conditional jump. */
3695
3696 bool
3697 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3698 {
3699 rtx tmp = JUMP_LABEL (jump_insn);
3700
3701 if (label == tmp)
3702 return true;
3703
3704 if (tablejump_p (jump_insn, NULL, &tmp))
3705 {
3706 rtvec vec = XVEC (PATTERN (tmp),
3707 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3708 int i, veclen = GET_NUM_ELEM (vec);
3709
3710 for (i = 0; i < veclen; ++i)
3711 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3712 return true;
3713 }
3714
3715 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3716 return true;
3717
3718 return false;
3719 }
3720
3721 \f
3722 /* Return an estimate of the cost of computing rtx X.
3723 One use is in cse, to decide which expression to keep in the hash table.
3724 Another is in rtl generation, to pick the cheapest way to multiply.
3725 Other uses like the latter are expected in the future.
3726
3727 X appears as operand OPNO in an expression with code OUTER_CODE.
3728 SPEED specifies whether costs optimized for speed or size should
3729 be returned. */
3730
3731 int
3732 rtx_cost (rtx x, enum rtx_code outer_code, int opno, bool speed)
3733 {
3734 int i, j;
3735 enum rtx_code code;
3736 const char *fmt;
3737 int total;
3738
3739 if (x == 0)
3740 return 0;
3741
3742 /* Compute the default costs of certain things.
3743 Note that targetm.rtx_costs can override the defaults. */
3744
3745 code = GET_CODE (x);
3746 switch (code)
3747 {
3748 case MULT:
3749 total = COSTS_N_INSNS (5);
3750 break;
3751 case DIV:
3752 case UDIV:
3753 case MOD:
3754 case UMOD:
3755 total = COSTS_N_INSNS (7);
3756 break;
3757 case USE:
3758 /* Used in combine.c as a marker. */
3759 total = 0;
3760 break;
3761 default:
3762 total = COSTS_N_INSNS (1);
3763 }
3764
3765 switch (code)
3766 {
3767 case REG:
3768 return 0;
3769
3770 case SUBREG:
3771 total = 0;
3772 /* If we can't tie these modes, make this expensive. The larger
3773 the mode, the more expensive it is. */
3774 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3775 return COSTS_N_INSNS (2
3776 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3777 break;
3778
3779 default:
3780 if (targetm.rtx_costs (x, code, outer_code, opno, &total, speed))
3781 return total;
3782 break;
3783 }
3784
3785 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3786 which is already in total. */
3787
3788 fmt = GET_RTX_FORMAT (code);
3789 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3790 if (fmt[i] == 'e')
3791 total += rtx_cost (XEXP (x, i), code, i, speed);
3792 else if (fmt[i] == 'E')
3793 for (j = 0; j < XVECLEN (x, i); j++)
3794 total += rtx_cost (XVECEXP (x, i, j), code, i, speed);
3795
3796 return total;
3797 }
3798
3799 /* Fill in the structure C with information about both speed and size rtx
3800 costs for X, which is operand OPNO in an expression with code OUTER. */
3801
3802 void
3803 get_full_rtx_cost (rtx x, enum rtx_code outer, int opno,
3804 struct full_rtx_costs *c)
3805 {
3806 c->speed = rtx_cost (x, outer, opno, true);
3807 c->size = rtx_cost (x, outer, opno, false);
3808 }
3809
3810 \f
3811 /* Return cost of address expression X.
3812 Expect that X is properly formed address reference.
3813
3814 SPEED parameter specify whether costs optimized for speed or size should
3815 be returned. */
3816
3817 int
3818 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3819 {
3820 /* We may be asked for cost of various unusual addresses, such as operands
3821 of push instruction. It is not worthwhile to complicate writing
3822 of the target hook by such cases. */
3823
3824 if (!memory_address_addr_space_p (mode, x, as))
3825 return 1000;
3826
3827 return targetm.address_cost (x, speed);
3828 }
3829
3830 /* If the target doesn't override, compute the cost as with arithmetic. */
3831
3832 int
3833 default_address_cost (rtx x, bool speed)
3834 {
3835 return rtx_cost (x, MEM, 0, speed);
3836 }
3837 \f
3838
3839 unsigned HOST_WIDE_INT
3840 nonzero_bits (const_rtx x, enum machine_mode mode)
3841 {
3842 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3843 }
3844
3845 unsigned int
3846 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3847 {
3848 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3849 }
3850
3851 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3852 It avoids exponential behavior in nonzero_bits1 when X has
3853 identical subexpressions on the first or the second level. */
3854
3855 static unsigned HOST_WIDE_INT
3856 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3857 enum machine_mode known_mode,
3858 unsigned HOST_WIDE_INT known_ret)
3859 {
3860 if (x == known_x && mode == known_mode)
3861 return known_ret;
3862
3863 /* Try to find identical subexpressions. If found call
3864 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3865 precomputed value for the subexpression as KNOWN_RET. */
3866
3867 if (ARITHMETIC_P (x))
3868 {
3869 rtx x0 = XEXP (x, 0);
3870 rtx x1 = XEXP (x, 1);
3871
3872 /* Check the first level. */
3873 if (x0 == x1)
3874 return nonzero_bits1 (x, mode, x0, mode,
3875 cached_nonzero_bits (x0, mode, known_x,
3876 known_mode, known_ret));
3877
3878 /* Check the second level. */
3879 if (ARITHMETIC_P (x0)
3880 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3881 return nonzero_bits1 (x, mode, x1, mode,
3882 cached_nonzero_bits (x1, mode, known_x,
3883 known_mode, known_ret));
3884
3885 if (ARITHMETIC_P (x1)
3886 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3887 return nonzero_bits1 (x, mode, x0, mode,
3888 cached_nonzero_bits (x0, mode, known_x,
3889 known_mode, known_ret));
3890 }
3891
3892 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3893 }
3894
3895 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3896 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3897 is less useful. We can't allow both, because that results in exponential
3898 run time recursion. There is a nullstone testcase that triggered
3899 this. This macro avoids accidental uses of num_sign_bit_copies. */
3900 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3901
3902 /* Given an expression, X, compute which bits in X can be nonzero.
3903 We don't care about bits outside of those defined in MODE.
3904
3905 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3906 an arithmetic operation, we can do better. */
3907
3908 static unsigned HOST_WIDE_INT
3909 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3910 enum machine_mode known_mode,
3911 unsigned HOST_WIDE_INT known_ret)
3912 {
3913 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3914 unsigned HOST_WIDE_INT inner_nz;
3915 enum rtx_code code;
3916 enum machine_mode inner_mode;
3917 unsigned int mode_width = GET_MODE_PRECISION (mode);
3918
3919 /* For floating-point and vector values, assume all bits are needed. */
3920 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3921 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3922 return nonzero;
3923
3924 /* If X is wider than MODE, use its mode instead. */
3925 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3926 {
3927 mode = GET_MODE (x);
3928 nonzero = GET_MODE_MASK (mode);
3929 mode_width = GET_MODE_PRECISION (mode);
3930 }
3931
3932 if (mode_width > HOST_BITS_PER_WIDE_INT)
3933 /* Our only callers in this case look for single bit values. So
3934 just return the mode mask. Those tests will then be false. */
3935 return nonzero;
3936
3937 #ifndef WORD_REGISTER_OPERATIONS
3938 /* If MODE is wider than X, but both are a single word for both the host
3939 and target machines, we can compute this from which bits of the
3940 object might be nonzero in its own mode, taking into account the fact
3941 that on many CISC machines, accessing an object in a wider mode
3942 causes the high-order bits to become undefined. So they are
3943 not known to be zero. */
3944
3945 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3946 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3947 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3948 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3949 {
3950 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3951 known_x, known_mode, known_ret);
3952 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3953 return nonzero;
3954 }
3955 #endif
3956
3957 code = GET_CODE (x);
3958 switch (code)
3959 {
3960 case REG:
3961 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3962 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3963 all the bits above ptr_mode are known to be zero. */
3964 /* As we do not know which address space the pointer is refering to,
3965 we can do this only if the target does not support different pointer
3966 or address modes depending on the address space. */
3967 if (target_default_pointer_address_modes_p ()
3968 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3969 && REG_POINTER (x))
3970 nonzero &= GET_MODE_MASK (ptr_mode);
3971 #endif
3972
3973 /* Include declared information about alignment of pointers. */
3974 /* ??? We don't properly preserve REG_POINTER changes across
3975 pointer-to-integer casts, so we can't trust it except for
3976 things that we know must be pointers. See execute/960116-1.c. */
3977 if ((x == stack_pointer_rtx
3978 || x == frame_pointer_rtx
3979 || x == arg_pointer_rtx)
3980 && REGNO_POINTER_ALIGN (REGNO (x)))
3981 {
3982 unsigned HOST_WIDE_INT alignment
3983 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3984
3985 #ifdef PUSH_ROUNDING
3986 /* If PUSH_ROUNDING is defined, it is possible for the
3987 stack to be momentarily aligned only to that amount,
3988 so we pick the least alignment. */
3989 if (x == stack_pointer_rtx && PUSH_ARGS)
3990 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3991 alignment);
3992 #endif
3993
3994 nonzero &= ~(alignment - 1);
3995 }
3996
3997 {
3998 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3999 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
4000 known_mode, known_ret,
4001 &nonzero_for_hook);
4002
4003 if (new_rtx)
4004 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
4005 known_mode, known_ret);
4006
4007 return nonzero_for_hook;
4008 }
4009
4010 case CONST_INT:
4011 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
4012 /* If X is negative in MODE, sign-extend the value. */
4013 if (INTVAL (x) > 0
4014 && mode_width < BITS_PER_WORD
4015 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
4016 != 0)
4017 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
4018 #endif
4019
4020 return UINTVAL (x);
4021
4022 case MEM:
4023 #ifdef LOAD_EXTEND_OP
4024 /* In many, if not most, RISC machines, reading a byte from memory
4025 zeros the rest of the register. Noticing that fact saves a lot
4026 of extra zero-extends. */
4027 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
4028 nonzero &= GET_MODE_MASK (GET_MODE (x));
4029 #endif
4030 break;
4031
4032 case EQ: case NE:
4033 case UNEQ: case LTGT:
4034 case GT: case GTU: case UNGT:
4035 case LT: case LTU: case UNLT:
4036 case GE: case GEU: case UNGE:
4037 case LE: case LEU: case UNLE:
4038 case UNORDERED: case ORDERED:
4039 /* If this produces an integer result, we know which bits are set.
4040 Code here used to clear bits outside the mode of X, but that is
4041 now done above. */
4042 /* Mind that MODE is the mode the caller wants to look at this
4043 operation in, and not the actual operation mode. We can wind
4044 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
4045 that describes the results of a vector compare. */
4046 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
4047 && mode_width <= HOST_BITS_PER_WIDE_INT)
4048 nonzero = STORE_FLAG_VALUE;
4049 break;
4050
4051 case NEG:
4052 #if 0
4053 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4054 and num_sign_bit_copies. */
4055 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4056 == GET_MODE_PRECISION (GET_MODE (x)))
4057 nonzero = 1;
4058 #endif
4059
4060 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4061 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4062 break;
4063
4064 case ABS:
4065 #if 0
4066 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4067 and num_sign_bit_copies. */
4068 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4069 == GET_MODE_PRECISION (GET_MODE (x)))
4070 nonzero = 1;
4071 #endif
4072 break;
4073
4074 case TRUNCATE:
4075 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4076 known_x, known_mode, known_ret)
4077 & GET_MODE_MASK (mode));
4078 break;
4079
4080 case ZERO_EXTEND:
4081 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4082 known_x, known_mode, known_ret);
4083 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4084 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4085 break;
4086
4087 case SIGN_EXTEND:
4088 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4089 Otherwise, show all the bits in the outer mode but not the inner
4090 may be nonzero. */
4091 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4092 known_x, known_mode, known_ret);
4093 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4094 {
4095 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4096 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4097 inner_nz |= (GET_MODE_MASK (mode)
4098 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4099 }
4100
4101 nonzero &= inner_nz;
4102 break;
4103
4104 case AND:
4105 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4106 known_x, known_mode, known_ret)
4107 & cached_nonzero_bits (XEXP (x, 1), mode,
4108 known_x, known_mode, known_ret);
4109 break;
4110
4111 case XOR: case IOR:
4112 case UMIN: case UMAX: case SMIN: case SMAX:
4113 {
4114 unsigned HOST_WIDE_INT nonzero0
4115 = cached_nonzero_bits (XEXP (x, 0), mode,
4116 known_x, known_mode, known_ret);
4117
4118 /* Don't call nonzero_bits for the second time if it cannot change
4119 anything. */
4120 if ((nonzero & nonzero0) != nonzero)
4121 nonzero &= nonzero0
4122 | cached_nonzero_bits (XEXP (x, 1), mode,
4123 known_x, known_mode, known_ret);
4124 }
4125 break;
4126
4127 case PLUS: case MINUS:
4128 case MULT:
4129 case DIV: case UDIV:
4130 case MOD: case UMOD:
4131 /* We can apply the rules of arithmetic to compute the number of
4132 high- and low-order zero bits of these operations. We start by
4133 computing the width (position of the highest-order nonzero bit)
4134 and the number of low-order zero bits for each value. */
4135 {
4136 unsigned HOST_WIDE_INT nz0
4137 = cached_nonzero_bits (XEXP (x, 0), mode,
4138 known_x, known_mode, known_ret);
4139 unsigned HOST_WIDE_INT nz1
4140 = cached_nonzero_bits (XEXP (x, 1), mode,
4141 known_x, known_mode, known_ret);
4142 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4143 int width0 = floor_log2 (nz0) + 1;
4144 int width1 = floor_log2 (nz1) + 1;
4145 int low0 = floor_log2 (nz0 & -nz0);
4146 int low1 = floor_log2 (nz1 & -nz1);
4147 unsigned HOST_WIDE_INT op0_maybe_minusp
4148 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4149 unsigned HOST_WIDE_INT op1_maybe_minusp
4150 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4151 unsigned int result_width = mode_width;
4152 int result_low = 0;
4153
4154 switch (code)
4155 {
4156 case PLUS:
4157 result_width = MAX (width0, width1) + 1;
4158 result_low = MIN (low0, low1);
4159 break;
4160 case MINUS:
4161 result_low = MIN (low0, low1);
4162 break;
4163 case MULT:
4164 result_width = width0 + width1;
4165 result_low = low0 + low1;
4166 break;
4167 case DIV:
4168 if (width1 == 0)
4169 break;
4170 if (!op0_maybe_minusp && !op1_maybe_minusp)
4171 result_width = width0;
4172 break;
4173 case UDIV:
4174 if (width1 == 0)
4175 break;
4176 result_width = width0;
4177 break;
4178 case MOD:
4179 if (width1 == 0)
4180 break;
4181 if (!op0_maybe_minusp && !op1_maybe_minusp)
4182 result_width = MIN (width0, width1);
4183 result_low = MIN (low0, low1);
4184 break;
4185 case UMOD:
4186 if (width1 == 0)
4187 break;
4188 result_width = MIN (width0, width1);
4189 result_low = MIN (low0, low1);
4190 break;
4191 default:
4192 gcc_unreachable ();
4193 }
4194
4195 if (result_width < mode_width)
4196 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4197
4198 if (result_low > 0)
4199 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4200 }
4201 break;
4202
4203 case ZERO_EXTRACT:
4204 if (CONST_INT_P (XEXP (x, 1))
4205 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4206 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4207 break;
4208
4209 case SUBREG:
4210 /* If this is a SUBREG formed for a promoted variable that has
4211 been zero-extended, we know that at least the high-order bits
4212 are zero, though others might be too. */
4213
4214 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4215 nonzero = GET_MODE_MASK (GET_MODE (x))
4216 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4217 known_x, known_mode, known_ret);
4218
4219 inner_mode = GET_MODE (SUBREG_REG (x));
4220 /* If the inner mode is a single word for both the host and target
4221 machines, we can compute this from which bits of the inner
4222 object might be nonzero. */
4223 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4224 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4225 {
4226 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4227 known_x, known_mode, known_ret);
4228
4229 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4230 /* If this is a typical RISC machine, we only have to worry
4231 about the way loads are extended. */
4232 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4233 ? val_signbit_known_set_p (inner_mode, nonzero)
4234 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4235 || !MEM_P (SUBREG_REG (x)))
4236 #endif
4237 {
4238 /* On many CISC machines, accessing an object in a wider mode
4239 causes the high-order bits to become undefined. So they are
4240 not known to be zero. */
4241 if (GET_MODE_PRECISION (GET_MODE (x))
4242 > GET_MODE_PRECISION (inner_mode))
4243 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4244 & ~GET_MODE_MASK (inner_mode));
4245 }
4246 }
4247 break;
4248
4249 case ASHIFTRT:
4250 case LSHIFTRT:
4251 case ASHIFT:
4252 case ROTATE:
4253 /* The nonzero bits are in two classes: any bits within MODE
4254 that aren't in GET_MODE (x) are always significant. The rest of the
4255 nonzero bits are those that are significant in the operand of
4256 the shift when shifted the appropriate number of bits. This
4257 shows that high-order bits are cleared by the right shift and
4258 low-order bits by left shifts. */
4259 if (CONST_INT_P (XEXP (x, 1))
4260 && INTVAL (XEXP (x, 1)) >= 0
4261 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4262 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4263 {
4264 enum machine_mode inner_mode = GET_MODE (x);
4265 unsigned int width = GET_MODE_PRECISION (inner_mode);
4266 int count = INTVAL (XEXP (x, 1));
4267 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4268 unsigned HOST_WIDE_INT op_nonzero
4269 = cached_nonzero_bits (XEXP (x, 0), mode,
4270 known_x, known_mode, known_ret);
4271 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4272 unsigned HOST_WIDE_INT outer = 0;
4273
4274 if (mode_width > width)
4275 outer = (op_nonzero & nonzero & ~mode_mask);
4276
4277 if (code == LSHIFTRT)
4278 inner >>= count;
4279 else if (code == ASHIFTRT)
4280 {
4281 inner >>= count;
4282
4283 /* If the sign bit may have been nonzero before the shift, we
4284 need to mark all the places it could have been copied to
4285 by the shift as possibly nonzero. */
4286 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4287 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4288 << (width - count);
4289 }
4290 else if (code == ASHIFT)
4291 inner <<= count;
4292 else
4293 inner = ((inner << (count % width)
4294 | (inner >> (width - (count % width)))) & mode_mask);
4295
4296 nonzero &= (outer | inner);
4297 }
4298 break;
4299
4300 case FFS:
4301 case POPCOUNT:
4302 /* This is at most the number of bits in the mode. */
4303 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4304 break;
4305
4306 case CLZ:
4307 /* If CLZ has a known value at zero, then the nonzero bits are
4308 that value, plus the number of bits in the mode minus one. */
4309 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4310 nonzero
4311 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4312 else
4313 nonzero = -1;
4314 break;
4315
4316 case CTZ:
4317 /* If CTZ has a known value at zero, then the nonzero bits are
4318 that value, plus the number of bits in the mode minus one. */
4319 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4320 nonzero
4321 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4322 else
4323 nonzero = -1;
4324 break;
4325
4326 case CLRSB:
4327 /* This is at most the number of bits in the mode minus 1. */
4328 nonzero = ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4329 break;
4330
4331 case PARITY:
4332 nonzero = 1;
4333 break;
4334
4335 case IF_THEN_ELSE:
4336 {
4337 unsigned HOST_WIDE_INT nonzero_true
4338 = cached_nonzero_bits (XEXP (x, 1), mode,
4339 known_x, known_mode, known_ret);
4340
4341 /* Don't call nonzero_bits for the second time if it cannot change
4342 anything. */
4343 if ((nonzero & nonzero_true) != nonzero)
4344 nonzero &= nonzero_true
4345 | cached_nonzero_bits (XEXP (x, 2), mode,
4346 known_x, known_mode, known_ret);
4347 }
4348 break;
4349
4350 default:
4351 break;
4352 }
4353
4354 return nonzero;
4355 }
4356
4357 /* See the macro definition above. */
4358 #undef cached_num_sign_bit_copies
4359
4360 \f
4361 /* The function cached_num_sign_bit_copies is a wrapper around
4362 num_sign_bit_copies1. It avoids exponential behavior in
4363 num_sign_bit_copies1 when X has identical subexpressions on the
4364 first or the second level. */
4365
4366 static unsigned int
4367 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4368 enum machine_mode known_mode,
4369 unsigned int known_ret)
4370 {
4371 if (x == known_x && mode == known_mode)
4372 return known_ret;
4373
4374 /* Try to find identical subexpressions. If found call
4375 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4376 the precomputed value for the subexpression as KNOWN_RET. */
4377
4378 if (ARITHMETIC_P (x))
4379 {
4380 rtx x0 = XEXP (x, 0);
4381 rtx x1 = XEXP (x, 1);
4382
4383 /* Check the first level. */
4384 if (x0 == x1)
4385 return
4386 num_sign_bit_copies1 (x, mode, x0, mode,
4387 cached_num_sign_bit_copies (x0, mode, known_x,
4388 known_mode,
4389 known_ret));
4390
4391 /* Check the second level. */
4392 if (ARITHMETIC_P (x0)
4393 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4394 return
4395 num_sign_bit_copies1 (x, mode, x1, mode,
4396 cached_num_sign_bit_copies (x1, mode, known_x,
4397 known_mode,
4398 known_ret));
4399
4400 if (ARITHMETIC_P (x1)
4401 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4402 return
4403 num_sign_bit_copies1 (x, mode, x0, mode,
4404 cached_num_sign_bit_copies (x0, mode, known_x,
4405 known_mode,
4406 known_ret));
4407 }
4408
4409 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4410 }
4411
4412 /* Return the number of bits at the high-order end of X that are known to
4413 be equal to the sign bit. X will be used in mode MODE; if MODE is
4414 VOIDmode, X will be used in its own mode. The returned value will always
4415 be between 1 and the number of bits in MODE. */
4416
4417 static unsigned int
4418 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4419 enum machine_mode known_mode,
4420 unsigned int known_ret)
4421 {
4422 enum rtx_code code = GET_CODE (x);
4423 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4424 int num0, num1, result;
4425 unsigned HOST_WIDE_INT nonzero;
4426
4427 /* If we weren't given a mode, use the mode of X. If the mode is still
4428 VOIDmode, we don't know anything. Likewise if one of the modes is
4429 floating-point. */
4430
4431 if (mode == VOIDmode)
4432 mode = GET_MODE (x);
4433
4434 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4435 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4436 return 1;
4437
4438 /* For a smaller object, just ignore the high bits. */
4439 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4440 {
4441 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4442 known_x, known_mode, known_ret);
4443 return MAX (1,
4444 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4445 }
4446
4447 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4448 {
4449 #ifndef WORD_REGISTER_OPERATIONS
4450 /* If this machine does not do all register operations on the entire
4451 register and MODE is wider than the mode of X, we can say nothing
4452 at all about the high-order bits. */
4453 return 1;
4454 #else
4455 /* Likewise on machines that do, if the mode of the object is smaller
4456 than a word and loads of that size don't sign extend, we can say
4457 nothing about the high order bits. */
4458 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4459 #ifdef LOAD_EXTEND_OP
4460 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4461 #endif
4462 )
4463 return 1;
4464 #endif
4465 }
4466
4467 switch (code)
4468 {
4469 case REG:
4470
4471 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4472 /* If pointers extend signed and this is a pointer in Pmode, say that
4473 all the bits above ptr_mode are known to be sign bit copies. */
4474 /* As we do not know which address space the pointer is refering to,
4475 we can do this only if the target does not support different pointer
4476 or address modes depending on the address space. */
4477 if (target_default_pointer_address_modes_p ()
4478 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4479 && mode == Pmode && REG_POINTER (x))
4480 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4481 #endif
4482
4483 {
4484 unsigned int copies_for_hook = 1, copies = 1;
4485 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4486 known_mode, known_ret,
4487 &copies_for_hook);
4488
4489 if (new_rtx)
4490 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4491 known_mode, known_ret);
4492
4493 if (copies > 1 || copies_for_hook > 1)
4494 return MAX (copies, copies_for_hook);
4495
4496 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4497 }
4498 break;
4499
4500 case MEM:
4501 #ifdef LOAD_EXTEND_OP
4502 /* Some RISC machines sign-extend all loads of smaller than a word. */
4503 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4504 return MAX (1, ((int) bitwidth
4505 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4506 #endif
4507 break;
4508
4509 case CONST_INT:
4510 /* If the constant is negative, take its 1's complement and remask.
4511 Then see how many zero bits we have. */
4512 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4513 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4514 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4515 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4516
4517 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4518
4519 case SUBREG:
4520 /* If this is a SUBREG for a promoted object that is sign-extended
4521 and we are looking at it in a wider mode, we know that at least the
4522 high-order bits are known to be sign bit copies. */
4523
4524 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4525 {
4526 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4527 known_x, known_mode, known_ret);
4528 return MAX ((int) bitwidth
4529 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4530 num0);
4531 }
4532
4533 /* For a smaller object, just ignore the high bits. */
4534 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4535 {
4536 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4537 known_x, known_mode, known_ret);
4538 return MAX (1, (num0
4539 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4540 - bitwidth)));
4541 }
4542
4543 #ifdef WORD_REGISTER_OPERATIONS
4544 #ifdef LOAD_EXTEND_OP
4545 /* For paradoxical SUBREGs on machines where all register operations
4546 affect the entire register, just look inside. Note that we are
4547 passing MODE to the recursive call, so the number of sign bit copies
4548 will remain relative to that mode, not the inner mode. */
4549
4550 /* This works only if loads sign extend. Otherwise, if we get a
4551 reload for the inner part, it may be loaded from the stack, and
4552 then we lose all sign bit copies that existed before the store
4553 to the stack. */
4554
4555 if (paradoxical_subreg_p (x)
4556 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4557 && MEM_P (SUBREG_REG (x)))
4558 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4559 known_x, known_mode, known_ret);
4560 #endif
4561 #endif
4562 break;
4563
4564 case SIGN_EXTRACT:
4565 if (CONST_INT_P (XEXP (x, 1)))
4566 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4567 break;
4568
4569 case SIGN_EXTEND:
4570 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4571 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4572 known_x, known_mode, known_ret));
4573
4574 case TRUNCATE:
4575 /* For a smaller object, just ignore the high bits. */
4576 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4577 known_x, known_mode, known_ret);
4578 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4579 - bitwidth)));
4580
4581 case NOT:
4582 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4583 known_x, known_mode, known_ret);
4584
4585 case ROTATE: case ROTATERT:
4586 /* If we are rotating left by a number of bits less than the number
4587 of sign bit copies, we can just subtract that amount from the
4588 number. */
4589 if (CONST_INT_P (XEXP (x, 1))
4590 && INTVAL (XEXP (x, 1)) >= 0
4591 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4592 {
4593 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4594 known_x, known_mode, known_ret);
4595 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4596 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4597 }
4598 break;
4599
4600 case NEG:
4601 /* In general, this subtracts one sign bit copy. But if the value
4602 is known to be positive, the number of sign bit copies is the
4603 same as that of the input. Finally, if the input has just one bit
4604 that might be nonzero, all the bits are copies of the sign bit. */
4605 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4606 known_x, known_mode, known_ret);
4607 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4608 return num0 > 1 ? num0 - 1 : 1;
4609
4610 nonzero = nonzero_bits (XEXP (x, 0), mode);
4611 if (nonzero == 1)
4612 return bitwidth;
4613
4614 if (num0 > 1
4615 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4616 num0--;
4617
4618 return num0;
4619
4620 case IOR: case AND: case XOR:
4621 case SMIN: case SMAX: case UMIN: case UMAX:
4622 /* Logical operations will preserve the number of sign-bit copies.
4623 MIN and MAX operations always return one of the operands. */
4624 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4625 known_x, known_mode, known_ret);
4626 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4627 known_x, known_mode, known_ret);
4628
4629 /* If num1 is clearing some of the top bits then regardless of
4630 the other term, we are guaranteed to have at least that many
4631 high-order zero bits. */
4632 if (code == AND
4633 && num1 > 1
4634 && bitwidth <= HOST_BITS_PER_WIDE_INT
4635 && CONST_INT_P (XEXP (x, 1))
4636 && (UINTVAL (XEXP (x, 1))
4637 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4638 return num1;
4639
4640 /* Similarly for IOR when setting high-order bits. */
4641 if (code == IOR
4642 && num1 > 1
4643 && bitwidth <= HOST_BITS_PER_WIDE_INT
4644 && CONST_INT_P (XEXP (x, 1))
4645 && (UINTVAL (XEXP (x, 1))
4646 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4647 return num1;
4648
4649 return MIN (num0, num1);
4650
4651 case PLUS: case MINUS:
4652 /* For addition and subtraction, we can have a 1-bit carry. However,
4653 if we are subtracting 1 from a positive number, there will not
4654 be such a carry. Furthermore, if the positive number is known to
4655 be 0 or 1, we know the result is either -1 or 0. */
4656
4657 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4658 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4659 {
4660 nonzero = nonzero_bits (XEXP (x, 0), mode);
4661 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4662 return (nonzero == 1 || nonzero == 0 ? bitwidth
4663 : bitwidth - floor_log2 (nonzero) - 1);
4664 }
4665
4666 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4667 known_x, known_mode, known_ret);
4668 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4669 known_x, known_mode, known_ret);
4670 result = MAX (1, MIN (num0, num1) - 1);
4671
4672 return result;
4673
4674 case MULT:
4675 /* The number of bits of the product is the sum of the number of
4676 bits of both terms. However, unless one of the terms if known
4677 to be positive, we must allow for an additional bit since negating
4678 a negative number can remove one sign bit copy. */
4679
4680 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4681 known_x, known_mode, known_ret);
4682 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4683 known_x, known_mode, known_ret);
4684
4685 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4686 if (result > 0
4687 && (bitwidth > HOST_BITS_PER_WIDE_INT
4688 || (((nonzero_bits (XEXP (x, 0), mode)
4689 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4690 && ((nonzero_bits (XEXP (x, 1), mode)
4691 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4692 != 0))))
4693 result--;
4694
4695 return MAX (1, result);
4696
4697 case UDIV:
4698 /* The result must be <= the first operand. If the first operand
4699 has the high bit set, we know nothing about the number of sign
4700 bit copies. */
4701 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4702 return 1;
4703 else if ((nonzero_bits (XEXP (x, 0), mode)
4704 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4705 return 1;
4706 else
4707 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4708 known_x, known_mode, known_ret);
4709
4710 case UMOD:
4711 /* The result must be <= the second operand. If the second operand
4712 has (or just might have) the high bit set, we know nothing about
4713 the number of sign bit copies. */
4714 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4715 return 1;
4716 else if ((nonzero_bits (XEXP (x, 1), mode)
4717 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4718 return 1;
4719 else
4720 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4721 known_x, known_mode, known_ret);
4722
4723 case DIV:
4724 /* Similar to unsigned division, except that we have to worry about
4725 the case where the divisor is negative, in which case we have
4726 to add 1. */
4727 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4728 known_x, known_mode, known_ret);
4729 if (result > 1
4730 && (bitwidth > HOST_BITS_PER_WIDE_INT
4731 || (nonzero_bits (XEXP (x, 1), mode)
4732 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4733 result--;
4734
4735 return result;
4736
4737 case MOD:
4738 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4739 known_x, known_mode, known_ret);
4740 if (result > 1
4741 && (bitwidth > HOST_BITS_PER_WIDE_INT
4742 || (nonzero_bits (XEXP (x, 1), mode)
4743 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4744 result--;
4745
4746 return result;
4747
4748 case ASHIFTRT:
4749 /* Shifts by a constant add to the number of bits equal to the
4750 sign bit. */
4751 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4752 known_x, known_mode, known_ret);
4753 if (CONST_INT_P (XEXP (x, 1))
4754 && INTVAL (XEXP (x, 1)) > 0
4755 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4756 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4757
4758 return num0;
4759
4760 case ASHIFT:
4761 /* Left shifts destroy copies. */
4762 if (!CONST_INT_P (XEXP (x, 1))
4763 || INTVAL (XEXP (x, 1)) < 0
4764 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4765 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4766 return 1;
4767
4768 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4769 known_x, known_mode, known_ret);
4770 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4771
4772 case IF_THEN_ELSE:
4773 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4774 known_x, known_mode, known_ret);
4775 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4776 known_x, known_mode, known_ret);
4777 return MIN (num0, num1);
4778
4779 case EQ: case NE: case GE: case GT: case LE: case LT:
4780 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4781 case GEU: case GTU: case LEU: case LTU:
4782 case UNORDERED: case ORDERED:
4783 /* If the constant is negative, take its 1's complement and remask.
4784 Then see how many zero bits we have. */
4785 nonzero = STORE_FLAG_VALUE;
4786 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4787 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4788 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4789
4790 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4791
4792 default:
4793 break;
4794 }
4795
4796 /* If we haven't been able to figure it out by one of the above rules,
4797 see if some of the high-order bits are known to be zero. If so,
4798 count those bits and return one less than that amount. If we can't
4799 safely compute the mask for this mode, always return BITWIDTH. */
4800
4801 bitwidth = GET_MODE_PRECISION (mode);
4802 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4803 return 1;
4804
4805 nonzero = nonzero_bits (x, mode);
4806 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4807 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4808 }
4809
4810 /* Calculate the rtx_cost of a single instruction. A return value of
4811 zero indicates an instruction pattern without a known cost. */
4812
4813 int
4814 insn_rtx_cost (rtx pat, bool speed)
4815 {
4816 int i, cost;
4817 rtx set;
4818
4819 /* Extract the single set rtx from the instruction pattern.
4820 We can't use single_set since we only have the pattern. */
4821 if (GET_CODE (pat) == SET)
4822 set = pat;
4823 else if (GET_CODE (pat) == PARALLEL)
4824 {
4825 set = NULL_RTX;
4826 for (i = 0; i < XVECLEN (pat, 0); i++)
4827 {
4828 rtx x = XVECEXP (pat, 0, i);
4829 if (GET_CODE (x) == SET)
4830 {
4831 if (set)
4832 return 0;
4833 set = x;
4834 }
4835 }
4836 if (!set)
4837 return 0;
4838 }
4839 else
4840 return 0;
4841
4842 cost = set_src_cost (SET_SRC (set), speed);
4843 return cost > 0 ? cost : COSTS_N_INSNS (1);
4844 }
4845
4846 /* Given an insn INSN and condition COND, return the condition in a
4847 canonical form to simplify testing by callers. Specifically:
4848
4849 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4850 (2) Both operands will be machine operands; (cc0) will have been replaced.
4851 (3) If an operand is a constant, it will be the second operand.
4852 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4853 for GE, GEU, and LEU.
4854
4855 If the condition cannot be understood, or is an inequality floating-point
4856 comparison which needs to be reversed, 0 will be returned.
4857
4858 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4859
4860 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4861 insn used in locating the condition was found. If a replacement test
4862 of the condition is desired, it should be placed in front of that
4863 insn and we will be sure that the inputs are still valid.
4864
4865 If WANT_REG is nonzero, we wish the condition to be relative to that
4866 register, if possible. Therefore, do not canonicalize the condition
4867 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4868 to be a compare to a CC mode register.
4869
4870 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4871 and at INSN. */
4872
4873 rtx
4874 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4875 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4876 {
4877 enum rtx_code code;
4878 rtx prev = insn;
4879 const_rtx set;
4880 rtx tem;
4881 rtx op0, op1;
4882 int reverse_code = 0;
4883 enum machine_mode mode;
4884 basic_block bb = BLOCK_FOR_INSN (insn);
4885
4886 code = GET_CODE (cond);
4887 mode = GET_MODE (cond);
4888 op0 = XEXP (cond, 0);
4889 op1 = XEXP (cond, 1);
4890
4891 if (reverse)
4892 code = reversed_comparison_code (cond, insn);
4893 if (code == UNKNOWN)
4894 return 0;
4895
4896 if (earliest)
4897 *earliest = insn;
4898
4899 /* If we are comparing a register with zero, see if the register is set
4900 in the previous insn to a COMPARE or a comparison operation. Perform
4901 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4902 in cse.c */
4903
4904 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4905 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4906 && op1 == CONST0_RTX (GET_MODE (op0))
4907 && op0 != want_reg)
4908 {
4909 /* Set nonzero when we find something of interest. */
4910 rtx x = 0;
4911
4912 #ifdef HAVE_cc0
4913 /* If comparison with cc0, import actual comparison from compare
4914 insn. */
4915 if (op0 == cc0_rtx)
4916 {
4917 if ((prev = prev_nonnote_insn (prev)) == 0
4918 || !NONJUMP_INSN_P (prev)
4919 || (set = single_set (prev)) == 0
4920 || SET_DEST (set) != cc0_rtx)
4921 return 0;
4922
4923 op0 = SET_SRC (set);
4924 op1 = CONST0_RTX (GET_MODE (op0));
4925 if (earliest)
4926 *earliest = prev;
4927 }
4928 #endif
4929
4930 /* If this is a COMPARE, pick up the two things being compared. */
4931 if (GET_CODE (op0) == COMPARE)
4932 {
4933 op1 = XEXP (op0, 1);
4934 op0 = XEXP (op0, 0);
4935 continue;
4936 }
4937 else if (!REG_P (op0))
4938 break;
4939
4940 /* Go back to the previous insn. Stop if it is not an INSN. We also
4941 stop if it isn't a single set or if it has a REG_INC note because
4942 we don't want to bother dealing with it. */
4943
4944 prev = prev_nonnote_nondebug_insn (prev);
4945
4946 if (prev == 0
4947 || !NONJUMP_INSN_P (prev)
4948 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4949 /* In cfglayout mode, there do not have to be labels at the
4950 beginning of a block, or jumps at the end, so the previous
4951 conditions would not stop us when we reach bb boundary. */
4952 || BLOCK_FOR_INSN (prev) != bb)
4953 break;
4954
4955 set = set_of (op0, prev);
4956
4957 if (set
4958 && (GET_CODE (set) != SET
4959 || !rtx_equal_p (SET_DEST (set), op0)))
4960 break;
4961
4962 /* If this is setting OP0, get what it sets it to if it looks
4963 relevant. */
4964 if (set)
4965 {
4966 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4967 #ifdef FLOAT_STORE_FLAG_VALUE
4968 REAL_VALUE_TYPE fsfv;
4969 #endif
4970
4971 /* ??? We may not combine comparisons done in a CCmode with
4972 comparisons not done in a CCmode. This is to aid targets
4973 like Alpha that have an IEEE compliant EQ instruction, and
4974 a non-IEEE compliant BEQ instruction. The use of CCmode is
4975 actually artificial, simply to prevent the combination, but
4976 should not affect other platforms.
4977
4978 However, we must allow VOIDmode comparisons to match either
4979 CCmode or non-CCmode comparison, because some ports have
4980 modeless comparisons inside branch patterns.
4981
4982 ??? This mode check should perhaps look more like the mode check
4983 in simplify_comparison in combine. */
4984
4985 if ((GET_CODE (SET_SRC (set)) == COMPARE
4986 || (((code == NE
4987 || (code == LT
4988 && val_signbit_known_set_p (inner_mode,
4989 STORE_FLAG_VALUE))
4990 #ifdef FLOAT_STORE_FLAG_VALUE
4991 || (code == LT
4992 && SCALAR_FLOAT_MODE_P (inner_mode)
4993 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4994 REAL_VALUE_NEGATIVE (fsfv)))
4995 #endif
4996 ))
4997 && COMPARISON_P (SET_SRC (set))))
4998 && (((GET_MODE_CLASS (mode) == MODE_CC)
4999 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5000 || mode == VOIDmode || inner_mode == VOIDmode))
5001 x = SET_SRC (set);
5002 else if (((code == EQ
5003 || (code == GE
5004 && val_signbit_known_set_p (inner_mode,
5005 STORE_FLAG_VALUE))
5006 #ifdef FLOAT_STORE_FLAG_VALUE
5007 || (code == GE
5008 && SCALAR_FLOAT_MODE_P (inner_mode)
5009 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
5010 REAL_VALUE_NEGATIVE (fsfv)))
5011 #endif
5012 ))
5013 && COMPARISON_P (SET_SRC (set))
5014 && (((GET_MODE_CLASS (mode) == MODE_CC)
5015 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
5016 || mode == VOIDmode || inner_mode == VOIDmode))
5017
5018 {
5019 reverse_code = 1;
5020 x = SET_SRC (set);
5021 }
5022 else
5023 break;
5024 }
5025
5026 else if (reg_set_p (op0, prev))
5027 /* If this sets OP0, but not directly, we have to give up. */
5028 break;
5029
5030 if (x)
5031 {
5032 /* If the caller is expecting the condition to be valid at INSN,
5033 make sure X doesn't change before INSN. */
5034 if (valid_at_insn_p)
5035 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
5036 break;
5037 if (COMPARISON_P (x))
5038 code = GET_CODE (x);
5039 if (reverse_code)
5040 {
5041 code = reversed_comparison_code (x, prev);
5042 if (code == UNKNOWN)
5043 return 0;
5044 reverse_code = 0;
5045 }
5046
5047 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
5048 if (earliest)
5049 *earliest = prev;
5050 }
5051 }
5052
5053 /* If constant is first, put it last. */
5054 if (CONSTANT_P (op0))
5055 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
5056
5057 /* If OP0 is the result of a comparison, we weren't able to find what
5058 was really being compared, so fail. */
5059 if (!allow_cc_mode
5060 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5061 return 0;
5062
5063 /* Canonicalize any ordered comparison with integers involving equality
5064 if we can do computations in the relevant mode and we do not
5065 overflow. */
5066
5067 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5068 && CONST_INT_P (op1)
5069 && GET_MODE (op0) != VOIDmode
5070 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5071 {
5072 HOST_WIDE_INT const_val = INTVAL (op1);
5073 unsigned HOST_WIDE_INT uconst_val = const_val;
5074 unsigned HOST_WIDE_INT max_val
5075 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5076
5077 switch (code)
5078 {
5079 case LE:
5080 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5081 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5082 break;
5083
5084 /* When cross-compiling, const_val might be sign-extended from
5085 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5086 case GE:
5087 if ((const_val & max_val)
5088 != ((unsigned HOST_WIDE_INT) 1
5089 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5090 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5091 break;
5092
5093 case LEU:
5094 if (uconst_val < max_val)
5095 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5096 break;
5097
5098 case GEU:
5099 if (uconst_val != 0)
5100 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5101 break;
5102
5103 default:
5104 break;
5105 }
5106 }
5107
5108 /* Never return CC0; return zero instead. */
5109 if (CC0_P (op0))
5110 return 0;
5111
5112 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5113 }
5114
5115 /* Given a jump insn JUMP, return the condition that will cause it to branch
5116 to its JUMP_LABEL. If the condition cannot be understood, or is an
5117 inequality floating-point comparison which needs to be reversed, 0 will
5118 be returned.
5119
5120 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5121 insn used in locating the condition was found. If a replacement test
5122 of the condition is desired, it should be placed in front of that
5123 insn and we will be sure that the inputs are still valid. If EARLIEST
5124 is null, the returned condition will be valid at INSN.
5125
5126 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5127 compare CC mode register.
5128
5129 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5130
5131 rtx
5132 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5133 {
5134 rtx cond;
5135 int reverse;
5136 rtx set;
5137
5138 /* If this is not a standard conditional jump, we can't parse it. */
5139 if (!JUMP_P (jump)
5140 || ! any_condjump_p (jump))
5141 return 0;
5142 set = pc_set (jump);
5143
5144 cond = XEXP (SET_SRC (set), 0);
5145
5146 /* If this branches to JUMP_LABEL when the condition is false, reverse
5147 the condition. */
5148 reverse
5149 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5150 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5151
5152 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5153 allow_cc_mode, valid_at_insn_p);
5154 }
5155
5156 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5157 TARGET_MODE_REP_EXTENDED.
5158
5159 Note that we assume that the property of
5160 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5161 narrower than mode B. I.e., if A is a mode narrower than B then in
5162 order to be able to operate on it in mode B, mode A needs to
5163 satisfy the requirements set by the representation of mode B. */
5164
5165 static void
5166 init_num_sign_bit_copies_in_rep (void)
5167 {
5168 enum machine_mode mode, in_mode;
5169
5170 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5171 in_mode = GET_MODE_WIDER_MODE (mode))
5172 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5173 mode = GET_MODE_WIDER_MODE (mode))
5174 {
5175 enum machine_mode i;
5176
5177 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5178 extends to the next widest mode. */
5179 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5180 || GET_MODE_WIDER_MODE (mode) == in_mode);
5181
5182 /* We are in in_mode. Count how many bits outside of mode
5183 have to be copies of the sign-bit. */
5184 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5185 {
5186 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5187
5188 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5189 /* We can only check sign-bit copies starting from the
5190 top-bit. In order to be able to check the bits we
5191 have already seen we pretend that subsequent bits
5192 have to be sign-bit copies too. */
5193 || num_sign_bit_copies_in_rep [in_mode][mode])
5194 num_sign_bit_copies_in_rep [in_mode][mode]
5195 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5196 }
5197 }
5198 }
5199
5200 /* Suppose that truncation from the machine mode of X to MODE is not a
5201 no-op. See if there is anything special about X so that we can
5202 assume it already contains a truncated value of MODE. */
5203
5204 bool
5205 truncated_to_mode (enum machine_mode mode, const_rtx x)
5206 {
5207 /* This register has already been used in MODE without explicit
5208 truncation. */
5209 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5210 return true;
5211
5212 /* See if we already satisfy the requirements of MODE. If yes we
5213 can just switch to MODE. */
5214 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5215 && (num_sign_bit_copies (x, GET_MODE (x))
5216 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5217 return true;
5218
5219 return false;
5220 }
5221 \f
5222 /* Initialize non_rtx_starting_operands, which is used to speed up
5223 for_each_rtx. */
5224 void
5225 init_rtlanal (void)
5226 {
5227 int i;
5228 for (i = 0; i < NUM_RTX_CODE; i++)
5229 {
5230 const char *format = GET_RTX_FORMAT (i);
5231 const char *first = strpbrk (format, "eEV");
5232 non_rtx_starting_operands[i] = first ? first - format : -1;
5233 }
5234
5235 init_num_sign_bit_copies_in_rep ();
5236 }
5237 \f
5238 /* Check whether this is a constant pool constant. */
5239 bool
5240 constant_pool_constant_p (rtx x)
5241 {
5242 x = avoid_constant_pool_reference (x);
5243 return GET_CODE (x) == CONST_DOUBLE;
5244 }
5245 \f
5246 /* If M is a bitmask that selects a field of low-order bits within an item but
5247 not the entire word, return the length of the field. Return -1 otherwise.
5248 M is used in machine mode MODE. */
5249
5250 int
5251 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5252 {
5253 if (mode != VOIDmode)
5254 {
5255 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5256 return -1;
5257 m &= GET_MODE_MASK (mode);
5258 }
5259
5260 return exact_log2 (m + 1);
5261 }