re PR debug/45055 (another -fcompare-debug failure with uninitialised read in walk_gi...
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "hard-reg-set.h"
31 #include "insn-config.h"
32 #include "recog.h"
33 #include "target.h"
34 #include "output.h"
35 #include "tm_p.h"
36 #include "flags.h"
37 #include "regs.h"
38 #include "function.h"
39 #include "df.h"
40 #include "tree.h"
41 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
42
43 /* Forward declarations */
44 static void set_of_1 (rtx, const_rtx, void *);
45 static bool covers_regno_p (const_rtx, unsigned int);
46 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
47 static int rtx_referenced_p_1 (rtx *, void *);
48 static int computed_jump_p_1 (const_rtx);
49 static void parms_set (rtx, const_rtx, void *);
50
51 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
52 const_rtx, enum machine_mode,
53 unsigned HOST_WIDE_INT);
54 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
55 const_rtx, enum machine_mode,
56 unsigned HOST_WIDE_INT);
57 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
58 enum machine_mode,
59 unsigned int);
60 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
61 enum machine_mode, unsigned int);
62
63 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
64 -1 if a code has no such operand. */
65 static int non_rtx_starting_operands[NUM_RTX_CODE];
66
67 /* Bit flags that specify the machine subtype we are compiling for.
68 Bits are tested using macros TARGET_... defined in the tm.h file
69 and set by `-m...' switches. Must be defined in rtlanal.c. */
70
71 int target_flags;
72
73 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
74 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
75 SIGN_EXTEND then while narrowing we also have to enforce the
76 representation and sign-extend the value to mode DESTINATION_REP.
77
78 If the value is already sign-extended to DESTINATION_REP mode we
79 can just switch to DESTINATION mode on it. For each pair of
80 integral modes SOURCE and DESTINATION, when truncating from SOURCE
81 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
82 contains the number of high-order bits in SOURCE that have to be
83 copies of the sign-bit so that we can do this mode-switch to
84 DESTINATION. */
85
86 static unsigned int
87 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
88 \f
89 /* Return 1 if the value of X is unstable
90 (would be different at a different point in the program).
91 The frame pointer, arg pointer, etc. are considered stable
92 (within one function) and so is anything marked `unchanging'. */
93
94 int
95 rtx_unstable_p (const_rtx x)
96 {
97 const RTX_CODE code = GET_CODE (x);
98 int i;
99 const char *fmt;
100
101 switch (code)
102 {
103 case MEM:
104 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
105
106 case CONST:
107 case CONST_INT:
108 case CONST_DOUBLE:
109 case CONST_FIXED:
110 case CONST_VECTOR:
111 case SYMBOL_REF:
112 case LABEL_REF:
113 return 0;
114
115 case REG:
116 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
117 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
118 /* The arg pointer varies if it is not a fixed register. */
119 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
120 return 0;
121 #ifndef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
122 /* ??? When call-clobbered, the value is stable modulo the restore
123 that must happen after a call. This currently screws up local-alloc
124 into believing that the restore is not needed. */
125 if (x == pic_offset_table_rtx)
126 return 0;
127 #endif
128 return 1;
129
130 case ASM_OPERANDS:
131 if (MEM_VOLATILE_P (x))
132 return 1;
133
134 /* Fall through. */
135
136 default:
137 break;
138 }
139
140 fmt = GET_RTX_FORMAT (code);
141 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
142 if (fmt[i] == 'e')
143 {
144 if (rtx_unstable_p (XEXP (x, i)))
145 return 1;
146 }
147 else if (fmt[i] == 'E')
148 {
149 int j;
150 for (j = 0; j < XVECLEN (x, i); j++)
151 if (rtx_unstable_p (XVECEXP (x, i, j)))
152 return 1;
153 }
154
155 return 0;
156 }
157
158 /* Return 1 if X has a value that can vary even between two
159 executions of the program. 0 means X can be compared reliably
160 against certain constants or near-constants.
161 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
162 zero, we are slightly more conservative.
163 The frame pointer and the arg pointer are considered constant. */
164
165 bool
166 rtx_varies_p (const_rtx x, bool for_alias)
167 {
168 RTX_CODE code;
169 int i;
170 const char *fmt;
171
172 if (!x)
173 return 0;
174
175 code = GET_CODE (x);
176 switch (code)
177 {
178 case MEM:
179 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
180
181 case CONST:
182 case CONST_INT:
183 case CONST_DOUBLE:
184 case CONST_FIXED:
185 case CONST_VECTOR:
186 case SYMBOL_REF:
187 case LABEL_REF:
188 return 0;
189
190 case REG:
191 /* Note that we have to test for the actual rtx used for the frame
192 and arg pointers and not just the register number in case we have
193 eliminated the frame and/or arg pointer and are using it
194 for pseudos. */
195 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
196 /* The arg pointer varies if it is not a fixed register. */
197 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
198 return 0;
199 if (x == pic_offset_table_rtx
200 #ifdef PIC_OFFSET_TABLE_REG_CALL_CLOBBERED
201 /* ??? When call-clobbered, the value is stable modulo the restore
202 that must happen after a call. This currently screws up
203 local-alloc into believing that the restore is not needed, so we
204 must return 0 only if we are called from alias analysis. */
205 && for_alias
206 #endif
207 )
208 return 0;
209 return 1;
210
211 case LO_SUM:
212 /* The operand 0 of a LO_SUM is considered constant
213 (in fact it is related specifically to operand 1)
214 during alias analysis. */
215 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
216 || rtx_varies_p (XEXP (x, 1), for_alias);
217
218 case ASM_OPERANDS:
219 if (MEM_VOLATILE_P (x))
220 return 1;
221
222 /* Fall through. */
223
224 default:
225 break;
226 }
227
228 fmt = GET_RTX_FORMAT (code);
229 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
230 if (fmt[i] == 'e')
231 {
232 if (rtx_varies_p (XEXP (x, i), for_alias))
233 return 1;
234 }
235 else if (fmt[i] == 'E')
236 {
237 int j;
238 for (j = 0; j < XVECLEN (x, i); j++)
239 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
240 return 1;
241 }
242
243 return 0;
244 }
245
246 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
247 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
248 whether nonzero is returned for unaligned memory accesses on strict
249 alignment machines. */
250
251 static int
252 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
253 enum machine_mode mode, bool unaligned_mems)
254 {
255 enum rtx_code code = GET_CODE (x);
256
257 if (STRICT_ALIGNMENT
258 && unaligned_mems
259 && GET_MODE_SIZE (mode) != 0)
260 {
261 HOST_WIDE_INT actual_offset = offset;
262 #ifdef SPARC_STACK_BOUNDARY_HACK
263 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
264 the real alignment of %sp. However, when it does this, the
265 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
266 if (SPARC_STACK_BOUNDARY_HACK
267 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
268 actual_offset -= STACK_POINTER_OFFSET;
269 #endif
270
271 if (actual_offset % GET_MODE_SIZE (mode) != 0)
272 return 1;
273 }
274
275 switch (code)
276 {
277 case SYMBOL_REF:
278 if (SYMBOL_REF_WEAK (x))
279 return 1;
280 if (!CONSTANT_POOL_ADDRESS_P (x))
281 {
282 tree decl;
283 HOST_WIDE_INT decl_size;
284
285 if (offset < 0)
286 return 1;
287 if (size == 0)
288 size = GET_MODE_SIZE (mode);
289 if (size == 0)
290 return offset != 0;
291
292 /* If the size of the access or of the symbol is unknown,
293 assume the worst. */
294 decl = SYMBOL_REF_DECL (x);
295
296 /* Else check that the access is in bounds. TODO: restructure
297 expr_size/tree_expr_size/int_expr_size and just use the latter. */
298 if (!decl)
299 decl_size = -1;
300 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
301 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
302 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
303 : -1);
304 else if (TREE_CODE (decl) == STRING_CST)
305 decl_size = TREE_STRING_LENGTH (decl);
306 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
307 decl_size = int_size_in_bytes (TREE_TYPE (decl));
308 else
309 decl_size = -1;
310
311 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
312 }
313
314 return 0;
315
316 case LABEL_REF:
317 return 0;
318
319 case REG:
320 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
321 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
322 || x == stack_pointer_rtx
323 /* The arg pointer varies if it is not a fixed register. */
324 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
325 return 0;
326 /* All of the virtual frame registers are stack references. */
327 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
328 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
329 return 0;
330 return 1;
331
332 case CONST:
333 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
334 mode, unaligned_mems);
335
336 case PLUS:
337 /* An address is assumed not to trap if:
338 - it is the pic register plus a constant. */
339 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
340 return 0;
341
342 /* - or it is an address that can't trap plus a constant integer,
343 with the proper remainder modulo the mode size if we are
344 considering unaligned memory references. */
345 if (CONST_INT_P (XEXP (x, 1))
346 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
347 size, mode, unaligned_mems))
348 return 0;
349
350 return 1;
351
352 case LO_SUM:
353 case PRE_MODIFY:
354 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
355 mode, unaligned_mems);
356
357 case PRE_DEC:
358 case PRE_INC:
359 case POST_DEC:
360 case POST_INC:
361 case POST_MODIFY:
362 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
363 mode, unaligned_mems);
364
365 default:
366 break;
367 }
368
369 /* If it isn't one of the case above, it can cause a trap. */
370 return 1;
371 }
372
373 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
374
375 int
376 rtx_addr_can_trap_p (const_rtx x)
377 {
378 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
379 }
380
381 /* Return true if X is an address that is known to not be zero. */
382
383 bool
384 nonzero_address_p (const_rtx x)
385 {
386 const enum rtx_code code = GET_CODE (x);
387
388 switch (code)
389 {
390 case SYMBOL_REF:
391 return !SYMBOL_REF_WEAK (x);
392
393 case LABEL_REF:
394 return true;
395
396 case REG:
397 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
398 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
399 || x == stack_pointer_rtx
400 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
401 return true;
402 /* All of the virtual frame registers are stack references. */
403 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
404 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
405 return true;
406 return false;
407
408 case CONST:
409 return nonzero_address_p (XEXP (x, 0));
410
411 case PLUS:
412 if (CONST_INT_P (XEXP (x, 1)))
413 return nonzero_address_p (XEXP (x, 0));
414 /* Handle PIC references. */
415 else if (XEXP (x, 0) == pic_offset_table_rtx
416 && CONSTANT_P (XEXP (x, 1)))
417 return true;
418 return false;
419
420 case PRE_MODIFY:
421 /* Similar to the above; allow positive offsets. Further, since
422 auto-inc is only allowed in memories, the register must be a
423 pointer. */
424 if (CONST_INT_P (XEXP (x, 1))
425 && INTVAL (XEXP (x, 1)) > 0)
426 return true;
427 return nonzero_address_p (XEXP (x, 0));
428
429 case PRE_INC:
430 /* Similarly. Further, the offset is always positive. */
431 return true;
432
433 case PRE_DEC:
434 case POST_DEC:
435 case POST_INC:
436 case POST_MODIFY:
437 return nonzero_address_p (XEXP (x, 0));
438
439 case LO_SUM:
440 return nonzero_address_p (XEXP (x, 1));
441
442 default:
443 break;
444 }
445
446 /* If it isn't one of the case above, might be zero. */
447 return false;
448 }
449
450 /* Return 1 if X refers to a memory location whose address
451 cannot be compared reliably with constant addresses,
452 or if X refers to a BLKmode memory object.
453 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
454 zero, we are slightly more conservative. */
455
456 bool
457 rtx_addr_varies_p (const_rtx x, bool for_alias)
458 {
459 enum rtx_code code;
460 int i;
461 const char *fmt;
462
463 if (x == 0)
464 return 0;
465
466 code = GET_CODE (x);
467 if (code == MEM)
468 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
469
470 fmt = GET_RTX_FORMAT (code);
471 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
472 if (fmt[i] == 'e')
473 {
474 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
475 return 1;
476 }
477 else if (fmt[i] == 'E')
478 {
479 int j;
480 for (j = 0; j < XVECLEN (x, i); j++)
481 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
482 return 1;
483 }
484 return 0;
485 }
486 \f
487 /* Return the value of the integer term in X, if one is apparent;
488 otherwise return 0.
489 Only obvious integer terms are detected.
490 This is used in cse.c with the `related_value' field. */
491
492 HOST_WIDE_INT
493 get_integer_term (const_rtx x)
494 {
495 if (GET_CODE (x) == CONST)
496 x = XEXP (x, 0);
497
498 if (GET_CODE (x) == MINUS
499 && CONST_INT_P (XEXP (x, 1)))
500 return - INTVAL (XEXP (x, 1));
501 if (GET_CODE (x) == PLUS
502 && CONST_INT_P (XEXP (x, 1)))
503 return INTVAL (XEXP (x, 1));
504 return 0;
505 }
506
507 /* If X is a constant, return the value sans apparent integer term;
508 otherwise return 0.
509 Only obvious integer terms are detected. */
510
511 rtx
512 get_related_value (const_rtx x)
513 {
514 if (GET_CODE (x) != CONST)
515 return 0;
516 x = XEXP (x, 0);
517 if (GET_CODE (x) == PLUS
518 && CONST_INT_P (XEXP (x, 1)))
519 return XEXP (x, 0);
520 else if (GET_CODE (x) == MINUS
521 && CONST_INT_P (XEXP (x, 1)))
522 return XEXP (x, 0);
523 return 0;
524 }
525 \f
526 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
527 to somewhere in the same object or object_block as SYMBOL. */
528
529 bool
530 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
531 {
532 tree decl;
533
534 if (GET_CODE (symbol) != SYMBOL_REF)
535 return false;
536
537 if (offset == 0)
538 return true;
539
540 if (offset > 0)
541 {
542 if (CONSTANT_POOL_ADDRESS_P (symbol)
543 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
544 return true;
545
546 decl = SYMBOL_REF_DECL (symbol);
547 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
548 return true;
549 }
550
551 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
552 && SYMBOL_REF_BLOCK (symbol)
553 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
554 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
555 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
556 return true;
557
558 return false;
559 }
560
561 /* Split X into a base and a constant offset, storing them in *BASE_OUT
562 and *OFFSET_OUT respectively. */
563
564 void
565 split_const (rtx x, rtx *base_out, rtx *offset_out)
566 {
567 if (GET_CODE (x) == CONST)
568 {
569 x = XEXP (x, 0);
570 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
571 {
572 *base_out = XEXP (x, 0);
573 *offset_out = XEXP (x, 1);
574 return;
575 }
576 }
577 *base_out = x;
578 *offset_out = const0_rtx;
579 }
580 \f
581 /* Return the number of places FIND appears within X. If COUNT_DEST is
582 zero, we do not count occurrences inside the destination of a SET. */
583
584 int
585 count_occurrences (const_rtx x, const_rtx find, int count_dest)
586 {
587 int i, j;
588 enum rtx_code code;
589 const char *format_ptr;
590 int count;
591
592 if (x == find)
593 return 1;
594
595 code = GET_CODE (x);
596
597 switch (code)
598 {
599 case REG:
600 case CONST_INT:
601 case CONST_DOUBLE:
602 case CONST_FIXED:
603 case CONST_VECTOR:
604 case SYMBOL_REF:
605 case CODE_LABEL:
606 case PC:
607 case CC0:
608 return 0;
609
610 case EXPR_LIST:
611 count = count_occurrences (XEXP (x, 0), find, count_dest);
612 if (XEXP (x, 1))
613 count += count_occurrences (XEXP (x, 1), find, count_dest);
614 return count;
615
616 case MEM:
617 if (MEM_P (find) && rtx_equal_p (x, find))
618 return 1;
619 break;
620
621 case SET:
622 if (SET_DEST (x) == find && ! count_dest)
623 return count_occurrences (SET_SRC (x), find, count_dest);
624 break;
625
626 default:
627 break;
628 }
629
630 format_ptr = GET_RTX_FORMAT (code);
631 count = 0;
632
633 for (i = 0; i < GET_RTX_LENGTH (code); i++)
634 {
635 switch (*format_ptr++)
636 {
637 case 'e':
638 count += count_occurrences (XEXP (x, i), find, count_dest);
639 break;
640
641 case 'E':
642 for (j = 0; j < XVECLEN (x, i); j++)
643 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
644 break;
645 }
646 }
647 return count;
648 }
649
650 \f
651 /* Nonzero if register REG appears somewhere within IN.
652 Also works if REG is not a register; in this case it checks
653 for a subexpression of IN that is Lisp "equal" to REG. */
654
655 int
656 reg_mentioned_p (const_rtx reg, const_rtx in)
657 {
658 const char *fmt;
659 int i;
660 enum rtx_code code;
661
662 if (in == 0)
663 return 0;
664
665 if (reg == in)
666 return 1;
667
668 if (GET_CODE (in) == LABEL_REF)
669 return reg == XEXP (in, 0);
670
671 code = GET_CODE (in);
672
673 switch (code)
674 {
675 /* Compare registers by number. */
676 case REG:
677 return REG_P (reg) && REGNO (in) == REGNO (reg);
678
679 /* These codes have no constituent expressions
680 and are unique. */
681 case SCRATCH:
682 case CC0:
683 case PC:
684 return 0;
685
686 case CONST_INT:
687 case CONST_VECTOR:
688 case CONST_DOUBLE:
689 case CONST_FIXED:
690 /* These are kept unique for a given value. */
691 return 0;
692
693 default:
694 break;
695 }
696
697 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
698 return 1;
699
700 fmt = GET_RTX_FORMAT (code);
701
702 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
703 {
704 if (fmt[i] == 'E')
705 {
706 int j;
707 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
708 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
709 return 1;
710 }
711 else if (fmt[i] == 'e'
712 && reg_mentioned_p (reg, XEXP (in, i)))
713 return 1;
714 }
715 return 0;
716 }
717 \f
718 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
719 no CODE_LABEL insn. */
720
721 int
722 no_labels_between_p (const_rtx beg, const_rtx end)
723 {
724 rtx p;
725 if (beg == end)
726 return 0;
727 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
728 if (LABEL_P (p))
729 return 0;
730 return 1;
731 }
732
733 /* Nonzero if register REG is used in an insn between
734 FROM_INSN and TO_INSN (exclusive of those two). */
735
736 int
737 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
738 {
739 rtx insn;
740
741 if (from_insn == to_insn)
742 return 0;
743
744 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
745 if (NONDEBUG_INSN_P (insn)
746 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
747 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
748 return 1;
749 return 0;
750 }
751 \f
752 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
753 is entirely replaced by a new value and the only use is as a SET_DEST,
754 we do not consider it a reference. */
755
756 int
757 reg_referenced_p (const_rtx x, const_rtx body)
758 {
759 int i;
760
761 switch (GET_CODE (body))
762 {
763 case SET:
764 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
765 return 1;
766
767 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
768 of a REG that occupies all of the REG, the insn references X if
769 it is mentioned in the destination. */
770 if (GET_CODE (SET_DEST (body)) != CC0
771 && GET_CODE (SET_DEST (body)) != PC
772 && !REG_P (SET_DEST (body))
773 && ! (GET_CODE (SET_DEST (body)) == SUBREG
774 && REG_P (SUBREG_REG (SET_DEST (body)))
775 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
776 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
777 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
778 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
779 && reg_overlap_mentioned_p (x, SET_DEST (body)))
780 return 1;
781 return 0;
782
783 case ASM_OPERANDS:
784 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
785 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
786 return 1;
787 return 0;
788
789 case CALL:
790 case USE:
791 case IF_THEN_ELSE:
792 return reg_overlap_mentioned_p (x, body);
793
794 case TRAP_IF:
795 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
796
797 case PREFETCH:
798 return reg_overlap_mentioned_p (x, XEXP (body, 0));
799
800 case UNSPEC:
801 case UNSPEC_VOLATILE:
802 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
803 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
804 return 1;
805 return 0;
806
807 case PARALLEL:
808 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
809 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
810 return 1;
811 return 0;
812
813 case CLOBBER:
814 if (MEM_P (XEXP (body, 0)))
815 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
816 return 1;
817 return 0;
818
819 case COND_EXEC:
820 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
821 return 1;
822 return reg_referenced_p (x, COND_EXEC_CODE (body));
823
824 default:
825 return 0;
826 }
827 }
828 \f
829 /* Nonzero if register REG is set or clobbered in an insn between
830 FROM_INSN and TO_INSN (exclusive of those two). */
831
832 int
833 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
834 {
835 const_rtx insn;
836
837 if (from_insn == to_insn)
838 return 0;
839
840 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
841 if (INSN_P (insn) && reg_set_p (reg, insn))
842 return 1;
843 return 0;
844 }
845
846 /* Internals of reg_set_between_p. */
847 int
848 reg_set_p (const_rtx reg, const_rtx insn)
849 {
850 /* We can be passed an insn or part of one. If we are passed an insn,
851 check if a side-effect of the insn clobbers REG. */
852 if (INSN_P (insn)
853 && (FIND_REG_INC_NOTE (insn, reg)
854 || (CALL_P (insn)
855 && ((REG_P (reg)
856 && REGNO (reg) < FIRST_PSEUDO_REGISTER
857 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
858 GET_MODE (reg), REGNO (reg)))
859 || MEM_P (reg)
860 || find_reg_fusage (insn, CLOBBER, reg)))))
861 return 1;
862
863 return set_of (reg, insn) != NULL_RTX;
864 }
865
866 /* Similar to reg_set_between_p, but check all registers in X. Return 0
867 only if none of them are modified between START and END. Return 1 if
868 X contains a MEM; this routine does use memory aliasing. */
869
870 int
871 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
872 {
873 const enum rtx_code code = GET_CODE (x);
874 const char *fmt;
875 int i, j;
876 rtx insn;
877
878 if (start == end)
879 return 0;
880
881 switch (code)
882 {
883 case CONST_INT:
884 case CONST_DOUBLE:
885 case CONST_FIXED:
886 case CONST_VECTOR:
887 case CONST:
888 case SYMBOL_REF:
889 case LABEL_REF:
890 return 0;
891
892 case PC:
893 case CC0:
894 return 1;
895
896 case MEM:
897 if (modified_between_p (XEXP (x, 0), start, end))
898 return 1;
899 if (MEM_READONLY_P (x))
900 return 0;
901 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
902 if (memory_modified_in_insn_p (x, insn))
903 return 1;
904 return 0;
905 break;
906
907 case REG:
908 return reg_set_between_p (x, start, end);
909
910 default:
911 break;
912 }
913
914 fmt = GET_RTX_FORMAT (code);
915 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
916 {
917 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
918 return 1;
919
920 else if (fmt[i] == 'E')
921 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
922 if (modified_between_p (XVECEXP (x, i, j), start, end))
923 return 1;
924 }
925
926 return 0;
927 }
928
929 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
930 of them are modified in INSN. Return 1 if X contains a MEM; this routine
931 does use memory aliasing. */
932
933 int
934 modified_in_p (const_rtx x, const_rtx insn)
935 {
936 const enum rtx_code code = GET_CODE (x);
937 const char *fmt;
938 int i, j;
939
940 switch (code)
941 {
942 case CONST_INT:
943 case CONST_DOUBLE:
944 case CONST_FIXED:
945 case CONST_VECTOR:
946 case CONST:
947 case SYMBOL_REF:
948 case LABEL_REF:
949 return 0;
950
951 case PC:
952 case CC0:
953 return 1;
954
955 case MEM:
956 if (modified_in_p (XEXP (x, 0), insn))
957 return 1;
958 if (MEM_READONLY_P (x))
959 return 0;
960 if (memory_modified_in_insn_p (x, insn))
961 return 1;
962 return 0;
963 break;
964
965 case REG:
966 return reg_set_p (x, insn);
967
968 default:
969 break;
970 }
971
972 fmt = GET_RTX_FORMAT (code);
973 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
974 {
975 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
976 return 1;
977
978 else if (fmt[i] == 'E')
979 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
980 if (modified_in_p (XVECEXP (x, i, j), insn))
981 return 1;
982 }
983
984 return 0;
985 }
986 \f
987 /* Helper function for set_of. */
988 struct set_of_data
989 {
990 const_rtx found;
991 const_rtx pat;
992 };
993
994 static void
995 set_of_1 (rtx x, const_rtx pat, void *data1)
996 {
997 struct set_of_data *const data = (struct set_of_data *) (data1);
998 if (rtx_equal_p (x, data->pat)
999 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
1000 data->found = pat;
1001 }
1002
1003 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
1004 (either directly or via STRICT_LOW_PART and similar modifiers). */
1005 const_rtx
1006 set_of (const_rtx pat, const_rtx insn)
1007 {
1008 struct set_of_data data;
1009 data.found = NULL_RTX;
1010 data.pat = pat;
1011 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1012 return data.found;
1013 }
1014 \f
1015 /* Given an INSN, return a SET expression if this insn has only a single SET.
1016 It may also have CLOBBERs, USEs, or SET whose output
1017 will not be used, which we ignore. */
1018
1019 rtx
1020 single_set_2 (const_rtx insn, const_rtx pat)
1021 {
1022 rtx set = NULL;
1023 int set_verified = 1;
1024 int i;
1025
1026 if (GET_CODE (pat) == PARALLEL)
1027 {
1028 for (i = 0; i < XVECLEN (pat, 0); i++)
1029 {
1030 rtx sub = XVECEXP (pat, 0, i);
1031 switch (GET_CODE (sub))
1032 {
1033 case USE:
1034 case CLOBBER:
1035 break;
1036
1037 case SET:
1038 /* We can consider insns having multiple sets, where all
1039 but one are dead as single set insns. In common case
1040 only single set is present in the pattern so we want
1041 to avoid checking for REG_UNUSED notes unless necessary.
1042
1043 When we reach set first time, we just expect this is
1044 the single set we are looking for and only when more
1045 sets are found in the insn, we check them. */
1046 if (!set_verified)
1047 {
1048 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1049 && !side_effects_p (set))
1050 set = NULL;
1051 else
1052 set_verified = 1;
1053 }
1054 if (!set)
1055 set = sub, set_verified = 0;
1056 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1057 || side_effects_p (sub))
1058 return NULL_RTX;
1059 break;
1060
1061 default:
1062 return NULL_RTX;
1063 }
1064 }
1065 }
1066 return set;
1067 }
1068
1069 /* Given an INSN, return nonzero if it has more than one SET, else return
1070 zero. */
1071
1072 int
1073 multiple_sets (const_rtx insn)
1074 {
1075 int found;
1076 int i;
1077
1078 /* INSN must be an insn. */
1079 if (! INSN_P (insn))
1080 return 0;
1081
1082 /* Only a PARALLEL can have multiple SETs. */
1083 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1084 {
1085 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1086 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1087 {
1088 /* If we have already found a SET, then return now. */
1089 if (found)
1090 return 1;
1091 else
1092 found = 1;
1093 }
1094 }
1095
1096 /* Either zero or one SET. */
1097 return 0;
1098 }
1099 \f
1100 /* Return nonzero if the destination of SET equals the source
1101 and there are no side effects. */
1102
1103 int
1104 set_noop_p (const_rtx set)
1105 {
1106 rtx src = SET_SRC (set);
1107 rtx dst = SET_DEST (set);
1108
1109 if (dst == pc_rtx && src == pc_rtx)
1110 return 1;
1111
1112 if (MEM_P (dst) && MEM_P (src))
1113 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1114
1115 if (GET_CODE (dst) == ZERO_EXTRACT)
1116 return rtx_equal_p (XEXP (dst, 0), src)
1117 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1118 && !side_effects_p (src);
1119
1120 if (GET_CODE (dst) == STRICT_LOW_PART)
1121 dst = XEXP (dst, 0);
1122
1123 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1124 {
1125 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1126 return 0;
1127 src = SUBREG_REG (src);
1128 dst = SUBREG_REG (dst);
1129 }
1130
1131 return (REG_P (src) && REG_P (dst)
1132 && REGNO (src) == REGNO (dst));
1133 }
1134 \f
1135 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1136 value to itself. */
1137
1138 int
1139 noop_move_p (const_rtx insn)
1140 {
1141 rtx pat = PATTERN (insn);
1142
1143 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1144 return 1;
1145
1146 /* Insns carrying these notes are useful later on. */
1147 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1148 return 0;
1149
1150 if (GET_CODE (pat) == SET && set_noop_p (pat))
1151 return 1;
1152
1153 if (GET_CODE (pat) == PARALLEL)
1154 {
1155 int i;
1156 /* If nothing but SETs of registers to themselves,
1157 this insn can also be deleted. */
1158 for (i = 0; i < XVECLEN (pat, 0); i++)
1159 {
1160 rtx tem = XVECEXP (pat, 0, i);
1161
1162 if (GET_CODE (tem) == USE
1163 || GET_CODE (tem) == CLOBBER)
1164 continue;
1165
1166 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1167 return 0;
1168 }
1169
1170 return 1;
1171 }
1172 return 0;
1173 }
1174 \f
1175
1176 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1177 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1178 If the object was modified, if we hit a partial assignment to X, or hit a
1179 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1180 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1181 be the src. */
1182
1183 rtx
1184 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1185 {
1186 rtx p;
1187
1188 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1189 p = PREV_INSN (p))
1190 if (INSN_P (p))
1191 {
1192 rtx set = single_set (p);
1193 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1194
1195 if (set && rtx_equal_p (x, SET_DEST (set)))
1196 {
1197 rtx src = SET_SRC (set);
1198
1199 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1200 src = XEXP (note, 0);
1201
1202 if ((valid_to == NULL_RTX
1203 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1204 /* Reject hard registers because we don't usually want
1205 to use them; we'd rather use a pseudo. */
1206 && (! (REG_P (src)
1207 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1208 {
1209 *pinsn = p;
1210 return src;
1211 }
1212 }
1213
1214 /* If set in non-simple way, we don't have a value. */
1215 if (reg_set_p (x, p))
1216 break;
1217 }
1218
1219 return x;
1220 }
1221 \f
1222 /* Return nonzero if register in range [REGNO, ENDREGNO)
1223 appears either explicitly or implicitly in X
1224 other than being stored into.
1225
1226 References contained within the substructure at LOC do not count.
1227 LOC may be zero, meaning don't ignore anything. */
1228
1229 int
1230 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1231 rtx *loc)
1232 {
1233 int i;
1234 unsigned int x_regno;
1235 RTX_CODE code;
1236 const char *fmt;
1237
1238 repeat:
1239 /* The contents of a REG_NONNEG note is always zero, so we must come here
1240 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1241 if (x == 0)
1242 return 0;
1243
1244 code = GET_CODE (x);
1245
1246 switch (code)
1247 {
1248 case REG:
1249 x_regno = REGNO (x);
1250
1251 /* If we modifying the stack, frame, or argument pointer, it will
1252 clobber a virtual register. In fact, we could be more precise,
1253 but it isn't worth it. */
1254 if ((x_regno == STACK_POINTER_REGNUM
1255 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1256 || x_regno == ARG_POINTER_REGNUM
1257 #endif
1258 || x_regno == FRAME_POINTER_REGNUM)
1259 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1260 return 1;
1261
1262 return endregno > x_regno && regno < END_REGNO (x);
1263
1264 case SUBREG:
1265 /* If this is a SUBREG of a hard reg, we can see exactly which
1266 registers are being modified. Otherwise, handle normally. */
1267 if (REG_P (SUBREG_REG (x))
1268 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1269 {
1270 unsigned int inner_regno = subreg_regno (x);
1271 unsigned int inner_endregno
1272 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1273 ? subreg_nregs (x) : 1);
1274
1275 return endregno > inner_regno && regno < inner_endregno;
1276 }
1277 break;
1278
1279 case CLOBBER:
1280 case SET:
1281 if (&SET_DEST (x) != loc
1282 /* Note setting a SUBREG counts as referring to the REG it is in for
1283 a pseudo but not for hard registers since we can
1284 treat each word individually. */
1285 && ((GET_CODE (SET_DEST (x)) == SUBREG
1286 && loc != &SUBREG_REG (SET_DEST (x))
1287 && REG_P (SUBREG_REG (SET_DEST (x)))
1288 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1289 && refers_to_regno_p (regno, endregno,
1290 SUBREG_REG (SET_DEST (x)), loc))
1291 || (!REG_P (SET_DEST (x))
1292 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1293 return 1;
1294
1295 if (code == CLOBBER || loc == &SET_SRC (x))
1296 return 0;
1297 x = SET_SRC (x);
1298 goto repeat;
1299
1300 default:
1301 break;
1302 }
1303
1304 /* X does not match, so try its subexpressions. */
1305
1306 fmt = GET_RTX_FORMAT (code);
1307 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1308 {
1309 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1310 {
1311 if (i == 0)
1312 {
1313 x = XEXP (x, 0);
1314 goto repeat;
1315 }
1316 else
1317 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1318 return 1;
1319 }
1320 else if (fmt[i] == 'E')
1321 {
1322 int j;
1323 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1324 if (loc != &XVECEXP (x, i, j)
1325 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1326 return 1;
1327 }
1328 }
1329 return 0;
1330 }
1331
1332 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1333 we check if any register number in X conflicts with the relevant register
1334 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1335 contains a MEM (we don't bother checking for memory addresses that can't
1336 conflict because we expect this to be a rare case. */
1337
1338 int
1339 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1340 {
1341 unsigned int regno, endregno;
1342
1343 /* If either argument is a constant, then modifying X can not
1344 affect IN. Here we look at IN, we can profitably combine
1345 CONSTANT_P (x) with the switch statement below. */
1346 if (CONSTANT_P (in))
1347 return 0;
1348
1349 recurse:
1350 switch (GET_CODE (x))
1351 {
1352 case STRICT_LOW_PART:
1353 case ZERO_EXTRACT:
1354 case SIGN_EXTRACT:
1355 /* Overly conservative. */
1356 x = XEXP (x, 0);
1357 goto recurse;
1358
1359 case SUBREG:
1360 regno = REGNO (SUBREG_REG (x));
1361 if (regno < FIRST_PSEUDO_REGISTER)
1362 regno = subreg_regno (x);
1363 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1364 ? subreg_nregs (x) : 1);
1365 goto do_reg;
1366
1367 case REG:
1368 regno = REGNO (x);
1369 endregno = END_REGNO (x);
1370 do_reg:
1371 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1372
1373 case MEM:
1374 {
1375 const char *fmt;
1376 int i;
1377
1378 if (MEM_P (in))
1379 return 1;
1380
1381 fmt = GET_RTX_FORMAT (GET_CODE (in));
1382 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1383 if (fmt[i] == 'e')
1384 {
1385 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1386 return 1;
1387 }
1388 else if (fmt[i] == 'E')
1389 {
1390 int j;
1391 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1392 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1393 return 1;
1394 }
1395
1396 return 0;
1397 }
1398
1399 case SCRATCH:
1400 case PC:
1401 case CC0:
1402 return reg_mentioned_p (x, in);
1403
1404 case PARALLEL:
1405 {
1406 int i;
1407
1408 /* If any register in here refers to it we return true. */
1409 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1410 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1411 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1412 return 1;
1413 return 0;
1414 }
1415
1416 default:
1417 gcc_assert (CONSTANT_P (x));
1418 return 0;
1419 }
1420 }
1421 \f
1422 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1423 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1424 ignored by note_stores, but passed to FUN.
1425
1426 FUN receives three arguments:
1427 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1428 2. the SET or CLOBBER rtx that does the store,
1429 3. the pointer DATA provided to note_stores.
1430
1431 If the item being stored in or clobbered is a SUBREG of a hard register,
1432 the SUBREG will be passed. */
1433
1434 void
1435 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1436 {
1437 int i;
1438
1439 if (GET_CODE (x) == COND_EXEC)
1440 x = COND_EXEC_CODE (x);
1441
1442 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1443 {
1444 rtx dest = SET_DEST (x);
1445
1446 while ((GET_CODE (dest) == SUBREG
1447 && (!REG_P (SUBREG_REG (dest))
1448 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1449 || GET_CODE (dest) == ZERO_EXTRACT
1450 || GET_CODE (dest) == STRICT_LOW_PART)
1451 dest = XEXP (dest, 0);
1452
1453 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1454 each of whose first operand is a register. */
1455 if (GET_CODE (dest) == PARALLEL)
1456 {
1457 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1458 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1459 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1460 }
1461 else
1462 (*fun) (dest, x, data);
1463 }
1464
1465 else if (GET_CODE (x) == PARALLEL)
1466 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1467 note_stores (XVECEXP (x, 0, i), fun, data);
1468 }
1469 \f
1470 /* Like notes_stores, but call FUN for each expression that is being
1471 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1472 FUN for each expression, not any interior subexpressions. FUN receives a
1473 pointer to the expression and the DATA passed to this function.
1474
1475 Note that this is not quite the same test as that done in reg_referenced_p
1476 since that considers something as being referenced if it is being
1477 partially set, while we do not. */
1478
1479 void
1480 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1481 {
1482 rtx body = *pbody;
1483 int i;
1484
1485 switch (GET_CODE (body))
1486 {
1487 case COND_EXEC:
1488 (*fun) (&COND_EXEC_TEST (body), data);
1489 note_uses (&COND_EXEC_CODE (body), fun, data);
1490 return;
1491
1492 case PARALLEL:
1493 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1494 note_uses (&XVECEXP (body, 0, i), fun, data);
1495 return;
1496
1497 case SEQUENCE:
1498 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1499 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1500 return;
1501
1502 case USE:
1503 (*fun) (&XEXP (body, 0), data);
1504 return;
1505
1506 case ASM_OPERANDS:
1507 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1508 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1509 return;
1510
1511 case TRAP_IF:
1512 (*fun) (&TRAP_CONDITION (body), data);
1513 return;
1514
1515 case PREFETCH:
1516 (*fun) (&XEXP (body, 0), data);
1517 return;
1518
1519 case UNSPEC:
1520 case UNSPEC_VOLATILE:
1521 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1522 (*fun) (&XVECEXP (body, 0, i), data);
1523 return;
1524
1525 case CLOBBER:
1526 if (MEM_P (XEXP (body, 0)))
1527 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1528 return;
1529
1530 case SET:
1531 {
1532 rtx dest = SET_DEST (body);
1533
1534 /* For sets we replace everything in source plus registers in memory
1535 expression in store and operands of a ZERO_EXTRACT. */
1536 (*fun) (&SET_SRC (body), data);
1537
1538 if (GET_CODE (dest) == ZERO_EXTRACT)
1539 {
1540 (*fun) (&XEXP (dest, 1), data);
1541 (*fun) (&XEXP (dest, 2), data);
1542 }
1543
1544 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1545 dest = XEXP (dest, 0);
1546
1547 if (MEM_P (dest))
1548 (*fun) (&XEXP (dest, 0), data);
1549 }
1550 return;
1551
1552 default:
1553 /* All the other possibilities never store. */
1554 (*fun) (pbody, data);
1555 return;
1556 }
1557 }
1558 \f
1559 /* Return nonzero if X's old contents don't survive after INSN.
1560 This will be true if X is (cc0) or if X is a register and
1561 X dies in INSN or because INSN entirely sets X.
1562
1563 "Entirely set" means set directly and not through a SUBREG, or
1564 ZERO_EXTRACT, so no trace of the old contents remains.
1565 Likewise, REG_INC does not count.
1566
1567 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1568 but for this use that makes no difference, since regs don't overlap
1569 during their lifetimes. Therefore, this function may be used
1570 at any time after deaths have been computed.
1571
1572 If REG is a hard reg that occupies multiple machine registers, this
1573 function will only return 1 if each of those registers will be replaced
1574 by INSN. */
1575
1576 int
1577 dead_or_set_p (const_rtx insn, const_rtx x)
1578 {
1579 unsigned int regno, end_regno;
1580 unsigned int i;
1581
1582 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1583 if (GET_CODE (x) == CC0)
1584 return 1;
1585
1586 gcc_assert (REG_P (x));
1587
1588 regno = REGNO (x);
1589 end_regno = END_REGNO (x);
1590 for (i = regno; i < end_regno; i++)
1591 if (! dead_or_set_regno_p (insn, i))
1592 return 0;
1593
1594 return 1;
1595 }
1596
1597 /* Return TRUE iff DEST is a register or subreg of a register and
1598 doesn't change the number of words of the inner register, and any
1599 part of the register is TEST_REGNO. */
1600
1601 static bool
1602 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1603 {
1604 unsigned int regno, endregno;
1605
1606 if (GET_CODE (dest) == SUBREG
1607 && (((GET_MODE_SIZE (GET_MODE (dest))
1608 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1609 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1610 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1611 dest = SUBREG_REG (dest);
1612
1613 if (!REG_P (dest))
1614 return false;
1615
1616 regno = REGNO (dest);
1617 endregno = END_REGNO (dest);
1618 return (test_regno >= regno && test_regno < endregno);
1619 }
1620
1621 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1622 any member matches the covers_regno_no_parallel_p criteria. */
1623
1624 static bool
1625 covers_regno_p (const_rtx dest, unsigned int test_regno)
1626 {
1627 if (GET_CODE (dest) == PARALLEL)
1628 {
1629 /* Some targets place small structures in registers for return
1630 values of functions, and those registers are wrapped in
1631 PARALLELs that we may see as the destination of a SET. */
1632 int i;
1633
1634 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1635 {
1636 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1637 if (inner != NULL_RTX
1638 && covers_regno_no_parallel_p (inner, test_regno))
1639 return true;
1640 }
1641
1642 return false;
1643 }
1644 else
1645 return covers_regno_no_parallel_p (dest, test_regno);
1646 }
1647
1648 /* Utility function for dead_or_set_p to check an individual register. */
1649
1650 int
1651 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1652 {
1653 const_rtx pattern;
1654
1655 /* See if there is a death note for something that includes TEST_REGNO. */
1656 if (find_regno_note (insn, REG_DEAD, test_regno))
1657 return 1;
1658
1659 if (CALL_P (insn)
1660 && find_regno_fusage (insn, CLOBBER, test_regno))
1661 return 1;
1662
1663 pattern = PATTERN (insn);
1664
1665 if (GET_CODE (pattern) == COND_EXEC)
1666 pattern = COND_EXEC_CODE (pattern);
1667
1668 if (GET_CODE (pattern) == SET)
1669 return covers_regno_p (SET_DEST (pattern), test_regno);
1670 else if (GET_CODE (pattern) == PARALLEL)
1671 {
1672 int i;
1673
1674 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1675 {
1676 rtx body = XVECEXP (pattern, 0, i);
1677
1678 if (GET_CODE (body) == COND_EXEC)
1679 body = COND_EXEC_CODE (body);
1680
1681 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1682 && covers_regno_p (SET_DEST (body), test_regno))
1683 return 1;
1684 }
1685 }
1686
1687 return 0;
1688 }
1689
1690 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1691 If DATUM is nonzero, look for one whose datum is DATUM. */
1692
1693 rtx
1694 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1695 {
1696 rtx link;
1697
1698 gcc_checking_assert (insn);
1699
1700 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1701 if (! INSN_P (insn))
1702 return 0;
1703 if (datum == 0)
1704 {
1705 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1706 if (REG_NOTE_KIND (link) == kind)
1707 return link;
1708 return 0;
1709 }
1710
1711 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1712 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1713 return link;
1714 return 0;
1715 }
1716
1717 /* Return the reg-note of kind KIND in insn INSN which applies to register
1718 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1719 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1720 it might be the case that the note overlaps REGNO. */
1721
1722 rtx
1723 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1724 {
1725 rtx link;
1726
1727 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1728 if (! INSN_P (insn))
1729 return 0;
1730
1731 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1732 if (REG_NOTE_KIND (link) == kind
1733 /* Verify that it is a register, so that scratch and MEM won't cause a
1734 problem here. */
1735 && REG_P (XEXP (link, 0))
1736 && REGNO (XEXP (link, 0)) <= regno
1737 && END_REGNO (XEXP (link, 0)) > regno)
1738 return link;
1739 return 0;
1740 }
1741
1742 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1743 has such a note. */
1744
1745 rtx
1746 find_reg_equal_equiv_note (const_rtx insn)
1747 {
1748 rtx link;
1749
1750 if (!INSN_P (insn))
1751 return 0;
1752
1753 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1754 if (REG_NOTE_KIND (link) == REG_EQUAL
1755 || REG_NOTE_KIND (link) == REG_EQUIV)
1756 {
1757 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1758 insns that have multiple sets. Checking single_set to
1759 make sure of this is not the proper check, as explained
1760 in the comment in set_unique_reg_note.
1761
1762 This should be changed into an assert. */
1763 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1764 return 0;
1765 return link;
1766 }
1767 return NULL;
1768 }
1769
1770 /* Check whether INSN is a single_set whose source is known to be
1771 equivalent to a constant. Return that constant if so, otherwise
1772 return null. */
1773
1774 rtx
1775 find_constant_src (const_rtx insn)
1776 {
1777 rtx note, set, x;
1778
1779 set = single_set (insn);
1780 if (set)
1781 {
1782 x = avoid_constant_pool_reference (SET_SRC (set));
1783 if (CONSTANT_P (x))
1784 return x;
1785 }
1786
1787 note = find_reg_equal_equiv_note (insn);
1788 if (note && CONSTANT_P (XEXP (note, 0)))
1789 return XEXP (note, 0);
1790
1791 return NULL_RTX;
1792 }
1793
1794 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1795 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1796
1797 int
1798 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1799 {
1800 /* If it's not a CALL_INSN, it can't possibly have a
1801 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1802 if (!CALL_P (insn))
1803 return 0;
1804
1805 gcc_assert (datum);
1806
1807 if (!REG_P (datum))
1808 {
1809 rtx link;
1810
1811 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1812 link;
1813 link = XEXP (link, 1))
1814 if (GET_CODE (XEXP (link, 0)) == code
1815 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1816 return 1;
1817 }
1818 else
1819 {
1820 unsigned int regno = REGNO (datum);
1821
1822 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1823 to pseudo registers, so don't bother checking. */
1824
1825 if (regno < FIRST_PSEUDO_REGISTER)
1826 {
1827 unsigned int end_regno = END_HARD_REGNO (datum);
1828 unsigned int i;
1829
1830 for (i = regno; i < end_regno; i++)
1831 if (find_regno_fusage (insn, code, i))
1832 return 1;
1833 }
1834 }
1835
1836 return 0;
1837 }
1838
1839 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1840 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1841
1842 int
1843 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1844 {
1845 rtx link;
1846
1847 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1848 to pseudo registers, so don't bother checking. */
1849
1850 if (regno >= FIRST_PSEUDO_REGISTER
1851 || !CALL_P (insn) )
1852 return 0;
1853
1854 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1855 {
1856 rtx op, reg;
1857
1858 if (GET_CODE (op = XEXP (link, 0)) == code
1859 && REG_P (reg = XEXP (op, 0))
1860 && REGNO (reg) <= regno
1861 && END_HARD_REGNO (reg) > regno)
1862 return 1;
1863 }
1864
1865 return 0;
1866 }
1867
1868 \f
1869 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1870 stored as the pointer to the next register note. */
1871
1872 rtx
1873 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1874 {
1875 rtx note;
1876
1877 switch (kind)
1878 {
1879 case REG_CC_SETTER:
1880 case REG_CC_USER:
1881 case REG_LABEL_TARGET:
1882 case REG_LABEL_OPERAND:
1883 /* These types of register notes use an INSN_LIST rather than an
1884 EXPR_LIST, so that copying is done right and dumps look
1885 better. */
1886 note = alloc_INSN_LIST (datum, list);
1887 PUT_REG_NOTE_KIND (note, kind);
1888 break;
1889
1890 default:
1891 note = alloc_EXPR_LIST (kind, datum, list);
1892 break;
1893 }
1894
1895 return note;
1896 }
1897
1898 /* Add register note with kind KIND and datum DATUM to INSN. */
1899
1900 void
1901 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1902 {
1903 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1904 }
1905
1906 /* Remove register note NOTE from the REG_NOTES of INSN. */
1907
1908 void
1909 remove_note (rtx insn, const_rtx note)
1910 {
1911 rtx link;
1912
1913 if (note == NULL_RTX)
1914 return;
1915
1916 if (REG_NOTES (insn) == note)
1917 REG_NOTES (insn) = XEXP (note, 1);
1918 else
1919 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1920 if (XEXP (link, 1) == note)
1921 {
1922 XEXP (link, 1) = XEXP (note, 1);
1923 break;
1924 }
1925
1926 switch (REG_NOTE_KIND (note))
1927 {
1928 case REG_EQUAL:
1929 case REG_EQUIV:
1930 df_notes_rescan (insn);
1931 break;
1932 default:
1933 break;
1934 }
1935 }
1936
1937 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1938
1939 void
1940 remove_reg_equal_equiv_notes (rtx insn)
1941 {
1942 rtx *loc;
1943
1944 loc = &REG_NOTES (insn);
1945 while (*loc)
1946 {
1947 enum reg_note kind = REG_NOTE_KIND (*loc);
1948 if (kind == REG_EQUAL || kind == REG_EQUIV)
1949 *loc = XEXP (*loc, 1);
1950 else
1951 loc = &XEXP (*loc, 1);
1952 }
1953 }
1954
1955 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1956 return 1 if it is found. A simple equality test is used to determine if
1957 NODE matches. */
1958
1959 int
1960 in_expr_list_p (const_rtx listp, const_rtx node)
1961 {
1962 const_rtx x;
1963
1964 for (x = listp; x; x = XEXP (x, 1))
1965 if (node == XEXP (x, 0))
1966 return 1;
1967
1968 return 0;
1969 }
1970
1971 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1972 remove that entry from the list if it is found.
1973
1974 A simple equality test is used to determine if NODE matches. */
1975
1976 void
1977 remove_node_from_expr_list (const_rtx node, rtx *listp)
1978 {
1979 rtx temp = *listp;
1980 rtx prev = NULL_RTX;
1981
1982 while (temp)
1983 {
1984 if (node == XEXP (temp, 0))
1985 {
1986 /* Splice the node out of the list. */
1987 if (prev)
1988 XEXP (prev, 1) = XEXP (temp, 1);
1989 else
1990 *listp = XEXP (temp, 1);
1991
1992 return;
1993 }
1994
1995 prev = temp;
1996 temp = XEXP (temp, 1);
1997 }
1998 }
1999 \f
2000 /* Nonzero if X contains any volatile instructions. These are instructions
2001 which may cause unpredictable machine state instructions, and thus no
2002 instructions should be moved or combined across them. This includes
2003 only volatile asms and UNSPEC_VOLATILE instructions. */
2004
2005 int
2006 volatile_insn_p (const_rtx x)
2007 {
2008 const RTX_CODE code = GET_CODE (x);
2009 switch (code)
2010 {
2011 case LABEL_REF:
2012 case SYMBOL_REF:
2013 case CONST_INT:
2014 case CONST:
2015 case CONST_DOUBLE:
2016 case CONST_FIXED:
2017 case CONST_VECTOR:
2018 case CC0:
2019 case PC:
2020 case REG:
2021 case SCRATCH:
2022 case CLOBBER:
2023 case ADDR_VEC:
2024 case ADDR_DIFF_VEC:
2025 case CALL:
2026 case MEM:
2027 return 0;
2028
2029 case UNSPEC_VOLATILE:
2030 /* case TRAP_IF: This isn't clear yet. */
2031 return 1;
2032
2033 case ASM_INPUT:
2034 case ASM_OPERANDS:
2035 if (MEM_VOLATILE_P (x))
2036 return 1;
2037
2038 default:
2039 break;
2040 }
2041
2042 /* Recursively scan the operands of this expression. */
2043
2044 {
2045 const char *const fmt = GET_RTX_FORMAT (code);
2046 int i;
2047
2048 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2049 {
2050 if (fmt[i] == 'e')
2051 {
2052 if (volatile_insn_p (XEXP (x, i)))
2053 return 1;
2054 }
2055 else if (fmt[i] == 'E')
2056 {
2057 int j;
2058 for (j = 0; j < XVECLEN (x, i); j++)
2059 if (volatile_insn_p (XVECEXP (x, i, j)))
2060 return 1;
2061 }
2062 }
2063 }
2064 return 0;
2065 }
2066
2067 /* Nonzero if X contains any volatile memory references
2068 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2069
2070 int
2071 volatile_refs_p (const_rtx x)
2072 {
2073 const RTX_CODE code = GET_CODE (x);
2074 switch (code)
2075 {
2076 case LABEL_REF:
2077 case SYMBOL_REF:
2078 case CONST_INT:
2079 case CONST:
2080 case CONST_DOUBLE:
2081 case CONST_FIXED:
2082 case CONST_VECTOR:
2083 case CC0:
2084 case PC:
2085 case REG:
2086 case SCRATCH:
2087 case CLOBBER:
2088 case ADDR_VEC:
2089 case ADDR_DIFF_VEC:
2090 return 0;
2091
2092 case UNSPEC_VOLATILE:
2093 return 1;
2094
2095 case MEM:
2096 case ASM_INPUT:
2097 case ASM_OPERANDS:
2098 if (MEM_VOLATILE_P (x))
2099 return 1;
2100
2101 default:
2102 break;
2103 }
2104
2105 /* Recursively scan the operands of this expression. */
2106
2107 {
2108 const char *const fmt = GET_RTX_FORMAT (code);
2109 int i;
2110
2111 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2112 {
2113 if (fmt[i] == 'e')
2114 {
2115 if (volatile_refs_p (XEXP (x, i)))
2116 return 1;
2117 }
2118 else if (fmt[i] == 'E')
2119 {
2120 int j;
2121 for (j = 0; j < XVECLEN (x, i); j++)
2122 if (volatile_refs_p (XVECEXP (x, i, j)))
2123 return 1;
2124 }
2125 }
2126 }
2127 return 0;
2128 }
2129
2130 /* Similar to above, except that it also rejects register pre- and post-
2131 incrementing. */
2132
2133 int
2134 side_effects_p (const_rtx x)
2135 {
2136 const RTX_CODE code = GET_CODE (x);
2137 switch (code)
2138 {
2139 case LABEL_REF:
2140 case SYMBOL_REF:
2141 case CONST_INT:
2142 case CONST:
2143 case CONST_DOUBLE:
2144 case CONST_FIXED:
2145 case CONST_VECTOR:
2146 case CC0:
2147 case PC:
2148 case REG:
2149 case SCRATCH:
2150 case ADDR_VEC:
2151 case ADDR_DIFF_VEC:
2152 case VAR_LOCATION:
2153 return 0;
2154
2155 case CLOBBER:
2156 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2157 when some combination can't be done. If we see one, don't think
2158 that we can simplify the expression. */
2159 return (GET_MODE (x) != VOIDmode);
2160
2161 case PRE_INC:
2162 case PRE_DEC:
2163 case POST_INC:
2164 case POST_DEC:
2165 case PRE_MODIFY:
2166 case POST_MODIFY:
2167 case CALL:
2168 case UNSPEC_VOLATILE:
2169 /* case TRAP_IF: This isn't clear yet. */
2170 return 1;
2171
2172 case MEM:
2173 case ASM_INPUT:
2174 case ASM_OPERANDS:
2175 if (MEM_VOLATILE_P (x))
2176 return 1;
2177
2178 default:
2179 break;
2180 }
2181
2182 /* Recursively scan the operands of this expression. */
2183
2184 {
2185 const char *fmt = GET_RTX_FORMAT (code);
2186 int i;
2187
2188 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2189 {
2190 if (fmt[i] == 'e')
2191 {
2192 if (side_effects_p (XEXP (x, i)))
2193 return 1;
2194 }
2195 else if (fmt[i] == 'E')
2196 {
2197 int j;
2198 for (j = 0; j < XVECLEN (x, i); j++)
2199 if (side_effects_p (XVECEXP (x, i, j)))
2200 return 1;
2201 }
2202 }
2203 }
2204 return 0;
2205 }
2206 \f
2207 /* Return nonzero if evaluating rtx X might cause a trap.
2208 FLAGS controls how to consider MEMs. A nonzero means the context
2209 of the access may have changed from the original, such that the
2210 address may have become invalid. */
2211
2212 int
2213 may_trap_p_1 (const_rtx x, unsigned flags)
2214 {
2215 int i;
2216 enum rtx_code code;
2217 const char *fmt;
2218
2219 /* We make no distinction currently, but this function is part of
2220 the internal target-hooks ABI so we keep the parameter as
2221 "unsigned flags". */
2222 bool code_changed = flags != 0;
2223
2224 if (x == 0)
2225 return 0;
2226 code = GET_CODE (x);
2227 switch (code)
2228 {
2229 /* Handle these cases quickly. */
2230 case CONST_INT:
2231 case CONST_DOUBLE:
2232 case CONST_FIXED:
2233 case CONST_VECTOR:
2234 case SYMBOL_REF:
2235 case LABEL_REF:
2236 case CONST:
2237 case PC:
2238 case CC0:
2239 case REG:
2240 case SCRATCH:
2241 return 0;
2242
2243 case UNSPEC:
2244 case UNSPEC_VOLATILE:
2245 return targetm.unspec_may_trap_p (x, flags);
2246
2247 case ASM_INPUT:
2248 case TRAP_IF:
2249 return 1;
2250
2251 case ASM_OPERANDS:
2252 return MEM_VOLATILE_P (x);
2253
2254 /* Memory ref can trap unless it's a static var or a stack slot. */
2255 case MEM:
2256 /* Recognize specific pattern of stack checking probes. */
2257 if (flag_stack_check
2258 && MEM_VOLATILE_P (x)
2259 && XEXP (x, 0) == stack_pointer_rtx)
2260 return 1;
2261 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2262 reference; moving it out of context such as when moving code
2263 when optimizing, might cause its address to become invalid. */
2264 code_changed
2265 || !MEM_NOTRAP_P (x))
2266 {
2267 HOST_WIDE_INT size = MEM_SIZE (x) ? INTVAL (MEM_SIZE (x)) : 0;
2268 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2269 GET_MODE (x), code_changed);
2270 }
2271
2272 return 0;
2273
2274 /* Division by a non-constant might trap. */
2275 case DIV:
2276 case MOD:
2277 case UDIV:
2278 case UMOD:
2279 if (HONOR_SNANS (GET_MODE (x)))
2280 return 1;
2281 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2282 return flag_trapping_math;
2283 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2284 return 1;
2285 break;
2286
2287 case EXPR_LIST:
2288 /* An EXPR_LIST is used to represent a function call. This
2289 certainly may trap. */
2290 return 1;
2291
2292 case GE:
2293 case GT:
2294 case LE:
2295 case LT:
2296 case LTGT:
2297 case COMPARE:
2298 /* Some floating point comparisons may trap. */
2299 if (!flag_trapping_math)
2300 break;
2301 /* ??? There is no machine independent way to check for tests that trap
2302 when COMPARE is used, though many targets do make this distinction.
2303 For instance, sparc uses CCFPE for compares which generate exceptions
2304 and CCFP for compares which do not generate exceptions. */
2305 if (HONOR_NANS (GET_MODE (x)))
2306 return 1;
2307 /* But often the compare has some CC mode, so check operand
2308 modes as well. */
2309 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2310 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2311 return 1;
2312 break;
2313
2314 case EQ:
2315 case NE:
2316 if (HONOR_SNANS (GET_MODE (x)))
2317 return 1;
2318 /* Often comparison is CC mode, so check operand modes. */
2319 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2320 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2321 return 1;
2322 break;
2323
2324 case FIX:
2325 /* Conversion of floating point might trap. */
2326 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2327 return 1;
2328 break;
2329
2330 case NEG:
2331 case ABS:
2332 case SUBREG:
2333 /* These operations don't trap even with floating point. */
2334 break;
2335
2336 default:
2337 /* Any floating arithmetic may trap. */
2338 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2339 && flag_trapping_math)
2340 return 1;
2341 }
2342
2343 fmt = GET_RTX_FORMAT (code);
2344 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2345 {
2346 if (fmt[i] == 'e')
2347 {
2348 if (may_trap_p_1 (XEXP (x, i), flags))
2349 return 1;
2350 }
2351 else if (fmt[i] == 'E')
2352 {
2353 int j;
2354 for (j = 0; j < XVECLEN (x, i); j++)
2355 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2356 return 1;
2357 }
2358 }
2359 return 0;
2360 }
2361
2362 /* Return nonzero if evaluating rtx X might cause a trap. */
2363
2364 int
2365 may_trap_p (const_rtx x)
2366 {
2367 return may_trap_p_1 (x, 0);
2368 }
2369
2370 /* Same as above, but additionally return nonzero if evaluating rtx X might
2371 cause a fault. We define a fault for the purpose of this function as a
2372 erroneous execution condition that cannot be encountered during the normal
2373 execution of a valid program; the typical example is an unaligned memory
2374 access on a strict alignment machine. The compiler guarantees that it
2375 doesn't generate code that will fault from a valid program, but this
2376 guarantee doesn't mean anything for individual instructions. Consider
2377 the following example:
2378
2379 struct S { int d; union { char *cp; int *ip; }; };
2380
2381 int foo(struct S *s)
2382 {
2383 if (s->d == 1)
2384 return *s->ip;
2385 else
2386 return *s->cp;
2387 }
2388
2389 on a strict alignment machine. In a valid program, foo will never be
2390 invoked on a structure for which d is equal to 1 and the underlying
2391 unique field of the union not aligned on a 4-byte boundary, but the
2392 expression *s->ip might cause a fault if considered individually.
2393
2394 At the RTL level, potentially problematic expressions will almost always
2395 verify may_trap_p; for example, the above dereference can be emitted as
2396 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2397 However, suppose that foo is inlined in a caller that causes s->cp to
2398 point to a local character variable and guarantees that s->d is not set
2399 to 1; foo may have been effectively translated into pseudo-RTL as:
2400
2401 if ((reg:SI) == 1)
2402 (set (reg:SI) (mem:SI (%fp - 7)))
2403 else
2404 (set (reg:QI) (mem:QI (%fp - 7)))
2405
2406 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2407 memory reference to a stack slot, but it will certainly cause a fault
2408 on a strict alignment machine. */
2409
2410 int
2411 may_trap_or_fault_p (const_rtx x)
2412 {
2413 return may_trap_p_1 (x, 1);
2414 }
2415 \f
2416 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2417 i.e., an inequality. */
2418
2419 int
2420 inequality_comparisons_p (const_rtx x)
2421 {
2422 const char *fmt;
2423 int len, i;
2424 const enum rtx_code code = GET_CODE (x);
2425
2426 switch (code)
2427 {
2428 case REG:
2429 case SCRATCH:
2430 case PC:
2431 case CC0:
2432 case CONST_INT:
2433 case CONST_DOUBLE:
2434 case CONST_FIXED:
2435 case CONST_VECTOR:
2436 case CONST:
2437 case LABEL_REF:
2438 case SYMBOL_REF:
2439 return 0;
2440
2441 case LT:
2442 case LTU:
2443 case GT:
2444 case GTU:
2445 case LE:
2446 case LEU:
2447 case GE:
2448 case GEU:
2449 return 1;
2450
2451 default:
2452 break;
2453 }
2454
2455 len = GET_RTX_LENGTH (code);
2456 fmt = GET_RTX_FORMAT (code);
2457
2458 for (i = 0; i < len; i++)
2459 {
2460 if (fmt[i] == 'e')
2461 {
2462 if (inequality_comparisons_p (XEXP (x, i)))
2463 return 1;
2464 }
2465 else if (fmt[i] == 'E')
2466 {
2467 int j;
2468 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2469 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2470 return 1;
2471 }
2472 }
2473
2474 return 0;
2475 }
2476 \f
2477 /* Replace any occurrence of FROM in X with TO. The function does
2478 not enter into CONST_DOUBLE for the replace.
2479
2480 Note that copying is not done so X must not be shared unless all copies
2481 are to be modified. */
2482
2483 rtx
2484 replace_rtx (rtx x, rtx from, rtx to)
2485 {
2486 int i, j;
2487 const char *fmt;
2488
2489 /* The following prevents loops occurrence when we change MEM in
2490 CONST_DOUBLE onto the same CONST_DOUBLE. */
2491 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2492 return x;
2493
2494 if (x == from)
2495 return to;
2496
2497 /* Allow this function to make replacements in EXPR_LISTs. */
2498 if (x == 0)
2499 return 0;
2500
2501 if (GET_CODE (x) == SUBREG)
2502 {
2503 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2504
2505 if (CONST_INT_P (new_rtx))
2506 {
2507 x = simplify_subreg (GET_MODE (x), new_rtx,
2508 GET_MODE (SUBREG_REG (x)),
2509 SUBREG_BYTE (x));
2510 gcc_assert (x);
2511 }
2512 else
2513 SUBREG_REG (x) = new_rtx;
2514
2515 return x;
2516 }
2517 else if (GET_CODE (x) == ZERO_EXTEND)
2518 {
2519 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2520
2521 if (CONST_INT_P (new_rtx))
2522 {
2523 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2524 new_rtx, GET_MODE (XEXP (x, 0)));
2525 gcc_assert (x);
2526 }
2527 else
2528 XEXP (x, 0) = new_rtx;
2529
2530 return x;
2531 }
2532
2533 fmt = GET_RTX_FORMAT (GET_CODE (x));
2534 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2535 {
2536 if (fmt[i] == 'e')
2537 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2538 else if (fmt[i] == 'E')
2539 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2540 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2541 }
2542
2543 return x;
2544 }
2545 \f
2546 /* Replace occurrences of the old label in *X with the new one.
2547 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2548
2549 int
2550 replace_label (rtx *x, void *data)
2551 {
2552 rtx l = *x;
2553 rtx old_label = ((replace_label_data *) data)->r1;
2554 rtx new_label = ((replace_label_data *) data)->r2;
2555 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2556
2557 if (l == NULL_RTX)
2558 return 0;
2559
2560 if (GET_CODE (l) == SYMBOL_REF
2561 && CONSTANT_POOL_ADDRESS_P (l))
2562 {
2563 rtx c = get_pool_constant (l);
2564 if (rtx_referenced_p (old_label, c))
2565 {
2566 rtx new_c, new_l;
2567 replace_label_data *d = (replace_label_data *) data;
2568
2569 /* Create a copy of constant C; replace the label inside
2570 but do not update LABEL_NUSES because uses in constant pool
2571 are not counted. */
2572 new_c = copy_rtx (c);
2573 d->update_label_nuses = false;
2574 for_each_rtx (&new_c, replace_label, data);
2575 d->update_label_nuses = update_label_nuses;
2576
2577 /* Add the new constant NEW_C to constant pool and replace
2578 the old reference to constant by new reference. */
2579 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2580 *x = replace_rtx (l, l, new_l);
2581 }
2582 return 0;
2583 }
2584
2585 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2586 field. This is not handled by for_each_rtx because it doesn't
2587 handle unprinted ('0') fields. */
2588 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2589 JUMP_LABEL (l) = new_label;
2590
2591 if ((GET_CODE (l) == LABEL_REF
2592 || GET_CODE (l) == INSN_LIST)
2593 && XEXP (l, 0) == old_label)
2594 {
2595 XEXP (l, 0) = new_label;
2596 if (update_label_nuses)
2597 {
2598 ++LABEL_NUSES (new_label);
2599 --LABEL_NUSES (old_label);
2600 }
2601 return 0;
2602 }
2603
2604 return 0;
2605 }
2606
2607 /* When *BODY is equal to X or X is directly referenced by *BODY
2608 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2609 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2610
2611 static int
2612 rtx_referenced_p_1 (rtx *body, void *x)
2613 {
2614 rtx y = (rtx) x;
2615
2616 if (*body == NULL_RTX)
2617 return y == NULL_RTX;
2618
2619 /* Return true if a label_ref *BODY refers to label Y. */
2620 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2621 return XEXP (*body, 0) == y;
2622
2623 /* If *BODY is a reference to pool constant traverse the constant. */
2624 if (GET_CODE (*body) == SYMBOL_REF
2625 && CONSTANT_POOL_ADDRESS_P (*body))
2626 return rtx_referenced_p (y, get_pool_constant (*body));
2627
2628 /* By default, compare the RTL expressions. */
2629 return rtx_equal_p (*body, y);
2630 }
2631
2632 /* Return true if X is referenced in BODY. */
2633
2634 int
2635 rtx_referenced_p (rtx x, rtx body)
2636 {
2637 return for_each_rtx (&body, rtx_referenced_p_1, x);
2638 }
2639
2640 /* If INSN is a tablejump return true and store the label (before jump table) to
2641 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2642
2643 bool
2644 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2645 {
2646 rtx label, table;
2647
2648 if (JUMP_P (insn)
2649 && (label = JUMP_LABEL (insn)) != NULL_RTX
2650 && (table = next_active_insn (label)) != NULL_RTX
2651 && JUMP_TABLE_DATA_P (table))
2652 {
2653 if (labelp)
2654 *labelp = label;
2655 if (tablep)
2656 *tablep = table;
2657 return true;
2658 }
2659 return false;
2660 }
2661
2662 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2663 constant that is not in the constant pool and not in the condition
2664 of an IF_THEN_ELSE. */
2665
2666 static int
2667 computed_jump_p_1 (const_rtx x)
2668 {
2669 const enum rtx_code code = GET_CODE (x);
2670 int i, j;
2671 const char *fmt;
2672
2673 switch (code)
2674 {
2675 case LABEL_REF:
2676 case PC:
2677 return 0;
2678
2679 case CONST:
2680 case CONST_INT:
2681 case CONST_DOUBLE:
2682 case CONST_FIXED:
2683 case CONST_VECTOR:
2684 case SYMBOL_REF:
2685 case REG:
2686 return 1;
2687
2688 case MEM:
2689 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2690 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2691
2692 case IF_THEN_ELSE:
2693 return (computed_jump_p_1 (XEXP (x, 1))
2694 || computed_jump_p_1 (XEXP (x, 2)));
2695
2696 default:
2697 break;
2698 }
2699
2700 fmt = GET_RTX_FORMAT (code);
2701 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2702 {
2703 if (fmt[i] == 'e'
2704 && computed_jump_p_1 (XEXP (x, i)))
2705 return 1;
2706
2707 else if (fmt[i] == 'E')
2708 for (j = 0; j < XVECLEN (x, i); j++)
2709 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2710 return 1;
2711 }
2712
2713 return 0;
2714 }
2715
2716 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2717
2718 Tablejumps and casesi insns are not considered indirect jumps;
2719 we can recognize them by a (use (label_ref)). */
2720
2721 int
2722 computed_jump_p (const_rtx insn)
2723 {
2724 int i;
2725 if (JUMP_P (insn))
2726 {
2727 rtx pat = PATTERN (insn);
2728
2729 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2730 if (JUMP_LABEL (insn) != NULL)
2731 return 0;
2732
2733 if (GET_CODE (pat) == PARALLEL)
2734 {
2735 int len = XVECLEN (pat, 0);
2736 int has_use_labelref = 0;
2737
2738 for (i = len - 1; i >= 0; i--)
2739 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2740 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2741 == LABEL_REF))
2742 has_use_labelref = 1;
2743
2744 if (! has_use_labelref)
2745 for (i = len - 1; i >= 0; i--)
2746 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2747 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2748 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2749 return 1;
2750 }
2751 else if (GET_CODE (pat) == SET
2752 && SET_DEST (pat) == pc_rtx
2753 && computed_jump_p_1 (SET_SRC (pat)))
2754 return 1;
2755 }
2756 return 0;
2757 }
2758
2759 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2760 calls. Processes the subexpressions of EXP and passes them to F. */
2761 static int
2762 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2763 {
2764 int result, i, j;
2765 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2766 rtx *x;
2767
2768 for (; format[n] != '\0'; n++)
2769 {
2770 switch (format[n])
2771 {
2772 case 'e':
2773 /* Call F on X. */
2774 x = &XEXP (exp, n);
2775 result = (*f) (x, data);
2776 if (result == -1)
2777 /* Do not traverse sub-expressions. */
2778 continue;
2779 else if (result != 0)
2780 /* Stop the traversal. */
2781 return result;
2782
2783 if (*x == NULL_RTX)
2784 /* There are no sub-expressions. */
2785 continue;
2786
2787 i = non_rtx_starting_operands[GET_CODE (*x)];
2788 if (i >= 0)
2789 {
2790 result = for_each_rtx_1 (*x, i, f, data);
2791 if (result != 0)
2792 return result;
2793 }
2794 break;
2795
2796 case 'V':
2797 case 'E':
2798 if (XVEC (exp, n) == 0)
2799 continue;
2800 for (j = 0; j < XVECLEN (exp, n); ++j)
2801 {
2802 /* Call F on X. */
2803 x = &XVECEXP (exp, n, j);
2804 result = (*f) (x, data);
2805 if (result == -1)
2806 /* Do not traverse sub-expressions. */
2807 continue;
2808 else if (result != 0)
2809 /* Stop the traversal. */
2810 return result;
2811
2812 if (*x == NULL_RTX)
2813 /* There are no sub-expressions. */
2814 continue;
2815
2816 i = non_rtx_starting_operands[GET_CODE (*x)];
2817 if (i >= 0)
2818 {
2819 result = for_each_rtx_1 (*x, i, f, data);
2820 if (result != 0)
2821 return result;
2822 }
2823 }
2824 break;
2825
2826 default:
2827 /* Nothing to do. */
2828 break;
2829 }
2830 }
2831
2832 return 0;
2833 }
2834
2835 /* Traverse X via depth-first search, calling F for each
2836 sub-expression (including X itself). F is also passed the DATA.
2837 If F returns -1, do not traverse sub-expressions, but continue
2838 traversing the rest of the tree. If F ever returns any other
2839 nonzero value, stop the traversal, and return the value returned
2840 by F. Otherwise, return 0. This function does not traverse inside
2841 tree structure that contains RTX_EXPRs, or into sub-expressions
2842 whose format code is `0' since it is not known whether or not those
2843 codes are actually RTL.
2844
2845 This routine is very general, and could (should?) be used to
2846 implement many of the other routines in this file. */
2847
2848 int
2849 for_each_rtx (rtx *x, rtx_function f, void *data)
2850 {
2851 int result;
2852 int i;
2853
2854 /* Call F on X. */
2855 result = (*f) (x, data);
2856 if (result == -1)
2857 /* Do not traverse sub-expressions. */
2858 return 0;
2859 else if (result != 0)
2860 /* Stop the traversal. */
2861 return result;
2862
2863 if (*x == NULL_RTX)
2864 /* There are no sub-expressions. */
2865 return 0;
2866
2867 i = non_rtx_starting_operands[GET_CODE (*x)];
2868 if (i < 0)
2869 return 0;
2870
2871 return for_each_rtx_1 (*x, i, f, data);
2872 }
2873
2874
2875 /* Searches X for any reference to REGNO, returning the rtx of the
2876 reference found if any. Otherwise, returns NULL_RTX. */
2877
2878 rtx
2879 regno_use_in (unsigned int regno, rtx x)
2880 {
2881 const char *fmt;
2882 int i, j;
2883 rtx tem;
2884
2885 if (REG_P (x) && REGNO (x) == regno)
2886 return x;
2887
2888 fmt = GET_RTX_FORMAT (GET_CODE (x));
2889 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2890 {
2891 if (fmt[i] == 'e')
2892 {
2893 if ((tem = regno_use_in (regno, XEXP (x, i))))
2894 return tem;
2895 }
2896 else if (fmt[i] == 'E')
2897 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2898 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
2899 return tem;
2900 }
2901
2902 return NULL_RTX;
2903 }
2904
2905 /* Return a value indicating whether OP, an operand of a commutative
2906 operation, is preferred as the first or second operand. The higher
2907 the value, the stronger the preference for being the first operand.
2908 We use negative values to indicate a preference for the first operand
2909 and positive values for the second operand. */
2910
2911 int
2912 commutative_operand_precedence (rtx op)
2913 {
2914 enum rtx_code code = GET_CODE (op);
2915
2916 /* Constants always come the second operand. Prefer "nice" constants. */
2917 if (code == CONST_INT)
2918 return -8;
2919 if (code == CONST_DOUBLE)
2920 return -7;
2921 if (code == CONST_FIXED)
2922 return -7;
2923 op = avoid_constant_pool_reference (op);
2924 code = GET_CODE (op);
2925
2926 switch (GET_RTX_CLASS (code))
2927 {
2928 case RTX_CONST_OBJ:
2929 if (code == CONST_INT)
2930 return -6;
2931 if (code == CONST_DOUBLE)
2932 return -5;
2933 if (code == CONST_FIXED)
2934 return -5;
2935 return -4;
2936
2937 case RTX_EXTRA:
2938 /* SUBREGs of objects should come second. */
2939 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
2940 return -3;
2941 return 0;
2942
2943 case RTX_OBJ:
2944 /* Complex expressions should be the first, so decrease priority
2945 of objects. Prefer pointer objects over non pointer objects. */
2946 if ((REG_P (op) && REG_POINTER (op))
2947 || (MEM_P (op) && MEM_POINTER (op)))
2948 return -1;
2949 return -2;
2950
2951 case RTX_COMM_ARITH:
2952 /* Prefer operands that are themselves commutative to be first.
2953 This helps to make things linear. In particular,
2954 (and (and (reg) (reg)) (not (reg))) is canonical. */
2955 return 4;
2956
2957 case RTX_BIN_ARITH:
2958 /* If only one operand is a binary expression, it will be the first
2959 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
2960 is canonical, although it will usually be further simplified. */
2961 return 2;
2962
2963 case RTX_UNARY:
2964 /* Then prefer NEG and NOT. */
2965 if (code == NEG || code == NOT)
2966 return 1;
2967
2968 default:
2969 return 0;
2970 }
2971 }
2972
2973 /* Return 1 iff it is necessary to swap operands of commutative operation
2974 in order to canonicalize expression. */
2975
2976 bool
2977 swap_commutative_operands_p (rtx x, rtx y)
2978 {
2979 return (commutative_operand_precedence (x)
2980 < commutative_operand_precedence (y));
2981 }
2982
2983 /* Return 1 if X is an autoincrement side effect and the register is
2984 not the stack pointer. */
2985 int
2986 auto_inc_p (const_rtx x)
2987 {
2988 switch (GET_CODE (x))
2989 {
2990 case PRE_INC:
2991 case POST_INC:
2992 case PRE_DEC:
2993 case POST_DEC:
2994 case PRE_MODIFY:
2995 case POST_MODIFY:
2996 /* There are no REG_INC notes for SP. */
2997 if (XEXP (x, 0) != stack_pointer_rtx)
2998 return 1;
2999 default:
3000 break;
3001 }
3002 return 0;
3003 }
3004
3005 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3006 int
3007 loc_mentioned_in_p (rtx *loc, const_rtx in)
3008 {
3009 enum rtx_code code;
3010 const char *fmt;
3011 int i, j;
3012
3013 if (!in)
3014 return 0;
3015
3016 code = GET_CODE (in);
3017 fmt = GET_RTX_FORMAT (code);
3018 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3019 {
3020 if (fmt[i] == 'e')
3021 {
3022 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3023 return 1;
3024 }
3025 else if (fmt[i] == 'E')
3026 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3027 if (loc == &XVECEXP (in, i, j)
3028 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3029 return 1;
3030 }
3031 return 0;
3032 }
3033
3034 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3035 and SUBREG_BYTE, return the bit offset where the subreg begins
3036 (counting from the least significant bit of the operand). */
3037
3038 unsigned int
3039 subreg_lsb_1 (enum machine_mode outer_mode,
3040 enum machine_mode inner_mode,
3041 unsigned int subreg_byte)
3042 {
3043 unsigned int bitpos;
3044 unsigned int byte;
3045 unsigned int word;
3046
3047 /* A paradoxical subreg begins at bit position 0. */
3048 if (GET_MODE_BITSIZE (outer_mode) > GET_MODE_BITSIZE (inner_mode))
3049 return 0;
3050
3051 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3052 /* If the subreg crosses a word boundary ensure that
3053 it also begins and ends on a word boundary. */
3054 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3055 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3056 && (subreg_byte % UNITS_PER_WORD
3057 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3058
3059 if (WORDS_BIG_ENDIAN)
3060 word = (GET_MODE_SIZE (inner_mode)
3061 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3062 else
3063 word = subreg_byte / UNITS_PER_WORD;
3064 bitpos = word * BITS_PER_WORD;
3065
3066 if (BYTES_BIG_ENDIAN)
3067 byte = (GET_MODE_SIZE (inner_mode)
3068 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3069 else
3070 byte = subreg_byte % UNITS_PER_WORD;
3071 bitpos += byte * BITS_PER_UNIT;
3072
3073 return bitpos;
3074 }
3075
3076 /* Given a subreg X, return the bit offset where the subreg begins
3077 (counting from the least significant bit of the reg). */
3078
3079 unsigned int
3080 subreg_lsb (const_rtx x)
3081 {
3082 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3083 SUBREG_BYTE (x));
3084 }
3085
3086 /* Fill in information about a subreg of a hard register.
3087 xregno - A regno of an inner hard subreg_reg (or what will become one).
3088 xmode - The mode of xregno.
3089 offset - The byte offset.
3090 ymode - The mode of a top level SUBREG (or what may become one).
3091 info - Pointer to structure to fill in. */
3092 void
3093 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3094 unsigned int offset, enum machine_mode ymode,
3095 struct subreg_info *info)
3096 {
3097 int nregs_xmode, nregs_ymode;
3098 int mode_multiple, nregs_multiple;
3099 int offset_adj, y_offset, y_offset_adj;
3100 int regsize_xmode, regsize_ymode;
3101 bool rknown;
3102
3103 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3104
3105 rknown = false;
3106
3107 /* If there are holes in a non-scalar mode in registers, we expect
3108 that it is made up of its units concatenated together. */
3109 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3110 {
3111 enum machine_mode xmode_unit;
3112
3113 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3114 if (GET_MODE_INNER (xmode) == VOIDmode)
3115 xmode_unit = xmode;
3116 else
3117 xmode_unit = GET_MODE_INNER (xmode);
3118 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3119 gcc_assert (nregs_xmode
3120 == (GET_MODE_NUNITS (xmode)
3121 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3122 gcc_assert (hard_regno_nregs[xregno][xmode]
3123 == (hard_regno_nregs[xregno][xmode_unit]
3124 * GET_MODE_NUNITS (xmode)));
3125
3126 /* You can only ask for a SUBREG of a value with holes in the middle
3127 if you don't cross the holes. (Such a SUBREG should be done by
3128 picking a different register class, or doing it in memory if
3129 necessary.) An example of a value with holes is XCmode on 32-bit
3130 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3131 3 for each part, but in memory it's two 128-bit parts.
3132 Padding is assumed to be at the end (not necessarily the 'high part')
3133 of each unit. */
3134 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3135 < GET_MODE_NUNITS (xmode))
3136 && (offset / GET_MODE_SIZE (xmode_unit)
3137 != ((offset + GET_MODE_SIZE (ymode) - 1)
3138 / GET_MODE_SIZE (xmode_unit))))
3139 {
3140 info->representable_p = false;
3141 rknown = true;
3142 }
3143 }
3144 else
3145 nregs_xmode = hard_regno_nregs[xregno][xmode];
3146
3147 nregs_ymode = hard_regno_nregs[xregno][ymode];
3148
3149 /* Paradoxical subregs are otherwise valid. */
3150 if (!rknown
3151 && offset == 0
3152 && GET_MODE_SIZE (ymode) > GET_MODE_SIZE (xmode))
3153 {
3154 info->representable_p = true;
3155 /* If this is a big endian paradoxical subreg, which uses more
3156 actual hard registers than the original register, we must
3157 return a negative offset so that we find the proper highpart
3158 of the register. */
3159 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3160 ? WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3161 info->offset = nregs_xmode - nregs_ymode;
3162 else
3163 info->offset = 0;
3164 info->nregs = nregs_ymode;
3165 return;
3166 }
3167
3168 /* If registers store different numbers of bits in the different
3169 modes, we cannot generally form this subreg. */
3170 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3171 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3172 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3173 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3174 {
3175 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3176 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3177 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3178 {
3179 info->representable_p = false;
3180 info->nregs
3181 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3182 info->offset = offset / regsize_xmode;
3183 return;
3184 }
3185 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3186 {
3187 info->representable_p = false;
3188 info->nregs
3189 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3190 info->offset = offset / regsize_xmode;
3191 return;
3192 }
3193 }
3194
3195 /* Lowpart subregs are otherwise valid. */
3196 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3197 {
3198 info->representable_p = true;
3199 rknown = true;
3200
3201 if (offset == 0 || nregs_xmode == nregs_ymode)
3202 {
3203 info->offset = 0;
3204 info->nregs = nregs_ymode;
3205 return;
3206 }
3207 }
3208
3209 /* This should always pass, otherwise we don't know how to verify
3210 the constraint. These conditions may be relaxed but
3211 subreg_regno_offset would need to be redesigned. */
3212 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3213 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3214
3215 /* The XMODE value can be seen as a vector of NREGS_XMODE
3216 values. The subreg must represent a lowpart of given field.
3217 Compute what field it is. */
3218 offset_adj = offset;
3219 offset_adj -= subreg_lowpart_offset (ymode,
3220 mode_for_size (GET_MODE_BITSIZE (xmode)
3221 / nregs_xmode,
3222 MODE_INT, 0));
3223
3224 /* Size of ymode must not be greater than the size of xmode. */
3225 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3226 gcc_assert (mode_multiple != 0);
3227
3228 y_offset = offset / GET_MODE_SIZE (ymode);
3229 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3230 nregs_multiple = nregs_xmode / nregs_ymode;
3231
3232 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3233 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3234
3235 if (!rknown)
3236 {
3237 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3238 rknown = true;
3239 }
3240 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3241 info->nregs = nregs_ymode;
3242 }
3243
3244 /* This function returns the regno offset of a subreg expression.
3245 xregno - A regno of an inner hard subreg_reg (or what will become one).
3246 xmode - The mode of xregno.
3247 offset - The byte offset.
3248 ymode - The mode of a top level SUBREG (or what may become one).
3249 RETURN - The regno offset which would be used. */
3250 unsigned int
3251 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3252 unsigned int offset, enum machine_mode ymode)
3253 {
3254 struct subreg_info info;
3255 subreg_get_info (xregno, xmode, offset, ymode, &info);
3256 return info.offset;
3257 }
3258
3259 /* This function returns true when the offset is representable via
3260 subreg_offset in the given regno.
3261 xregno - A regno of an inner hard subreg_reg (or what will become one).
3262 xmode - The mode of xregno.
3263 offset - The byte offset.
3264 ymode - The mode of a top level SUBREG (or what may become one).
3265 RETURN - Whether the offset is representable. */
3266 bool
3267 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3268 unsigned int offset, enum machine_mode ymode)
3269 {
3270 struct subreg_info info;
3271 subreg_get_info (xregno, xmode, offset, ymode, &info);
3272 return info.representable_p;
3273 }
3274
3275 /* Return the number of a YMODE register to which
3276
3277 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3278
3279 can be simplified. Return -1 if the subreg can't be simplified.
3280
3281 XREGNO is a hard register number. */
3282
3283 int
3284 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3285 unsigned int offset, enum machine_mode ymode)
3286 {
3287 struct subreg_info info;
3288 unsigned int yregno;
3289
3290 #ifdef CANNOT_CHANGE_MODE_CLASS
3291 /* Give the backend a chance to disallow the mode change. */
3292 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3293 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3294 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3295 return -1;
3296 #endif
3297
3298 /* We shouldn't simplify stack-related registers. */
3299 if ((!reload_completed || frame_pointer_needed)
3300 && (xregno == FRAME_POINTER_REGNUM
3301 || xregno == HARD_FRAME_POINTER_REGNUM))
3302 return -1;
3303
3304 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3305 && xregno == ARG_POINTER_REGNUM)
3306 return -1;
3307
3308 if (xregno == STACK_POINTER_REGNUM)
3309 return -1;
3310
3311 /* Try to get the register offset. */
3312 subreg_get_info (xregno, xmode, offset, ymode, &info);
3313 if (!info.representable_p)
3314 return -1;
3315
3316 /* Make sure that the offsetted register value is in range. */
3317 yregno = xregno + info.offset;
3318 if (!HARD_REGISTER_NUM_P (yregno))
3319 return -1;
3320
3321 /* See whether (reg:YMODE YREGNO) is valid.
3322
3323 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3324 This is a kludge to work around how float/complex arguments are passed
3325 on 32-bit SPARC and should be fixed. */
3326 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3327 && HARD_REGNO_MODE_OK (xregno, xmode))
3328 return -1;
3329
3330 return (int) yregno;
3331 }
3332
3333 /* Return the final regno that a subreg expression refers to. */
3334 unsigned int
3335 subreg_regno (const_rtx x)
3336 {
3337 unsigned int ret;
3338 rtx subreg = SUBREG_REG (x);
3339 int regno = REGNO (subreg);
3340
3341 ret = regno + subreg_regno_offset (regno,
3342 GET_MODE (subreg),
3343 SUBREG_BYTE (x),
3344 GET_MODE (x));
3345 return ret;
3346
3347 }
3348
3349 /* Return the number of registers that a subreg expression refers
3350 to. */
3351 unsigned int
3352 subreg_nregs (const_rtx x)
3353 {
3354 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3355 }
3356
3357 /* Return the number of registers that a subreg REG with REGNO
3358 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3359 changed so that the regno can be passed in. */
3360
3361 unsigned int
3362 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3363 {
3364 struct subreg_info info;
3365 rtx subreg = SUBREG_REG (x);
3366
3367 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3368 &info);
3369 return info.nregs;
3370 }
3371
3372
3373 struct parms_set_data
3374 {
3375 int nregs;
3376 HARD_REG_SET regs;
3377 };
3378
3379 /* Helper function for noticing stores to parameter registers. */
3380 static void
3381 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3382 {
3383 struct parms_set_data *const d = (struct parms_set_data *) data;
3384 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3385 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3386 {
3387 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3388 d->nregs--;
3389 }
3390 }
3391
3392 /* Look backward for first parameter to be loaded.
3393 Note that loads of all parameters will not necessarily be
3394 found if CSE has eliminated some of them (e.g., an argument
3395 to the outer function is passed down as a parameter).
3396 Do not skip BOUNDARY. */
3397 rtx
3398 find_first_parameter_load (rtx call_insn, rtx boundary)
3399 {
3400 struct parms_set_data parm;
3401 rtx p, before, first_set;
3402
3403 /* Since different machines initialize their parameter registers
3404 in different orders, assume nothing. Collect the set of all
3405 parameter registers. */
3406 CLEAR_HARD_REG_SET (parm.regs);
3407 parm.nregs = 0;
3408 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3409 if (GET_CODE (XEXP (p, 0)) == USE
3410 && REG_P (XEXP (XEXP (p, 0), 0)))
3411 {
3412 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3413
3414 /* We only care about registers which can hold function
3415 arguments. */
3416 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3417 continue;
3418
3419 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3420 parm.nregs++;
3421 }
3422 before = call_insn;
3423 first_set = call_insn;
3424
3425 /* Search backward for the first set of a register in this set. */
3426 while (parm.nregs && before != boundary)
3427 {
3428 before = PREV_INSN (before);
3429
3430 /* It is possible that some loads got CSEed from one call to
3431 another. Stop in that case. */
3432 if (CALL_P (before))
3433 break;
3434
3435 /* Our caller needs either ensure that we will find all sets
3436 (in case code has not been optimized yet), or take care
3437 for possible labels in a way by setting boundary to preceding
3438 CODE_LABEL. */
3439 if (LABEL_P (before))
3440 {
3441 gcc_assert (before == boundary);
3442 break;
3443 }
3444
3445 if (INSN_P (before))
3446 {
3447 int nregs_old = parm.nregs;
3448 note_stores (PATTERN (before), parms_set, &parm);
3449 /* If we found something that did not set a parameter reg,
3450 we're done. Do not keep going, as that might result
3451 in hoisting an insn before the setting of a pseudo
3452 that is used by the hoisted insn. */
3453 if (nregs_old != parm.nregs)
3454 first_set = before;
3455 else
3456 break;
3457 }
3458 }
3459 return first_set;
3460 }
3461
3462 /* Return true if we should avoid inserting code between INSN and preceding
3463 call instruction. */
3464
3465 bool
3466 keep_with_call_p (const_rtx insn)
3467 {
3468 rtx set;
3469
3470 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3471 {
3472 if (REG_P (SET_DEST (set))
3473 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3474 && fixed_regs[REGNO (SET_DEST (set))]
3475 && general_operand (SET_SRC (set), VOIDmode))
3476 return true;
3477 if (REG_P (SET_SRC (set))
3478 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3479 && REG_P (SET_DEST (set))
3480 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3481 return true;
3482 /* There may be a stack pop just after the call and before the store
3483 of the return register. Search for the actual store when deciding
3484 if we can break or not. */
3485 if (SET_DEST (set) == stack_pointer_rtx)
3486 {
3487 /* This CONST_CAST is okay because next_nonnote_insn just
3488 returns its argument and we assign it to a const_rtx
3489 variable. */
3490 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3491 if (i2 && keep_with_call_p (i2))
3492 return true;
3493 }
3494 }
3495 return false;
3496 }
3497
3498 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3499 to non-complex jumps. That is, direct unconditional, conditional,
3500 and tablejumps, but not computed jumps or returns. It also does
3501 not apply to the fallthru case of a conditional jump. */
3502
3503 bool
3504 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3505 {
3506 rtx tmp = JUMP_LABEL (jump_insn);
3507
3508 if (label == tmp)
3509 return true;
3510
3511 if (tablejump_p (jump_insn, NULL, &tmp))
3512 {
3513 rtvec vec = XVEC (PATTERN (tmp),
3514 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3515 int i, veclen = GET_NUM_ELEM (vec);
3516
3517 for (i = 0; i < veclen; ++i)
3518 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3519 return true;
3520 }
3521
3522 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3523 return true;
3524
3525 return false;
3526 }
3527
3528 \f
3529 /* Return an estimate of the cost of computing rtx X.
3530 One use is in cse, to decide which expression to keep in the hash table.
3531 Another is in rtl generation, to pick the cheapest way to multiply.
3532 Other uses like the latter are expected in the future.
3533
3534 SPEED parameter specify whether costs optimized for speed or size should
3535 be returned. */
3536
3537 int
3538 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3539 {
3540 int i, j;
3541 enum rtx_code code;
3542 const char *fmt;
3543 int total;
3544
3545 if (x == 0)
3546 return 0;
3547
3548 /* Compute the default costs of certain things.
3549 Note that targetm.rtx_costs can override the defaults. */
3550
3551 code = GET_CODE (x);
3552 switch (code)
3553 {
3554 case MULT:
3555 total = COSTS_N_INSNS (5);
3556 break;
3557 case DIV:
3558 case UDIV:
3559 case MOD:
3560 case UMOD:
3561 total = COSTS_N_INSNS (7);
3562 break;
3563 case USE:
3564 /* Used in combine.c as a marker. */
3565 total = 0;
3566 break;
3567 default:
3568 total = COSTS_N_INSNS (1);
3569 }
3570
3571 switch (code)
3572 {
3573 case REG:
3574 return 0;
3575
3576 case SUBREG:
3577 total = 0;
3578 /* If we can't tie these modes, make this expensive. The larger
3579 the mode, the more expensive it is. */
3580 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3581 return COSTS_N_INSNS (2
3582 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3583 break;
3584
3585 default:
3586 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3587 return total;
3588 break;
3589 }
3590
3591 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3592 which is already in total. */
3593
3594 fmt = GET_RTX_FORMAT (code);
3595 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3596 if (fmt[i] == 'e')
3597 total += rtx_cost (XEXP (x, i), code, speed);
3598 else if (fmt[i] == 'E')
3599 for (j = 0; j < XVECLEN (x, i); j++)
3600 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3601
3602 return total;
3603 }
3604 \f
3605 /* Return cost of address expression X.
3606 Expect that X is properly formed address reference.
3607
3608 SPEED parameter specify whether costs optimized for speed or size should
3609 be returned. */
3610
3611 int
3612 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3613 {
3614 /* We may be asked for cost of various unusual addresses, such as operands
3615 of push instruction. It is not worthwhile to complicate writing
3616 of the target hook by such cases. */
3617
3618 if (!memory_address_addr_space_p (mode, x, as))
3619 return 1000;
3620
3621 return targetm.address_cost (x, speed);
3622 }
3623
3624 /* If the target doesn't override, compute the cost as with arithmetic. */
3625
3626 int
3627 default_address_cost (rtx x, bool speed)
3628 {
3629 return rtx_cost (x, MEM, speed);
3630 }
3631 \f
3632
3633 unsigned HOST_WIDE_INT
3634 nonzero_bits (const_rtx x, enum machine_mode mode)
3635 {
3636 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3637 }
3638
3639 unsigned int
3640 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3641 {
3642 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3643 }
3644
3645 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3646 It avoids exponential behavior in nonzero_bits1 when X has
3647 identical subexpressions on the first or the second level. */
3648
3649 static unsigned HOST_WIDE_INT
3650 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3651 enum machine_mode known_mode,
3652 unsigned HOST_WIDE_INT known_ret)
3653 {
3654 if (x == known_x && mode == known_mode)
3655 return known_ret;
3656
3657 /* Try to find identical subexpressions. If found call
3658 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3659 precomputed value for the subexpression as KNOWN_RET. */
3660
3661 if (ARITHMETIC_P (x))
3662 {
3663 rtx x0 = XEXP (x, 0);
3664 rtx x1 = XEXP (x, 1);
3665
3666 /* Check the first level. */
3667 if (x0 == x1)
3668 return nonzero_bits1 (x, mode, x0, mode,
3669 cached_nonzero_bits (x0, mode, known_x,
3670 known_mode, known_ret));
3671
3672 /* Check the second level. */
3673 if (ARITHMETIC_P (x0)
3674 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3675 return nonzero_bits1 (x, mode, x1, mode,
3676 cached_nonzero_bits (x1, mode, known_x,
3677 known_mode, known_ret));
3678
3679 if (ARITHMETIC_P (x1)
3680 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3681 return nonzero_bits1 (x, mode, x0, mode,
3682 cached_nonzero_bits (x0, mode, known_x,
3683 known_mode, known_ret));
3684 }
3685
3686 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3687 }
3688
3689 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3690 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3691 is less useful. We can't allow both, because that results in exponential
3692 run time recursion. There is a nullstone testcase that triggered
3693 this. This macro avoids accidental uses of num_sign_bit_copies. */
3694 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3695
3696 /* Given an expression, X, compute which bits in X can be nonzero.
3697 We don't care about bits outside of those defined in MODE.
3698
3699 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3700 an arithmetic operation, we can do better. */
3701
3702 static unsigned HOST_WIDE_INT
3703 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3704 enum machine_mode known_mode,
3705 unsigned HOST_WIDE_INT known_ret)
3706 {
3707 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3708 unsigned HOST_WIDE_INT inner_nz;
3709 enum rtx_code code;
3710 unsigned int mode_width = GET_MODE_BITSIZE (mode);
3711
3712 /* For floating-point and vector values, assume all bits are needed. */
3713 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3714 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3715 return nonzero;
3716
3717 /* If X is wider than MODE, use its mode instead. */
3718 if (GET_MODE_BITSIZE (GET_MODE (x)) > mode_width)
3719 {
3720 mode = GET_MODE (x);
3721 nonzero = GET_MODE_MASK (mode);
3722 mode_width = GET_MODE_BITSIZE (mode);
3723 }
3724
3725 if (mode_width > HOST_BITS_PER_WIDE_INT)
3726 /* Our only callers in this case look for single bit values. So
3727 just return the mode mask. Those tests will then be false. */
3728 return nonzero;
3729
3730 #ifndef WORD_REGISTER_OPERATIONS
3731 /* If MODE is wider than X, but both are a single word for both the host
3732 and target machines, we can compute this from which bits of the
3733 object might be nonzero in its own mode, taking into account the fact
3734 that on many CISC machines, accessing an object in a wider mode
3735 causes the high-order bits to become undefined. So they are
3736 not known to be zero. */
3737
3738 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3739 && GET_MODE_BITSIZE (GET_MODE (x)) <= BITS_PER_WORD
3740 && GET_MODE_BITSIZE (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3741 && GET_MODE_BITSIZE (mode) > GET_MODE_BITSIZE (GET_MODE (x)))
3742 {
3743 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3744 known_x, known_mode, known_ret);
3745 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3746 return nonzero;
3747 }
3748 #endif
3749
3750 code = GET_CODE (x);
3751 switch (code)
3752 {
3753 case REG:
3754 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3755 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3756 all the bits above ptr_mode are known to be zero. */
3757 /* As we do not know which address space the pointer is refering to,
3758 we can do this only if the target does not support different pointer
3759 or address modes depending on the address space. */
3760 if (target_default_pointer_address_modes_p ()
3761 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3762 && REG_POINTER (x))
3763 nonzero &= GET_MODE_MASK (ptr_mode);
3764 #endif
3765
3766 /* Include declared information about alignment of pointers. */
3767 /* ??? We don't properly preserve REG_POINTER changes across
3768 pointer-to-integer casts, so we can't trust it except for
3769 things that we know must be pointers. See execute/960116-1.c. */
3770 if ((x == stack_pointer_rtx
3771 || x == frame_pointer_rtx
3772 || x == arg_pointer_rtx)
3773 && REGNO_POINTER_ALIGN (REGNO (x)))
3774 {
3775 unsigned HOST_WIDE_INT alignment
3776 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3777
3778 #ifdef PUSH_ROUNDING
3779 /* If PUSH_ROUNDING is defined, it is possible for the
3780 stack to be momentarily aligned only to that amount,
3781 so we pick the least alignment. */
3782 if (x == stack_pointer_rtx && PUSH_ARGS)
3783 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3784 alignment);
3785 #endif
3786
3787 nonzero &= ~(alignment - 1);
3788 }
3789
3790 {
3791 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3792 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3793 known_mode, known_ret,
3794 &nonzero_for_hook);
3795
3796 if (new_rtx)
3797 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3798 known_mode, known_ret);
3799
3800 return nonzero_for_hook;
3801 }
3802
3803 case CONST_INT:
3804 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3805 /* If X is negative in MODE, sign-extend the value. */
3806 if (INTVAL (x) > 0 && mode_width < BITS_PER_WORD
3807 && 0 != (INTVAL (x) & ((HOST_WIDE_INT) 1 << (mode_width - 1))))
3808 return (INTVAL (x) | ((HOST_WIDE_INT) (-1) << mode_width));
3809 #endif
3810
3811 return INTVAL (x);
3812
3813 case MEM:
3814 #ifdef LOAD_EXTEND_OP
3815 /* In many, if not most, RISC machines, reading a byte from memory
3816 zeros the rest of the register. Noticing that fact saves a lot
3817 of extra zero-extends. */
3818 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3819 nonzero &= GET_MODE_MASK (GET_MODE (x));
3820 #endif
3821 break;
3822
3823 case EQ: case NE:
3824 case UNEQ: case LTGT:
3825 case GT: case GTU: case UNGT:
3826 case LT: case LTU: case UNLT:
3827 case GE: case GEU: case UNGE:
3828 case LE: case LEU: case UNLE:
3829 case UNORDERED: case ORDERED:
3830 /* If this produces an integer result, we know which bits are set.
3831 Code here used to clear bits outside the mode of X, but that is
3832 now done above. */
3833 /* Mind that MODE is the mode the caller wants to look at this
3834 operation in, and not the actual operation mode. We can wind
3835 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3836 that describes the results of a vector compare. */
3837 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3838 && mode_width <= HOST_BITS_PER_WIDE_INT)
3839 nonzero = STORE_FLAG_VALUE;
3840 break;
3841
3842 case NEG:
3843 #if 0
3844 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3845 and num_sign_bit_copies. */
3846 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3847 == GET_MODE_BITSIZE (GET_MODE (x)))
3848 nonzero = 1;
3849 #endif
3850
3851 if (GET_MODE_SIZE (GET_MODE (x)) < mode_width)
3852 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
3853 break;
3854
3855 case ABS:
3856 #if 0
3857 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3858 and num_sign_bit_copies. */
3859 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
3860 == GET_MODE_BITSIZE (GET_MODE (x)))
3861 nonzero = 1;
3862 #endif
3863 break;
3864
3865 case TRUNCATE:
3866 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
3867 known_x, known_mode, known_ret)
3868 & GET_MODE_MASK (mode));
3869 break;
3870
3871 case ZERO_EXTEND:
3872 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3873 known_x, known_mode, known_ret);
3874 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3875 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3876 break;
3877
3878 case SIGN_EXTEND:
3879 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
3880 Otherwise, show all the bits in the outer mode but not the inner
3881 may be nonzero. */
3882 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
3883 known_x, known_mode, known_ret);
3884 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
3885 {
3886 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
3887 if (inner_nz
3888 & (((HOST_WIDE_INT) 1
3889 << (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0))) - 1))))
3890 inner_nz |= (GET_MODE_MASK (mode)
3891 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
3892 }
3893
3894 nonzero &= inner_nz;
3895 break;
3896
3897 case AND:
3898 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
3899 known_x, known_mode, known_ret)
3900 & cached_nonzero_bits (XEXP (x, 1), mode,
3901 known_x, known_mode, known_ret);
3902 break;
3903
3904 case XOR: case IOR:
3905 case UMIN: case UMAX: case SMIN: case SMAX:
3906 {
3907 unsigned HOST_WIDE_INT nonzero0 =
3908 cached_nonzero_bits (XEXP (x, 0), mode,
3909 known_x, known_mode, known_ret);
3910
3911 /* Don't call nonzero_bits for the second time if it cannot change
3912 anything. */
3913 if ((nonzero & nonzero0) != nonzero)
3914 nonzero &= nonzero0
3915 | cached_nonzero_bits (XEXP (x, 1), mode,
3916 known_x, known_mode, known_ret);
3917 }
3918 break;
3919
3920 case PLUS: case MINUS:
3921 case MULT:
3922 case DIV: case UDIV:
3923 case MOD: case UMOD:
3924 /* We can apply the rules of arithmetic to compute the number of
3925 high- and low-order zero bits of these operations. We start by
3926 computing the width (position of the highest-order nonzero bit)
3927 and the number of low-order zero bits for each value. */
3928 {
3929 unsigned HOST_WIDE_INT nz0 =
3930 cached_nonzero_bits (XEXP (x, 0), mode,
3931 known_x, known_mode, known_ret);
3932 unsigned HOST_WIDE_INT nz1 =
3933 cached_nonzero_bits (XEXP (x, 1), mode,
3934 known_x, known_mode, known_ret);
3935 int sign_index = GET_MODE_BITSIZE (GET_MODE (x)) - 1;
3936 int width0 = floor_log2 (nz0) + 1;
3937 int width1 = floor_log2 (nz1) + 1;
3938 int low0 = floor_log2 (nz0 & -nz0);
3939 int low1 = floor_log2 (nz1 & -nz1);
3940 HOST_WIDE_INT op0_maybe_minusp
3941 = (nz0 & ((HOST_WIDE_INT) 1 << sign_index));
3942 HOST_WIDE_INT op1_maybe_minusp
3943 = (nz1 & ((HOST_WIDE_INT) 1 << sign_index));
3944 unsigned int result_width = mode_width;
3945 int result_low = 0;
3946
3947 switch (code)
3948 {
3949 case PLUS:
3950 result_width = MAX (width0, width1) + 1;
3951 result_low = MIN (low0, low1);
3952 break;
3953 case MINUS:
3954 result_low = MIN (low0, low1);
3955 break;
3956 case MULT:
3957 result_width = width0 + width1;
3958 result_low = low0 + low1;
3959 break;
3960 case DIV:
3961 if (width1 == 0)
3962 break;
3963 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3964 result_width = width0;
3965 break;
3966 case UDIV:
3967 if (width1 == 0)
3968 break;
3969 result_width = width0;
3970 break;
3971 case MOD:
3972 if (width1 == 0)
3973 break;
3974 if (! op0_maybe_minusp && ! op1_maybe_minusp)
3975 result_width = MIN (width0, width1);
3976 result_low = MIN (low0, low1);
3977 break;
3978 case UMOD:
3979 if (width1 == 0)
3980 break;
3981 result_width = MIN (width0, width1);
3982 result_low = MIN (low0, low1);
3983 break;
3984 default:
3985 gcc_unreachable ();
3986 }
3987
3988 if (result_width < mode_width)
3989 nonzero &= ((HOST_WIDE_INT) 1 << result_width) - 1;
3990
3991 if (result_low > 0)
3992 nonzero &= ~(((HOST_WIDE_INT) 1 << result_low) - 1);
3993
3994 #ifdef POINTERS_EXTEND_UNSIGNED
3995 /* If pointers extend unsigned and this is an addition or subtraction
3996 to a pointer in Pmode, all the bits above ptr_mode are known to be
3997 zero. */
3998 /* As we do not know which address space the pointer is refering to,
3999 we can do this only if the target does not support different pointer
4000 or address modes depending on the address space. */
4001 if (target_default_pointer_address_modes_p ()
4002 && POINTERS_EXTEND_UNSIGNED > 0 && GET_MODE (x) == Pmode
4003 && (code == PLUS || code == MINUS)
4004 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4005 nonzero &= GET_MODE_MASK (ptr_mode);
4006 #endif
4007 }
4008 break;
4009
4010 case ZERO_EXTRACT:
4011 if (CONST_INT_P (XEXP (x, 1))
4012 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4013 nonzero &= ((HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4014 break;
4015
4016 case SUBREG:
4017 /* If this is a SUBREG formed for a promoted variable that has
4018 been zero-extended, we know that at least the high-order bits
4019 are zero, though others might be too. */
4020
4021 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4022 nonzero = GET_MODE_MASK (GET_MODE (x))
4023 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4024 known_x, known_mode, known_ret);
4025
4026 /* If the inner mode is a single word for both the host and target
4027 machines, we can compute this from which bits of the inner
4028 object might be nonzero. */
4029 if (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) <= BITS_PER_WORD
4030 && (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4031 <= HOST_BITS_PER_WIDE_INT))
4032 {
4033 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4034 known_x, known_mode, known_ret);
4035
4036 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4037 /* If this is a typical RISC machine, we only have to worry
4038 about the way loads are extended. */
4039 if ((LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4040 ? (((nonzero
4041 & (((unsigned HOST_WIDE_INT) 1
4042 << (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))) - 1))))
4043 != 0))
4044 : LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) != ZERO_EXTEND)
4045 || !MEM_P (SUBREG_REG (x)))
4046 #endif
4047 {
4048 /* On many CISC machines, accessing an object in a wider mode
4049 causes the high-order bits to become undefined. So they are
4050 not known to be zero. */
4051 if (GET_MODE_SIZE (GET_MODE (x))
4052 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4053 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4054 & ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x))));
4055 }
4056 }
4057 break;
4058
4059 case ASHIFTRT:
4060 case LSHIFTRT:
4061 case ASHIFT:
4062 case ROTATE:
4063 /* The nonzero bits are in two classes: any bits within MODE
4064 that aren't in GET_MODE (x) are always significant. The rest of the
4065 nonzero bits are those that are significant in the operand of
4066 the shift when shifted the appropriate number of bits. This
4067 shows that high-order bits are cleared by the right shift and
4068 low-order bits by left shifts. */
4069 if (CONST_INT_P (XEXP (x, 1))
4070 && INTVAL (XEXP (x, 1)) >= 0
4071 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4072 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4073 {
4074 enum machine_mode inner_mode = GET_MODE (x);
4075 unsigned int width = GET_MODE_BITSIZE (inner_mode);
4076 int count = INTVAL (XEXP (x, 1));
4077 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4078 unsigned HOST_WIDE_INT op_nonzero =
4079 cached_nonzero_bits (XEXP (x, 0), mode,
4080 known_x, known_mode, known_ret);
4081 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4082 unsigned HOST_WIDE_INT outer = 0;
4083
4084 if (mode_width > width)
4085 outer = (op_nonzero & nonzero & ~mode_mask);
4086
4087 if (code == LSHIFTRT)
4088 inner >>= count;
4089 else if (code == ASHIFTRT)
4090 {
4091 inner >>= count;
4092
4093 /* If the sign bit may have been nonzero before the shift, we
4094 need to mark all the places it could have been copied to
4095 by the shift as possibly nonzero. */
4096 if (inner & ((HOST_WIDE_INT) 1 << (width - 1 - count)))
4097 inner |= (((HOST_WIDE_INT) 1 << count) - 1) << (width - count);
4098 }
4099 else if (code == ASHIFT)
4100 inner <<= count;
4101 else
4102 inner = ((inner << (count % width)
4103 | (inner >> (width - (count % width)))) & mode_mask);
4104
4105 nonzero &= (outer | inner);
4106 }
4107 break;
4108
4109 case FFS:
4110 case POPCOUNT:
4111 /* This is at most the number of bits in the mode. */
4112 nonzero = ((HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4113 break;
4114
4115 case CLZ:
4116 /* If CLZ has a known value at zero, then the nonzero bits are
4117 that value, plus the number of bits in the mode minus one. */
4118 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4119 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4120 else
4121 nonzero = -1;
4122 break;
4123
4124 case CTZ:
4125 /* If CTZ has a known value at zero, then the nonzero bits are
4126 that value, plus the number of bits in the mode minus one. */
4127 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4128 nonzero |= ((HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4129 else
4130 nonzero = -1;
4131 break;
4132
4133 case PARITY:
4134 nonzero = 1;
4135 break;
4136
4137 case IF_THEN_ELSE:
4138 {
4139 unsigned HOST_WIDE_INT nonzero_true =
4140 cached_nonzero_bits (XEXP (x, 1), mode,
4141 known_x, known_mode, known_ret);
4142
4143 /* Don't call nonzero_bits for the second time if it cannot change
4144 anything. */
4145 if ((nonzero & nonzero_true) != nonzero)
4146 nonzero &= nonzero_true
4147 | cached_nonzero_bits (XEXP (x, 2), mode,
4148 known_x, known_mode, known_ret);
4149 }
4150 break;
4151
4152 default:
4153 break;
4154 }
4155
4156 return nonzero;
4157 }
4158
4159 /* See the macro definition above. */
4160 #undef cached_num_sign_bit_copies
4161
4162 \f
4163 /* The function cached_num_sign_bit_copies is a wrapper around
4164 num_sign_bit_copies1. It avoids exponential behavior in
4165 num_sign_bit_copies1 when X has identical subexpressions on the
4166 first or the second level. */
4167
4168 static unsigned int
4169 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4170 enum machine_mode known_mode,
4171 unsigned int known_ret)
4172 {
4173 if (x == known_x && mode == known_mode)
4174 return known_ret;
4175
4176 /* Try to find identical subexpressions. If found call
4177 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4178 the precomputed value for the subexpression as KNOWN_RET. */
4179
4180 if (ARITHMETIC_P (x))
4181 {
4182 rtx x0 = XEXP (x, 0);
4183 rtx x1 = XEXP (x, 1);
4184
4185 /* Check the first level. */
4186 if (x0 == x1)
4187 return
4188 num_sign_bit_copies1 (x, mode, x0, mode,
4189 cached_num_sign_bit_copies (x0, mode, known_x,
4190 known_mode,
4191 known_ret));
4192
4193 /* Check the second level. */
4194 if (ARITHMETIC_P (x0)
4195 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4196 return
4197 num_sign_bit_copies1 (x, mode, x1, mode,
4198 cached_num_sign_bit_copies (x1, mode, known_x,
4199 known_mode,
4200 known_ret));
4201
4202 if (ARITHMETIC_P (x1)
4203 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4204 return
4205 num_sign_bit_copies1 (x, mode, x0, mode,
4206 cached_num_sign_bit_copies (x0, mode, known_x,
4207 known_mode,
4208 known_ret));
4209 }
4210
4211 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4212 }
4213
4214 /* Return the number of bits at the high-order end of X that are known to
4215 be equal to the sign bit. X will be used in mode MODE; if MODE is
4216 VOIDmode, X will be used in its own mode. The returned value will always
4217 be between 1 and the number of bits in MODE. */
4218
4219 static unsigned int
4220 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4221 enum machine_mode known_mode,
4222 unsigned int known_ret)
4223 {
4224 enum rtx_code code = GET_CODE (x);
4225 unsigned int bitwidth = GET_MODE_BITSIZE (mode);
4226 int num0, num1, result;
4227 unsigned HOST_WIDE_INT nonzero;
4228
4229 /* If we weren't given a mode, use the mode of X. If the mode is still
4230 VOIDmode, we don't know anything. Likewise if one of the modes is
4231 floating-point. */
4232
4233 if (mode == VOIDmode)
4234 mode = GET_MODE (x);
4235
4236 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4237 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4238 return 1;
4239
4240 /* For a smaller object, just ignore the high bits. */
4241 if (bitwidth < GET_MODE_BITSIZE (GET_MODE (x)))
4242 {
4243 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4244 known_x, known_mode, known_ret);
4245 return MAX (1,
4246 num0 - (int) (GET_MODE_BITSIZE (GET_MODE (x)) - bitwidth));
4247 }
4248
4249 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_BITSIZE (GET_MODE (x)))
4250 {
4251 #ifndef WORD_REGISTER_OPERATIONS
4252 /* If this machine does not do all register operations on the entire
4253 register and MODE is wider than the mode of X, we can say nothing
4254 at all about the high-order bits. */
4255 return 1;
4256 #else
4257 /* Likewise on machines that do, if the mode of the object is smaller
4258 than a word and loads of that size don't sign extend, we can say
4259 nothing about the high order bits. */
4260 if (GET_MODE_BITSIZE (GET_MODE (x)) < BITS_PER_WORD
4261 #ifdef LOAD_EXTEND_OP
4262 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4263 #endif
4264 )
4265 return 1;
4266 #endif
4267 }
4268
4269 switch (code)
4270 {
4271 case REG:
4272
4273 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4274 /* If pointers extend signed and this is a pointer in Pmode, say that
4275 all the bits above ptr_mode are known to be sign bit copies. */
4276 /* As we do not know which address space the pointer is refering to,
4277 we can do this only if the target does not support different pointer
4278 or address modes depending on the address space. */
4279 if (target_default_pointer_address_modes_p ()
4280 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4281 && mode == Pmode && REG_POINTER (x))
4282 return GET_MODE_BITSIZE (Pmode) - GET_MODE_BITSIZE (ptr_mode) + 1;
4283 #endif
4284
4285 {
4286 unsigned int copies_for_hook = 1, copies = 1;
4287 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4288 known_mode, known_ret,
4289 &copies_for_hook);
4290
4291 if (new_rtx)
4292 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4293 known_mode, known_ret);
4294
4295 if (copies > 1 || copies_for_hook > 1)
4296 return MAX (copies, copies_for_hook);
4297
4298 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4299 }
4300 break;
4301
4302 case MEM:
4303 #ifdef LOAD_EXTEND_OP
4304 /* Some RISC machines sign-extend all loads of smaller than a word. */
4305 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4306 return MAX (1, ((int) bitwidth
4307 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1));
4308 #endif
4309 break;
4310
4311 case CONST_INT:
4312 /* If the constant is negative, take its 1's complement and remask.
4313 Then see how many zero bits we have. */
4314 nonzero = INTVAL (x) & GET_MODE_MASK (mode);
4315 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4316 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4317 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4318
4319 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4320
4321 case SUBREG:
4322 /* If this is a SUBREG for a promoted object that is sign-extended
4323 and we are looking at it in a wider mode, we know that at least the
4324 high-order bits are known to be sign bit copies. */
4325
4326 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4327 {
4328 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4329 known_x, known_mode, known_ret);
4330 return MAX ((int) bitwidth
4331 - (int) GET_MODE_BITSIZE (GET_MODE (x)) + 1,
4332 num0);
4333 }
4334
4335 /* For a smaller object, just ignore the high bits. */
4336 if (bitwidth <= GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x))))
4337 {
4338 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4339 known_x, known_mode, known_ret);
4340 return MAX (1, (num0
4341 - (int) (GET_MODE_BITSIZE (GET_MODE (SUBREG_REG (x)))
4342 - bitwidth)));
4343 }
4344
4345 #ifdef WORD_REGISTER_OPERATIONS
4346 #ifdef LOAD_EXTEND_OP
4347 /* For paradoxical SUBREGs on machines where all register operations
4348 affect the entire register, just look inside. Note that we are
4349 passing MODE to the recursive call, so the number of sign bit copies
4350 will remain relative to that mode, not the inner mode. */
4351
4352 /* This works only if loads sign extend. Otherwise, if we get a
4353 reload for the inner part, it may be loaded from the stack, and
4354 then we lose all sign bit copies that existed before the store
4355 to the stack. */
4356
4357 if ((GET_MODE_SIZE (GET_MODE (x))
4358 > GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
4359 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4360 && MEM_P (SUBREG_REG (x)))
4361 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4362 known_x, known_mode, known_ret);
4363 #endif
4364 #endif
4365 break;
4366
4367 case SIGN_EXTRACT:
4368 if (CONST_INT_P (XEXP (x, 1)))
4369 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4370 break;
4371
4372 case SIGN_EXTEND:
4373 return (bitwidth - GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4374 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4375 known_x, known_mode, known_ret));
4376
4377 case TRUNCATE:
4378 /* For a smaller object, just ignore the high bits. */
4379 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4380 known_x, known_mode, known_ret);
4381 return MAX (1, (num0 - (int) (GET_MODE_BITSIZE (GET_MODE (XEXP (x, 0)))
4382 - bitwidth)));
4383
4384 case NOT:
4385 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4386 known_x, known_mode, known_ret);
4387
4388 case ROTATE: case ROTATERT:
4389 /* If we are rotating left by a number of bits less than the number
4390 of sign bit copies, we can just subtract that amount from the
4391 number. */
4392 if (CONST_INT_P (XEXP (x, 1))
4393 && INTVAL (XEXP (x, 1)) >= 0
4394 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4395 {
4396 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4397 known_x, known_mode, known_ret);
4398 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4399 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4400 }
4401 break;
4402
4403 case NEG:
4404 /* In general, this subtracts one sign bit copy. But if the value
4405 is known to be positive, the number of sign bit copies is the
4406 same as that of the input. Finally, if the input has just one bit
4407 that might be nonzero, all the bits are copies of the sign bit. */
4408 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4409 known_x, known_mode, known_ret);
4410 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4411 return num0 > 1 ? num0 - 1 : 1;
4412
4413 nonzero = nonzero_bits (XEXP (x, 0), mode);
4414 if (nonzero == 1)
4415 return bitwidth;
4416
4417 if (num0 > 1
4418 && (((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4419 num0--;
4420
4421 return num0;
4422
4423 case IOR: case AND: case XOR:
4424 case SMIN: case SMAX: case UMIN: case UMAX:
4425 /* Logical operations will preserve the number of sign-bit copies.
4426 MIN and MAX operations always return one of the operands. */
4427 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4428 known_x, known_mode, known_ret);
4429 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4430 known_x, known_mode, known_ret);
4431
4432 /* If num1 is clearing some of the top bits then regardless of
4433 the other term, we are guaranteed to have at least that many
4434 high-order zero bits. */
4435 if (code == AND
4436 && num1 > 1
4437 && bitwidth <= HOST_BITS_PER_WIDE_INT
4438 && CONST_INT_P (XEXP (x, 1))
4439 && !(INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4440 return num1;
4441
4442 /* Similarly for IOR when setting high-order bits. */
4443 if (code == IOR
4444 && num1 > 1
4445 && bitwidth <= HOST_BITS_PER_WIDE_INT
4446 && CONST_INT_P (XEXP (x, 1))
4447 && (INTVAL (XEXP (x, 1)) & ((HOST_WIDE_INT) 1 << (bitwidth - 1))))
4448 return num1;
4449
4450 return MIN (num0, num1);
4451
4452 case PLUS: case MINUS:
4453 /* For addition and subtraction, we can have a 1-bit carry. However,
4454 if we are subtracting 1 from a positive number, there will not
4455 be such a carry. Furthermore, if the positive number is known to
4456 be 0 or 1, we know the result is either -1 or 0. */
4457
4458 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4459 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4460 {
4461 nonzero = nonzero_bits (XEXP (x, 0), mode);
4462 if ((((HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4463 return (nonzero == 1 || nonzero == 0 ? bitwidth
4464 : bitwidth - floor_log2 (nonzero) - 1);
4465 }
4466
4467 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4468 known_x, known_mode, known_ret);
4469 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4470 known_x, known_mode, known_ret);
4471 result = MAX (1, MIN (num0, num1) - 1);
4472
4473 #ifdef POINTERS_EXTEND_UNSIGNED
4474 /* If pointers extend signed and this is an addition or subtraction
4475 to a pointer in Pmode, all the bits above ptr_mode are known to be
4476 sign bit copies. */
4477 /* As we do not know which address space the pointer is refering to,
4478 we can do this only if the target does not support different pointer
4479 or address modes depending on the address space. */
4480 if (target_default_pointer_address_modes_p ()
4481 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4482 && (code == PLUS || code == MINUS)
4483 && REG_P (XEXP (x, 0)) && REG_POINTER (XEXP (x, 0)))
4484 result = MAX ((int) (GET_MODE_BITSIZE (Pmode)
4485 - GET_MODE_BITSIZE (ptr_mode) + 1),
4486 result);
4487 #endif
4488 return result;
4489
4490 case MULT:
4491 /* The number of bits of the product is the sum of the number of
4492 bits of both terms. However, unless one of the terms if known
4493 to be positive, we must allow for an additional bit since negating
4494 a negative number can remove one sign bit copy. */
4495
4496 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4497 known_x, known_mode, known_ret);
4498 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4499 known_x, known_mode, known_ret);
4500
4501 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4502 if (result > 0
4503 && (bitwidth > HOST_BITS_PER_WIDE_INT
4504 || (((nonzero_bits (XEXP (x, 0), mode)
4505 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4506 && ((nonzero_bits (XEXP (x, 1), mode)
4507 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))))
4508 result--;
4509
4510 return MAX (1, result);
4511
4512 case UDIV:
4513 /* The result must be <= the first operand. If the first operand
4514 has the high bit set, we know nothing about the number of sign
4515 bit copies. */
4516 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4517 return 1;
4518 else if ((nonzero_bits (XEXP (x, 0), mode)
4519 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4520 return 1;
4521 else
4522 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4523 known_x, known_mode, known_ret);
4524
4525 case UMOD:
4526 /* The result must be <= the second operand. If the second operand
4527 has (or just might have) the high bit set, we know nothing about
4528 the number of sign bit copies. */
4529 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4530 return 1;
4531 else if ((nonzero_bits (XEXP (x, 1), mode)
4532 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4533 return 1;
4534 else
4535 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4536 known_x, known_mode, known_ret);
4537
4538 case DIV:
4539 /* Similar to unsigned division, except that we have to worry about
4540 the case where the divisor is negative, in which case we have
4541 to add 1. */
4542 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4543 known_x, known_mode, known_ret);
4544 if (result > 1
4545 && (bitwidth > HOST_BITS_PER_WIDE_INT
4546 || (nonzero_bits (XEXP (x, 1), mode)
4547 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4548 result--;
4549
4550 return result;
4551
4552 case MOD:
4553 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4554 known_x, known_mode, known_ret);
4555 if (result > 1
4556 && (bitwidth > HOST_BITS_PER_WIDE_INT
4557 || (nonzero_bits (XEXP (x, 1), mode)
4558 & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4559 result--;
4560
4561 return result;
4562
4563 case ASHIFTRT:
4564 /* Shifts by a constant add to the number of bits equal to the
4565 sign bit. */
4566 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4567 known_x, known_mode, known_ret);
4568 if (CONST_INT_P (XEXP (x, 1))
4569 && INTVAL (XEXP (x, 1)) > 0
4570 && INTVAL (XEXP (x, 1)) < GET_MODE_BITSIZE (GET_MODE (x)))
4571 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4572
4573 return num0;
4574
4575 case ASHIFT:
4576 /* Left shifts destroy copies. */
4577 if (!CONST_INT_P (XEXP (x, 1))
4578 || INTVAL (XEXP (x, 1)) < 0
4579 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4580 || INTVAL (XEXP (x, 1)) >= GET_MODE_BITSIZE (GET_MODE (x)))
4581 return 1;
4582
4583 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4584 known_x, known_mode, known_ret);
4585 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4586
4587 case IF_THEN_ELSE:
4588 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4589 known_x, known_mode, known_ret);
4590 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4591 known_x, known_mode, known_ret);
4592 return MIN (num0, num1);
4593
4594 case EQ: case NE: case GE: case GT: case LE: case LT:
4595 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4596 case GEU: case GTU: case LEU: case LTU:
4597 case UNORDERED: case ORDERED:
4598 /* If the constant is negative, take its 1's complement and remask.
4599 Then see how many zero bits we have. */
4600 nonzero = STORE_FLAG_VALUE;
4601 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4602 && (nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4603 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4604
4605 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4606
4607 default:
4608 break;
4609 }
4610
4611 /* If we haven't been able to figure it out by one of the above rules,
4612 see if some of the high-order bits are known to be zero. If so,
4613 count those bits and return one less than that amount. If we can't
4614 safely compute the mask for this mode, always return BITWIDTH. */
4615
4616 bitwidth = GET_MODE_BITSIZE (mode);
4617 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4618 return 1;
4619
4620 nonzero = nonzero_bits (x, mode);
4621 return nonzero & ((HOST_WIDE_INT) 1 << (bitwidth - 1))
4622 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4623 }
4624
4625 /* Calculate the rtx_cost of a single instruction. A return value of
4626 zero indicates an instruction pattern without a known cost. */
4627
4628 int
4629 insn_rtx_cost (rtx pat, bool speed)
4630 {
4631 int i, cost;
4632 rtx set;
4633
4634 /* Extract the single set rtx from the instruction pattern.
4635 We can't use single_set since we only have the pattern. */
4636 if (GET_CODE (pat) == SET)
4637 set = pat;
4638 else if (GET_CODE (pat) == PARALLEL)
4639 {
4640 set = NULL_RTX;
4641 for (i = 0; i < XVECLEN (pat, 0); i++)
4642 {
4643 rtx x = XVECEXP (pat, 0, i);
4644 if (GET_CODE (x) == SET)
4645 {
4646 if (set)
4647 return 0;
4648 set = x;
4649 }
4650 }
4651 if (!set)
4652 return 0;
4653 }
4654 else
4655 return 0;
4656
4657 cost = rtx_cost (SET_SRC (set), SET, speed);
4658 return cost > 0 ? cost : COSTS_N_INSNS (1);
4659 }
4660
4661 /* Given an insn INSN and condition COND, return the condition in a
4662 canonical form to simplify testing by callers. Specifically:
4663
4664 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4665 (2) Both operands will be machine operands; (cc0) will have been replaced.
4666 (3) If an operand is a constant, it will be the second operand.
4667 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4668 for GE, GEU, and LEU.
4669
4670 If the condition cannot be understood, or is an inequality floating-point
4671 comparison which needs to be reversed, 0 will be returned.
4672
4673 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4674
4675 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4676 insn used in locating the condition was found. If a replacement test
4677 of the condition is desired, it should be placed in front of that
4678 insn and we will be sure that the inputs are still valid.
4679
4680 If WANT_REG is nonzero, we wish the condition to be relative to that
4681 register, if possible. Therefore, do not canonicalize the condition
4682 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4683 to be a compare to a CC mode register.
4684
4685 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4686 and at INSN. */
4687
4688 rtx
4689 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4690 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4691 {
4692 enum rtx_code code;
4693 rtx prev = insn;
4694 const_rtx set;
4695 rtx tem;
4696 rtx op0, op1;
4697 int reverse_code = 0;
4698 enum machine_mode mode;
4699 basic_block bb = BLOCK_FOR_INSN (insn);
4700
4701 code = GET_CODE (cond);
4702 mode = GET_MODE (cond);
4703 op0 = XEXP (cond, 0);
4704 op1 = XEXP (cond, 1);
4705
4706 if (reverse)
4707 code = reversed_comparison_code (cond, insn);
4708 if (code == UNKNOWN)
4709 return 0;
4710
4711 if (earliest)
4712 *earliest = insn;
4713
4714 /* If we are comparing a register with zero, see if the register is set
4715 in the previous insn to a COMPARE or a comparison operation. Perform
4716 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4717 in cse.c */
4718
4719 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4720 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4721 && op1 == CONST0_RTX (GET_MODE (op0))
4722 && op0 != want_reg)
4723 {
4724 /* Set nonzero when we find something of interest. */
4725 rtx x = 0;
4726
4727 #ifdef HAVE_cc0
4728 /* If comparison with cc0, import actual comparison from compare
4729 insn. */
4730 if (op0 == cc0_rtx)
4731 {
4732 if ((prev = prev_nonnote_insn (prev)) == 0
4733 || !NONJUMP_INSN_P (prev)
4734 || (set = single_set (prev)) == 0
4735 || SET_DEST (set) != cc0_rtx)
4736 return 0;
4737
4738 op0 = SET_SRC (set);
4739 op1 = CONST0_RTX (GET_MODE (op0));
4740 if (earliest)
4741 *earliest = prev;
4742 }
4743 #endif
4744
4745 /* If this is a COMPARE, pick up the two things being compared. */
4746 if (GET_CODE (op0) == COMPARE)
4747 {
4748 op1 = XEXP (op0, 1);
4749 op0 = XEXP (op0, 0);
4750 continue;
4751 }
4752 else if (!REG_P (op0))
4753 break;
4754
4755 /* Go back to the previous insn. Stop if it is not an INSN. We also
4756 stop if it isn't a single set or if it has a REG_INC note because
4757 we don't want to bother dealing with it. */
4758
4759 prev = prev_nonnote_nondebug_insn (prev);
4760
4761 if (prev == 0
4762 || !NONJUMP_INSN_P (prev)
4763 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4764 /* In cfglayout mode, there do not have to be labels at the
4765 beginning of a block, or jumps at the end, so the previous
4766 conditions would not stop us when we reach bb boundary. */
4767 || BLOCK_FOR_INSN (prev) != bb)
4768 break;
4769
4770 set = set_of (op0, prev);
4771
4772 if (set
4773 && (GET_CODE (set) != SET
4774 || !rtx_equal_p (SET_DEST (set), op0)))
4775 break;
4776
4777 /* If this is setting OP0, get what it sets it to if it looks
4778 relevant. */
4779 if (set)
4780 {
4781 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4782 #ifdef FLOAT_STORE_FLAG_VALUE
4783 REAL_VALUE_TYPE fsfv;
4784 #endif
4785
4786 /* ??? We may not combine comparisons done in a CCmode with
4787 comparisons not done in a CCmode. This is to aid targets
4788 like Alpha that have an IEEE compliant EQ instruction, and
4789 a non-IEEE compliant BEQ instruction. The use of CCmode is
4790 actually artificial, simply to prevent the combination, but
4791 should not affect other platforms.
4792
4793 However, we must allow VOIDmode comparisons to match either
4794 CCmode or non-CCmode comparison, because some ports have
4795 modeless comparisons inside branch patterns.
4796
4797 ??? This mode check should perhaps look more like the mode check
4798 in simplify_comparison in combine. */
4799
4800 if ((GET_CODE (SET_SRC (set)) == COMPARE
4801 || (((code == NE
4802 || (code == LT
4803 && GET_MODE_CLASS (inner_mode) == MODE_INT
4804 && (GET_MODE_BITSIZE (inner_mode)
4805 <= HOST_BITS_PER_WIDE_INT)
4806 && (STORE_FLAG_VALUE
4807 & ((HOST_WIDE_INT) 1
4808 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4809 #ifdef FLOAT_STORE_FLAG_VALUE
4810 || (code == LT
4811 && SCALAR_FLOAT_MODE_P (inner_mode)
4812 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4813 REAL_VALUE_NEGATIVE (fsfv)))
4814 #endif
4815 ))
4816 && COMPARISON_P (SET_SRC (set))))
4817 && (((GET_MODE_CLASS (mode) == MODE_CC)
4818 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4819 || mode == VOIDmode || inner_mode == VOIDmode))
4820 x = SET_SRC (set);
4821 else if (((code == EQ
4822 || (code == GE
4823 && (GET_MODE_BITSIZE (inner_mode)
4824 <= HOST_BITS_PER_WIDE_INT)
4825 && GET_MODE_CLASS (inner_mode) == MODE_INT
4826 && (STORE_FLAG_VALUE
4827 & ((HOST_WIDE_INT) 1
4828 << (GET_MODE_BITSIZE (inner_mode) - 1))))
4829 #ifdef FLOAT_STORE_FLAG_VALUE
4830 || (code == GE
4831 && SCALAR_FLOAT_MODE_P (inner_mode)
4832 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4833 REAL_VALUE_NEGATIVE (fsfv)))
4834 #endif
4835 ))
4836 && COMPARISON_P (SET_SRC (set))
4837 && (((GET_MODE_CLASS (mode) == MODE_CC)
4838 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4839 || mode == VOIDmode || inner_mode == VOIDmode))
4840
4841 {
4842 reverse_code = 1;
4843 x = SET_SRC (set);
4844 }
4845 else
4846 break;
4847 }
4848
4849 else if (reg_set_p (op0, prev))
4850 /* If this sets OP0, but not directly, we have to give up. */
4851 break;
4852
4853 if (x)
4854 {
4855 /* If the caller is expecting the condition to be valid at INSN,
4856 make sure X doesn't change before INSN. */
4857 if (valid_at_insn_p)
4858 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4859 break;
4860 if (COMPARISON_P (x))
4861 code = GET_CODE (x);
4862 if (reverse_code)
4863 {
4864 code = reversed_comparison_code (x, prev);
4865 if (code == UNKNOWN)
4866 return 0;
4867 reverse_code = 0;
4868 }
4869
4870 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4871 if (earliest)
4872 *earliest = prev;
4873 }
4874 }
4875
4876 /* If constant is first, put it last. */
4877 if (CONSTANT_P (op0))
4878 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4879
4880 /* If OP0 is the result of a comparison, we weren't able to find what
4881 was really being compared, so fail. */
4882 if (!allow_cc_mode
4883 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
4884 return 0;
4885
4886 /* Canonicalize any ordered comparison with integers involving equality
4887 if we can do computations in the relevant mode and we do not
4888 overflow. */
4889
4890 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
4891 && CONST_INT_P (op1)
4892 && GET_MODE (op0) != VOIDmode
4893 && GET_MODE_BITSIZE (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
4894 {
4895 HOST_WIDE_INT const_val = INTVAL (op1);
4896 unsigned HOST_WIDE_INT uconst_val = const_val;
4897 unsigned HOST_WIDE_INT max_val
4898 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
4899
4900 switch (code)
4901 {
4902 case LE:
4903 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
4904 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
4905 break;
4906
4907 /* When cross-compiling, const_val might be sign-extended from
4908 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
4909 case GE:
4910 if ((HOST_WIDE_INT) (const_val & max_val)
4911 != (((HOST_WIDE_INT) 1
4912 << (GET_MODE_BITSIZE (GET_MODE (op0)) - 1))))
4913 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
4914 break;
4915
4916 case LEU:
4917 if (uconst_val < max_val)
4918 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
4919 break;
4920
4921 case GEU:
4922 if (uconst_val != 0)
4923 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
4924 break;
4925
4926 default:
4927 break;
4928 }
4929 }
4930
4931 /* Never return CC0; return zero instead. */
4932 if (CC0_P (op0))
4933 return 0;
4934
4935 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
4936 }
4937
4938 /* Given a jump insn JUMP, return the condition that will cause it to branch
4939 to its JUMP_LABEL. If the condition cannot be understood, or is an
4940 inequality floating-point comparison which needs to be reversed, 0 will
4941 be returned.
4942
4943 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4944 insn used in locating the condition was found. If a replacement test
4945 of the condition is desired, it should be placed in front of that
4946 insn and we will be sure that the inputs are still valid. If EARLIEST
4947 is null, the returned condition will be valid at INSN.
4948
4949 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
4950 compare CC mode register.
4951
4952 VALID_AT_INSN_P is the same as for canonicalize_condition. */
4953
4954 rtx
4955 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
4956 {
4957 rtx cond;
4958 int reverse;
4959 rtx set;
4960
4961 /* If this is not a standard conditional jump, we can't parse it. */
4962 if (!JUMP_P (jump)
4963 || ! any_condjump_p (jump))
4964 return 0;
4965 set = pc_set (jump);
4966
4967 cond = XEXP (SET_SRC (set), 0);
4968
4969 /* If this branches to JUMP_LABEL when the condition is false, reverse
4970 the condition. */
4971 reverse
4972 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
4973 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
4974
4975 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
4976 allow_cc_mode, valid_at_insn_p);
4977 }
4978
4979 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
4980 TARGET_MODE_REP_EXTENDED.
4981
4982 Note that we assume that the property of
4983 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
4984 narrower than mode B. I.e., if A is a mode narrower than B then in
4985 order to be able to operate on it in mode B, mode A needs to
4986 satisfy the requirements set by the representation of mode B. */
4987
4988 static void
4989 init_num_sign_bit_copies_in_rep (void)
4990 {
4991 enum machine_mode mode, in_mode;
4992
4993 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
4994 in_mode = GET_MODE_WIDER_MODE (mode))
4995 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
4996 mode = GET_MODE_WIDER_MODE (mode))
4997 {
4998 enum machine_mode i;
4999
5000 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5001 extends to the next widest mode. */
5002 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5003 || GET_MODE_WIDER_MODE (mode) == in_mode);
5004
5005 /* We are in in_mode. Count how many bits outside of mode
5006 have to be copies of the sign-bit. */
5007 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5008 {
5009 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5010
5011 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5012 /* We can only check sign-bit copies starting from the
5013 top-bit. In order to be able to check the bits we
5014 have already seen we pretend that subsequent bits
5015 have to be sign-bit copies too. */
5016 || num_sign_bit_copies_in_rep [in_mode][mode])
5017 num_sign_bit_copies_in_rep [in_mode][mode]
5018 += GET_MODE_BITSIZE (wider) - GET_MODE_BITSIZE (i);
5019 }
5020 }
5021 }
5022
5023 /* Suppose that truncation from the machine mode of X to MODE is not a
5024 no-op. See if there is anything special about X so that we can
5025 assume it already contains a truncated value of MODE. */
5026
5027 bool
5028 truncated_to_mode (enum machine_mode mode, const_rtx x)
5029 {
5030 /* This register has already been used in MODE without explicit
5031 truncation. */
5032 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5033 return true;
5034
5035 /* See if we already satisfy the requirements of MODE. If yes we
5036 can just switch to MODE. */
5037 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5038 && (num_sign_bit_copies (x, GET_MODE (x))
5039 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5040 return true;
5041
5042 return false;
5043 }
5044 \f
5045 /* Initialize non_rtx_starting_operands, which is used to speed up
5046 for_each_rtx. */
5047 void
5048 init_rtlanal (void)
5049 {
5050 int i;
5051 for (i = 0; i < NUM_RTX_CODE; i++)
5052 {
5053 const char *format = GET_RTX_FORMAT (i);
5054 const char *first = strpbrk (format, "eEV");
5055 non_rtx_starting_operands[i] = first ? first - format : -1;
5056 }
5057
5058 init_num_sign_bit_copies_in_rep ();
5059 }
5060 \f
5061 /* Check whether this is a constant pool constant. */
5062 bool
5063 constant_pool_constant_p (rtx x)
5064 {
5065 x = avoid_constant_pool_reference (x);
5066 return GET_CODE (x) == CONST_DOUBLE;
5067 }
5068 \f
5069 /* If M is a bitmask that selects a field of low-order bits within an item but
5070 not the entire word, return the length of the field. Return -1 otherwise.
5071 M is used in machine mode MODE. */
5072
5073 int
5074 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5075 {
5076 if (mode != VOIDmode)
5077 {
5078 if (GET_MODE_BITSIZE (mode) > HOST_BITS_PER_WIDE_INT)
5079 return -1;
5080 m &= GET_MODE_MASK (mode);
5081 }
5082
5083 return exact_log2 (m + 1);
5084 }