rtl.texi (MEM_SIZE_KNOWN_P): Document.
[gcc.git] / gcc / rtlanal.c
1 /* Analyze RTL for GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "hard-reg-set.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "target.h"
33 #include "output.h"
34 #include "tm_p.h"
35 #include "flags.h"
36 #include "regs.h"
37 #include "function.h"
38 #include "df.h"
39 #include "tree.h"
40 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
41
42 /* Forward declarations */
43 static void set_of_1 (rtx, const_rtx, void *);
44 static bool covers_regno_p (const_rtx, unsigned int);
45 static bool covers_regno_no_parallel_p (const_rtx, unsigned int);
46 static int rtx_referenced_p_1 (rtx *, void *);
47 static int computed_jump_p_1 (const_rtx);
48 static void parms_set (rtx, const_rtx, void *);
49
50 static unsigned HOST_WIDE_INT cached_nonzero_bits (const_rtx, enum machine_mode,
51 const_rtx, enum machine_mode,
52 unsigned HOST_WIDE_INT);
53 static unsigned HOST_WIDE_INT nonzero_bits1 (const_rtx, enum machine_mode,
54 const_rtx, enum machine_mode,
55 unsigned HOST_WIDE_INT);
56 static unsigned int cached_num_sign_bit_copies (const_rtx, enum machine_mode, const_rtx,
57 enum machine_mode,
58 unsigned int);
59 static unsigned int num_sign_bit_copies1 (const_rtx, enum machine_mode, const_rtx,
60 enum machine_mode, unsigned int);
61
62 /* Offset of the first 'e', 'E' or 'V' operand for each rtx code, or
63 -1 if a code has no such operand. */
64 static int non_rtx_starting_operands[NUM_RTX_CODE];
65
66 /* Truncation narrows the mode from SOURCE mode to DESTINATION mode.
67 If TARGET_MODE_REP_EXTENDED (DESTINATION, DESTINATION_REP) is
68 SIGN_EXTEND then while narrowing we also have to enforce the
69 representation and sign-extend the value to mode DESTINATION_REP.
70
71 If the value is already sign-extended to DESTINATION_REP mode we
72 can just switch to DESTINATION mode on it. For each pair of
73 integral modes SOURCE and DESTINATION, when truncating from SOURCE
74 to DESTINATION, NUM_SIGN_BIT_COPIES_IN_REP[SOURCE][DESTINATION]
75 contains the number of high-order bits in SOURCE that have to be
76 copies of the sign-bit so that we can do this mode-switch to
77 DESTINATION. */
78
79 static unsigned int
80 num_sign_bit_copies_in_rep[MAX_MODE_INT + 1][MAX_MODE_INT + 1];
81 \f
82 /* Return 1 if the value of X is unstable
83 (would be different at a different point in the program).
84 The frame pointer, arg pointer, etc. are considered stable
85 (within one function) and so is anything marked `unchanging'. */
86
87 int
88 rtx_unstable_p (const_rtx x)
89 {
90 const RTX_CODE code = GET_CODE (x);
91 int i;
92 const char *fmt;
93
94 switch (code)
95 {
96 case MEM:
97 return !MEM_READONLY_P (x) || rtx_unstable_p (XEXP (x, 0));
98
99 case CONST:
100 case CONST_INT:
101 case CONST_DOUBLE:
102 case CONST_FIXED:
103 case CONST_VECTOR:
104 case SYMBOL_REF:
105 case LABEL_REF:
106 return 0;
107
108 case REG:
109 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
110 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
111 /* The arg pointer varies if it is not a fixed register. */
112 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
113 return 0;
114 /* ??? When call-clobbered, the value is stable modulo the restore
115 that must happen after a call. This currently screws up local-alloc
116 into believing that the restore is not needed. */
117 if (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED && x == pic_offset_table_rtx)
118 return 0;
119 return 1;
120
121 case ASM_OPERANDS:
122 if (MEM_VOLATILE_P (x))
123 return 1;
124
125 /* Fall through. */
126
127 default:
128 break;
129 }
130
131 fmt = GET_RTX_FORMAT (code);
132 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
133 if (fmt[i] == 'e')
134 {
135 if (rtx_unstable_p (XEXP (x, i)))
136 return 1;
137 }
138 else if (fmt[i] == 'E')
139 {
140 int j;
141 for (j = 0; j < XVECLEN (x, i); j++)
142 if (rtx_unstable_p (XVECEXP (x, i, j)))
143 return 1;
144 }
145
146 return 0;
147 }
148
149 /* Return 1 if X has a value that can vary even between two
150 executions of the program. 0 means X can be compared reliably
151 against certain constants or near-constants.
152 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
153 zero, we are slightly more conservative.
154 The frame pointer and the arg pointer are considered constant. */
155
156 bool
157 rtx_varies_p (const_rtx x, bool for_alias)
158 {
159 RTX_CODE code;
160 int i;
161 const char *fmt;
162
163 if (!x)
164 return 0;
165
166 code = GET_CODE (x);
167 switch (code)
168 {
169 case MEM:
170 return !MEM_READONLY_P (x) || rtx_varies_p (XEXP (x, 0), for_alias);
171
172 case CONST:
173 case CONST_INT:
174 case CONST_DOUBLE:
175 case CONST_FIXED:
176 case CONST_VECTOR:
177 case SYMBOL_REF:
178 case LABEL_REF:
179 return 0;
180
181 case REG:
182 /* Note that we have to test for the actual rtx used for the frame
183 and arg pointers and not just the register number in case we have
184 eliminated the frame and/or arg pointer and are using it
185 for pseudos. */
186 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
187 /* The arg pointer varies if it is not a fixed register. */
188 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
189 return 0;
190 if (x == pic_offset_table_rtx
191 /* ??? When call-clobbered, the value is stable modulo the restore
192 that must happen after a call. This currently screws up
193 local-alloc into believing that the restore is not needed, so we
194 must return 0 only if we are called from alias analysis. */
195 && (!PIC_OFFSET_TABLE_REG_CALL_CLOBBERED || for_alias))
196 return 0;
197 return 1;
198
199 case LO_SUM:
200 /* The operand 0 of a LO_SUM is considered constant
201 (in fact it is related specifically to operand 1)
202 during alias analysis. */
203 return (! for_alias && rtx_varies_p (XEXP (x, 0), for_alias))
204 || rtx_varies_p (XEXP (x, 1), for_alias);
205
206 case ASM_OPERANDS:
207 if (MEM_VOLATILE_P (x))
208 return 1;
209
210 /* Fall through. */
211
212 default:
213 break;
214 }
215
216 fmt = GET_RTX_FORMAT (code);
217 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
218 if (fmt[i] == 'e')
219 {
220 if (rtx_varies_p (XEXP (x, i), for_alias))
221 return 1;
222 }
223 else if (fmt[i] == 'E')
224 {
225 int j;
226 for (j = 0; j < XVECLEN (x, i); j++)
227 if (rtx_varies_p (XVECEXP (x, i, j), for_alias))
228 return 1;
229 }
230
231 return 0;
232 }
233
234 /* Return nonzero if the use of X as an address in a MEM can cause a trap.
235 MODE is the mode of the MEM (not that of X) and UNALIGNED_MEMS controls
236 whether nonzero is returned for unaligned memory accesses on strict
237 alignment machines. */
238
239 static int
240 rtx_addr_can_trap_p_1 (const_rtx x, HOST_WIDE_INT offset, HOST_WIDE_INT size,
241 enum machine_mode mode, bool unaligned_mems)
242 {
243 enum rtx_code code = GET_CODE (x);
244
245 if (STRICT_ALIGNMENT
246 && unaligned_mems
247 && GET_MODE_SIZE (mode) != 0)
248 {
249 HOST_WIDE_INT actual_offset = offset;
250 #ifdef SPARC_STACK_BOUNDARY_HACK
251 /* ??? The SPARC port may claim a STACK_BOUNDARY higher than
252 the real alignment of %sp. However, when it does this, the
253 alignment of %sp+STACK_POINTER_OFFSET is STACK_BOUNDARY. */
254 if (SPARC_STACK_BOUNDARY_HACK
255 && (x == stack_pointer_rtx || x == hard_frame_pointer_rtx))
256 actual_offset -= STACK_POINTER_OFFSET;
257 #endif
258
259 if (actual_offset % GET_MODE_SIZE (mode) != 0)
260 return 1;
261 }
262
263 switch (code)
264 {
265 case SYMBOL_REF:
266 if (SYMBOL_REF_WEAK (x))
267 return 1;
268 if (!CONSTANT_POOL_ADDRESS_P (x))
269 {
270 tree decl;
271 HOST_WIDE_INT decl_size;
272
273 if (offset < 0)
274 return 1;
275 if (size == 0)
276 size = GET_MODE_SIZE (mode);
277 if (size == 0)
278 return offset != 0;
279
280 /* If the size of the access or of the symbol is unknown,
281 assume the worst. */
282 decl = SYMBOL_REF_DECL (x);
283
284 /* Else check that the access is in bounds. TODO: restructure
285 expr_size/tree_expr_size/int_expr_size and just use the latter. */
286 if (!decl)
287 decl_size = -1;
288 else if (DECL_P (decl) && DECL_SIZE_UNIT (decl))
289 decl_size = (host_integerp (DECL_SIZE_UNIT (decl), 0)
290 ? tree_low_cst (DECL_SIZE_UNIT (decl), 0)
291 : -1);
292 else if (TREE_CODE (decl) == STRING_CST)
293 decl_size = TREE_STRING_LENGTH (decl);
294 else if (TYPE_SIZE_UNIT (TREE_TYPE (decl)))
295 decl_size = int_size_in_bytes (TREE_TYPE (decl));
296 else
297 decl_size = -1;
298
299 return (decl_size <= 0 ? offset != 0 : offset + size > decl_size);
300 }
301
302 return 0;
303
304 case LABEL_REF:
305 return 0;
306
307 case REG:
308 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
309 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
310 || x == stack_pointer_rtx
311 /* The arg pointer varies if it is not a fixed register. */
312 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
313 return 0;
314 /* All of the virtual frame registers are stack references. */
315 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
316 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
317 return 0;
318 return 1;
319
320 case CONST:
321 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
322 mode, unaligned_mems);
323
324 case PLUS:
325 /* An address is assumed not to trap if:
326 - it is the pic register plus a constant. */
327 if (XEXP (x, 0) == pic_offset_table_rtx && CONSTANT_P (XEXP (x, 1)))
328 return 0;
329
330 /* - or it is an address that can't trap plus a constant integer,
331 with the proper remainder modulo the mode size if we are
332 considering unaligned memory references. */
333 if (CONST_INT_P (XEXP (x, 1))
334 && !rtx_addr_can_trap_p_1 (XEXP (x, 0), offset + INTVAL (XEXP (x, 1)),
335 size, mode, unaligned_mems))
336 return 0;
337
338 return 1;
339
340 case LO_SUM:
341 case PRE_MODIFY:
342 return rtx_addr_can_trap_p_1 (XEXP (x, 1), offset, size,
343 mode, unaligned_mems);
344
345 case PRE_DEC:
346 case PRE_INC:
347 case POST_DEC:
348 case POST_INC:
349 case POST_MODIFY:
350 return rtx_addr_can_trap_p_1 (XEXP (x, 0), offset, size,
351 mode, unaligned_mems);
352
353 default:
354 break;
355 }
356
357 /* If it isn't one of the case above, it can cause a trap. */
358 return 1;
359 }
360
361 /* Return nonzero if the use of X as an address in a MEM can cause a trap. */
362
363 int
364 rtx_addr_can_trap_p (const_rtx x)
365 {
366 return rtx_addr_can_trap_p_1 (x, 0, 0, VOIDmode, false);
367 }
368
369 /* Return true if X is an address that is known to not be zero. */
370
371 bool
372 nonzero_address_p (const_rtx x)
373 {
374 const enum rtx_code code = GET_CODE (x);
375
376 switch (code)
377 {
378 case SYMBOL_REF:
379 return !SYMBOL_REF_WEAK (x);
380
381 case LABEL_REF:
382 return true;
383
384 case REG:
385 /* As in rtx_varies_p, we have to use the actual rtx, not reg number. */
386 if (x == frame_pointer_rtx || x == hard_frame_pointer_rtx
387 || x == stack_pointer_rtx
388 || (x == arg_pointer_rtx && fixed_regs[ARG_POINTER_REGNUM]))
389 return true;
390 /* All of the virtual frame registers are stack references. */
391 if (REGNO (x) >= FIRST_VIRTUAL_REGISTER
392 && REGNO (x) <= LAST_VIRTUAL_REGISTER)
393 return true;
394 return false;
395
396 case CONST:
397 return nonzero_address_p (XEXP (x, 0));
398
399 case PLUS:
400 if (CONST_INT_P (XEXP (x, 1)))
401 return nonzero_address_p (XEXP (x, 0));
402 /* Handle PIC references. */
403 else if (XEXP (x, 0) == pic_offset_table_rtx
404 && CONSTANT_P (XEXP (x, 1)))
405 return true;
406 return false;
407
408 case PRE_MODIFY:
409 /* Similar to the above; allow positive offsets. Further, since
410 auto-inc is only allowed in memories, the register must be a
411 pointer. */
412 if (CONST_INT_P (XEXP (x, 1))
413 && INTVAL (XEXP (x, 1)) > 0)
414 return true;
415 return nonzero_address_p (XEXP (x, 0));
416
417 case PRE_INC:
418 /* Similarly. Further, the offset is always positive. */
419 return true;
420
421 case PRE_DEC:
422 case POST_DEC:
423 case POST_INC:
424 case POST_MODIFY:
425 return nonzero_address_p (XEXP (x, 0));
426
427 case LO_SUM:
428 return nonzero_address_p (XEXP (x, 1));
429
430 default:
431 break;
432 }
433
434 /* If it isn't one of the case above, might be zero. */
435 return false;
436 }
437
438 /* Return 1 if X refers to a memory location whose address
439 cannot be compared reliably with constant addresses,
440 or if X refers to a BLKmode memory object.
441 FOR_ALIAS is nonzero if we are called from alias analysis; if it is
442 zero, we are slightly more conservative. */
443
444 bool
445 rtx_addr_varies_p (const_rtx x, bool for_alias)
446 {
447 enum rtx_code code;
448 int i;
449 const char *fmt;
450
451 if (x == 0)
452 return 0;
453
454 code = GET_CODE (x);
455 if (code == MEM)
456 return GET_MODE (x) == BLKmode || rtx_varies_p (XEXP (x, 0), for_alias);
457
458 fmt = GET_RTX_FORMAT (code);
459 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
460 if (fmt[i] == 'e')
461 {
462 if (rtx_addr_varies_p (XEXP (x, i), for_alias))
463 return 1;
464 }
465 else if (fmt[i] == 'E')
466 {
467 int j;
468 for (j = 0; j < XVECLEN (x, i); j++)
469 if (rtx_addr_varies_p (XVECEXP (x, i, j), for_alias))
470 return 1;
471 }
472 return 0;
473 }
474 \f
475 /* Return the value of the integer term in X, if one is apparent;
476 otherwise return 0.
477 Only obvious integer terms are detected.
478 This is used in cse.c with the `related_value' field. */
479
480 HOST_WIDE_INT
481 get_integer_term (const_rtx x)
482 {
483 if (GET_CODE (x) == CONST)
484 x = XEXP (x, 0);
485
486 if (GET_CODE (x) == MINUS
487 && CONST_INT_P (XEXP (x, 1)))
488 return - INTVAL (XEXP (x, 1));
489 if (GET_CODE (x) == PLUS
490 && CONST_INT_P (XEXP (x, 1)))
491 return INTVAL (XEXP (x, 1));
492 return 0;
493 }
494
495 /* If X is a constant, return the value sans apparent integer term;
496 otherwise return 0.
497 Only obvious integer terms are detected. */
498
499 rtx
500 get_related_value (const_rtx x)
501 {
502 if (GET_CODE (x) != CONST)
503 return 0;
504 x = XEXP (x, 0);
505 if (GET_CODE (x) == PLUS
506 && CONST_INT_P (XEXP (x, 1)))
507 return XEXP (x, 0);
508 else if (GET_CODE (x) == MINUS
509 && CONST_INT_P (XEXP (x, 1)))
510 return XEXP (x, 0);
511 return 0;
512 }
513 \f
514 /* Return true if SYMBOL is a SYMBOL_REF and OFFSET + SYMBOL points
515 to somewhere in the same object or object_block as SYMBOL. */
516
517 bool
518 offset_within_block_p (const_rtx symbol, HOST_WIDE_INT offset)
519 {
520 tree decl;
521
522 if (GET_CODE (symbol) != SYMBOL_REF)
523 return false;
524
525 if (offset == 0)
526 return true;
527
528 if (offset > 0)
529 {
530 if (CONSTANT_POOL_ADDRESS_P (symbol)
531 && offset < (int) GET_MODE_SIZE (get_pool_mode (symbol)))
532 return true;
533
534 decl = SYMBOL_REF_DECL (symbol);
535 if (decl && offset < int_size_in_bytes (TREE_TYPE (decl)))
536 return true;
537 }
538
539 if (SYMBOL_REF_HAS_BLOCK_INFO_P (symbol)
540 && SYMBOL_REF_BLOCK (symbol)
541 && SYMBOL_REF_BLOCK_OFFSET (symbol) >= 0
542 && ((unsigned HOST_WIDE_INT) offset + SYMBOL_REF_BLOCK_OFFSET (symbol)
543 < (unsigned HOST_WIDE_INT) SYMBOL_REF_BLOCK (symbol)->size))
544 return true;
545
546 return false;
547 }
548
549 /* Split X into a base and a constant offset, storing them in *BASE_OUT
550 and *OFFSET_OUT respectively. */
551
552 void
553 split_const (rtx x, rtx *base_out, rtx *offset_out)
554 {
555 if (GET_CODE (x) == CONST)
556 {
557 x = XEXP (x, 0);
558 if (GET_CODE (x) == PLUS && CONST_INT_P (XEXP (x, 1)))
559 {
560 *base_out = XEXP (x, 0);
561 *offset_out = XEXP (x, 1);
562 return;
563 }
564 }
565 *base_out = x;
566 *offset_out = const0_rtx;
567 }
568 \f
569 /* Return the number of places FIND appears within X. If COUNT_DEST is
570 zero, we do not count occurrences inside the destination of a SET. */
571
572 int
573 count_occurrences (const_rtx x, const_rtx find, int count_dest)
574 {
575 int i, j;
576 enum rtx_code code;
577 const char *format_ptr;
578 int count;
579
580 if (x == find)
581 return 1;
582
583 code = GET_CODE (x);
584
585 switch (code)
586 {
587 case REG:
588 case CONST_INT:
589 case CONST_DOUBLE:
590 case CONST_FIXED:
591 case CONST_VECTOR:
592 case SYMBOL_REF:
593 case CODE_LABEL:
594 case PC:
595 case CC0:
596 return 0;
597
598 case EXPR_LIST:
599 count = count_occurrences (XEXP (x, 0), find, count_dest);
600 if (XEXP (x, 1))
601 count += count_occurrences (XEXP (x, 1), find, count_dest);
602 return count;
603
604 case MEM:
605 if (MEM_P (find) && rtx_equal_p (x, find))
606 return 1;
607 break;
608
609 case SET:
610 if (SET_DEST (x) == find && ! count_dest)
611 return count_occurrences (SET_SRC (x), find, count_dest);
612 break;
613
614 default:
615 break;
616 }
617
618 format_ptr = GET_RTX_FORMAT (code);
619 count = 0;
620
621 for (i = 0; i < GET_RTX_LENGTH (code); i++)
622 {
623 switch (*format_ptr++)
624 {
625 case 'e':
626 count += count_occurrences (XEXP (x, i), find, count_dest);
627 break;
628
629 case 'E':
630 for (j = 0; j < XVECLEN (x, i); j++)
631 count += count_occurrences (XVECEXP (x, i, j), find, count_dest);
632 break;
633 }
634 }
635 return count;
636 }
637
638 \f
639 /* Nonzero if register REG appears somewhere within IN.
640 Also works if REG is not a register; in this case it checks
641 for a subexpression of IN that is Lisp "equal" to REG. */
642
643 int
644 reg_mentioned_p (const_rtx reg, const_rtx in)
645 {
646 const char *fmt;
647 int i;
648 enum rtx_code code;
649
650 if (in == 0)
651 return 0;
652
653 if (reg == in)
654 return 1;
655
656 if (GET_CODE (in) == LABEL_REF)
657 return reg == XEXP (in, 0);
658
659 code = GET_CODE (in);
660
661 switch (code)
662 {
663 /* Compare registers by number. */
664 case REG:
665 return REG_P (reg) && REGNO (in) == REGNO (reg);
666
667 /* These codes have no constituent expressions
668 and are unique. */
669 case SCRATCH:
670 case CC0:
671 case PC:
672 return 0;
673
674 case CONST_INT:
675 case CONST_VECTOR:
676 case CONST_DOUBLE:
677 case CONST_FIXED:
678 /* These are kept unique for a given value. */
679 return 0;
680
681 default:
682 break;
683 }
684
685 if (GET_CODE (reg) == code && rtx_equal_p (reg, in))
686 return 1;
687
688 fmt = GET_RTX_FORMAT (code);
689
690 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
691 {
692 if (fmt[i] == 'E')
693 {
694 int j;
695 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
696 if (reg_mentioned_p (reg, XVECEXP (in, i, j)))
697 return 1;
698 }
699 else if (fmt[i] == 'e'
700 && reg_mentioned_p (reg, XEXP (in, i)))
701 return 1;
702 }
703 return 0;
704 }
705 \f
706 /* Return 1 if in between BEG and END, exclusive of BEG and END, there is
707 no CODE_LABEL insn. */
708
709 int
710 no_labels_between_p (const_rtx beg, const_rtx end)
711 {
712 rtx p;
713 if (beg == end)
714 return 0;
715 for (p = NEXT_INSN (beg); p != end; p = NEXT_INSN (p))
716 if (LABEL_P (p))
717 return 0;
718 return 1;
719 }
720
721 /* Nonzero if register REG is used in an insn between
722 FROM_INSN and TO_INSN (exclusive of those two). */
723
724 int
725 reg_used_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
726 {
727 rtx insn;
728
729 if (from_insn == to_insn)
730 return 0;
731
732 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
733 if (NONDEBUG_INSN_P (insn)
734 && (reg_overlap_mentioned_p (reg, PATTERN (insn))
735 || (CALL_P (insn) && find_reg_fusage (insn, USE, reg))))
736 return 1;
737 return 0;
738 }
739 \f
740 /* Nonzero if the old value of X, a register, is referenced in BODY. If X
741 is entirely replaced by a new value and the only use is as a SET_DEST,
742 we do not consider it a reference. */
743
744 int
745 reg_referenced_p (const_rtx x, const_rtx body)
746 {
747 int i;
748
749 switch (GET_CODE (body))
750 {
751 case SET:
752 if (reg_overlap_mentioned_p (x, SET_SRC (body)))
753 return 1;
754
755 /* If the destination is anything other than CC0, PC, a REG or a SUBREG
756 of a REG that occupies all of the REG, the insn references X if
757 it is mentioned in the destination. */
758 if (GET_CODE (SET_DEST (body)) != CC0
759 && GET_CODE (SET_DEST (body)) != PC
760 && !REG_P (SET_DEST (body))
761 && ! (GET_CODE (SET_DEST (body)) == SUBREG
762 && REG_P (SUBREG_REG (SET_DEST (body)))
763 && (((GET_MODE_SIZE (GET_MODE (SUBREG_REG (SET_DEST (body))))
764 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)
765 == ((GET_MODE_SIZE (GET_MODE (SET_DEST (body)))
766 + (UNITS_PER_WORD - 1)) / UNITS_PER_WORD)))
767 && reg_overlap_mentioned_p (x, SET_DEST (body)))
768 return 1;
769 return 0;
770
771 case ASM_OPERANDS:
772 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
773 if (reg_overlap_mentioned_p (x, ASM_OPERANDS_INPUT (body, i)))
774 return 1;
775 return 0;
776
777 case CALL:
778 case USE:
779 case IF_THEN_ELSE:
780 return reg_overlap_mentioned_p (x, body);
781
782 case TRAP_IF:
783 return reg_overlap_mentioned_p (x, TRAP_CONDITION (body));
784
785 case PREFETCH:
786 return reg_overlap_mentioned_p (x, XEXP (body, 0));
787
788 case UNSPEC:
789 case UNSPEC_VOLATILE:
790 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
791 if (reg_overlap_mentioned_p (x, XVECEXP (body, 0, i)))
792 return 1;
793 return 0;
794
795 case PARALLEL:
796 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
797 if (reg_referenced_p (x, XVECEXP (body, 0, i)))
798 return 1;
799 return 0;
800
801 case CLOBBER:
802 if (MEM_P (XEXP (body, 0)))
803 if (reg_overlap_mentioned_p (x, XEXP (XEXP (body, 0), 0)))
804 return 1;
805 return 0;
806
807 case COND_EXEC:
808 if (reg_overlap_mentioned_p (x, COND_EXEC_TEST (body)))
809 return 1;
810 return reg_referenced_p (x, COND_EXEC_CODE (body));
811
812 default:
813 return 0;
814 }
815 }
816 \f
817 /* Nonzero if register REG is set or clobbered in an insn between
818 FROM_INSN and TO_INSN (exclusive of those two). */
819
820 int
821 reg_set_between_p (const_rtx reg, const_rtx from_insn, const_rtx to_insn)
822 {
823 const_rtx insn;
824
825 if (from_insn == to_insn)
826 return 0;
827
828 for (insn = NEXT_INSN (from_insn); insn != to_insn; insn = NEXT_INSN (insn))
829 if (INSN_P (insn) && reg_set_p (reg, insn))
830 return 1;
831 return 0;
832 }
833
834 /* Internals of reg_set_between_p. */
835 int
836 reg_set_p (const_rtx reg, const_rtx insn)
837 {
838 /* We can be passed an insn or part of one. If we are passed an insn,
839 check if a side-effect of the insn clobbers REG. */
840 if (INSN_P (insn)
841 && (FIND_REG_INC_NOTE (insn, reg)
842 || (CALL_P (insn)
843 && ((REG_P (reg)
844 && REGNO (reg) < FIRST_PSEUDO_REGISTER
845 && overlaps_hard_reg_set_p (regs_invalidated_by_call,
846 GET_MODE (reg), REGNO (reg)))
847 || MEM_P (reg)
848 || find_reg_fusage (insn, CLOBBER, reg)))))
849 return 1;
850
851 return set_of (reg, insn) != NULL_RTX;
852 }
853
854 /* Similar to reg_set_between_p, but check all registers in X. Return 0
855 only if none of them are modified between START and END. Return 1 if
856 X contains a MEM; this routine does use memory aliasing. */
857
858 int
859 modified_between_p (const_rtx x, const_rtx start, const_rtx end)
860 {
861 const enum rtx_code code = GET_CODE (x);
862 const char *fmt;
863 int i, j;
864 rtx insn;
865
866 if (start == end)
867 return 0;
868
869 switch (code)
870 {
871 case CONST_INT:
872 case CONST_DOUBLE:
873 case CONST_FIXED:
874 case CONST_VECTOR:
875 case CONST:
876 case SYMBOL_REF:
877 case LABEL_REF:
878 return 0;
879
880 case PC:
881 case CC0:
882 return 1;
883
884 case MEM:
885 if (modified_between_p (XEXP (x, 0), start, end))
886 return 1;
887 if (MEM_READONLY_P (x))
888 return 0;
889 for (insn = NEXT_INSN (start); insn != end; insn = NEXT_INSN (insn))
890 if (memory_modified_in_insn_p (x, insn))
891 return 1;
892 return 0;
893 break;
894
895 case REG:
896 return reg_set_between_p (x, start, end);
897
898 default:
899 break;
900 }
901
902 fmt = GET_RTX_FORMAT (code);
903 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
904 {
905 if (fmt[i] == 'e' && modified_between_p (XEXP (x, i), start, end))
906 return 1;
907
908 else if (fmt[i] == 'E')
909 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
910 if (modified_between_p (XVECEXP (x, i, j), start, end))
911 return 1;
912 }
913
914 return 0;
915 }
916
917 /* Similar to reg_set_p, but check all registers in X. Return 0 only if none
918 of them are modified in INSN. Return 1 if X contains a MEM; this routine
919 does use memory aliasing. */
920
921 int
922 modified_in_p (const_rtx x, const_rtx insn)
923 {
924 const enum rtx_code code = GET_CODE (x);
925 const char *fmt;
926 int i, j;
927
928 switch (code)
929 {
930 case CONST_INT:
931 case CONST_DOUBLE:
932 case CONST_FIXED:
933 case CONST_VECTOR:
934 case CONST:
935 case SYMBOL_REF:
936 case LABEL_REF:
937 return 0;
938
939 case PC:
940 case CC0:
941 return 1;
942
943 case MEM:
944 if (modified_in_p (XEXP (x, 0), insn))
945 return 1;
946 if (MEM_READONLY_P (x))
947 return 0;
948 if (memory_modified_in_insn_p (x, insn))
949 return 1;
950 return 0;
951 break;
952
953 case REG:
954 return reg_set_p (x, insn);
955
956 default:
957 break;
958 }
959
960 fmt = GET_RTX_FORMAT (code);
961 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
962 {
963 if (fmt[i] == 'e' && modified_in_p (XEXP (x, i), insn))
964 return 1;
965
966 else if (fmt[i] == 'E')
967 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
968 if (modified_in_p (XVECEXP (x, i, j), insn))
969 return 1;
970 }
971
972 return 0;
973 }
974 \f
975 /* Helper function for set_of. */
976 struct set_of_data
977 {
978 const_rtx found;
979 const_rtx pat;
980 };
981
982 static void
983 set_of_1 (rtx x, const_rtx pat, void *data1)
984 {
985 struct set_of_data *const data = (struct set_of_data *) (data1);
986 if (rtx_equal_p (x, data->pat)
987 || (!MEM_P (x) && reg_overlap_mentioned_p (data->pat, x)))
988 data->found = pat;
989 }
990
991 /* Give an INSN, return a SET or CLOBBER expression that does modify PAT
992 (either directly or via STRICT_LOW_PART and similar modifiers). */
993 const_rtx
994 set_of (const_rtx pat, const_rtx insn)
995 {
996 struct set_of_data data;
997 data.found = NULL_RTX;
998 data.pat = pat;
999 note_stores (INSN_P (insn) ? PATTERN (insn) : insn, set_of_1, &data);
1000 return data.found;
1001 }
1002 \f
1003 /* Given an INSN, return a SET expression if this insn has only a single SET.
1004 It may also have CLOBBERs, USEs, or SET whose output
1005 will not be used, which we ignore. */
1006
1007 rtx
1008 single_set_2 (const_rtx insn, const_rtx pat)
1009 {
1010 rtx set = NULL;
1011 int set_verified = 1;
1012 int i;
1013
1014 if (GET_CODE (pat) == PARALLEL)
1015 {
1016 for (i = 0; i < XVECLEN (pat, 0); i++)
1017 {
1018 rtx sub = XVECEXP (pat, 0, i);
1019 switch (GET_CODE (sub))
1020 {
1021 case USE:
1022 case CLOBBER:
1023 break;
1024
1025 case SET:
1026 /* We can consider insns having multiple sets, where all
1027 but one are dead as single set insns. In common case
1028 only single set is present in the pattern so we want
1029 to avoid checking for REG_UNUSED notes unless necessary.
1030
1031 When we reach set first time, we just expect this is
1032 the single set we are looking for and only when more
1033 sets are found in the insn, we check them. */
1034 if (!set_verified)
1035 {
1036 if (find_reg_note (insn, REG_UNUSED, SET_DEST (set))
1037 && !side_effects_p (set))
1038 set = NULL;
1039 else
1040 set_verified = 1;
1041 }
1042 if (!set)
1043 set = sub, set_verified = 0;
1044 else if (!find_reg_note (insn, REG_UNUSED, SET_DEST (sub))
1045 || side_effects_p (sub))
1046 return NULL_RTX;
1047 break;
1048
1049 default:
1050 return NULL_RTX;
1051 }
1052 }
1053 }
1054 return set;
1055 }
1056
1057 /* Given an INSN, return nonzero if it has more than one SET, else return
1058 zero. */
1059
1060 int
1061 multiple_sets (const_rtx insn)
1062 {
1063 int found;
1064 int i;
1065
1066 /* INSN must be an insn. */
1067 if (! INSN_P (insn))
1068 return 0;
1069
1070 /* Only a PARALLEL can have multiple SETs. */
1071 if (GET_CODE (PATTERN (insn)) == PARALLEL)
1072 {
1073 for (i = 0, found = 0; i < XVECLEN (PATTERN (insn), 0); i++)
1074 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
1075 {
1076 /* If we have already found a SET, then return now. */
1077 if (found)
1078 return 1;
1079 else
1080 found = 1;
1081 }
1082 }
1083
1084 /* Either zero or one SET. */
1085 return 0;
1086 }
1087 \f
1088 /* Return nonzero if the destination of SET equals the source
1089 and there are no side effects. */
1090
1091 int
1092 set_noop_p (const_rtx set)
1093 {
1094 rtx src = SET_SRC (set);
1095 rtx dst = SET_DEST (set);
1096
1097 if (dst == pc_rtx && src == pc_rtx)
1098 return 1;
1099
1100 if (MEM_P (dst) && MEM_P (src))
1101 return rtx_equal_p (dst, src) && !side_effects_p (dst);
1102
1103 if (GET_CODE (dst) == ZERO_EXTRACT)
1104 return rtx_equal_p (XEXP (dst, 0), src)
1105 && ! BYTES_BIG_ENDIAN && XEXP (dst, 2) == const0_rtx
1106 && !side_effects_p (src);
1107
1108 if (GET_CODE (dst) == STRICT_LOW_PART)
1109 dst = XEXP (dst, 0);
1110
1111 if (GET_CODE (src) == SUBREG && GET_CODE (dst) == SUBREG)
1112 {
1113 if (SUBREG_BYTE (src) != SUBREG_BYTE (dst))
1114 return 0;
1115 src = SUBREG_REG (src);
1116 dst = SUBREG_REG (dst);
1117 }
1118
1119 return (REG_P (src) && REG_P (dst)
1120 && REGNO (src) == REGNO (dst));
1121 }
1122 \f
1123 /* Return nonzero if an insn consists only of SETs, each of which only sets a
1124 value to itself. */
1125
1126 int
1127 noop_move_p (const_rtx insn)
1128 {
1129 rtx pat = PATTERN (insn);
1130
1131 if (INSN_CODE (insn) == NOOP_MOVE_INSN_CODE)
1132 return 1;
1133
1134 /* Insns carrying these notes are useful later on. */
1135 if (find_reg_note (insn, REG_EQUAL, NULL_RTX))
1136 return 0;
1137
1138 if (GET_CODE (pat) == SET && set_noop_p (pat))
1139 return 1;
1140
1141 if (GET_CODE (pat) == PARALLEL)
1142 {
1143 int i;
1144 /* If nothing but SETs of registers to themselves,
1145 this insn can also be deleted. */
1146 for (i = 0; i < XVECLEN (pat, 0); i++)
1147 {
1148 rtx tem = XVECEXP (pat, 0, i);
1149
1150 if (GET_CODE (tem) == USE
1151 || GET_CODE (tem) == CLOBBER)
1152 continue;
1153
1154 if (GET_CODE (tem) != SET || ! set_noop_p (tem))
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160 return 0;
1161 }
1162 \f
1163
1164 /* Return the last thing that X was assigned from before *PINSN. If VALID_TO
1165 is not NULL_RTX then verify that the object is not modified up to VALID_TO.
1166 If the object was modified, if we hit a partial assignment to X, or hit a
1167 CODE_LABEL first, return X. If we found an assignment, update *PINSN to
1168 point to it. ALLOW_HWREG is set to 1 if hardware registers are allowed to
1169 be the src. */
1170
1171 rtx
1172 find_last_value (rtx x, rtx *pinsn, rtx valid_to, int allow_hwreg)
1173 {
1174 rtx p;
1175
1176 for (p = PREV_INSN (*pinsn); p && !LABEL_P (p);
1177 p = PREV_INSN (p))
1178 if (INSN_P (p))
1179 {
1180 rtx set = single_set (p);
1181 rtx note = find_reg_note (p, REG_EQUAL, NULL_RTX);
1182
1183 if (set && rtx_equal_p (x, SET_DEST (set)))
1184 {
1185 rtx src = SET_SRC (set);
1186
1187 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
1188 src = XEXP (note, 0);
1189
1190 if ((valid_to == NULL_RTX
1191 || ! modified_between_p (src, PREV_INSN (p), valid_to))
1192 /* Reject hard registers because we don't usually want
1193 to use them; we'd rather use a pseudo. */
1194 && (! (REG_P (src)
1195 && REGNO (src) < FIRST_PSEUDO_REGISTER) || allow_hwreg))
1196 {
1197 *pinsn = p;
1198 return src;
1199 }
1200 }
1201
1202 /* If set in non-simple way, we don't have a value. */
1203 if (reg_set_p (x, p))
1204 break;
1205 }
1206
1207 return x;
1208 }
1209 \f
1210 /* Return nonzero if register in range [REGNO, ENDREGNO)
1211 appears either explicitly or implicitly in X
1212 other than being stored into.
1213
1214 References contained within the substructure at LOC do not count.
1215 LOC may be zero, meaning don't ignore anything. */
1216
1217 int
1218 refers_to_regno_p (unsigned int regno, unsigned int endregno, const_rtx x,
1219 rtx *loc)
1220 {
1221 int i;
1222 unsigned int x_regno;
1223 RTX_CODE code;
1224 const char *fmt;
1225
1226 repeat:
1227 /* The contents of a REG_NONNEG note is always zero, so we must come here
1228 upon repeat in case the last REG_NOTE is a REG_NONNEG note. */
1229 if (x == 0)
1230 return 0;
1231
1232 code = GET_CODE (x);
1233
1234 switch (code)
1235 {
1236 case REG:
1237 x_regno = REGNO (x);
1238
1239 /* If we modifying the stack, frame, or argument pointer, it will
1240 clobber a virtual register. In fact, we could be more precise,
1241 but it isn't worth it. */
1242 if ((x_regno == STACK_POINTER_REGNUM
1243 #if FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
1244 || x_regno == ARG_POINTER_REGNUM
1245 #endif
1246 || x_regno == FRAME_POINTER_REGNUM)
1247 && regno >= FIRST_VIRTUAL_REGISTER && regno <= LAST_VIRTUAL_REGISTER)
1248 return 1;
1249
1250 return endregno > x_regno && regno < END_REGNO (x);
1251
1252 case SUBREG:
1253 /* If this is a SUBREG of a hard reg, we can see exactly which
1254 registers are being modified. Otherwise, handle normally. */
1255 if (REG_P (SUBREG_REG (x))
1256 && REGNO (SUBREG_REG (x)) < FIRST_PSEUDO_REGISTER)
1257 {
1258 unsigned int inner_regno = subreg_regno (x);
1259 unsigned int inner_endregno
1260 = inner_regno + (inner_regno < FIRST_PSEUDO_REGISTER
1261 ? subreg_nregs (x) : 1);
1262
1263 return endregno > inner_regno && regno < inner_endregno;
1264 }
1265 break;
1266
1267 case CLOBBER:
1268 case SET:
1269 if (&SET_DEST (x) != loc
1270 /* Note setting a SUBREG counts as referring to the REG it is in for
1271 a pseudo but not for hard registers since we can
1272 treat each word individually. */
1273 && ((GET_CODE (SET_DEST (x)) == SUBREG
1274 && loc != &SUBREG_REG (SET_DEST (x))
1275 && REG_P (SUBREG_REG (SET_DEST (x)))
1276 && REGNO (SUBREG_REG (SET_DEST (x))) >= FIRST_PSEUDO_REGISTER
1277 && refers_to_regno_p (regno, endregno,
1278 SUBREG_REG (SET_DEST (x)), loc))
1279 || (!REG_P (SET_DEST (x))
1280 && refers_to_regno_p (regno, endregno, SET_DEST (x), loc))))
1281 return 1;
1282
1283 if (code == CLOBBER || loc == &SET_SRC (x))
1284 return 0;
1285 x = SET_SRC (x);
1286 goto repeat;
1287
1288 default:
1289 break;
1290 }
1291
1292 /* X does not match, so try its subexpressions. */
1293
1294 fmt = GET_RTX_FORMAT (code);
1295 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1296 {
1297 if (fmt[i] == 'e' && loc != &XEXP (x, i))
1298 {
1299 if (i == 0)
1300 {
1301 x = XEXP (x, 0);
1302 goto repeat;
1303 }
1304 else
1305 if (refers_to_regno_p (regno, endregno, XEXP (x, i), loc))
1306 return 1;
1307 }
1308 else if (fmt[i] == 'E')
1309 {
1310 int j;
1311 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
1312 if (loc != &XVECEXP (x, i, j)
1313 && refers_to_regno_p (regno, endregno, XVECEXP (x, i, j), loc))
1314 return 1;
1315 }
1316 }
1317 return 0;
1318 }
1319
1320 /* Nonzero if modifying X will affect IN. If X is a register or a SUBREG,
1321 we check if any register number in X conflicts with the relevant register
1322 numbers. If X is a constant, return 0. If X is a MEM, return 1 iff IN
1323 contains a MEM (we don't bother checking for memory addresses that can't
1324 conflict because we expect this to be a rare case. */
1325
1326 int
1327 reg_overlap_mentioned_p (const_rtx x, const_rtx in)
1328 {
1329 unsigned int regno, endregno;
1330
1331 /* If either argument is a constant, then modifying X can not
1332 affect IN. Here we look at IN, we can profitably combine
1333 CONSTANT_P (x) with the switch statement below. */
1334 if (CONSTANT_P (in))
1335 return 0;
1336
1337 recurse:
1338 switch (GET_CODE (x))
1339 {
1340 case STRICT_LOW_PART:
1341 case ZERO_EXTRACT:
1342 case SIGN_EXTRACT:
1343 /* Overly conservative. */
1344 x = XEXP (x, 0);
1345 goto recurse;
1346
1347 case SUBREG:
1348 regno = REGNO (SUBREG_REG (x));
1349 if (regno < FIRST_PSEUDO_REGISTER)
1350 regno = subreg_regno (x);
1351 endregno = regno + (regno < FIRST_PSEUDO_REGISTER
1352 ? subreg_nregs (x) : 1);
1353 goto do_reg;
1354
1355 case REG:
1356 regno = REGNO (x);
1357 endregno = END_REGNO (x);
1358 do_reg:
1359 return refers_to_regno_p (regno, endregno, in, (rtx*) 0);
1360
1361 case MEM:
1362 {
1363 const char *fmt;
1364 int i;
1365
1366 if (MEM_P (in))
1367 return 1;
1368
1369 fmt = GET_RTX_FORMAT (GET_CODE (in));
1370 for (i = GET_RTX_LENGTH (GET_CODE (in)) - 1; i >= 0; i--)
1371 if (fmt[i] == 'e')
1372 {
1373 if (reg_overlap_mentioned_p (x, XEXP (in, i)))
1374 return 1;
1375 }
1376 else if (fmt[i] == 'E')
1377 {
1378 int j;
1379 for (j = XVECLEN (in, i) - 1; j >= 0; --j)
1380 if (reg_overlap_mentioned_p (x, XVECEXP (in, i, j)))
1381 return 1;
1382 }
1383
1384 return 0;
1385 }
1386
1387 case SCRATCH:
1388 case PC:
1389 case CC0:
1390 return reg_mentioned_p (x, in);
1391
1392 case PARALLEL:
1393 {
1394 int i;
1395
1396 /* If any register in here refers to it we return true. */
1397 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1398 if (XEXP (XVECEXP (x, 0, i), 0) != 0
1399 && reg_overlap_mentioned_p (XEXP (XVECEXP (x, 0, i), 0), in))
1400 return 1;
1401 return 0;
1402 }
1403
1404 default:
1405 gcc_assert (CONSTANT_P (x));
1406 return 0;
1407 }
1408 }
1409 \f
1410 /* Call FUN on each register or MEM that is stored into or clobbered by X.
1411 (X would be the pattern of an insn). DATA is an arbitrary pointer,
1412 ignored by note_stores, but passed to FUN.
1413
1414 FUN receives three arguments:
1415 1. the REG, MEM, CC0 or PC being stored in or clobbered,
1416 2. the SET or CLOBBER rtx that does the store,
1417 3. the pointer DATA provided to note_stores.
1418
1419 If the item being stored in or clobbered is a SUBREG of a hard register,
1420 the SUBREG will be passed. */
1421
1422 void
1423 note_stores (const_rtx x, void (*fun) (rtx, const_rtx, void *), void *data)
1424 {
1425 int i;
1426
1427 if (GET_CODE (x) == COND_EXEC)
1428 x = COND_EXEC_CODE (x);
1429
1430 if (GET_CODE (x) == SET || GET_CODE (x) == CLOBBER)
1431 {
1432 rtx dest = SET_DEST (x);
1433
1434 while ((GET_CODE (dest) == SUBREG
1435 && (!REG_P (SUBREG_REG (dest))
1436 || REGNO (SUBREG_REG (dest)) >= FIRST_PSEUDO_REGISTER))
1437 || GET_CODE (dest) == ZERO_EXTRACT
1438 || GET_CODE (dest) == STRICT_LOW_PART)
1439 dest = XEXP (dest, 0);
1440
1441 /* If we have a PARALLEL, SET_DEST is a list of EXPR_LIST expressions,
1442 each of whose first operand is a register. */
1443 if (GET_CODE (dest) == PARALLEL)
1444 {
1445 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1446 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
1447 (*fun) (XEXP (XVECEXP (dest, 0, i), 0), x, data);
1448 }
1449 else
1450 (*fun) (dest, x, data);
1451 }
1452
1453 else if (GET_CODE (x) == PARALLEL)
1454 for (i = XVECLEN (x, 0) - 1; i >= 0; i--)
1455 note_stores (XVECEXP (x, 0, i), fun, data);
1456 }
1457 \f
1458 /* Like notes_stores, but call FUN for each expression that is being
1459 referenced in PBODY, a pointer to the PATTERN of an insn. We only call
1460 FUN for each expression, not any interior subexpressions. FUN receives a
1461 pointer to the expression and the DATA passed to this function.
1462
1463 Note that this is not quite the same test as that done in reg_referenced_p
1464 since that considers something as being referenced if it is being
1465 partially set, while we do not. */
1466
1467 void
1468 note_uses (rtx *pbody, void (*fun) (rtx *, void *), void *data)
1469 {
1470 rtx body = *pbody;
1471 int i;
1472
1473 switch (GET_CODE (body))
1474 {
1475 case COND_EXEC:
1476 (*fun) (&COND_EXEC_TEST (body), data);
1477 note_uses (&COND_EXEC_CODE (body), fun, data);
1478 return;
1479
1480 case PARALLEL:
1481 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1482 note_uses (&XVECEXP (body, 0, i), fun, data);
1483 return;
1484
1485 case SEQUENCE:
1486 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1487 note_uses (&PATTERN (XVECEXP (body, 0, i)), fun, data);
1488 return;
1489
1490 case USE:
1491 (*fun) (&XEXP (body, 0), data);
1492 return;
1493
1494 case ASM_OPERANDS:
1495 for (i = ASM_OPERANDS_INPUT_LENGTH (body) - 1; i >= 0; i--)
1496 (*fun) (&ASM_OPERANDS_INPUT (body, i), data);
1497 return;
1498
1499 case TRAP_IF:
1500 (*fun) (&TRAP_CONDITION (body), data);
1501 return;
1502
1503 case PREFETCH:
1504 (*fun) (&XEXP (body, 0), data);
1505 return;
1506
1507 case UNSPEC:
1508 case UNSPEC_VOLATILE:
1509 for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
1510 (*fun) (&XVECEXP (body, 0, i), data);
1511 return;
1512
1513 case CLOBBER:
1514 if (MEM_P (XEXP (body, 0)))
1515 (*fun) (&XEXP (XEXP (body, 0), 0), data);
1516 return;
1517
1518 case SET:
1519 {
1520 rtx dest = SET_DEST (body);
1521
1522 /* For sets we replace everything in source plus registers in memory
1523 expression in store and operands of a ZERO_EXTRACT. */
1524 (*fun) (&SET_SRC (body), data);
1525
1526 if (GET_CODE (dest) == ZERO_EXTRACT)
1527 {
1528 (*fun) (&XEXP (dest, 1), data);
1529 (*fun) (&XEXP (dest, 2), data);
1530 }
1531
1532 while (GET_CODE (dest) == SUBREG || GET_CODE (dest) == STRICT_LOW_PART)
1533 dest = XEXP (dest, 0);
1534
1535 if (MEM_P (dest))
1536 (*fun) (&XEXP (dest, 0), data);
1537 }
1538 return;
1539
1540 default:
1541 /* All the other possibilities never store. */
1542 (*fun) (pbody, data);
1543 return;
1544 }
1545 }
1546 \f
1547 /* Return nonzero if X's old contents don't survive after INSN.
1548 This will be true if X is (cc0) or if X is a register and
1549 X dies in INSN or because INSN entirely sets X.
1550
1551 "Entirely set" means set directly and not through a SUBREG, or
1552 ZERO_EXTRACT, so no trace of the old contents remains.
1553 Likewise, REG_INC does not count.
1554
1555 REG may be a hard or pseudo reg. Renumbering is not taken into account,
1556 but for this use that makes no difference, since regs don't overlap
1557 during their lifetimes. Therefore, this function may be used
1558 at any time after deaths have been computed.
1559
1560 If REG is a hard reg that occupies multiple machine registers, this
1561 function will only return 1 if each of those registers will be replaced
1562 by INSN. */
1563
1564 int
1565 dead_or_set_p (const_rtx insn, const_rtx x)
1566 {
1567 unsigned int regno, end_regno;
1568 unsigned int i;
1569
1570 /* Can't use cc0_rtx below since this file is used by genattrtab.c. */
1571 if (GET_CODE (x) == CC0)
1572 return 1;
1573
1574 gcc_assert (REG_P (x));
1575
1576 regno = REGNO (x);
1577 end_regno = END_REGNO (x);
1578 for (i = regno; i < end_regno; i++)
1579 if (! dead_or_set_regno_p (insn, i))
1580 return 0;
1581
1582 return 1;
1583 }
1584
1585 /* Return TRUE iff DEST is a register or subreg of a register and
1586 doesn't change the number of words of the inner register, and any
1587 part of the register is TEST_REGNO. */
1588
1589 static bool
1590 covers_regno_no_parallel_p (const_rtx dest, unsigned int test_regno)
1591 {
1592 unsigned int regno, endregno;
1593
1594 if (GET_CODE (dest) == SUBREG
1595 && (((GET_MODE_SIZE (GET_MODE (dest))
1596 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)
1597 == ((GET_MODE_SIZE (GET_MODE (SUBREG_REG (dest)))
1598 + UNITS_PER_WORD - 1) / UNITS_PER_WORD)))
1599 dest = SUBREG_REG (dest);
1600
1601 if (!REG_P (dest))
1602 return false;
1603
1604 regno = REGNO (dest);
1605 endregno = END_REGNO (dest);
1606 return (test_regno >= regno && test_regno < endregno);
1607 }
1608
1609 /* Like covers_regno_no_parallel_p, but also handles PARALLELs where
1610 any member matches the covers_regno_no_parallel_p criteria. */
1611
1612 static bool
1613 covers_regno_p (const_rtx dest, unsigned int test_regno)
1614 {
1615 if (GET_CODE (dest) == PARALLEL)
1616 {
1617 /* Some targets place small structures in registers for return
1618 values of functions, and those registers are wrapped in
1619 PARALLELs that we may see as the destination of a SET. */
1620 int i;
1621
1622 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
1623 {
1624 rtx inner = XEXP (XVECEXP (dest, 0, i), 0);
1625 if (inner != NULL_RTX
1626 && covers_regno_no_parallel_p (inner, test_regno))
1627 return true;
1628 }
1629
1630 return false;
1631 }
1632 else
1633 return covers_regno_no_parallel_p (dest, test_regno);
1634 }
1635
1636 /* Utility function for dead_or_set_p to check an individual register. */
1637
1638 int
1639 dead_or_set_regno_p (const_rtx insn, unsigned int test_regno)
1640 {
1641 const_rtx pattern;
1642
1643 /* See if there is a death note for something that includes TEST_REGNO. */
1644 if (find_regno_note (insn, REG_DEAD, test_regno))
1645 return 1;
1646
1647 if (CALL_P (insn)
1648 && find_regno_fusage (insn, CLOBBER, test_regno))
1649 return 1;
1650
1651 pattern = PATTERN (insn);
1652
1653 if (GET_CODE (pattern) == COND_EXEC)
1654 pattern = COND_EXEC_CODE (pattern);
1655
1656 if (GET_CODE (pattern) == SET)
1657 return covers_regno_p (SET_DEST (pattern), test_regno);
1658 else if (GET_CODE (pattern) == PARALLEL)
1659 {
1660 int i;
1661
1662 for (i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
1663 {
1664 rtx body = XVECEXP (pattern, 0, i);
1665
1666 if (GET_CODE (body) == COND_EXEC)
1667 body = COND_EXEC_CODE (body);
1668
1669 if ((GET_CODE (body) == SET || GET_CODE (body) == CLOBBER)
1670 && covers_regno_p (SET_DEST (body), test_regno))
1671 return 1;
1672 }
1673 }
1674
1675 return 0;
1676 }
1677
1678 /* Return the reg-note of kind KIND in insn INSN, if there is one.
1679 If DATUM is nonzero, look for one whose datum is DATUM. */
1680
1681 rtx
1682 find_reg_note (const_rtx insn, enum reg_note kind, const_rtx datum)
1683 {
1684 rtx link;
1685
1686 gcc_checking_assert (insn);
1687
1688 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1689 if (! INSN_P (insn))
1690 return 0;
1691 if (datum == 0)
1692 {
1693 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1694 if (REG_NOTE_KIND (link) == kind)
1695 return link;
1696 return 0;
1697 }
1698
1699 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1700 if (REG_NOTE_KIND (link) == kind && datum == XEXP (link, 0))
1701 return link;
1702 return 0;
1703 }
1704
1705 /* Return the reg-note of kind KIND in insn INSN which applies to register
1706 number REGNO, if any. Return 0 if there is no such reg-note. Note that
1707 the REGNO of this NOTE need not be REGNO if REGNO is a hard register;
1708 it might be the case that the note overlaps REGNO. */
1709
1710 rtx
1711 find_regno_note (const_rtx insn, enum reg_note kind, unsigned int regno)
1712 {
1713 rtx link;
1714
1715 /* Ignore anything that is not an INSN, JUMP_INSN or CALL_INSN. */
1716 if (! INSN_P (insn))
1717 return 0;
1718
1719 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1720 if (REG_NOTE_KIND (link) == kind
1721 /* Verify that it is a register, so that scratch and MEM won't cause a
1722 problem here. */
1723 && REG_P (XEXP (link, 0))
1724 && REGNO (XEXP (link, 0)) <= regno
1725 && END_REGNO (XEXP (link, 0)) > regno)
1726 return link;
1727 return 0;
1728 }
1729
1730 /* Return a REG_EQUIV or REG_EQUAL note if insn has only a single set and
1731 has such a note. */
1732
1733 rtx
1734 find_reg_equal_equiv_note (const_rtx insn)
1735 {
1736 rtx link;
1737
1738 if (!INSN_P (insn))
1739 return 0;
1740
1741 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1742 if (REG_NOTE_KIND (link) == REG_EQUAL
1743 || REG_NOTE_KIND (link) == REG_EQUIV)
1744 {
1745 /* FIXME: We should never have REG_EQUAL/REG_EQUIV notes on
1746 insns that have multiple sets. Checking single_set to
1747 make sure of this is not the proper check, as explained
1748 in the comment in set_unique_reg_note.
1749
1750 This should be changed into an assert. */
1751 if (GET_CODE (PATTERN (insn)) == PARALLEL && multiple_sets (insn))
1752 return 0;
1753 return link;
1754 }
1755 return NULL;
1756 }
1757
1758 /* Check whether INSN is a single_set whose source is known to be
1759 equivalent to a constant. Return that constant if so, otherwise
1760 return null. */
1761
1762 rtx
1763 find_constant_src (const_rtx insn)
1764 {
1765 rtx note, set, x;
1766
1767 set = single_set (insn);
1768 if (set)
1769 {
1770 x = avoid_constant_pool_reference (SET_SRC (set));
1771 if (CONSTANT_P (x))
1772 return x;
1773 }
1774
1775 note = find_reg_equal_equiv_note (insn);
1776 if (note && CONSTANT_P (XEXP (note, 0)))
1777 return XEXP (note, 0);
1778
1779 return NULL_RTX;
1780 }
1781
1782 /* Return true if DATUM, or any overlap of DATUM, of kind CODE is found
1783 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1784
1785 int
1786 find_reg_fusage (const_rtx insn, enum rtx_code code, const_rtx datum)
1787 {
1788 /* If it's not a CALL_INSN, it can't possibly have a
1789 CALL_INSN_FUNCTION_USAGE field, so don't bother checking. */
1790 if (!CALL_P (insn))
1791 return 0;
1792
1793 gcc_assert (datum);
1794
1795 if (!REG_P (datum))
1796 {
1797 rtx link;
1798
1799 for (link = CALL_INSN_FUNCTION_USAGE (insn);
1800 link;
1801 link = XEXP (link, 1))
1802 if (GET_CODE (XEXP (link, 0)) == code
1803 && rtx_equal_p (datum, XEXP (XEXP (link, 0), 0)))
1804 return 1;
1805 }
1806 else
1807 {
1808 unsigned int regno = REGNO (datum);
1809
1810 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1811 to pseudo registers, so don't bother checking. */
1812
1813 if (regno < FIRST_PSEUDO_REGISTER)
1814 {
1815 unsigned int end_regno = END_HARD_REGNO (datum);
1816 unsigned int i;
1817
1818 for (i = regno; i < end_regno; i++)
1819 if (find_regno_fusage (insn, code, i))
1820 return 1;
1821 }
1822 }
1823
1824 return 0;
1825 }
1826
1827 /* Return true if REGNO, or any overlap of REGNO, of kind CODE is found
1828 in the CALL_INSN_FUNCTION_USAGE information of INSN. */
1829
1830 int
1831 find_regno_fusage (const_rtx insn, enum rtx_code code, unsigned int regno)
1832 {
1833 rtx link;
1834
1835 /* CALL_INSN_FUNCTION_USAGE information cannot contain references
1836 to pseudo registers, so don't bother checking. */
1837
1838 if (regno >= FIRST_PSEUDO_REGISTER
1839 || !CALL_P (insn) )
1840 return 0;
1841
1842 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
1843 {
1844 rtx op, reg;
1845
1846 if (GET_CODE (op = XEXP (link, 0)) == code
1847 && REG_P (reg = XEXP (op, 0))
1848 && REGNO (reg) <= regno
1849 && END_HARD_REGNO (reg) > regno)
1850 return 1;
1851 }
1852
1853 return 0;
1854 }
1855
1856 \f
1857 /* Allocate a register note with kind KIND and datum DATUM. LIST is
1858 stored as the pointer to the next register note. */
1859
1860 rtx
1861 alloc_reg_note (enum reg_note kind, rtx datum, rtx list)
1862 {
1863 rtx note;
1864
1865 switch (kind)
1866 {
1867 case REG_CC_SETTER:
1868 case REG_CC_USER:
1869 case REG_LABEL_TARGET:
1870 case REG_LABEL_OPERAND:
1871 /* These types of register notes use an INSN_LIST rather than an
1872 EXPR_LIST, so that copying is done right and dumps look
1873 better. */
1874 note = alloc_INSN_LIST (datum, list);
1875 PUT_REG_NOTE_KIND (note, kind);
1876 break;
1877
1878 default:
1879 note = alloc_EXPR_LIST (kind, datum, list);
1880 break;
1881 }
1882
1883 return note;
1884 }
1885
1886 /* Add register note with kind KIND and datum DATUM to INSN. */
1887
1888 void
1889 add_reg_note (rtx insn, enum reg_note kind, rtx datum)
1890 {
1891 REG_NOTES (insn) = alloc_reg_note (kind, datum, REG_NOTES (insn));
1892 }
1893
1894 /* Remove register note NOTE from the REG_NOTES of INSN. */
1895
1896 void
1897 remove_note (rtx insn, const_rtx note)
1898 {
1899 rtx link;
1900
1901 if (note == NULL_RTX)
1902 return;
1903
1904 if (REG_NOTES (insn) == note)
1905 REG_NOTES (insn) = XEXP (note, 1);
1906 else
1907 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
1908 if (XEXP (link, 1) == note)
1909 {
1910 XEXP (link, 1) = XEXP (note, 1);
1911 break;
1912 }
1913
1914 switch (REG_NOTE_KIND (note))
1915 {
1916 case REG_EQUAL:
1917 case REG_EQUIV:
1918 df_notes_rescan (insn);
1919 break;
1920 default:
1921 break;
1922 }
1923 }
1924
1925 /* Remove REG_EQUAL and/or REG_EQUIV notes if INSN has such notes. */
1926
1927 void
1928 remove_reg_equal_equiv_notes (rtx insn)
1929 {
1930 rtx *loc;
1931
1932 loc = &REG_NOTES (insn);
1933 while (*loc)
1934 {
1935 enum reg_note kind = REG_NOTE_KIND (*loc);
1936 if (kind == REG_EQUAL || kind == REG_EQUIV)
1937 *loc = XEXP (*loc, 1);
1938 else
1939 loc = &XEXP (*loc, 1);
1940 }
1941 }
1942
1943 /* Remove all REG_EQUAL and REG_EQUIV notes referring to REGNO. */
1944
1945 void
1946 remove_reg_equal_equiv_notes_for_regno (unsigned int regno)
1947 {
1948 df_ref eq_use;
1949
1950 if (!df)
1951 return;
1952
1953 /* This loop is a little tricky. We cannot just go down the chain because
1954 it is being modified by some actions in the loop. So we just iterate
1955 over the head. We plan to drain the list anyway. */
1956 while ((eq_use = DF_REG_EQ_USE_CHAIN (regno)) != NULL)
1957 {
1958 rtx insn = DF_REF_INSN (eq_use);
1959 rtx note = find_reg_equal_equiv_note (insn);
1960
1961 /* This assert is generally triggered when someone deletes a REG_EQUAL
1962 or REG_EQUIV note by hacking the list manually rather than calling
1963 remove_note. */
1964 gcc_assert (note);
1965
1966 remove_note (insn, note);
1967 }
1968 }
1969
1970 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1971 return 1 if it is found. A simple equality test is used to determine if
1972 NODE matches. */
1973
1974 int
1975 in_expr_list_p (const_rtx listp, const_rtx node)
1976 {
1977 const_rtx x;
1978
1979 for (x = listp; x; x = XEXP (x, 1))
1980 if (node == XEXP (x, 0))
1981 return 1;
1982
1983 return 0;
1984 }
1985
1986 /* Search LISTP (an EXPR_LIST) for an entry whose first operand is NODE and
1987 remove that entry from the list if it is found.
1988
1989 A simple equality test is used to determine if NODE matches. */
1990
1991 void
1992 remove_node_from_expr_list (const_rtx node, rtx *listp)
1993 {
1994 rtx temp = *listp;
1995 rtx prev = NULL_RTX;
1996
1997 while (temp)
1998 {
1999 if (node == XEXP (temp, 0))
2000 {
2001 /* Splice the node out of the list. */
2002 if (prev)
2003 XEXP (prev, 1) = XEXP (temp, 1);
2004 else
2005 *listp = XEXP (temp, 1);
2006
2007 return;
2008 }
2009
2010 prev = temp;
2011 temp = XEXP (temp, 1);
2012 }
2013 }
2014 \f
2015 /* Nonzero if X contains any volatile instructions. These are instructions
2016 which may cause unpredictable machine state instructions, and thus no
2017 instructions should be moved or combined across them. This includes
2018 only volatile asms and UNSPEC_VOLATILE instructions. */
2019
2020 int
2021 volatile_insn_p (const_rtx x)
2022 {
2023 const RTX_CODE code = GET_CODE (x);
2024 switch (code)
2025 {
2026 case LABEL_REF:
2027 case SYMBOL_REF:
2028 case CONST_INT:
2029 case CONST:
2030 case CONST_DOUBLE:
2031 case CONST_FIXED:
2032 case CONST_VECTOR:
2033 case CC0:
2034 case PC:
2035 case REG:
2036 case SCRATCH:
2037 case CLOBBER:
2038 case ADDR_VEC:
2039 case ADDR_DIFF_VEC:
2040 case CALL:
2041 case MEM:
2042 return 0;
2043
2044 case UNSPEC_VOLATILE:
2045 /* case TRAP_IF: This isn't clear yet. */
2046 return 1;
2047
2048 case ASM_INPUT:
2049 case ASM_OPERANDS:
2050 if (MEM_VOLATILE_P (x))
2051 return 1;
2052
2053 default:
2054 break;
2055 }
2056
2057 /* Recursively scan the operands of this expression. */
2058
2059 {
2060 const char *const fmt = GET_RTX_FORMAT (code);
2061 int i;
2062
2063 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2064 {
2065 if (fmt[i] == 'e')
2066 {
2067 if (volatile_insn_p (XEXP (x, i)))
2068 return 1;
2069 }
2070 else if (fmt[i] == 'E')
2071 {
2072 int j;
2073 for (j = 0; j < XVECLEN (x, i); j++)
2074 if (volatile_insn_p (XVECEXP (x, i, j)))
2075 return 1;
2076 }
2077 }
2078 }
2079 return 0;
2080 }
2081
2082 /* Nonzero if X contains any volatile memory references
2083 UNSPEC_VOLATILE operations or volatile ASM_OPERANDS expressions. */
2084
2085 int
2086 volatile_refs_p (const_rtx x)
2087 {
2088 const RTX_CODE code = GET_CODE (x);
2089 switch (code)
2090 {
2091 case LABEL_REF:
2092 case SYMBOL_REF:
2093 case CONST_INT:
2094 case CONST:
2095 case CONST_DOUBLE:
2096 case CONST_FIXED:
2097 case CONST_VECTOR:
2098 case CC0:
2099 case PC:
2100 case REG:
2101 case SCRATCH:
2102 case CLOBBER:
2103 case ADDR_VEC:
2104 case ADDR_DIFF_VEC:
2105 return 0;
2106
2107 case UNSPEC_VOLATILE:
2108 return 1;
2109
2110 case MEM:
2111 case ASM_INPUT:
2112 case ASM_OPERANDS:
2113 if (MEM_VOLATILE_P (x))
2114 return 1;
2115
2116 default:
2117 break;
2118 }
2119
2120 /* Recursively scan the operands of this expression. */
2121
2122 {
2123 const char *const fmt = GET_RTX_FORMAT (code);
2124 int i;
2125
2126 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2127 {
2128 if (fmt[i] == 'e')
2129 {
2130 if (volatile_refs_p (XEXP (x, i)))
2131 return 1;
2132 }
2133 else if (fmt[i] == 'E')
2134 {
2135 int j;
2136 for (j = 0; j < XVECLEN (x, i); j++)
2137 if (volatile_refs_p (XVECEXP (x, i, j)))
2138 return 1;
2139 }
2140 }
2141 }
2142 return 0;
2143 }
2144
2145 /* Similar to above, except that it also rejects register pre- and post-
2146 incrementing. */
2147
2148 int
2149 side_effects_p (const_rtx x)
2150 {
2151 const RTX_CODE code = GET_CODE (x);
2152 switch (code)
2153 {
2154 case LABEL_REF:
2155 case SYMBOL_REF:
2156 case CONST_INT:
2157 case CONST:
2158 case CONST_DOUBLE:
2159 case CONST_FIXED:
2160 case CONST_VECTOR:
2161 case CC0:
2162 case PC:
2163 case REG:
2164 case SCRATCH:
2165 case ADDR_VEC:
2166 case ADDR_DIFF_VEC:
2167 case VAR_LOCATION:
2168 return 0;
2169
2170 case CLOBBER:
2171 /* Reject CLOBBER with a non-VOID mode. These are made by combine.c
2172 when some combination can't be done. If we see one, don't think
2173 that we can simplify the expression. */
2174 return (GET_MODE (x) != VOIDmode);
2175
2176 case PRE_INC:
2177 case PRE_DEC:
2178 case POST_INC:
2179 case POST_DEC:
2180 case PRE_MODIFY:
2181 case POST_MODIFY:
2182 case CALL:
2183 case UNSPEC_VOLATILE:
2184 /* case TRAP_IF: This isn't clear yet. */
2185 return 1;
2186
2187 case MEM:
2188 case ASM_INPUT:
2189 case ASM_OPERANDS:
2190 if (MEM_VOLATILE_P (x))
2191 return 1;
2192
2193 default:
2194 break;
2195 }
2196
2197 /* Recursively scan the operands of this expression. */
2198
2199 {
2200 const char *fmt = GET_RTX_FORMAT (code);
2201 int i;
2202
2203 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2204 {
2205 if (fmt[i] == 'e')
2206 {
2207 if (side_effects_p (XEXP (x, i)))
2208 return 1;
2209 }
2210 else if (fmt[i] == 'E')
2211 {
2212 int j;
2213 for (j = 0; j < XVECLEN (x, i); j++)
2214 if (side_effects_p (XVECEXP (x, i, j)))
2215 return 1;
2216 }
2217 }
2218 }
2219 return 0;
2220 }
2221 \f
2222 /* Return nonzero if evaluating rtx X might cause a trap.
2223 FLAGS controls how to consider MEMs. A nonzero means the context
2224 of the access may have changed from the original, such that the
2225 address may have become invalid. */
2226
2227 int
2228 may_trap_p_1 (const_rtx x, unsigned flags)
2229 {
2230 int i;
2231 enum rtx_code code;
2232 const char *fmt;
2233
2234 /* We make no distinction currently, but this function is part of
2235 the internal target-hooks ABI so we keep the parameter as
2236 "unsigned flags". */
2237 bool code_changed = flags != 0;
2238
2239 if (x == 0)
2240 return 0;
2241 code = GET_CODE (x);
2242 switch (code)
2243 {
2244 /* Handle these cases quickly. */
2245 case CONST_INT:
2246 case CONST_DOUBLE:
2247 case CONST_FIXED:
2248 case CONST_VECTOR:
2249 case SYMBOL_REF:
2250 case LABEL_REF:
2251 case CONST:
2252 case PC:
2253 case CC0:
2254 case REG:
2255 case SCRATCH:
2256 return 0;
2257
2258 case UNSPEC:
2259 case UNSPEC_VOLATILE:
2260 return targetm.unspec_may_trap_p (x, flags);
2261
2262 case ASM_INPUT:
2263 case TRAP_IF:
2264 return 1;
2265
2266 case ASM_OPERANDS:
2267 return MEM_VOLATILE_P (x);
2268
2269 /* Memory ref can trap unless it's a static var or a stack slot. */
2270 case MEM:
2271 /* Recognize specific pattern of stack checking probes. */
2272 if (flag_stack_check
2273 && MEM_VOLATILE_P (x)
2274 && XEXP (x, 0) == stack_pointer_rtx)
2275 return 1;
2276 if (/* MEM_NOTRAP_P only relates to the actual position of the memory
2277 reference; moving it out of context such as when moving code
2278 when optimizing, might cause its address to become invalid. */
2279 code_changed
2280 || !MEM_NOTRAP_P (x))
2281 {
2282 HOST_WIDE_INT size = MEM_SIZE_KNOWN_P (x) ? MEM_SIZE (x) : 0;
2283 return rtx_addr_can_trap_p_1 (XEXP (x, 0), 0, size,
2284 GET_MODE (x), code_changed);
2285 }
2286
2287 return 0;
2288
2289 /* Division by a non-constant might trap. */
2290 case DIV:
2291 case MOD:
2292 case UDIV:
2293 case UMOD:
2294 if (HONOR_SNANS (GET_MODE (x)))
2295 return 1;
2296 if (SCALAR_FLOAT_MODE_P (GET_MODE (x)))
2297 return flag_trapping_math;
2298 if (!CONSTANT_P (XEXP (x, 1)) || (XEXP (x, 1) == const0_rtx))
2299 return 1;
2300 break;
2301
2302 case EXPR_LIST:
2303 /* An EXPR_LIST is used to represent a function call. This
2304 certainly may trap. */
2305 return 1;
2306
2307 case GE:
2308 case GT:
2309 case LE:
2310 case LT:
2311 case LTGT:
2312 case COMPARE:
2313 /* Some floating point comparisons may trap. */
2314 if (!flag_trapping_math)
2315 break;
2316 /* ??? There is no machine independent way to check for tests that trap
2317 when COMPARE is used, though many targets do make this distinction.
2318 For instance, sparc uses CCFPE for compares which generate exceptions
2319 and CCFP for compares which do not generate exceptions. */
2320 if (HONOR_NANS (GET_MODE (x)))
2321 return 1;
2322 /* But often the compare has some CC mode, so check operand
2323 modes as well. */
2324 if (HONOR_NANS (GET_MODE (XEXP (x, 0)))
2325 || HONOR_NANS (GET_MODE (XEXP (x, 1))))
2326 return 1;
2327 break;
2328
2329 case EQ:
2330 case NE:
2331 if (HONOR_SNANS (GET_MODE (x)))
2332 return 1;
2333 /* Often comparison is CC mode, so check operand modes. */
2334 if (HONOR_SNANS (GET_MODE (XEXP (x, 0)))
2335 || HONOR_SNANS (GET_MODE (XEXP (x, 1))))
2336 return 1;
2337 break;
2338
2339 case FIX:
2340 /* Conversion of floating point might trap. */
2341 if (flag_trapping_math && HONOR_NANS (GET_MODE (XEXP (x, 0))))
2342 return 1;
2343 break;
2344
2345 case NEG:
2346 case ABS:
2347 case SUBREG:
2348 /* These operations don't trap even with floating point. */
2349 break;
2350
2351 default:
2352 /* Any floating arithmetic may trap. */
2353 if (SCALAR_FLOAT_MODE_P (GET_MODE (x))
2354 && flag_trapping_math)
2355 return 1;
2356 }
2357
2358 fmt = GET_RTX_FORMAT (code);
2359 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2360 {
2361 if (fmt[i] == 'e')
2362 {
2363 if (may_trap_p_1 (XEXP (x, i), flags))
2364 return 1;
2365 }
2366 else if (fmt[i] == 'E')
2367 {
2368 int j;
2369 for (j = 0; j < XVECLEN (x, i); j++)
2370 if (may_trap_p_1 (XVECEXP (x, i, j), flags))
2371 return 1;
2372 }
2373 }
2374 return 0;
2375 }
2376
2377 /* Return nonzero if evaluating rtx X might cause a trap. */
2378
2379 int
2380 may_trap_p (const_rtx x)
2381 {
2382 return may_trap_p_1 (x, 0);
2383 }
2384
2385 /* Same as above, but additionally return nonzero if evaluating rtx X might
2386 cause a fault. We define a fault for the purpose of this function as a
2387 erroneous execution condition that cannot be encountered during the normal
2388 execution of a valid program; the typical example is an unaligned memory
2389 access on a strict alignment machine. The compiler guarantees that it
2390 doesn't generate code that will fault from a valid program, but this
2391 guarantee doesn't mean anything for individual instructions. Consider
2392 the following example:
2393
2394 struct S { int d; union { char *cp; int *ip; }; };
2395
2396 int foo(struct S *s)
2397 {
2398 if (s->d == 1)
2399 return *s->ip;
2400 else
2401 return *s->cp;
2402 }
2403
2404 on a strict alignment machine. In a valid program, foo will never be
2405 invoked on a structure for which d is equal to 1 and the underlying
2406 unique field of the union not aligned on a 4-byte boundary, but the
2407 expression *s->ip might cause a fault if considered individually.
2408
2409 At the RTL level, potentially problematic expressions will almost always
2410 verify may_trap_p; for example, the above dereference can be emitted as
2411 (mem:SI (reg:P)) and this expression is may_trap_p for a generic register.
2412 However, suppose that foo is inlined in a caller that causes s->cp to
2413 point to a local character variable and guarantees that s->d is not set
2414 to 1; foo may have been effectively translated into pseudo-RTL as:
2415
2416 if ((reg:SI) == 1)
2417 (set (reg:SI) (mem:SI (%fp - 7)))
2418 else
2419 (set (reg:QI) (mem:QI (%fp - 7)))
2420
2421 Now (mem:SI (%fp - 7)) is considered as not may_trap_p since it is a
2422 memory reference to a stack slot, but it will certainly cause a fault
2423 on a strict alignment machine. */
2424
2425 int
2426 may_trap_or_fault_p (const_rtx x)
2427 {
2428 return may_trap_p_1 (x, 1);
2429 }
2430 \f
2431 /* Return nonzero if X contains a comparison that is not either EQ or NE,
2432 i.e., an inequality. */
2433
2434 int
2435 inequality_comparisons_p (const_rtx x)
2436 {
2437 const char *fmt;
2438 int len, i;
2439 const enum rtx_code code = GET_CODE (x);
2440
2441 switch (code)
2442 {
2443 case REG:
2444 case SCRATCH:
2445 case PC:
2446 case CC0:
2447 case CONST_INT:
2448 case CONST_DOUBLE:
2449 case CONST_FIXED:
2450 case CONST_VECTOR:
2451 case CONST:
2452 case LABEL_REF:
2453 case SYMBOL_REF:
2454 return 0;
2455
2456 case LT:
2457 case LTU:
2458 case GT:
2459 case GTU:
2460 case LE:
2461 case LEU:
2462 case GE:
2463 case GEU:
2464 return 1;
2465
2466 default:
2467 break;
2468 }
2469
2470 len = GET_RTX_LENGTH (code);
2471 fmt = GET_RTX_FORMAT (code);
2472
2473 for (i = 0; i < len; i++)
2474 {
2475 if (fmt[i] == 'e')
2476 {
2477 if (inequality_comparisons_p (XEXP (x, i)))
2478 return 1;
2479 }
2480 else if (fmt[i] == 'E')
2481 {
2482 int j;
2483 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2484 if (inequality_comparisons_p (XVECEXP (x, i, j)))
2485 return 1;
2486 }
2487 }
2488
2489 return 0;
2490 }
2491 \f
2492 /* Replace any occurrence of FROM in X with TO. The function does
2493 not enter into CONST_DOUBLE for the replace.
2494
2495 Note that copying is not done so X must not be shared unless all copies
2496 are to be modified. */
2497
2498 rtx
2499 replace_rtx (rtx x, rtx from, rtx to)
2500 {
2501 int i, j;
2502 const char *fmt;
2503
2504 /* The following prevents loops occurrence when we change MEM in
2505 CONST_DOUBLE onto the same CONST_DOUBLE. */
2506 if (x != 0 && GET_CODE (x) == CONST_DOUBLE)
2507 return x;
2508
2509 if (x == from)
2510 return to;
2511
2512 /* Allow this function to make replacements in EXPR_LISTs. */
2513 if (x == 0)
2514 return 0;
2515
2516 if (GET_CODE (x) == SUBREG)
2517 {
2518 rtx new_rtx = replace_rtx (SUBREG_REG (x), from, to);
2519
2520 if (CONST_INT_P (new_rtx))
2521 {
2522 x = simplify_subreg (GET_MODE (x), new_rtx,
2523 GET_MODE (SUBREG_REG (x)),
2524 SUBREG_BYTE (x));
2525 gcc_assert (x);
2526 }
2527 else
2528 SUBREG_REG (x) = new_rtx;
2529
2530 return x;
2531 }
2532 else if (GET_CODE (x) == ZERO_EXTEND)
2533 {
2534 rtx new_rtx = replace_rtx (XEXP (x, 0), from, to);
2535
2536 if (CONST_INT_P (new_rtx))
2537 {
2538 x = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
2539 new_rtx, GET_MODE (XEXP (x, 0)));
2540 gcc_assert (x);
2541 }
2542 else
2543 XEXP (x, 0) = new_rtx;
2544
2545 return x;
2546 }
2547
2548 fmt = GET_RTX_FORMAT (GET_CODE (x));
2549 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
2550 {
2551 if (fmt[i] == 'e')
2552 XEXP (x, i) = replace_rtx (XEXP (x, i), from, to);
2553 else if (fmt[i] == 'E')
2554 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
2555 XVECEXP (x, i, j) = replace_rtx (XVECEXP (x, i, j), from, to);
2556 }
2557
2558 return x;
2559 }
2560 \f
2561 /* Replace occurrences of the old label in *X with the new one.
2562 DATA is a REPLACE_LABEL_DATA containing the old and new labels. */
2563
2564 int
2565 replace_label (rtx *x, void *data)
2566 {
2567 rtx l = *x;
2568 rtx old_label = ((replace_label_data *) data)->r1;
2569 rtx new_label = ((replace_label_data *) data)->r2;
2570 bool update_label_nuses = ((replace_label_data *) data)->update_label_nuses;
2571
2572 if (l == NULL_RTX)
2573 return 0;
2574
2575 if (GET_CODE (l) == SYMBOL_REF
2576 && CONSTANT_POOL_ADDRESS_P (l))
2577 {
2578 rtx c = get_pool_constant (l);
2579 if (rtx_referenced_p (old_label, c))
2580 {
2581 rtx new_c, new_l;
2582 replace_label_data *d = (replace_label_data *) data;
2583
2584 /* Create a copy of constant C; replace the label inside
2585 but do not update LABEL_NUSES because uses in constant pool
2586 are not counted. */
2587 new_c = copy_rtx (c);
2588 d->update_label_nuses = false;
2589 for_each_rtx (&new_c, replace_label, data);
2590 d->update_label_nuses = update_label_nuses;
2591
2592 /* Add the new constant NEW_C to constant pool and replace
2593 the old reference to constant by new reference. */
2594 new_l = XEXP (force_const_mem (get_pool_mode (l), new_c), 0);
2595 *x = replace_rtx (l, l, new_l);
2596 }
2597 return 0;
2598 }
2599
2600 /* If this is a JUMP_INSN, then we also need to fix the JUMP_LABEL
2601 field. This is not handled by for_each_rtx because it doesn't
2602 handle unprinted ('0') fields. */
2603 if (JUMP_P (l) && JUMP_LABEL (l) == old_label)
2604 JUMP_LABEL (l) = new_label;
2605
2606 if ((GET_CODE (l) == LABEL_REF
2607 || GET_CODE (l) == INSN_LIST)
2608 && XEXP (l, 0) == old_label)
2609 {
2610 XEXP (l, 0) = new_label;
2611 if (update_label_nuses)
2612 {
2613 ++LABEL_NUSES (new_label);
2614 --LABEL_NUSES (old_label);
2615 }
2616 return 0;
2617 }
2618
2619 return 0;
2620 }
2621
2622 /* When *BODY is equal to X or X is directly referenced by *BODY
2623 return nonzero, thus FOR_EACH_RTX stops traversing and returns nonzero
2624 too, otherwise FOR_EACH_RTX continues traversing *BODY. */
2625
2626 static int
2627 rtx_referenced_p_1 (rtx *body, void *x)
2628 {
2629 rtx y = (rtx) x;
2630
2631 if (*body == NULL_RTX)
2632 return y == NULL_RTX;
2633
2634 /* Return true if a label_ref *BODY refers to label Y. */
2635 if (GET_CODE (*body) == LABEL_REF && LABEL_P (y))
2636 return XEXP (*body, 0) == y;
2637
2638 /* If *BODY is a reference to pool constant traverse the constant. */
2639 if (GET_CODE (*body) == SYMBOL_REF
2640 && CONSTANT_POOL_ADDRESS_P (*body))
2641 return rtx_referenced_p (y, get_pool_constant (*body));
2642
2643 /* By default, compare the RTL expressions. */
2644 return rtx_equal_p (*body, y);
2645 }
2646
2647 /* Return true if X is referenced in BODY. */
2648
2649 int
2650 rtx_referenced_p (rtx x, rtx body)
2651 {
2652 return for_each_rtx (&body, rtx_referenced_p_1, x);
2653 }
2654
2655 /* If INSN is a tablejump return true and store the label (before jump table) to
2656 *LABELP and the jump table to *TABLEP. LABELP and TABLEP may be NULL. */
2657
2658 bool
2659 tablejump_p (const_rtx insn, rtx *labelp, rtx *tablep)
2660 {
2661 rtx label, table;
2662
2663 if (JUMP_P (insn)
2664 && (label = JUMP_LABEL (insn)) != NULL_RTX
2665 && (table = next_active_insn (label)) != NULL_RTX
2666 && JUMP_TABLE_DATA_P (table))
2667 {
2668 if (labelp)
2669 *labelp = label;
2670 if (tablep)
2671 *tablep = table;
2672 return true;
2673 }
2674 return false;
2675 }
2676
2677 /* A subroutine of computed_jump_p, return 1 if X contains a REG or MEM or
2678 constant that is not in the constant pool and not in the condition
2679 of an IF_THEN_ELSE. */
2680
2681 static int
2682 computed_jump_p_1 (const_rtx x)
2683 {
2684 const enum rtx_code code = GET_CODE (x);
2685 int i, j;
2686 const char *fmt;
2687
2688 switch (code)
2689 {
2690 case LABEL_REF:
2691 case PC:
2692 return 0;
2693
2694 case CONST:
2695 case CONST_INT:
2696 case CONST_DOUBLE:
2697 case CONST_FIXED:
2698 case CONST_VECTOR:
2699 case SYMBOL_REF:
2700 case REG:
2701 return 1;
2702
2703 case MEM:
2704 return ! (GET_CODE (XEXP (x, 0)) == SYMBOL_REF
2705 && CONSTANT_POOL_ADDRESS_P (XEXP (x, 0)));
2706
2707 case IF_THEN_ELSE:
2708 return (computed_jump_p_1 (XEXP (x, 1))
2709 || computed_jump_p_1 (XEXP (x, 2)));
2710
2711 default:
2712 break;
2713 }
2714
2715 fmt = GET_RTX_FORMAT (code);
2716 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2717 {
2718 if (fmt[i] == 'e'
2719 && computed_jump_p_1 (XEXP (x, i)))
2720 return 1;
2721
2722 else if (fmt[i] == 'E')
2723 for (j = 0; j < XVECLEN (x, i); j++)
2724 if (computed_jump_p_1 (XVECEXP (x, i, j)))
2725 return 1;
2726 }
2727
2728 return 0;
2729 }
2730
2731 /* Return nonzero if INSN is an indirect jump (aka computed jump).
2732
2733 Tablejumps and casesi insns are not considered indirect jumps;
2734 we can recognize them by a (use (label_ref)). */
2735
2736 int
2737 computed_jump_p (const_rtx insn)
2738 {
2739 int i;
2740 if (JUMP_P (insn))
2741 {
2742 rtx pat = PATTERN (insn);
2743
2744 /* If we have a JUMP_LABEL set, we're not a computed jump. */
2745 if (JUMP_LABEL (insn) != NULL)
2746 return 0;
2747
2748 if (GET_CODE (pat) == PARALLEL)
2749 {
2750 int len = XVECLEN (pat, 0);
2751 int has_use_labelref = 0;
2752
2753 for (i = len - 1; i >= 0; i--)
2754 if (GET_CODE (XVECEXP (pat, 0, i)) == USE
2755 && (GET_CODE (XEXP (XVECEXP (pat, 0, i), 0))
2756 == LABEL_REF))
2757 has_use_labelref = 1;
2758
2759 if (! has_use_labelref)
2760 for (i = len - 1; i >= 0; i--)
2761 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
2762 && SET_DEST (XVECEXP (pat, 0, i)) == pc_rtx
2763 && computed_jump_p_1 (SET_SRC (XVECEXP (pat, 0, i))))
2764 return 1;
2765 }
2766 else if (GET_CODE (pat) == SET
2767 && SET_DEST (pat) == pc_rtx
2768 && computed_jump_p_1 (SET_SRC (pat)))
2769 return 1;
2770 }
2771 return 0;
2772 }
2773
2774 /* Optimized loop of for_each_rtx, trying to avoid useless recursive
2775 calls. Processes the subexpressions of EXP and passes them to F. */
2776 static int
2777 for_each_rtx_1 (rtx exp, int n, rtx_function f, void *data)
2778 {
2779 int result, i, j;
2780 const char *format = GET_RTX_FORMAT (GET_CODE (exp));
2781 rtx *x;
2782
2783 for (; format[n] != '\0'; n++)
2784 {
2785 switch (format[n])
2786 {
2787 case 'e':
2788 /* Call F on X. */
2789 x = &XEXP (exp, n);
2790 result = (*f) (x, data);
2791 if (result == -1)
2792 /* Do not traverse sub-expressions. */
2793 continue;
2794 else if (result != 0)
2795 /* Stop the traversal. */
2796 return result;
2797
2798 if (*x == NULL_RTX)
2799 /* There are no sub-expressions. */
2800 continue;
2801
2802 i = non_rtx_starting_operands[GET_CODE (*x)];
2803 if (i >= 0)
2804 {
2805 result = for_each_rtx_1 (*x, i, f, data);
2806 if (result != 0)
2807 return result;
2808 }
2809 break;
2810
2811 case 'V':
2812 case 'E':
2813 if (XVEC (exp, n) == 0)
2814 continue;
2815 for (j = 0; j < XVECLEN (exp, n); ++j)
2816 {
2817 /* Call F on X. */
2818 x = &XVECEXP (exp, n, j);
2819 result = (*f) (x, data);
2820 if (result == -1)
2821 /* Do not traverse sub-expressions. */
2822 continue;
2823 else if (result != 0)
2824 /* Stop the traversal. */
2825 return result;
2826
2827 if (*x == NULL_RTX)
2828 /* There are no sub-expressions. */
2829 continue;
2830
2831 i = non_rtx_starting_operands[GET_CODE (*x)];
2832 if (i >= 0)
2833 {
2834 result = for_each_rtx_1 (*x, i, f, data);
2835 if (result != 0)
2836 return result;
2837 }
2838 }
2839 break;
2840
2841 default:
2842 /* Nothing to do. */
2843 break;
2844 }
2845 }
2846
2847 return 0;
2848 }
2849
2850 /* Traverse X via depth-first search, calling F for each
2851 sub-expression (including X itself). F is also passed the DATA.
2852 If F returns -1, do not traverse sub-expressions, but continue
2853 traversing the rest of the tree. If F ever returns any other
2854 nonzero value, stop the traversal, and return the value returned
2855 by F. Otherwise, return 0. This function does not traverse inside
2856 tree structure that contains RTX_EXPRs, or into sub-expressions
2857 whose format code is `0' since it is not known whether or not those
2858 codes are actually RTL.
2859
2860 This routine is very general, and could (should?) be used to
2861 implement many of the other routines in this file. */
2862
2863 int
2864 for_each_rtx (rtx *x, rtx_function f, void *data)
2865 {
2866 int result;
2867 int i;
2868
2869 /* Call F on X. */
2870 result = (*f) (x, data);
2871 if (result == -1)
2872 /* Do not traverse sub-expressions. */
2873 return 0;
2874 else if (result != 0)
2875 /* Stop the traversal. */
2876 return result;
2877
2878 if (*x == NULL_RTX)
2879 /* There are no sub-expressions. */
2880 return 0;
2881
2882 i = non_rtx_starting_operands[GET_CODE (*x)];
2883 if (i < 0)
2884 return 0;
2885
2886 return for_each_rtx_1 (*x, i, f, data);
2887 }
2888
2889 \f
2890
2891 /* Data structure that holds the internal state communicated between
2892 for_each_inc_dec, for_each_inc_dec_find_mem and
2893 for_each_inc_dec_find_inc_dec. */
2894
2895 struct for_each_inc_dec_ops {
2896 /* The function to be called for each autoinc operation found. */
2897 for_each_inc_dec_fn fn;
2898 /* The opaque argument to be passed to it. */
2899 void *arg;
2900 /* The MEM we're visiting, if any. */
2901 rtx mem;
2902 };
2903
2904 static int for_each_inc_dec_find_mem (rtx *r, void *d);
2905
2906 /* Find PRE/POST-INC/DEC/MODIFY operations within *R, extract the
2907 operands of the equivalent add insn and pass the result to the
2908 operator specified by *D. */
2909
2910 static int
2911 for_each_inc_dec_find_inc_dec (rtx *r, void *d)
2912 {
2913 rtx x = *r;
2914 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *)d;
2915
2916 switch (GET_CODE (x))
2917 {
2918 case PRE_INC:
2919 case POST_INC:
2920 {
2921 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2922 rtx r1 = XEXP (x, 0);
2923 rtx c = gen_int_mode (size, GET_MODE (r1));
2924 return data->fn (data->mem, x, r1, r1, c, data->arg);
2925 }
2926
2927 case PRE_DEC:
2928 case POST_DEC:
2929 {
2930 int size = GET_MODE_SIZE (GET_MODE (data->mem));
2931 rtx r1 = XEXP (x, 0);
2932 rtx c = gen_int_mode (-size, GET_MODE (r1));
2933 return data->fn (data->mem, x, r1, r1, c, data->arg);
2934 }
2935
2936 case PRE_MODIFY:
2937 case POST_MODIFY:
2938 {
2939 rtx r1 = XEXP (x, 0);
2940 rtx add = XEXP (x, 1);
2941 return data->fn (data->mem, x, r1, add, NULL, data->arg);
2942 }
2943
2944 case MEM:
2945 {
2946 rtx save = data->mem;
2947 int ret = for_each_inc_dec_find_mem (r, d);
2948 data->mem = save;
2949 return ret;
2950 }
2951
2952 default:
2953 return 0;
2954 }
2955 }
2956
2957 /* If *R is a MEM, find PRE/POST-INC/DEC/MODIFY operations within its
2958 address, extract the operands of the equivalent add insn and pass
2959 the result to the operator specified by *D. */
2960
2961 static int
2962 for_each_inc_dec_find_mem (rtx *r, void *d)
2963 {
2964 rtx x = *r;
2965 if (x != NULL_RTX && MEM_P (x))
2966 {
2967 struct for_each_inc_dec_ops *data = (struct for_each_inc_dec_ops *) d;
2968 int result;
2969
2970 data->mem = x;
2971
2972 result = for_each_rtx (&XEXP (x, 0), for_each_inc_dec_find_inc_dec,
2973 data);
2974 if (result)
2975 return result;
2976
2977 return -1;
2978 }
2979 return 0;
2980 }
2981
2982 /* Traverse *X looking for MEMs, and for autoinc operations within
2983 them. For each such autoinc operation found, call FN, passing it
2984 the innermost enclosing MEM, the operation itself, the RTX modified
2985 by the operation, two RTXs (the second may be NULL) that, once
2986 added, represent the value to be held by the modified RTX
2987 afterwards, and ARG. FN is to return -1 to skip looking for other
2988 autoinc operations within the visited operation, 0 to continue the
2989 traversal, or any other value to have it returned to the caller of
2990 for_each_inc_dec. */
2991
2992 int
2993 for_each_inc_dec (rtx *x,
2994 for_each_inc_dec_fn fn,
2995 void *arg)
2996 {
2997 struct for_each_inc_dec_ops data;
2998
2999 data.fn = fn;
3000 data.arg = arg;
3001 data.mem = NULL;
3002
3003 return for_each_rtx (x, for_each_inc_dec_find_mem, &data);
3004 }
3005
3006 \f
3007 /* Searches X for any reference to REGNO, returning the rtx of the
3008 reference found if any. Otherwise, returns NULL_RTX. */
3009
3010 rtx
3011 regno_use_in (unsigned int regno, rtx x)
3012 {
3013 const char *fmt;
3014 int i, j;
3015 rtx tem;
3016
3017 if (REG_P (x) && REGNO (x) == regno)
3018 return x;
3019
3020 fmt = GET_RTX_FORMAT (GET_CODE (x));
3021 for (i = GET_RTX_LENGTH (GET_CODE (x)) - 1; i >= 0; i--)
3022 {
3023 if (fmt[i] == 'e')
3024 {
3025 if ((tem = regno_use_in (regno, XEXP (x, i))))
3026 return tem;
3027 }
3028 else if (fmt[i] == 'E')
3029 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
3030 if ((tem = regno_use_in (regno , XVECEXP (x, i, j))))
3031 return tem;
3032 }
3033
3034 return NULL_RTX;
3035 }
3036
3037 /* Return a value indicating whether OP, an operand of a commutative
3038 operation, is preferred as the first or second operand. The higher
3039 the value, the stronger the preference for being the first operand.
3040 We use negative values to indicate a preference for the first operand
3041 and positive values for the second operand. */
3042
3043 int
3044 commutative_operand_precedence (rtx op)
3045 {
3046 enum rtx_code code = GET_CODE (op);
3047
3048 /* Constants always come the second operand. Prefer "nice" constants. */
3049 if (code == CONST_INT)
3050 return -8;
3051 if (code == CONST_DOUBLE)
3052 return -7;
3053 if (code == CONST_FIXED)
3054 return -7;
3055 op = avoid_constant_pool_reference (op);
3056 code = GET_CODE (op);
3057
3058 switch (GET_RTX_CLASS (code))
3059 {
3060 case RTX_CONST_OBJ:
3061 if (code == CONST_INT)
3062 return -6;
3063 if (code == CONST_DOUBLE)
3064 return -5;
3065 if (code == CONST_FIXED)
3066 return -5;
3067 return -4;
3068
3069 case RTX_EXTRA:
3070 /* SUBREGs of objects should come second. */
3071 if (code == SUBREG && OBJECT_P (SUBREG_REG (op)))
3072 return -3;
3073 return 0;
3074
3075 case RTX_OBJ:
3076 /* Complex expressions should be the first, so decrease priority
3077 of objects. Prefer pointer objects over non pointer objects. */
3078 if ((REG_P (op) && REG_POINTER (op))
3079 || (MEM_P (op) && MEM_POINTER (op)))
3080 return -1;
3081 return -2;
3082
3083 case RTX_COMM_ARITH:
3084 /* Prefer operands that are themselves commutative to be first.
3085 This helps to make things linear. In particular,
3086 (and (and (reg) (reg)) (not (reg))) is canonical. */
3087 return 4;
3088
3089 case RTX_BIN_ARITH:
3090 /* If only one operand is a binary expression, it will be the first
3091 operand. In particular, (plus (minus (reg) (reg)) (neg (reg)))
3092 is canonical, although it will usually be further simplified. */
3093 return 2;
3094
3095 case RTX_UNARY:
3096 /* Then prefer NEG and NOT. */
3097 if (code == NEG || code == NOT)
3098 return 1;
3099
3100 default:
3101 return 0;
3102 }
3103 }
3104
3105 /* Return 1 iff it is necessary to swap operands of commutative operation
3106 in order to canonicalize expression. */
3107
3108 bool
3109 swap_commutative_operands_p (rtx x, rtx y)
3110 {
3111 return (commutative_operand_precedence (x)
3112 < commutative_operand_precedence (y));
3113 }
3114
3115 /* Return 1 if X is an autoincrement side effect and the register is
3116 not the stack pointer. */
3117 int
3118 auto_inc_p (const_rtx x)
3119 {
3120 switch (GET_CODE (x))
3121 {
3122 case PRE_INC:
3123 case POST_INC:
3124 case PRE_DEC:
3125 case POST_DEC:
3126 case PRE_MODIFY:
3127 case POST_MODIFY:
3128 /* There are no REG_INC notes for SP. */
3129 if (XEXP (x, 0) != stack_pointer_rtx)
3130 return 1;
3131 default:
3132 break;
3133 }
3134 return 0;
3135 }
3136
3137 /* Return nonzero if IN contains a piece of rtl that has the address LOC. */
3138 int
3139 loc_mentioned_in_p (rtx *loc, const_rtx in)
3140 {
3141 enum rtx_code code;
3142 const char *fmt;
3143 int i, j;
3144
3145 if (!in)
3146 return 0;
3147
3148 code = GET_CODE (in);
3149 fmt = GET_RTX_FORMAT (code);
3150 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3151 {
3152 if (fmt[i] == 'e')
3153 {
3154 if (loc == &XEXP (in, i) || loc_mentioned_in_p (loc, XEXP (in, i)))
3155 return 1;
3156 }
3157 else if (fmt[i] == 'E')
3158 for (j = XVECLEN (in, i) - 1; j >= 0; j--)
3159 if (loc == &XVECEXP (in, i, j)
3160 || loc_mentioned_in_p (loc, XVECEXP (in, i, j)))
3161 return 1;
3162 }
3163 return 0;
3164 }
3165
3166 /* Helper function for subreg_lsb. Given a subreg's OUTER_MODE, INNER_MODE,
3167 and SUBREG_BYTE, return the bit offset where the subreg begins
3168 (counting from the least significant bit of the operand). */
3169
3170 unsigned int
3171 subreg_lsb_1 (enum machine_mode outer_mode,
3172 enum machine_mode inner_mode,
3173 unsigned int subreg_byte)
3174 {
3175 unsigned int bitpos;
3176 unsigned int byte;
3177 unsigned int word;
3178
3179 /* A paradoxical subreg begins at bit position 0. */
3180 if (GET_MODE_PRECISION (outer_mode) > GET_MODE_PRECISION (inner_mode))
3181 return 0;
3182
3183 if (WORDS_BIG_ENDIAN != BYTES_BIG_ENDIAN)
3184 /* If the subreg crosses a word boundary ensure that
3185 it also begins and ends on a word boundary. */
3186 gcc_assert (!((subreg_byte % UNITS_PER_WORD
3187 + GET_MODE_SIZE (outer_mode)) > UNITS_PER_WORD
3188 && (subreg_byte % UNITS_PER_WORD
3189 || GET_MODE_SIZE (outer_mode) % UNITS_PER_WORD)));
3190
3191 if (WORDS_BIG_ENDIAN)
3192 word = (GET_MODE_SIZE (inner_mode)
3193 - (subreg_byte + GET_MODE_SIZE (outer_mode))) / UNITS_PER_WORD;
3194 else
3195 word = subreg_byte / UNITS_PER_WORD;
3196 bitpos = word * BITS_PER_WORD;
3197
3198 if (BYTES_BIG_ENDIAN)
3199 byte = (GET_MODE_SIZE (inner_mode)
3200 - (subreg_byte + GET_MODE_SIZE (outer_mode))) % UNITS_PER_WORD;
3201 else
3202 byte = subreg_byte % UNITS_PER_WORD;
3203 bitpos += byte * BITS_PER_UNIT;
3204
3205 return bitpos;
3206 }
3207
3208 /* Given a subreg X, return the bit offset where the subreg begins
3209 (counting from the least significant bit of the reg). */
3210
3211 unsigned int
3212 subreg_lsb (const_rtx x)
3213 {
3214 return subreg_lsb_1 (GET_MODE (x), GET_MODE (SUBREG_REG (x)),
3215 SUBREG_BYTE (x));
3216 }
3217
3218 /* Fill in information about a subreg of a hard register.
3219 xregno - A regno of an inner hard subreg_reg (or what will become one).
3220 xmode - The mode of xregno.
3221 offset - The byte offset.
3222 ymode - The mode of a top level SUBREG (or what may become one).
3223 info - Pointer to structure to fill in. */
3224 void
3225 subreg_get_info (unsigned int xregno, enum machine_mode xmode,
3226 unsigned int offset, enum machine_mode ymode,
3227 struct subreg_info *info)
3228 {
3229 int nregs_xmode, nregs_ymode;
3230 int mode_multiple, nregs_multiple;
3231 int offset_adj, y_offset, y_offset_adj;
3232 int regsize_xmode, regsize_ymode;
3233 bool rknown;
3234
3235 gcc_assert (xregno < FIRST_PSEUDO_REGISTER);
3236
3237 rknown = false;
3238
3239 /* If there are holes in a non-scalar mode in registers, we expect
3240 that it is made up of its units concatenated together. */
3241 if (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode))
3242 {
3243 enum machine_mode xmode_unit;
3244
3245 nregs_xmode = HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode);
3246 if (GET_MODE_INNER (xmode) == VOIDmode)
3247 xmode_unit = xmode;
3248 else
3249 xmode_unit = GET_MODE_INNER (xmode);
3250 gcc_assert (HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode_unit));
3251 gcc_assert (nregs_xmode
3252 == (GET_MODE_NUNITS (xmode)
3253 * HARD_REGNO_NREGS_WITH_PADDING (xregno, xmode_unit)));
3254 gcc_assert (hard_regno_nregs[xregno][xmode]
3255 == (hard_regno_nregs[xregno][xmode_unit]
3256 * GET_MODE_NUNITS (xmode)));
3257
3258 /* You can only ask for a SUBREG of a value with holes in the middle
3259 if you don't cross the holes. (Such a SUBREG should be done by
3260 picking a different register class, or doing it in memory if
3261 necessary.) An example of a value with holes is XCmode on 32-bit
3262 x86 with -m128bit-long-double; it's represented in 6 32-bit registers,
3263 3 for each part, but in memory it's two 128-bit parts.
3264 Padding is assumed to be at the end (not necessarily the 'high part')
3265 of each unit. */
3266 if ((offset / GET_MODE_SIZE (xmode_unit) + 1
3267 < GET_MODE_NUNITS (xmode))
3268 && (offset / GET_MODE_SIZE (xmode_unit)
3269 != ((offset + GET_MODE_SIZE (ymode) - 1)
3270 / GET_MODE_SIZE (xmode_unit))))
3271 {
3272 info->representable_p = false;
3273 rknown = true;
3274 }
3275 }
3276 else
3277 nregs_xmode = hard_regno_nregs[xregno][xmode];
3278
3279 nregs_ymode = hard_regno_nregs[xregno][ymode];
3280
3281 /* Paradoxical subregs are otherwise valid. */
3282 if (!rknown
3283 && offset == 0
3284 && GET_MODE_PRECISION (ymode) > GET_MODE_PRECISION (xmode))
3285 {
3286 info->representable_p = true;
3287 /* If this is a big endian paradoxical subreg, which uses more
3288 actual hard registers than the original register, we must
3289 return a negative offset so that we find the proper highpart
3290 of the register. */
3291 if (GET_MODE_SIZE (ymode) > UNITS_PER_WORD
3292 ? REG_WORDS_BIG_ENDIAN : BYTES_BIG_ENDIAN)
3293 info->offset = nregs_xmode - nregs_ymode;
3294 else
3295 info->offset = 0;
3296 info->nregs = nregs_ymode;
3297 return;
3298 }
3299
3300 /* If registers store different numbers of bits in the different
3301 modes, we cannot generally form this subreg. */
3302 if (!HARD_REGNO_NREGS_HAS_PADDING (xregno, xmode)
3303 && !HARD_REGNO_NREGS_HAS_PADDING (xregno, ymode)
3304 && (GET_MODE_SIZE (xmode) % nregs_xmode) == 0
3305 && (GET_MODE_SIZE (ymode) % nregs_ymode) == 0)
3306 {
3307 regsize_xmode = GET_MODE_SIZE (xmode) / nregs_xmode;
3308 regsize_ymode = GET_MODE_SIZE (ymode) / nregs_ymode;
3309 if (!rknown && regsize_xmode > regsize_ymode && nregs_ymode > 1)
3310 {
3311 info->representable_p = false;
3312 info->nregs
3313 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3314 info->offset = offset / regsize_xmode;
3315 return;
3316 }
3317 if (!rknown && regsize_ymode > regsize_xmode && nregs_xmode > 1)
3318 {
3319 info->representable_p = false;
3320 info->nregs
3321 = (GET_MODE_SIZE (ymode) + regsize_xmode - 1) / regsize_xmode;
3322 info->offset = offset / regsize_xmode;
3323 return;
3324 }
3325 }
3326
3327 /* Lowpart subregs are otherwise valid. */
3328 if (!rknown && offset == subreg_lowpart_offset (ymode, xmode))
3329 {
3330 info->representable_p = true;
3331 rknown = true;
3332
3333 if (offset == 0 || nregs_xmode == nregs_ymode)
3334 {
3335 info->offset = 0;
3336 info->nregs = nregs_ymode;
3337 return;
3338 }
3339 }
3340
3341 /* This should always pass, otherwise we don't know how to verify
3342 the constraint. These conditions may be relaxed but
3343 subreg_regno_offset would need to be redesigned. */
3344 gcc_assert ((GET_MODE_SIZE (xmode) % GET_MODE_SIZE (ymode)) == 0);
3345 gcc_assert ((nregs_xmode % nregs_ymode) == 0);
3346
3347 if (WORDS_BIG_ENDIAN != REG_WORDS_BIG_ENDIAN
3348 && GET_MODE_SIZE (xmode) > UNITS_PER_WORD)
3349 {
3350 HOST_WIDE_INT xsize = GET_MODE_SIZE (xmode);
3351 HOST_WIDE_INT ysize = GET_MODE_SIZE (ymode);
3352 HOST_WIDE_INT off_low = offset & (ysize - 1);
3353 HOST_WIDE_INT off_high = offset & ~(ysize - 1);
3354 offset = (xsize - ysize - off_high) | off_low;
3355 }
3356 /* The XMODE value can be seen as a vector of NREGS_XMODE
3357 values. The subreg must represent a lowpart of given field.
3358 Compute what field it is. */
3359 offset_adj = offset;
3360 offset_adj -= subreg_lowpart_offset (ymode,
3361 mode_for_size (GET_MODE_BITSIZE (xmode)
3362 / nregs_xmode,
3363 MODE_INT, 0));
3364
3365 /* Size of ymode must not be greater than the size of xmode. */
3366 mode_multiple = GET_MODE_SIZE (xmode) / GET_MODE_SIZE (ymode);
3367 gcc_assert (mode_multiple != 0);
3368
3369 y_offset = offset / GET_MODE_SIZE (ymode);
3370 y_offset_adj = offset_adj / GET_MODE_SIZE (ymode);
3371 nregs_multiple = nregs_xmode / nregs_ymode;
3372
3373 gcc_assert ((offset_adj % GET_MODE_SIZE (ymode)) == 0);
3374 gcc_assert ((mode_multiple % nregs_multiple) == 0);
3375
3376 if (!rknown)
3377 {
3378 info->representable_p = (!(y_offset_adj % (mode_multiple / nregs_multiple)));
3379 rknown = true;
3380 }
3381 info->offset = (y_offset / (mode_multiple / nregs_multiple)) * nregs_ymode;
3382 info->nregs = nregs_ymode;
3383 }
3384
3385 /* This function returns the regno offset of a subreg expression.
3386 xregno - A regno of an inner hard subreg_reg (or what will become one).
3387 xmode - The mode of xregno.
3388 offset - The byte offset.
3389 ymode - The mode of a top level SUBREG (or what may become one).
3390 RETURN - The regno offset which would be used. */
3391 unsigned int
3392 subreg_regno_offset (unsigned int xregno, enum machine_mode xmode,
3393 unsigned int offset, enum machine_mode ymode)
3394 {
3395 struct subreg_info info;
3396 subreg_get_info (xregno, xmode, offset, ymode, &info);
3397 return info.offset;
3398 }
3399
3400 /* This function returns true when the offset is representable via
3401 subreg_offset in the given regno.
3402 xregno - A regno of an inner hard subreg_reg (or what will become one).
3403 xmode - The mode of xregno.
3404 offset - The byte offset.
3405 ymode - The mode of a top level SUBREG (or what may become one).
3406 RETURN - Whether the offset is representable. */
3407 bool
3408 subreg_offset_representable_p (unsigned int xregno, enum machine_mode xmode,
3409 unsigned int offset, enum machine_mode ymode)
3410 {
3411 struct subreg_info info;
3412 subreg_get_info (xregno, xmode, offset, ymode, &info);
3413 return info.representable_p;
3414 }
3415
3416 /* Return the number of a YMODE register to which
3417
3418 (subreg:YMODE (reg:XMODE XREGNO) OFFSET)
3419
3420 can be simplified. Return -1 if the subreg can't be simplified.
3421
3422 XREGNO is a hard register number. */
3423
3424 int
3425 simplify_subreg_regno (unsigned int xregno, enum machine_mode xmode,
3426 unsigned int offset, enum machine_mode ymode)
3427 {
3428 struct subreg_info info;
3429 unsigned int yregno;
3430
3431 #ifdef CANNOT_CHANGE_MODE_CLASS
3432 /* Give the backend a chance to disallow the mode change. */
3433 if (GET_MODE_CLASS (xmode) != MODE_COMPLEX_INT
3434 && GET_MODE_CLASS (xmode) != MODE_COMPLEX_FLOAT
3435 && REG_CANNOT_CHANGE_MODE_P (xregno, xmode, ymode))
3436 return -1;
3437 #endif
3438
3439 /* We shouldn't simplify stack-related registers. */
3440 if ((!reload_completed || frame_pointer_needed)
3441 && xregno == FRAME_POINTER_REGNUM)
3442 return -1;
3443
3444 if (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
3445 && xregno == ARG_POINTER_REGNUM)
3446 return -1;
3447
3448 if (xregno == STACK_POINTER_REGNUM)
3449 return -1;
3450
3451 /* Try to get the register offset. */
3452 subreg_get_info (xregno, xmode, offset, ymode, &info);
3453 if (!info.representable_p)
3454 return -1;
3455
3456 /* Make sure that the offsetted register value is in range. */
3457 yregno = xregno + info.offset;
3458 if (!HARD_REGISTER_NUM_P (yregno))
3459 return -1;
3460
3461 /* See whether (reg:YMODE YREGNO) is valid.
3462
3463 ??? We allow invalid registers if (reg:XMODE XREGNO) is also invalid.
3464 This is a kludge to work around how complex FP arguments are passed
3465 on IA-64 and should be fixed. See PR target/49226. */
3466 if (!HARD_REGNO_MODE_OK (yregno, ymode)
3467 && HARD_REGNO_MODE_OK (xregno, xmode))
3468 return -1;
3469
3470 return (int) yregno;
3471 }
3472
3473 /* Return the final regno that a subreg expression refers to. */
3474 unsigned int
3475 subreg_regno (const_rtx x)
3476 {
3477 unsigned int ret;
3478 rtx subreg = SUBREG_REG (x);
3479 int regno = REGNO (subreg);
3480
3481 ret = regno + subreg_regno_offset (regno,
3482 GET_MODE (subreg),
3483 SUBREG_BYTE (x),
3484 GET_MODE (x));
3485 return ret;
3486
3487 }
3488
3489 /* Return the number of registers that a subreg expression refers
3490 to. */
3491 unsigned int
3492 subreg_nregs (const_rtx x)
3493 {
3494 return subreg_nregs_with_regno (REGNO (SUBREG_REG (x)), x);
3495 }
3496
3497 /* Return the number of registers that a subreg REG with REGNO
3498 expression refers to. This is a copy of the rtlanal.c:subreg_nregs
3499 changed so that the regno can be passed in. */
3500
3501 unsigned int
3502 subreg_nregs_with_regno (unsigned int regno, const_rtx x)
3503 {
3504 struct subreg_info info;
3505 rtx subreg = SUBREG_REG (x);
3506
3507 subreg_get_info (regno, GET_MODE (subreg), SUBREG_BYTE (x), GET_MODE (x),
3508 &info);
3509 return info.nregs;
3510 }
3511
3512
3513 struct parms_set_data
3514 {
3515 int nregs;
3516 HARD_REG_SET regs;
3517 };
3518
3519 /* Helper function for noticing stores to parameter registers. */
3520 static void
3521 parms_set (rtx x, const_rtx pat ATTRIBUTE_UNUSED, void *data)
3522 {
3523 struct parms_set_data *const d = (struct parms_set_data *) data;
3524 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER
3525 && TEST_HARD_REG_BIT (d->regs, REGNO (x)))
3526 {
3527 CLEAR_HARD_REG_BIT (d->regs, REGNO (x));
3528 d->nregs--;
3529 }
3530 }
3531
3532 /* Look backward for first parameter to be loaded.
3533 Note that loads of all parameters will not necessarily be
3534 found if CSE has eliminated some of them (e.g., an argument
3535 to the outer function is passed down as a parameter).
3536 Do not skip BOUNDARY. */
3537 rtx
3538 find_first_parameter_load (rtx call_insn, rtx boundary)
3539 {
3540 struct parms_set_data parm;
3541 rtx p, before, first_set;
3542
3543 /* Since different machines initialize their parameter registers
3544 in different orders, assume nothing. Collect the set of all
3545 parameter registers. */
3546 CLEAR_HARD_REG_SET (parm.regs);
3547 parm.nregs = 0;
3548 for (p = CALL_INSN_FUNCTION_USAGE (call_insn); p; p = XEXP (p, 1))
3549 if (GET_CODE (XEXP (p, 0)) == USE
3550 && REG_P (XEXP (XEXP (p, 0), 0)))
3551 {
3552 gcc_assert (REGNO (XEXP (XEXP (p, 0), 0)) < FIRST_PSEUDO_REGISTER);
3553
3554 /* We only care about registers which can hold function
3555 arguments. */
3556 if (!FUNCTION_ARG_REGNO_P (REGNO (XEXP (XEXP (p, 0), 0))))
3557 continue;
3558
3559 SET_HARD_REG_BIT (parm.regs, REGNO (XEXP (XEXP (p, 0), 0)));
3560 parm.nregs++;
3561 }
3562 before = call_insn;
3563 first_set = call_insn;
3564
3565 /* Search backward for the first set of a register in this set. */
3566 while (parm.nregs && before != boundary)
3567 {
3568 before = PREV_INSN (before);
3569
3570 /* It is possible that some loads got CSEed from one call to
3571 another. Stop in that case. */
3572 if (CALL_P (before))
3573 break;
3574
3575 /* Our caller needs either ensure that we will find all sets
3576 (in case code has not been optimized yet), or take care
3577 for possible labels in a way by setting boundary to preceding
3578 CODE_LABEL. */
3579 if (LABEL_P (before))
3580 {
3581 gcc_assert (before == boundary);
3582 break;
3583 }
3584
3585 if (INSN_P (before))
3586 {
3587 int nregs_old = parm.nregs;
3588 note_stores (PATTERN (before), parms_set, &parm);
3589 /* If we found something that did not set a parameter reg,
3590 we're done. Do not keep going, as that might result
3591 in hoisting an insn before the setting of a pseudo
3592 that is used by the hoisted insn. */
3593 if (nregs_old != parm.nregs)
3594 first_set = before;
3595 else
3596 break;
3597 }
3598 }
3599 return first_set;
3600 }
3601
3602 /* Return true if we should avoid inserting code between INSN and preceding
3603 call instruction. */
3604
3605 bool
3606 keep_with_call_p (const_rtx insn)
3607 {
3608 rtx set;
3609
3610 if (INSN_P (insn) && (set = single_set (insn)) != NULL)
3611 {
3612 if (REG_P (SET_DEST (set))
3613 && REGNO (SET_DEST (set)) < FIRST_PSEUDO_REGISTER
3614 && fixed_regs[REGNO (SET_DEST (set))]
3615 && general_operand (SET_SRC (set), VOIDmode))
3616 return true;
3617 if (REG_P (SET_SRC (set))
3618 && targetm.calls.function_value_regno_p (REGNO (SET_SRC (set)))
3619 && REG_P (SET_DEST (set))
3620 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER)
3621 return true;
3622 /* There may be a stack pop just after the call and before the store
3623 of the return register. Search for the actual store when deciding
3624 if we can break or not. */
3625 if (SET_DEST (set) == stack_pointer_rtx)
3626 {
3627 /* This CONST_CAST is okay because next_nonnote_insn just
3628 returns its argument and we assign it to a const_rtx
3629 variable. */
3630 const_rtx i2 = next_nonnote_insn (CONST_CAST_RTX(insn));
3631 if (i2 && keep_with_call_p (i2))
3632 return true;
3633 }
3634 }
3635 return false;
3636 }
3637
3638 /* Return true if LABEL is a target of JUMP_INSN. This applies only
3639 to non-complex jumps. That is, direct unconditional, conditional,
3640 and tablejumps, but not computed jumps or returns. It also does
3641 not apply to the fallthru case of a conditional jump. */
3642
3643 bool
3644 label_is_jump_target_p (const_rtx label, const_rtx jump_insn)
3645 {
3646 rtx tmp = JUMP_LABEL (jump_insn);
3647
3648 if (label == tmp)
3649 return true;
3650
3651 if (tablejump_p (jump_insn, NULL, &tmp))
3652 {
3653 rtvec vec = XVEC (PATTERN (tmp),
3654 GET_CODE (PATTERN (tmp)) == ADDR_DIFF_VEC);
3655 int i, veclen = GET_NUM_ELEM (vec);
3656
3657 for (i = 0; i < veclen; ++i)
3658 if (XEXP (RTVEC_ELT (vec, i), 0) == label)
3659 return true;
3660 }
3661
3662 if (find_reg_note (jump_insn, REG_LABEL_TARGET, label))
3663 return true;
3664
3665 return false;
3666 }
3667
3668 \f
3669 /* Return an estimate of the cost of computing rtx X.
3670 One use is in cse, to decide which expression to keep in the hash table.
3671 Another is in rtl generation, to pick the cheapest way to multiply.
3672 Other uses like the latter are expected in the future.
3673
3674 SPEED parameter specify whether costs optimized for speed or size should
3675 be returned. */
3676
3677 int
3678 rtx_cost (rtx x, enum rtx_code outer_code ATTRIBUTE_UNUSED, bool speed)
3679 {
3680 int i, j;
3681 enum rtx_code code;
3682 const char *fmt;
3683 int total;
3684
3685 if (x == 0)
3686 return 0;
3687
3688 /* Compute the default costs of certain things.
3689 Note that targetm.rtx_costs can override the defaults. */
3690
3691 code = GET_CODE (x);
3692 switch (code)
3693 {
3694 case MULT:
3695 total = COSTS_N_INSNS (5);
3696 break;
3697 case DIV:
3698 case UDIV:
3699 case MOD:
3700 case UMOD:
3701 total = COSTS_N_INSNS (7);
3702 break;
3703 case USE:
3704 /* Used in combine.c as a marker. */
3705 total = 0;
3706 break;
3707 default:
3708 total = COSTS_N_INSNS (1);
3709 }
3710
3711 switch (code)
3712 {
3713 case REG:
3714 return 0;
3715
3716 case SUBREG:
3717 total = 0;
3718 /* If we can't tie these modes, make this expensive. The larger
3719 the mode, the more expensive it is. */
3720 if (! MODES_TIEABLE_P (GET_MODE (x), GET_MODE (SUBREG_REG (x))))
3721 return COSTS_N_INSNS (2
3722 + GET_MODE_SIZE (GET_MODE (x)) / UNITS_PER_WORD);
3723 break;
3724
3725 default:
3726 if (targetm.rtx_costs (x, code, outer_code, &total, speed))
3727 return total;
3728 break;
3729 }
3730
3731 /* Sum the costs of the sub-rtx's, plus cost of this operation,
3732 which is already in total. */
3733
3734 fmt = GET_RTX_FORMAT (code);
3735 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3736 if (fmt[i] == 'e')
3737 total += rtx_cost (XEXP (x, i), code, speed);
3738 else if (fmt[i] == 'E')
3739 for (j = 0; j < XVECLEN (x, i); j++)
3740 total += rtx_cost (XVECEXP (x, i, j), code, speed);
3741
3742 return total;
3743 }
3744
3745 /* Fill in the structure C with information about both speed and size rtx
3746 costs for X, with outer code OUTER. */
3747
3748 void
3749 get_full_rtx_cost (rtx x, enum rtx_code outer, struct full_rtx_costs *c)
3750 {
3751 c->speed = rtx_cost (x, outer, true);
3752 c->size = rtx_cost (x, outer, false);
3753 }
3754
3755 \f
3756 /* Return cost of address expression X.
3757 Expect that X is properly formed address reference.
3758
3759 SPEED parameter specify whether costs optimized for speed or size should
3760 be returned. */
3761
3762 int
3763 address_cost (rtx x, enum machine_mode mode, addr_space_t as, bool speed)
3764 {
3765 /* We may be asked for cost of various unusual addresses, such as operands
3766 of push instruction. It is not worthwhile to complicate writing
3767 of the target hook by such cases. */
3768
3769 if (!memory_address_addr_space_p (mode, x, as))
3770 return 1000;
3771
3772 return targetm.address_cost (x, speed);
3773 }
3774
3775 /* If the target doesn't override, compute the cost as with arithmetic. */
3776
3777 int
3778 default_address_cost (rtx x, bool speed)
3779 {
3780 return rtx_cost (x, MEM, speed);
3781 }
3782 \f
3783
3784 unsigned HOST_WIDE_INT
3785 nonzero_bits (const_rtx x, enum machine_mode mode)
3786 {
3787 return cached_nonzero_bits (x, mode, NULL_RTX, VOIDmode, 0);
3788 }
3789
3790 unsigned int
3791 num_sign_bit_copies (const_rtx x, enum machine_mode mode)
3792 {
3793 return cached_num_sign_bit_copies (x, mode, NULL_RTX, VOIDmode, 0);
3794 }
3795
3796 /* The function cached_nonzero_bits is a wrapper around nonzero_bits1.
3797 It avoids exponential behavior in nonzero_bits1 when X has
3798 identical subexpressions on the first or the second level. */
3799
3800 static unsigned HOST_WIDE_INT
3801 cached_nonzero_bits (const_rtx x, enum machine_mode mode, const_rtx known_x,
3802 enum machine_mode known_mode,
3803 unsigned HOST_WIDE_INT known_ret)
3804 {
3805 if (x == known_x && mode == known_mode)
3806 return known_ret;
3807
3808 /* Try to find identical subexpressions. If found call
3809 nonzero_bits1 on X with the subexpressions as KNOWN_X and the
3810 precomputed value for the subexpression as KNOWN_RET. */
3811
3812 if (ARITHMETIC_P (x))
3813 {
3814 rtx x0 = XEXP (x, 0);
3815 rtx x1 = XEXP (x, 1);
3816
3817 /* Check the first level. */
3818 if (x0 == x1)
3819 return nonzero_bits1 (x, mode, x0, mode,
3820 cached_nonzero_bits (x0, mode, known_x,
3821 known_mode, known_ret));
3822
3823 /* Check the second level. */
3824 if (ARITHMETIC_P (x0)
3825 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
3826 return nonzero_bits1 (x, mode, x1, mode,
3827 cached_nonzero_bits (x1, mode, known_x,
3828 known_mode, known_ret));
3829
3830 if (ARITHMETIC_P (x1)
3831 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
3832 return nonzero_bits1 (x, mode, x0, mode,
3833 cached_nonzero_bits (x0, mode, known_x,
3834 known_mode, known_ret));
3835 }
3836
3837 return nonzero_bits1 (x, mode, known_x, known_mode, known_ret);
3838 }
3839
3840 /* We let num_sign_bit_copies recur into nonzero_bits as that is useful.
3841 We don't let nonzero_bits recur into num_sign_bit_copies, because that
3842 is less useful. We can't allow both, because that results in exponential
3843 run time recursion. There is a nullstone testcase that triggered
3844 this. This macro avoids accidental uses of num_sign_bit_copies. */
3845 #define cached_num_sign_bit_copies sorry_i_am_preventing_exponential_behavior
3846
3847 /* Given an expression, X, compute which bits in X can be nonzero.
3848 We don't care about bits outside of those defined in MODE.
3849
3850 For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
3851 an arithmetic operation, we can do better. */
3852
3853 static unsigned HOST_WIDE_INT
3854 nonzero_bits1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
3855 enum machine_mode known_mode,
3856 unsigned HOST_WIDE_INT known_ret)
3857 {
3858 unsigned HOST_WIDE_INT nonzero = GET_MODE_MASK (mode);
3859 unsigned HOST_WIDE_INT inner_nz;
3860 enum rtx_code code;
3861 enum machine_mode inner_mode;
3862 unsigned int mode_width = GET_MODE_PRECISION (mode);
3863
3864 /* For floating-point and vector values, assume all bits are needed. */
3865 if (FLOAT_MODE_P (GET_MODE (x)) || FLOAT_MODE_P (mode)
3866 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
3867 return nonzero;
3868
3869 /* If X is wider than MODE, use its mode instead. */
3870 if (GET_MODE_PRECISION (GET_MODE (x)) > mode_width)
3871 {
3872 mode = GET_MODE (x);
3873 nonzero = GET_MODE_MASK (mode);
3874 mode_width = GET_MODE_PRECISION (mode);
3875 }
3876
3877 if (mode_width > HOST_BITS_PER_WIDE_INT)
3878 /* Our only callers in this case look for single bit values. So
3879 just return the mode mask. Those tests will then be false. */
3880 return nonzero;
3881
3882 #ifndef WORD_REGISTER_OPERATIONS
3883 /* If MODE is wider than X, but both are a single word for both the host
3884 and target machines, we can compute this from which bits of the
3885 object might be nonzero in its own mode, taking into account the fact
3886 that on many CISC machines, accessing an object in a wider mode
3887 causes the high-order bits to become undefined. So they are
3888 not known to be zero. */
3889
3890 if (GET_MODE (x) != VOIDmode && GET_MODE (x) != mode
3891 && GET_MODE_PRECISION (GET_MODE (x)) <= BITS_PER_WORD
3892 && GET_MODE_PRECISION (GET_MODE (x)) <= HOST_BITS_PER_WIDE_INT
3893 && GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (GET_MODE (x)))
3894 {
3895 nonzero &= cached_nonzero_bits (x, GET_MODE (x),
3896 known_x, known_mode, known_ret);
3897 nonzero |= GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x));
3898 return nonzero;
3899 }
3900 #endif
3901
3902 code = GET_CODE (x);
3903 switch (code)
3904 {
3905 case REG:
3906 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
3907 /* If pointers extend unsigned and this is a pointer in Pmode, say that
3908 all the bits above ptr_mode are known to be zero. */
3909 /* As we do not know which address space the pointer is refering to,
3910 we can do this only if the target does not support different pointer
3911 or address modes depending on the address space. */
3912 if (target_default_pointer_address_modes_p ()
3913 && POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
3914 && REG_POINTER (x))
3915 nonzero &= GET_MODE_MASK (ptr_mode);
3916 #endif
3917
3918 /* Include declared information about alignment of pointers. */
3919 /* ??? We don't properly preserve REG_POINTER changes across
3920 pointer-to-integer casts, so we can't trust it except for
3921 things that we know must be pointers. See execute/960116-1.c. */
3922 if ((x == stack_pointer_rtx
3923 || x == frame_pointer_rtx
3924 || x == arg_pointer_rtx)
3925 && REGNO_POINTER_ALIGN (REGNO (x)))
3926 {
3927 unsigned HOST_WIDE_INT alignment
3928 = REGNO_POINTER_ALIGN (REGNO (x)) / BITS_PER_UNIT;
3929
3930 #ifdef PUSH_ROUNDING
3931 /* If PUSH_ROUNDING is defined, it is possible for the
3932 stack to be momentarily aligned only to that amount,
3933 so we pick the least alignment. */
3934 if (x == stack_pointer_rtx && PUSH_ARGS)
3935 alignment = MIN ((unsigned HOST_WIDE_INT) PUSH_ROUNDING (1),
3936 alignment);
3937 #endif
3938
3939 nonzero &= ~(alignment - 1);
3940 }
3941
3942 {
3943 unsigned HOST_WIDE_INT nonzero_for_hook = nonzero;
3944 rtx new_rtx = rtl_hooks.reg_nonzero_bits (x, mode, known_x,
3945 known_mode, known_ret,
3946 &nonzero_for_hook);
3947
3948 if (new_rtx)
3949 nonzero_for_hook &= cached_nonzero_bits (new_rtx, mode, known_x,
3950 known_mode, known_ret);
3951
3952 return nonzero_for_hook;
3953 }
3954
3955 case CONST_INT:
3956 #ifdef SHORT_IMMEDIATES_SIGN_EXTEND
3957 /* If X is negative in MODE, sign-extend the value. */
3958 if (INTVAL (x) > 0
3959 && mode_width < BITS_PER_WORD
3960 && (UINTVAL (x) & ((unsigned HOST_WIDE_INT) 1 << (mode_width - 1)))
3961 != 0)
3962 return UINTVAL (x) | ((unsigned HOST_WIDE_INT) (-1) << mode_width);
3963 #endif
3964
3965 return UINTVAL (x);
3966
3967 case MEM:
3968 #ifdef LOAD_EXTEND_OP
3969 /* In many, if not most, RISC machines, reading a byte from memory
3970 zeros the rest of the register. Noticing that fact saves a lot
3971 of extra zero-extends. */
3972 if (LOAD_EXTEND_OP (GET_MODE (x)) == ZERO_EXTEND)
3973 nonzero &= GET_MODE_MASK (GET_MODE (x));
3974 #endif
3975 break;
3976
3977 case EQ: case NE:
3978 case UNEQ: case LTGT:
3979 case GT: case GTU: case UNGT:
3980 case LT: case LTU: case UNLT:
3981 case GE: case GEU: case UNGE:
3982 case LE: case LEU: case UNLE:
3983 case UNORDERED: case ORDERED:
3984 /* If this produces an integer result, we know which bits are set.
3985 Code here used to clear bits outside the mode of X, but that is
3986 now done above. */
3987 /* Mind that MODE is the mode the caller wants to look at this
3988 operation in, and not the actual operation mode. We can wind
3989 up with (subreg:DI (gt:V4HI x y)), and we don't have anything
3990 that describes the results of a vector compare. */
3991 if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
3992 && mode_width <= HOST_BITS_PER_WIDE_INT)
3993 nonzero = STORE_FLAG_VALUE;
3994 break;
3995
3996 case NEG:
3997 #if 0
3998 /* Disabled to avoid exponential mutual recursion between nonzero_bits
3999 and num_sign_bit_copies. */
4000 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4001 == GET_MODE_PRECISION (GET_MODE (x)))
4002 nonzero = 1;
4003 #endif
4004
4005 if (GET_MODE_PRECISION (GET_MODE (x)) < mode_width)
4006 nonzero |= (GET_MODE_MASK (mode) & ~GET_MODE_MASK (GET_MODE (x)));
4007 break;
4008
4009 case ABS:
4010 #if 0
4011 /* Disabled to avoid exponential mutual recursion between nonzero_bits
4012 and num_sign_bit_copies. */
4013 if (num_sign_bit_copies (XEXP (x, 0), GET_MODE (x))
4014 == GET_MODE_PRECISION (GET_MODE (x)))
4015 nonzero = 1;
4016 #endif
4017 break;
4018
4019 case TRUNCATE:
4020 nonzero &= (cached_nonzero_bits (XEXP (x, 0), mode,
4021 known_x, known_mode, known_ret)
4022 & GET_MODE_MASK (mode));
4023 break;
4024
4025 case ZERO_EXTEND:
4026 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4027 known_x, known_mode, known_ret);
4028 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4029 nonzero &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4030 break;
4031
4032 case SIGN_EXTEND:
4033 /* If the sign bit is known clear, this is the same as ZERO_EXTEND.
4034 Otherwise, show all the bits in the outer mode but not the inner
4035 may be nonzero. */
4036 inner_nz = cached_nonzero_bits (XEXP (x, 0), mode,
4037 known_x, known_mode, known_ret);
4038 if (GET_MODE (XEXP (x, 0)) != VOIDmode)
4039 {
4040 inner_nz &= GET_MODE_MASK (GET_MODE (XEXP (x, 0)));
4041 if (val_signbit_known_set_p (GET_MODE (XEXP (x, 0)), inner_nz))
4042 inner_nz |= (GET_MODE_MASK (mode)
4043 & ~GET_MODE_MASK (GET_MODE (XEXP (x, 0))));
4044 }
4045
4046 nonzero &= inner_nz;
4047 break;
4048
4049 case AND:
4050 nonzero &= cached_nonzero_bits (XEXP (x, 0), mode,
4051 known_x, known_mode, known_ret)
4052 & cached_nonzero_bits (XEXP (x, 1), mode,
4053 known_x, known_mode, known_ret);
4054 break;
4055
4056 case XOR: case IOR:
4057 case UMIN: case UMAX: case SMIN: case SMAX:
4058 {
4059 unsigned HOST_WIDE_INT nonzero0
4060 = cached_nonzero_bits (XEXP (x, 0), mode,
4061 known_x, known_mode, known_ret);
4062
4063 /* Don't call nonzero_bits for the second time if it cannot change
4064 anything. */
4065 if ((nonzero & nonzero0) != nonzero)
4066 nonzero &= nonzero0
4067 | cached_nonzero_bits (XEXP (x, 1), mode,
4068 known_x, known_mode, known_ret);
4069 }
4070 break;
4071
4072 case PLUS: case MINUS:
4073 case MULT:
4074 case DIV: case UDIV:
4075 case MOD: case UMOD:
4076 /* We can apply the rules of arithmetic to compute the number of
4077 high- and low-order zero bits of these operations. We start by
4078 computing the width (position of the highest-order nonzero bit)
4079 and the number of low-order zero bits for each value. */
4080 {
4081 unsigned HOST_WIDE_INT nz0
4082 = cached_nonzero_bits (XEXP (x, 0), mode,
4083 known_x, known_mode, known_ret);
4084 unsigned HOST_WIDE_INT nz1
4085 = cached_nonzero_bits (XEXP (x, 1), mode,
4086 known_x, known_mode, known_ret);
4087 int sign_index = GET_MODE_PRECISION (GET_MODE (x)) - 1;
4088 int width0 = floor_log2 (nz0) + 1;
4089 int width1 = floor_log2 (nz1) + 1;
4090 int low0 = floor_log2 (nz0 & -nz0);
4091 int low1 = floor_log2 (nz1 & -nz1);
4092 unsigned HOST_WIDE_INT op0_maybe_minusp
4093 = nz0 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4094 unsigned HOST_WIDE_INT op1_maybe_minusp
4095 = nz1 & ((unsigned HOST_WIDE_INT) 1 << sign_index);
4096 unsigned int result_width = mode_width;
4097 int result_low = 0;
4098
4099 switch (code)
4100 {
4101 case PLUS:
4102 result_width = MAX (width0, width1) + 1;
4103 result_low = MIN (low0, low1);
4104 break;
4105 case MINUS:
4106 result_low = MIN (low0, low1);
4107 break;
4108 case MULT:
4109 result_width = width0 + width1;
4110 result_low = low0 + low1;
4111 break;
4112 case DIV:
4113 if (width1 == 0)
4114 break;
4115 if (!op0_maybe_minusp && !op1_maybe_minusp)
4116 result_width = width0;
4117 break;
4118 case UDIV:
4119 if (width1 == 0)
4120 break;
4121 result_width = width0;
4122 break;
4123 case MOD:
4124 if (width1 == 0)
4125 break;
4126 if (!op0_maybe_minusp && !op1_maybe_minusp)
4127 result_width = MIN (width0, width1);
4128 result_low = MIN (low0, low1);
4129 break;
4130 case UMOD:
4131 if (width1 == 0)
4132 break;
4133 result_width = MIN (width0, width1);
4134 result_low = MIN (low0, low1);
4135 break;
4136 default:
4137 gcc_unreachable ();
4138 }
4139
4140 if (result_width < mode_width)
4141 nonzero &= ((unsigned HOST_WIDE_INT) 1 << result_width) - 1;
4142
4143 if (result_low > 0)
4144 nonzero &= ~(((unsigned HOST_WIDE_INT) 1 << result_low) - 1);
4145 }
4146 break;
4147
4148 case ZERO_EXTRACT:
4149 if (CONST_INT_P (XEXP (x, 1))
4150 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
4151 nonzero &= ((unsigned HOST_WIDE_INT) 1 << INTVAL (XEXP (x, 1))) - 1;
4152 break;
4153
4154 case SUBREG:
4155 /* If this is a SUBREG formed for a promoted variable that has
4156 been zero-extended, we know that at least the high-order bits
4157 are zero, though others might be too. */
4158
4159 if (SUBREG_PROMOTED_VAR_P (x) && SUBREG_PROMOTED_UNSIGNED_P (x) > 0)
4160 nonzero = GET_MODE_MASK (GET_MODE (x))
4161 & cached_nonzero_bits (SUBREG_REG (x), GET_MODE (x),
4162 known_x, known_mode, known_ret);
4163
4164 inner_mode = GET_MODE (SUBREG_REG (x));
4165 /* If the inner mode is a single word for both the host and target
4166 machines, we can compute this from which bits of the inner
4167 object might be nonzero. */
4168 if (GET_MODE_PRECISION (inner_mode) <= BITS_PER_WORD
4169 && (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT))
4170 {
4171 nonzero &= cached_nonzero_bits (SUBREG_REG (x), mode,
4172 known_x, known_mode, known_ret);
4173
4174 #if defined (WORD_REGISTER_OPERATIONS) && defined (LOAD_EXTEND_OP)
4175 /* If this is a typical RISC machine, we only have to worry
4176 about the way loads are extended. */
4177 if ((LOAD_EXTEND_OP (inner_mode) == SIGN_EXTEND
4178 ? val_signbit_known_set_p (inner_mode, nonzero)
4179 : LOAD_EXTEND_OP (inner_mode) != ZERO_EXTEND)
4180 || !MEM_P (SUBREG_REG (x)))
4181 #endif
4182 {
4183 /* On many CISC machines, accessing an object in a wider mode
4184 causes the high-order bits to become undefined. So they are
4185 not known to be zero. */
4186 if (GET_MODE_PRECISION (GET_MODE (x))
4187 > GET_MODE_PRECISION (inner_mode))
4188 nonzero |= (GET_MODE_MASK (GET_MODE (x))
4189 & ~GET_MODE_MASK (inner_mode));
4190 }
4191 }
4192 break;
4193
4194 case ASHIFTRT:
4195 case LSHIFTRT:
4196 case ASHIFT:
4197 case ROTATE:
4198 /* The nonzero bits are in two classes: any bits within MODE
4199 that aren't in GET_MODE (x) are always significant. The rest of the
4200 nonzero bits are those that are significant in the operand of
4201 the shift when shifted the appropriate number of bits. This
4202 shows that high-order bits are cleared by the right shift and
4203 low-order bits by left shifts. */
4204 if (CONST_INT_P (XEXP (x, 1))
4205 && INTVAL (XEXP (x, 1)) >= 0
4206 && INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
4207 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4208 {
4209 enum machine_mode inner_mode = GET_MODE (x);
4210 unsigned int width = GET_MODE_PRECISION (inner_mode);
4211 int count = INTVAL (XEXP (x, 1));
4212 unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (inner_mode);
4213 unsigned HOST_WIDE_INT op_nonzero
4214 = cached_nonzero_bits (XEXP (x, 0), mode,
4215 known_x, known_mode, known_ret);
4216 unsigned HOST_WIDE_INT inner = op_nonzero & mode_mask;
4217 unsigned HOST_WIDE_INT outer = 0;
4218
4219 if (mode_width > width)
4220 outer = (op_nonzero & nonzero & ~mode_mask);
4221
4222 if (code == LSHIFTRT)
4223 inner >>= count;
4224 else if (code == ASHIFTRT)
4225 {
4226 inner >>= count;
4227
4228 /* If the sign bit may have been nonzero before the shift, we
4229 need to mark all the places it could have been copied to
4230 by the shift as possibly nonzero. */
4231 if (inner & ((unsigned HOST_WIDE_INT) 1 << (width - 1 - count)))
4232 inner |= (((unsigned HOST_WIDE_INT) 1 << count) - 1)
4233 << (width - count);
4234 }
4235 else if (code == ASHIFT)
4236 inner <<= count;
4237 else
4238 inner = ((inner << (count % width)
4239 | (inner >> (width - (count % width)))) & mode_mask);
4240
4241 nonzero &= (outer | inner);
4242 }
4243 break;
4244
4245 case FFS:
4246 case POPCOUNT:
4247 /* This is at most the number of bits in the mode. */
4248 nonzero = ((unsigned HOST_WIDE_INT) 2 << (floor_log2 (mode_width))) - 1;
4249 break;
4250
4251 case CLZ:
4252 /* If CLZ has a known value at zero, then the nonzero bits are
4253 that value, plus the number of bits in the mode minus one. */
4254 if (CLZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4255 nonzero
4256 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4257 else
4258 nonzero = -1;
4259 break;
4260
4261 case CTZ:
4262 /* If CTZ has a known value at zero, then the nonzero bits are
4263 that value, plus the number of bits in the mode minus one. */
4264 if (CTZ_DEFINED_VALUE_AT_ZERO (mode, nonzero))
4265 nonzero
4266 |= ((unsigned HOST_WIDE_INT) 1 << (floor_log2 (mode_width))) - 1;
4267 else
4268 nonzero = -1;
4269 break;
4270
4271 case PARITY:
4272 nonzero = 1;
4273 break;
4274
4275 case IF_THEN_ELSE:
4276 {
4277 unsigned HOST_WIDE_INT nonzero_true
4278 = cached_nonzero_bits (XEXP (x, 1), mode,
4279 known_x, known_mode, known_ret);
4280
4281 /* Don't call nonzero_bits for the second time if it cannot change
4282 anything. */
4283 if ((nonzero & nonzero_true) != nonzero)
4284 nonzero &= nonzero_true
4285 | cached_nonzero_bits (XEXP (x, 2), mode,
4286 known_x, known_mode, known_ret);
4287 }
4288 break;
4289
4290 default:
4291 break;
4292 }
4293
4294 return nonzero;
4295 }
4296
4297 /* See the macro definition above. */
4298 #undef cached_num_sign_bit_copies
4299
4300 \f
4301 /* The function cached_num_sign_bit_copies is a wrapper around
4302 num_sign_bit_copies1. It avoids exponential behavior in
4303 num_sign_bit_copies1 when X has identical subexpressions on the
4304 first or the second level. */
4305
4306 static unsigned int
4307 cached_num_sign_bit_copies (const_rtx x, enum machine_mode mode, const_rtx known_x,
4308 enum machine_mode known_mode,
4309 unsigned int known_ret)
4310 {
4311 if (x == known_x && mode == known_mode)
4312 return known_ret;
4313
4314 /* Try to find identical subexpressions. If found call
4315 num_sign_bit_copies1 on X with the subexpressions as KNOWN_X and
4316 the precomputed value for the subexpression as KNOWN_RET. */
4317
4318 if (ARITHMETIC_P (x))
4319 {
4320 rtx x0 = XEXP (x, 0);
4321 rtx x1 = XEXP (x, 1);
4322
4323 /* Check the first level. */
4324 if (x0 == x1)
4325 return
4326 num_sign_bit_copies1 (x, mode, x0, mode,
4327 cached_num_sign_bit_copies (x0, mode, known_x,
4328 known_mode,
4329 known_ret));
4330
4331 /* Check the second level. */
4332 if (ARITHMETIC_P (x0)
4333 && (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
4334 return
4335 num_sign_bit_copies1 (x, mode, x1, mode,
4336 cached_num_sign_bit_copies (x1, mode, known_x,
4337 known_mode,
4338 known_ret));
4339
4340 if (ARITHMETIC_P (x1)
4341 && (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
4342 return
4343 num_sign_bit_copies1 (x, mode, x0, mode,
4344 cached_num_sign_bit_copies (x0, mode, known_x,
4345 known_mode,
4346 known_ret));
4347 }
4348
4349 return num_sign_bit_copies1 (x, mode, known_x, known_mode, known_ret);
4350 }
4351
4352 /* Return the number of bits at the high-order end of X that are known to
4353 be equal to the sign bit. X will be used in mode MODE; if MODE is
4354 VOIDmode, X will be used in its own mode. The returned value will always
4355 be between 1 and the number of bits in MODE. */
4356
4357 static unsigned int
4358 num_sign_bit_copies1 (const_rtx x, enum machine_mode mode, const_rtx known_x,
4359 enum machine_mode known_mode,
4360 unsigned int known_ret)
4361 {
4362 enum rtx_code code = GET_CODE (x);
4363 unsigned int bitwidth = GET_MODE_PRECISION (mode);
4364 int num0, num1, result;
4365 unsigned HOST_WIDE_INT nonzero;
4366
4367 /* If we weren't given a mode, use the mode of X. If the mode is still
4368 VOIDmode, we don't know anything. Likewise if one of the modes is
4369 floating-point. */
4370
4371 if (mode == VOIDmode)
4372 mode = GET_MODE (x);
4373
4374 if (mode == VOIDmode || FLOAT_MODE_P (mode) || FLOAT_MODE_P (GET_MODE (x))
4375 || VECTOR_MODE_P (GET_MODE (x)) || VECTOR_MODE_P (mode))
4376 return 1;
4377
4378 /* For a smaller object, just ignore the high bits. */
4379 if (bitwidth < GET_MODE_PRECISION (GET_MODE (x)))
4380 {
4381 num0 = cached_num_sign_bit_copies (x, GET_MODE (x),
4382 known_x, known_mode, known_ret);
4383 return MAX (1,
4384 num0 - (int) (GET_MODE_PRECISION (GET_MODE (x)) - bitwidth));
4385 }
4386
4387 if (GET_MODE (x) != VOIDmode && bitwidth > GET_MODE_PRECISION (GET_MODE (x)))
4388 {
4389 #ifndef WORD_REGISTER_OPERATIONS
4390 /* If this machine does not do all register operations on the entire
4391 register and MODE is wider than the mode of X, we can say nothing
4392 at all about the high-order bits. */
4393 return 1;
4394 #else
4395 /* Likewise on machines that do, if the mode of the object is smaller
4396 than a word and loads of that size don't sign extend, we can say
4397 nothing about the high order bits. */
4398 if (GET_MODE_PRECISION (GET_MODE (x)) < BITS_PER_WORD
4399 #ifdef LOAD_EXTEND_OP
4400 && LOAD_EXTEND_OP (GET_MODE (x)) != SIGN_EXTEND
4401 #endif
4402 )
4403 return 1;
4404 #endif
4405 }
4406
4407 switch (code)
4408 {
4409 case REG:
4410
4411 #if defined(POINTERS_EXTEND_UNSIGNED) && !defined(HAVE_ptr_extend)
4412 /* If pointers extend signed and this is a pointer in Pmode, say that
4413 all the bits above ptr_mode are known to be sign bit copies. */
4414 /* As we do not know which address space the pointer is refering to,
4415 we can do this only if the target does not support different pointer
4416 or address modes depending on the address space. */
4417 if (target_default_pointer_address_modes_p ()
4418 && ! POINTERS_EXTEND_UNSIGNED && GET_MODE (x) == Pmode
4419 && mode == Pmode && REG_POINTER (x))
4420 return GET_MODE_PRECISION (Pmode) - GET_MODE_PRECISION (ptr_mode) + 1;
4421 #endif
4422
4423 {
4424 unsigned int copies_for_hook = 1, copies = 1;
4425 rtx new_rtx = rtl_hooks.reg_num_sign_bit_copies (x, mode, known_x,
4426 known_mode, known_ret,
4427 &copies_for_hook);
4428
4429 if (new_rtx)
4430 copies = cached_num_sign_bit_copies (new_rtx, mode, known_x,
4431 known_mode, known_ret);
4432
4433 if (copies > 1 || copies_for_hook > 1)
4434 return MAX (copies, copies_for_hook);
4435
4436 /* Else, use nonzero_bits to guess num_sign_bit_copies (see below). */
4437 }
4438 break;
4439
4440 case MEM:
4441 #ifdef LOAD_EXTEND_OP
4442 /* Some RISC machines sign-extend all loads of smaller than a word. */
4443 if (LOAD_EXTEND_OP (GET_MODE (x)) == SIGN_EXTEND)
4444 return MAX (1, ((int) bitwidth
4445 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1));
4446 #endif
4447 break;
4448
4449 case CONST_INT:
4450 /* If the constant is negative, take its 1's complement and remask.
4451 Then see how many zero bits we have. */
4452 nonzero = UINTVAL (x) & GET_MODE_MASK (mode);
4453 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4454 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4455 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4456
4457 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4458
4459 case SUBREG:
4460 /* If this is a SUBREG for a promoted object that is sign-extended
4461 and we are looking at it in a wider mode, we know that at least the
4462 high-order bits are known to be sign bit copies. */
4463
4464 if (SUBREG_PROMOTED_VAR_P (x) && ! SUBREG_PROMOTED_UNSIGNED_P (x))
4465 {
4466 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4467 known_x, known_mode, known_ret);
4468 return MAX ((int) bitwidth
4469 - (int) GET_MODE_PRECISION (GET_MODE (x)) + 1,
4470 num0);
4471 }
4472
4473 /* For a smaller object, just ignore the high bits. */
4474 if (bitwidth <= GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x))))
4475 {
4476 num0 = cached_num_sign_bit_copies (SUBREG_REG (x), VOIDmode,
4477 known_x, known_mode, known_ret);
4478 return MAX (1, (num0
4479 - (int) (GET_MODE_PRECISION (GET_MODE (SUBREG_REG (x)))
4480 - bitwidth)));
4481 }
4482
4483 #ifdef WORD_REGISTER_OPERATIONS
4484 #ifdef LOAD_EXTEND_OP
4485 /* For paradoxical SUBREGs on machines where all register operations
4486 affect the entire register, just look inside. Note that we are
4487 passing MODE to the recursive call, so the number of sign bit copies
4488 will remain relative to that mode, not the inner mode. */
4489
4490 /* This works only if loads sign extend. Otherwise, if we get a
4491 reload for the inner part, it may be loaded from the stack, and
4492 then we lose all sign bit copies that existed before the store
4493 to the stack. */
4494
4495 if (paradoxical_subreg_p (x)
4496 && LOAD_EXTEND_OP (GET_MODE (SUBREG_REG (x))) == SIGN_EXTEND
4497 && MEM_P (SUBREG_REG (x)))
4498 return cached_num_sign_bit_copies (SUBREG_REG (x), mode,
4499 known_x, known_mode, known_ret);
4500 #endif
4501 #endif
4502 break;
4503
4504 case SIGN_EXTRACT:
4505 if (CONST_INT_P (XEXP (x, 1)))
4506 return MAX (1, (int) bitwidth - INTVAL (XEXP (x, 1)));
4507 break;
4508
4509 case SIGN_EXTEND:
4510 return (bitwidth - GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4511 + cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4512 known_x, known_mode, known_ret));
4513
4514 case TRUNCATE:
4515 /* For a smaller object, just ignore the high bits. */
4516 num0 = cached_num_sign_bit_copies (XEXP (x, 0), VOIDmode,
4517 known_x, known_mode, known_ret);
4518 return MAX (1, (num0 - (int) (GET_MODE_PRECISION (GET_MODE (XEXP (x, 0)))
4519 - bitwidth)));
4520
4521 case NOT:
4522 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4523 known_x, known_mode, known_ret);
4524
4525 case ROTATE: case ROTATERT:
4526 /* If we are rotating left by a number of bits less than the number
4527 of sign bit copies, we can just subtract that amount from the
4528 number. */
4529 if (CONST_INT_P (XEXP (x, 1))
4530 && INTVAL (XEXP (x, 1)) >= 0
4531 && INTVAL (XEXP (x, 1)) < (int) bitwidth)
4532 {
4533 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4534 known_x, known_mode, known_ret);
4535 return MAX (1, num0 - (code == ROTATE ? INTVAL (XEXP (x, 1))
4536 : (int) bitwidth - INTVAL (XEXP (x, 1))));
4537 }
4538 break;
4539
4540 case NEG:
4541 /* In general, this subtracts one sign bit copy. But if the value
4542 is known to be positive, the number of sign bit copies is the
4543 same as that of the input. Finally, if the input has just one bit
4544 that might be nonzero, all the bits are copies of the sign bit. */
4545 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4546 known_x, known_mode, known_ret);
4547 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4548 return num0 > 1 ? num0 - 1 : 1;
4549
4550 nonzero = nonzero_bits (XEXP (x, 0), mode);
4551 if (nonzero == 1)
4552 return bitwidth;
4553
4554 if (num0 > 1
4555 && (((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero))
4556 num0--;
4557
4558 return num0;
4559
4560 case IOR: case AND: case XOR:
4561 case SMIN: case SMAX: case UMIN: case UMAX:
4562 /* Logical operations will preserve the number of sign-bit copies.
4563 MIN and MAX operations always return one of the operands. */
4564 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4565 known_x, known_mode, known_ret);
4566 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4567 known_x, known_mode, known_ret);
4568
4569 /* If num1 is clearing some of the top bits then regardless of
4570 the other term, we are guaranteed to have at least that many
4571 high-order zero bits. */
4572 if (code == AND
4573 && num1 > 1
4574 && bitwidth <= HOST_BITS_PER_WIDE_INT
4575 && CONST_INT_P (XEXP (x, 1))
4576 && (UINTVAL (XEXP (x, 1))
4577 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) == 0)
4578 return num1;
4579
4580 /* Similarly for IOR when setting high-order bits. */
4581 if (code == IOR
4582 && num1 > 1
4583 && bitwidth <= HOST_BITS_PER_WIDE_INT
4584 && CONST_INT_P (XEXP (x, 1))
4585 && (UINTVAL (XEXP (x, 1))
4586 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4587 return num1;
4588
4589 return MIN (num0, num1);
4590
4591 case PLUS: case MINUS:
4592 /* For addition and subtraction, we can have a 1-bit carry. However,
4593 if we are subtracting 1 from a positive number, there will not
4594 be such a carry. Furthermore, if the positive number is known to
4595 be 0 or 1, we know the result is either -1 or 0. */
4596
4597 if (code == PLUS && XEXP (x, 1) == constm1_rtx
4598 && bitwidth <= HOST_BITS_PER_WIDE_INT)
4599 {
4600 nonzero = nonzero_bits (XEXP (x, 0), mode);
4601 if ((((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)) & nonzero) == 0)
4602 return (nonzero == 1 || nonzero == 0 ? bitwidth
4603 : bitwidth - floor_log2 (nonzero) - 1);
4604 }
4605
4606 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4607 known_x, known_mode, known_ret);
4608 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4609 known_x, known_mode, known_ret);
4610 result = MAX (1, MIN (num0, num1) - 1);
4611
4612 return result;
4613
4614 case MULT:
4615 /* The number of bits of the product is the sum of the number of
4616 bits of both terms. However, unless one of the terms if known
4617 to be positive, we must allow for an additional bit since negating
4618 a negative number can remove one sign bit copy. */
4619
4620 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4621 known_x, known_mode, known_ret);
4622 num1 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4623 known_x, known_mode, known_ret);
4624
4625 result = bitwidth - (bitwidth - num0) - (bitwidth - num1);
4626 if (result > 0
4627 && (bitwidth > HOST_BITS_PER_WIDE_INT
4628 || (((nonzero_bits (XEXP (x, 0), mode)
4629 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4630 && ((nonzero_bits (XEXP (x, 1), mode)
4631 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1)))
4632 != 0))))
4633 result--;
4634
4635 return MAX (1, result);
4636
4637 case UDIV:
4638 /* The result must be <= the first operand. If the first operand
4639 has the high bit set, we know nothing about the number of sign
4640 bit copies. */
4641 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4642 return 1;
4643 else if ((nonzero_bits (XEXP (x, 0), mode)
4644 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4645 return 1;
4646 else
4647 return cached_num_sign_bit_copies (XEXP (x, 0), mode,
4648 known_x, known_mode, known_ret);
4649
4650 case UMOD:
4651 /* The result must be <= the second operand. If the second operand
4652 has (or just might have) the high bit set, we know nothing about
4653 the number of sign bit copies. */
4654 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4655 return 1;
4656 else if ((nonzero_bits (XEXP (x, 1), mode)
4657 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4658 return 1;
4659 else
4660 return cached_num_sign_bit_copies (XEXP (x, 1), mode,
4661 known_x, known_mode, known_ret);
4662
4663 case DIV:
4664 /* Similar to unsigned division, except that we have to worry about
4665 the case where the divisor is negative, in which case we have
4666 to add 1. */
4667 result = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4668 known_x, known_mode, known_ret);
4669 if (result > 1
4670 && (bitwidth > HOST_BITS_PER_WIDE_INT
4671 || (nonzero_bits (XEXP (x, 1), mode)
4672 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4673 result--;
4674
4675 return result;
4676
4677 case MOD:
4678 result = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4679 known_x, known_mode, known_ret);
4680 if (result > 1
4681 && (bitwidth > HOST_BITS_PER_WIDE_INT
4682 || (nonzero_bits (XEXP (x, 1), mode)
4683 & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0))
4684 result--;
4685
4686 return result;
4687
4688 case ASHIFTRT:
4689 /* Shifts by a constant add to the number of bits equal to the
4690 sign bit. */
4691 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4692 known_x, known_mode, known_ret);
4693 if (CONST_INT_P (XEXP (x, 1))
4694 && INTVAL (XEXP (x, 1)) > 0
4695 && INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (GET_MODE (x)))
4696 num0 = MIN ((int) bitwidth, num0 + INTVAL (XEXP (x, 1)));
4697
4698 return num0;
4699
4700 case ASHIFT:
4701 /* Left shifts destroy copies. */
4702 if (!CONST_INT_P (XEXP (x, 1))
4703 || INTVAL (XEXP (x, 1)) < 0
4704 || INTVAL (XEXP (x, 1)) >= (int) bitwidth
4705 || INTVAL (XEXP (x, 1)) >= GET_MODE_PRECISION (GET_MODE (x)))
4706 return 1;
4707
4708 num0 = cached_num_sign_bit_copies (XEXP (x, 0), mode,
4709 known_x, known_mode, known_ret);
4710 return MAX (1, num0 - INTVAL (XEXP (x, 1)));
4711
4712 case IF_THEN_ELSE:
4713 num0 = cached_num_sign_bit_copies (XEXP (x, 1), mode,
4714 known_x, known_mode, known_ret);
4715 num1 = cached_num_sign_bit_copies (XEXP (x, 2), mode,
4716 known_x, known_mode, known_ret);
4717 return MIN (num0, num1);
4718
4719 case EQ: case NE: case GE: case GT: case LE: case LT:
4720 case UNEQ: case LTGT: case UNGE: case UNGT: case UNLE: case UNLT:
4721 case GEU: case GTU: case LEU: case LTU:
4722 case UNORDERED: case ORDERED:
4723 /* If the constant is negative, take its 1's complement and remask.
4724 Then see how many zero bits we have. */
4725 nonzero = STORE_FLAG_VALUE;
4726 if (bitwidth <= HOST_BITS_PER_WIDE_INT
4727 && (nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))) != 0)
4728 nonzero = (~nonzero) & GET_MODE_MASK (mode);
4729
4730 return (nonzero == 0 ? bitwidth : bitwidth - floor_log2 (nonzero) - 1);
4731
4732 default:
4733 break;
4734 }
4735
4736 /* If we haven't been able to figure it out by one of the above rules,
4737 see if some of the high-order bits are known to be zero. If so,
4738 count those bits and return one less than that amount. If we can't
4739 safely compute the mask for this mode, always return BITWIDTH. */
4740
4741 bitwidth = GET_MODE_PRECISION (mode);
4742 if (bitwidth > HOST_BITS_PER_WIDE_INT)
4743 return 1;
4744
4745 nonzero = nonzero_bits (x, mode);
4746 return nonzero & ((unsigned HOST_WIDE_INT) 1 << (bitwidth - 1))
4747 ? 1 : bitwidth - floor_log2 (nonzero) - 1;
4748 }
4749
4750 /* Calculate the rtx_cost of a single instruction. A return value of
4751 zero indicates an instruction pattern without a known cost. */
4752
4753 int
4754 insn_rtx_cost (rtx pat, bool speed)
4755 {
4756 int i, cost;
4757 rtx set;
4758
4759 /* Extract the single set rtx from the instruction pattern.
4760 We can't use single_set since we only have the pattern. */
4761 if (GET_CODE (pat) == SET)
4762 set = pat;
4763 else if (GET_CODE (pat) == PARALLEL)
4764 {
4765 set = NULL_RTX;
4766 for (i = 0; i < XVECLEN (pat, 0); i++)
4767 {
4768 rtx x = XVECEXP (pat, 0, i);
4769 if (GET_CODE (x) == SET)
4770 {
4771 if (set)
4772 return 0;
4773 set = x;
4774 }
4775 }
4776 if (!set)
4777 return 0;
4778 }
4779 else
4780 return 0;
4781
4782 cost = rtx_cost (SET_SRC (set), SET, speed);
4783 return cost > 0 ? cost : COSTS_N_INSNS (1);
4784 }
4785
4786 /* Given an insn INSN and condition COND, return the condition in a
4787 canonical form to simplify testing by callers. Specifically:
4788
4789 (1) The code will always be a comparison operation (EQ, NE, GT, etc.).
4790 (2) Both operands will be machine operands; (cc0) will have been replaced.
4791 (3) If an operand is a constant, it will be the second operand.
4792 (4) (LE x const) will be replaced with (LT x <const+1>) and similarly
4793 for GE, GEU, and LEU.
4794
4795 If the condition cannot be understood, or is an inequality floating-point
4796 comparison which needs to be reversed, 0 will be returned.
4797
4798 If REVERSE is nonzero, then reverse the condition prior to canonizing it.
4799
4800 If EARLIEST is nonzero, it is a pointer to a place where the earliest
4801 insn used in locating the condition was found. If a replacement test
4802 of the condition is desired, it should be placed in front of that
4803 insn and we will be sure that the inputs are still valid.
4804
4805 If WANT_REG is nonzero, we wish the condition to be relative to that
4806 register, if possible. Therefore, do not canonicalize the condition
4807 further. If ALLOW_CC_MODE is nonzero, allow the condition returned
4808 to be a compare to a CC mode register.
4809
4810 If VALID_AT_INSN_P, the condition must be valid at both *EARLIEST
4811 and at INSN. */
4812
4813 rtx
4814 canonicalize_condition (rtx insn, rtx cond, int reverse, rtx *earliest,
4815 rtx want_reg, int allow_cc_mode, int valid_at_insn_p)
4816 {
4817 enum rtx_code code;
4818 rtx prev = insn;
4819 const_rtx set;
4820 rtx tem;
4821 rtx op0, op1;
4822 int reverse_code = 0;
4823 enum machine_mode mode;
4824 basic_block bb = BLOCK_FOR_INSN (insn);
4825
4826 code = GET_CODE (cond);
4827 mode = GET_MODE (cond);
4828 op0 = XEXP (cond, 0);
4829 op1 = XEXP (cond, 1);
4830
4831 if (reverse)
4832 code = reversed_comparison_code (cond, insn);
4833 if (code == UNKNOWN)
4834 return 0;
4835
4836 if (earliest)
4837 *earliest = insn;
4838
4839 /* If we are comparing a register with zero, see if the register is set
4840 in the previous insn to a COMPARE or a comparison operation. Perform
4841 the same tests as a function of STORE_FLAG_VALUE as find_comparison_args
4842 in cse.c */
4843
4844 while ((GET_RTX_CLASS (code) == RTX_COMPARE
4845 || GET_RTX_CLASS (code) == RTX_COMM_COMPARE)
4846 && op1 == CONST0_RTX (GET_MODE (op0))
4847 && op0 != want_reg)
4848 {
4849 /* Set nonzero when we find something of interest. */
4850 rtx x = 0;
4851
4852 #ifdef HAVE_cc0
4853 /* If comparison with cc0, import actual comparison from compare
4854 insn. */
4855 if (op0 == cc0_rtx)
4856 {
4857 if ((prev = prev_nonnote_insn (prev)) == 0
4858 || !NONJUMP_INSN_P (prev)
4859 || (set = single_set (prev)) == 0
4860 || SET_DEST (set) != cc0_rtx)
4861 return 0;
4862
4863 op0 = SET_SRC (set);
4864 op1 = CONST0_RTX (GET_MODE (op0));
4865 if (earliest)
4866 *earliest = prev;
4867 }
4868 #endif
4869
4870 /* If this is a COMPARE, pick up the two things being compared. */
4871 if (GET_CODE (op0) == COMPARE)
4872 {
4873 op1 = XEXP (op0, 1);
4874 op0 = XEXP (op0, 0);
4875 continue;
4876 }
4877 else if (!REG_P (op0))
4878 break;
4879
4880 /* Go back to the previous insn. Stop if it is not an INSN. We also
4881 stop if it isn't a single set or if it has a REG_INC note because
4882 we don't want to bother dealing with it. */
4883
4884 prev = prev_nonnote_nondebug_insn (prev);
4885
4886 if (prev == 0
4887 || !NONJUMP_INSN_P (prev)
4888 || FIND_REG_INC_NOTE (prev, NULL_RTX)
4889 /* In cfglayout mode, there do not have to be labels at the
4890 beginning of a block, or jumps at the end, so the previous
4891 conditions would not stop us when we reach bb boundary. */
4892 || BLOCK_FOR_INSN (prev) != bb)
4893 break;
4894
4895 set = set_of (op0, prev);
4896
4897 if (set
4898 && (GET_CODE (set) != SET
4899 || !rtx_equal_p (SET_DEST (set), op0)))
4900 break;
4901
4902 /* If this is setting OP0, get what it sets it to if it looks
4903 relevant. */
4904 if (set)
4905 {
4906 enum machine_mode inner_mode = GET_MODE (SET_DEST (set));
4907 #ifdef FLOAT_STORE_FLAG_VALUE
4908 REAL_VALUE_TYPE fsfv;
4909 #endif
4910
4911 /* ??? We may not combine comparisons done in a CCmode with
4912 comparisons not done in a CCmode. This is to aid targets
4913 like Alpha that have an IEEE compliant EQ instruction, and
4914 a non-IEEE compliant BEQ instruction. The use of CCmode is
4915 actually artificial, simply to prevent the combination, but
4916 should not affect other platforms.
4917
4918 However, we must allow VOIDmode comparisons to match either
4919 CCmode or non-CCmode comparison, because some ports have
4920 modeless comparisons inside branch patterns.
4921
4922 ??? This mode check should perhaps look more like the mode check
4923 in simplify_comparison in combine. */
4924
4925 if ((GET_CODE (SET_SRC (set)) == COMPARE
4926 || (((code == NE
4927 || (code == LT
4928 && val_signbit_known_set_p (inner_mode,
4929 STORE_FLAG_VALUE))
4930 #ifdef FLOAT_STORE_FLAG_VALUE
4931 || (code == LT
4932 && SCALAR_FLOAT_MODE_P (inner_mode)
4933 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4934 REAL_VALUE_NEGATIVE (fsfv)))
4935 #endif
4936 ))
4937 && COMPARISON_P (SET_SRC (set))))
4938 && (((GET_MODE_CLASS (mode) == MODE_CC)
4939 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4940 || mode == VOIDmode || inner_mode == VOIDmode))
4941 x = SET_SRC (set);
4942 else if (((code == EQ
4943 || (code == GE
4944 && val_signbit_known_set_p (inner_mode,
4945 STORE_FLAG_VALUE))
4946 #ifdef FLOAT_STORE_FLAG_VALUE
4947 || (code == GE
4948 && SCALAR_FLOAT_MODE_P (inner_mode)
4949 && (fsfv = FLOAT_STORE_FLAG_VALUE (inner_mode),
4950 REAL_VALUE_NEGATIVE (fsfv)))
4951 #endif
4952 ))
4953 && COMPARISON_P (SET_SRC (set))
4954 && (((GET_MODE_CLASS (mode) == MODE_CC)
4955 == (GET_MODE_CLASS (inner_mode) == MODE_CC))
4956 || mode == VOIDmode || inner_mode == VOIDmode))
4957
4958 {
4959 reverse_code = 1;
4960 x = SET_SRC (set);
4961 }
4962 else
4963 break;
4964 }
4965
4966 else if (reg_set_p (op0, prev))
4967 /* If this sets OP0, but not directly, we have to give up. */
4968 break;
4969
4970 if (x)
4971 {
4972 /* If the caller is expecting the condition to be valid at INSN,
4973 make sure X doesn't change before INSN. */
4974 if (valid_at_insn_p)
4975 if (modified_in_p (x, prev) || modified_between_p (x, prev, insn))
4976 break;
4977 if (COMPARISON_P (x))
4978 code = GET_CODE (x);
4979 if (reverse_code)
4980 {
4981 code = reversed_comparison_code (x, prev);
4982 if (code == UNKNOWN)
4983 return 0;
4984 reverse_code = 0;
4985 }
4986
4987 op0 = XEXP (x, 0), op1 = XEXP (x, 1);
4988 if (earliest)
4989 *earliest = prev;
4990 }
4991 }
4992
4993 /* If constant is first, put it last. */
4994 if (CONSTANT_P (op0))
4995 code = swap_condition (code), tem = op0, op0 = op1, op1 = tem;
4996
4997 /* If OP0 is the result of a comparison, we weren't able to find what
4998 was really being compared, so fail. */
4999 if (!allow_cc_mode
5000 && GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
5001 return 0;
5002
5003 /* Canonicalize any ordered comparison with integers involving equality
5004 if we can do computations in the relevant mode and we do not
5005 overflow. */
5006
5007 if (GET_MODE_CLASS (GET_MODE (op0)) != MODE_CC
5008 && CONST_INT_P (op1)
5009 && GET_MODE (op0) != VOIDmode
5010 && GET_MODE_PRECISION (GET_MODE (op0)) <= HOST_BITS_PER_WIDE_INT)
5011 {
5012 HOST_WIDE_INT const_val = INTVAL (op1);
5013 unsigned HOST_WIDE_INT uconst_val = const_val;
5014 unsigned HOST_WIDE_INT max_val
5015 = (unsigned HOST_WIDE_INT) GET_MODE_MASK (GET_MODE (op0));
5016
5017 switch (code)
5018 {
5019 case LE:
5020 if ((unsigned HOST_WIDE_INT) const_val != max_val >> 1)
5021 code = LT, op1 = gen_int_mode (const_val + 1, GET_MODE (op0));
5022 break;
5023
5024 /* When cross-compiling, const_val might be sign-extended from
5025 BITS_PER_WORD to HOST_BITS_PER_WIDE_INT */
5026 case GE:
5027 if ((const_val & max_val)
5028 != ((unsigned HOST_WIDE_INT) 1
5029 << (GET_MODE_PRECISION (GET_MODE (op0)) - 1)))
5030 code = GT, op1 = gen_int_mode (const_val - 1, GET_MODE (op0));
5031 break;
5032
5033 case LEU:
5034 if (uconst_val < max_val)
5035 code = LTU, op1 = gen_int_mode (uconst_val + 1, GET_MODE (op0));
5036 break;
5037
5038 case GEU:
5039 if (uconst_val != 0)
5040 code = GTU, op1 = gen_int_mode (uconst_val - 1, GET_MODE (op0));
5041 break;
5042
5043 default:
5044 break;
5045 }
5046 }
5047
5048 /* Never return CC0; return zero instead. */
5049 if (CC0_P (op0))
5050 return 0;
5051
5052 return gen_rtx_fmt_ee (code, VOIDmode, op0, op1);
5053 }
5054
5055 /* Given a jump insn JUMP, return the condition that will cause it to branch
5056 to its JUMP_LABEL. If the condition cannot be understood, or is an
5057 inequality floating-point comparison which needs to be reversed, 0 will
5058 be returned.
5059
5060 If EARLIEST is nonzero, it is a pointer to a place where the earliest
5061 insn used in locating the condition was found. If a replacement test
5062 of the condition is desired, it should be placed in front of that
5063 insn and we will be sure that the inputs are still valid. If EARLIEST
5064 is null, the returned condition will be valid at INSN.
5065
5066 If ALLOW_CC_MODE is nonzero, allow the condition returned to be a
5067 compare CC mode register.
5068
5069 VALID_AT_INSN_P is the same as for canonicalize_condition. */
5070
5071 rtx
5072 get_condition (rtx jump, rtx *earliest, int allow_cc_mode, int valid_at_insn_p)
5073 {
5074 rtx cond;
5075 int reverse;
5076 rtx set;
5077
5078 /* If this is not a standard conditional jump, we can't parse it. */
5079 if (!JUMP_P (jump)
5080 || ! any_condjump_p (jump))
5081 return 0;
5082 set = pc_set (jump);
5083
5084 cond = XEXP (SET_SRC (set), 0);
5085
5086 /* If this branches to JUMP_LABEL when the condition is false, reverse
5087 the condition. */
5088 reverse
5089 = GET_CODE (XEXP (SET_SRC (set), 2)) == LABEL_REF
5090 && XEXP (XEXP (SET_SRC (set), 2), 0) == JUMP_LABEL (jump);
5091
5092 return canonicalize_condition (jump, cond, reverse, earliest, NULL_RTX,
5093 allow_cc_mode, valid_at_insn_p);
5094 }
5095
5096 /* Initialize the table NUM_SIGN_BIT_COPIES_IN_REP based on
5097 TARGET_MODE_REP_EXTENDED.
5098
5099 Note that we assume that the property of
5100 TARGET_MODE_REP_EXTENDED(B, C) is sticky to the integral modes
5101 narrower than mode B. I.e., if A is a mode narrower than B then in
5102 order to be able to operate on it in mode B, mode A needs to
5103 satisfy the requirements set by the representation of mode B. */
5104
5105 static void
5106 init_num_sign_bit_copies_in_rep (void)
5107 {
5108 enum machine_mode mode, in_mode;
5109
5110 for (in_mode = GET_CLASS_NARROWEST_MODE (MODE_INT); in_mode != VOIDmode;
5111 in_mode = GET_MODE_WIDER_MODE (mode))
5112 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != in_mode;
5113 mode = GET_MODE_WIDER_MODE (mode))
5114 {
5115 enum machine_mode i;
5116
5117 /* Currently, it is assumed that TARGET_MODE_REP_EXTENDED
5118 extends to the next widest mode. */
5119 gcc_assert (targetm.mode_rep_extended (mode, in_mode) == UNKNOWN
5120 || GET_MODE_WIDER_MODE (mode) == in_mode);
5121
5122 /* We are in in_mode. Count how many bits outside of mode
5123 have to be copies of the sign-bit. */
5124 for (i = mode; i != in_mode; i = GET_MODE_WIDER_MODE (i))
5125 {
5126 enum machine_mode wider = GET_MODE_WIDER_MODE (i);
5127
5128 if (targetm.mode_rep_extended (i, wider) == SIGN_EXTEND
5129 /* We can only check sign-bit copies starting from the
5130 top-bit. In order to be able to check the bits we
5131 have already seen we pretend that subsequent bits
5132 have to be sign-bit copies too. */
5133 || num_sign_bit_copies_in_rep [in_mode][mode])
5134 num_sign_bit_copies_in_rep [in_mode][mode]
5135 += GET_MODE_PRECISION (wider) - GET_MODE_PRECISION (i);
5136 }
5137 }
5138 }
5139
5140 /* Suppose that truncation from the machine mode of X to MODE is not a
5141 no-op. See if there is anything special about X so that we can
5142 assume it already contains a truncated value of MODE. */
5143
5144 bool
5145 truncated_to_mode (enum machine_mode mode, const_rtx x)
5146 {
5147 /* This register has already been used in MODE without explicit
5148 truncation. */
5149 if (REG_P (x) && rtl_hooks.reg_truncated_to_mode (mode, x))
5150 return true;
5151
5152 /* See if we already satisfy the requirements of MODE. If yes we
5153 can just switch to MODE. */
5154 if (num_sign_bit_copies_in_rep[GET_MODE (x)][mode]
5155 && (num_sign_bit_copies (x, GET_MODE (x))
5156 >= num_sign_bit_copies_in_rep[GET_MODE (x)][mode] + 1))
5157 return true;
5158
5159 return false;
5160 }
5161 \f
5162 /* Initialize non_rtx_starting_operands, which is used to speed up
5163 for_each_rtx. */
5164 void
5165 init_rtlanal (void)
5166 {
5167 int i;
5168 for (i = 0; i < NUM_RTX_CODE; i++)
5169 {
5170 const char *format = GET_RTX_FORMAT (i);
5171 const char *first = strpbrk (format, "eEV");
5172 non_rtx_starting_operands[i] = first ? first - format : -1;
5173 }
5174
5175 init_num_sign_bit_copies_in_rep ();
5176 }
5177 \f
5178 /* Check whether this is a constant pool constant. */
5179 bool
5180 constant_pool_constant_p (rtx x)
5181 {
5182 x = avoid_constant_pool_reference (x);
5183 return GET_CODE (x) == CONST_DOUBLE;
5184 }
5185 \f
5186 /* If M is a bitmask that selects a field of low-order bits within an item but
5187 not the entire word, return the length of the field. Return -1 otherwise.
5188 M is used in machine mode MODE. */
5189
5190 int
5191 low_bitmask_len (enum machine_mode mode, unsigned HOST_WIDE_INT m)
5192 {
5193 if (mode != VOIDmode)
5194 {
5195 if (GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT)
5196 return -1;
5197 m &= GET_MODE_MASK (mode);
5198 }
5199
5200 return exact_log2 (m + 1);
5201 }