Remove gcc/params.* files.
[gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "backend.h"
27 #include "target.h"
28 #include "rtl.h"
29 #include "tree.h"
30 #include "df.h"
31 #include "insn-config.h"
32 #include "regs.h"
33 #include "memmodel.h"
34 #include "ira.h"
35 #include "ira-int.h"
36 #include "insn-attr.h"
37 #include "cfgbuild.h"
38 #include "sched-int.h"
39 #include "cselib.h"
40 #include "function-abi.h"
41
42 #ifdef INSN_SCHEDULING
43
44 /* Holds current parameters for the dependency analyzer. */
45 struct sched_deps_info_def *sched_deps_info;
46
47 /* The data is specific to the Haifa scheduler. */
48 vec<haifa_deps_insn_data_def>
49 h_d_i_d = vNULL;
50
51 /* Return the major type present in the DS. */
52 enum reg_note
53 ds_to_dk (ds_t ds)
54 {
55 if (ds & DEP_TRUE)
56 return REG_DEP_TRUE;
57
58 if (ds & DEP_OUTPUT)
59 return REG_DEP_OUTPUT;
60
61 if (ds & DEP_CONTROL)
62 return REG_DEP_CONTROL;
63
64 gcc_assert (ds & DEP_ANTI);
65
66 return REG_DEP_ANTI;
67 }
68
69 /* Return equivalent dep_status. */
70 ds_t
71 dk_to_ds (enum reg_note dk)
72 {
73 switch (dk)
74 {
75 case REG_DEP_TRUE:
76 return DEP_TRUE;
77
78 case REG_DEP_OUTPUT:
79 return DEP_OUTPUT;
80
81 case REG_DEP_CONTROL:
82 return DEP_CONTROL;
83
84 default:
85 gcc_assert (dk == REG_DEP_ANTI);
86 return DEP_ANTI;
87 }
88 }
89
90 /* Functions to operate with dependence information container - dep_t. */
91
92 /* Init DEP with the arguments. */
93 void
94 init_dep_1 (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note type, ds_t ds)
95 {
96 DEP_PRO (dep) = pro;
97 DEP_CON (dep) = con;
98 DEP_TYPE (dep) = type;
99 DEP_STATUS (dep) = ds;
100 DEP_COST (dep) = UNKNOWN_DEP_COST;
101 DEP_NONREG (dep) = 0;
102 DEP_MULTIPLE (dep) = 0;
103 DEP_REPLACE (dep) = NULL;
104 }
105
106 /* Init DEP with the arguments.
107 While most of the scheduler (including targets) only need the major type
108 of the dependency, it is convenient to hide full dep_status from them. */
109 void
110 init_dep (dep_t dep, rtx_insn *pro, rtx_insn *con, enum reg_note kind)
111 {
112 ds_t ds;
113
114 if ((current_sched_info->flags & USE_DEPS_LIST))
115 ds = dk_to_ds (kind);
116 else
117 ds = 0;
118
119 init_dep_1 (dep, pro, con, kind, ds);
120 }
121
122 /* Make a copy of FROM in TO. */
123 static void
124 copy_dep (dep_t to, dep_t from)
125 {
126 memcpy (to, from, sizeof (*to));
127 }
128
129 static void dump_ds (FILE *, ds_t);
130
131 /* Define flags for dump_dep (). */
132
133 /* Dump producer of the dependence. */
134 #define DUMP_DEP_PRO (2)
135
136 /* Dump consumer of the dependence. */
137 #define DUMP_DEP_CON (4)
138
139 /* Dump type of the dependence. */
140 #define DUMP_DEP_TYPE (8)
141
142 /* Dump status of the dependence. */
143 #define DUMP_DEP_STATUS (16)
144
145 /* Dump all information about the dependence. */
146 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
147 |DUMP_DEP_STATUS)
148
149 /* Dump DEP to DUMP.
150 FLAGS is a bit mask specifying what information about DEP needs
151 to be printed.
152 If FLAGS has the very first bit set, then dump all information about DEP
153 and propagate this bit into the callee dump functions. */
154 static void
155 dump_dep (FILE *dump, dep_t dep, int flags)
156 {
157 if (flags & 1)
158 flags |= DUMP_DEP_ALL;
159
160 fprintf (dump, "<");
161
162 if (flags & DUMP_DEP_PRO)
163 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
164
165 if (flags & DUMP_DEP_CON)
166 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
167
168 if (flags & DUMP_DEP_TYPE)
169 {
170 char t;
171 enum reg_note type = DEP_TYPE (dep);
172
173 switch (type)
174 {
175 case REG_DEP_TRUE:
176 t = 't';
177 break;
178
179 case REG_DEP_OUTPUT:
180 t = 'o';
181 break;
182
183 case REG_DEP_CONTROL:
184 t = 'c';
185 break;
186
187 case REG_DEP_ANTI:
188 t = 'a';
189 break;
190
191 default:
192 gcc_unreachable ();
193 break;
194 }
195
196 fprintf (dump, "%c; ", t);
197 }
198
199 if (flags & DUMP_DEP_STATUS)
200 {
201 if (current_sched_info->flags & USE_DEPS_LIST)
202 dump_ds (dump, DEP_STATUS (dep));
203 }
204
205 fprintf (dump, ">");
206 }
207
208 /* Default flags for dump_dep (). */
209 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
210
211 /* Dump all fields of DEP to STDERR. */
212 void
213 sd_debug_dep (dep_t dep)
214 {
215 dump_dep (stderr, dep, 1);
216 fprintf (stderr, "\n");
217 }
218
219 /* Determine whether DEP is a dependency link of a non-debug insn on a
220 debug insn. */
221
222 static inline bool
223 depl_on_debug_p (dep_link_t dep)
224 {
225 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
226 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
227 }
228
229 /* Functions to operate with a single link from the dependencies lists -
230 dep_link_t. */
231
232 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
233 PREV_NEXT_P. */
234 static void
235 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
236 {
237 dep_link_t next = *prev_nextp;
238
239 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
240 && DEP_LINK_NEXT (l) == NULL);
241
242 /* Init node being inserted. */
243 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
244 DEP_LINK_NEXT (l) = next;
245
246 /* Fix next node. */
247 if (next != NULL)
248 {
249 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
250
251 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
252 }
253
254 /* Fix prev node. */
255 *prev_nextp = l;
256 }
257
258 /* Add dep_link LINK to deps_list L. */
259 static void
260 add_to_deps_list (dep_link_t link, deps_list_t l)
261 {
262 attach_dep_link (link, &DEPS_LIST_FIRST (l));
263
264 /* Don't count debug deps. */
265 if (!depl_on_debug_p (link))
266 ++DEPS_LIST_N_LINKS (l);
267 }
268
269 /* Detach dep_link L from the list. */
270 static void
271 detach_dep_link (dep_link_t l)
272 {
273 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
274 dep_link_t next = DEP_LINK_NEXT (l);
275
276 *prev_nextp = next;
277
278 if (next != NULL)
279 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
280
281 DEP_LINK_PREV_NEXTP (l) = NULL;
282 DEP_LINK_NEXT (l) = NULL;
283 }
284
285 /* Remove link LINK from list LIST. */
286 static void
287 remove_from_deps_list (dep_link_t link, deps_list_t list)
288 {
289 detach_dep_link (link);
290
291 /* Don't count debug deps. */
292 if (!depl_on_debug_p (link))
293 --DEPS_LIST_N_LINKS (list);
294 }
295
296 /* Move link LINK from list FROM to list TO. */
297 static void
298 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
299 {
300 remove_from_deps_list (link, from);
301 add_to_deps_list (link, to);
302 }
303
304 /* Return true of LINK is not attached to any list. */
305 static bool
306 dep_link_is_detached_p (dep_link_t link)
307 {
308 return DEP_LINK_PREV_NEXTP (link) == NULL;
309 }
310
311 /* Pool to hold all dependency nodes (dep_node_t). */
312 static object_allocator<_dep_node> *dn_pool;
313
314 /* Number of dep_nodes out there. */
315 static int dn_pool_diff = 0;
316
317 /* Create a dep_node. */
318 static dep_node_t
319 create_dep_node (void)
320 {
321 dep_node_t n = dn_pool->allocate ();
322 dep_link_t back = DEP_NODE_BACK (n);
323 dep_link_t forw = DEP_NODE_FORW (n);
324
325 DEP_LINK_NODE (back) = n;
326 DEP_LINK_NEXT (back) = NULL;
327 DEP_LINK_PREV_NEXTP (back) = NULL;
328
329 DEP_LINK_NODE (forw) = n;
330 DEP_LINK_NEXT (forw) = NULL;
331 DEP_LINK_PREV_NEXTP (forw) = NULL;
332
333 ++dn_pool_diff;
334
335 return n;
336 }
337
338 /* Delete dep_node N. N must not be connected to any deps_list. */
339 static void
340 delete_dep_node (dep_node_t n)
341 {
342 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
343 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
344
345 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
346
347 --dn_pool_diff;
348
349 dn_pool->remove (n);
350 }
351
352 /* Pool to hold dependencies lists (deps_list_t). */
353 static object_allocator<_deps_list> *dl_pool;
354
355 /* Number of deps_lists out there. */
356 static int dl_pool_diff = 0;
357
358 /* Functions to operate with dependences lists - deps_list_t. */
359
360 /* Return true if list L is empty. */
361 static bool
362 deps_list_empty_p (deps_list_t l)
363 {
364 return DEPS_LIST_N_LINKS (l) == 0;
365 }
366
367 /* Create a new deps_list. */
368 static deps_list_t
369 create_deps_list (void)
370 {
371 deps_list_t l = dl_pool->allocate ();
372
373 DEPS_LIST_FIRST (l) = NULL;
374 DEPS_LIST_N_LINKS (l) = 0;
375
376 ++dl_pool_diff;
377 return l;
378 }
379
380 /* Free deps_list L. */
381 static void
382 free_deps_list (deps_list_t l)
383 {
384 gcc_assert (deps_list_empty_p (l));
385
386 --dl_pool_diff;
387
388 dl_pool->remove (l);
389 }
390
391 /* Return true if there is no dep_nodes and deps_lists out there.
392 After the region is scheduled all the dependency nodes and lists
393 should [generally] be returned to pool. */
394 bool
395 deps_pools_are_empty_p (void)
396 {
397 return dn_pool_diff == 0 && dl_pool_diff == 0;
398 }
399
400 /* Remove all elements from L. */
401 static void
402 clear_deps_list (deps_list_t l)
403 {
404 do
405 {
406 dep_link_t link = DEPS_LIST_FIRST (l);
407
408 if (link == NULL)
409 break;
410
411 remove_from_deps_list (link, l);
412 }
413 while (1);
414 }
415
416 /* Decide whether a dependency should be treated as a hard or a speculative
417 dependency. */
418 static bool
419 dep_spec_p (dep_t dep)
420 {
421 if (current_sched_info->flags & DO_SPECULATION)
422 {
423 if (DEP_STATUS (dep) & SPECULATIVE)
424 return true;
425 }
426 if (current_sched_info->flags & DO_PREDICATION)
427 {
428 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
429 return true;
430 }
431 if (DEP_REPLACE (dep) != NULL)
432 return true;
433 return false;
434 }
435
436 static regset reg_pending_sets;
437 static regset reg_pending_clobbers;
438 static regset reg_pending_uses;
439 static regset reg_pending_control_uses;
440 static enum reg_pending_barrier_mode reg_pending_barrier;
441
442 /* Hard registers implicitly clobbered or used (or may be implicitly
443 clobbered or used) by the currently analyzed insn. For example,
444 insn in its constraint has one register class. Even if there is
445 currently no hard register in the insn, the particular hard
446 register will be in the insn after reload pass because the
447 constraint requires it. */
448 static HARD_REG_SET implicit_reg_pending_clobbers;
449 static HARD_REG_SET implicit_reg_pending_uses;
450
451 /* To speed up the test for duplicate dependency links we keep a
452 record of dependencies created by add_dependence when the average
453 number of instructions in a basic block is very large.
454
455 Studies have shown that there is typically around 5 instructions between
456 branches for typical C code. So we can make a guess that the average
457 basic block is approximately 5 instructions long; we will choose 100X
458 the average size as a very large basic block.
459
460 Each insn has associated bitmaps for its dependencies. Each bitmap
461 has enough entries to represent a dependency on any other insn in
462 the insn chain. All bitmap for true dependencies cache is
463 allocated then the rest two ones are also allocated. */
464 static bitmap true_dependency_cache = NULL;
465 static bitmap output_dependency_cache = NULL;
466 static bitmap anti_dependency_cache = NULL;
467 static bitmap control_dependency_cache = NULL;
468 static bitmap spec_dependency_cache = NULL;
469 static int cache_size;
470
471 /* True if we should mark added dependencies as a non-register deps. */
472 static bool mark_as_hard;
473
474 static int deps_may_trap_p (const_rtx);
475 static void add_dependence_1 (rtx_insn *, rtx_insn *, enum reg_note);
476 static void add_dependence_list (rtx_insn *, rtx_insn_list *, int,
477 enum reg_note, bool);
478 static void add_dependence_list_and_free (class deps_desc *, rtx_insn *,
479 rtx_insn_list **, int, enum reg_note,
480 bool);
481 static void delete_all_dependences (rtx_insn *);
482 static void chain_to_prev_insn (rtx_insn *);
483
484 static void flush_pending_lists (class deps_desc *, rtx_insn *, int, int);
485 static void sched_analyze_1 (class deps_desc *, rtx, rtx_insn *);
486 static void sched_analyze_2 (class deps_desc *, rtx, rtx_insn *);
487 static void sched_analyze_insn (class deps_desc *, rtx, rtx_insn *);
488
489 static bool sched_has_condition_p (const rtx_insn *);
490 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
491
492 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
493 rtx, rtx);
494 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
495
496 static void check_dep (dep_t, bool);
497
498 \f
499 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
500
501 static int
502 deps_may_trap_p (const_rtx mem)
503 {
504 const_rtx addr = XEXP (mem, 0);
505
506 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
507 {
508 const_rtx t = get_reg_known_value (REGNO (addr));
509 if (t)
510 addr = t;
511 }
512 return rtx_addr_can_trap_p (addr);
513 }
514 \f
515
516 /* Find the condition under which INSN is executed. If REV is not NULL,
517 it is set to TRUE when the returned comparison should be reversed
518 to get the actual condition. */
519 static rtx
520 sched_get_condition_with_rev_uncached (const rtx_insn *insn, bool *rev)
521 {
522 rtx pat = PATTERN (insn);
523 rtx src;
524
525 if (rev)
526 *rev = false;
527
528 if (GET_CODE (pat) == COND_EXEC)
529 return COND_EXEC_TEST (pat);
530
531 if (!any_condjump_p (insn) || !onlyjump_p (insn))
532 return 0;
533
534 src = SET_SRC (pc_set (insn));
535
536 if (XEXP (src, 2) == pc_rtx)
537 return XEXP (src, 0);
538 else if (XEXP (src, 1) == pc_rtx)
539 {
540 rtx cond = XEXP (src, 0);
541 enum rtx_code revcode = reversed_comparison_code (cond, insn);
542
543 if (revcode == UNKNOWN)
544 return 0;
545
546 if (rev)
547 *rev = true;
548 return cond;
549 }
550
551 return 0;
552 }
553
554 /* Return the condition under which INSN does not execute (i.e. the
555 not-taken condition for a conditional branch), or NULL if we cannot
556 find such a condition. The caller should make a copy of the condition
557 before using it. */
558 rtx
559 sched_get_reverse_condition_uncached (const rtx_insn *insn)
560 {
561 bool rev;
562 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
563 if (cond == NULL_RTX)
564 return cond;
565 if (!rev)
566 {
567 enum rtx_code revcode = reversed_comparison_code (cond, insn);
568 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
569 XEXP (cond, 0),
570 XEXP (cond, 1));
571 }
572 return cond;
573 }
574
575 /* Caching variant of sched_get_condition_with_rev_uncached.
576 We only do actual work the first time we come here for an insn; the
577 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
578 static rtx
579 sched_get_condition_with_rev (const rtx_insn *insn, bool *rev)
580 {
581 bool tmp;
582
583 if (INSN_LUID (insn) == 0)
584 return sched_get_condition_with_rev_uncached (insn, rev);
585
586 if (INSN_CACHED_COND (insn) == const_true_rtx)
587 return NULL_RTX;
588
589 if (INSN_CACHED_COND (insn) != NULL_RTX)
590 {
591 if (rev)
592 *rev = INSN_REVERSE_COND (insn);
593 return INSN_CACHED_COND (insn);
594 }
595
596 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
597 INSN_REVERSE_COND (insn) = tmp;
598
599 if (INSN_CACHED_COND (insn) == NULL_RTX)
600 {
601 INSN_CACHED_COND (insn) = const_true_rtx;
602 return NULL_RTX;
603 }
604
605 if (rev)
606 *rev = INSN_REVERSE_COND (insn);
607 return INSN_CACHED_COND (insn);
608 }
609
610 /* True when we can find a condition under which INSN is executed. */
611 static bool
612 sched_has_condition_p (const rtx_insn *insn)
613 {
614 return !! sched_get_condition_with_rev (insn, NULL);
615 }
616
617 \f
618
619 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
620 static int
621 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
622 {
623 if (COMPARISON_P (cond1)
624 && COMPARISON_P (cond2)
625 && GET_CODE (cond1) ==
626 (rev1==rev2
627 ? reversed_comparison_code (cond2, NULL)
628 : GET_CODE (cond2))
629 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
630 && XEXP (cond1, 1) == XEXP (cond2, 1))
631 return 1;
632 return 0;
633 }
634
635 /* Return true if insn1 and insn2 can never depend on one another because
636 the conditions under which they are executed are mutually exclusive. */
637 bool
638 sched_insns_conditions_mutex_p (const rtx_insn *insn1, const rtx_insn *insn2)
639 {
640 rtx cond1, cond2;
641 bool rev1 = false, rev2 = false;
642
643 /* df doesn't handle conditional lifetimes entirely correctly;
644 calls mess up the conditional lifetimes. */
645 if (!CALL_P (insn1) && !CALL_P (insn2))
646 {
647 cond1 = sched_get_condition_with_rev (insn1, &rev1);
648 cond2 = sched_get_condition_with_rev (insn2, &rev2);
649 if (cond1 && cond2
650 && conditions_mutex_p (cond1, cond2, rev1, rev2)
651 /* Make sure first instruction doesn't affect condition of second
652 instruction if switched. */
653 && !modified_in_p (cond1, insn2)
654 /* Make sure second instruction doesn't affect condition of first
655 instruction if switched. */
656 && !modified_in_p (cond2, insn1))
657 return true;
658 }
659 return false;
660 }
661 \f
662
663 /* Return true if INSN can potentially be speculated with type DS. */
664 bool
665 sched_insn_is_legitimate_for_speculation_p (const rtx_insn *insn, ds_t ds)
666 {
667 if (HAS_INTERNAL_DEP (insn))
668 return false;
669
670 if (!NONJUMP_INSN_P (insn))
671 return false;
672
673 if (SCHED_GROUP_P (insn))
674 return false;
675
676 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX_INSN (insn)))
677 return false;
678
679 if (side_effects_p (PATTERN (insn)))
680 return false;
681
682 if (ds & BE_IN_SPEC)
683 /* The following instructions, which depend on a speculatively scheduled
684 instruction, cannot be speculatively scheduled along. */
685 {
686 if (may_trap_or_fault_p (PATTERN (insn)))
687 /* If instruction might fault, it cannot be speculatively scheduled.
688 For control speculation it's obvious why and for data speculation
689 it's because the insn might get wrong input if speculation
690 wasn't successful. */
691 return false;
692
693 if ((ds & BE_IN_DATA)
694 && sched_has_condition_p (insn))
695 /* If this is a predicated instruction, then it cannot be
696 speculatively scheduled. See PR35659. */
697 return false;
698 }
699
700 return true;
701 }
702
703 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
704 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
705 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
706 This function is used to switch sd_iterator to the next list.
707 !!! For internal use only. Might consider moving it to sched-int.h. */
708 void
709 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
710 deps_list_t *list_ptr, bool *resolved_p_ptr)
711 {
712 sd_list_types_def types = *types_ptr;
713
714 if (types & SD_LIST_HARD_BACK)
715 {
716 *list_ptr = INSN_HARD_BACK_DEPS (insn);
717 *resolved_p_ptr = false;
718 *types_ptr = types & ~SD_LIST_HARD_BACK;
719 }
720 else if (types & SD_LIST_SPEC_BACK)
721 {
722 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
723 *resolved_p_ptr = false;
724 *types_ptr = types & ~SD_LIST_SPEC_BACK;
725 }
726 else if (types & SD_LIST_FORW)
727 {
728 *list_ptr = INSN_FORW_DEPS (insn);
729 *resolved_p_ptr = false;
730 *types_ptr = types & ~SD_LIST_FORW;
731 }
732 else if (types & SD_LIST_RES_BACK)
733 {
734 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
735 *resolved_p_ptr = true;
736 *types_ptr = types & ~SD_LIST_RES_BACK;
737 }
738 else if (types & SD_LIST_RES_FORW)
739 {
740 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
741 *resolved_p_ptr = true;
742 *types_ptr = types & ~SD_LIST_RES_FORW;
743 }
744 else
745 {
746 *list_ptr = NULL;
747 *resolved_p_ptr = false;
748 *types_ptr = SD_LIST_NONE;
749 }
750 }
751
752 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
753 int
754 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
755 {
756 int size = 0;
757
758 while (list_types != SD_LIST_NONE)
759 {
760 deps_list_t list;
761 bool resolved_p;
762
763 sd_next_list (insn, &list_types, &list, &resolved_p);
764 if (list)
765 size += DEPS_LIST_N_LINKS (list);
766 }
767
768 return size;
769 }
770
771 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
772
773 bool
774 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
775 {
776 while (list_types != SD_LIST_NONE)
777 {
778 deps_list_t list;
779 bool resolved_p;
780
781 sd_next_list (insn, &list_types, &list, &resolved_p);
782 if (!deps_list_empty_p (list))
783 return false;
784 }
785
786 return true;
787 }
788
789 /* Initialize data for INSN. */
790 void
791 sd_init_insn (rtx_insn *insn)
792 {
793 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
794 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
795 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
796 INSN_FORW_DEPS (insn) = create_deps_list ();
797 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
798
799 /* ??? It would be nice to allocate dependency caches here. */
800 }
801
802 /* Free data for INSN. */
803 void
804 sd_finish_insn (rtx_insn *insn)
805 {
806 /* ??? It would be nice to deallocate dependency caches here. */
807
808 free_deps_list (INSN_HARD_BACK_DEPS (insn));
809 INSN_HARD_BACK_DEPS (insn) = NULL;
810
811 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
812 INSN_SPEC_BACK_DEPS (insn) = NULL;
813
814 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
815 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
816
817 free_deps_list (INSN_FORW_DEPS (insn));
818 INSN_FORW_DEPS (insn) = NULL;
819
820 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
821 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
822 }
823
824 /* Find a dependency between producer PRO and consumer CON.
825 Search through resolved dependency lists if RESOLVED_P is true.
826 If no such dependency is found return NULL,
827 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
828 with an iterator pointing to it. */
829 static dep_t
830 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
831 sd_iterator_def *sd_it_ptr)
832 {
833 sd_list_types_def pro_list_type;
834 sd_list_types_def con_list_type;
835 sd_iterator_def sd_it;
836 dep_t dep;
837 bool found_p = false;
838
839 if (resolved_p)
840 {
841 pro_list_type = SD_LIST_RES_FORW;
842 con_list_type = SD_LIST_RES_BACK;
843 }
844 else
845 {
846 pro_list_type = SD_LIST_FORW;
847 con_list_type = SD_LIST_BACK;
848 }
849
850 /* Walk through either back list of INSN or forw list of ELEM
851 depending on which one is shorter. */
852 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
853 {
854 /* Find the dep_link with producer PRO in consumer's back_deps. */
855 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
856 if (DEP_PRO (dep) == pro)
857 {
858 found_p = true;
859 break;
860 }
861 }
862 else
863 {
864 /* Find the dep_link with consumer CON in producer's forw_deps. */
865 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
866 if (DEP_CON (dep) == con)
867 {
868 found_p = true;
869 break;
870 }
871 }
872
873 if (found_p)
874 {
875 if (sd_it_ptr != NULL)
876 *sd_it_ptr = sd_it;
877
878 return dep;
879 }
880
881 return NULL;
882 }
883
884 /* Find a dependency between producer PRO and consumer CON.
885 Use dependency [if available] to check if dependency is present at all.
886 Search through resolved dependency lists if RESOLVED_P is true.
887 If the dependency or NULL if none found. */
888 dep_t
889 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
890 {
891 if (true_dependency_cache != NULL)
892 /* Avoiding the list walk below can cut compile times dramatically
893 for some code. */
894 {
895 int elem_luid = INSN_LUID (pro);
896 int insn_luid = INSN_LUID (con);
897
898 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
899 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
900 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
901 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
902 return NULL;
903 }
904
905 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
906 }
907
908 /* Add or update a dependence described by DEP.
909 MEM1 and MEM2, if non-null, correspond to memory locations in case of
910 data speculation.
911
912 The function returns a value indicating if an old entry has been changed
913 or a new entry has been added to insn's backward deps.
914
915 This function merely checks if producer and consumer is the same insn
916 and doesn't create a dep in this case. Actual manipulation of
917 dependence data structures is performed in add_or_update_dep_1. */
918 static enum DEPS_ADJUST_RESULT
919 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
920 {
921 rtx_insn *elem = DEP_PRO (dep);
922 rtx_insn *insn = DEP_CON (dep);
923
924 gcc_assert (INSN_P (insn) && INSN_P (elem));
925
926 /* Don't depend an insn on itself. */
927 if (insn == elem)
928 {
929 if (sched_deps_info->generate_spec_deps)
930 /* INSN has an internal dependence, which we can't overcome. */
931 HAS_INTERNAL_DEP (insn) = 1;
932
933 return DEP_NODEP;
934 }
935
936 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
937 }
938
939 /* Ask dependency caches what needs to be done for dependence DEP.
940 Return DEP_CREATED if new dependence should be created and there is no
941 need to try to find one searching the dependencies lists.
942 Return DEP_PRESENT if there already is a dependence described by DEP and
943 hence nothing is to be done.
944 Return DEP_CHANGED if there already is a dependence, but it should be
945 updated to incorporate additional information from DEP. */
946 static enum DEPS_ADJUST_RESULT
947 ask_dependency_caches (dep_t dep)
948 {
949 int elem_luid = INSN_LUID (DEP_PRO (dep));
950 int insn_luid = INSN_LUID (DEP_CON (dep));
951
952 gcc_assert (true_dependency_cache != NULL
953 && output_dependency_cache != NULL
954 && anti_dependency_cache != NULL
955 && control_dependency_cache != NULL);
956
957 if (!(current_sched_info->flags & USE_DEPS_LIST))
958 {
959 enum reg_note present_dep_type;
960
961 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
962 present_dep_type = REG_DEP_TRUE;
963 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
964 present_dep_type = REG_DEP_OUTPUT;
965 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
966 present_dep_type = REG_DEP_ANTI;
967 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
968 present_dep_type = REG_DEP_CONTROL;
969 else
970 /* There is no existing dep so it should be created. */
971 return DEP_CREATED;
972
973 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
974 /* DEP does not add anything to the existing dependence. */
975 return DEP_PRESENT;
976 }
977 else
978 {
979 ds_t present_dep_types = 0;
980
981 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
982 present_dep_types |= DEP_TRUE;
983 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
984 present_dep_types |= DEP_OUTPUT;
985 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
986 present_dep_types |= DEP_ANTI;
987 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
988 present_dep_types |= DEP_CONTROL;
989
990 if (present_dep_types == 0)
991 /* There is no existing dep so it should be created. */
992 return DEP_CREATED;
993
994 if (!(current_sched_info->flags & DO_SPECULATION)
995 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
996 {
997 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
998 == present_dep_types)
999 /* DEP does not add anything to the existing dependence. */
1000 return DEP_PRESENT;
1001 }
1002 else
1003 {
1004 /* Only true dependencies can be data speculative and
1005 only anti dependencies can be control speculative. */
1006 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1007 == present_dep_types);
1008
1009 /* if (DEP is SPECULATIVE) then
1010 ..we should update DEP_STATUS
1011 else
1012 ..we should reset existing dep to non-speculative. */
1013 }
1014 }
1015
1016 return DEP_CHANGED;
1017 }
1018
1019 /* Set dependency caches according to DEP. */
1020 static void
1021 set_dependency_caches (dep_t dep)
1022 {
1023 int elem_luid = INSN_LUID (DEP_PRO (dep));
1024 int insn_luid = INSN_LUID (DEP_CON (dep));
1025
1026 if (!(current_sched_info->flags & USE_DEPS_LIST))
1027 {
1028 switch (DEP_TYPE (dep))
1029 {
1030 case REG_DEP_TRUE:
1031 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1032 break;
1033
1034 case REG_DEP_OUTPUT:
1035 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1036 break;
1037
1038 case REG_DEP_ANTI:
1039 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1040 break;
1041
1042 case REG_DEP_CONTROL:
1043 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1044 break;
1045
1046 default:
1047 gcc_unreachable ();
1048 }
1049 }
1050 else
1051 {
1052 ds_t ds = DEP_STATUS (dep);
1053
1054 if (ds & DEP_TRUE)
1055 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1056 if (ds & DEP_OUTPUT)
1057 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1058 if (ds & DEP_ANTI)
1059 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1060 if (ds & DEP_CONTROL)
1061 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1062
1063 if (ds & SPECULATIVE)
1064 {
1065 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1066 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1067 }
1068 }
1069 }
1070
1071 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1072 caches accordingly. */
1073 static void
1074 update_dependency_caches (dep_t dep, enum reg_note old_type)
1075 {
1076 int elem_luid = INSN_LUID (DEP_PRO (dep));
1077 int insn_luid = INSN_LUID (DEP_CON (dep));
1078
1079 /* Clear corresponding cache entry because type of the link
1080 may have changed. Keep them if we use_deps_list. */
1081 if (!(current_sched_info->flags & USE_DEPS_LIST))
1082 {
1083 switch (old_type)
1084 {
1085 case REG_DEP_OUTPUT:
1086 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1087 break;
1088
1089 case REG_DEP_ANTI:
1090 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1091 break;
1092
1093 case REG_DEP_CONTROL:
1094 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1095 break;
1096
1097 default:
1098 gcc_unreachable ();
1099 }
1100 }
1101
1102 set_dependency_caches (dep);
1103 }
1104
1105 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1106 static void
1107 change_spec_dep_to_hard (sd_iterator_def sd_it)
1108 {
1109 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1110 dep_link_t link = DEP_NODE_BACK (node);
1111 dep_t dep = DEP_NODE_DEP (node);
1112 rtx_insn *elem = DEP_PRO (dep);
1113 rtx_insn *insn = DEP_CON (dep);
1114
1115 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1116
1117 DEP_STATUS (dep) &= ~SPECULATIVE;
1118
1119 if (true_dependency_cache != NULL)
1120 /* Clear the cache entry. */
1121 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1122 INSN_LUID (elem));
1123 }
1124
1125 /* Update DEP to incorporate information from NEW_DEP.
1126 SD_IT points to DEP in case it should be moved to another list.
1127 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1128 data-speculative dependence should be updated. */
1129 static enum DEPS_ADJUST_RESULT
1130 update_dep (dep_t dep, dep_t new_dep,
1131 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1132 rtx mem1 ATTRIBUTE_UNUSED,
1133 rtx mem2 ATTRIBUTE_UNUSED)
1134 {
1135 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1136 enum reg_note old_type = DEP_TYPE (dep);
1137 bool was_spec = dep_spec_p (dep);
1138
1139 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1140 DEP_MULTIPLE (dep) = 1;
1141
1142 /* If this is a more restrictive type of dependence than the
1143 existing one, then change the existing dependence to this
1144 type. */
1145 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1146 {
1147 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1148 res = DEP_CHANGED;
1149 }
1150
1151 if (current_sched_info->flags & USE_DEPS_LIST)
1152 /* Update DEP_STATUS. */
1153 {
1154 ds_t dep_status = DEP_STATUS (dep);
1155 ds_t ds = DEP_STATUS (new_dep);
1156 ds_t new_status = ds | dep_status;
1157
1158 if (new_status & SPECULATIVE)
1159 {
1160 /* Either existing dep or a dep we're adding or both are
1161 speculative. */
1162 if (!(ds & SPECULATIVE)
1163 || !(dep_status & SPECULATIVE))
1164 /* The new dep can't be speculative. */
1165 new_status &= ~SPECULATIVE;
1166 else
1167 {
1168 /* Both are speculative. Merge probabilities. */
1169 if (mem1 != NULL)
1170 {
1171 dw_t dw;
1172
1173 dw = estimate_dep_weak (mem1, mem2);
1174 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1175 }
1176
1177 new_status = ds_merge (dep_status, ds);
1178 }
1179 }
1180
1181 ds = new_status;
1182
1183 if (dep_status != ds)
1184 {
1185 DEP_STATUS (dep) = ds;
1186 res = DEP_CHANGED;
1187 }
1188 }
1189
1190 if (was_spec && !dep_spec_p (dep))
1191 /* The old dep was speculative, but now it isn't. */
1192 change_spec_dep_to_hard (sd_it);
1193
1194 if (true_dependency_cache != NULL
1195 && res == DEP_CHANGED)
1196 update_dependency_caches (dep, old_type);
1197
1198 return res;
1199 }
1200
1201 /* Add or update a dependence described by DEP.
1202 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1203 data speculation.
1204
1205 The function returns a value indicating if an old entry has been changed
1206 or a new entry has been added to insn's backward deps or nothing has
1207 been updated at all. */
1208 static enum DEPS_ADJUST_RESULT
1209 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1210 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1211 {
1212 bool maybe_present_p = true;
1213 bool present_p = false;
1214
1215 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1216 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1217
1218 if (flag_checking)
1219 check_dep (new_dep, mem1 != NULL);
1220
1221 if (true_dependency_cache != NULL)
1222 {
1223 switch (ask_dependency_caches (new_dep))
1224 {
1225 case DEP_PRESENT:
1226 dep_t present_dep;
1227 sd_iterator_def sd_it;
1228
1229 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1230 DEP_CON (new_dep),
1231 resolved_p, &sd_it);
1232 DEP_MULTIPLE (present_dep) = 1;
1233 return DEP_PRESENT;
1234
1235 case DEP_CHANGED:
1236 maybe_present_p = true;
1237 present_p = true;
1238 break;
1239
1240 case DEP_CREATED:
1241 maybe_present_p = false;
1242 present_p = false;
1243 break;
1244
1245 default:
1246 gcc_unreachable ();
1247 break;
1248 }
1249 }
1250
1251 /* Check that we don't already have this dependence. */
1252 if (maybe_present_p)
1253 {
1254 dep_t present_dep;
1255 sd_iterator_def sd_it;
1256
1257 gcc_assert (true_dependency_cache == NULL || present_p);
1258
1259 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1260 DEP_CON (new_dep),
1261 resolved_p, &sd_it);
1262
1263 if (present_dep != NULL)
1264 /* We found an existing dependency between ELEM and INSN. */
1265 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1266 else
1267 /* We didn't find a dep, it shouldn't present in the cache. */
1268 gcc_assert (!present_p);
1269 }
1270
1271 /* Might want to check one level of transitivity to save conses.
1272 This check should be done in maybe_add_or_update_dep_1.
1273 Since we made it to add_or_update_dep_1, we must create
1274 (or update) a link. */
1275
1276 if (mem1 != NULL_RTX)
1277 {
1278 gcc_assert (sched_deps_info->generate_spec_deps);
1279 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1280 estimate_dep_weak (mem1, mem2));
1281 }
1282
1283 sd_add_dep (new_dep, resolved_p);
1284
1285 return DEP_CREATED;
1286 }
1287
1288 /* Initialize BACK_LIST_PTR with consumer's backward list and
1289 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1290 initialize with lists that hold resolved deps. */
1291 static void
1292 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1293 deps_list_t *back_list_ptr,
1294 deps_list_t *forw_list_ptr)
1295 {
1296 rtx_insn *con = DEP_CON (dep);
1297
1298 if (!resolved_p)
1299 {
1300 if (dep_spec_p (dep))
1301 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1302 else
1303 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1304
1305 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1306 }
1307 else
1308 {
1309 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1310 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1311 }
1312 }
1313
1314 /* Add dependence described by DEP.
1315 If RESOLVED_P is true treat the dependence as a resolved one. */
1316 void
1317 sd_add_dep (dep_t dep, bool resolved_p)
1318 {
1319 dep_node_t n = create_dep_node ();
1320 deps_list_t con_back_deps;
1321 deps_list_t pro_forw_deps;
1322 rtx_insn *elem = DEP_PRO (dep);
1323 rtx_insn *insn = DEP_CON (dep);
1324
1325 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1326
1327 if ((current_sched_info->flags & DO_SPECULATION) == 0
1328 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1329 DEP_STATUS (dep) &= ~SPECULATIVE;
1330
1331 copy_dep (DEP_NODE_DEP (n), dep);
1332
1333 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1334
1335 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1336
1337 if (flag_checking)
1338 check_dep (dep, false);
1339
1340 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1341
1342 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1343 in the bitmap caches of dependency information. */
1344 if (true_dependency_cache != NULL)
1345 set_dependency_caches (dep);
1346 }
1347
1348 /* Add or update backward dependence between INSN and ELEM
1349 with given type DEP_TYPE and dep_status DS.
1350 This function is a convenience wrapper. */
1351 enum DEPS_ADJUST_RESULT
1352 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1353 {
1354 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1355 }
1356
1357 /* Resolved dependence pointed to by SD_IT.
1358 SD_IT will advance to the next element. */
1359 void
1360 sd_resolve_dep (sd_iterator_def sd_it)
1361 {
1362 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1363 dep_t dep = DEP_NODE_DEP (node);
1364 rtx_insn *pro = DEP_PRO (dep);
1365 rtx_insn *con = DEP_CON (dep);
1366
1367 if (dep_spec_p (dep))
1368 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1369 INSN_RESOLVED_BACK_DEPS (con));
1370 else
1371 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1372 INSN_RESOLVED_BACK_DEPS (con));
1373
1374 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1375 INSN_RESOLVED_FORW_DEPS (pro));
1376 }
1377
1378 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1379 pointed to by SD_IT to unresolved state. */
1380 void
1381 sd_unresolve_dep (sd_iterator_def sd_it)
1382 {
1383 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1384 dep_t dep = DEP_NODE_DEP (node);
1385 rtx_insn *pro = DEP_PRO (dep);
1386 rtx_insn *con = DEP_CON (dep);
1387
1388 if (dep_spec_p (dep))
1389 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1390 INSN_SPEC_BACK_DEPS (con));
1391 else
1392 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1393 INSN_HARD_BACK_DEPS (con));
1394
1395 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1396 INSN_FORW_DEPS (pro));
1397 }
1398
1399 /* Make TO depend on all the FROM's producers.
1400 If RESOLVED_P is true add dependencies to the resolved lists. */
1401 void
1402 sd_copy_back_deps (rtx_insn *to, rtx_insn *from, bool resolved_p)
1403 {
1404 sd_list_types_def list_type;
1405 sd_iterator_def sd_it;
1406 dep_t dep;
1407
1408 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1409
1410 FOR_EACH_DEP (from, list_type, sd_it, dep)
1411 {
1412 dep_def _new_dep, *new_dep = &_new_dep;
1413
1414 copy_dep (new_dep, dep);
1415 DEP_CON (new_dep) = to;
1416 sd_add_dep (new_dep, resolved_p);
1417 }
1418 }
1419
1420 /* Remove a dependency referred to by SD_IT.
1421 SD_IT will point to the next dependence after removal. */
1422 void
1423 sd_delete_dep (sd_iterator_def sd_it)
1424 {
1425 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1426 dep_t dep = DEP_NODE_DEP (n);
1427 rtx_insn *pro = DEP_PRO (dep);
1428 rtx_insn *con = DEP_CON (dep);
1429 deps_list_t con_back_deps;
1430 deps_list_t pro_forw_deps;
1431
1432 if (true_dependency_cache != NULL)
1433 {
1434 int elem_luid = INSN_LUID (pro);
1435 int insn_luid = INSN_LUID (con);
1436
1437 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1438 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1439 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1440 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1441
1442 if (current_sched_info->flags & DO_SPECULATION)
1443 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1444 }
1445
1446 get_back_and_forw_lists (dep, sd_it.resolved_p,
1447 &con_back_deps, &pro_forw_deps);
1448
1449 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1450 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1451
1452 delete_dep_node (n);
1453 }
1454
1455 /* Dump size of the lists. */
1456 #define DUMP_LISTS_SIZE (2)
1457
1458 /* Dump dependencies of the lists. */
1459 #define DUMP_LISTS_DEPS (4)
1460
1461 /* Dump all information about the lists. */
1462 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1463
1464 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1465 FLAGS is a bit mask specifying what information about the lists needs
1466 to be printed.
1467 If FLAGS has the very first bit set, then dump all information about
1468 the lists and propagate this bit into the callee dump functions. */
1469 static void
1470 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1471 {
1472 sd_iterator_def sd_it;
1473 dep_t dep;
1474 int all;
1475
1476 all = (flags & 1);
1477
1478 if (all)
1479 flags |= DUMP_LISTS_ALL;
1480
1481 fprintf (dump, "[");
1482
1483 if (flags & DUMP_LISTS_SIZE)
1484 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1485
1486 if (flags & DUMP_LISTS_DEPS)
1487 {
1488 FOR_EACH_DEP (insn, types, sd_it, dep)
1489 {
1490 dump_dep (dump, dep, dump_dep_flags | all);
1491 fprintf (dump, " ");
1492 }
1493 }
1494 }
1495
1496 /* Dump all information about deps_lists of INSN specified by TYPES
1497 to STDERR. */
1498 void
1499 sd_debug_lists (rtx insn, sd_list_types_def types)
1500 {
1501 dump_lists (stderr, insn, types, 1);
1502 fprintf (stderr, "\n");
1503 }
1504
1505 /* A wrapper around add_dependence_1, to add a dependence of CON on
1506 PRO, with type DEP_TYPE. This function implements special handling
1507 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1508 the type to REG_DEP_ANTI if we can determine that predication is
1509 impossible; otherwise we add additional true dependencies on the
1510 INSN_COND_DEPS list of the jump (which PRO must be). */
1511 void
1512 add_dependence (rtx_insn *con, rtx_insn *pro, enum reg_note dep_type)
1513 {
1514 if (dep_type == REG_DEP_CONTROL
1515 && !(current_sched_info->flags & DO_PREDICATION))
1516 dep_type = REG_DEP_ANTI;
1517
1518 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1519 so we must also make the insn dependent on the setter of the
1520 condition. */
1521 if (dep_type == REG_DEP_CONTROL)
1522 {
1523 rtx_insn *real_pro = pro;
1524 rtx_insn *other = real_insn_for_shadow (real_pro);
1525 rtx cond;
1526
1527 if (other != NULL_RTX)
1528 real_pro = other;
1529 cond = sched_get_reverse_condition_uncached (real_pro);
1530 /* Verify that the insn does not use a different value in
1531 the condition register than the one that was present at
1532 the jump. */
1533 if (cond == NULL_RTX)
1534 dep_type = REG_DEP_ANTI;
1535 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1536 {
1537 HARD_REG_SET uses;
1538 CLEAR_HARD_REG_SET (uses);
1539 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1540 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1541 dep_type = REG_DEP_ANTI;
1542 }
1543 if (dep_type == REG_DEP_CONTROL)
1544 {
1545 if (sched_verbose >= 5)
1546 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1547 INSN_UID (real_pro));
1548 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1549 REG_DEP_TRUE, false);
1550 }
1551 }
1552
1553 add_dependence_1 (con, pro, dep_type);
1554 }
1555
1556 /* A convenience wrapper to operate on an entire list. HARD should be
1557 true if DEP_NONREG should be set on newly created dependencies. */
1558
1559 static void
1560 add_dependence_list (rtx_insn *insn, rtx_insn_list *list, int uncond,
1561 enum reg_note dep_type, bool hard)
1562 {
1563 mark_as_hard = hard;
1564 for (; list; list = list->next ())
1565 {
1566 if (uncond || ! sched_insns_conditions_mutex_p (insn, list->insn ()))
1567 add_dependence (insn, list->insn (), dep_type);
1568 }
1569 mark_as_hard = false;
1570 }
1571
1572 /* Similar, but free *LISTP at the same time, when the context
1573 is not readonly. HARD should be true if DEP_NONREG should be set on
1574 newly created dependencies. */
1575
1576 static void
1577 add_dependence_list_and_free (class deps_desc *deps, rtx_insn *insn,
1578 rtx_insn_list **listp,
1579 int uncond, enum reg_note dep_type, bool hard)
1580 {
1581 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1582
1583 /* We don't want to short-circuit dependencies involving debug
1584 insns, because they may cause actual dependencies to be
1585 disregarded. */
1586 if (deps->readonly || DEBUG_INSN_P (insn))
1587 return;
1588
1589 free_INSN_LIST_list (listp);
1590 }
1591
1592 /* Remove all occurrences of INSN from LIST. Return the number of
1593 occurrences removed. */
1594
1595 static int
1596 remove_from_dependence_list (rtx_insn *insn, rtx_insn_list **listp)
1597 {
1598 int removed = 0;
1599
1600 while (*listp)
1601 {
1602 if ((*listp)->insn () == insn)
1603 {
1604 remove_free_INSN_LIST_node (listp);
1605 removed++;
1606 continue;
1607 }
1608
1609 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1610 }
1611
1612 return removed;
1613 }
1614
1615 /* Same as above, but process two lists at once. */
1616 static int
1617 remove_from_both_dependence_lists (rtx_insn *insn,
1618 rtx_insn_list **listp,
1619 rtx_expr_list **exprp)
1620 {
1621 int removed = 0;
1622
1623 while (*listp)
1624 {
1625 if (XEXP (*listp, 0) == insn)
1626 {
1627 remove_free_INSN_LIST_node (listp);
1628 remove_free_EXPR_LIST_node (exprp);
1629 removed++;
1630 continue;
1631 }
1632
1633 listp = (rtx_insn_list **)&XEXP (*listp, 1);
1634 exprp = (rtx_expr_list **)&XEXP (*exprp, 1);
1635 }
1636
1637 return removed;
1638 }
1639
1640 /* Clear all dependencies for an insn. */
1641 static void
1642 delete_all_dependences (rtx_insn *insn)
1643 {
1644 sd_iterator_def sd_it;
1645 dep_t dep;
1646
1647 /* The below cycle can be optimized to clear the caches and back_deps
1648 in one call but that would provoke duplication of code from
1649 delete_dep (). */
1650
1651 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1652 sd_iterator_cond (&sd_it, &dep);)
1653 sd_delete_dep (sd_it);
1654 }
1655
1656 /* All insns in a scheduling group except the first should only have
1657 dependencies on the previous insn in the group. So we find the
1658 first instruction in the scheduling group by walking the dependence
1659 chains backwards. Then we add the dependencies for the group to
1660 the previous nonnote insn. */
1661
1662 static void
1663 chain_to_prev_insn (rtx_insn *insn)
1664 {
1665 sd_iterator_def sd_it;
1666 dep_t dep;
1667 rtx_insn *prev_nonnote;
1668
1669 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1670 {
1671 rtx_insn *i = insn;
1672 rtx_insn *pro = DEP_PRO (dep);
1673
1674 do
1675 {
1676 i = prev_nonnote_insn (i);
1677
1678 if (pro == i)
1679 goto next_link;
1680 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1681
1682 if (! sched_insns_conditions_mutex_p (i, pro))
1683 add_dependence (i, pro, DEP_TYPE (dep));
1684 next_link:;
1685 }
1686
1687 delete_all_dependences (insn);
1688
1689 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1690 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1691 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1692 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1693 }
1694 \f
1695 /* Process an insn's memory dependencies. There are four kinds of
1696 dependencies:
1697
1698 (0) read dependence: read follows read
1699 (1) true dependence: read follows write
1700 (2) output dependence: write follows write
1701 (3) anti dependence: write follows read
1702
1703 We are careful to build only dependencies which actually exist, and
1704 use transitivity to avoid building too many links. */
1705
1706 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1707 The MEM is a memory reference contained within INSN, which we are saving
1708 so that we can do memory aliasing on it. */
1709
1710 static void
1711 add_insn_mem_dependence (class deps_desc *deps, bool read_p,
1712 rtx_insn *insn, rtx mem)
1713 {
1714 rtx_insn_list **insn_list;
1715 rtx_insn_list *insn_node;
1716 rtx_expr_list **mem_list;
1717 rtx_expr_list *mem_node;
1718
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1721 {
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1726 }
1727 else
1728 {
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1732 }
1733
1734 insn_node = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = insn_node;
1736
1737 if (sched_deps_info->use_cselib)
1738 {
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1742 }
1743 mem_node = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = mem_node;
1745 }
1746
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1750
1751 static void
1752 flush_pending_lists (class deps_desc *deps, rtx_insn *insn, int for_read,
1753 int for_write)
1754 {
1755 if (for_write)
1756 {
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1760 {
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1763 }
1764 }
1765
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1769
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1774
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1777
1778 if (DEBUG_INSN_P (insn))
1779 {
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1785 }
1786
1787 if (!deps->readonly)
1788 {
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1791
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1794 }
1795 mark_as_hard = false;
1796 }
1797 \f
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx_insn *cur_insn = NULL;
1800
1801 /* Implement hooks for haifa scheduler. */
1802
1803 static void
1804 haifa_start_insn (rtx_insn *insn)
1805 {
1806 gcc_assert (insn && !cur_insn);
1807
1808 cur_insn = insn;
1809 }
1810
1811 static void
1812 haifa_finish_insn (void)
1813 {
1814 cur_insn = NULL;
1815 }
1816
1817 void
1818 haifa_note_reg_set (int regno)
1819 {
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1821 }
1822
1823 void
1824 haifa_note_reg_clobber (int regno)
1825 {
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1827 }
1828
1829 void
1830 haifa_note_reg_use (int regno)
1831 {
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1833 }
1834
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx_insn *pending_insn, ds_t ds)
1837 {
1838 if (!(ds & SPECULATIVE))
1839 {
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1842 }
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1845
1846 {
1847 dep_def _dep, *dep = &_dep;
1848
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1853 }
1854
1855 }
1856
1857 static void
1858 haifa_note_dep (rtx_insn *elem, ds_t ds)
1859 {
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1862
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1867 }
1868
1869 static void
1870 note_reg_use (int r)
1871 {
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1874 }
1875
1876 static void
1877 note_reg_set (int r)
1878 {
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1881 }
1882
1883 static void
1884 note_reg_clobber (int r)
1885 {
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1888 }
1889
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx_insn *e, ds_t ds)
1892 {
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1895 }
1896
1897 static void
1898 note_dep (rtx_insn *e, ds_t ds)
1899 {
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1902 }
1903
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1907 {
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1915 {
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1918 }
1919 }
1920
1921 \f
1922
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1925
1926
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx_insn *insn)
1930 {
1931 struct reg_use_data *use;
1932
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1939 }
1940
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1944 {
1945 struct reg_set_data *set;
1946
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1952 }
1953
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (class deps_desc *deps, rtx_insn *insn)
1957 {
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 struct reg_use_data *use, *use2, *next;
1961 struct deps_reg *reg_last;
1962
1963 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1964 {
1965 if (i < FIRST_PSEUDO_REGISTER
1966 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1967 continue;
1968
1969 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1970 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1971 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1972 /* Ignore use which is not dying. */
1973 continue;
1974
1975 use = create_insn_reg_use (i, insn);
1976 use->next_regno_use = use;
1977 reg_last = &deps->reg_last[i];
1978
1979 /* Create the cycle list of uses. */
1980 for (rtx_insn_list *list = reg_last->uses; list; list = list->next ())
1981 {
1982 use2 = create_insn_reg_use (i, list->insn ());
1983 next = use->next_regno_use;
1984 use->next_regno_use = use2;
1985 use2->next_regno_use = next;
1986 }
1987 }
1988 }
1989
1990 /* Register pressure info for the currently processed insn. */
1991 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1992
1993 /* Return TRUE if INSN has the use structure for REGNO. */
1994 static bool
1995 insn_use_p (rtx insn, int regno)
1996 {
1997 struct reg_use_data *use;
1998
1999 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2000 if (use->regno == regno)
2001 return true;
2002 return false;
2003 }
2004
2005 /* Update the register pressure info after birth of pseudo register REGNO
2006 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2007 the register is in clobber or unused after the insn. */
2008 static void
2009 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2010 {
2011 int incr, new_incr;
2012 enum reg_class cl;
2013
2014 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2015 cl = sched_regno_pressure_class[regno];
2016 if (cl != NO_REGS)
2017 {
2018 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2019 if (clobber_p)
2020 {
2021 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2022 reg_pressure_info[cl].clobber_increase = new_incr;
2023 }
2024 else if (unused_p)
2025 {
2026 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2027 reg_pressure_info[cl].unused_set_increase = new_incr;
2028 }
2029 else
2030 {
2031 new_incr = reg_pressure_info[cl].set_increase + incr;
2032 reg_pressure_info[cl].set_increase = new_incr;
2033 if (! insn_use_p (insn, regno))
2034 reg_pressure_info[cl].change += incr;
2035 create_insn_reg_set (regno, insn);
2036 }
2037 gcc_assert (new_incr < (1 << INCREASE_BITS));
2038 }
2039 }
2040
2041 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2042 hard registers involved in the birth. */
2043 static void
2044 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2045 bool clobber_p, bool unused_p)
2046 {
2047 enum reg_class cl;
2048 int new_incr, last = regno + nregs;
2049
2050 while (regno < last)
2051 {
2052 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2053 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2054 {
2055 cl = sched_regno_pressure_class[regno];
2056 if (cl != NO_REGS)
2057 {
2058 if (clobber_p)
2059 {
2060 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2061 reg_pressure_info[cl].clobber_increase = new_incr;
2062 }
2063 else if (unused_p)
2064 {
2065 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2066 reg_pressure_info[cl].unused_set_increase = new_incr;
2067 }
2068 else
2069 {
2070 new_incr = reg_pressure_info[cl].set_increase + 1;
2071 reg_pressure_info[cl].set_increase = new_incr;
2072 if (! insn_use_p (insn, regno))
2073 reg_pressure_info[cl].change += 1;
2074 create_insn_reg_set (regno, insn);
2075 }
2076 gcc_assert (new_incr < (1 << INCREASE_BITS));
2077 }
2078 }
2079 regno++;
2080 }
2081 }
2082
2083 /* Update the register pressure info after birth of pseudo or hard
2084 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2085 correspondingly that the register is in clobber or unused after the
2086 insn. */
2087 static void
2088 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2089 {
2090 int regno;
2091
2092 if (GET_CODE (reg) == SUBREG)
2093 reg = SUBREG_REG (reg);
2094
2095 if (! REG_P (reg))
2096 return;
2097
2098 regno = REGNO (reg);
2099 if (regno < FIRST_PSEUDO_REGISTER)
2100 mark_insn_hard_regno_birth (insn, regno, REG_NREGS (reg),
2101 clobber_p, unused_p);
2102 else
2103 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2104 }
2105
2106 /* Update the register pressure info after death of pseudo register
2107 REGNO. */
2108 static void
2109 mark_pseudo_death (int regno)
2110 {
2111 int incr;
2112 enum reg_class cl;
2113
2114 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2115 cl = sched_regno_pressure_class[regno];
2116 if (cl != NO_REGS)
2117 {
2118 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2119 reg_pressure_info[cl].change -= incr;
2120 }
2121 }
2122
2123 /* Like mark_pseudo_death except that NREGS saying how many hard
2124 registers involved in the death. */
2125 static void
2126 mark_hard_regno_death (int regno, int nregs)
2127 {
2128 enum reg_class cl;
2129 int last = regno + nregs;
2130
2131 while (regno < last)
2132 {
2133 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2134 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2135 {
2136 cl = sched_regno_pressure_class[regno];
2137 if (cl != NO_REGS)
2138 reg_pressure_info[cl].change -= 1;
2139 }
2140 regno++;
2141 }
2142 }
2143
2144 /* Update the register pressure info after death of pseudo or hard
2145 register REG. */
2146 static void
2147 mark_reg_death (rtx reg)
2148 {
2149 int regno;
2150
2151 if (GET_CODE (reg) == SUBREG)
2152 reg = SUBREG_REG (reg);
2153
2154 if (! REG_P (reg))
2155 return;
2156
2157 regno = REGNO (reg);
2158 if (regno < FIRST_PSEUDO_REGISTER)
2159 mark_hard_regno_death (regno, REG_NREGS (reg));
2160 else
2161 mark_pseudo_death (regno);
2162 }
2163
2164 /* Process SETTER of REG. DATA is an insn containing the setter. */
2165 static void
2166 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2167 {
2168 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2169 return;
2170 mark_insn_reg_birth
2171 ((rtx) data, reg, false,
2172 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2173 }
2174
2175 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2176 static void
2177 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2178 {
2179 if (GET_CODE (setter) == CLOBBER)
2180 mark_insn_reg_birth ((rtx) data, reg, true, false);
2181 }
2182
2183 /* Set up reg pressure info related to INSN. */
2184 void
2185 init_insn_reg_pressure_info (rtx_insn *insn)
2186 {
2187 int i, len;
2188 enum reg_class cl;
2189 static struct reg_pressure_data *pressure_info;
2190 rtx link;
2191
2192 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2193
2194 if (! INSN_P (insn))
2195 return;
2196
2197 for (i = 0; i < ira_pressure_classes_num; i++)
2198 {
2199 cl = ira_pressure_classes[i];
2200 reg_pressure_info[cl].clobber_increase = 0;
2201 reg_pressure_info[cl].set_increase = 0;
2202 reg_pressure_info[cl].unused_set_increase = 0;
2203 reg_pressure_info[cl].change = 0;
2204 }
2205
2206 note_stores (insn, mark_insn_reg_clobber, insn);
2207
2208 note_stores (insn, mark_insn_reg_store, insn);
2209
2210 if (AUTO_INC_DEC)
2211 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2212 if (REG_NOTE_KIND (link) == REG_INC)
2213 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2214
2215 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2216 if (REG_NOTE_KIND (link) == REG_DEAD)
2217 mark_reg_death (XEXP (link, 0));
2218
2219 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2220 pressure_info
2221 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2222 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2223 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2224 * sizeof (int), 1);
2225 for (i = 0; i < ira_pressure_classes_num; i++)
2226 {
2227 cl = ira_pressure_classes[i];
2228 pressure_info[i].clobber_increase
2229 = reg_pressure_info[cl].clobber_increase;
2230 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2231 pressure_info[i].unused_set_increase
2232 = reg_pressure_info[cl].unused_set_increase;
2233 pressure_info[i].change = reg_pressure_info[cl].change;
2234 }
2235 }
2236
2237
2238 \f
2239
2240 /* Internal variable for sched_analyze_[12] () functions.
2241 If it is nonzero, this means that sched_analyze_[12] looks
2242 at the most toplevel SET. */
2243 static bool can_start_lhs_rhs_p;
2244
2245 /* Extend reg info for the deps context DEPS given that
2246 we have just generated a register numbered REGNO. */
2247 static void
2248 extend_deps_reg_info (class deps_desc *deps, int regno)
2249 {
2250 int max_regno = regno + 1;
2251
2252 gcc_assert (!reload_completed);
2253
2254 /* In a readonly context, it would not hurt to extend info,
2255 but it should not be needed. */
2256 if (reload_completed && deps->readonly)
2257 {
2258 deps->max_reg = max_regno;
2259 return;
2260 }
2261
2262 if (max_regno > deps->max_reg)
2263 {
2264 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2265 max_regno);
2266 memset (&deps->reg_last[deps->max_reg],
2267 0, (max_regno - deps->max_reg)
2268 * sizeof (struct deps_reg));
2269 deps->max_reg = max_regno;
2270 }
2271 }
2272
2273 /* Extends REG_INFO_P if needed. */
2274 void
2275 maybe_extend_reg_info_p (void)
2276 {
2277 /* Extend REG_INFO_P, if needed. */
2278 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2279 {
2280 size_t new_reg_info_p_size = max_regno + 128;
2281
2282 gcc_assert (!reload_completed && sel_sched_p ());
2283
2284 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2285 new_reg_info_p_size,
2286 reg_info_p_size,
2287 sizeof (*reg_info_p));
2288 reg_info_p_size = new_reg_info_p_size;
2289 }
2290 }
2291
2292 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2293 The type of the reference is specified by REF and can be SET,
2294 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2295
2296 static void
2297 sched_analyze_reg (class deps_desc *deps, int regno, machine_mode mode,
2298 enum rtx_code ref, rtx_insn *insn)
2299 {
2300 /* We could emit new pseudos in renaming. Extend the reg structures. */
2301 if (!reload_completed && sel_sched_p ()
2302 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2303 extend_deps_reg_info (deps, regno);
2304
2305 maybe_extend_reg_info_p ();
2306
2307 /* A hard reg in a wide mode may really be multiple registers.
2308 If so, mark all of them just like the first. */
2309 if (regno < FIRST_PSEUDO_REGISTER)
2310 {
2311 int i = hard_regno_nregs (regno, mode);
2312 if (ref == SET)
2313 {
2314 while (--i >= 0)
2315 note_reg_set (regno + i);
2316 }
2317 else if (ref == USE)
2318 {
2319 while (--i >= 0)
2320 note_reg_use (regno + i);
2321 }
2322 else
2323 {
2324 while (--i >= 0)
2325 note_reg_clobber (regno + i);
2326 }
2327 }
2328
2329 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2330 it does not reload. Ignore these as they have served their
2331 purpose already. */
2332 else if (regno >= deps->max_reg)
2333 {
2334 enum rtx_code code = GET_CODE (PATTERN (insn));
2335 gcc_assert (code == USE || code == CLOBBER);
2336 }
2337
2338 else
2339 {
2340 if (ref == SET)
2341 note_reg_set (regno);
2342 else if (ref == USE)
2343 note_reg_use (regno);
2344 else
2345 note_reg_clobber (regno);
2346
2347 /* Pseudos that are REG_EQUIV to something may be replaced
2348 by that during reloading. We need only add dependencies for
2349 the address in the REG_EQUIV note. */
2350 if (!reload_completed && get_reg_known_equiv_p (regno))
2351 {
2352 rtx t = get_reg_known_value (regno);
2353 if (MEM_P (t))
2354 sched_analyze_2 (deps, XEXP (t, 0), insn);
2355 }
2356
2357 /* Don't let it cross a call after scheduling if it doesn't
2358 already cross one. */
2359 if (REG_N_CALLS_CROSSED (regno) == 0)
2360 {
2361 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2362 deps->sched_before_next_call
2363 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2364 else
2365 add_dependence_list (insn, deps->last_function_call, 1,
2366 REG_DEP_ANTI, false);
2367 }
2368 }
2369 }
2370
2371 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2372 rtx, X, creating all dependencies generated by the write to the
2373 destination of X, and reads of everything mentioned. */
2374
2375 static void
2376 sched_analyze_1 (class deps_desc *deps, rtx x, rtx_insn *insn)
2377 {
2378 rtx dest = XEXP (x, 0);
2379 enum rtx_code code = GET_CODE (x);
2380 bool cslr_p = can_start_lhs_rhs_p;
2381
2382 can_start_lhs_rhs_p = false;
2383
2384 gcc_assert (dest);
2385 if (dest == 0)
2386 return;
2387
2388 if (cslr_p && sched_deps_info->start_lhs)
2389 sched_deps_info->start_lhs (dest);
2390
2391 if (GET_CODE (dest) == PARALLEL)
2392 {
2393 int i;
2394
2395 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2396 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2397 sched_analyze_1 (deps,
2398 gen_rtx_CLOBBER (VOIDmode,
2399 XEXP (XVECEXP (dest, 0, i), 0)),
2400 insn);
2401
2402 if (cslr_p && sched_deps_info->finish_lhs)
2403 sched_deps_info->finish_lhs ();
2404
2405 if (code == SET)
2406 {
2407 can_start_lhs_rhs_p = cslr_p;
2408
2409 sched_analyze_2 (deps, SET_SRC (x), insn);
2410
2411 can_start_lhs_rhs_p = false;
2412 }
2413
2414 return;
2415 }
2416
2417 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2418 || GET_CODE (dest) == ZERO_EXTRACT)
2419 {
2420 if (GET_CODE (dest) == STRICT_LOW_PART
2421 || GET_CODE (dest) == ZERO_EXTRACT
2422 || read_modify_subreg_p (dest))
2423 {
2424 /* These both read and modify the result. We must handle
2425 them as writes to get proper dependencies for following
2426 instructions. We must handle them as reads to get proper
2427 dependencies from this to previous instructions.
2428 Thus we need to call sched_analyze_2. */
2429
2430 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2431 }
2432 if (GET_CODE (dest) == ZERO_EXTRACT)
2433 {
2434 /* The second and third arguments are values read by this insn. */
2435 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2436 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2437 }
2438 dest = XEXP (dest, 0);
2439 }
2440
2441 if (REG_P (dest))
2442 {
2443 int regno = REGNO (dest);
2444 machine_mode mode = GET_MODE (dest);
2445
2446 sched_analyze_reg (deps, regno, mode, code, insn);
2447
2448 #ifdef STACK_REGS
2449 /* Treat all writes to a stack register as modifying the TOS. */
2450 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2451 {
2452 /* Avoid analyzing the same register twice. */
2453 if (regno != FIRST_STACK_REG)
2454 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2455
2456 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2457 FIRST_STACK_REG);
2458 }
2459 #endif
2460 }
2461 else if (MEM_P (dest))
2462 {
2463 /* Writing memory. */
2464 rtx t = dest;
2465
2466 if (sched_deps_info->use_cselib)
2467 {
2468 machine_mode address_mode = get_address_mode (dest);
2469
2470 t = shallow_copy_rtx (dest);
2471 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2472 GET_MODE (t), insn);
2473 XEXP (t, 0)
2474 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2475 insn);
2476 }
2477 t = canon_rtx (t);
2478
2479 /* Pending lists can't get larger with a readonly context. */
2480 if (!deps->readonly
2481 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2482 >= param_max_pending_list_length))
2483 {
2484 /* Flush all pending reads and writes to prevent the pending lists
2485 from getting any larger. Insn scheduling runs too slowly when
2486 these lists get long. When compiling GCC with itself,
2487 this flush occurs 8 times for sparc, and 10 times for m88k using
2488 the default value of 32. */
2489 flush_pending_lists (deps, insn, false, true);
2490 }
2491 else
2492 {
2493 rtx_insn_list *pending;
2494 rtx_expr_list *pending_mem;
2495
2496 pending = deps->pending_read_insns;
2497 pending_mem = deps->pending_read_mems;
2498 while (pending)
2499 {
2500 if (anti_dependence (pending_mem->element (), t)
2501 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2502 note_mem_dep (t, pending_mem->element (), pending->insn (),
2503 DEP_ANTI);
2504
2505 pending = pending->next ();
2506 pending_mem = pending_mem->next ();
2507 }
2508
2509 pending = deps->pending_write_insns;
2510 pending_mem = deps->pending_write_mems;
2511 while (pending)
2512 {
2513 if (output_dependence (pending_mem->element (), t)
2514 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
2515 note_mem_dep (t, pending_mem->element (),
2516 pending->insn (),
2517 DEP_OUTPUT);
2518
2519 pending = pending->next ();
2520 pending_mem = pending_mem-> next ();
2521 }
2522
2523 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2524 REG_DEP_ANTI, true);
2525 add_dependence_list (insn, deps->pending_jump_insns, 1,
2526 REG_DEP_CONTROL, true);
2527
2528 if (!deps->readonly)
2529 add_insn_mem_dependence (deps, false, insn, dest);
2530 }
2531 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2532 }
2533
2534 if (cslr_p && sched_deps_info->finish_lhs)
2535 sched_deps_info->finish_lhs ();
2536
2537 /* Analyze reads. */
2538 if (GET_CODE (x) == SET)
2539 {
2540 can_start_lhs_rhs_p = cslr_p;
2541
2542 sched_analyze_2 (deps, SET_SRC (x), insn);
2543
2544 can_start_lhs_rhs_p = false;
2545 }
2546 }
2547
2548 /* Analyze the uses of memory and registers in rtx X in INSN. */
2549 static void
2550 sched_analyze_2 (class deps_desc *deps, rtx x, rtx_insn *insn)
2551 {
2552 int i;
2553 int j;
2554 enum rtx_code code;
2555 const char *fmt;
2556 bool cslr_p = can_start_lhs_rhs_p;
2557
2558 can_start_lhs_rhs_p = false;
2559
2560 gcc_assert (x);
2561 if (x == 0)
2562 return;
2563
2564 if (cslr_p && sched_deps_info->start_rhs)
2565 sched_deps_info->start_rhs (x);
2566
2567 code = GET_CODE (x);
2568
2569 switch (code)
2570 {
2571 CASE_CONST_ANY:
2572 case SYMBOL_REF:
2573 case CONST:
2574 case LABEL_REF:
2575 /* Ignore constants. */
2576 if (cslr_p && sched_deps_info->finish_rhs)
2577 sched_deps_info->finish_rhs ();
2578
2579 return;
2580
2581 case CC0:
2582 if (!HAVE_cc0)
2583 gcc_unreachable ();
2584
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2590
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2593
2594 return;
2595
2596 case REG:
2597 {
2598 int regno = REGNO (x);
2599 machine_mode mode = GET_MODE (x);
2600
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2602
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2606 {
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2611 }
2612 #endif
2613
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2616
2617 return;
2618 }
2619
2620 case MEM:
2621 {
2622 /* Reading memory. */
2623 rtx_insn_list *u;
2624 rtx_insn_list *pending;
2625 rtx_expr_list *pending_mem;
2626 rtx t = x;
2627
2628 if (sched_deps_info->use_cselib)
2629 {
2630 machine_mode address_mode = get_address_mode (t);
2631
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2638 }
2639
2640 if (!DEBUG_INSN_P (insn))
2641 {
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2646 {
2647 if (read_dependence (pending_mem->element (), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 pending->insn ()))
2650 note_mem_dep (t, pending_mem->element (),
2651 pending->insn (),
2652 DEP_ANTI);
2653
2654 pending = pending->next ();
2655 pending_mem = pending_mem->next ();
2656 }
2657
2658 pending = deps->pending_write_insns;
2659 pending_mem = deps->pending_write_mems;
2660 while (pending)
2661 {
2662 if (true_dependence (pending_mem->element (), VOIDmode, t)
2663 && ! sched_insns_conditions_mutex_p (insn,
2664 pending->insn ()))
2665 note_mem_dep (t, pending_mem->element (),
2666 pending->insn (),
2667 sched_deps_info->generate_spec_deps
2668 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2669
2670 pending = pending->next ();
2671 pending_mem = pending_mem->next ();
2672 }
2673
2674 for (u = deps->last_pending_memory_flush; u; u = u->next ())
2675 add_dependence (insn, u->insn (), REG_DEP_ANTI);
2676
2677 for (u = deps->pending_jump_insns; u; u = u->next ())
2678 if (deps_may_trap_p (x))
2679 {
2680 if ((sched_deps_info->generate_spec_deps)
2681 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2682 {
2683 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2684 MAX_DEP_WEAK);
2685
2686 note_dep (u->insn (), ds);
2687 }
2688 else
2689 add_dependence (insn, u->insn (), REG_DEP_CONTROL);
2690 }
2691 }
2692
2693 /* Always add these dependencies to pending_reads, since
2694 this insn may be followed by a write. */
2695 if (!deps->readonly)
2696 {
2697 if ((deps->pending_read_list_length
2698 + deps->pending_write_list_length)
2699 >= param_max_pending_list_length
2700 && !DEBUG_INSN_P (insn))
2701 flush_pending_lists (deps, insn, true, true);
2702 add_insn_mem_dependence (deps, true, insn, x);
2703 }
2704
2705 sched_analyze_2 (deps, XEXP (x, 0), insn);
2706
2707 if (cslr_p && sched_deps_info->finish_rhs)
2708 sched_deps_info->finish_rhs ();
2709
2710 return;
2711 }
2712
2713 /* Force pending stores to memory in case a trap handler needs them.
2714 Also force pending loads from memory; loads and stores can segfault
2715 and the signal handler won't be triggered if the trap insn was moved
2716 above load or store insn. */
2717 case TRAP_IF:
2718 flush_pending_lists (deps, insn, true, true);
2719 break;
2720
2721 case PREFETCH:
2722 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2723 reg_pending_barrier = TRUE_BARRIER;
2724 /* Prefetch insn contains addresses only. So if the prefetch
2725 address has no registers, there will be no dependencies on
2726 the prefetch insn. This is wrong with result code
2727 correctness point of view as such prefetch can be moved below
2728 a jump insn which usually generates MOVE_BARRIER preventing
2729 to move insns containing registers or memories through the
2730 barrier. It is also wrong with generated code performance
2731 point of view as prefetch withouth dependecies will have a
2732 tendency to be issued later instead of earlier. It is hard
2733 to generate accurate dependencies for prefetch insns as
2734 prefetch has only the start address but it is better to have
2735 something than nothing. */
2736 if (!deps->readonly)
2737 {
2738 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2739 if (sched_deps_info->use_cselib)
2740 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2741 add_insn_mem_dependence (deps, true, insn, x);
2742 }
2743 break;
2744
2745 case UNSPEC_VOLATILE:
2746 flush_pending_lists (deps, insn, true, true);
2747 /* FALLTHRU */
2748
2749 case ASM_OPERANDS:
2750 case ASM_INPUT:
2751 {
2752 /* Traditional and volatile asm instructions must be considered to use
2753 and clobber all hard registers, all pseudo-registers and all of
2754 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2755
2756 Consider for instance a volatile asm that changes the fpu rounding
2757 mode. An insn should not be moved across this even if it only uses
2758 pseudo-regs because it might give an incorrectly rounded result. */
2759 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2760 && !DEBUG_INSN_P (insn))
2761 reg_pending_barrier = TRUE_BARRIER;
2762
2763 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2764 We cannot just fall through here since then we would be confused
2765 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2766 traditional asms unlike their normal usage. */
2767
2768 if (code == ASM_OPERANDS)
2769 {
2770 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2771 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2772
2773 if (cslr_p && sched_deps_info->finish_rhs)
2774 sched_deps_info->finish_rhs ();
2775
2776 return;
2777 }
2778 break;
2779 }
2780
2781 case PRE_DEC:
2782 case POST_DEC:
2783 case PRE_INC:
2784 case POST_INC:
2785 /* These both read and modify the result. We must handle them as writes
2786 to get proper dependencies for following instructions. We must handle
2787 them as reads to get proper dependencies from this to previous
2788 instructions. Thus we need to pass them to both sched_analyze_1
2789 and sched_analyze_2. We must call sched_analyze_2 first in order
2790 to get the proper antecedent for the read. */
2791 sched_analyze_2 (deps, XEXP (x, 0), insn);
2792 sched_analyze_1 (deps, x, insn);
2793
2794 if (cslr_p && sched_deps_info->finish_rhs)
2795 sched_deps_info->finish_rhs ();
2796
2797 return;
2798
2799 case POST_MODIFY:
2800 case PRE_MODIFY:
2801 /* op0 = op0 + op1 */
2802 sched_analyze_2 (deps, XEXP (x, 0), insn);
2803 sched_analyze_2 (deps, XEXP (x, 1), insn);
2804 sched_analyze_1 (deps, x, insn);
2805
2806 if (cslr_p && sched_deps_info->finish_rhs)
2807 sched_deps_info->finish_rhs ();
2808
2809 return;
2810
2811 default:
2812 break;
2813 }
2814
2815 /* Other cases: walk the insn. */
2816 fmt = GET_RTX_FORMAT (code);
2817 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2818 {
2819 if (fmt[i] == 'e')
2820 sched_analyze_2 (deps, XEXP (x, i), insn);
2821 else if (fmt[i] == 'E')
2822 for (j = 0; j < XVECLEN (x, i); j++)
2823 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2824 }
2825
2826 if (cslr_p && sched_deps_info->finish_rhs)
2827 sched_deps_info->finish_rhs ();
2828 }
2829
2830 /* Try to group two fusible insns together to prevent scheduler
2831 from scheduling them apart. */
2832
2833 static void
2834 sched_macro_fuse_insns (rtx_insn *insn)
2835 {
2836 rtx_insn *prev;
2837 /* No target hook would return true for debug insn as any of the
2838 hook operand, and with very large sequences of only debug insns
2839 where on each we call sched_macro_fuse_insns it has quadratic
2840 compile time complexity. */
2841 if (DEBUG_INSN_P (insn))
2842 return;
2843 prev = prev_nonnote_nondebug_insn (insn);
2844 if (!prev)
2845 return;
2846
2847 if (any_condjump_p (insn))
2848 {
2849 unsigned int condreg1, condreg2;
2850 rtx cc_reg_1;
2851 if (targetm.fixed_condition_code_regs (&condreg1, &condreg2))
2852 {
2853 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2854 if (reg_referenced_p (cc_reg_1, PATTERN (insn))
2855 && modified_in_p (cc_reg_1, prev))
2856 {
2857 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2858 SCHED_GROUP_P (insn) = 1;
2859 return;
2860 }
2861 }
2862 }
2863
2864 if (single_set (insn) && single_set (prev))
2865 {
2866 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2867 SCHED_GROUP_P (insn) = 1;
2868 }
2869 }
2870
2871 /* Get the implicit reg pending clobbers for INSN and save them in TEMP. */
2872 void
2873 get_implicit_reg_pending_clobbers (HARD_REG_SET *temp, rtx_insn *insn)
2874 {
2875 extract_insn (insn);
2876 preprocess_constraints (insn);
2877 alternative_mask preferred = get_preferred_alternatives (insn);
2878 ira_implicitly_set_insn_hard_regs (temp, preferred);
2879 *temp &= ~ira_no_alloc_regs;
2880 }
2881
2882 /* Analyze an INSN with pattern X to find all dependencies. */
2883 static void
2884 sched_analyze_insn (class deps_desc *deps, rtx x, rtx_insn *insn)
2885 {
2886 RTX_CODE code = GET_CODE (x);
2887 rtx link;
2888 unsigned i;
2889 reg_set_iterator rsi;
2890
2891 if (! reload_completed)
2892 {
2893 HARD_REG_SET temp;
2894 get_implicit_reg_pending_clobbers (&temp, insn);
2895 implicit_reg_pending_clobbers |= temp;
2896 }
2897
2898 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2899 && code == SET);
2900
2901 /* Group compare and branch insns for macro-fusion. */
2902 if (!deps->readonly
2903 && targetm.sched.macro_fusion_p
2904 && targetm.sched.macro_fusion_p ())
2905 sched_macro_fuse_insns (insn);
2906
2907 if (may_trap_p (x))
2908 /* Avoid moving trapping instructions across function calls that might
2909 not always return. */
2910 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2911 1, REG_DEP_ANTI, true);
2912
2913 /* We must avoid creating a situation in which two successors of the
2914 current block have different unwind info after scheduling. If at any
2915 point the two paths re-join this leads to incorrect unwind info. */
2916 /* ??? There are certain situations involving a forced frame pointer in
2917 which, with extra effort, we could fix up the unwind info at a later
2918 CFG join. However, it seems better to notice these cases earlier
2919 during prologue generation and avoid marking the frame pointer setup
2920 as frame-related at all. */
2921 if (RTX_FRAME_RELATED_P (insn))
2922 {
2923 /* Make sure prologue insn is scheduled before next jump. */
2924 deps->sched_before_next_jump
2925 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2926
2927 /* Make sure epilogue insn is scheduled after preceding jumps. */
2928 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2929 REG_DEP_ANTI, true);
2930 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2931 true);
2932 }
2933
2934 if (code == COND_EXEC)
2935 {
2936 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2937
2938 /* ??? Should be recording conditions so we reduce the number of
2939 false dependencies. */
2940 x = COND_EXEC_CODE (x);
2941 code = GET_CODE (x);
2942 }
2943 if (code == SET || code == CLOBBER)
2944 {
2945 sched_analyze_1 (deps, x, insn);
2946
2947 /* Bare clobber insns are used for letting life analysis, reg-stack
2948 and others know that a value is dead. Depend on the last call
2949 instruction so that reg-stack won't get confused. */
2950 if (code == CLOBBER)
2951 add_dependence_list (insn, deps->last_function_call, 1,
2952 REG_DEP_OUTPUT, true);
2953 }
2954 else if (code == PARALLEL)
2955 {
2956 for (i = XVECLEN (x, 0); i--;)
2957 {
2958 rtx sub = XVECEXP (x, 0, i);
2959 code = GET_CODE (sub);
2960
2961 if (code == COND_EXEC)
2962 {
2963 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2964 sub = COND_EXEC_CODE (sub);
2965 code = GET_CODE (sub);
2966 }
2967 else if (code == SET || code == CLOBBER)
2968 sched_analyze_1 (deps, sub, insn);
2969 else
2970 sched_analyze_2 (deps, sub, insn);
2971 }
2972 }
2973 else
2974 sched_analyze_2 (deps, x, insn);
2975
2976 /* Mark registers CLOBBERED or used by called function. */
2977 if (CALL_P (insn))
2978 {
2979 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2980 {
2981 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2982 sched_analyze_1 (deps, XEXP (link, 0), insn);
2983 else if (GET_CODE (XEXP (link, 0)) != SET)
2984 sched_analyze_2 (deps, XEXP (link, 0), insn);
2985 }
2986 /* Don't schedule anything after a tail call, tail call needs
2987 to use at least all call-saved registers. */
2988 if (SIBLING_CALL_P (insn))
2989 reg_pending_barrier = TRUE_BARRIER;
2990 else if (find_reg_note (insn, REG_SETJMP, NULL))
2991 reg_pending_barrier = MOVE_BARRIER;
2992 }
2993
2994 if (JUMP_P (insn))
2995 {
2996 rtx_insn *next = next_nonnote_nondebug_insn (insn);
2997 /* ??? For tablejumps, the barrier may appear not immediately after
2998 the jump, but after a label and a jump_table_data insn. */
2999 if (next && LABEL_P (next) && NEXT_INSN (next)
3000 && JUMP_TABLE_DATA_P (NEXT_INSN (next)))
3001 next = NEXT_INSN (NEXT_INSN (next));
3002 if (next && BARRIER_P (next))
3003 reg_pending_barrier = MOVE_BARRIER;
3004 else
3005 {
3006 rtx_insn_list *pending;
3007 rtx_expr_list *pending_mem;
3008
3009 if (sched_deps_info->compute_jump_reg_dependencies)
3010 {
3011 (*sched_deps_info->compute_jump_reg_dependencies)
3012 (insn, reg_pending_control_uses);
3013
3014 /* Make latency of jump equal to 0 by using anti-dependence. */
3015 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3016 {
3017 struct deps_reg *reg_last = &deps->reg_last[i];
3018 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
3019 false);
3020 add_dependence_list (insn, reg_last->implicit_sets,
3021 0, REG_DEP_ANTI, false);
3022 add_dependence_list (insn, reg_last->clobbers, 0,
3023 REG_DEP_ANTI, false);
3024 }
3025 }
3026
3027 /* All memory writes and volatile reads must happen before the
3028 jump. Non-volatile reads must happen before the jump iff
3029 the result is needed by the above register used mask. */
3030
3031 pending = deps->pending_write_insns;
3032 pending_mem = deps->pending_write_mems;
3033 while (pending)
3034 {
3035 if (! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3036 add_dependence (insn, pending->insn (),
3037 REG_DEP_OUTPUT);
3038 pending = pending->next ();
3039 pending_mem = pending_mem->next ();
3040 }
3041
3042 pending = deps->pending_read_insns;
3043 pending_mem = deps->pending_read_mems;
3044 while (pending)
3045 {
3046 if (MEM_VOLATILE_P (pending_mem->element ())
3047 && ! sched_insns_conditions_mutex_p (insn, pending->insn ()))
3048 add_dependence (insn, pending->insn (),
3049 REG_DEP_OUTPUT);
3050 pending = pending->next ();
3051 pending_mem = pending_mem->next ();
3052 }
3053
3054 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3055 REG_DEP_ANTI, true);
3056 add_dependence_list (insn, deps->pending_jump_insns, 1,
3057 REG_DEP_ANTI, true);
3058 }
3059 }
3060
3061 /* If this instruction can throw an exception, then moving it changes
3062 where block boundaries fall. This is mighty confusing elsewhere.
3063 Therefore, prevent such an instruction from being moved. Same for
3064 non-jump instructions that define block boundaries.
3065 ??? Unclear whether this is still necessary in EBB mode. If not,
3066 add_branch_dependences should be adjusted for RGN mode instead. */
3067 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3068 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3069 reg_pending_barrier = MOVE_BARRIER;
3070
3071 if (sched_pressure != SCHED_PRESSURE_NONE)
3072 {
3073 setup_insn_reg_uses (deps, insn);
3074 init_insn_reg_pressure_info (insn);
3075 }
3076
3077 /* Add register dependencies for insn. */
3078 if (DEBUG_INSN_P (insn))
3079 {
3080 rtx_insn *prev = deps->last_debug_insn;
3081 rtx_insn_list *u;
3082
3083 if (!deps->readonly)
3084 deps->last_debug_insn = insn;
3085
3086 if (prev)
3087 add_dependence (insn, prev, REG_DEP_ANTI);
3088
3089 add_dependence_list (insn, deps->last_function_call, 1,
3090 REG_DEP_ANTI, false);
3091
3092 if (!sel_sched_p ())
3093 for (u = deps->last_pending_memory_flush; u; u = u->next ())
3094 add_dependence (insn, u->insn (), REG_DEP_ANTI);
3095
3096 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3097 {
3098 struct deps_reg *reg_last = &deps->reg_last[i];
3099 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3100 /* There's no point in making REG_DEP_CONTROL dependencies for
3101 debug insns. */
3102 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3103 false);
3104
3105 if (!deps->readonly)
3106 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3107 }
3108 CLEAR_REG_SET (reg_pending_uses);
3109
3110 /* Quite often, a debug insn will refer to stuff in the
3111 previous instruction, but the reason we want this
3112 dependency here is to make sure the scheduler doesn't
3113 gratuitously move a debug insn ahead. This could dirty
3114 DF flags and cause additional analysis that wouldn't have
3115 occurred in compilation without debug insns, and such
3116 additional analysis can modify the generated code. */
3117 prev = PREV_INSN (insn);
3118
3119 if (prev && NONDEBUG_INSN_P (prev))
3120 add_dependence (insn, prev, REG_DEP_ANTI);
3121 }
3122 else
3123 {
3124 regset_head set_or_clobbered;
3125
3126 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3127 {
3128 struct deps_reg *reg_last = &deps->reg_last[i];
3129 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3130 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3131 false);
3132 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3133 false);
3134
3135 if (!deps->readonly)
3136 {
3137 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3138 reg_last->uses_length++;
3139 }
3140 }
3141
3142 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3143 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3144 {
3145 struct deps_reg *reg_last = &deps->reg_last[i];
3146 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3147 add_dependence_list (insn, reg_last->implicit_sets, 0,
3148 REG_DEP_ANTI, false);
3149 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3150 false);
3151
3152 if (!deps->readonly)
3153 {
3154 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3155 reg_last->uses_length++;
3156 }
3157 }
3158
3159 if (targetm.sched.exposed_pipeline)
3160 {
3161 INIT_REG_SET (&set_or_clobbered);
3162 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3163 reg_pending_sets);
3164 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3165 {
3166 struct deps_reg *reg_last = &deps->reg_last[i];
3167 rtx list;
3168 for (list = reg_last->uses; list; list = XEXP (list, 1))
3169 {
3170 rtx other = XEXP (list, 0);
3171 if (INSN_CACHED_COND (other) != const_true_rtx
3172 && refers_to_regno_p (i, INSN_CACHED_COND (other)))
3173 INSN_CACHED_COND (other) = const_true_rtx;
3174 }
3175 }
3176 }
3177
3178 /* If the current insn is conditional, we can't free any
3179 of the lists. */
3180 if (sched_has_condition_p (insn))
3181 {
3182 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3183 {
3184 struct deps_reg *reg_last = &deps->reg_last[i];
3185 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3186 false);
3187 add_dependence_list (insn, reg_last->implicit_sets, 0,
3188 REG_DEP_ANTI, false);
3189 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3190 false);
3191 add_dependence_list (insn, reg_last->control_uses, 0,
3192 REG_DEP_CONTROL, false);
3193
3194 if (!deps->readonly)
3195 {
3196 reg_last->clobbers
3197 = alloc_INSN_LIST (insn, reg_last->clobbers);
3198 reg_last->clobbers_length++;
3199 }
3200 }
3201 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3202 {
3203 struct deps_reg *reg_last = &deps->reg_last[i];
3204 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3205 false);
3206 add_dependence_list (insn, reg_last->implicit_sets, 0,
3207 REG_DEP_ANTI, false);
3208 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3209 false);
3210 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3211 false);
3212 add_dependence_list (insn, reg_last->control_uses, 0,
3213 REG_DEP_CONTROL, false);
3214
3215 if (!deps->readonly)
3216 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3217 }
3218 }
3219 else
3220 {
3221 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3222 {
3223 struct deps_reg *reg_last = &deps->reg_last[i];
3224 if (reg_last->uses_length >= param_max_pending_list_length
3225 || reg_last->clobbers_length >= param_max_pending_list_length)
3226 {
3227 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3228 REG_DEP_OUTPUT, false);
3229 add_dependence_list_and_free (deps, insn,
3230 &reg_last->implicit_sets, 0,
3231 REG_DEP_ANTI, false);
3232 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3233 REG_DEP_ANTI, false);
3234 add_dependence_list_and_free (deps, insn,
3235 &reg_last->control_uses, 0,
3236 REG_DEP_ANTI, false);
3237 add_dependence_list_and_free (deps, insn,
3238 &reg_last->clobbers, 0,
3239 REG_DEP_OUTPUT, false);
3240
3241 if (!deps->readonly)
3242 {
3243 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3244 reg_last->clobbers_length = 0;
3245 reg_last->uses_length = 0;
3246 }
3247 }
3248 else
3249 {
3250 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3251 false);
3252 add_dependence_list (insn, reg_last->implicit_sets, 0,
3253 REG_DEP_ANTI, false);
3254 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3255 false);
3256 add_dependence_list (insn, reg_last->control_uses, 0,
3257 REG_DEP_CONTROL, false);
3258 }
3259
3260 if (!deps->readonly)
3261 {
3262 reg_last->clobbers_length++;
3263 reg_last->clobbers
3264 = alloc_INSN_LIST (insn, reg_last->clobbers);
3265 }
3266 }
3267 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3268 {
3269 struct deps_reg *reg_last = &deps->reg_last[i];
3270
3271 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3272 REG_DEP_OUTPUT, false);
3273 add_dependence_list_and_free (deps, insn,
3274 &reg_last->implicit_sets,
3275 0, REG_DEP_ANTI, false);
3276 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3277 REG_DEP_OUTPUT, false);
3278 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3279 REG_DEP_ANTI, false);
3280 add_dependence_list (insn, reg_last->control_uses, 0,
3281 REG_DEP_CONTROL, false);
3282
3283 if (!deps->readonly)
3284 {
3285 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3286 reg_last->uses_length = 0;
3287 reg_last->clobbers_length = 0;
3288 }
3289 }
3290 }
3291 if (!deps->readonly)
3292 {
3293 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3294 {
3295 struct deps_reg *reg_last = &deps->reg_last[i];
3296 reg_last->control_uses
3297 = alloc_INSN_LIST (insn, reg_last->control_uses);
3298 }
3299 }
3300 }
3301
3302 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3303 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3304 {
3305 struct deps_reg *reg_last = &deps->reg_last[i];
3306 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3307 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3308 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3309 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3310 false);
3311
3312 if (!deps->readonly)
3313 reg_last->implicit_sets
3314 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3315 }
3316
3317 if (!deps->readonly)
3318 {
3319 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3320 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3321 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3322 IOR_REG_SET_HRS (&deps->reg_last_in_use,
3323 implicit_reg_pending_uses
3324 | implicit_reg_pending_clobbers);
3325
3326 /* Set up the pending barrier found. */
3327 deps->last_reg_pending_barrier = reg_pending_barrier;
3328 }
3329
3330 CLEAR_REG_SET (reg_pending_uses);
3331 CLEAR_REG_SET (reg_pending_clobbers);
3332 CLEAR_REG_SET (reg_pending_sets);
3333 CLEAR_REG_SET (reg_pending_control_uses);
3334 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3335 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3336
3337 /* Add dependencies if a scheduling barrier was found. */
3338 if (reg_pending_barrier)
3339 {
3340 /* In the case of barrier the most added dependencies are not
3341 real, so we use anti-dependence here. */
3342 if (sched_has_condition_p (insn))
3343 {
3344 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3345 {
3346 struct deps_reg *reg_last = &deps->reg_last[i];
3347 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3348 true);
3349 add_dependence_list (insn, reg_last->sets, 0,
3350 reg_pending_barrier == TRUE_BARRIER
3351 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3352 add_dependence_list (insn, reg_last->implicit_sets, 0,
3353 REG_DEP_ANTI, true);
3354 add_dependence_list (insn, reg_last->clobbers, 0,
3355 reg_pending_barrier == TRUE_BARRIER
3356 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3357 }
3358 }
3359 else
3360 {
3361 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3362 {
3363 struct deps_reg *reg_last = &deps->reg_last[i];
3364 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3365 REG_DEP_ANTI, true);
3366 add_dependence_list_and_free (deps, insn,
3367 &reg_last->control_uses, 0,
3368 REG_DEP_CONTROL, true);
3369 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3370 reg_pending_barrier == TRUE_BARRIER
3371 ? REG_DEP_TRUE : REG_DEP_ANTI,
3372 true);
3373 add_dependence_list_and_free (deps, insn,
3374 &reg_last->implicit_sets, 0,
3375 REG_DEP_ANTI, true);
3376 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3377 reg_pending_barrier == TRUE_BARRIER
3378 ? REG_DEP_TRUE : REG_DEP_ANTI,
3379 true);
3380
3381 if (!deps->readonly)
3382 {
3383 reg_last->uses_length = 0;
3384 reg_last->clobbers_length = 0;
3385 }
3386 }
3387 }
3388
3389 if (!deps->readonly)
3390 for (i = 0; i < (unsigned)deps->max_reg; i++)
3391 {
3392 struct deps_reg *reg_last = &deps->reg_last[i];
3393 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3394 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3395 }
3396
3397 /* Don't flush pending lists on speculative checks for
3398 selective scheduling. */
3399 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3400 flush_pending_lists (deps, insn, true, true);
3401
3402 reg_pending_barrier = NOT_A_BARRIER;
3403 }
3404
3405 /* If a post-call group is still open, see if it should remain so.
3406 This insn must be a simple move of a hard reg to a pseudo or
3407 vice-versa.
3408
3409 We must avoid moving these insns for correctness on targets
3410 with small register classes, and for special registers like
3411 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3412 hard regs for all targets. */
3413
3414 if (deps->in_post_call_group_p)
3415 {
3416 rtx tmp, set = single_set (insn);
3417 int src_regno, dest_regno;
3418
3419 if (set == NULL)
3420 {
3421 if (DEBUG_INSN_P (insn))
3422 /* We don't want to mark debug insns as part of the same
3423 sched group. We know they really aren't, but if we use
3424 debug insns to tell that a call group is over, we'll
3425 get different code if debug insns are not there and
3426 instructions that follow seem like they should be part
3427 of the call group.
3428
3429 Also, if we did, chain_to_prev_insn would move the
3430 deps of the debug insn to the call insn, modifying
3431 non-debug post-dependency counts of the debug insn
3432 dependencies and otherwise messing with the scheduling
3433 order.
3434
3435 Instead, let such debug insns be scheduled freely, but
3436 keep the call group open in case there are insns that
3437 should be part of it afterwards. Since we grant debug
3438 insns higher priority than even sched group insns, it
3439 will all turn out all right. */
3440 goto debug_dont_end_call_group;
3441 else
3442 goto end_call_group;
3443 }
3444
3445 tmp = SET_DEST (set);
3446 if (GET_CODE (tmp) == SUBREG)
3447 tmp = SUBREG_REG (tmp);
3448 if (REG_P (tmp))
3449 dest_regno = REGNO (tmp);
3450 else
3451 goto end_call_group;
3452
3453 tmp = SET_SRC (set);
3454 if (GET_CODE (tmp) == SUBREG)
3455 tmp = SUBREG_REG (tmp);
3456 if ((GET_CODE (tmp) == PLUS
3457 || GET_CODE (tmp) == MINUS)
3458 && REG_P (XEXP (tmp, 0))
3459 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3460 && dest_regno == STACK_POINTER_REGNUM)
3461 src_regno = STACK_POINTER_REGNUM;
3462 else if (REG_P (tmp))
3463 src_regno = REGNO (tmp);
3464 else
3465 goto end_call_group;
3466
3467 if (src_regno < FIRST_PSEUDO_REGISTER
3468 || dest_regno < FIRST_PSEUDO_REGISTER)
3469 {
3470 if (!deps->readonly
3471 && deps->in_post_call_group_p == post_call_initial)
3472 deps->in_post_call_group_p = post_call;
3473
3474 if (!sel_sched_p () || sched_emulate_haifa_p)
3475 {
3476 SCHED_GROUP_P (insn) = 1;
3477 CANT_MOVE (insn) = 1;
3478 }
3479 }
3480 else
3481 {
3482 end_call_group:
3483 if (!deps->readonly)
3484 deps->in_post_call_group_p = not_post_call;
3485 }
3486 }
3487
3488 debug_dont_end_call_group:
3489 if ((current_sched_info->flags & DO_SPECULATION)
3490 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3491 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3492 be speculated. */
3493 {
3494 if (sel_sched_p ())
3495 sel_mark_hard_insn (insn);
3496 else
3497 {
3498 sd_iterator_def sd_it;
3499 dep_t dep;
3500
3501 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3502 sd_iterator_cond (&sd_it, &dep);)
3503 change_spec_dep_to_hard (sd_it);
3504 }
3505 }
3506
3507 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3508 honor their original ordering. */
3509 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3510 {
3511 if (deps->last_args_size)
3512 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3513 if (!deps->readonly)
3514 deps->last_args_size = insn;
3515 }
3516
3517 /* We must not mix prologue and epilogue insns. See PR78029. */
3518 if (prologue_contains (insn))
3519 {
3520 add_dependence_list (insn, deps->last_epilogue, true, REG_DEP_ANTI, true);
3521 if (!deps->readonly)
3522 {
3523 if (deps->last_logue_was_epilogue)
3524 free_INSN_LIST_list (&deps->last_prologue);
3525 deps->last_prologue = alloc_INSN_LIST (insn, deps->last_prologue);
3526 deps->last_logue_was_epilogue = false;
3527 }
3528 }
3529
3530 if (epilogue_contains (insn))
3531 {
3532 add_dependence_list (insn, deps->last_prologue, true, REG_DEP_ANTI, true);
3533 if (!deps->readonly)
3534 {
3535 if (!deps->last_logue_was_epilogue)
3536 free_INSN_LIST_list (&deps->last_epilogue);
3537 deps->last_epilogue = alloc_INSN_LIST (insn, deps->last_epilogue);
3538 deps->last_logue_was_epilogue = true;
3539 }
3540 }
3541 }
3542
3543 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3544 longjmp, loop forever, ...). */
3545 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3546 test for ECF_NORETURN? */
3547 static bool
3548 call_may_noreturn_p (rtx_insn *insn)
3549 {
3550 rtx call;
3551
3552 /* const or pure calls that aren't looping will always return. */
3553 if (RTL_CONST_OR_PURE_CALL_P (insn)
3554 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3555 return false;
3556
3557 call = get_call_rtx_from (insn);
3558 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3559 {
3560 rtx symbol = XEXP (XEXP (call, 0), 0);
3561 if (SYMBOL_REF_DECL (symbol)
3562 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3563 {
3564 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3565 == BUILT_IN_NORMAL)
3566 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3567 {
3568 case BUILT_IN_BCMP:
3569 case BUILT_IN_BCOPY:
3570 case BUILT_IN_BZERO:
3571 case BUILT_IN_INDEX:
3572 case BUILT_IN_MEMCHR:
3573 case BUILT_IN_MEMCMP:
3574 case BUILT_IN_MEMCPY:
3575 case BUILT_IN_MEMMOVE:
3576 case BUILT_IN_MEMPCPY:
3577 case BUILT_IN_MEMSET:
3578 case BUILT_IN_RINDEX:
3579 case BUILT_IN_STPCPY:
3580 case BUILT_IN_STPNCPY:
3581 case BUILT_IN_STRCAT:
3582 case BUILT_IN_STRCHR:
3583 case BUILT_IN_STRCMP:
3584 case BUILT_IN_STRCPY:
3585 case BUILT_IN_STRCSPN:
3586 case BUILT_IN_STRLEN:
3587 case BUILT_IN_STRNCAT:
3588 case BUILT_IN_STRNCMP:
3589 case BUILT_IN_STRNCPY:
3590 case BUILT_IN_STRPBRK:
3591 case BUILT_IN_STRRCHR:
3592 case BUILT_IN_STRSPN:
3593 case BUILT_IN_STRSTR:
3594 /* Assume certain string/memory builtins always return. */
3595 return false;
3596 default:
3597 break;
3598 }
3599 }
3600 }
3601
3602 /* For all other calls assume that they might not always return. */
3603 return true;
3604 }
3605
3606 /* Return true if INSN should be made dependent on the previous instruction
3607 group, and if all INSN's dependencies should be moved to the first
3608 instruction of that group. */
3609
3610 static bool
3611 chain_to_prev_insn_p (rtx_insn *insn)
3612 {
3613 /* INSN forms a group with the previous instruction. */
3614 if (SCHED_GROUP_P (insn))
3615 return true;
3616
3617 /* If the previous instruction clobbers a register R and this one sets
3618 part of R, the clobber was added specifically to help us track the
3619 liveness of R. There's no point scheduling the clobber and leaving
3620 INSN behind, especially if we move the clobber to another block. */
3621 rtx_insn *prev = prev_nonnote_nondebug_insn (insn);
3622 if (prev
3623 && INSN_P (prev)
3624 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3625 && GET_CODE (PATTERN (prev)) == CLOBBER)
3626 {
3627 rtx x = XEXP (PATTERN (prev), 0);
3628 if (set_of (x, insn))
3629 return true;
3630 }
3631
3632 return false;
3633 }
3634
3635 /* Analyze INSN with DEPS as a context. */
3636 void
3637 deps_analyze_insn (class deps_desc *deps, rtx_insn *insn)
3638 {
3639 if (sched_deps_info->start_insn)
3640 sched_deps_info->start_insn (insn);
3641
3642 /* Record the condition for this insn. */
3643 if (NONDEBUG_INSN_P (insn))
3644 {
3645 rtx t;
3646 sched_get_condition_with_rev (insn, NULL);
3647 t = INSN_CACHED_COND (insn);
3648 INSN_COND_DEPS (insn) = NULL;
3649 if (reload_completed
3650 && (current_sched_info->flags & DO_PREDICATION)
3651 && COMPARISON_P (t)
3652 && REG_P (XEXP (t, 0))
3653 && CONSTANT_P (XEXP (t, 1)))
3654 {
3655 unsigned int regno;
3656 int nregs;
3657 rtx_insn_list *cond_deps = NULL;
3658 t = XEXP (t, 0);
3659 regno = REGNO (t);
3660 nregs = REG_NREGS (t);
3661 while (nregs-- > 0)
3662 {
3663 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3664 cond_deps = concat_INSN_LIST (reg_last->sets, cond_deps);
3665 cond_deps = concat_INSN_LIST (reg_last->clobbers, cond_deps);
3666 cond_deps = concat_INSN_LIST (reg_last->implicit_sets, cond_deps);
3667 }
3668 INSN_COND_DEPS (insn) = cond_deps;
3669 }
3670 }
3671
3672 if (JUMP_P (insn))
3673 {
3674 /* Make each JUMP_INSN (but not a speculative check)
3675 a scheduling barrier for memory references. */
3676 if (!deps->readonly
3677 && !(sel_sched_p ()
3678 && sel_insn_is_speculation_check (insn)))
3679 {
3680 /* Keep the list a reasonable size. */
3681 if (deps->pending_flush_length++ >= param_max_pending_list_length)
3682 flush_pending_lists (deps, insn, true, true);
3683 else
3684 deps->pending_jump_insns
3685 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3686 }
3687
3688 /* For each insn which shouldn't cross a jump, add a dependence. */
3689 add_dependence_list_and_free (deps, insn,
3690 &deps->sched_before_next_jump, 1,
3691 REG_DEP_ANTI, true);
3692
3693 sched_analyze_insn (deps, PATTERN (insn), insn);
3694 }
3695 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3696 {
3697 sched_analyze_insn (deps, PATTERN (insn), insn);
3698 }
3699 else if (CALL_P (insn))
3700 {
3701 int i;
3702
3703 CANT_MOVE (insn) = 1;
3704
3705 if (find_reg_note (insn, REG_SETJMP, NULL))
3706 {
3707 /* This is setjmp. Assume that all registers, not just
3708 hard registers, may be clobbered by this call. */
3709 reg_pending_barrier = MOVE_BARRIER;
3710 }
3711 else
3712 {
3713 function_abi callee_abi = insn_callee_abi (insn);
3714 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3715 /* A call may read and modify global register variables. */
3716 if (global_regs[i])
3717 {
3718 SET_REGNO_REG_SET (reg_pending_sets, i);
3719 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3720 }
3721 /* Other call-clobbered hard regs may be clobbered.
3722 Since we only have a choice between 'might be clobbered'
3723 and 'definitely not clobbered', we must include all
3724 partly call-clobbered registers here. */
3725 else if (callee_abi.clobbers_at_least_part_of_reg_p (i))
3726 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3727 /* We don't know what set of fixed registers might be used
3728 by the function, but it is certain that the stack pointer
3729 is among them, but be conservative. */
3730 else if (fixed_regs[i])
3731 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3732 /* The frame pointer is normally not used by the function
3733 itself, but by the debugger. */
3734 /* ??? MIPS o32 is an exception. It uses the frame pointer
3735 in the macro expansion of jal but does not represent this
3736 fact in the call_insn rtl. */
3737 else if (i == FRAME_POINTER_REGNUM
3738 || (i == HARD_FRAME_POINTER_REGNUM
3739 && (! reload_completed || frame_pointer_needed)))
3740 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3741 }
3742
3743 /* For each insn which shouldn't cross a call, add a dependence
3744 between that insn and this call insn. */
3745 add_dependence_list_and_free (deps, insn,
3746 &deps->sched_before_next_call, 1,
3747 REG_DEP_ANTI, true);
3748
3749 sched_analyze_insn (deps, PATTERN (insn), insn);
3750
3751 /* If CALL would be in a sched group, then this will violate
3752 convention that sched group insns have dependencies only on the
3753 previous instruction.
3754
3755 Of course one can say: "Hey! What about head of the sched group?"
3756 And I will answer: "Basic principles (one dep per insn) are always
3757 the same." */
3758 gcc_assert (!SCHED_GROUP_P (insn));
3759
3760 /* In the absence of interprocedural alias analysis, we must flush
3761 all pending reads and writes, and start new dependencies starting
3762 from here. But only flush writes for constant calls (which may
3763 be passed a pointer to something we haven't written yet). */
3764 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3765
3766 if (!deps->readonly)
3767 {
3768 /* Remember the last function call for limiting lifetimes. */
3769 free_INSN_LIST_list (&deps->last_function_call);
3770 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3771
3772 if (call_may_noreturn_p (insn))
3773 {
3774 /* Remember the last function call that might not always return
3775 normally for limiting moves of trapping insns. */
3776 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3777 deps->last_function_call_may_noreturn
3778 = alloc_INSN_LIST (insn, NULL_RTX);
3779 }
3780
3781 /* Before reload, begin a post-call group, so as to keep the
3782 lifetimes of hard registers correct. */
3783 if (! reload_completed)
3784 deps->in_post_call_group_p = post_call;
3785 }
3786 }
3787
3788 if (sched_deps_info->use_cselib)
3789 cselib_process_insn (insn);
3790
3791 if (sched_deps_info->finish_insn)
3792 sched_deps_info->finish_insn ();
3793
3794 /* Fixup the dependencies in the sched group. */
3795 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3796 && chain_to_prev_insn_p (insn)
3797 && !sel_sched_p ())
3798 chain_to_prev_insn (insn);
3799 }
3800
3801 /* Initialize DEPS for the new block beginning with HEAD. */
3802 void
3803 deps_start_bb (class deps_desc *deps, rtx_insn *head)
3804 {
3805 gcc_assert (!deps->readonly);
3806
3807 /* Before reload, if the previous block ended in a call, show that
3808 we are inside a post-call group, so as to keep the lifetimes of
3809 hard registers correct. */
3810 if (! reload_completed && !LABEL_P (head))
3811 {
3812 rtx_insn *insn = prev_nonnote_nondebug_insn (head);
3813
3814 if (insn && CALL_P (insn))
3815 deps->in_post_call_group_p = post_call_initial;
3816 }
3817 }
3818
3819 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3820 dependencies for each insn. */
3821 void
3822 sched_analyze (class deps_desc *deps, rtx_insn *head, rtx_insn *tail)
3823 {
3824 rtx_insn *insn;
3825
3826 if (sched_deps_info->use_cselib)
3827 cselib_init (CSELIB_RECORD_MEMORY);
3828
3829 deps_start_bb (deps, head);
3830
3831 for (insn = head;; insn = NEXT_INSN (insn))
3832 {
3833
3834 if (INSN_P (insn))
3835 {
3836 /* And initialize deps_lists. */
3837 sd_init_insn (insn);
3838 /* Clean up SCHED_GROUP_P which may be set by last
3839 scheduler pass. */
3840 if (SCHED_GROUP_P (insn))
3841 SCHED_GROUP_P (insn) = 0;
3842 }
3843
3844 deps_analyze_insn (deps, insn);
3845
3846 if (insn == tail)
3847 {
3848 if (sched_deps_info->use_cselib)
3849 cselib_finish ();
3850 return;
3851 }
3852 }
3853 gcc_unreachable ();
3854 }
3855
3856 /* Helper for sched_free_deps ().
3857 Delete INSN's (RESOLVED_P) backward dependencies. */
3858 static void
3859 delete_dep_nodes_in_back_deps (rtx_insn *insn, bool resolved_p)
3860 {
3861 sd_iterator_def sd_it;
3862 dep_t dep;
3863 sd_list_types_def types;
3864
3865 if (resolved_p)
3866 types = SD_LIST_RES_BACK;
3867 else
3868 types = SD_LIST_BACK;
3869
3870 for (sd_it = sd_iterator_start (insn, types);
3871 sd_iterator_cond (&sd_it, &dep);)
3872 {
3873 dep_link_t link = *sd_it.linkp;
3874 dep_node_t node = DEP_LINK_NODE (link);
3875 deps_list_t back_list;
3876 deps_list_t forw_list;
3877
3878 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3879 remove_from_deps_list (link, back_list);
3880 delete_dep_node (node);
3881 }
3882 }
3883
3884 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3885 deps_lists. */
3886 void
3887 sched_free_deps (rtx_insn *head, rtx_insn *tail, bool resolved_p)
3888 {
3889 rtx_insn *insn;
3890 rtx_insn *next_tail = NEXT_INSN (tail);
3891
3892 /* We make two passes since some insns may be scheduled before their
3893 dependencies are resolved. */
3894 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3895 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3896 {
3897 /* Clear forward deps and leave the dep_nodes to the
3898 corresponding back_deps list. */
3899 if (resolved_p)
3900 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3901 else
3902 clear_deps_list (INSN_FORW_DEPS (insn));
3903 }
3904 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3905 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3906 {
3907 /* Clear resolved back deps together with its dep_nodes. */
3908 delete_dep_nodes_in_back_deps (insn, resolved_p);
3909
3910 sd_finish_insn (insn);
3911 }
3912 }
3913 \f
3914 /* Initialize variables for region data dependence analysis.
3915 When LAZY_REG_LAST is true, do not allocate reg_last array
3916 of class deps_desc immediately. */
3917
3918 void
3919 init_deps (class deps_desc *deps, bool lazy_reg_last)
3920 {
3921 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3922
3923 deps->max_reg = max_reg;
3924 if (lazy_reg_last)
3925 deps->reg_last = NULL;
3926 else
3927 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3928 INIT_REG_SET (&deps->reg_last_in_use);
3929
3930 deps->pending_read_insns = 0;
3931 deps->pending_read_mems = 0;
3932 deps->pending_write_insns = 0;
3933 deps->pending_write_mems = 0;
3934 deps->pending_jump_insns = 0;
3935 deps->pending_read_list_length = 0;
3936 deps->pending_write_list_length = 0;
3937 deps->pending_flush_length = 0;
3938 deps->last_pending_memory_flush = 0;
3939 deps->last_function_call = 0;
3940 deps->last_function_call_may_noreturn = 0;
3941 deps->sched_before_next_call = 0;
3942 deps->sched_before_next_jump = 0;
3943 deps->in_post_call_group_p = not_post_call;
3944 deps->last_debug_insn = 0;
3945 deps->last_args_size = 0;
3946 deps->last_prologue = 0;
3947 deps->last_epilogue = 0;
3948 deps->last_logue_was_epilogue = false;
3949 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3950 deps->readonly = 0;
3951 }
3952
3953 /* Init only reg_last field of DEPS, which was not allocated before as
3954 we inited DEPS lazily. */
3955 void
3956 init_deps_reg_last (class deps_desc *deps)
3957 {
3958 gcc_assert (deps && deps->max_reg > 0);
3959 gcc_assert (deps->reg_last == NULL);
3960
3961 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3962 }
3963
3964
3965 /* Free insn lists found in DEPS. */
3966
3967 void
3968 free_deps (class deps_desc *deps)
3969 {
3970 unsigned i;
3971 reg_set_iterator rsi;
3972
3973 /* We set max_reg to 0 when this context was already freed. */
3974 if (deps->max_reg == 0)
3975 {
3976 gcc_assert (deps->reg_last == NULL);
3977 return;
3978 }
3979 deps->max_reg = 0;
3980
3981 free_INSN_LIST_list (&deps->pending_read_insns);
3982 free_EXPR_LIST_list (&deps->pending_read_mems);
3983 free_INSN_LIST_list (&deps->pending_write_insns);
3984 free_EXPR_LIST_list (&deps->pending_write_mems);
3985 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3986
3987 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3988 times. For a testcase with 42000 regs and 8000 small basic blocks,
3989 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3990 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3991 {
3992 struct deps_reg *reg_last = &deps->reg_last[i];
3993 if (reg_last->uses)
3994 free_INSN_LIST_list (&reg_last->uses);
3995 if (reg_last->sets)
3996 free_INSN_LIST_list (&reg_last->sets);
3997 if (reg_last->implicit_sets)
3998 free_INSN_LIST_list (&reg_last->implicit_sets);
3999 if (reg_last->control_uses)
4000 free_INSN_LIST_list (&reg_last->control_uses);
4001 if (reg_last->clobbers)
4002 free_INSN_LIST_list (&reg_last->clobbers);
4003 }
4004 CLEAR_REG_SET (&deps->reg_last_in_use);
4005
4006 /* As we initialize reg_last lazily, it is possible that we didn't allocate
4007 it at all. */
4008 free (deps->reg_last);
4009 deps->reg_last = NULL;
4010
4011 deps = NULL;
4012 }
4013
4014 /* Remove INSN from dependence contexts DEPS. */
4015 void
4016 remove_from_deps (class deps_desc *deps, rtx_insn *insn)
4017 {
4018 int removed;
4019 unsigned i;
4020 reg_set_iterator rsi;
4021
4022 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
4023 &deps->pending_read_mems);
4024 if (!DEBUG_INSN_P (insn))
4025 deps->pending_read_list_length -= removed;
4026 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
4027 &deps->pending_write_mems);
4028 deps->pending_write_list_length -= removed;
4029
4030 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
4031 deps->pending_flush_length -= removed;
4032 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
4033 deps->pending_flush_length -= removed;
4034
4035 unsigned to_clear = -1U;
4036 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
4037 {
4038 if (to_clear != -1U)
4039 {
4040 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4041 to_clear = -1U;
4042 }
4043 struct deps_reg *reg_last = &deps->reg_last[i];
4044 if (reg_last->uses)
4045 remove_from_dependence_list (insn, &reg_last->uses);
4046 if (reg_last->sets)
4047 remove_from_dependence_list (insn, &reg_last->sets);
4048 if (reg_last->implicit_sets)
4049 remove_from_dependence_list (insn, &reg_last->implicit_sets);
4050 if (reg_last->clobbers)
4051 remove_from_dependence_list (insn, &reg_last->clobbers);
4052 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
4053 && !reg_last->clobbers)
4054 to_clear = i;
4055 }
4056 if (to_clear != -1U)
4057 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, to_clear);
4058
4059 if (CALL_P (insn))
4060 {
4061 remove_from_dependence_list (insn, &deps->last_function_call);
4062 remove_from_dependence_list (insn,
4063 &deps->last_function_call_may_noreturn);
4064 }
4065 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4066 }
4067
4068 /* Init deps data vector. */
4069 static void
4070 init_deps_data_vector (void)
4071 {
4072 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4073 if (reserve > 0 && ! h_d_i_d.space (reserve))
4074 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4075 }
4076
4077 /* If it is profitable to use them, initialize or extend (depending on
4078 GLOBAL_P) dependency data. */
4079 void
4080 sched_deps_init (bool global_p)
4081 {
4082 /* Average number of insns in the basic block.
4083 '+ 1' is used to make it nonzero. */
4084 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4085
4086 init_deps_data_vector ();
4087
4088 /* We use another caching mechanism for selective scheduling, so
4089 we don't use this one. */
4090 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4091 {
4092 /* ?!? We could save some memory by computing a per-region luid mapping
4093 which could reduce both the number of vectors in the cache and the
4094 size of each vector. Instead we just avoid the cache entirely unless
4095 the average number of instructions in a basic block is very high. See
4096 the comment before the declaration of true_dependency_cache for
4097 what we consider "very high". */
4098 cache_size = 0;
4099 extend_dependency_caches (sched_max_luid, true);
4100 }
4101
4102 if (global_p)
4103 {
4104 dl_pool = new object_allocator<_deps_list> ("deps_list");
4105 /* Allocate lists for one block at a time. */
4106 dn_pool = new object_allocator<_dep_node> ("dep_node");
4107 /* Allocate nodes for one block at a time. */
4108 }
4109 }
4110
4111
4112 /* Create or extend (depending on CREATE_P) dependency caches to
4113 size N. */
4114 void
4115 extend_dependency_caches (int n, bool create_p)
4116 {
4117 if (create_p || true_dependency_cache)
4118 {
4119 int i, luid = cache_size + n;
4120
4121 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4122 luid);
4123 output_dependency_cache = XRESIZEVEC (bitmap_head,
4124 output_dependency_cache, luid);
4125 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4126 luid);
4127 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4128 luid);
4129
4130 if (current_sched_info->flags & DO_SPECULATION)
4131 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4132 luid);
4133
4134 for (i = cache_size; i < luid; i++)
4135 {
4136 bitmap_initialize (&true_dependency_cache[i], 0);
4137 bitmap_initialize (&output_dependency_cache[i], 0);
4138 bitmap_initialize (&anti_dependency_cache[i], 0);
4139 bitmap_initialize (&control_dependency_cache[i], 0);
4140
4141 if (current_sched_info->flags & DO_SPECULATION)
4142 bitmap_initialize (&spec_dependency_cache[i], 0);
4143 }
4144 cache_size = luid;
4145 }
4146 }
4147
4148 /* Finalize dependency information for the whole function. */
4149 void
4150 sched_deps_finish (void)
4151 {
4152 gcc_assert (deps_pools_are_empty_p ());
4153 delete dn_pool;
4154 delete dl_pool;
4155 dn_pool = NULL;
4156 dl_pool = NULL;
4157
4158 h_d_i_d.release ();
4159 cache_size = 0;
4160
4161 if (true_dependency_cache)
4162 {
4163 int i;
4164
4165 for (i = 0; i < cache_size; i++)
4166 {
4167 bitmap_clear (&true_dependency_cache[i]);
4168 bitmap_clear (&output_dependency_cache[i]);
4169 bitmap_clear (&anti_dependency_cache[i]);
4170 bitmap_clear (&control_dependency_cache[i]);
4171
4172 if (sched_deps_info->generate_spec_deps)
4173 bitmap_clear (&spec_dependency_cache[i]);
4174 }
4175 free (true_dependency_cache);
4176 true_dependency_cache = NULL;
4177 free (output_dependency_cache);
4178 output_dependency_cache = NULL;
4179 free (anti_dependency_cache);
4180 anti_dependency_cache = NULL;
4181 free (control_dependency_cache);
4182 control_dependency_cache = NULL;
4183
4184 if (sched_deps_info->generate_spec_deps)
4185 {
4186 free (spec_dependency_cache);
4187 spec_dependency_cache = NULL;
4188 }
4189
4190 }
4191 }
4192
4193 /* Initialize some global variables needed by the dependency analysis
4194 code. */
4195
4196 void
4197 init_deps_global (void)
4198 {
4199 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4200 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4201 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4202 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4203 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4204 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4205 reg_pending_barrier = NOT_A_BARRIER;
4206
4207 if (!sel_sched_p () || sched_emulate_haifa_p)
4208 {
4209 sched_deps_info->start_insn = haifa_start_insn;
4210 sched_deps_info->finish_insn = haifa_finish_insn;
4211
4212 sched_deps_info->note_reg_set = haifa_note_reg_set;
4213 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4214 sched_deps_info->note_reg_use = haifa_note_reg_use;
4215
4216 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4217 sched_deps_info->note_dep = haifa_note_dep;
4218 }
4219 }
4220
4221 /* Free everything used by the dependency analysis code. */
4222
4223 void
4224 finish_deps_global (void)
4225 {
4226 FREE_REG_SET (reg_pending_sets);
4227 FREE_REG_SET (reg_pending_clobbers);
4228 FREE_REG_SET (reg_pending_uses);
4229 FREE_REG_SET (reg_pending_control_uses);
4230 }
4231
4232 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4233 dw_t
4234 estimate_dep_weak (rtx mem1, rtx mem2)
4235 {
4236 if (mem1 == mem2)
4237 /* MEMs are the same - don't speculate. */
4238 return MIN_DEP_WEAK;
4239
4240 rtx r1 = XEXP (mem1, 0);
4241 rtx r2 = XEXP (mem2, 0);
4242
4243 if (sched_deps_info->use_cselib)
4244 {
4245 /* We cannot call rtx_equal_for_cselib_p because the VALUEs might be
4246 dangling at this point, since we never preserve them. Instead we
4247 canonicalize manually to get stable VALUEs out of hashing. */
4248 if (GET_CODE (r1) == VALUE && CSELIB_VAL_PTR (r1))
4249 r1 = canonical_cselib_val (CSELIB_VAL_PTR (r1))->val_rtx;
4250 if (GET_CODE (r2) == VALUE && CSELIB_VAL_PTR (r2))
4251 r2 = canonical_cselib_val (CSELIB_VAL_PTR (r2))->val_rtx;
4252 }
4253
4254 if (r1 == r2
4255 || (REG_P (r1) && REG_P (r2) && REGNO (r1) == REGNO (r2)))
4256 /* Again, MEMs are the same. */
4257 return MIN_DEP_WEAK;
4258 else if ((REG_P (r1) && !REG_P (r2)) || (!REG_P (r1) && REG_P (r2)))
4259 /* Different addressing modes - reason to be more speculative,
4260 than usual. */
4261 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4262 else
4263 /* We can't say anything about the dependence. */
4264 return UNCERTAIN_DEP_WEAK;
4265 }
4266
4267 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4268 This function can handle same INSN and ELEM (INSN == ELEM).
4269 It is a convenience wrapper. */
4270 static void
4271 add_dependence_1 (rtx_insn *insn, rtx_insn *elem, enum reg_note dep_type)
4272 {
4273 ds_t ds;
4274 bool internal;
4275
4276 if (dep_type == REG_DEP_TRUE)
4277 ds = DEP_TRUE;
4278 else if (dep_type == REG_DEP_OUTPUT)
4279 ds = DEP_OUTPUT;
4280 else if (dep_type == REG_DEP_CONTROL)
4281 ds = DEP_CONTROL;
4282 else
4283 {
4284 gcc_assert (dep_type == REG_DEP_ANTI);
4285 ds = DEP_ANTI;
4286 }
4287
4288 /* When add_dependence is called from inside sched-deps.c, we expect
4289 cur_insn to be non-null. */
4290 internal = cur_insn != NULL;
4291 if (internal)
4292 gcc_assert (insn == cur_insn);
4293 else
4294 cur_insn = insn;
4295
4296 note_dep (elem, ds);
4297 if (!internal)
4298 cur_insn = NULL;
4299 }
4300
4301 /* Return weakness of speculative type TYPE in the dep_status DS,
4302 without checking to prevent ICEs on malformed input. */
4303 static dw_t
4304 get_dep_weak_1 (ds_t ds, ds_t type)
4305 {
4306 ds = ds & type;
4307
4308 switch (type)
4309 {
4310 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4311 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4312 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4313 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4314 default: gcc_unreachable ();
4315 }
4316
4317 return (dw_t) ds;
4318 }
4319
4320 /* Return weakness of speculative type TYPE in the dep_status DS. */
4321 dw_t
4322 get_dep_weak (ds_t ds, ds_t type)
4323 {
4324 dw_t dw = get_dep_weak_1 (ds, type);
4325
4326 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4327 return dw;
4328 }
4329
4330 /* Return the dep_status, which has the same parameters as DS, except for
4331 speculative type TYPE, that will have weakness DW. */
4332 ds_t
4333 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4334 {
4335 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4336
4337 ds &= ~type;
4338 switch (type)
4339 {
4340 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4341 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4342 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4343 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4344 default: gcc_unreachable ();
4345 }
4346 return ds;
4347 }
4348
4349 /* Return the join of two dep_statuses DS1 and DS2.
4350 If MAX_P is true then choose the greater probability,
4351 otherwise multiply probabilities.
4352 This function assumes that both DS1 and DS2 contain speculative bits. */
4353 static ds_t
4354 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4355 {
4356 ds_t ds, t;
4357
4358 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4359
4360 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4361
4362 t = FIRST_SPEC_TYPE;
4363 do
4364 {
4365 if ((ds1 & t) && !(ds2 & t))
4366 ds |= ds1 & t;
4367 else if (!(ds1 & t) && (ds2 & t))
4368 ds |= ds2 & t;
4369 else if ((ds1 & t) && (ds2 & t))
4370 {
4371 dw_t dw1 = get_dep_weak (ds1, t);
4372 dw_t dw2 = get_dep_weak (ds2, t);
4373 ds_t dw;
4374
4375 if (!max_p)
4376 {
4377 dw = ((ds_t) dw1) * ((ds_t) dw2);
4378 dw /= MAX_DEP_WEAK;
4379 if (dw < MIN_DEP_WEAK)
4380 dw = MIN_DEP_WEAK;
4381 }
4382 else
4383 {
4384 if (dw1 >= dw2)
4385 dw = dw1;
4386 else
4387 dw = dw2;
4388 }
4389
4390 ds = set_dep_weak (ds, t, (dw_t) dw);
4391 }
4392
4393 if (t == LAST_SPEC_TYPE)
4394 break;
4395 t <<= SPEC_TYPE_SHIFT;
4396 }
4397 while (1);
4398
4399 return ds;
4400 }
4401
4402 /* Return the join of two dep_statuses DS1 and DS2.
4403 This function assumes that both DS1 and DS2 contain speculative bits. */
4404 ds_t
4405 ds_merge (ds_t ds1, ds_t ds2)
4406 {
4407 return ds_merge_1 (ds1, ds2, false);
4408 }
4409
4410 /* Return the join of two dep_statuses DS1 and DS2. */
4411 ds_t
4412 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4413 {
4414 ds_t new_status = ds | ds2;
4415
4416 if (new_status & SPECULATIVE)
4417 {
4418 if ((ds && !(ds & SPECULATIVE))
4419 || (ds2 && !(ds2 & SPECULATIVE)))
4420 /* Then this dep can't be speculative. */
4421 new_status &= ~SPECULATIVE;
4422 else
4423 {
4424 /* Both are speculative. Merging probabilities. */
4425 if (mem1)
4426 {
4427 dw_t dw;
4428
4429 dw = estimate_dep_weak (mem1, mem2);
4430 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4431 }
4432
4433 if (!ds)
4434 new_status = ds2;
4435 else if (!ds2)
4436 new_status = ds;
4437 else
4438 new_status = ds_merge (ds2, ds);
4439 }
4440 }
4441
4442 return new_status;
4443 }
4444
4445 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4446 probabilities. */
4447 ds_t
4448 ds_max_merge (ds_t ds1, ds_t ds2)
4449 {
4450 if (ds1 == 0 && ds2 == 0)
4451 return 0;
4452
4453 if (ds1 == 0 && ds2 != 0)
4454 return ds2;
4455
4456 if (ds1 != 0 && ds2 == 0)
4457 return ds1;
4458
4459 return ds_merge_1 (ds1, ds2, true);
4460 }
4461
4462 /* Return the probability of speculation success for the speculation
4463 status DS. */
4464 dw_t
4465 ds_weak (ds_t ds)
4466 {
4467 ds_t res = 1, dt;
4468 int n = 0;
4469
4470 dt = FIRST_SPEC_TYPE;
4471 do
4472 {
4473 if (ds & dt)
4474 {
4475 res *= (ds_t) get_dep_weak (ds, dt);
4476 n++;
4477 }
4478
4479 if (dt == LAST_SPEC_TYPE)
4480 break;
4481 dt <<= SPEC_TYPE_SHIFT;
4482 }
4483 while (1);
4484
4485 gcc_assert (n);
4486 while (--n)
4487 res /= MAX_DEP_WEAK;
4488
4489 if (res < MIN_DEP_WEAK)
4490 res = MIN_DEP_WEAK;
4491
4492 gcc_assert (res <= MAX_DEP_WEAK);
4493
4494 return (dw_t) res;
4495 }
4496
4497 /* Return a dep status that contains all speculation types of DS. */
4498 ds_t
4499 ds_get_speculation_types (ds_t ds)
4500 {
4501 if (ds & BEGIN_DATA)
4502 ds |= BEGIN_DATA;
4503 if (ds & BE_IN_DATA)
4504 ds |= BE_IN_DATA;
4505 if (ds & BEGIN_CONTROL)
4506 ds |= BEGIN_CONTROL;
4507 if (ds & BE_IN_CONTROL)
4508 ds |= BE_IN_CONTROL;
4509
4510 return ds & SPECULATIVE;
4511 }
4512
4513 /* Return a dep status that contains maximal weakness for each speculation
4514 type present in DS. */
4515 ds_t
4516 ds_get_max_dep_weak (ds_t ds)
4517 {
4518 if (ds & BEGIN_DATA)
4519 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4520 if (ds & BE_IN_DATA)
4521 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4522 if (ds & BEGIN_CONTROL)
4523 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4524 if (ds & BE_IN_CONTROL)
4525 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4526
4527 return ds;
4528 }
4529
4530 /* Dump information about the dependence status S. */
4531 static void
4532 dump_ds (FILE *f, ds_t s)
4533 {
4534 fprintf (f, "{");
4535
4536 if (s & BEGIN_DATA)
4537 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4538 if (s & BE_IN_DATA)
4539 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4540 if (s & BEGIN_CONTROL)
4541 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4542 if (s & BE_IN_CONTROL)
4543 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4544
4545 if (s & HARD_DEP)
4546 fprintf (f, "HARD_DEP; ");
4547
4548 if (s & DEP_TRUE)
4549 fprintf (f, "DEP_TRUE; ");
4550 if (s & DEP_OUTPUT)
4551 fprintf (f, "DEP_OUTPUT; ");
4552 if (s & DEP_ANTI)
4553 fprintf (f, "DEP_ANTI; ");
4554 if (s & DEP_CONTROL)
4555 fprintf (f, "DEP_CONTROL; ");
4556
4557 fprintf (f, "}");
4558 }
4559
4560 DEBUG_FUNCTION void
4561 debug_ds (ds_t s)
4562 {
4563 dump_ds (stderr, s);
4564 fprintf (stderr, "\n");
4565 }
4566
4567 /* Verify that dependence type and status are consistent.
4568 If RELAXED_P is true, then skip dep_weakness checks. */
4569 static void
4570 check_dep (dep_t dep, bool relaxed_p)
4571 {
4572 enum reg_note dt = DEP_TYPE (dep);
4573 ds_t ds = DEP_STATUS (dep);
4574
4575 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4576
4577 if (!(current_sched_info->flags & USE_DEPS_LIST))
4578 {
4579 gcc_assert (ds == 0);
4580 return;
4581 }
4582
4583 /* Check that dependence type contains the same bits as the status. */
4584 if (dt == REG_DEP_TRUE)
4585 gcc_assert (ds & DEP_TRUE);
4586 else if (dt == REG_DEP_OUTPUT)
4587 gcc_assert ((ds & DEP_OUTPUT)
4588 && !(ds & DEP_TRUE));
4589 else if (dt == REG_DEP_ANTI)
4590 gcc_assert ((ds & DEP_ANTI)
4591 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4592 else
4593 gcc_assert (dt == REG_DEP_CONTROL
4594 && (ds & DEP_CONTROL)
4595 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4596
4597 /* HARD_DEP cannot appear in dep_status of a link. */
4598 gcc_assert (!(ds & HARD_DEP));
4599
4600 /* Check that dependence status is set correctly when speculation is not
4601 supported. */
4602 if (!sched_deps_info->generate_spec_deps)
4603 gcc_assert (!(ds & SPECULATIVE));
4604 else if (ds & SPECULATIVE)
4605 {
4606 if (!relaxed_p)
4607 {
4608 ds_t type = FIRST_SPEC_TYPE;
4609
4610 /* Check that dependence weakness is in proper range. */
4611 do
4612 {
4613 if (ds & type)
4614 get_dep_weak (ds, type);
4615
4616 if (type == LAST_SPEC_TYPE)
4617 break;
4618 type <<= SPEC_TYPE_SHIFT;
4619 }
4620 while (1);
4621 }
4622
4623 if (ds & BEGIN_SPEC)
4624 {
4625 /* Only true dependence can be data speculative. */
4626 if (ds & BEGIN_DATA)
4627 gcc_assert (ds & DEP_TRUE);
4628
4629 /* Control dependencies in the insn scheduler are represented by
4630 anti-dependencies, therefore only anti dependence can be
4631 control speculative. */
4632 if (ds & BEGIN_CONTROL)
4633 gcc_assert (ds & DEP_ANTI);
4634 }
4635 else
4636 {
4637 /* Subsequent speculations should resolve true dependencies. */
4638 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4639 }
4640
4641 /* Check that true and anti dependencies can't have other speculative
4642 statuses. */
4643 if (ds & DEP_TRUE)
4644 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4645 /* An output dependence can't be speculative at all. */
4646 gcc_assert (!(ds & DEP_OUTPUT));
4647 if (ds & DEP_ANTI)
4648 gcc_assert (ds & BEGIN_CONTROL);
4649 }
4650 }
4651
4652 /* The following code discovers opportunities to switch a memory reference
4653 and an increment by modifying the address. We ensure that this is done
4654 only for dependencies that are only used to show a single register
4655 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4656 instruction involved is subject to only one dep that can cause a pattern
4657 change.
4658
4659 When we discover a suitable dependency, we fill in the dep_replacement
4660 structure to show how to modify the memory reference. */
4661
4662 /* Holds information about a pair of memory reference and register increment
4663 insns which depend on each other, but could possibly be interchanged. */
4664 struct mem_inc_info
4665 {
4666 rtx_insn *inc_insn;
4667 rtx_insn *mem_insn;
4668
4669 rtx *mem_loc;
4670 /* A register occurring in the memory address for which we wish to break
4671 the dependence. This must be identical to the destination register of
4672 the increment. */
4673 rtx mem_reg0;
4674 /* Any kind of index that is added to that register. */
4675 rtx mem_index;
4676 /* The constant offset used in the memory address. */
4677 HOST_WIDE_INT mem_constant;
4678 /* The constant added in the increment insn. Negated if the increment is
4679 after the memory address. */
4680 HOST_WIDE_INT inc_constant;
4681 /* The source register used in the increment. May be different from mem_reg0
4682 if the increment occurs before the memory address. */
4683 rtx inc_input;
4684 };
4685
4686 /* Verify that the memory location described in MII can be replaced with
4687 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4688 insn remains unchanged by this function. */
4689
4690 static rtx
4691 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4692 {
4693 rtx mem = *mii->mem_loc;
4694 rtx new_mem;
4695
4696 /* Jump through a lot of hoops to keep the attributes up to date. We
4697 do not want to call one of the change address variants that take
4698 an offset even though we know the offset in many cases. These
4699 assume you are changing where the address is pointing by the
4700 offset. */
4701 new_mem = replace_equiv_address_nv (mem, new_addr);
4702 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4703 {
4704 if (sched_verbose >= 5)
4705 fprintf (sched_dump, "validation failure\n");
4706 return NULL_RTX;
4707 }
4708
4709 /* Put back the old one. */
4710 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4711
4712 return new_mem;
4713 }
4714
4715 /* Return true if INSN is of a form "a = b op c" where a and b are
4716 regs. op is + if c is a reg and +|- if c is a const. Fill in
4717 informantion in MII about what is found.
4718 BEFORE_MEM indicates whether the increment is found before or after
4719 a corresponding memory reference. */
4720
4721 static bool
4722 parse_add_or_inc (struct mem_inc_info *mii, rtx_insn *insn, bool before_mem)
4723 {
4724 rtx pat = single_set (insn);
4725 rtx src, cst;
4726 bool regs_equal;
4727
4728 if (RTX_FRAME_RELATED_P (insn) || !pat)
4729 return false;
4730
4731 /* Do not allow breaking data dependencies for insns that are marked
4732 with REG_STACK_CHECK. */
4733 if (find_reg_note (insn, REG_STACK_CHECK, NULL))
4734 return false;
4735
4736 /* Result must be single reg. */
4737 if (!REG_P (SET_DEST (pat)))
4738 return false;
4739
4740 if (GET_CODE (SET_SRC (pat)) != PLUS)
4741 return false;
4742
4743 mii->inc_insn = insn;
4744 src = SET_SRC (pat);
4745 mii->inc_input = XEXP (src, 0);
4746
4747 if (!REG_P (XEXP (src, 0)))
4748 return false;
4749
4750 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4751 return false;
4752
4753 cst = XEXP (src, 1);
4754 if (!CONST_INT_P (cst))
4755 return false;
4756 mii->inc_constant = INTVAL (cst);
4757
4758 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4759
4760 if (!before_mem)
4761 {
4762 mii->inc_constant = -mii->inc_constant;
4763 if (!regs_equal)
4764 return false;
4765 }
4766
4767 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4768 {
4769 /* Note that the sign has already been reversed for !before_mem. */
4770 if (STACK_GROWS_DOWNWARD)
4771 return mii->inc_constant > 0;
4772 else
4773 return mii->inc_constant < 0;
4774 }
4775 return true;
4776 }
4777
4778 /* Once a suitable mem reference has been found and the corresponding data
4779 in MII has been filled in, this function is called to find a suitable
4780 add or inc insn involving the register we found in the memory
4781 reference. */
4782
4783 static bool
4784 find_inc (struct mem_inc_info *mii, bool backwards)
4785 {
4786 sd_iterator_def sd_it;
4787 dep_t dep;
4788
4789 sd_it = sd_iterator_start (mii->mem_insn,
4790 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4791 while (sd_iterator_cond (&sd_it, &dep))
4792 {
4793 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4794 rtx_insn *pro = DEP_PRO (dep);
4795 rtx_insn *con = DEP_CON (dep);
4796 rtx_insn *inc_cand = backwards ? pro : con;
4797 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4798 goto next;
4799 if (parse_add_or_inc (mii, inc_cand, backwards))
4800 {
4801 struct dep_replacement *desc;
4802 df_ref def;
4803 rtx newaddr, newmem;
4804
4805 if (sched_verbose >= 5)
4806 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4807 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4808
4809 /* Need to assure that none of the operands of the inc
4810 instruction are assigned to by the mem insn. */
4811 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4812 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4813 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4814 {
4815 if (sched_verbose >= 5)
4816 fprintf (sched_dump,
4817 "inc conflicts with store failure.\n");
4818 goto next;
4819 }
4820
4821 newaddr = mii->inc_input;
4822 if (mii->mem_index != NULL_RTX)
4823 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4824 mii->mem_index);
4825 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4826 mii->mem_constant + mii->inc_constant);
4827 newmem = attempt_change (mii, newaddr);
4828 if (newmem == NULL_RTX)
4829 goto next;
4830 if (sched_verbose >= 5)
4831 fprintf (sched_dump, "successful address replacement\n");
4832 desc = XCNEW (struct dep_replacement);
4833 DEP_REPLACE (dep) = desc;
4834 desc->loc = mii->mem_loc;
4835 desc->newval = newmem;
4836 desc->orig = *desc->loc;
4837 desc->insn = mii->mem_insn;
4838 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4839 INSN_SPEC_BACK_DEPS (con));
4840 if (backwards)
4841 {
4842 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4843 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4844 REG_DEP_TRUE);
4845 }
4846 else
4847 {
4848 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4849 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4850 REG_DEP_ANTI);
4851 }
4852 return true;
4853 }
4854 next:
4855 sd_iterator_next (&sd_it);
4856 }
4857 return false;
4858 }
4859
4860 /* A recursive function that walks ADDRESS_OF_X to find memory references
4861 which could be modified during scheduling. We call find_inc for each
4862 one we find that has a recognizable form. MII holds information about
4863 the pair of memory/increment instructions.
4864 We ensure that every instruction with a memory reference (which will be
4865 the location of the replacement) is assigned at most one breakable
4866 dependency. */
4867
4868 static bool
4869 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4870 {
4871 rtx x = *address_of_x;
4872 enum rtx_code code = GET_CODE (x);
4873 const char *const fmt = GET_RTX_FORMAT (code);
4874 int i;
4875
4876 if (code == MEM)
4877 {
4878 rtx reg0 = XEXP (x, 0);
4879
4880 mii->mem_loc = address_of_x;
4881 mii->mem_index = NULL_RTX;
4882 mii->mem_constant = 0;
4883 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4884 {
4885 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4886 reg0 = XEXP (reg0, 0);
4887 }
4888 if (GET_CODE (reg0) == PLUS)
4889 {
4890 mii->mem_index = XEXP (reg0, 1);
4891 reg0 = XEXP (reg0, 0);
4892 }
4893 if (REG_P (reg0))
4894 {
4895 df_ref use;
4896 int occurrences = 0;
4897
4898 /* Make sure this reg appears only once in this insn. Can't use
4899 count_occurrences since that only works for pseudos. */
4900 FOR_EACH_INSN_USE (use, mii->mem_insn)
4901 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4902 if (++occurrences > 1)
4903 {
4904 if (sched_verbose >= 5)
4905 fprintf (sched_dump, "mem count failure\n");
4906 return false;
4907 }
4908
4909 mii->mem_reg0 = reg0;
4910 return find_inc (mii, true) || find_inc (mii, false);
4911 }
4912 return false;
4913 }
4914
4915 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4916 {
4917 /* If REG occurs inside a MEM used in a bit-field reference,
4918 that is unacceptable. */
4919 return false;
4920 }
4921
4922 /* Time for some deep diving. */
4923 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4924 {
4925 if (fmt[i] == 'e')
4926 {
4927 if (find_mem (mii, &XEXP (x, i)))
4928 return true;
4929 }
4930 else if (fmt[i] == 'E')
4931 {
4932 int j;
4933 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4934 if (find_mem (mii, &XVECEXP (x, i, j)))
4935 return true;
4936 }
4937 }
4938 return false;
4939 }
4940
4941
4942 /* Examine the instructions between HEAD and TAIL and try to find
4943 dependencies that can be broken by modifying one of the patterns. */
4944
4945 void
4946 find_modifiable_mems (rtx_insn *head, rtx_insn *tail)
4947 {
4948 rtx_insn *insn, *next_tail = NEXT_INSN (tail);
4949 int success_in_block = 0;
4950
4951 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4952 {
4953 struct mem_inc_info mii;
4954
4955 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4956 continue;
4957
4958 mii.mem_insn = insn;
4959 if (find_mem (&mii, &PATTERN (insn)))
4960 success_in_block++;
4961 }
4962 if (success_in_block && sched_verbose >= 5)
4963 fprintf (sched_dump, "%d candidates for address modification found.\n",
4964 success_in_block);
4965 }
4966
4967 #endif /* INSN_SCHEDULING */