revert: re PR rtl-optimization/57268 (c nested loops hang compiler in sched-deps.c)
[gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h" /* FIXME: Used by call_may_noreturn_p. */
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "emit-rtl.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
43 #include "ira.h"
44 #include "target.h"
45
46 #ifdef INSN_SCHEDULING
47
48 #ifdef ENABLE_CHECKING
49 #define CHECK (true)
50 #else
51 #define CHECK (false)
52 #endif
53
54 /* Holds current parameters for the dependency analyzer. */
55 struct sched_deps_info_def *sched_deps_info;
56
57 /* The data is specific to the Haifa scheduler. */
58 vec<haifa_deps_insn_data_def>
59 h_d_i_d = vNULL;
60
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
64 {
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
67
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
70
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
73
74 gcc_assert (ds & DEP_ANTI);
75
76 return REG_DEP_ANTI;
77 }
78
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
82 {
83 switch (dk)
84 {
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
87
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
90
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
93
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
97 }
98 }
99
100 /* Functions to operate with dependence information container - dep_t. */
101
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
105 {
106 DEP_PRO (dep) = pro;
107 DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
111 DEP_NONREG (dep) = 0;
112 DEP_MULTIPLE (dep) = 0;
113 DEP_REPLACE (dep) = NULL;
114 }
115
116 /* Init DEP with the arguments.
117 While most of the scheduler (including targets) only need the major type
118 of the dependency, it is convenient to hide full dep_status from them. */
119 void
120 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
121 {
122 ds_t ds;
123
124 if ((current_sched_info->flags & USE_DEPS_LIST))
125 ds = dk_to_ds (kind);
126 else
127 ds = 0;
128
129 init_dep_1 (dep, pro, con, kind, ds);
130 }
131
132 /* Make a copy of FROM in TO. */
133 static void
134 copy_dep (dep_t to, dep_t from)
135 {
136 memcpy (to, from, sizeof (*to));
137 }
138
139 static void dump_ds (FILE *, ds_t);
140
141 /* Define flags for dump_dep (). */
142
143 /* Dump producer of the dependence. */
144 #define DUMP_DEP_PRO (2)
145
146 /* Dump consumer of the dependence. */
147 #define DUMP_DEP_CON (4)
148
149 /* Dump type of the dependence. */
150 #define DUMP_DEP_TYPE (8)
151
152 /* Dump status of the dependence. */
153 #define DUMP_DEP_STATUS (16)
154
155 /* Dump all information about the dependence. */
156 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
157 |DUMP_DEP_STATUS)
158
159 /* Dump DEP to DUMP.
160 FLAGS is a bit mask specifying what information about DEP needs
161 to be printed.
162 If FLAGS has the very first bit set, then dump all information about DEP
163 and propagate this bit into the callee dump functions. */
164 static void
165 dump_dep (FILE *dump, dep_t dep, int flags)
166 {
167 if (flags & 1)
168 flags |= DUMP_DEP_ALL;
169
170 fprintf (dump, "<");
171
172 if (flags & DUMP_DEP_PRO)
173 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
174
175 if (flags & DUMP_DEP_CON)
176 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
177
178 if (flags & DUMP_DEP_TYPE)
179 {
180 char t;
181 enum reg_note type = DEP_TYPE (dep);
182
183 switch (type)
184 {
185 case REG_DEP_TRUE:
186 t = 't';
187 break;
188
189 case REG_DEP_OUTPUT:
190 t = 'o';
191 break;
192
193 case REG_DEP_CONTROL:
194 t = 'c';
195 break;
196
197 case REG_DEP_ANTI:
198 t = 'a';
199 break;
200
201 default:
202 gcc_unreachable ();
203 break;
204 }
205
206 fprintf (dump, "%c; ", t);
207 }
208
209 if (flags & DUMP_DEP_STATUS)
210 {
211 if (current_sched_info->flags & USE_DEPS_LIST)
212 dump_ds (dump, DEP_STATUS (dep));
213 }
214
215 fprintf (dump, ">");
216 }
217
218 /* Default flags for dump_dep (). */
219 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
220
221 /* Dump all fields of DEP to STDERR. */
222 void
223 sd_debug_dep (dep_t dep)
224 {
225 dump_dep (stderr, dep, 1);
226 fprintf (stderr, "\n");
227 }
228
229 /* Determine whether DEP is a dependency link of a non-debug insn on a
230 debug insn. */
231
232 static inline bool
233 depl_on_debug_p (dep_link_t dep)
234 {
235 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
236 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
237 }
238
239 /* Functions to operate with a single link from the dependencies lists -
240 dep_link_t. */
241
242 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
243 PREV_NEXT_P. */
244 static void
245 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
246 {
247 dep_link_t next = *prev_nextp;
248
249 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
250 && DEP_LINK_NEXT (l) == NULL);
251
252 /* Init node being inserted. */
253 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
254 DEP_LINK_NEXT (l) = next;
255
256 /* Fix next node. */
257 if (next != NULL)
258 {
259 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
260
261 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
262 }
263
264 /* Fix prev node. */
265 *prev_nextp = l;
266 }
267
268 /* Add dep_link LINK to deps_list L. */
269 static void
270 add_to_deps_list (dep_link_t link, deps_list_t l)
271 {
272 attach_dep_link (link, &DEPS_LIST_FIRST (l));
273
274 /* Don't count debug deps. */
275 if (!depl_on_debug_p (link))
276 ++DEPS_LIST_N_LINKS (l);
277 }
278
279 /* Detach dep_link L from the list. */
280 static void
281 detach_dep_link (dep_link_t l)
282 {
283 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
284 dep_link_t next = DEP_LINK_NEXT (l);
285
286 *prev_nextp = next;
287
288 if (next != NULL)
289 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
290
291 DEP_LINK_PREV_NEXTP (l) = NULL;
292 DEP_LINK_NEXT (l) = NULL;
293 }
294
295 /* Remove link LINK from list LIST. */
296 static void
297 remove_from_deps_list (dep_link_t link, deps_list_t list)
298 {
299 detach_dep_link (link);
300
301 /* Don't count debug deps. */
302 if (!depl_on_debug_p (link))
303 --DEPS_LIST_N_LINKS (list);
304 }
305
306 /* Move link LINK from list FROM to list TO. */
307 static void
308 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
309 {
310 remove_from_deps_list (link, from);
311 add_to_deps_list (link, to);
312 }
313
314 /* Return true of LINK is not attached to any list. */
315 static bool
316 dep_link_is_detached_p (dep_link_t link)
317 {
318 return DEP_LINK_PREV_NEXTP (link) == NULL;
319 }
320
321 /* Pool to hold all dependency nodes (dep_node_t). */
322 static alloc_pool dn_pool;
323
324 /* Number of dep_nodes out there. */
325 static int dn_pool_diff = 0;
326
327 /* Create a dep_node. */
328 static dep_node_t
329 create_dep_node (void)
330 {
331 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
332 dep_link_t back = DEP_NODE_BACK (n);
333 dep_link_t forw = DEP_NODE_FORW (n);
334
335 DEP_LINK_NODE (back) = n;
336 DEP_LINK_NEXT (back) = NULL;
337 DEP_LINK_PREV_NEXTP (back) = NULL;
338
339 DEP_LINK_NODE (forw) = n;
340 DEP_LINK_NEXT (forw) = NULL;
341 DEP_LINK_PREV_NEXTP (forw) = NULL;
342
343 ++dn_pool_diff;
344
345 return n;
346 }
347
348 /* Delete dep_node N. N must not be connected to any deps_list. */
349 static void
350 delete_dep_node (dep_node_t n)
351 {
352 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
353 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
354
355 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
356
357 --dn_pool_diff;
358
359 pool_free (dn_pool, n);
360 }
361
362 /* Pool to hold dependencies lists (deps_list_t). */
363 static alloc_pool dl_pool;
364
365 /* Number of deps_lists out there. */
366 static int dl_pool_diff = 0;
367
368 /* Functions to operate with dependences lists - deps_list_t. */
369
370 /* Return true if list L is empty. */
371 static bool
372 deps_list_empty_p (deps_list_t l)
373 {
374 return DEPS_LIST_N_LINKS (l) == 0;
375 }
376
377 /* Create a new deps_list. */
378 static deps_list_t
379 create_deps_list (void)
380 {
381 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
382
383 DEPS_LIST_FIRST (l) = NULL;
384 DEPS_LIST_N_LINKS (l) = 0;
385
386 ++dl_pool_diff;
387 return l;
388 }
389
390 /* Free deps_list L. */
391 static void
392 free_deps_list (deps_list_t l)
393 {
394 gcc_assert (deps_list_empty_p (l));
395
396 --dl_pool_diff;
397
398 pool_free (dl_pool, l);
399 }
400
401 /* Return true if there is no dep_nodes and deps_lists out there.
402 After the region is scheduled all the dependency nodes and lists
403 should [generally] be returned to pool. */
404 bool
405 deps_pools_are_empty_p (void)
406 {
407 return dn_pool_diff == 0 && dl_pool_diff == 0;
408 }
409
410 /* Remove all elements from L. */
411 static void
412 clear_deps_list (deps_list_t l)
413 {
414 do
415 {
416 dep_link_t link = DEPS_LIST_FIRST (l);
417
418 if (link == NULL)
419 break;
420
421 remove_from_deps_list (link, l);
422 }
423 while (1);
424 }
425
426 /* Decide whether a dependency should be treated as a hard or a speculative
427 dependency. */
428 static bool
429 dep_spec_p (dep_t dep)
430 {
431 if (current_sched_info->flags & DO_SPECULATION)
432 {
433 if (DEP_STATUS (dep) & SPECULATIVE)
434 return true;
435 }
436 if (current_sched_info->flags & DO_PREDICATION)
437 {
438 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
439 return true;
440 }
441 if (DEP_REPLACE (dep) != NULL)
442 return true;
443 return false;
444 }
445
446 static regset reg_pending_sets;
447 static regset reg_pending_clobbers;
448 static regset reg_pending_uses;
449 static regset reg_pending_control_uses;
450 static enum reg_pending_barrier_mode reg_pending_barrier;
451
452 /* Hard registers implicitly clobbered or used (or may be implicitly
453 clobbered or used) by the currently analyzed insn. For example,
454 insn in its constraint has one register class. Even if there is
455 currently no hard register in the insn, the particular hard
456 register will be in the insn after reload pass because the
457 constraint requires it. */
458 static HARD_REG_SET implicit_reg_pending_clobbers;
459 static HARD_REG_SET implicit_reg_pending_uses;
460
461 /* To speed up the test for duplicate dependency links we keep a
462 record of dependencies created by add_dependence when the average
463 number of instructions in a basic block is very large.
464
465 Studies have shown that there is typically around 5 instructions between
466 branches for typical C code. So we can make a guess that the average
467 basic block is approximately 5 instructions long; we will choose 100X
468 the average size as a very large basic block.
469
470 Each insn has associated bitmaps for its dependencies. Each bitmap
471 has enough entries to represent a dependency on any other insn in
472 the insn chain. All bitmap for true dependencies cache is
473 allocated then the rest two ones are also allocated. */
474 static bitmap_head *true_dependency_cache = NULL;
475 static bitmap_head *output_dependency_cache = NULL;
476 static bitmap_head *anti_dependency_cache = NULL;
477 static bitmap_head *control_dependency_cache = NULL;
478 static bitmap_head *spec_dependency_cache = NULL;
479 static int cache_size;
480
481 /* True if we should mark added dependencies as a non-register deps. */
482 static bool mark_as_hard;
483
484 static int deps_may_trap_p (const_rtx);
485 static void add_dependence_1 (rtx, rtx, enum reg_note);
486 static void add_dependence_list (rtx, rtx, int, enum reg_note, bool);
487 static void add_dependence_list_and_free (struct deps_desc *, rtx,
488 rtx *, int, enum reg_note, bool);
489 static void delete_all_dependences (rtx);
490 static void chain_to_prev_insn (rtx);
491
492 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
493 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
494 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
495 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
496
497 static bool sched_has_condition_p (const_rtx);
498 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
499
500 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
501 rtx, rtx);
502 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
503
504 #ifdef ENABLE_CHECKING
505 static void check_dep (dep_t, bool);
506 #endif
507 \f
508 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
509
510 static int
511 deps_may_trap_p (const_rtx mem)
512 {
513 const_rtx addr = XEXP (mem, 0);
514
515 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
516 {
517 const_rtx t = get_reg_known_value (REGNO (addr));
518 if (t)
519 addr = t;
520 }
521 return rtx_addr_can_trap_p (addr);
522 }
523 \f
524
525 /* Find the condition under which INSN is executed. If REV is not NULL,
526 it is set to TRUE when the returned comparison should be reversed
527 to get the actual condition. */
528 static rtx
529 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
530 {
531 rtx pat = PATTERN (insn);
532 rtx src;
533
534 if (rev)
535 *rev = false;
536
537 if (GET_CODE (pat) == COND_EXEC)
538 return COND_EXEC_TEST (pat);
539
540 if (!any_condjump_p (insn) || !onlyjump_p (insn))
541 return 0;
542
543 src = SET_SRC (pc_set (insn));
544
545 if (XEXP (src, 2) == pc_rtx)
546 return XEXP (src, 0);
547 else if (XEXP (src, 1) == pc_rtx)
548 {
549 rtx cond = XEXP (src, 0);
550 enum rtx_code revcode = reversed_comparison_code (cond, insn);
551
552 if (revcode == UNKNOWN)
553 return 0;
554
555 if (rev)
556 *rev = true;
557 return cond;
558 }
559
560 return 0;
561 }
562
563 /* Return the condition under which INSN does not execute (i.e. the
564 not-taken condition for a conditional branch), or NULL if we cannot
565 find such a condition. The caller should make a copy of the condition
566 before using it. */
567 rtx
568 sched_get_reverse_condition_uncached (const_rtx insn)
569 {
570 bool rev;
571 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
572 if (cond == NULL_RTX)
573 return cond;
574 if (!rev)
575 {
576 enum rtx_code revcode = reversed_comparison_code (cond, insn);
577 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
578 XEXP (cond, 0),
579 XEXP (cond, 1));
580 }
581 return cond;
582 }
583
584 /* Caching variant of sched_get_condition_with_rev_uncached.
585 We only do actual work the first time we come here for an insn; the
586 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
587 static rtx
588 sched_get_condition_with_rev (const_rtx insn, bool *rev)
589 {
590 bool tmp;
591
592 if (INSN_LUID (insn) == 0)
593 return sched_get_condition_with_rev_uncached (insn, rev);
594
595 if (INSN_CACHED_COND (insn) == const_true_rtx)
596 return NULL_RTX;
597
598 if (INSN_CACHED_COND (insn) != NULL_RTX)
599 {
600 if (rev)
601 *rev = INSN_REVERSE_COND (insn);
602 return INSN_CACHED_COND (insn);
603 }
604
605 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
606 INSN_REVERSE_COND (insn) = tmp;
607
608 if (INSN_CACHED_COND (insn) == NULL_RTX)
609 {
610 INSN_CACHED_COND (insn) = const_true_rtx;
611 return NULL_RTX;
612 }
613
614 if (rev)
615 *rev = INSN_REVERSE_COND (insn);
616 return INSN_CACHED_COND (insn);
617 }
618
619 /* True when we can find a condition under which INSN is executed. */
620 static bool
621 sched_has_condition_p (const_rtx insn)
622 {
623 return !! sched_get_condition_with_rev (insn, NULL);
624 }
625
626 \f
627
628 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
629 static int
630 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
631 {
632 if (COMPARISON_P (cond1)
633 && COMPARISON_P (cond2)
634 && GET_CODE (cond1) ==
635 (rev1==rev2
636 ? reversed_comparison_code (cond2, NULL)
637 : GET_CODE (cond2))
638 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
639 && XEXP (cond1, 1) == XEXP (cond2, 1))
640 return 1;
641 return 0;
642 }
643
644 /* Return true if insn1 and insn2 can never depend on one another because
645 the conditions under which they are executed are mutually exclusive. */
646 bool
647 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
648 {
649 rtx cond1, cond2;
650 bool rev1 = false, rev2 = false;
651
652 /* df doesn't handle conditional lifetimes entirely correctly;
653 calls mess up the conditional lifetimes. */
654 if (!CALL_P (insn1) && !CALL_P (insn2))
655 {
656 cond1 = sched_get_condition_with_rev (insn1, &rev1);
657 cond2 = sched_get_condition_with_rev (insn2, &rev2);
658 if (cond1 && cond2
659 && conditions_mutex_p (cond1, cond2, rev1, rev2)
660 /* Make sure first instruction doesn't affect condition of second
661 instruction if switched. */
662 && !modified_in_p (cond1, insn2)
663 /* Make sure second instruction doesn't affect condition of first
664 instruction if switched. */
665 && !modified_in_p (cond2, insn1))
666 return true;
667 }
668 return false;
669 }
670 \f
671
672 /* Return true if INSN can potentially be speculated with type DS. */
673 bool
674 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
675 {
676 if (HAS_INTERNAL_DEP (insn))
677 return false;
678
679 if (!NONJUMP_INSN_P (insn))
680 return false;
681
682 if (SCHED_GROUP_P (insn))
683 return false;
684
685 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
686 return false;
687
688 if (side_effects_p (PATTERN (insn)))
689 return false;
690
691 if (ds & BE_IN_SPEC)
692 /* The following instructions, which depend on a speculatively scheduled
693 instruction, cannot be speculatively scheduled along. */
694 {
695 if (may_trap_or_fault_p (PATTERN (insn)))
696 /* If instruction might fault, it cannot be speculatively scheduled.
697 For control speculation it's obvious why and for data speculation
698 it's because the insn might get wrong input if speculation
699 wasn't successful. */
700 return false;
701
702 if ((ds & BE_IN_DATA)
703 && sched_has_condition_p (insn))
704 /* If this is a predicated instruction, then it cannot be
705 speculatively scheduled. See PR35659. */
706 return false;
707 }
708
709 return true;
710 }
711
712 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
713 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
714 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
715 This function is used to switch sd_iterator to the next list.
716 !!! For internal use only. Might consider moving it to sched-int.h. */
717 void
718 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
719 deps_list_t *list_ptr, bool *resolved_p_ptr)
720 {
721 sd_list_types_def types = *types_ptr;
722
723 if (types & SD_LIST_HARD_BACK)
724 {
725 *list_ptr = INSN_HARD_BACK_DEPS (insn);
726 *resolved_p_ptr = false;
727 *types_ptr = types & ~SD_LIST_HARD_BACK;
728 }
729 else if (types & SD_LIST_SPEC_BACK)
730 {
731 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
732 *resolved_p_ptr = false;
733 *types_ptr = types & ~SD_LIST_SPEC_BACK;
734 }
735 else if (types & SD_LIST_FORW)
736 {
737 *list_ptr = INSN_FORW_DEPS (insn);
738 *resolved_p_ptr = false;
739 *types_ptr = types & ~SD_LIST_FORW;
740 }
741 else if (types & SD_LIST_RES_BACK)
742 {
743 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
744 *resolved_p_ptr = true;
745 *types_ptr = types & ~SD_LIST_RES_BACK;
746 }
747 else if (types & SD_LIST_RES_FORW)
748 {
749 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
750 *resolved_p_ptr = true;
751 *types_ptr = types & ~SD_LIST_RES_FORW;
752 }
753 else
754 {
755 *list_ptr = NULL;
756 *resolved_p_ptr = false;
757 *types_ptr = SD_LIST_NONE;
758 }
759 }
760
761 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
762 int
763 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
764 {
765 int size = 0;
766
767 while (list_types != SD_LIST_NONE)
768 {
769 deps_list_t list;
770 bool resolved_p;
771
772 sd_next_list (insn, &list_types, &list, &resolved_p);
773 if (list)
774 size += DEPS_LIST_N_LINKS (list);
775 }
776
777 return size;
778 }
779
780 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
781
782 bool
783 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
784 {
785 while (list_types != SD_LIST_NONE)
786 {
787 deps_list_t list;
788 bool resolved_p;
789
790 sd_next_list (insn, &list_types, &list, &resolved_p);
791 if (!deps_list_empty_p (list))
792 return false;
793 }
794
795 return true;
796 }
797
798 /* Initialize data for INSN. */
799 void
800 sd_init_insn (rtx insn)
801 {
802 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
803 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
804 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
805 INSN_FORW_DEPS (insn) = create_deps_list ();
806 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
807
808 /* ??? It would be nice to allocate dependency caches here. */
809 }
810
811 /* Free data for INSN. */
812 void
813 sd_finish_insn (rtx insn)
814 {
815 /* ??? It would be nice to deallocate dependency caches here. */
816
817 free_deps_list (INSN_HARD_BACK_DEPS (insn));
818 INSN_HARD_BACK_DEPS (insn) = NULL;
819
820 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
821 INSN_SPEC_BACK_DEPS (insn) = NULL;
822
823 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
824 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
825
826 free_deps_list (INSN_FORW_DEPS (insn));
827 INSN_FORW_DEPS (insn) = NULL;
828
829 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
830 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
831 }
832
833 /* Find a dependency between producer PRO and consumer CON.
834 Search through resolved dependency lists if RESOLVED_P is true.
835 If no such dependency is found return NULL,
836 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
837 with an iterator pointing to it. */
838 static dep_t
839 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
840 sd_iterator_def *sd_it_ptr)
841 {
842 sd_list_types_def pro_list_type;
843 sd_list_types_def con_list_type;
844 sd_iterator_def sd_it;
845 dep_t dep;
846 bool found_p = false;
847
848 if (resolved_p)
849 {
850 pro_list_type = SD_LIST_RES_FORW;
851 con_list_type = SD_LIST_RES_BACK;
852 }
853 else
854 {
855 pro_list_type = SD_LIST_FORW;
856 con_list_type = SD_LIST_BACK;
857 }
858
859 /* Walk through either back list of INSN or forw list of ELEM
860 depending on which one is shorter. */
861 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
862 {
863 /* Find the dep_link with producer PRO in consumer's back_deps. */
864 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
865 if (DEP_PRO (dep) == pro)
866 {
867 found_p = true;
868 break;
869 }
870 }
871 else
872 {
873 /* Find the dep_link with consumer CON in producer's forw_deps. */
874 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
875 if (DEP_CON (dep) == con)
876 {
877 found_p = true;
878 break;
879 }
880 }
881
882 if (found_p)
883 {
884 if (sd_it_ptr != NULL)
885 *sd_it_ptr = sd_it;
886
887 return dep;
888 }
889
890 return NULL;
891 }
892
893 /* Find a dependency between producer PRO and consumer CON.
894 Use dependency [if available] to check if dependency is present at all.
895 Search through resolved dependency lists if RESOLVED_P is true.
896 If the dependency or NULL if none found. */
897 dep_t
898 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
899 {
900 if (true_dependency_cache != NULL)
901 /* Avoiding the list walk below can cut compile times dramatically
902 for some code. */
903 {
904 int elem_luid = INSN_LUID (pro);
905 int insn_luid = INSN_LUID (con);
906
907 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
908 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
909 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
910 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
911 return NULL;
912 }
913
914 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
915 }
916
917 /* Add or update a dependence described by DEP.
918 MEM1 and MEM2, if non-null, correspond to memory locations in case of
919 data speculation.
920
921 The function returns a value indicating if an old entry has been changed
922 or a new entry has been added to insn's backward deps.
923
924 This function merely checks if producer and consumer is the same insn
925 and doesn't create a dep in this case. Actual manipulation of
926 dependence data structures is performed in add_or_update_dep_1. */
927 static enum DEPS_ADJUST_RESULT
928 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
929 {
930 rtx elem = DEP_PRO (dep);
931 rtx insn = DEP_CON (dep);
932
933 gcc_assert (INSN_P (insn) && INSN_P (elem));
934
935 /* Don't depend an insn on itself. */
936 if (insn == elem)
937 {
938 if (sched_deps_info->generate_spec_deps)
939 /* INSN has an internal dependence, which we can't overcome. */
940 HAS_INTERNAL_DEP (insn) = 1;
941
942 return DEP_NODEP;
943 }
944
945 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
946 }
947
948 /* Ask dependency caches what needs to be done for dependence DEP.
949 Return DEP_CREATED if new dependence should be created and there is no
950 need to try to find one searching the dependencies lists.
951 Return DEP_PRESENT if there already is a dependence described by DEP and
952 hence nothing is to be done.
953 Return DEP_CHANGED if there already is a dependence, but it should be
954 updated to incorporate additional information from DEP. */
955 static enum DEPS_ADJUST_RESULT
956 ask_dependency_caches (dep_t dep)
957 {
958 int elem_luid = INSN_LUID (DEP_PRO (dep));
959 int insn_luid = INSN_LUID (DEP_CON (dep));
960
961 gcc_assert (true_dependency_cache != NULL
962 && output_dependency_cache != NULL
963 && anti_dependency_cache != NULL
964 && control_dependency_cache != NULL);
965
966 if (!(current_sched_info->flags & USE_DEPS_LIST))
967 {
968 enum reg_note present_dep_type;
969
970 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
971 present_dep_type = REG_DEP_TRUE;
972 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
973 present_dep_type = REG_DEP_OUTPUT;
974 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
975 present_dep_type = REG_DEP_ANTI;
976 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
977 present_dep_type = REG_DEP_CONTROL;
978 else
979 /* There is no existing dep so it should be created. */
980 return DEP_CREATED;
981
982 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
983 /* DEP does not add anything to the existing dependence. */
984 return DEP_PRESENT;
985 }
986 else
987 {
988 ds_t present_dep_types = 0;
989
990 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
991 present_dep_types |= DEP_TRUE;
992 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
993 present_dep_types |= DEP_OUTPUT;
994 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
995 present_dep_types |= DEP_ANTI;
996 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
997 present_dep_types |= DEP_CONTROL;
998
999 if (present_dep_types == 0)
1000 /* There is no existing dep so it should be created. */
1001 return DEP_CREATED;
1002
1003 if (!(current_sched_info->flags & DO_SPECULATION)
1004 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1005 {
1006 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1007 == present_dep_types)
1008 /* DEP does not add anything to the existing dependence. */
1009 return DEP_PRESENT;
1010 }
1011 else
1012 {
1013 /* Only true dependencies can be data speculative and
1014 only anti dependencies can be control speculative. */
1015 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1016 == present_dep_types);
1017
1018 /* if (DEP is SPECULATIVE) then
1019 ..we should update DEP_STATUS
1020 else
1021 ..we should reset existing dep to non-speculative. */
1022 }
1023 }
1024
1025 return DEP_CHANGED;
1026 }
1027
1028 /* Set dependency caches according to DEP. */
1029 static void
1030 set_dependency_caches (dep_t dep)
1031 {
1032 int elem_luid = INSN_LUID (DEP_PRO (dep));
1033 int insn_luid = INSN_LUID (DEP_CON (dep));
1034
1035 if (!(current_sched_info->flags & USE_DEPS_LIST))
1036 {
1037 switch (DEP_TYPE (dep))
1038 {
1039 case REG_DEP_TRUE:
1040 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1041 break;
1042
1043 case REG_DEP_OUTPUT:
1044 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1045 break;
1046
1047 case REG_DEP_ANTI:
1048 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1049 break;
1050
1051 case REG_DEP_CONTROL:
1052 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1053 break;
1054
1055 default:
1056 gcc_unreachable ();
1057 }
1058 }
1059 else
1060 {
1061 ds_t ds = DEP_STATUS (dep);
1062
1063 if (ds & DEP_TRUE)
1064 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1065 if (ds & DEP_OUTPUT)
1066 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1067 if (ds & DEP_ANTI)
1068 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1069 if (ds & DEP_CONTROL)
1070 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1071
1072 if (ds & SPECULATIVE)
1073 {
1074 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1075 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1076 }
1077 }
1078 }
1079
1080 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1081 caches accordingly. */
1082 static void
1083 update_dependency_caches (dep_t dep, enum reg_note old_type)
1084 {
1085 int elem_luid = INSN_LUID (DEP_PRO (dep));
1086 int insn_luid = INSN_LUID (DEP_CON (dep));
1087
1088 /* Clear corresponding cache entry because type of the link
1089 may have changed. Keep them if we use_deps_list. */
1090 if (!(current_sched_info->flags & USE_DEPS_LIST))
1091 {
1092 switch (old_type)
1093 {
1094 case REG_DEP_OUTPUT:
1095 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1096 break;
1097
1098 case REG_DEP_ANTI:
1099 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1100 break;
1101
1102 case REG_DEP_CONTROL:
1103 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1104 break;
1105
1106 default:
1107 gcc_unreachable ();
1108 }
1109 }
1110
1111 set_dependency_caches (dep);
1112 }
1113
1114 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1115 static void
1116 change_spec_dep_to_hard (sd_iterator_def sd_it)
1117 {
1118 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1119 dep_link_t link = DEP_NODE_BACK (node);
1120 dep_t dep = DEP_NODE_DEP (node);
1121 rtx elem = DEP_PRO (dep);
1122 rtx insn = DEP_CON (dep);
1123
1124 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1125
1126 DEP_STATUS (dep) &= ~SPECULATIVE;
1127
1128 if (true_dependency_cache != NULL)
1129 /* Clear the cache entry. */
1130 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1131 INSN_LUID (elem));
1132 }
1133
1134 /* Update DEP to incorporate information from NEW_DEP.
1135 SD_IT points to DEP in case it should be moved to another list.
1136 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1137 data-speculative dependence should be updated. */
1138 static enum DEPS_ADJUST_RESULT
1139 update_dep (dep_t dep, dep_t new_dep,
1140 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1141 rtx mem1 ATTRIBUTE_UNUSED,
1142 rtx mem2 ATTRIBUTE_UNUSED)
1143 {
1144 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1145 enum reg_note old_type = DEP_TYPE (dep);
1146 bool was_spec = dep_spec_p (dep);
1147
1148 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1149 DEP_MULTIPLE (dep) = 1;
1150
1151 /* If this is a more restrictive type of dependence than the
1152 existing one, then change the existing dependence to this
1153 type. */
1154 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1155 {
1156 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1157 res = DEP_CHANGED;
1158 }
1159
1160 if (current_sched_info->flags & USE_DEPS_LIST)
1161 /* Update DEP_STATUS. */
1162 {
1163 ds_t dep_status = DEP_STATUS (dep);
1164 ds_t ds = DEP_STATUS (new_dep);
1165 ds_t new_status = ds | dep_status;
1166
1167 if (new_status & SPECULATIVE)
1168 {
1169 /* Either existing dep or a dep we're adding or both are
1170 speculative. */
1171 if (!(ds & SPECULATIVE)
1172 || !(dep_status & SPECULATIVE))
1173 /* The new dep can't be speculative. */
1174 new_status &= ~SPECULATIVE;
1175 else
1176 {
1177 /* Both are speculative. Merge probabilities. */
1178 if (mem1 != NULL)
1179 {
1180 dw_t dw;
1181
1182 dw = estimate_dep_weak (mem1, mem2);
1183 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1184 }
1185
1186 new_status = ds_merge (dep_status, ds);
1187 }
1188 }
1189
1190 ds = new_status;
1191
1192 if (dep_status != ds)
1193 {
1194 DEP_STATUS (dep) = ds;
1195 res = DEP_CHANGED;
1196 }
1197 }
1198
1199 if (was_spec && !dep_spec_p (dep))
1200 /* The old dep was speculative, but now it isn't. */
1201 change_spec_dep_to_hard (sd_it);
1202
1203 if (true_dependency_cache != NULL
1204 && res == DEP_CHANGED)
1205 update_dependency_caches (dep, old_type);
1206
1207 return res;
1208 }
1209
1210 /* Add or update a dependence described by DEP.
1211 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1212 data speculation.
1213
1214 The function returns a value indicating if an old entry has been changed
1215 or a new entry has been added to insn's backward deps or nothing has
1216 been updated at all. */
1217 static enum DEPS_ADJUST_RESULT
1218 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1219 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1220 {
1221 bool maybe_present_p = true;
1222 bool present_p = false;
1223
1224 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1225 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1226
1227 #ifdef ENABLE_CHECKING
1228 check_dep (new_dep, mem1 != NULL);
1229 #endif
1230
1231 if (true_dependency_cache != NULL)
1232 {
1233 switch (ask_dependency_caches (new_dep))
1234 {
1235 case DEP_PRESENT:
1236 return DEP_PRESENT;
1237
1238 case DEP_CHANGED:
1239 maybe_present_p = true;
1240 present_p = true;
1241 break;
1242
1243 case DEP_CREATED:
1244 maybe_present_p = false;
1245 present_p = false;
1246 break;
1247
1248 default:
1249 gcc_unreachable ();
1250 break;
1251 }
1252 }
1253
1254 /* Check that we don't already have this dependence. */
1255 if (maybe_present_p)
1256 {
1257 dep_t present_dep;
1258 sd_iterator_def sd_it;
1259
1260 gcc_assert (true_dependency_cache == NULL || present_p);
1261
1262 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1263 DEP_CON (new_dep),
1264 resolved_p, &sd_it);
1265
1266 if (present_dep != NULL)
1267 /* We found an existing dependency between ELEM and INSN. */
1268 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1269 else
1270 /* We didn't find a dep, it shouldn't present in the cache. */
1271 gcc_assert (!present_p);
1272 }
1273
1274 /* Might want to check one level of transitivity to save conses.
1275 This check should be done in maybe_add_or_update_dep_1.
1276 Since we made it to add_or_update_dep_1, we must create
1277 (or update) a link. */
1278
1279 if (mem1 != NULL_RTX)
1280 {
1281 gcc_assert (sched_deps_info->generate_spec_deps);
1282 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1283 estimate_dep_weak (mem1, mem2));
1284 }
1285
1286 sd_add_dep (new_dep, resolved_p);
1287
1288 return DEP_CREATED;
1289 }
1290
1291 /* Initialize BACK_LIST_PTR with consumer's backward list and
1292 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1293 initialize with lists that hold resolved deps. */
1294 static void
1295 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1296 deps_list_t *back_list_ptr,
1297 deps_list_t *forw_list_ptr)
1298 {
1299 rtx con = DEP_CON (dep);
1300
1301 if (!resolved_p)
1302 {
1303 if (dep_spec_p (dep))
1304 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1305 else
1306 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1307
1308 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1309 }
1310 else
1311 {
1312 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1313 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 }
1315 }
1316
1317 /* Add dependence described by DEP.
1318 If RESOLVED_P is true treat the dependence as a resolved one. */
1319 void
1320 sd_add_dep (dep_t dep, bool resolved_p)
1321 {
1322 dep_node_t n = create_dep_node ();
1323 deps_list_t con_back_deps;
1324 deps_list_t pro_forw_deps;
1325 rtx elem = DEP_PRO (dep);
1326 rtx insn = DEP_CON (dep);
1327
1328 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1329
1330 if ((current_sched_info->flags & DO_SPECULATION) == 0
1331 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1332 DEP_STATUS (dep) &= ~SPECULATIVE;
1333
1334 copy_dep (DEP_NODE_DEP (n), dep);
1335
1336 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1337
1338 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1339
1340 #ifdef ENABLE_CHECKING
1341 check_dep (dep, false);
1342 #endif
1343
1344 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1345
1346 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1347 in the bitmap caches of dependency information. */
1348 if (true_dependency_cache != NULL)
1349 set_dependency_caches (dep);
1350 }
1351
1352 /* Add or update backward dependence between INSN and ELEM
1353 with given type DEP_TYPE and dep_status DS.
1354 This function is a convenience wrapper. */
1355 enum DEPS_ADJUST_RESULT
1356 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1357 {
1358 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1359 }
1360
1361 /* Resolved dependence pointed to by SD_IT.
1362 SD_IT will advance to the next element. */
1363 void
1364 sd_resolve_dep (sd_iterator_def sd_it)
1365 {
1366 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1367 dep_t dep = DEP_NODE_DEP (node);
1368 rtx pro = DEP_PRO (dep);
1369 rtx con = DEP_CON (dep);
1370
1371 if (dep_spec_p (dep))
1372 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374 else
1375 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1376 INSN_RESOLVED_BACK_DEPS (con));
1377
1378 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1379 INSN_RESOLVED_FORW_DEPS (pro));
1380 }
1381
1382 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1383 pointed to by SD_IT to unresolved state. */
1384 void
1385 sd_unresolve_dep (sd_iterator_def sd_it)
1386 {
1387 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1388 dep_t dep = DEP_NODE_DEP (node);
1389 rtx pro = DEP_PRO (dep);
1390 rtx con = DEP_CON (dep);
1391
1392 if (dep_spec_p (dep))
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_SPEC_BACK_DEPS (con));
1395 else
1396 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1397 INSN_HARD_BACK_DEPS (con));
1398
1399 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1400 INSN_FORW_DEPS (pro));
1401 }
1402
1403 /* Make TO depend on all the FROM's producers.
1404 If RESOLVED_P is true add dependencies to the resolved lists. */
1405 void
1406 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1407 {
1408 sd_list_types_def list_type;
1409 sd_iterator_def sd_it;
1410 dep_t dep;
1411
1412 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1413
1414 FOR_EACH_DEP (from, list_type, sd_it, dep)
1415 {
1416 dep_def _new_dep, *new_dep = &_new_dep;
1417
1418 copy_dep (new_dep, dep);
1419 DEP_CON (new_dep) = to;
1420 sd_add_dep (new_dep, resolved_p);
1421 }
1422 }
1423
1424 /* Remove a dependency referred to by SD_IT.
1425 SD_IT will point to the next dependence after removal. */
1426 void
1427 sd_delete_dep (sd_iterator_def sd_it)
1428 {
1429 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1430 dep_t dep = DEP_NODE_DEP (n);
1431 rtx pro = DEP_PRO (dep);
1432 rtx con = DEP_CON (dep);
1433 deps_list_t con_back_deps;
1434 deps_list_t pro_forw_deps;
1435
1436 if (true_dependency_cache != NULL)
1437 {
1438 int elem_luid = INSN_LUID (pro);
1439 int insn_luid = INSN_LUID (con);
1440
1441 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1442 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1443 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1444 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1445
1446 if (current_sched_info->flags & DO_SPECULATION)
1447 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1448 }
1449
1450 get_back_and_forw_lists (dep, sd_it.resolved_p,
1451 &con_back_deps, &pro_forw_deps);
1452
1453 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1454 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1455
1456 delete_dep_node (n);
1457 }
1458
1459 /* Dump size of the lists. */
1460 #define DUMP_LISTS_SIZE (2)
1461
1462 /* Dump dependencies of the lists. */
1463 #define DUMP_LISTS_DEPS (4)
1464
1465 /* Dump all information about the lists. */
1466 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1467
1468 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1469 FLAGS is a bit mask specifying what information about the lists needs
1470 to be printed.
1471 If FLAGS has the very first bit set, then dump all information about
1472 the lists and propagate this bit into the callee dump functions. */
1473 static void
1474 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1475 {
1476 sd_iterator_def sd_it;
1477 dep_t dep;
1478 int all;
1479
1480 all = (flags & 1);
1481
1482 if (all)
1483 flags |= DUMP_LISTS_ALL;
1484
1485 fprintf (dump, "[");
1486
1487 if (flags & DUMP_LISTS_SIZE)
1488 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1489
1490 if (flags & DUMP_LISTS_DEPS)
1491 {
1492 FOR_EACH_DEP (insn, types, sd_it, dep)
1493 {
1494 dump_dep (dump, dep, dump_dep_flags | all);
1495 fprintf (dump, " ");
1496 }
1497 }
1498 }
1499
1500 /* Dump all information about deps_lists of INSN specified by TYPES
1501 to STDERR. */
1502 void
1503 sd_debug_lists (rtx insn, sd_list_types_def types)
1504 {
1505 dump_lists (stderr, insn, types, 1);
1506 fprintf (stderr, "\n");
1507 }
1508
1509 /* A wrapper around add_dependence_1, to add a dependence of CON on
1510 PRO, with type DEP_TYPE. This function implements special handling
1511 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1512 the type to REG_DEP_ANTI if we can determine that predication is
1513 impossible; otherwise we add additional true dependencies on the
1514 INSN_COND_DEPS list of the jump (which PRO must be). */
1515 void
1516 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1517 {
1518 if (dep_type == REG_DEP_CONTROL
1519 && !(current_sched_info->flags & DO_PREDICATION))
1520 dep_type = REG_DEP_ANTI;
1521
1522 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1523 so we must also make the insn dependent on the setter of the
1524 condition. */
1525 if (dep_type == REG_DEP_CONTROL)
1526 {
1527 rtx real_pro = pro;
1528 rtx other = real_insn_for_shadow (real_pro);
1529 rtx cond;
1530
1531 if (other != NULL_RTX)
1532 real_pro = other;
1533 cond = sched_get_reverse_condition_uncached (real_pro);
1534 /* Verify that the insn does not use a different value in
1535 the condition register than the one that was present at
1536 the jump. */
1537 if (cond == NULL_RTX)
1538 dep_type = REG_DEP_ANTI;
1539 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1540 {
1541 HARD_REG_SET uses;
1542 CLEAR_HARD_REG_SET (uses);
1543 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1544 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1545 dep_type = REG_DEP_ANTI;
1546 }
1547 if (dep_type == REG_DEP_CONTROL)
1548 {
1549 if (sched_verbose >= 5)
1550 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1551 INSN_UID (real_pro));
1552 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1553 REG_DEP_TRUE, false);
1554 }
1555 }
1556
1557 add_dependence_1 (con, pro, dep_type);
1558 }
1559
1560 /* A convenience wrapper to operate on an entire list. HARD should be
1561 true if DEP_NONREG should be set on newly created dependencies. */
1562
1563 static void
1564 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type,
1565 bool hard)
1566 {
1567 mark_as_hard = hard;
1568 for (; list; list = XEXP (list, 1))
1569 {
1570 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1571 add_dependence (insn, XEXP (list, 0), dep_type);
1572 }
1573 mark_as_hard = false;
1574 }
1575
1576 /* Similar, but free *LISTP at the same time, when the context
1577 is not readonly. HARD should be true if DEP_NONREG should be set on
1578 newly created dependencies. */
1579
1580 static void
1581 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1582 int uncond, enum reg_note dep_type, bool hard)
1583 {
1584 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1585
1586 /* We don't want to short-circuit dependencies involving debug
1587 insns, because they may cause actual dependencies to be
1588 disregarded. */
1589 if (deps->readonly || DEBUG_INSN_P (insn))
1590 return;
1591
1592 free_INSN_LIST_list (listp);
1593 }
1594
1595 /* Remove all occurrences of INSN from LIST. Return the number of
1596 occurrences removed. */
1597
1598 static int
1599 remove_from_dependence_list (rtx insn, rtx* listp)
1600 {
1601 int removed = 0;
1602
1603 while (*listp)
1604 {
1605 if (XEXP (*listp, 0) == insn)
1606 {
1607 remove_free_INSN_LIST_node (listp);
1608 removed++;
1609 continue;
1610 }
1611
1612 listp = &XEXP (*listp, 1);
1613 }
1614
1615 return removed;
1616 }
1617
1618 /* Same as above, but process two lists at once. */
1619 static int
1620 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1621 {
1622 int removed = 0;
1623
1624 while (*listp)
1625 {
1626 if (XEXP (*listp, 0) == insn)
1627 {
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1632 }
1633
1634 listp = &XEXP (*listp, 1);
1635 exprp = &XEXP (*exprp, 1);
1636 }
1637
1638 return removed;
1639 }
1640
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx insn)
1644 {
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1651
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1655 }
1656
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1662
1663 static void
1664 chain_to_prev_insn (rtx insn)
1665 {
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx prev_nonnote;
1669
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 {
1672 rtx i = insn;
1673 rtx pro = DEP_PRO (dep);
1674
1675 do
1676 {
1677 i = prev_nonnote_insn (i);
1678
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1686 }
1687
1688 delete_all_dependences (insn);
1689
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1694 }
1695 \f
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1698
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1703
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1706
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1710
1711 static void
1712 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1713 rtx insn, rtx mem)
1714 {
1715 rtx *insn_list;
1716 rtx *mem_list;
1717 rtx link;
1718
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1721 {
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1726 }
1727 else
1728 {
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1732 }
1733
1734 link = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = link;
1736
1737 if (sched_deps_info->use_cselib)
1738 {
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1742 }
1743 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = link;
1745 }
1746
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1750
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1753 int for_write)
1754 {
1755 if (for_write)
1756 {
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1760 {
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1763 }
1764 }
1765
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1769
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1774
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1777
1778 if (DEBUG_INSN_P (insn))
1779 {
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1785 }
1786
1787 if (!deps->readonly)
1788 {
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1791
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1794 }
1795 mark_as_hard = false;
1796 }
1797 \f
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx cur_insn = NULL_RTX;
1800
1801 /* Implement hooks for haifa scheduler. */
1802
1803 static void
1804 haifa_start_insn (rtx insn)
1805 {
1806 gcc_assert (insn && !cur_insn);
1807
1808 cur_insn = insn;
1809 }
1810
1811 static void
1812 haifa_finish_insn (void)
1813 {
1814 cur_insn = NULL;
1815 }
1816
1817 void
1818 haifa_note_reg_set (int regno)
1819 {
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1821 }
1822
1823 void
1824 haifa_note_reg_clobber (int regno)
1825 {
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1827 }
1828
1829 void
1830 haifa_note_reg_use (int regno)
1831 {
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1833 }
1834
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1837 {
1838 if (!(ds & SPECULATIVE))
1839 {
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1842 }
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1845
1846 {
1847 dep_def _dep, *dep = &_dep;
1848
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1853 }
1854
1855 }
1856
1857 static void
1858 haifa_note_dep (rtx elem, ds_t ds)
1859 {
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1862
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1867 }
1868
1869 static void
1870 note_reg_use (int r)
1871 {
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1874 }
1875
1876 static void
1877 note_reg_set (int r)
1878 {
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1881 }
1882
1883 static void
1884 note_reg_clobber (int r)
1885 {
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1888 }
1889
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1892 {
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1895 }
1896
1897 static void
1898 note_dep (rtx e, ds_t ds)
1899 {
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1902 }
1903
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1907 {
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1915 {
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1918 }
1919 }
1920
1921 \f
1922
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1925
1926
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx insn)
1930 {
1931 struct reg_use_data *use;
1932
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1939 }
1940
1941 /* Allocate and return reg_set_data structure for REGNO and INSN. */
1942 static struct reg_set_data *
1943 create_insn_reg_set (int regno, rtx insn)
1944 {
1945 struct reg_set_data *set;
1946
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1952 return set;
1953 }
1954
1955 /* Set up insn register uses for INSN and dependency context DEPS. */
1956 static void
1957 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1958 {
1959 unsigned i;
1960 reg_set_iterator rsi;
1961 rtx list;
1962 struct reg_use_data *use, *use2, *next;
1963 struct deps_reg *reg_last;
1964
1965 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1966 {
1967 if (i < FIRST_PSEUDO_REGISTER
1968 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1969 continue;
1970
1971 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1972 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1973 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1974 /* Ignore use which is not dying. */
1975 continue;
1976
1977 use = create_insn_reg_use (i, insn);
1978 use->next_regno_use = use;
1979 reg_last = &deps->reg_last[i];
1980
1981 /* Create the cycle list of uses. */
1982 for (list = reg_last->uses; list; list = XEXP (list, 1))
1983 {
1984 use2 = create_insn_reg_use (i, XEXP (list, 0));
1985 next = use->next_regno_use;
1986 use->next_regno_use = use2;
1987 use2->next_regno_use = next;
1988 }
1989 }
1990 }
1991
1992 /* Register pressure info for the currently processed insn. */
1993 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1994
1995 /* Return TRUE if INSN has the use structure for REGNO. */
1996 static bool
1997 insn_use_p (rtx insn, int regno)
1998 {
1999 struct reg_use_data *use;
2000
2001 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2002 if (use->regno == regno)
2003 return true;
2004 return false;
2005 }
2006
2007 /* Update the register pressure info after birth of pseudo register REGNO
2008 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2009 the register is in clobber or unused after the insn. */
2010 static void
2011 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2012 {
2013 int incr, new_incr;
2014 enum reg_class cl;
2015
2016 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2017 cl = sched_regno_pressure_class[regno];
2018 if (cl != NO_REGS)
2019 {
2020 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2021 if (clobber_p)
2022 {
2023 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2024 reg_pressure_info[cl].clobber_increase = new_incr;
2025 }
2026 else if (unused_p)
2027 {
2028 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2029 reg_pressure_info[cl].unused_set_increase = new_incr;
2030 }
2031 else
2032 {
2033 new_incr = reg_pressure_info[cl].set_increase + incr;
2034 reg_pressure_info[cl].set_increase = new_incr;
2035 if (! insn_use_p (insn, regno))
2036 reg_pressure_info[cl].change += incr;
2037 create_insn_reg_set (regno, insn);
2038 }
2039 gcc_assert (new_incr < (1 << INCREASE_BITS));
2040 }
2041 }
2042
2043 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2044 hard registers involved in the birth. */
2045 static void
2046 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2047 bool clobber_p, bool unused_p)
2048 {
2049 enum reg_class cl;
2050 int new_incr, last = regno + nregs;
2051
2052 while (regno < last)
2053 {
2054 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2055 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2056 {
2057 cl = sched_regno_pressure_class[regno];
2058 if (cl != NO_REGS)
2059 {
2060 if (clobber_p)
2061 {
2062 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2063 reg_pressure_info[cl].clobber_increase = new_incr;
2064 }
2065 else if (unused_p)
2066 {
2067 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2068 reg_pressure_info[cl].unused_set_increase = new_incr;
2069 }
2070 else
2071 {
2072 new_incr = reg_pressure_info[cl].set_increase + 1;
2073 reg_pressure_info[cl].set_increase = new_incr;
2074 if (! insn_use_p (insn, regno))
2075 reg_pressure_info[cl].change += 1;
2076 create_insn_reg_set (regno, insn);
2077 }
2078 gcc_assert (new_incr < (1 << INCREASE_BITS));
2079 }
2080 }
2081 regno++;
2082 }
2083 }
2084
2085 /* Update the register pressure info after birth of pseudo or hard
2086 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2087 correspondingly that the register is in clobber or unused after the
2088 insn. */
2089 static void
2090 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2091 {
2092 int regno;
2093
2094 if (GET_CODE (reg) == SUBREG)
2095 reg = SUBREG_REG (reg);
2096
2097 if (! REG_P (reg))
2098 return;
2099
2100 regno = REGNO (reg);
2101 if (regno < FIRST_PSEUDO_REGISTER)
2102 mark_insn_hard_regno_birth (insn, regno,
2103 hard_regno_nregs[regno][GET_MODE (reg)],
2104 clobber_p, unused_p);
2105 else
2106 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2107 }
2108
2109 /* Update the register pressure info after death of pseudo register
2110 REGNO. */
2111 static void
2112 mark_pseudo_death (int regno)
2113 {
2114 int incr;
2115 enum reg_class cl;
2116
2117 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2118 cl = sched_regno_pressure_class[regno];
2119 if (cl != NO_REGS)
2120 {
2121 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2122 reg_pressure_info[cl].change -= incr;
2123 }
2124 }
2125
2126 /* Like mark_pseudo_death except that NREGS saying how many hard
2127 registers involved in the death. */
2128 static void
2129 mark_hard_regno_death (int regno, int nregs)
2130 {
2131 enum reg_class cl;
2132 int last = regno + nregs;
2133
2134 while (regno < last)
2135 {
2136 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2137 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2138 {
2139 cl = sched_regno_pressure_class[regno];
2140 if (cl != NO_REGS)
2141 reg_pressure_info[cl].change -= 1;
2142 }
2143 regno++;
2144 }
2145 }
2146
2147 /* Update the register pressure info after death of pseudo or hard
2148 register REG. */
2149 static void
2150 mark_reg_death (rtx reg)
2151 {
2152 int regno;
2153
2154 if (GET_CODE (reg) == SUBREG)
2155 reg = SUBREG_REG (reg);
2156
2157 if (! REG_P (reg))
2158 return;
2159
2160 regno = REGNO (reg);
2161 if (regno < FIRST_PSEUDO_REGISTER)
2162 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2163 else
2164 mark_pseudo_death (regno);
2165 }
2166
2167 /* Process SETTER of REG. DATA is an insn containing the setter. */
2168 static void
2169 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2170 {
2171 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2172 return;
2173 mark_insn_reg_birth
2174 ((rtx) data, reg, false,
2175 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2176 }
2177
2178 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2179 static void
2180 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2181 {
2182 if (GET_CODE (setter) == CLOBBER)
2183 mark_insn_reg_birth ((rtx) data, reg, true, false);
2184 }
2185
2186 /* Set up reg pressure info related to INSN. */
2187 void
2188 init_insn_reg_pressure_info (rtx insn)
2189 {
2190 int i, len;
2191 enum reg_class cl;
2192 static struct reg_pressure_data *pressure_info;
2193 rtx link;
2194
2195 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2196
2197 if (! INSN_P (insn))
2198 return;
2199
2200 for (i = 0; i < ira_pressure_classes_num; i++)
2201 {
2202 cl = ira_pressure_classes[i];
2203 reg_pressure_info[cl].clobber_increase = 0;
2204 reg_pressure_info[cl].set_increase = 0;
2205 reg_pressure_info[cl].unused_set_increase = 0;
2206 reg_pressure_info[cl].change = 0;
2207 }
2208
2209 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2210
2211 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2212
2213 #ifdef AUTO_INC_DEC
2214 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2215 if (REG_NOTE_KIND (link) == REG_INC)
2216 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2217 #endif
2218
2219 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2220 if (REG_NOTE_KIND (link) == REG_DEAD)
2221 mark_reg_death (XEXP (link, 0));
2222
2223 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2224 pressure_info
2225 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2226 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2227 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2228 * sizeof (int), 1);
2229 for (i = 0; i < ira_pressure_classes_num; i++)
2230 {
2231 cl = ira_pressure_classes[i];
2232 pressure_info[i].clobber_increase
2233 = reg_pressure_info[cl].clobber_increase;
2234 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2235 pressure_info[i].unused_set_increase
2236 = reg_pressure_info[cl].unused_set_increase;
2237 pressure_info[i].change = reg_pressure_info[cl].change;
2238 }
2239 }
2240
2241
2242 \f
2243
2244 /* Internal variable for sched_analyze_[12] () functions.
2245 If it is nonzero, this means that sched_analyze_[12] looks
2246 at the most toplevel SET. */
2247 static bool can_start_lhs_rhs_p;
2248
2249 /* Extend reg info for the deps context DEPS given that
2250 we have just generated a register numbered REGNO. */
2251 static void
2252 extend_deps_reg_info (struct deps_desc *deps, int regno)
2253 {
2254 int max_regno = regno + 1;
2255
2256 gcc_assert (!reload_completed);
2257
2258 /* In a readonly context, it would not hurt to extend info,
2259 but it should not be needed. */
2260 if (reload_completed && deps->readonly)
2261 {
2262 deps->max_reg = max_regno;
2263 return;
2264 }
2265
2266 if (max_regno > deps->max_reg)
2267 {
2268 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2269 max_regno);
2270 memset (&deps->reg_last[deps->max_reg],
2271 0, (max_regno - deps->max_reg)
2272 * sizeof (struct deps_reg));
2273 deps->max_reg = max_regno;
2274 }
2275 }
2276
2277 /* Extends REG_INFO_P if needed. */
2278 void
2279 maybe_extend_reg_info_p (void)
2280 {
2281 /* Extend REG_INFO_P, if needed. */
2282 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2283 {
2284 size_t new_reg_info_p_size = max_regno + 128;
2285
2286 gcc_assert (!reload_completed && sel_sched_p ());
2287
2288 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2289 new_reg_info_p_size,
2290 reg_info_p_size,
2291 sizeof (*reg_info_p));
2292 reg_info_p_size = new_reg_info_p_size;
2293 }
2294 }
2295
2296 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2297 The type of the reference is specified by REF and can be SET,
2298 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2299
2300 static void
2301 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2302 enum rtx_code ref, rtx insn)
2303 {
2304 /* We could emit new pseudos in renaming. Extend the reg structures. */
2305 if (!reload_completed && sel_sched_p ()
2306 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2307 extend_deps_reg_info (deps, regno);
2308
2309 maybe_extend_reg_info_p ();
2310
2311 /* A hard reg in a wide mode may really be multiple registers.
2312 If so, mark all of them just like the first. */
2313 if (regno < FIRST_PSEUDO_REGISTER)
2314 {
2315 int i = hard_regno_nregs[regno][mode];
2316 if (ref == SET)
2317 {
2318 while (--i >= 0)
2319 note_reg_set (regno + i);
2320 }
2321 else if (ref == USE)
2322 {
2323 while (--i >= 0)
2324 note_reg_use (regno + i);
2325 }
2326 else
2327 {
2328 while (--i >= 0)
2329 note_reg_clobber (regno + i);
2330 }
2331 }
2332
2333 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2334 it does not reload. Ignore these as they have served their
2335 purpose already. */
2336 else if (regno >= deps->max_reg)
2337 {
2338 enum rtx_code code = GET_CODE (PATTERN (insn));
2339 gcc_assert (code == USE || code == CLOBBER);
2340 }
2341
2342 else
2343 {
2344 if (ref == SET)
2345 note_reg_set (regno);
2346 else if (ref == USE)
2347 note_reg_use (regno);
2348 else
2349 note_reg_clobber (regno);
2350
2351 /* Pseudos that are REG_EQUIV to something may be replaced
2352 by that during reloading. We need only add dependencies for
2353 the address in the REG_EQUIV note. */
2354 if (!reload_completed && get_reg_known_equiv_p (regno))
2355 {
2356 rtx t = get_reg_known_value (regno);
2357 if (MEM_P (t))
2358 sched_analyze_2 (deps, XEXP (t, 0), insn);
2359 }
2360
2361 /* Don't let it cross a call after scheduling if it doesn't
2362 already cross one. */
2363 if (REG_N_CALLS_CROSSED (regno) == 0)
2364 {
2365 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2366 deps->sched_before_next_call
2367 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2368 else
2369 add_dependence_list (insn, deps->last_function_call, 1,
2370 REG_DEP_ANTI, false);
2371 }
2372 }
2373 }
2374
2375 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2376 rtx, X, creating all dependencies generated by the write to the
2377 destination of X, and reads of everything mentioned. */
2378
2379 static void
2380 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2381 {
2382 rtx dest = XEXP (x, 0);
2383 enum rtx_code code = GET_CODE (x);
2384 bool cslr_p = can_start_lhs_rhs_p;
2385
2386 can_start_lhs_rhs_p = false;
2387
2388 gcc_assert (dest);
2389 if (dest == 0)
2390 return;
2391
2392 if (cslr_p && sched_deps_info->start_lhs)
2393 sched_deps_info->start_lhs (dest);
2394
2395 if (GET_CODE (dest) == PARALLEL)
2396 {
2397 int i;
2398
2399 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2400 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2401 sched_analyze_1 (deps,
2402 gen_rtx_CLOBBER (VOIDmode,
2403 XEXP (XVECEXP (dest, 0, i), 0)),
2404 insn);
2405
2406 if (cslr_p && sched_deps_info->finish_lhs)
2407 sched_deps_info->finish_lhs ();
2408
2409 if (code == SET)
2410 {
2411 can_start_lhs_rhs_p = cslr_p;
2412
2413 sched_analyze_2 (deps, SET_SRC (x), insn);
2414
2415 can_start_lhs_rhs_p = false;
2416 }
2417
2418 return;
2419 }
2420
2421 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2422 || GET_CODE (dest) == ZERO_EXTRACT)
2423 {
2424 if (GET_CODE (dest) == STRICT_LOW_PART
2425 || GET_CODE (dest) == ZERO_EXTRACT
2426 || df_read_modify_subreg_p (dest))
2427 {
2428 /* These both read and modify the result. We must handle
2429 them as writes to get proper dependencies for following
2430 instructions. We must handle them as reads to get proper
2431 dependencies from this to previous instructions.
2432 Thus we need to call sched_analyze_2. */
2433
2434 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2435 }
2436 if (GET_CODE (dest) == ZERO_EXTRACT)
2437 {
2438 /* The second and third arguments are values read by this insn. */
2439 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2440 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2441 }
2442 dest = XEXP (dest, 0);
2443 }
2444
2445 if (REG_P (dest))
2446 {
2447 int regno = REGNO (dest);
2448 enum machine_mode mode = GET_MODE (dest);
2449
2450 sched_analyze_reg (deps, regno, mode, code, insn);
2451
2452 #ifdef STACK_REGS
2453 /* Treat all writes to a stack register as modifying the TOS. */
2454 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2455 {
2456 /* Avoid analyzing the same register twice. */
2457 if (regno != FIRST_STACK_REG)
2458 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2459
2460 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2461 FIRST_STACK_REG);
2462 }
2463 #endif
2464 }
2465 else if (MEM_P (dest))
2466 {
2467 /* Writing memory. */
2468 rtx t = dest;
2469
2470 if (sched_deps_info->use_cselib)
2471 {
2472 enum machine_mode address_mode = get_address_mode (dest);
2473
2474 t = shallow_copy_rtx (dest);
2475 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2476 GET_MODE (t), insn);
2477 XEXP (t, 0)
2478 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2479 insn);
2480 }
2481 t = canon_rtx (t);
2482
2483 /* Pending lists can't get larger with a readonly context. */
2484 if (!deps->readonly
2485 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2486 > MAX_PENDING_LIST_LENGTH))
2487 {
2488 /* Flush all pending reads and writes to prevent the pending lists
2489 from getting any larger. Insn scheduling runs too slowly when
2490 these lists get long. When compiling GCC with itself,
2491 this flush occurs 8 times for sparc, and 10 times for m88k using
2492 the default value of 32. */
2493 flush_pending_lists (deps, insn, false, true);
2494 }
2495 else
2496 {
2497 rtx pending, pending_mem;
2498
2499 pending = deps->pending_read_insns;
2500 pending_mem = deps->pending_read_mems;
2501 while (pending)
2502 {
2503 if (anti_dependence (XEXP (pending_mem, 0), t)
2504 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2505 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2506 DEP_ANTI);
2507
2508 pending = XEXP (pending, 1);
2509 pending_mem = XEXP (pending_mem, 1);
2510 }
2511
2512 pending = deps->pending_write_insns;
2513 pending_mem = deps->pending_write_mems;
2514 while (pending)
2515 {
2516 if (output_dependence (XEXP (pending_mem, 0), t)
2517 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2518 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2519 DEP_OUTPUT);
2520
2521 pending = XEXP (pending, 1);
2522 pending_mem = XEXP (pending_mem, 1);
2523 }
2524
2525 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2526 REG_DEP_ANTI, true);
2527 add_dependence_list (insn, deps->pending_jump_insns, 1,
2528 REG_DEP_CONTROL, true);
2529
2530 if (!deps->readonly)
2531 add_insn_mem_dependence (deps, false, insn, dest);
2532 }
2533 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2534 }
2535
2536 if (cslr_p && sched_deps_info->finish_lhs)
2537 sched_deps_info->finish_lhs ();
2538
2539 /* Analyze reads. */
2540 if (GET_CODE (x) == SET)
2541 {
2542 can_start_lhs_rhs_p = cslr_p;
2543
2544 sched_analyze_2 (deps, SET_SRC (x), insn);
2545
2546 can_start_lhs_rhs_p = false;
2547 }
2548 }
2549
2550 /* Analyze the uses of memory and registers in rtx X in INSN. */
2551 static void
2552 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2553 {
2554 int i;
2555 int j;
2556 enum rtx_code code;
2557 const char *fmt;
2558 bool cslr_p = can_start_lhs_rhs_p;
2559
2560 can_start_lhs_rhs_p = false;
2561
2562 gcc_assert (x);
2563 if (x == 0)
2564 return;
2565
2566 if (cslr_p && sched_deps_info->start_rhs)
2567 sched_deps_info->start_rhs (x);
2568
2569 code = GET_CODE (x);
2570
2571 switch (code)
2572 {
2573 CASE_CONST_ANY:
2574 case SYMBOL_REF:
2575 case CONST:
2576 case LABEL_REF:
2577 /* Ignore constants. */
2578 if (cslr_p && sched_deps_info->finish_rhs)
2579 sched_deps_info->finish_rhs ();
2580
2581 return;
2582
2583 #ifdef HAVE_cc0
2584 case CC0:
2585 /* User of CC0 depends on immediately preceding insn. */
2586 SCHED_GROUP_P (insn) = 1;
2587 /* Don't move CC0 setter to another block (it can set up the
2588 same flag for previous CC0 users which is safe). */
2589 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2590
2591 if (cslr_p && sched_deps_info->finish_rhs)
2592 sched_deps_info->finish_rhs ();
2593
2594 return;
2595 #endif
2596
2597 case REG:
2598 {
2599 int regno = REGNO (x);
2600 enum machine_mode mode = GET_MODE (x);
2601
2602 sched_analyze_reg (deps, regno, mode, USE, insn);
2603
2604 #ifdef STACK_REGS
2605 /* Treat all reads of a stack register as modifying the TOS. */
2606 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2607 {
2608 /* Avoid analyzing the same register twice. */
2609 if (regno != FIRST_STACK_REG)
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2611 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2612 }
2613 #endif
2614
2615 if (cslr_p && sched_deps_info->finish_rhs)
2616 sched_deps_info->finish_rhs ();
2617
2618 return;
2619 }
2620
2621 case MEM:
2622 {
2623 /* Reading memory. */
2624 rtx u;
2625 rtx pending, pending_mem;
2626 rtx t = x;
2627
2628 if (sched_deps_info->use_cselib)
2629 {
2630 enum machine_mode address_mode = get_address_mode (t);
2631
2632 t = shallow_copy_rtx (t);
2633 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2634 GET_MODE (t), insn);
2635 XEXP (t, 0)
2636 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2637 insn);
2638 }
2639
2640 if (!DEBUG_INSN_P (insn))
2641 {
2642 t = canon_rtx (t);
2643 pending = deps->pending_read_insns;
2644 pending_mem = deps->pending_read_mems;
2645 while (pending)
2646 {
2647 if (read_dependence (XEXP (pending_mem, 0), t)
2648 && ! sched_insns_conditions_mutex_p (insn,
2649 XEXP (pending, 0)))
2650 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2651 DEP_ANTI);
2652
2653 pending = XEXP (pending, 1);
2654 pending_mem = XEXP (pending_mem, 1);
2655 }
2656
2657 pending = deps->pending_write_insns;
2658 pending_mem = deps->pending_write_mems;
2659 while (pending)
2660 {
2661 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2662 && ! sched_insns_conditions_mutex_p (insn,
2663 XEXP (pending, 0)))
2664 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2665 sched_deps_info->generate_spec_deps
2666 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2667
2668 pending = XEXP (pending, 1);
2669 pending_mem = XEXP (pending_mem, 1);
2670 }
2671
2672 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2673 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2674
2675 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2676 if (deps_may_trap_p (x))
2677 {
2678 if ((sched_deps_info->generate_spec_deps)
2679 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2680 {
2681 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2682 MAX_DEP_WEAK);
2683
2684 note_dep (XEXP (u, 0), ds);
2685 }
2686 else
2687 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2688 }
2689 }
2690
2691 /* Always add these dependencies to pending_reads, since
2692 this insn may be followed by a write. */
2693 if (!deps->readonly)
2694 add_insn_mem_dependence (deps, true, insn, x);
2695
2696 sched_analyze_2 (deps, XEXP (x, 0), insn);
2697
2698 if (cslr_p && sched_deps_info->finish_rhs)
2699 sched_deps_info->finish_rhs ();
2700
2701 return;
2702 }
2703
2704 /* Force pending stores to memory in case a trap handler needs them. */
2705 case TRAP_IF:
2706 flush_pending_lists (deps, insn, true, false);
2707 break;
2708
2709 case PREFETCH:
2710 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2711 reg_pending_barrier = TRUE_BARRIER;
2712 /* Prefetch insn contains addresses only. So if the prefetch
2713 address has no registers, there will be no dependencies on
2714 the prefetch insn. This is wrong with result code
2715 correctness point of view as such prefetch can be moved below
2716 a jump insn which usually generates MOVE_BARRIER preventing
2717 to move insns containing registers or memories through the
2718 barrier. It is also wrong with generated code performance
2719 point of view as prefetch withouth dependecies will have a
2720 tendency to be issued later instead of earlier. It is hard
2721 to generate accurate dependencies for prefetch insns as
2722 prefetch has only the start address but it is better to have
2723 something than nothing. */
2724 if (!deps->readonly)
2725 {
2726 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2727 if (sched_deps_info->use_cselib)
2728 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2729 add_insn_mem_dependence (deps, true, insn, x);
2730 }
2731 break;
2732
2733 case UNSPEC_VOLATILE:
2734 flush_pending_lists (deps, insn, true, true);
2735 /* FALLTHRU */
2736
2737 case ASM_OPERANDS:
2738 case ASM_INPUT:
2739 {
2740 /* Traditional and volatile asm instructions must be considered to use
2741 and clobber all hard registers, all pseudo-registers and all of
2742 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2743
2744 Consider for instance a volatile asm that changes the fpu rounding
2745 mode. An insn should not be moved across this even if it only uses
2746 pseudo-regs because it might give an incorrectly rounded result. */
2747 if (code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2748 reg_pending_barrier = TRUE_BARRIER;
2749
2750 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2751 We can not just fall through here since then we would be confused
2752 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2753 traditional asms unlike their normal usage. */
2754
2755 if (code == ASM_OPERANDS)
2756 {
2757 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2758 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2759
2760 if (cslr_p && sched_deps_info->finish_rhs)
2761 sched_deps_info->finish_rhs ();
2762
2763 return;
2764 }
2765 break;
2766 }
2767
2768 case PRE_DEC:
2769 case POST_DEC:
2770 case PRE_INC:
2771 case POST_INC:
2772 /* These both read and modify the result. We must handle them as writes
2773 to get proper dependencies for following instructions. We must handle
2774 them as reads to get proper dependencies from this to previous
2775 instructions. Thus we need to pass them to both sched_analyze_1
2776 and sched_analyze_2. We must call sched_analyze_2 first in order
2777 to get the proper antecedent for the read. */
2778 sched_analyze_2 (deps, XEXP (x, 0), insn);
2779 sched_analyze_1 (deps, x, insn);
2780
2781 if (cslr_p && sched_deps_info->finish_rhs)
2782 sched_deps_info->finish_rhs ();
2783
2784 return;
2785
2786 case POST_MODIFY:
2787 case PRE_MODIFY:
2788 /* op0 = op0 + op1 */
2789 sched_analyze_2 (deps, XEXP (x, 0), insn);
2790 sched_analyze_2 (deps, XEXP (x, 1), insn);
2791 sched_analyze_1 (deps, x, insn);
2792
2793 if (cslr_p && sched_deps_info->finish_rhs)
2794 sched_deps_info->finish_rhs ();
2795
2796 return;
2797
2798 default:
2799 break;
2800 }
2801
2802 /* Other cases: walk the insn. */
2803 fmt = GET_RTX_FORMAT (code);
2804 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2805 {
2806 if (fmt[i] == 'e')
2807 sched_analyze_2 (deps, XEXP (x, i), insn);
2808 else if (fmt[i] == 'E')
2809 for (j = 0; j < XVECLEN (x, i); j++)
2810 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2811 }
2812
2813 if (cslr_p && sched_deps_info->finish_rhs)
2814 sched_deps_info->finish_rhs ();
2815 }
2816
2817 /* Analyze an INSN with pattern X to find all dependencies. */
2818 static void
2819 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2820 {
2821 RTX_CODE code = GET_CODE (x);
2822 rtx link;
2823 unsigned i;
2824 reg_set_iterator rsi;
2825
2826 if (! reload_completed)
2827 {
2828 HARD_REG_SET temp;
2829
2830 extract_insn (insn);
2831 preprocess_constraints ();
2832 ira_implicitly_set_insn_hard_regs (&temp);
2833 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2834 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2835 }
2836
2837 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2838 && code == SET);
2839
2840 if (may_trap_p (x))
2841 /* Avoid moving trapping instructions across function calls that might
2842 not always return. */
2843 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2844 1, REG_DEP_ANTI, true);
2845
2846 /* We must avoid creating a situation in which two successors of the
2847 current block have different unwind info after scheduling. If at any
2848 point the two paths re-join this leads to incorrect unwind info. */
2849 /* ??? There are certain situations involving a forced frame pointer in
2850 which, with extra effort, we could fix up the unwind info at a later
2851 CFG join. However, it seems better to notice these cases earlier
2852 during prologue generation and avoid marking the frame pointer setup
2853 as frame-related at all. */
2854 if (RTX_FRAME_RELATED_P (insn))
2855 {
2856 /* Make sure prologue insn is scheduled before next jump. */
2857 deps->sched_before_next_jump
2858 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2859
2860 /* Make sure epilogue insn is scheduled after preceding jumps. */
2861 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2862 true);
2863 }
2864
2865 if (code == COND_EXEC)
2866 {
2867 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2868
2869 /* ??? Should be recording conditions so we reduce the number of
2870 false dependencies. */
2871 x = COND_EXEC_CODE (x);
2872 code = GET_CODE (x);
2873 }
2874 if (code == SET || code == CLOBBER)
2875 {
2876 sched_analyze_1 (deps, x, insn);
2877
2878 /* Bare clobber insns are used for letting life analysis, reg-stack
2879 and others know that a value is dead. Depend on the last call
2880 instruction so that reg-stack won't get confused. */
2881 if (code == CLOBBER)
2882 add_dependence_list (insn, deps->last_function_call, 1,
2883 REG_DEP_OUTPUT, true);
2884 }
2885 else if (code == PARALLEL)
2886 {
2887 for (i = XVECLEN (x, 0); i--;)
2888 {
2889 rtx sub = XVECEXP (x, 0, i);
2890 code = GET_CODE (sub);
2891
2892 if (code == COND_EXEC)
2893 {
2894 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2895 sub = COND_EXEC_CODE (sub);
2896 code = GET_CODE (sub);
2897 }
2898 if (code == SET || code == CLOBBER)
2899 sched_analyze_1 (deps, sub, insn);
2900 else
2901 sched_analyze_2 (deps, sub, insn);
2902 }
2903 }
2904 else
2905 sched_analyze_2 (deps, x, insn);
2906
2907 /* Mark registers CLOBBERED or used by called function. */
2908 if (CALL_P (insn))
2909 {
2910 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2911 {
2912 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2913 sched_analyze_1 (deps, XEXP (link, 0), insn);
2914 else if (GET_CODE (XEXP (link, 0)) != SET)
2915 sched_analyze_2 (deps, XEXP (link, 0), insn);
2916 }
2917 /* Don't schedule anything after a tail call, tail call needs
2918 to use at least all call-saved registers. */
2919 if (SIBLING_CALL_P (insn))
2920 reg_pending_barrier = TRUE_BARRIER;
2921 else if (find_reg_note (insn, REG_SETJMP, NULL))
2922 reg_pending_barrier = MOVE_BARRIER;
2923 }
2924
2925 if (JUMP_P (insn))
2926 {
2927 rtx next;
2928 next = next_nonnote_nondebug_insn (insn);
2929 if (next && BARRIER_P (next))
2930 reg_pending_barrier = MOVE_BARRIER;
2931 else
2932 {
2933 rtx pending, pending_mem;
2934
2935 if (sched_deps_info->compute_jump_reg_dependencies)
2936 {
2937 (*sched_deps_info->compute_jump_reg_dependencies)
2938 (insn, reg_pending_control_uses);
2939
2940 /* Make latency of jump equal to 0 by using anti-dependence. */
2941 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2942 {
2943 struct deps_reg *reg_last = &deps->reg_last[i];
2944 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
2945 false);
2946 add_dependence_list (insn, reg_last->implicit_sets,
2947 0, REG_DEP_ANTI, false);
2948 add_dependence_list (insn, reg_last->clobbers, 0,
2949 REG_DEP_ANTI, false);
2950 }
2951 }
2952
2953 /* All memory writes and volatile reads must happen before the
2954 jump. Non-volatile reads must happen before the jump iff
2955 the result is needed by the above register used mask. */
2956
2957 pending = deps->pending_write_insns;
2958 pending_mem = deps->pending_write_mems;
2959 while (pending)
2960 {
2961 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2962 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2963 pending = XEXP (pending, 1);
2964 pending_mem = XEXP (pending_mem, 1);
2965 }
2966
2967 pending = deps->pending_read_insns;
2968 pending_mem = deps->pending_read_mems;
2969 while (pending)
2970 {
2971 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
2972 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2973 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
2974 pending = XEXP (pending, 1);
2975 pending_mem = XEXP (pending_mem, 1);
2976 }
2977
2978 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2979 REG_DEP_ANTI, true);
2980 add_dependence_list (insn, deps->pending_jump_insns, 1,
2981 REG_DEP_ANTI, true);
2982 }
2983 }
2984
2985 /* If this instruction can throw an exception, then moving it changes
2986 where block boundaries fall. This is mighty confusing elsewhere.
2987 Therefore, prevent such an instruction from being moved. Same for
2988 non-jump instructions that define block boundaries.
2989 ??? Unclear whether this is still necessary in EBB mode. If not,
2990 add_branch_dependences should be adjusted for RGN mode instead. */
2991 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
2992 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
2993 reg_pending_barrier = MOVE_BARRIER;
2994
2995 if (sched_pressure != SCHED_PRESSURE_NONE)
2996 {
2997 setup_insn_reg_uses (deps, insn);
2998 init_insn_reg_pressure_info (insn);
2999 }
3000
3001 /* Add register dependencies for insn. */
3002 if (DEBUG_INSN_P (insn))
3003 {
3004 rtx prev = deps->last_debug_insn;
3005 rtx u;
3006
3007 if (!deps->readonly)
3008 deps->last_debug_insn = insn;
3009
3010 if (prev)
3011 add_dependence (insn, prev, REG_DEP_ANTI);
3012
3013 add_dependence_list (insn, deps->last_function_call, 1,
3014 REG_DEP_ANTI, false);
3015
3016 if (!sel_sched_p ())
3017 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3018 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3019
3020 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3021 {
3022 struct deps_reg *reg_last = &deps->reg_last[i];
3023 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3024 /* There's no point in making REG_DEP_CONTROL dependencies for
3025 debug insns. */
3026 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3027 false);
3028
3029 if (!deps->readonly)
3030 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3031 }
3032 CLEAR_REG_SET (reg_pending_uses);
3033
3034 /* Quite often, a debug insn will refer to stuff in the
3035 previous instruction, but the reason we want this
3036 dependency here is to make sure the scheduler doesn't
3037 gratuitously move a debug insn ahead. This could dirty
3038 DF flags and cause additional analysis that wouldn't have
3039 occurred in compilation without debug insns, and such
3040 additional analysis can modify the generated code. */
3041 prev = PREV_INSN (insn);
3042
3043 if (prev && NONDEBUG_INSN_P (prev))
3044 add_dependence (insn, prev, REG_DEP_ANTI);
3045 }
3046 else
3047 {
3048 regset_head set_or_clobbered;
3049
3050 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3051 {
3052 struct deps_reg *reg_last = &deps->reg_last[i];
3053 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3054 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3055 false);
3056 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3057 false);
3058
3059 if (!deps->readonly)
3060 {
3061 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3062 reg_last->uses_length++;
3063 }
3064 }
3065
3066 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3067 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3068 {
3069 struct deps_reg *reg_last = &deps->reg_last[i];
3070 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3071 add_dependence_list (insn, reg_last->implicit_sets, 0,
3072 REG_DEP_ANTI, false);
3073 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3074 false);
3075
3076 if (!deps->readonly)
3077 {
3078 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3079 reg_last->uses_length++;
3080 }
3081 }
3082
3083 if (targetm.sched.exposed_pipeline)
3084 {
3085 INIT_REG_SET (&set_or_clobbered);
3086 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3087 reg_pending_sets);
3088 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3089 {
3090 struct deps_reg *reg_last = &deps->reg_last[i];
3091 rtx list;
3092 for (list = reg_last->uses; list; list = XEXP (list, 1))
3093 {
3094 rtx other = XEXP (list, 0);
3095 if (INSN_CACHED_COND (other) != const_true_rtx
3096 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3097 INSN_CACHED_COND (other) = const_true_rtx;
3098 }
3099 }
3100 }
3101
3102 /* If the current insn is conditional, we can't free any
3103 of the lists. */
3104 if (sched_has_condition_p (insn))
3105 {
3106 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3107 {
3108 struct deps_reg *reg_last = &deps->reg_last[i];
3109 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3110 false);
3111 add_dependence_list (insn, reg_last->implicit_sets, 0,
3112 REG_DEP_ANTI, false);
3113 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3114 false);
3115 add_dependence_list (insn, reg_last->control_uses, 0,
3116 REG_DEP_CONTROL, false);
3117
3118 if (!deps->readonly)
3119 {
3120 reg_last->clobbers
3121 = alloc_INSN_LIST (insn, reg_last->clobbers);
3122 reg_last->clobbers_length++;
3123 }
3124 }
3125 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3126 {
3127 struct deps_reg *reg_last = &deps->reg_last[i];
3128 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3129 false);
3130 add_dependence_list (insn, reg_last->implicit_sets, 0,
3131 REG_DEP_ANTI, false);
3132 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3133 false);
3134 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3135 false);
3136 add_dependence_list (insn, reg_last->control_uses, 0,
3137 REG_DEP_CONTROL, false);
3138
3139 if (!deps->readonly)
3140 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3141 }
3142 }
3143 else
3144 {
3145 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3146 {
3147 struct deps_reg *reg_last = &deps->reg_last[i];
3148 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3149 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3150 {
3151 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3152 REG_DEP_OUTPUT, false);
3153 add_dependence_list_and_free (deps, insn,
3154 &reg_last->implicit_sets, 0,
3155 REG_DEP_ANTI, false);
3156 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3157 REG_DEP_ANTI, false);
3158 add_dependence_list_and_free (deps, insn,
3159 &reg_last->control_uses, 0,
3160 REG_DEP_ANTI, false);
3161 add_dependence_list_and_free (deps, insn,
3162 &reg_last->clobbers, 0,
3163 REG_DEP_OUTPUT, false);
3164
3165 if (!deps->readonly)
3166 {
3167 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3168 reg_last->clobbers_length = 0;
3169 reg_last->uses_length = 0;
3170 }
3171 }
3172 else
3173 {
3174 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3175 false);
3176 add_dependence_list (insn, reg_last->implicit_sets, 0,
3177 REG_DEP_ANTI, false);
3178 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3179 false);
3180 add_dependence_list (insn, reg_last->control_uses, 0,
3181 REG_DEP_CONTROL, false);
3182 }
3183
3184 if (!deps->readonly)
3185 {
3186 reg_last->clobbers_length++;
3187 reg_last->clobbers
3188 = alloc_INSN_LIST (insn, reg_last->clobbers);
3189 }
3190 }
3191 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3192 {
3193 struct deps_reg *reg_last = &deps->reg_last[i];
3194
3195 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3196 REG_DEP_OUTPUT, false);
3197 add_dependence_list_and_free (deps, insn,
3198 &reg_last->implicit_sets,
3199 0, REG_DEP_ANTI, false);
3200 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3201 REG_DEP_OUTPUT, false);
3202 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3203 REG_DEP_ANTI, false);
3204 add_dependence_list (insn, reg_last->control_uses, 0,
3205 REG_DEP_CONTROL, false);
3206
3207 if (!deps->readonly)
3208 {
3209 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3210 reg_last->uses_length = 0;
3211 reg_last->clobbers_length = 0;
3212 }
3213 }
3214 }
3215 if (!deps->readonly)
3216 {
3217 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3218 {
3219 struct deps_reg *reg_last = &deps->reg_last[i];
3220 reg_last->control_uses
3221 = alloc_INSN_LIST (insn, reg_last->control_uses);
3222 }
3223 }
3224 }
3225
3226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3227 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3228 {
3229 struct deps_reg *reg_last = &deps->reg_last[i];
3230 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3231 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3232 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3233 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3234 false);
3235
3236 if (!deps->readonly)
3237 reg_last->implicit_sets
3238 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3239 }
3240
3241 if (!deps->readonly)
3242 {
3243 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3244 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3245 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3246 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3247 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3248 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3249 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3250
3251 /* Set up the pending barrier found. */
3252 deps->last_reg_pending_barrier = reg_pending_barrier;
3253 }
3254
3255 CLEAR_REG_SET (reg_pending_uses);
3256 CLEAR_REG_SET (reg_pending_clobbers);
3257 CLEAR_REG_SET (reg_pending_sets);
3258 CLEAR_REG_SET (reg_pending_control_uses);
3259 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3260 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3261
3262 /* Add dependencies if a scheduling barrier was found. */
3263 if (reg_pending_barrier)
3264 {
3265 /* In the case of barrier the most added dependencies are not
3266 real, so we use anti-dependence here. */
3267 if (sched_has_condition_p (insn))
3268 {
3269 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3270 {
3271 struct deps_reg *reg_last = &deps->reg_last[i];
3272 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3273 true);
3274 add_dependence_list (insn, reg_last->sets, 0,
3275 reg_pending_barrier == TRUE_BARRIER
3276 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3277 add_dependence_list (insn, reg_last->implicit_sets, 0,
3278 REG_DEP_ANTI, true);
3279 add_dependence_list (insn, reg_last->clobbers, 0,
3280 reg_pending_barrier == TRUE_BARRIER
3281 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3282 }
3283 }
3284 else
3285 {
3286 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3287 {
3288 struct deps_reg *reg_last = &deps->reg_last[i];
3289 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3290 REG_DEP_ANTI, true);
3291 add_dependence_list_and_free (deps, insn,
3292 &reg_last->control_uses, 0,
3293 REG_DEP_CONTROL, true);
3294 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3295 reg_pending_barrier == TRUE_BARRIER
3296 ? REG_DEP_TRUE : REG_DEP_ANTI,
3297 true);
3298 add_dependence_list_and_free (deps, insn,
3299 &reg_last->implicit_sets, 0,
3300 REG_DEP_ANTI, true);
3301 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3302 reg_pending_barrier == TRUE_BARRIER
3303 ? REG_DEP_TRUE : REG_DEP_ANTI,
3304 true);
3305
3306 if (!deps->readonly)
3307 {
3308 reg_last->uses_length = 0;
3309 reg_last->clobbers_length = 0;
3310 }
3311 }
3312 }
3313
3314 if (!deps->readonly)
3315 for (i = 0; i < (unsigned)deps->max_reg; i++)
3316 {
3317 struct deps_reg *reg_last = &deps->reg_last[i];
3318 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3319 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3320 }
3321
3322 /* Don't flush pending lists on speculative checks for
3323 selective scheduling. */
3324 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3325 flush_pending_lists (deps, insn, true, true);
3326
3327 reg_pending_barrier = NOT_A_BARRIER;
3328 }
3329
3330 /* If a post-call group is still open, see if it should remain so.
3331 This insn must be a simple move of a hard reg to a pseudo or
3332 vice-versa.
3333
3334 We must avoid moving these insns for correctness on targets
3335 with small register classes, and for special registers like
3336 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3337 hard regs for all targets. */
3338
3339 if (deps->in_post_call_group_p)
3340 {
3341 rtx tmp, set = single_set (insn);
3342 int src_regno, dest_regno;
3343
3344 if (set == NULL)
3345 {
3346 if (DEBUG_INSN_P (insn))
3347 /* We don't want to mark debug insns as part of the same
3348 sched group. We know they really aren't, but if we use
3349 debug insns to tell that a call group is over, we'll
3350 get different code if debug insns are not there and
3351 instructions that follow seem like they should be part
3352 of the call group.
3353
3354 Also, if we did, chain_to_prev_insn would move the
3355 deps of the debug insn to the call insn, modifying
3356 non-debug post-dependency counts of the debug insn
3357 dependencies and otherwise messing with the scheduling
3358 order.
3359
3360 Instead, let such debug insns be scheduled freely, but
3361 keep the call group open in case there are insns that
3362 should be part of it afterwards. Since we grant debug
3363 insns higher priority than even sched group insns, it
3364 will all turn out all right. */
3365 goto debug_dont_end_call_group;
3366 else
3367 goto end_call_group;
3368 }
3369
3370 tmp = SET_DEST (set);
3371 if (GET_CODE (tmp) == SUBREG)
3372 tmp = SUBREG_REG (tmp);
3373 if (REG_P (tmp))
3374 dest_regno = REGNO (tmp);
3375 else
3376 goto end_call_group;
3377
3378 tmp = SET_SRC (set);
3379 if (GET_CODE (tmp) == SUBREG)
3380 tmp = SUBREG_REG (tmp);
3381 if ((GET_CODE (tmp) == PLUS
3382 || GET_CODE (tmp) == MINUS)
3383 && REG_P (XEXP (tmp, 0))
3384 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3385 && dest_regno == STACK_POINTER_REGNUM)
3386 src_regno = STACK_POINTER_REGNUM;
3387 else if (REG_P (tmp))
3388 src_regno = REGNO (tmp);
3389 else
3390 goto end_call_group;
3391
3392 if (src_regno < FIRST_PSEUDO_REGISTER
3393 || dest_regno < FIRST_PSEUDO_REGISTER)
3394 {
3395 if (!deps->readonly
3396 && deps->in_post_call_group_p == post_call_initial)
3397 deps->in_post_call_group_p = post_call;
3398
3399 if (!sel_sched_p () || sched_emulate_haifa_p)
3400 {
3401 SCHED_GROUP_P (insn) = 1;
3402 CANT_MOVE (insn) = 1;
3403 }
3404 }
3405 else
3406 {
3407 end_call_group:
3408 if (!deps->readonly)
3409 deps->in_post_call_group_p = not_post_call;
3410 }
3411 }
3412
3413 debug_dont_end_call_group:
3414 if ((current_sched_info->flags & DO_SPECULATION)
3415 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3416 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3417 be speculated. */
3418 {
3419 if (sel_sched_p ())
3420 sel_mark_hard_insn (insn);
3421 else
3422 {
3423 sd_iterator_def sd_it;
3424 dep_t dep;
3425
3426 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3427 sd_iterator_cond (&sd_it, &dep);)
3428 change_spec_dep_to_hard (sd_it);
3429 }
3430 }
3431 }
3432
3433 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3434 longjmp, loop forever, ...). */
3435 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3436 test for ECF_NORETURN? */
3437 static bool
3438 call_may_noreturn_p (rtx insn)
3439 {
3440 rtx call;
3441
3442 /* const or pure calls that aren't looping will always return. */
3443 if (RTL_CONST_OR_PURE_CALL_P (insn)
3444 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3445 return false;
3446
3447 call = get_call_rtx_from (insn);
3448 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3449 {
3450 rtx symbol = XEXP (XEXP (call, 0), 0);
3451 if (SYMBOL_REF_DECL (symbol)
3452 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3453 {
3454 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3455 == BUILT_IN_NORMAL)
3456 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3457 {
3458 case BUILT_IN_BCMP:
3459 case BUILT_IN_BCOPY:
3460 case BUILT_IN_BZERO:
3461 case BUILT_IN_INDEX:
3462 case BUILT_IN_MEMCHR:
3463 case BUILT_IN_MEMCMP:
3464 case BUILT_IN_MEMCPY:
3465 case BUILT_IN_MEMMOVE:
3466 case BUILT_IN_MEMPCPY:
3467 case BUILT_IN_MEMSET:
3468 case BUILT_IN_RINDEX:
3469 case BUILT_IN_STPCPY:
3470 case BUILT_IN_STPNCPY:
3471 case BUILT_IN_STRCAT:
3472 case BUILT_IN_STRCHR:
3473 case BUILT_IN_STRCMP:
3474 case BUILT_IN_STRCPY:
3475 case BUILT_IN_STRCSPN:
3476 case BUILT_IN_STRLEN:
3477 case BUILT_IN_STRNCAT:
3478 case BUILT_IN_STRNCMP:
3479 case BUILT_IN_STRNCPY:
3480 case BUILT_IN_STRPBRK:
3481 case BUILT_IN_STRRCHR:
3482 case BUILT_IN_STRSPN:
3483 case BUILT_IN_STRSTR:
3484 /* Assume certain string/memory builtins always return. */
3485 return false;
3486 default:
3487 break;
3488 }
3489 }
3490 }
3491
3492 /* For all other calls assume that they might not always return. */
3493 return true;
3494 }
3495
3496 /* Return true if INSN should be made dependent on the previous instruction
3497 group, and if all INSN's dependencies should be moved to the first
3498 instruction of that group. */
3499
3500 static bool
3501 chain_to_prev_insn_p (rtx insn)
3502 {
3503 rtx prev, x;
3504
3505 /* INSN forms a group with the previous instruction. */
3506 if (SCHED_GROUP_P (insn))
3507 return true;
3508
3509 /* If the previous instruction clobbers a register R and this one sets
3510 part of R, the clobber was added specifically to help us track the
3511 liveness of R. There's no point scheduling the clobber and leaving
3512 INSN behind, especially if we move the clobber to another block. */
3513 prev = prev_nonnote_nondebug_insn (insn);
3514 if (prev
3515 && INSN_P (prev)
3516 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3517 && GET_CODE (PATTERN (prev)) == CLOBBER)
3518 {
3519 x = XEXP (PATTERN (prev), 0);
3520 if (set_of (x, insn))
3521 return true;
3522 }
3523
3524 return false;
3525 }
3526
3527 /* Analyze INSN with DEPS as a context. */
3528 void
3529 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3530 {
3531 if (sched_deps_info->start_insn)
3532 sched_deps_info->start_insn (insn);
3533
3534 /* Record the condition for this insn. */
3535 if (NONDEBUG_INSN_P (insn))
3536 {
3537 rtx t;
3538 sched_get_condition_with_rev (insn, NULL);
3539 t = INSN_CACHED_COND (insn);
3540 INSN_COND_DEPS (insn) = NULL_RTX;
3541 if (reload_completed
3542 && (current_sched_info->flags & DO_PREDICATION)
3543 && COMPARISON_P (t)
3544 && REG_P (XEXP (t, 0))
3545 && CONSTANT_P (XEXP (t, 1)))
3546 {
3547 unsigned int regno;
3548 int nregs;
3549 t = XEXP (t, 0);
3550 regno = REGNO (t);
3551 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3552 t = NULL_RTX;
3553 while (nregs-- > 0)
3554 {
3555 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3556 t = concat_INSN_LIST (reg_last->sets, t);
3557 t = concat_INSN_LIST (reg_last->clobbers, t);
3558 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3559 }
3560 INSN_COND_DEPS (insn) = t;
3561 }
3562 }
3563
3564 if (JUMP_P (insn))
3565 {
3566 /* Make each JUMP_INSN (but not a speculative check)
3567 a scheduling barrier for memory references. */
3568 if (!deps->readonly
3569 && !(sel_sched_p ()
3570 && sel_insn_is_speculation_check (insn)))
3571 {
3572 /* Keep the list a reasonable size. */
3573 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3574 flush_pending_lists (deps, insn, true, true);
3575 else
3576 deps->pending_jump_insns
3577 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3578 }
3579
3580 /* For each insn which shouldn't cross a jump, add a dependence. */
3581 add_dependence_list_and_free (deps, insn,
3582 &deps->sched_before_next_jump, 1,
3583 REG_DEP_ANTI, true);
3584
3585 sched_analyze_insn (deps, PATTERN (insn), insn);
3586 }
3587 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3588 {
3589 sched_analyze_insn (deps, PATTERN (insn), insn);
3590 }
3591 else if (CALL_P (insn))
3592 {
3593 int i;
3594
3595 CANT_MOVE (insn) = 1;
3596
3597 if (find_reg_note (insn, REG_SETJMP, NULL))
3598 {
3599 /* This is setjmp. Assume that all registers, not just
3600 hard registers, may be clobbered by this call. */
3601 reg_pending_barrier = MOVE_BARRIER;
3602 }
3603 else
3604 {
3605 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3606 /* A call may read and modify global register variables. */
3607 if (global_regs[i])
3608 {
3609 SET_REGNO_REG_SET (reg_pending_sets, i);
3610 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3611 }
3612 /* Other call-clobbered hard regs may be clobbered.
3613 Since we only have a choice between 'might be clobbered'
3614 and 'definitely not clobbered', we must include all
3615 partly call-clobbered registers here. */
3616 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3617 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3618 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3619 /* We don't know what set of fixed registers might be used
3620 by the function, but it is certain that the stack pointer
3621 is among them, but be conservative. */
3622 else if (fixed_regs[i])
3623 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3624 /* The frame pointer is normally not used by the function
3625 itself, but by the debugger. */
3626 /* ??? MIPS o32 is an exception. It uses the frame pointer
3627 in the macro expansion of jal but does not represent this
3628 fact in the call_insn rtl. */
3629 else if (i == FRAME_POINTER_REGNUM
3630 || (i == HARD_FRAME_POINTER_REGNUM
3631 && (! reload_completed || frame_pointer_needed)))
3632 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3633 }
3634
3635 /* For each insn which shouldn't cross a call, add a dependence
3636 between that insn and this call insn. */
3637 add_dependence_list_and_free (deps, insn,
3638 &deps->sched_before_next_call, 1,
3639 REG_DEP_ANTI, true);
3640
3641 sched_analyze_insn (deps, PATTERN (insn), insn);
3642
3643 /* If CALL would be in a sched group, then this will violate
3644 convention that sched group insns have dependencies only on the
3645 previous instruction.
3646
3647 Of course one can say: "Hey! What about head of the sched group?"
3648 And I will answer: "Basic principles (one dep per insn) are always
3649 the same." */
3650 gcc_assert (!SCHED_GROUP_P (insn));
3651
3652 /* In the absence of interprocedural alias analysis, we must flush
3653 all pending reads and writes, and start new dependencies starting
3654 from here. But only flush writes for constant calls (which may
3655 be passed a pointer to something we haven't written yet). */
3656 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3657
3658 if (!deps->readonly)
3659 {
3660 /* Remember the last function call for limiting lifetimes. */
3661 free_INSN_LIST_list (&deps->last_function_call);
3662 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3663
3664 if (call_may_noreturn_p (insn))
3665 {
3666 /* Remember the last function call that might not always return
3667 normally for limiting moves of trapping insns. */
3668 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3669 deps->last_function_call_may_noreturn
3670 = alloc_INSN_LIST (insn, NULL_RTX);
3671 }
3672
3673 /* Before reload, begin a post-call group, so as to keep the
3674 lifetimes of hard registers correct. */
3675 if (! reload_completed)
3676 deps->in_post_call_group_p = post_call;
3677 }
3678 }
3679
3680 if (sched_deps_info->use_cselib)
3681 cselib_process_insn (insn);
3682
3683 if (sched_deps_info->finish_insn)
3684 sched_deps_info->finish_insn ();
3685
3686 /* Fixup the dependencies in the sched group. */
3687 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3688 && chain_to_prev_insn_p (insn)
3689 && !sel_sched_p ())
3690 chain_to_prev_insn (insn);
3691 }
3692
3693 /* Initialize DEPS for the new block beginning with HEAD. */
3694 void
3695 deps_start_bb (struct deps_desc *deps, rtx head)
3696 {
3697 gcc_assert (!deps->readonly);
3698
3699 /* Before reload, if the previous block ended in a call, show that
3700 we are inside a post-call group, so as to keep the lifetimes of
3701 hard registers correct. */
3702 if (! reload_completed && !LABEL_P (head))
3703 {
3704 rtx insn = prev_nonnote_nondebug_insn (head);
3705
3706 if (insn && CALL_P (insn))
3707 deps->in_post_call_group_p = post_call_initial;
3708 }
3709 }
3710
3711 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3712 dependencies for each insn. */
3713 void
3714 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3715 {
3716 rtx insn;
3717
3718 if (sched_deps_info->use_cselib)
3719 cselib_init (CSELIB_RECORD_MEMORY);
3720
3721 deps_start_bb (deps, head);
3722
3723 for (insn = head;; insn = NEXT_INSN (insn))
3724 {
3725
3726 if (INSN_P (insn))
3727 {
3728 /* And initialize deps_lists. */
3729 sd_init_insn (insn);
3730 }
3731
3732 deps_analyze_insn (deps, insn);
3733
3734 if (insn == tail)
3735 {
3736 if (sched_deps_info->use_cselib)
3737 cselib_finish ();
3738 return;
3739 }
3740 }
3741 gcc_unreachable ();
3742 }
3743
3744 /* Helper for sched_free_deps ().
3745 Delete INSN's (RESOLVED_P) backward dependencies. */
3746 static void
3747 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3748 {
3749 sd_iterator_def sd_it;
3750 dep_t dep;
3751 sd_list_types_def types;
3752
3753 if (resolved_p)
3754 types = SD_LIST_RES_BACK;
3755 else
3756 types = SD_LIST_BACK;
3757
3758 for (sd_it = sd_iterator_start (insn, types);
3759 sd_iterator_cond (&sd_it, &dep);)
3760 {
3761 dep_link_t link = *sd_it.linkp;
3762 dep_node_t node = DEP_LINK_NODE (link);
3763 deps_list_t back_list;
3764 deps_list_t forw_list;
3765
3766 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3767 remove_from_deps_list (link, back_list);
3768 delete_dep_node (node);
3769 }
3770 }
3771
3772 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3773 deps_lists. */
3774 void
3775 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3776 {
3777 rtx insn;
3778 rtx next_tail = NEXT_INSN (tail);
3779
3780 /* We make two passes since some insns may be scheduled before their
3781 dependencies are resolved. */
3782 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3783 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3784 {
3785 /* Clear forward deps and leave the dep_nodes to the
3786 corresponding back_deps list. */
3787 if (resolved_p)
3788 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3789 else
3790 clear_deps_list (INSN_FORW_DEPS (insn));
3791 }
3792 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3793 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3794 {
3795 /* Clear resolved back deps together with its dep_nodes. */
3796 delete_dep_nodes_in_back_deps (insn, resolved_p);
3797
3798 sd_finish_insn (insn);
3799 }
3800 }
3801 \f
3802 /* Initialize variables for region data dependence analysis.
3803 When LAZY_REG_LAST is true, do not allocate reg_last array
3804 of struct deps_desc immediately. */
3805
3806 void
3807 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3808 {
3809 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3810
3811 deps->max_reg = max_reg;
3812 if (lazy_reg_last)
3813 deps->reg_last = NULL;
3814 else
3815 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3816 INIT_REG_SET (&deps->reg_last_in_use);
3817
3818 deps->pending_read_insns = 0;
3819 deps->pending_read_mems = 0;
3820 deps->pending_write_insns = 0;
3821 deps->pending_write_mems = 0;
3822 deps->pending_jump_insns = 0;
3823 deps->pending_read_list_length = 0;
3824 deps->pending_write_list_length = 0;
3825 deps->pending_flush_length = 0;
3826 deps->last_pending_memory_flush = 0;
3827 deps->last_function_call = 0;
3828 deps->last_function_call_may_noreturn = 0;
3829 deps->sched_before_next_call = 0;
3830 deps->sched_before_next_jump = 0;
3831 deps->in_post_call_group_p = not_post_call;
3832 deps->last_debug_insn = 0;
3833 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3834 deps->readonly = 0;
3835 }
3836
3837 /* Init only reg_last field of DEPS, which was not allocated before as
3838 we inited DEPS lazily. */
3839 void
3840 init_deps_reg_last (struct deps_desc *deps)
3841 {
3842 gcc_assert (deps && deps->max_reg > 0);
3843 gcc_assert (deps->reg_last == NULL);
3844
3845 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3846 }
3847
3848
3849 /* Free insn lists found in DEPS. */
3850
3851 void
3852 free_deps (struct deps_desc *deps)
3853 {
3854 unsigned i;
3855 reg_set_iterator rsi;
3856
3857 /* We set max_reg to 0 when this context was already freed. */
3858 if (deps->max_reg == 0)
3859 {
3860 gcc_assert (deps->reg_last == NULL);
3861 return;
3862 }
3863 deps->max_reg = 0;
3864
3865 free_INSN_LIST_list (&deps->pending_read_insns);
3866 free_EXPR_LIST_list (&deps->pending_read_mems);
3867 free_INSN_LIST_list (&deps->pending_write_insns);
3868 free_EXPR_LIST_list (&deps->pending_write_mems);
3869 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3870
3871 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3872 times. For a testcase with 42000 regs and 8000 small basic blocks,
3873 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3874 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3875 {
3876 struct deps_reg *reg_last = &deps->reg_last[i];
3877 if (reg_last->uses)
3878 free_INSN_LIST_list (&reg_last->uses);
3879 if (reg_last->sets)
3880 free_INSN_LIST_list (&reg_last->sets);
3881 if (reg_last->implicit_sets)
3882 free_INSN_LIST_list (&reg_last->implicit_sets);
3883 if (reg_last->control_uses)
3884 free_INSN_LIST_list (&reg_last->control_uses);
3885 if (reg_last->clobbers)
3886 free_INSN_LIST_list (&reg_last->clobbers);
3887 }
3888 CLEAR_REG_SET (&deps->reg_last_in_use);
3889
3890 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3891 it at all. */
3892 free (deps->reg_last);
3893 deps->reg_last = NULL;
3894
3895 deps = NULL;
3896 }
3897
3898 /* Remove INSN from dependence contexts DEPS. */
3899 void
3900 remove_from_deps (struct deps_desc *deps, rtx insn)
3901 {
3902 int removed;
3903 unsigned i;
3904 reg_set_iterator rsi;
3905
3906 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3907 &deps->pending_read_mems);
3908 if (!DEBUG_INSN_P (insn))
3909 deps->pending_read_list_length -= removed;
3910 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3911 &deps->pending_write_mems);
3912 deps->pending_write_list_length -= removed;
3913
3914 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3915 deps->pending_flush_length -= removed;
3916 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3917 deps->pending_flush_length -= removed;
3918
3919 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3920 {
3921 struct deps_reg *reg_last = &deps->reg_last[i];
3922 if (reg_last->uses)
3923 remove_from_dependence_list (insn, &reg_last->uses);
3924 if (reg_last->sets)
3925 remove_from_dependence_list (insn, &reg_last->sets);
3926 if (reg_last->implicit_sets)
3927 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3928 if (reg_last->clobbers)
3929 remove_from_dependence_list (insn, &reg_last->clobbers);
3930 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3931 && !reg_last->clobbers)
3932 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3933 }
3934
3935 if (CALL_P (insn))
3936 {
3937 remove_from_dependence_list (insn, &deps->last_function_call);
3938 remove_from_dependence_list (insn,
3939 &deps->last_function_call_may_noreturn);
3940 }
3941 remove_from_dependence_list (insn, &deps->sched_before_next_call);
3942 }
3943
3944 /* Init deps data vector. */
3945 static void
3946 init_deps_data_vector (void)
3947 {
3948 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
3949 if (reserve > 0 && ! h_d_i_d.space (reserve))
3950 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
3951 }
3952
3953 /* If it is profitable to use them, initialize or extend (depending on
3954 GLOBAL_P) dependency data. */
3955 void
3956 sched_deps_init (bool global_p)
3957 {
3958 /* Average number of insns in the basic block.
3959 '+ 1' is used to make it nonzero. */
3960 int insns_in_block = sched_max_luid / n_basic_blocks + 1;
3961
3962 init_deps_data_vector ();
3963
3964 /* We use another caching mechanism for selective scheduling, so
3965 we don't use this one. */
3966 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
3967 {
3968 /* ?!? We could save some memory by computing a per-region luid mapping
3969 which could reduce both the number of vectors in the cache and the
3970 size of each vector. Instead we just avoid the cache entirely unless
3971 the average number of instructions in a basic block is very high. See
3972 the comment before the declaration of true_dependency_cache for
3973 what we consider "very high". */
3974 cache_size = 0;
3975 extend_dependency_caches (sched_max_luid, true);
3976 }
3977
3978 if (global_p)
3979 {
3980 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
3981 /* Allocate lists for one block at a time. */
3982 insns_in_block);
3983 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
3984 /* Allocate nodes for one block at a time.
3985 We assume that average insn has
3986 5 producers. */
3987 5 * insns_in_block);
3988 }
3989 }
3990
3991
3992 /* Create or extend (depending on CREATE_P) dependency caches to
3993 size N. */
3994 void
3995 extend_dependency_caches (int n, bool create_p)
3996 {
3997 if (create_p || true_dependency_cache)
3998 {
3999 int i, luid = cache_size + n;
4000
4001 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4002 luid);
4003 output_dependency_cache = XRESIZEVEC (bitmap_head,
4004 output_dependency_cache, luid);
4005 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4006 luid);
4007 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4008 luid);
4009
4010 if (current_sched_info->flags & DO_SPECULATION)
4011 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4012 luid);
4013
4014 for (i = cache_size; i < luid; i++)
4015 {
4016 bitmap_initialize (&true_dependency_cache[i], 0);
4017 bitmap_initialize (&output_dependency_cache[i], 0);
4018 bitmap_initialize (&anti_dependency_cache[i], 0);
4019 bitmap_initialize (&control_dependency_cache[i], 0);
4020
4021 if (current_sched_info->flags & DO_SPECULATION)
4022 bitmap_initialize (&spec_dependency_cache[i], 0);
4023 }
4024 cache_size = luid;
4025 }
4026 }
4027
4028 /* Finalize dependency information for the whole function. */
4029 void
4030 sched_deps_finish (void)
4031 {
4032 gcc_assert (deps_pools_are_empty_p ());
4033 free_alloc_pool_if_empty (&dn_pool);
4034 free_alloc_pool_if_empty (&dl_pool);
4035 gcc_assert (dn_pool == NULL && dl_pool == NULL);
4036
4037 h_d_i_d.release ();
4038 cache_size = 0;
4039
4040 if (true_dependency_cache)
4041 {
4042 int i;
4043
4044 for (i = 0; i < cache_size; i++)
4045 {
4046 bitmap_clear (&true_dependency_cache[i]);
4047 bitmap_clear (&output_dependency_cache[i]);
4048 bitmap_clear (&anti_dependency_cache[i]);
4049 bitmap_clear (&control_dependency_cache[i]);
4050
4051 if (sched_deps_info->generate_spec_deps)
4052 bitmap_clear (&spec_dependency_cache[i]);
4053 }
4054 free (true_dependency_cache);
4055 true_dependency_cache = NULL;
4056 free (output_dependency_cache);
4057 output_dependency_cache = NULL;
4058 free (anti_dependency_cache);
4059 anti_dependency_cache = NULL;
4060 free (control_dependency_cache);
4061 control_dependency_cache = NULL;
4062
4063 if (sched_deps_info->generate_spec_deps)
4064 {
4065 free (spec_dependency_cache);
4066 spec_dependency_cache = NULL;
4067 }
4068
4069 }
4070 }
4071
4072 /* Initialize some global variables needed by the dependency analysis
4073 code. */
4074
4075 void
4076 init_deps_global (void)
4077 {
4078 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4079 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4080 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4081 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4082 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4083 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4084 reg_pending_barrier = NOT_A_BARRIER;
4085
4086 if (!sel_sched_p () || sched_emulate_haifa_p)
4087 {
4088 sched_deps_info->start_insn = haifa_start_insn;
4089 sched_deps_info->finish_insn = haifa_finish_insn;
4090
4091 sched_deps_info->note_reg_set = haifa_note_reg_set;
4092 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4093 sched_deps_info->note_reg_use = haifa_note_reg_use;
4094
4095 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4096 sched_deps_info->note_dep = haifa_note_dep;
4097 }
4098 }
4099
4100 /* Free everything used by the dependency analysis code. */
4101
4102 void
4103 finish_deps_global (void)
4104 {
4105 FREE_REG_SET (reg_pending_sets);
4106 FREE_REG_SET (reg_pending_clobbers);
4107 FREE_REG_SET (reg_pending_uses);
4108 FREE_REG_SET (reg_pending_control_uses);
4109 }
4110
4111 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4112 dw_t
4113 estimate_dep_weak (rtx mem1, rtx mem2)
4114 {
4115 rtx r1, r2;
4116
4117 if (mem1 == mem2)
4118 /* MEMs are the same - don't speculate. */
4119 return MIN_DEP_WEAK;
4120
4121 r1 = XEXP (mem1, 0);
4122 r2 = XEXP (mem2, 0);
4123
4124 if (r1 == r2
4125 || (REG_P (r1) && REG_P (r2)
4126 && REGNO (r1) == REGNO (r2)))
4127 /* Again, MEMs are the same. */
4128 return MIN_DEP_WEAK;
4129 else if ((REG_P (r1) && !REG_P (r2))
4130 || (!REG_P (r1) && REG_P (r2)))
4131 /* Different addressing modes - reason to be more speculative,
4132 than usual. */
4133 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4134 else
4135 /* We can't say anything about the dependence. */
4136 return UNCERTAIN_DEP_WEAK;
4137 }
4138
4139 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4140 This function can handle same INSN and ELEM (INSN == ELEM).
4141 It is a convenience wrapper. */
4142 static void
4143 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4144 {
4145 ds_t ds;
4146 bool internal;
4147
4148 if (dep_type == REG_DEP_TRUE)
4149 ds = DEP_TRUE;
4150 else if (dep_type == REG_DEP_OUTPUT)
4151 ds = DEP_OUTPUT;
4152 else if (dep_type == REG_DEP_CONTROL)
4153 ds = DEP_CONTROL;
4154 else
4155 {
4156 gcc_assert (dep_type == REG_DEP_ANTI);
4157 ds = DEP_ANTI;
4158 }
4159
4160 /* When add_dependence is called from inside sched-deps.c, we expect
4161 cur_insn to be non-null. */
4162 internal = cur_insn != NULL;
4163 if (internal)
4164 gcc_assert (insn == cur_insn);
4165 else
4166 cur_insn = insn;
4167
4168 note_dep (elem, ds);
4169 if (!internal)
4170 cur_insn = NULL;
4171 }
4172
4173 /* Return weakness of speculative type TYPE in the dep_status DS,
4174 without checking to prevent ICEs on malformed input. */
4175 static dw_t
4176 get_dep_weak_1 (ds_t ds, ds_t type)
4177 {
4178 ds = ds & type;
4179
4180 switch (type)
4181 {
4182 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4183 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4184 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4185 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4186 default: gcc_unreachable ();
4187 }
4188
4189 return (dw_t) ds;
4190 }
4191
4192 /* Return weakness of speculative type TYPE in the dep_status DS. */
4193 dw_t
4194 get_dep_weak (ds_t ds, ds_t type)
4195 {
4196 dw_t dw = get_dep_weak_1 (ds, type);
4197
4198 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4199 return dw;
4200 }
4201
4202 /* Return the dep_status, which has the same parameters as DS, except for
4203 speculative type TYPE, that will have weakness DW. */
4204 ds_t
4205 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4206 {
4207 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4208
4209 ds &= ~type;
4210 switch (type)
4211 {
4212 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4213 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4214 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4215 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4216 default: gcc_unreachable ();
4217 }
4218 return ds;
4219 }
4220
4221 /* Return the join of two dep_statuses DS1 and DS2.
4222 If MAX_P is true then choose the greater probability,
4223 otherwise multiply probabilities.
4224 This function assumes that both DS1 and DS2 contain speculative bits. */
4225 static ds_t
4226 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4227 {
4228 ds_t ds, t;
4229
4230 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4231
4232 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4233
4234 t = FIRST_SPEC_TYPE;
4235 do
4236 {
4237 if ((ds1 & t) && !(ds2 & t))
4238 ds |= ds1 & t;
4239 else if (!(ds1 & t) && (ds2 & t))
4240 ds |= ds2 & t;
4241 else if ((ds1 & t) && (ds2 & t))
4242 {
4243 dw_t dw1 = get_dep_weak (ds1, t);
4244 dw_t dw2 = get_dep_weak (ds2, t);
4245 ds_t dw;
4246
4247 if (!max_p)
4248 {
4249 dw = ((ds_t) dw1) * ((ds_t) dw2);
4250 dw /= MAX_DEP_WEAK;
4251 if (dw < MIN_DEP_WEAK)
4252 dw = MIN_DEP_WEAK;
4253 }
4254 else
4255 {
4256 if (dw1 >= dw2)
4257 dw = dw1;
4258 else
4259 dw = dw2;
4260 }
4261
4262 ds = set_dep_weak (ds, t, (dw_t) dw);
4263 }
4264
4265 if (t == LAST_SPEC_TYPE)
4266 break;
4267 t <<= SPEC_TYPE_SHIFT;
4268 }
4269 while (1);
4270
4271 return ds;
4272 }
4273
4274 /* Return the join of two dep_statuses DS1 and DS2.
4275 This function assumes that both DS1 and DS2 contain speculative bits. */
4276 ds_t
4277 ds_merge (ds_t ds1, ds_t ds2)
4278 {
4279 return ds_merge_1 (ds1, ds2, false);
4280 }
4281
4282 /* Return the join of two dep_statuses DS1 and DS2. */
4283 ds_t
4284 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4285 {
4286 ds_t new_status = ds | ds2;
4287
4288 if (new_status & SPECULATIVE)
4289 {
4290 if ((ds && !(ds & SPECULATIVE))
4291 || (ds2 && !(ds2 & SPECULATIVE)))
4292 /* Then this dep can't be speculative. */
4293 new_status &= ~SPECULATIVE;
4294 else
4295 {
4296 /* Both are speculative. Merging probabilities. */
4297 if (mem1)
4298 {
4299 dw_t dw;
4300
4301 dw = estimate_dep_weak (mem1, mem2);
4302 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4303 }
4304
4305 if (!ds)
4306 new_status = ds2;
4307 else if (!ds2)
4308 new_status = ds;
4309 else
4310 new_status = ds_merge (ds2, ds);
4311 }
4312 }
4313
4314 return new_status;
4315 }
4316
4317 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4318 probabilities. */
4319 ds_t
4320 ds_max_merge (ds_t ds1, ds_t ds2)
4321 {
4322 if (ds1 == 0 && ds2 == 0)
4323 return 0;
4324
4325 if (ds1 == 0 && ds2 != 0)
4326 return ds2;
4327
4328 if (ds1 != 0 && ds2 == 0)
4329 return ds1;
4330
4331 return ds_merge_1 (ds1, ds2, true);
4332 }
4333
4334 /* Return the probability of speculation success for the speculation
4335 status DS. */
4336 dw_t
4337 ds_weak (ds_t ds)
4338 {
4339 ds_t res = 1, dt;
4340 int n = 0;
4341
4342 dt = FIRST_SPEC_TYPE;
4343 do
4344 {
4345 if (ds & dt)
4346 {
4347 res *= (ds_t) get_dep_weak (ds, dt);
4348 n++;
4349 }
4350
4351 if (dt == LAST_SPEC_TYPE)
4352 break;
4353 dt <<= SPEC_TYPE_SHIFT;
4354 }
4355 while (1);
4356
4357 gcc_assert (n);
4358 while (--n)
4359 res /= MAX_DEP_WEAK;
4360
4361 if (res < MIN_DEP_WEAK)
4362 res = MIN_DEP_WEAK;
4363
4364 gcc_assert (res <= MAX_DEP_WEAK);
4365
4366 return (dw_t) res;
4367 }
4368
4369 /* Return a dep status that contains all speculation types of DS. */
4370 ds_t
4371 ds_get_speculation_types (ds_t ds)
4372 {
4373 if (ds & BEGIN_DATA)
4374 ds |= BEGIN_DATA;
4375 if (ds & BE_IN_DATA)
4376 ds |= BE_IN_DATA;
4377 if (ds & BEGIN_CONTROL)
4378 ds |= BEGIN_CONTROL;
4379 if (ds & BE_IN_CONTROL)
4380 ds |= BE_IN_CONTROL;
4381
4382 return ds & SPECULATIVE;
4383 }
4384
4385 /* Return a dep status that contains maximal weakness for each speculation
4386 type present in DS. */
4387 ds_t
4388 ds_get_max_dep_weak (ds_t ds)
4389 {
4390 if (ds & BEGIN_DATA)
4391 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4392 if (ds & BE_IN_DATA)
4393 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4394 if (ds & BEGIN_CONTROL)
4395 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4396 if (ds & BE_IN_CONTROL)
4397 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4398
4399 return ds;
4400 }
4401
4402 /* Dump information about the dependence status S. */
4403 static void
4404 dump_ds (FILE *f, ds_t s)
4405 {
4406 fprintf (f, "{");
4407
4408 if (s & BEGIN_DATA)
4409 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4410 if (s & BE_IN_DATA)
4411 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4412 if (s & BEGIN_CONTROL)
4413 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4414 if (s & BE_IN_CONTROL)
4415 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4416
4417 if (s & HARD_DEP)
4418 fprintf (f, "HARD_DEP; ");
4419
4420 if (s & DEP_TRUE)
4421 fprintf (f, "DEP_TRUE; ");
4422 if (s & DEP_OUTPUT)
4423 fprintf (f, "DEP_OUTPUT; ");
4424 if (s & DEP_ANTI)
4425 fprintf (f, "DEP_ANTI; ");
4426 if (s & DEP_CONTROL)
4427 fprintf (f, "DEP_CONTROL; ");
4428
4429 fprintf (f, "}");
4430 }
4431
4432 DEBUG_FUNCTION void
4433 debug_ds (ds_t s)
4434 {
4435 dump_ds (stderr, s);
4436 fprintf (stderr, "\n");
4437 }
4438
4439 #ifdef ENABLE_CHECKING
4440 /* Verify that dependence type and status are consistent.
4441 If RELAXED_P is true, then skip dep_weakness checks. */
4442 static void
4443 check_dep (dep_t dep, bool relaxed_p)
4444 {
4445 enum reg_note dt = DEP_TYPE (dep);
4446 ds_t ds = DEP_STATUS (dep);
4447
4448 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4449
4450 if (!(current_sched_info->flags & USE_DEPS_LIST))
4451 {
4452 gcc_assert (ds == 0);
4453 return;
4454 }
4455
4456 /* Check that dependence type contains the same bits as the status. */
4457 if (dt == REG_DEP_TRUE)
4458 gcc_assert (ds & DEP_TRUE);
4459 else if (dt == REG_DEP_OUTPUT)
4460 gcc_assert ((ds & DEP_OUTPUT)
4461 && !(ds & DEP_TRUE));
4462 else if (dt == REG_DEP_ANTI)
4463 gcc_assert ((ds & DEP_ANTI)
4464 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4465 else
4466 gcc_assert (dt == REG_DEP_CONTROL
4467 && (ds & DEP_CONTROL)
4468 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4469
4470 /* HARD_DEP can not appear in dep_status of a link. */
4471 gcc_assert (!(ds & HARD_DEP));
4472
4473 /* Check that dependence status is set correctly when speculation is not
4474 supported. */
4475 if (!sched_deps_info->generate_spec_deps)
4476 gcc_assert (!(ds & SPECULATIVE));
4477 else if (ds & SPECULATIVE)
4478 {
4479 if (!relaxed_p)
4480 {
4481 ds_t type = FIRST_SPEC_TYPE;
4482
4483 /* Check that dependence weakness is in proper range. */
4484 do
4485 {
4486 if (ds & type)
4487 get_dep_weak (ds, type);
4488
4489 if (type == LAST_SPEC_TYPE)
4490 break;
4491 type <<= SPEC_TYPE_SHIFT;
4492 }
4493 while (1);
4494 }
4495
4496 if (ds & BEGIN_SPEC)
4497 {
4498 /* Only true dependence can be data speculative. */
4499 if (ds & BEGIN_DATA)
4500 gcc_assert (ds & DEP_TRUE);
4501
4502 /* Control dependencies in the insn scheduler are represented by
4503 anti-dependencies, therefore only anti dependence can be
4504 control speculative. */
4505 if (ds & BEGIN_CONTROL)
4506 gcc_assert (ds & DEP_ANTI);
4507 }
4508 else
4509 {
4510 /* Subsequent speculations should resolve true dependencies. */
4511 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4512 }
4513
4514 /* Check that true and anti dependencies can't have other speculative
4515 statuses. */
4516 if (ds & DEP_TRUE)
4517 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4518 /* An output dependence can't be speculative at all. */
4519 gcc_assert (!(ds & DEP_OUTPUT));
4520 if (ds & DEP_ANTI)
4521 gcc_assert (ds & BEGIN_CONTROL);
4522 }
4523 }
4524 #endif /* ENABLE_CHECKING */
4525
4526 /* The following code discovers opportunities to switch a memory reference
4527 and an increment by modifying the address. We ensure that this is done
4528 only for dependencies that are only used to show a single register
4529 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4530 instruction involved is subject to only one dep that can cause a pattern
4531 change.
4532
4533 When we discover a suitable dependency, we fill in the dep_replacement
4534 structure to show how to modify the memory reference. */
4535
4536 /* Holds information about a pair of memory reference and register increment
4537 insns which depend on each other, but could possibly be interchanged. */
4538 struct mem_inc_info
4539 {
4540 rtx inc_insn;
4541 rtx mem_insn;
4542
4543 rtx *mem_loc;
4544 /* A register occurring in the memory address for which we wish to break
4545 the dependence. This must be identical to the destination register of
4546 the increment. */
4547 rtx mem_reg0;
4548 /* Any kind of index that is added to that register. */
4549 rtx mem_index;
4550 /* The constant offset used in the memory address. */
4551 HOST_WIDE_INT mem_constant;
4552 /* The constant added in the increment insn. Negated if the increment is
4553 after the memory address. */
4554 HOST_WIDE_INT inc_constant;
4555 /* The source register used in the increment. May be different from mem_reg0
4556 if the increment occurs before the memory address. */
4557 rtx inc_input;
4558 };
4559
4560 /* Verify that the memory location described in MII can be replaced with
4561 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4562 insn remains unchanged by this function. */
4563
4564 static rtx
4565 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4566 {
4567 rtx mem = *mii->mem_loc;
4568 rtx new_mem;
4569
4570 /* Jump thru a lot of hoops to keep the attributes up to date. We
4571 do not want to call one of the change address variants that take
4572 an offset even though we know the offset in many cases. These
4573 assume you are changing where the address is pointing by the
4574 offset. */
4575 new_mem = replace_equiv_address_nv (mem, new_addr);
4576 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4577 {
4578 if (sched_verbose >= 5)
4579 fprintf (sched_dump, "validation failure\n");
4580 return NULL_RTX;
4581 }
4582
4583 /* Put back the old one. */
4584 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4585
4586 return new_mem;
4587 }
4588
4589 /* Return true if INSN is of a form "a = b op c" where a and b are
4590 regs. op is + if c is a reg and +|- if c is a const. Fill in
4591 informantion in MII about what is found.
4592 BEFORE_MEM indicates whether the increment is found before or after
4593 a corresponding memory reference. */
4594
4595 static bool
4596 parse_add_or_inc (struct mem_inc_info *mii, rtx insn, bool before_mem)
4597 {
4598 rtx pat = single_set (insn);
4599 rtx src, cst;
4600 bool regs_equal;
4601
4602 if (RTX_FRAME_RELATED_P (insn) || !pat)
4603 return false;
4604
4605 /* Result must be single reg. */
4606 if (!REG_P (SET_DEST (pat)))
4607 return false;
4608
4609 if (GET_CODE (SET_SRC (pat)) != PLUS)
4610 return false;
4611
4612 mii->inc_insn = insn;
4613 src = SET_SRC (pat);
4614 mii->inc_input = XEXP (src, 0);
4615
4616 if (!REG_P (XEXP (src, 0)))
4617 return false;
4618
4619 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4620 return false;
4621
4622 cst = XEXP (src, 1);
4623 if (!CONST_INT_P (cst))
4624 return false;
4625 mii->inc_constant = INTVAL (cst);
4626
4627 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4628
4629 if (!before_mem)
4630 {
4631 mii->inc_constant = -mii->inc_constant;
4632 if (!regs_equal)
4633 return false;
4634 }
4635
4636 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4637 {
4638 /* Note that the sign has already been reversed for !before_mem. */
4639 #ifdef STACK_GROWS_DOWNWARD
4640 return mii->inc_constant > 0;
4641 #else
4642 return mii->inc_constant < 0;
4643 #endif
4644 }
4645 return true;
4646 }
4647
4648 /* Once a suitable mem reference has been found and the corresponding data
4649 in MII has been filled in, this function is called to find a suitable
4650 add or inc insn involving the register we found in the memory
4651 reference. */
4652
4653 static bool
4654 find_inc (struct mem_inc_info *mii, bool backwards)
4655 {
4656 sd_iterator_def sd_it;
4657 dep_t dep;
4658
4659 sd_it = sd_iterator_start (mii->mem_insn,
4660 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4661 while (sd_iterator_cond (&sd_it, &dep))
4662 {
4663 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4664 rtx pro = DEP_PRO (dep);
4665 rtx con = DEP_CON (dep);
4666 rtx inc_cand = backwards ? pro : con;
4667 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4668 goto next;
4669 if (parse_add_or_inc (mii, inc_cand, backwards))
4670 {
4671 struct dep_replacement *desc;
4672 df_ref *def_rec;
4673 rtx newaddr, newmem;
4674
4675 if (sched_verbose >= 5)
4676 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4677 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4678
4679 /* Need to assure that none of the operands of the inc
4680 instruction are assigned to by the mem insn. */
4681 for (def_rec = DF_INSN_DEFS (mii->mem_insn); *def_rec; def_rec++)
4682 {
4683 df_ref def = *def_rec;
4684 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4685 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4686 {
4687 if (sched_verbose >= 5)
4688 fprintf (sched_dump,
4689 "inc conflicts with store failure.\n");
4690 goto next;
4691 }
4692 }
4693 newaddr = mii->inc_input;
4694 if (mii->mem_index != NULL_RTX)
4695 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4696 mii->mem_index);
4697 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4698 mii->mem_constant + mii->inc_constant);
4699 newmem = attempt_change (mii, newaddr);
4700 if (newmem == NULL_RTX)
4701 goto next;
4702 if (sched_verbose >= 5)
4703 fprintf (sched_dump, "successful address replacement\n");
4704 desc = XCNEW (struct dep_replacement);
4705 DEP_REPLACE (dep) = desc;
4706 desc->loc = mii->mem_loc;
4707 desc->newval = newmem;
4708 desc->orig = *desc->loc;
4709 desc->insn = mii->mem_insn;
4710 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4711 INSN_SPEC_BACK_DEPS (con));
4712 if (backwards)
4713 {
4714 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4715 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4716 REG_DEP_TRUE);
4717 }
4718 else
4719 {
4720 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4721 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4722 REG_DEP_ANTI);
4723 }
4724 return true;
4725 }
4726 next:
4727 sd_iterator_next (&sd_it);
4728 }
4729 return false;
4730 }
4731
4732 /* A recursive function that walks ADDRESS_OF_X to find memory references
4733 which could be modified during scheduling. We call find_inc for each
4734 one we find that has a recognizable form. MII holds information about
4735 the pair of memory/increment instructions.
4736 We ensure that every instruction with a memory reference (which will be
4737 the location of the replacement) is assigned at most one breakable
4738 dependency. */
4739
4740 static bool
4741 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4742 {
4743 rtx x = *address_of_x;
4744 enum rtx_code code = GET_CODE (x);
4745 const char *const fmt = GET_RTX_FORMAT (code);
4746 int i;
4747
4748 if (code == MEM)
4749 {
4750 rtx reg0 = XEXP (x, 0);
4751
4752 mii->mem_loc = address_of_x;
4753 mii->mem_index = NULL_RTX;
4754 mii->mem_constant = 0;
4755 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4756 {
4757 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4758 reg0 = XEXP (reg0, 0);
4759 }
4760 if (GET_CODE (reg0) == PLUS)
4761 {
4762 mii->mem_index = XEXP (reg0, 1);
4763 reg0 = XEXP (reg0, 0);
4764 }
4765 if (REG_P (reg0))
4766 {
4767 df_ref *def_rec;
4768 int occurrences = 0;
4769
4770 /* Make sure this reg appears only once in this insn. Can't use
4771 count_occurrences since that only works for pseudos. */
4772 for (def_rec = DF_INSN_USES (mii->mem_insn); *def_rec; def_rec++)
4773 {
4774 df_ref def = *def_rec;
4775 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (def)))
4776 if (++occurrences > 1)
4777 {
4778 if (sched_verbose >= 5)
4779 fprintf (sched_dump, "mem count failure\n");
4780 return false;
4781 }
4782 }
4783
4784 mii->mem_reg0 = reg0;
4785 return find_inc (mii, true) || find_inc (mii, false);
4786 }
4787 return false;
4788 }
4789
4790 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4791 {
4792 /* If REG occurs inside a MEM used in a bit-field reference,
4793 that is unacceptable. */
4794 return false;
4795 }
4796
4797 /* Time for some deep diving. */
4798 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4799 {
4800 if (fmt[i] == 'e')
4801 {
4802 if (find_mem (mii, &XEXP (x, i)))
4803 return true;
4804 }
4805 else if (fmt[i] == 'E')
4806 {
4807 int j;
4808 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4809 if (find_mem (mii, &XVECEXP (x, i, j)))
4810 return true;
4811 }
4812 }
4813 return false;
4814 }
4815
4816
4817 /* Examine the instructions between HEAD and TAIL and try to find
4818 dependencies that can be broken by modifying one of the patterns. */
4819
4820 void
4821 find_modifiable_mems (rtx head, rtx tail)
4822 {
4823 rtx insn, next_tail = NEXT_INSN (tail);
4824 int success_in_block = 0;
4825
4826 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4827 {
4828 struct mem_inc_info mii;
4829
4830 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4831 continue;
4832
4833 mii.mem_insn = insn;
4834 if (find_mem (&mii, &PATTERN (insn)))
4835 success_in_block++;
4836 }
4837 if (success_in_block && sched_verbose >= 5)
4838 fprintf (sched_dump, "%d candidates for address modification found.\n",
4839 success_in_block);
4840 }
4841
4842 #endif /* INSN_SCHEDULING */