DEP_PRO/DEP_CON scaffolding
[gcc.git] / gcc / sched-deps.c
1 /* Instruction scheduling pass. This file computes dependencies between
2 instructions.
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "diagnostic-core.h"
28 #include "rtl.h"
29 #include "tree.h" /* FIXME: Used by call_may_noreturn_p. */
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "regs.h"
33 #include "function.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "emit-rtl.h"
40 #include "sched-int.h"
41 #include "params.h"
42 #include "cselib.h"
43 #include "ira.h"
44 #include "target.h"
45
46 #ifdef INSN_SCHEDULING
47
48 #ifdef ENABLE_CHECKING
49 #define CHECK (true)
50 #else
51 #define CHECK (false)
52 #endif
53
54 /* Holds current parameters for the dependency analyzer. */
55 struct sched_deps_info_def *sched_deps_info;
56
57 /* The data is specific to the Haifa scheduler. */
58 vec<haifa_deps_insn_data_def>
59 h_d_i_d = vNULL;
60
61 /* Return the major type present in the DS. */
62 enum reg_note
63 ds_to_dk (ds_t ds)
64 {
65 if (ds & DEP_TRUE)
66 return REG_DEP_TRUE;
67
68 if (ds & DEP_OUTPUT)
69 return REG_DEP_OUTPUT;
70
71 if (ds & DEP_CONTROL)
72 return REG_DEP_CONTROL;
73
74 gcc_assert (ds & DEP_ANTI);
75
76 return REG_DEP_ANTI;
77 }
78
79 /* Return equivalent dep_status. */
80 ds_t
81 dk_to_ds (enum reg_note dk)
82 {
83 switch (dk)
84 {
85 case REG_DEP_TRUE:
86 return DEP_TRUE;
87
88 case REG_DEP_OUTPUT:
89 return DEP_OUTPUT;
90
91 case REG_DEP_CONTROL:
92 return DEP_CONTROL;
93
94 default:
95 gcc_assert (dk == REG_DEP_ANTI);
96 return DEP_ANTI;
97 }
98 }
99
100 /* Functions to operate with dependence information container - dep_t. */
101
102 /* Init DEP with the arguments. */
103 void
104 init_dep_1 (dep_t dep, rtx pro, rtx con, enum reg_note type, ds_t ds)
105 {
106 SET_DEP_PRO (dep) = pro;
107 SET_DEP_CON (dep) = con;
108 DEP_TYPE (dep) = type;
109 DEP_STATUS (dep) = ds;
110 DEP_COST (dep) = UNKNOWN_DEP_COST;
111 DEP_NONREG (dep) = 0;
112 DEP_MULTIPLE (dep) = 0;
113 DEP_REPLACE (dep) = NULL;
114 }
115
116 /* Init DEP with the arguments.
117 While most of the scheduler (including targets) only need the major type
118 of the dependency, it is convenient to hide full dep_status from them. */
119 void
120 init_dep (dep_t dep, rtx pro, rtx con, enum reg_note kind)
121 {
122 ds_t ds;
123
124 if ((current_sched_info->flags & USE_DEPS_LIST))
125 ds = dk_to_ds (kind);
126 else
127 ds = 0;
128
129 init_dep_1 (dep, pro, con, kind, ds);
130 }
131
132 /* Make a copy of FROM in TO. */
133 static void
134 copy_dep (dep_t to, dep_t from)
135 {
136 memcpy (to, from, sizeof (*to));
137 }
138
139 static void dump_ds (FILE *, ds_t);
140
141 /* Define flags for dump_dep (). */
142
143 /* Dump producer of the dependence. */
144 #define DUMP_DEP_PRO (2)
145
146 /* Dump consumer of the dependence. */
147 #define DUMP_DEP_CON (4)
148
149 /* Dump type of the dependence. */
150 #define DUMP_DEP_TYPE (8)
151
152 /* Dump status of the dependence. */
153 #define DUMP_DEP_STATUS (16)
154
155 /* Dump all information about the dependence. */
156 #define DUMP_DEP_ALL (DUMP_DEP_PRO | DUMP_DEP_CON | DUMP_DEP_TYPE \
157 |DUMP_DEP_STATUS)
158
159 /* Dump DEP to DUMP.
160 FLAGS is a bit mask specifying what information about DEP needs
161 to be printed.
162 If FLAGS has the very first bit set, then dump all information about DEP
163 and propagate this bit into the callee dump functions. */
164 static void
165 dump_dep (FILE *dump, dep_t dep, int flags)
166 {
167 if (flags & 1)
168 flags |= DUMP_DEP_ALL;
169
170 fprintf (dump, "<");
171
172 if (flags & DUMP_DEP_PRO)
173 fprintf (dump, "%d; ", INSN_UID (DEP_PRO (dep)));
174
175 if (flags & DUMP_DEP_CON)
176 fprintf (dump, "%d; ", INSN_UID (DEP_CON (dep)));
177
178 if (flags & DUMP_DEP_TYPE)
179 {
180 char t;
181 enum reg_note type = DEP_TYPE (dep);
182
183 switch (type)
184 {
185 case REG_DEP_TRUE:
186 t = 't';
187 break;
188
189 case REG_DEP_OUTPUT:
190 t = 'o';
191 break;
192
193 case REG_DEP_CONTROL:
194 t = 'c';
195 break;
196
197 case REG_DEP_ANTI:
198 t = 'a';
199 break;
200
201 default:
202 gcc_unreachable ();
203 break;
204 }
205
206 fprintf (dump, "%c; ", t);
207 }
208
209 if (flags & DUMP_DEP_STATUS)
210 {
211 if (current_sched_info->flags & USE_DEPS_LIST)
212 dump_ds (dump, DEP_STATUS (dep));
213 }
214
215 fprintf (dump, ">");
216 }
217
218 /* Default flags for dump_dep (). */
219 static int dump_dep_flags = (DUMP_DEP_PRO | DUMP_DEP_CON);
220
221 /* Dump all fields of DEP to STDERR. */
222 void
223 sd_debug_dep (dep_t dep)
224 {
225 dump_dep (stderr, dep, 1);
226 fprintf (stderr, "\n");
227 }
228
229 /* Determine whether DEP is a dependency link of a non-debug insn on a
230 debug insn. */
231
232 static inline bool
233 depl_on_debug_p (dep_link_t dep)
234 {
235 return (DEBUG_INSN_P (DEP_LINK_PRO (dep))
236 && !DEBUG_INSN_P (DEP_LINK_CON (dep)));
237 }
238
239 /* Functions to operate with a single link from the dependencies lists -
240 dep_link_t. */
241
242 /* Attach L to appear after link X whose &DEP_LINK_NEXT (X) is given by
243 PREV_NEXT_P. */
244 static void
245 attach_dep_link (dep_link_t l, dep_link_t *prev_nextp)
246 {
247 dep_link_t next = *prev_nextp;
248
249 gcc_assert (DEP_LINK_PREV_NEXTP (l) == NULL
250 && DEP_LINK_NEXT (l) == NULL);
251
252 /* Init node being inserted. */
253 DEP_LINK_PREV_NEXTP (l) = prev_nextp;
254 DEP_LINK_NEXT (l) = next;
255
256 /* Fix next node. */
257 if (next != NULL)
258 {
259 gcc_assert (DEP_LINK_PREV_NEXTP (next) == prev_nextp);
260
261 DEP_LINK_PREV_NEXTP (next) = &DEP_LINK_NEXT (l);
262 }
263
264 /* Fix prev node. */
265 *prev_nextp = l;
266 }
267
268 /* Add dep_link LINK to deps_list L. */
269 static void
270 add_to_deps_list (dep_link_t link, deps_list_t l)
271 {
272 attach_dep_link (link, &DEPS_LIST_FIRST (l));
273
274 /* Don't count debug deps. */
275 if (!depl_on_debug_p (link))
276 ++DEPS_LIST_N_LINKS (l);
277 }
278
279 /* Detach dep_link L from the list. */
280 static void
281 detach_dep_link (dep_link_t l)
282 {
283 dep_link_t *prev_nextp = DEP_LINK_PREV_NEXTP (l);
284 dep_link_t next = DEP_LINK_NEXT (l);
285
286 *prev_nextp = next;
287
288 if (next != NULL)
289 DEP_LINK_PREV_NEXTP (next) = prev_nextp;
290
291 DEP_LINK_PREV_NEXTP (l) = NULL;
292 DEP_LINK_NEXT (l) = NULL;
293 }
294
295 /* Remove link LINK from list LIST. */
296 static void
297 remove_from_deps_list (dep_link_t link, deps_list_t list)
298 {
299 detach_dep_link (link);
300
301 /* Don't count debug deps. */
302 if (!depl_on_debug_p (link))
303 --DEPS_LIST_N_LINKS (list);
304 }
305
306 /* Move link LINK from list FROM to list TO. */
307 static void
308 move_dep_link (dep_link_t link, deps_list_t from, deps_list_t to)
309 {
310 remove_from_deps_list (link, from);
311 add_to_deps_list (link, to);
312 }
313
314 /* Return true of LINK is not attached to any list. */
315 static bool
316 dep_link_is_detached_p (dep_link_t link)
317 {
318 return DEP_LINK_PREV_NEXTP (link) == NULL;
319 }
320
321 /* Pool to hold all dependency nodes (dep_node_t). */
322 static alloc_pool dn_pool;
323
324 /* Number of dep_nodes out there. */
325 static int dn_pool_diff = 0;
326
327 /* Create a dep_node. */
328 static dep_node_t
329 create_dep_node (void)
330 {
331 dep_node_t n = (dep_node_t) pool_alloc (dn_pool);
332 dep_link_t back = DEP_NODE_BACK (n);
333 dep_link_t forw = DEP_NODE_FORW (n);
334
335 DEP_LINK_NODE (back) = n;
336 DEP_LINK_NEXT (back) = NULL;
337 DEP_LINK_PREV_NEXTP (back) = NULL;
338
339 DEP_LINK_NODE (forw) = n;
340 DEP_LINK_NEXT (forw) = NULL;
341 DEP_LINK_PREV_NEXTP (forw) = NULL;
342
343 ++dn_pool_diff;
344
345 return n;
346 }
347
348 /* Delete dep_node N. N must not be connected to any deps_list. */
349 static void
350 delete_dep_node (dep_node_t n)
351 {
352 gcc_assert (dep_link_is_detached_p (DEP_NODE_BACK (n))
353 && dep_link_is_detached_p (DEP_NODE_FORW (n)));
354
355 XDELETE (DEP_REPLACE (DEP_NODE_DEP (n)));
356
357 --dn_pool_diff;
358
359 pool_free (dn_pool, n);
360 }
361
362 /* Pool to hold dependencies lists (deps_list_t). */
363 static alloc_pool dl_pool;
364
365 /* Number of deps_lists out there. */
366 static int dl_pool_diff = 0;
367
368 /* Functions to operate with dependences lists - deps_list_t. */
369
370 /* Return true if list L is empty. */
371 static bool
372 deps_list_empty_p (deps_list_t l)
373 {
374 return DEPS_LIST_N_LINKS (l) == 0;
375 }
376
377 /* Create a new deps_list. */
378 static deps_list_t
379 create_deps_list (void)
380 {
381 deps_list_t l = (deps_list_t) pool_alloc (dl_pool);
382
383 DEPS_LIST_FIRST (l) = NULL;
384 DEPS_LIST_N_LINKS (l) = 0;
385
386 ++dl_pool_diff;
387 return l;
388 }
389
390 /* Free deps_list L. */
391 static void
392 free_deps_list (deps_list_t l)
393 {
394 gcc_assert (deps_list_empty_p (l));
395
396 --dl_pool_diff;
397
398 pool_free (dl_pool, l);
399 }
400
401 /* Return true if there is no dep_nodes and deps_lists out there.
402 After the region is scheduled all the dependency nodes and lists
403 should [generally] be returned to pool. */
404 bool
405 deps_pools_are_empty_p (void)
406 {
407 return dn_pool_diff == 0 && dl_pool_diff == 0;
408 }
409
410 /* Remove all elements from L. */
411 static void
412 clear_deps_list (deps_list_t l)
413 {
414 do
415 {
416 dep_link_t link = DEPS_LIST_FIRST (l);
417
418 if (link == NULL)
419 break;
420
421 remove_from_deps_list (link, l);
422 }
423 while (1);
424 }
425
426 /* Decide whether a dependency should be treated as a hard or a speculative
427 dependency. */
428 static bool
429 dep_spec_p (dep_t dep)
430 {
431 if (current_sched_info->flags & DO_SPECULATION)
432 {
433 if (DEP_STATUS (dep) & SPECULATIVE)
434 return true;
435 }
436 if (current_sched_info->flags & DO_PREDICATION)
437 {
438 if (DEP_TYPE (dep) == REG_DEP_CONTROL)
439 return true;
440 }
441 if (DEP_REPLACE (dep) != NULL)
442 return true;
443 return false;
444 }
445
446 static regset reg_pending_sets;
447 static regset reg_pending_clobbers;
448 static regset reg_pending_uses;
449 static regset reg_pending_control_uses;
450 static enum reg_pending_barrier_mode reg_pending_barrier;
451
452 /* Hard registers implicitly clobbered or used (or may be implicitly
453 clobbered or used) by the currently analyzed insn. For example,
454 insn in its constraint has one register class. Even if there is
455 currently no hard register in the insn, the particular hard
456 register will be in the insn after reload pass because the
457 constraint requires it. */
458 static HARD_REG_SET implicit_reg_pending_clobbers;
459 static HARD_REG_SET implicit_reg_pending_uses;
460
461 /* To speed up the test for duplicate dependency links we keep a
462 record of dependencies created by add_dependence when the average
463 number of instructions in a basic block is very large.
464
465 Studies have shown that there is typically around 5 instructions between
466 branches for typical C code. So we can make a guess that the average
467 basic block is approximately 5 instructions long; we will choose 100X
468 the average size as a very large basic block.
469
470 Each insn has associated bitmaps for its dependencies. Each bitmap
471 has enough entries to represent a dependency on any other insn in
472 the insn chain. All bitmap for true dependencies cache is
473 allocated then the rest two ones are also allocated. */
474 static bitmap_head *true_dependency_cache = NULL;
475 static bitmap_head *output_dependency_cache = NULL;
476 static bitmap_head *anti_dependency_cache = NULL;
477 static bitmap_head *control_dependency_cache = NULL;
478 static bitmap_head *spec_dependency_cache = NULL;
479 static int cache_size;
480
481 /* True if we should mark added dependencies as a non-register deps. */
482 static bool mark_as_hard;
483
484 static int deps_may_trap_p (const_rtx);
485 static void add_dependence_1 (rtx, rtx, enum reg_note);
486 static void add_dependence_list (rtx, rtx, int, enum reg_note, bool);
487 static void add_dependence_list_and_free (struct deps_desc *, rtx,
488 rtx *, int, enum reg_note, bool);
489 static void delete_all_dependences (rtx);
490 static void chain_to_prev_insn (rtx);
491
492 static void flush_pending_lists (struct deps_desc *, rtx, int, int);
493 static void sched_analyze_1 (struct deps_desc *, rtx, rtx);
494 static void sched_analyze_2 (struct deps_desc *, rtx, rtx);
495 static void sched_analyze_insn (struct deps_desc *, rtx, rtx);
496
497 static bool sched_has_condition_p (const_rtx);
498 static int conditions_mutex_p (const_rtx, const_rtx, bool, bool);
499
500 static enum DEPS_ADJUST_RESULT maybe_add_or_update_dep_1 (dep_t, bool,
501 rtx, rtx);
502 static enum DEPS_ADJUST_RESULT add_or_update_dep_1 (dep_t, bool, rtx, rtx);
503
504 #ifdef ENABLE_CHECKING
505 static void check_dep (dep_t, bool);
506 #endif
507 \f
508 /* Return nonzero if a load of the memory reference MEM can cause a trap. */
509
510 static int
511 deps_may_trap_p (const_rtx mem)
512 {
513 const_rtx addr = XEXP (mem, 0);
514
515 if (REG_P (addr) && REGNO (addr) >= FIRST_PSEUDO_REGISTER)
516 {
517 const_rtx t = get_reg_known_value (REGNO (addr));
518 if (t)
519 addr = t;
520 }
521 return rtx_addr_can_trap_p (addr);
522 }
523 \f
524
525 /* Find the condition under which INSN is executed. If REV is not NULL,
526 it is set to TRUE when the returned comparison should be reversed
527 to get the actual condition. */
528 static rtx
529 sched_get_condition_with_rev_uncached (const_rtx insn, bool *rev)
530 {
531 rtx pat = PATTERN (insn);
532 rtx src;
533
534 if (rev)
535 *rev = false;
536
537 if (GET_CODE (pat) == COND_EXEC)
538 return COND_EXEC_TEST (pat);
539
540 if (!any_condjump_p (insn) || !onlyjump_p (insn))
541 return 0;
542
543 src = SET_SRC (pc_set (insn));
544
545 if (XEXP (src, 2) == pc_rtx)
546 return XEXP (src, 0);
547 else if (XEXP (src, 1) == pc_rtx)
548 {
549 rtx cond = XEXP (src, 0);
550 enum rtx_code revcode = reversed_comparison_code (cond, insn);
551
552 if (revcode == UNKNOWN)
553 return 0;
554
555 if (rev)
556 *rev = true;
557 return cond;
558 }
559
560 return 0;
561 }
562
563 /* Return the condition under which INSN does not execute (i.e. the
564 not-taken condition for a conditional branch), or NULL if we cannot
565 find such a condition. The caller should make a copy of the condition
566 before using it. */
567 rtx
568 sched_get_reverse_condition_uncached (const_rtx insn)
569 {
570 bool rev;
571 rtx cond = sched_get_condition_with_rev_uncached (insn, &rev);
572 if (cond == NULL_RTX)
573 return cond;
574 if (!rev)
575 {
576 enum rtx_code revcode = reversed_comparison_code (cond, insn);
577 cond = gen_rtx_fmt_ee (revcode, GET_MODE (cond),
578 XEXP (cond, 0),
579 XEXP (cond, 1));
580 }
581 return cond;
582 }
583
584 /* Caching variant of sched_get_condition_with_rev_uncached.
585 We only do actual work the first time we come here for an insn; the
586 results are cached in INSN_CACHED_COND and INSN_REVERSE_COND. */
587 static rtx
588 sched_get_condition_with_rev (const_rtx insn, bool *rev)
589 {
590 bool tmp;
591
592 if (INSN_LUID (insn) == 0)
593 return sched_get_condition_with_rev_uncached (insn, rev);
594
595 if (INSN_CACHED_COND (insn) == const_true_rtx)
596 return NULL_RTX;
597
598 if (INSN_CACHED_COND (insn) != NULL_RTX)
599 {
600 if (rev)
601 *rev = INSN_REVERSE_COND (insn);
602 return INSN_CACHED_COND (insn);
603 }
604
605 INSN_CACHED_COND (insn) = sched_get_condition_with_rev_uncached (insn, &tmp);
606 INSN_REVERSE_COND (insn) = tmp;
607
608 if (INSN_CACHED_COND (insn) == NULL_RTX)
609 {
610 INSN_CACHED_COND (insn) = const_true_rtx;
611 return NULL_RTX;
612 }
613
614 if (rev)
615 *rev = INSN_REVERSE_COND (insn);
616 return INSN_CACHED_COND (insn);
617 }
618
619 /* True when we can find a condition under which INSN is executed. */
620 static bool
621 sched_has_condition_p (const_rtx insn)
622 {
623 return !! sched_get_condition_with_rev (insn, NULL);
624 }
625
626 \f
627
628 /* Return nonzero if conditions COND1 and COND2 can never be both true. */
629 static int
630 conditions_mutex_p (const_rtx cond1, const_rtx cond2, bool rev1, bool rev2)
631 {
632 if (COMPARISON_P (cond1)
633 && COMPARISON_P (cond2)
634 && GET_CODE (cond1) ==
635 (rev1==rev2
636 ? reversed_comparison_code (cond2, NULL)
637 : GET_CODE (cond2))
638 && rtx_equal_p (XEXP (cond1, 0), XEXP (cond2, 0))
639 && XEXP (cond1, 1) == XEXP (cond2, 1))
640 return 1;
641 return 0;
642 }
643
644 /* Return true if insn1 and insn2 can never depend on one another because
645 the conditions under which they are executed are mutually exclusive. */
646 bool
647 sched_insns_conditions_mutex_p (const_rtx insn1, const_rtx insn2)
648 {
649 rtx cond1, cond2;
650 bool rev1 = false, rev2 = false;
651
652 /* df doesn't handle conditional lifetimes entirely correctly;
653 calls mess up the conditional lifetimes. */
654 if (!CALL_P (insn1) && !CALL_P (insn2))
655 {
656 cond1 = sched_get_condition_with_rev (insn1, &rev1);
657 cond2 = sched_get_condition_with_rev (insn2, &rev2);
658 if (cond1 && cond2
659 && conditions_mutex_p (cond1, cond2, rev1, rev2)
660 /* Make sure first instruction doesn't affect condition of second
661 instruction if switched. */
662 && !modified_in_p (cond1, insn2)
663 /* Make sure second instruction doesn't affect condition of first
664 instruction if switched. */
665 && !modified_in_p (cond2, insn1))
666 return true;
667 }
668 return false;
669 }
670 \f
671
672 /* Return true if INSN can potentially be speculated with type DS. */
673 bool
674 sched_insn_is_legitimate_for_speculation_p (const_rtx insn, ds_t ds)
675 {
676 if (HAS_INTERNAL_DEP (insn))
677 return false;
678
679 if (!NONJUMP_INSN_P (insn))
680 return false;
681
682 if (SCHED_GROUP_P (insn))
683 return false;
684
685 if (IS_SPECULATION_CHECK_P (CONST_CAST_RTX (insn)))
686 return false;
687
688 if (side_effects_p (PATTERN (insn)))
689 return false;
690
691 if (ds & BE_IN_SPEC)
692 /* The following instructions, which depend on a speculatively scheduled
693 instruction, cannot be speculatively scheduled along. */
694 {
695 if (may_trap_or_fault_p (PATTERN (insn)))
696 /* If instruction might fault, it cannot be speculatively scheduled.
697 For control speculation it's obvious why and for data speculation
698 it's because the insn might get wrong input if speculation
699 wasn't successful. */
700 return false;
701
702 if ((ds & BE_IN_DATA)
703 && sched_has_condition_p (insn))
704 /* If this is a predicated instruction, then it cannot be
705 speculatively scheduled. See PR35659. */
706 return false;
707 }
708
709 return true;
710 }
711
712 /* Initialize LIST_PTR to point to one of the lists present in TYPES_PTR,
713 initialize RESOLVED_P_PTR with true if that list consists of resolved deps,
714 and remove the type of returned [through LIST_PTR] list from TYPES_PTR.
715 This function is used to switch sd_iterator to the next list.
716 !!! For internal use only. Might consider moving it to sched-int.h. */
717 void
718 sd_next_list (const_rtx insn, sd_list_types_def *types_ptr,
719 deps_list_t *list_ptr, bool *resolved_p_ptr)
720 {
721 sd_list_types_def types = *types_ptr;
722
723 if (types & SD_LIST_HARD_BACK)
724 {
725 *list_ptr = INSN_HARD_BACK_DEPS (insn);
726 *resolved_p_ptr = false;
727 *types_ptr = types & ~SD_LIST_HARD_BACK;
728 }
729 else if (types & SD_LIST_SPEC_BACK)
730 {
731 *list_ptr = INSN_SPEC_BACK_DEPS (insn);
732 *resolved_p_ptr = false;
733 *types_ptr = types & ~SD_LIST_SPEC_BACK;
734 }
735 else if (types & SD_LIST_FORW)
736 {
737 *list_ptr = INSN_FORW_DEPS (insn);
738 *resolved_p_ptr = false;
739 *types_ptr = types & ~SD_LIST_FORW;
740 }
741 else if (types & SD_LIST_RES_BACK)
742 {
743 *list_ptr = INSN_RESOLVED_BACK_DEPS (insn);
744 *resolved_p_ptr = true;
745 *types_ptr = types & ~SD_LIST_RES_BACK;
746 }
747 else if (types & SD_LIST_RES_FORW)
748 {
749 *list_ptr = INSN_RESOLVED_FORW_DEPS (insn);
750 *resolved_p_ptr = true;
751 *types_ptr = types & ~SD_LIST_RES_FORW;
752 }
753 else
754 {
755 *list_ptr = NULL;
756 *resolved_p_ptr = false;
757 *types_ptr = SD_LIST_NONE;
758 }
759 }
760
761 /* Return the summary size of INSN's lists defined by LIST_TYPES. */
762 int
763 sd_lists_size (const_rtx insn, sd_list_types_def list_types)
764 {
765 int size = 0;
766
767 while (list_types != SD_LIST_NONE)
768 {
769 deps_list_t list;
770 bool resolved_p;
771
772 sd_next_list (insn, &list_types, &list, &resolved_p);
773 if (list)
774 size += DEPS_LIST_N_LINKS (list);
775 }
776
777 return size;
778 }
779
780 /* Return true if INSN's lists defined by LIST_TYPES are all empty. */
781
782 bool
783 sd_lists_empty_p (const_rtx insn, sd_list_types_def list_types)
784 {
785 while (list_types != SD_LIST_NONE)
786 {
787 deps_list_t list;
788 bool resolved_p;
789
790 sd_next_list (insn, &list_types, &list, &resolved_p);
791 if (!deps_list_empty_p (list))
792 return false;
793 }
794
795 return true;
796 }
797
798 /* Initialize data for INSN. */
799 void
800 sd_init_insn (rtx insn)
801 {
802 INSN_HARD_BACK_DEPS (insn) = create_deps_list ();
803 INSN_SPEC_BACK_DEPS (insn) = create_deps_list ();
804 INSN_RESOLVED_BACK_DEPS (insn) = create_deps_list ();
805 INSN_FORW_DEPS (insn) = create_deps_list ();
806 INSN_RESOLVED_FORW_DEPS (insn) = create_deps_list ();
807
808 /* ??? It would be nice to allocate dependency caches here. */
809 }
810
811 /* Free data for INSN. */
812 void
813 sd_finish_insn (rtx insn)
814 {
815 /* ??? It would be nice to deallocate dependency caches here. */
816
817 free_deps_list (INSN_HARD_BACK_DEPS (insn));
818 INSN_HARD_BACK_DEPS (insn) = NULL;
819
820 free_deps_list (INSN_SPEC_BACK_DEPS (insn));
821 INSN_SPEC_BACK_DEPS (insn) = NULL;
822
823 free_deps_list (INSN_RESOLVED_BACK_DEPS (insn));
824 INSN_RESOLVED_BACK_DEPS (insn) = NULL;
825
826 free_deps_list (INSN_FORW_DEPS (insn));
827 INSN_FORW_DEPS (insn) = NULL;
828
829 free_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
830 INSN_RESOLVED_FORW_DEPS (insn) = NULL;
831 }
832
833 /* Find a dependency between producer PRO and consumer CON.
834 Search through resolved dependency lists if RESOLVED_P is true.
835 If no such dependency is found return NULL,
836 otherwise return the dependency and initialize SD_IT_PTR [if it is nonnull]
837 with an iterator pointing to it. */
838 static dep_t
839 sd_find_dep_between_no_cache (rtx pro, rtx con, bool resolved_p,
840 sd_iterator_def *sd_it_ptr)
841 {
842 sd_list_types_def pro_list_type;
843 sd_list_types_def con_list_type;
844 sd_iterator_def sd_it;
845 dep_t dep;
846 bool found_p = false;
847
848 if (resolved_p)
849 {
850 pro_list_type = SD_LIST_RES_FORW;
851 con_list_type = SD_LIST_RES_BACK;
852 }
853 else
854 {
855 pro_list_type = SD_LIST_FORW;
856 con_list_type = SD_LIST_BACK;
857 }
858
859 /* Walk through either back list of INSN or forw list of ELEM
860 depending on which one is shorter. */
861 if (sd_lists_size (con, con_list_type) < sd_lists_size (pro, pro_list_type))
862 {
863 /* Find the dep_link with producer PRO in consumer's back_deps. */
864 FOR_EACH_DEP (con, con_list_type, sd_it, dep)
865 if (DEP_PRO (dep) == pro)
866 {
867 found_p = true;
868 break;
869 }
870 }
871 else
872 {
873 /* Find the dep_link with consumer CON in producer's forw_deps. */
874 FOR_EACH_DEP (pro, pro_list_type, sd_it, dep)
875 if (DEP_CON (dep) == con)
876 {
877 found_p = true;
878 break;
879 }
880 }
881
882 if (found_p)
883 {
884 if (sd_it_ptr != NULL)
885 *sd_it_ptr = sd_it;
886
887 return dep;
888 }
889
890 return NULL;
891 }
892
893 /* Find a dependency between producer PRO and consumer CON.
894 Use dependency [if available] to check if dependency is present at all.
895 Search through resolved dependency lists if RESOLVED_P is true.
896 If the dependency or NULL if none found. */
897 dep_t
898 sd_find_dep_between (rtx pro, rtx con, bool resolved_p)
899 {
900 if (true_dependency_cache != NULL)
901 /* Avoiding the list walk below can cut compile times dramatically
902 for some code. */
903 {
904 int elem_luid = INSN_LUID (pro);
905 int insn_luid = INSN_LUID (con);
906
907 if (!bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid)
908 && !bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid)
909 && !bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid)
910 && !bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
911 return NULL;
912 }
913
914 return sd_find_dep_between_no_cache (pro, con, resolved_p, NULL);
915 }
916
917 /* Add or update a dependence described by DEP.
918 MEM1 and MEM2, if non-null, correspond to memory locations in case of
919 data speculation.
920
921 The function returns a value indicating if an old entry has been changed
922 or a new entry has been added to insn's backward deps.
923
924 This function merely checks if producer and consumer is the same insn
925 and doesn't create a dep in this case. Actual manipulation of
926 dependence data structures is performed in add_or_update_dep_1. */
927 static enum DEPS_ADJUST_RESULT
928 maybe_add_or_update_dep_1 (dep_t dep, bool resolved_p, rtx mem1, rtx mem2)
929 {
930 rtx elem = DEP_PRO (dep);
931 rtx insn = DEP_CON (dep);
932
933 gcc_assert (INSN_P (insn) && INSN_P (elem));
934
935 /* Don't depend an insn on itself. */
936 if (insn == elem)
937 {
938 if (sched_deps_info->generate_spec_deps)
939 /* INSN has an internal dependence, which we can't overcome. */
940 HAS_INTERNAL_DEP (insn) = 1;
941
942 return DEP_NODEP;
943 }
944
945 return add_or_update_dep_1 (dep, resolved_p, mem1, mem2);
946 }
947
948 /* Ask dependency caches what needs to be done for dependence DEP.
949 Return DEP_CREATED if new dependence should be created and there is no
950 need to try to find one searching the dependencies lists.
951 Return DEP_PRESENT if there already is a dependence described by DEP and
952 hence nothing is to be done.
953 Return DEP_CHANGED if there already is a dependence, but it should be
954 updated to incorporate additional information from DEP. */
955 static enum DEPS_ADJUST_RESULT
956 ask_dependency_caches (dep_t dep)
957 {
958 int elem_luid = INSN_LUID (DEP_PRO (dep));
959 int insn_luid = INSN_LUID (DEP_CON (dep));
960
961 gcc_assert (true_dependency_cache != NULL
962 && output_dependency_cache != NULL
963 && anti_dependency_cache != NULL
964 && control_dependency_cache != NULL);
965
966 if (!(current_sched_info->flags & USE_DEPS_LIST))
967 {
968 enum reg_note present_dep_type;
969
970 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
971 present_dep_type = REG_DEP_TRUE;
972 else if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
973 present_dep_type = REG_DEP_OUTPUT;
974 else if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
975 present_dep_type = REG_DEP_ANTI;
976 else if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
977 present_dep_type = REG_DEP_CONTROL;
978 else
979 /* There is no existing dep so it should be created. */
980 return DEP_CREATED;
981
982 if ((int) DEP_TYPE (dep) >= (int) present_dep_type)
983 /* DEP does not add anything to the existing dependence. */
984 return DEP_PRESENT;
985 }
986 else
987 {
988 ds_t present_dep_types = 0;
989
990 if (bitmap_bit_p (&true_dependency_cache[insn_luid], elem_luid))
991 present_dep_types |= DEP_TRUE;
992 if (bitmap_bit_p (&output_dependency_cache[insn_luid], elem_luid))
993 present_dep_types |= DEP_OUTPUT;
994 if (bitmap_bit_p (&anti_dependency_cache[insn_luid], elem_luid))
995 present_dep_types |= DEP_ANTI;
996 if (bitmap_bit_p (&control_dependency_cache[insn_luid], elem_luid))
997 present_dep_types |= DEP_CONTROL;
998
999 if (present_dep_types == 0)
1000 /* There is no existing dep so it should be created. */
1001 return DEP_CREATED;
1002
1003 if (!(current_sched_info->flags & DO_SPECULATION)
1004 || !bitmap_bit_p (&spec_dependency_cache[insn_luid], elem_luid))
1005 {
1006 if ((present_dep_types | (DEP_STATUS (dep) & DEP_TYPES))
1007 == present_dep_types)
1008 /* DEP does not add anything to the existing dependence. */
1009 return DEP_PRESENT;
1010 }
1011 else
1012 {
1013 /* Only true dependencies can be data speculative and
1014 only anti dependencies can be control speculative. */
1015 gcc_assert ((present_dep_types & (DEP_TRUE | DEP_ANTI))
1016 == present_dep_types);
1017
1018 /* if (DEP is SPECULATIVE) then
1019 ..we should update DEP_STATUS
1020 else
1021 ..we should reset existing dep to non-speculative. */
1022 }
1023 }
1024
1025 return DEP_CHANGED;
1026 }
1027
1028 /* Set dependency caches according to DEP. */
1029 static void
1030 set_dependency_caches (dep_t dep)
1031 {
1032 int elem_luid = INSN_LUID (DEP_PRO (dep));
1033 int insn_luid = INSN_LUID (DEP_CON (dep));
1034
1035 if (!(current_sched_info->flags & USE_DEPS_LIST))
1036 {
1037 switch (DEP_TYPE (dep))
1038 {
1039 case REG_DEP_TRUE:
1040 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1041 break;
1042
1043 case REG_DEP_OUTPUT:
1044 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1045 break;
1046
1047 case REG_DEP_ANTI:
1048 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1049 break;
1050
1051 case REG_DEP_CONTROL:
1052 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1053 break;
1054
1055 default:
1056 gcc_unreachable ();
1057 }
1058 }
1059 else
1060 {
1061 ds_t ds = DEP_STATUS (dep);
1062
1063 if (ds & DEP_TRUE)
1064 bitmap_set_bit (&true_dependency_cache[insn_luid], elem_luid);
1065 if (ds & DEP_OUTPUT)
1066 bitmap_set_bit (&output_dependency_cache[insn_luid], elem_luid);
1067 if (ds & DEP_ANTI)
1068 bitmap_set_bit (&anti_dependency_cache[insn_luid], elem_luid);
1069 if (ds & DEP_CONTROL)
1070 bitmap_set_bit (&control_dependency_cache[insn_luid], elem_luid);
1071
1072 if (ds & SPECULATIVE)
1073 {
1074 gcc_assert (current_sched_info->flags & DO_SPECULATION);
1075 bitmap_set_bit (&spec_dependency_cache[insn_luid], elem_luid);
1076 }
1077 }
1078 }
1079
1080 /* Type of dependence DEP have changed from OLD_TYPE. Update dependency
1081 caches accordingly. */
1082 static void
1083 update_dependency_caches (dep_t dep, enum reg_note old_type)
1084 {
1085 int elem_luid = INSN_LUID (DEP_PRO (dep));
1086 int insn_luid = INSN_LUID (DEP_CON (dep));
1087
1088 /* Clear corresponding cache entry because type of the link
1089 may have changed. Keep them if we use_deps_list. */
1090 if (!(current_sched_info->flags & USE_DEPS_LIST))
1091 {
1092 switch (old_type)
1093 {
1094 case REG_DEP_OUTPUT:
1095 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1096 break;
1097
1098 case REG_DEP_ANTI:
1099 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1100 break;
1101
1102 case REG_DEP_CONTROL:
1103 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1104 break;
1105
1106 default:
1107 gcc_unreachable ();
1108 }
1109 }
1110
1111 set_dependency_caches (dep);
1112 }
1113
1114 /* Convert a dependence pointed to by SD_IT to be non-speculative. */
1115 static void
1116 change_spec_dep_to_hard (sd_iterator_def sd_it)
1117 {
1118 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1119 dep_link_t link = DEP_NODE_BACK (node);
1120 dep_t dep = DEP_NODE_DEP (node);
1121 rtx elem = DEP_PRO (dep);
1122 rtx insn = DEP_CON (dep);
1123
1124 move_dep_link (link, INSN_SPEC_BACK_DEPS (insn), INSN_HARD_BACK_DEPS (insn));
1125
1126 DEP_STATUS (dep) &= ~SPECULATIVE;
1127
1128 if (true_dependency_cache != NULL)
1129 /* Clear the cache entry. */
1130 bitmap_clear_bit (&spec_dependency_cache[INSN_LUID (insn)],
1131 INSN_LUID (elem));
1132 }
1133
1134 /* Update DEP to incorporate information from NEW_DEP.
1135 SD_IT points to DEP in case it should be moved to another list.
1136 MEM1 and MEM2, if nonnull, correspond to memory locations in case if
1137 data-speculative dependence should be updated. */
1138 static enum DEPS_ADJUST_RESULT
1139 update_dep (dep_t dep, dep_t new_dep,
1140 sd_iterator_def sd_it ATTRIBUTE_UNUSED,
1141 rtx mem1 ATTRIBUTE_UNUSED,
1142 rtx mem2 ATTRIBUTE_UNUSED)
1143 {
1144 enum DEPS_ADJUST_RESULT res = DEP_PRESENT;
1145 enum reg_note old_type = DEP_TYPE (dep);
1146 bool was_spec = dep_spec_p (dep);
1147
1148 DEP_NONREG (dep) |= DEP_NONREG (new_dep);
1149 DEP_MULTIPLE (dep) = 1;
1150
1151 /* If this is a more restrictive type of dependence than the
1152 existing one, then change the existing dependence to this
1153 type. */
1154 if ((int) DEP_TYPE (new_dep) < (int) old_type)
1155 {
1156 DEP_TYPE (dep) = DEP_TYPE (new_dep);
1157 res = DEP_CHANGED;
1158 }
1159
1160 if (current_sched_info->flags & USE_DEPS_LIST)
1161 /* Update DEP_STATUS. */
1162 {
1163 ds_t dep_status = DEP_STATUS (dep);
1164 ds_t ds = DEP_STATUS (new_dep);
1165 ds_t new_status = ds | dep_status;
1166
1167 if (new_status & SPECULATIVE)
1168 {
1169 /* Either existing dep or a dep we're adding or both are
1170 speculative. */
1171 if (!(ds & SPECULATIVE)
1172 || !(dep_status & SPECULATIVE))
1173 /* The new dep can't be speculative. */
1174 new_status &= ~SPECULATIVE;
1175 else
1176 {
1177 /* Both are speculative. Merge probabilities. */
1178 if (mem1 != NULL)
1179 {
1180 dw_t dw;
1181
1182 dw = estimate_dep_weak (mem1, mem2);
1183 ds = set_dep_weak (ds, BEGIN_DATA, dw);
1184 }
1185
1186 new_status = ds_merge (dep_status, ds);
1187 }
1188 }
1189
1190 ds = new_status;
1191
1192 if (dep_status != ds)
1193 {
1194 DEP_STATUS (dep) = ds;
1195 res = DEP_CHANGED;
1196 }
1197 }
1198
1199 if (was_spec && !dep_spec_p (dep))
1200 /* The old dep was speculative, but now it isn't. */
1201 change_spec_dep_to_hard (sd_it);
1202
1203 if (true_dependency_cache != NULL
1204 && res == DEP_CHANGED)
1205 update_dependency_caches (dep, old_type);
1206
1207 return res;
1208 }
1209
1210 /* Add or update a dependence described by DEP.
1211 MEM1 and MEM2, if non-null, correspond to memory locations in case of
1212 data speculation.
1213
1214 The function returns a value indicating if an old entry has been changed
1215 or a new entry has been added to insn's backward deps or nothing has
1216 been updated at all. */
1217 static enum DEPS_ADJUST_RESULT
1218 add_or_update_dep_1 (dep_t new_dep, bool resolved_p,
1219 rtx mem1 ATTRIBUTE_UNUSED, rtx mem2 ATTRIBUTE_UNUSED)
1220 {
1221 bool maybe_present_p = true;
1222 bool present_p = false;
1223
1224 gcc_assert (INSN_P (DEP_PRO (new_dep)) && INSN_P (DEP_CON (new_dep))
1225 && DEP_PRO (new_dep) != DEP_CON (new_dep));
1226
1227 #ifdef ENABLE_CHECKING
1228 check_dep (new_dep, mem1 != NULL);
1229 #endif
1230
1231 if (true_dependency_cache != NULL)
1232 {
1233 switch (ask_dependency_caches (new_dep))
1234 {
1235 case DEP_PRESENT:
1236 return DEP_PRESENT;
1237
1238 case DEP_CHANGED:
1239 maybe_present_p = true;
1240 present_p = true;
1241 break;
1242
1243 case DEP_CREATED:
1244 maybe_present_p = false;
1245 present_p = false;
1246 break;
1247
1248 default:
1249 gcc_unreachable ();
1250 break;
1251 }
1252 }
1253
1254 /* Check that we don't already have this dependence. */
1255 if (maybe_present_p)
1256 {
1257 dep_t present_dep;
1258 sd_iterator_def sd_it;
1259
1260 gcc_assert (true_dependency_cache == NULL || present_p);
1261
1262 present_dep = sd_find_dep_between_no_cache (DEP_PRO (new_dep),
1263 DEP_CON (new_dep),
1264 resolved_p, &sd_it);
1265
1266 if (present_dep != NULL)
1267 /* We found an existing dependency between ELEM and INSN. */
1268 return update_dep (present_dep, new_dep, sd_it, mem1, mem2);
1269 else
1270 /* We didn't find a dep, it shouldn't present in the cache. */
1271 gcc_assert (!present_p);
1272 }
1273
1274 /* Might want to check one level of transitivity to save conses.
1275 This check should be done in maybe_add_or_update_dep_1.
1276 Since we made it to add_or_update_dep_1, we must create
1277 (or update) a link. */
1278
1279 if (mem1 != NULL_RTX)
1280 {
1281 gcc_assert (sched_deps_info->generate_spec_deps);
1282 DEP_STATUS (new_dep) = set_dep_weak (DEP_STATUS (new_dep), BEGIN_DATA,
1283 estimate_dep_weak (mem1, mem2));
1284 }
1285
1286 sd_add_dep (new_dep, resolved_p);
1287
1288 return DEP_CREATED;
1289 }
1290
1291 /* Initialize BACK_LIST_PTR with consumer's backward list and
1292 FORW_LIST_PTR with producer's forward list. If RESOLVED_P is true
1293 initialize with lists that hold resolved deps. */
1294 static void
1295 get_back_and_forw_lists (dep_t dep, bool resolved_p,
1296 deps_list_t *back_list_ptr,
1297 deps_list_t *forw_list_ptr)
1298 {
1299 rtx con = DEP_CON (dep);
1300
1301 if (!resolved_p)
1302 {
1303 if (dep_spec_p (dep))
1304 *back_list_ptr = INSN_SPEC_BACK_DEPS (con);
1305 else
1306 *back_list_ptr = INSN_HARD_BACK_DEPS (con);
1307
1308 *forw_list_ptr = INSN_FORW_DEPS (DEP_PRO (dep));
1309 }
1310 else
1311 {
1312 *back_list_ptr = INSN_RESOLVED_BACK_DEPS (con);
1313 *forw_list_ptr = INSN_RESOLVED_FORW_DEPS (DEP_PRO (dep));
1314 }
1315 }
1316
1317 /* Add dependence described by DEP.
1318 If RESOLVED_P is true treat the dependence as a resolved one. */
1319 void
1320 sd_add_dep (dep_t dep, bool resolved_p)
1321 {
1322 dep_node_t n = create_dep_node ();
1323 deps_list_t con_back_deps;
1324 deps_list_t pro_forw_deps;
1325 rtx elem = DEP_PRO (dep);
1326 rtx insn = DEP_CON (dep);
1327
1328 gcc_assert (INSN_P (insn) && INSN_P (elem) && insn != elem);
1329
1330 if ((current_sched_info->flags & DO_SPECULATION) == 0
1331 || !sched_insn_is_legitimate_for_speculation_p (insn, DEP_STATUS (dep)))
1332 DEP_STATUS (dep) &= ~SPECULATIVE;
1333
1334 copy_dep (DEP_NODE_DEP (n), dep);
1335
1336 get_back_and_forw_lists (dep, resolved_p, &con_back_deps, &pro_forw_deps);
1337
1338 add_to_deps_list (DEP_NODE_BACK (n), con_back_deps);
1339
1340 #ifdef ENABLE_CHECKING
1341 check_dep (dep, false);
1342 #endif
1343
1344 add_to_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1345
1346 /* If we are adding a dependency to INSN's LOG_LINKs, then note that
1347 in the bitmap caches of dependency information. */
1348 if (true_dependency_cache != NULL)
1349 set_dependency_caches (dep);
1350 }
1351
1352 /* Add or update backward dependence between INSN and ELEM
1353 with given type DEP_TYPE and dep_status DS.
1354 This function is a convenience wrapper. */
1355 enum DEPS_ADJUST_RESULT
1356 sd_add_or_update_dep (dep_t dep, bool resolved_p)
1357 {
1358 return add_or_update_dep_1 (dep, resolved_p, NULL_RTX, NULL_RTX);
1359 }
1360
1361 /* Resolved dependence pointed to by SD_IT.
1362 SD_IT will advance to the next element. */
1363 void
1364 sd_resolve_dep (sd_iterator_def sd_it)
1365 {
1366 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1367 dep_t dep = DEP_NODE_DEP (node);
1368 rtx pro = DEP_PRO (dep);
1369 rtx con = DEP_CON (dep);
1370
1371 if (dep_spec_p (dep))
1372 move_dep_link (DEP_NODE_BACK (node), INSN_SPEC_BACK_DEPS (con),
1373 INSN_RESOLVED_BACK_DEPS (con));
1374 else
1375 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
1376 INSN_RESOLVED_BACK_DEPS (con));
1377
1378 move_dep_link (DEP_NODE_FORW (node), INSN_FORW_DEPS (pro),
1379 INSN_RESOLVED_FORW_DEPS (pro));
1380 }
1381
1382 /* Perform the inverse operation of sd_resolve_dep. Restore the dependence
1383 pointed to by SD_IT to unresolved state. */
1384 void
1385 sd_unresolve_dep (sd_iterator_def sd_it)
1386 {
1387 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
1388 dep_t dep = DEP_NODE_DEP (node);
1389 rtx pro = DEP_PRO (dep);
1390 rtx con = DEP_CON (dep);
1391
1392 if (dep_spec_p (dep))
1393 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1394 INSN_SPEC_BACK_DEPS (con));
1395 else
1396 move_dep_link (DEP_NODE_BACK (node), INSN_RESOLVED_BACK_DEPS (con),
1397 INSN_HARD_BACK_DEPS (con));
1398
1399 move_dep_link (DEP_NODE_FORW (node), INSN_RESOLVED_FORW_DEPS (pro),
1400 INSN_FORW_DEPS (pro));
1401 }
1402
1403 /* Make TO depend on all the FROM's producers.
1404 If RESOLVED_P is true add dependencies to the resolved lists. */
1405 void
1406 sd_copy_back_deps (rtx to, rtx from, bool resolved_p)
1407 {
1408 sd_list_types_def list_type;
1409 sd_iterator_def sd_it;
1410 dep_t dep;
1411
1412 list_type = resolved_p ? SD_LIST_RES_BACK : SD_LIST_BACK;
1413
1414 FOR_EACH_DEP (from, list_type, sd_it, dep)
1415 {
1416 dep_def _new_dep, *new_dep = &_new_dep;
1417
1418 copy_dep (new_dep, dep);
1419 SET_DEP_CON (new_dep) = to;
1420 sd_add_dep (new_dep, resolved_p);
1421 }
1422 }
1423
1424 /* Remove a dependency referred to by SD_IT.
1425 SD_IT will point to the next dependence after removal. */
1426 void
1427 sd_delete_dep (sd_iterator_def sd_it)
1428 {
1429 dep_node_t n = DEP_LINK_NODE (*sd_it.linkp);
1430 dep_t dep = DEP_NODE_DEP (n);
1431 rtx pro = DEP_PRO (dep);
1432 rtx con = DEP_CON (dep);
1433 deps_list_t con_back_deps;
1434 deps_list_t pro_forw_deps;
1435
1436 if (true_dependency_cache != NULL)
1437 {
1438 int elem_luid = INSN_LUID (pro);
1439 int insn_luid = INSN_LUID (con);
1440
1441 bitmap_clear_bit (&true_dependency_cache[insn_luid], elem_luid);
1442 bitmap_clear_bit (&anti_dependency_cache[insn_luid], elem_luid);
1443 bitmap_clear_bit (&control_dependency_cache[insn_luid], elem_luid);
1444 bitmap_clear_bit (&output_dependency_cache[insn_luid], elem_luid);
1445
1446 if (current_sched_info->flags & DO_SPECULATION)
1447 bitmap_clear_bit (&spec_dependency_cache[insn_luid], elem_luid);
1448 }
1449
1450 get_back_and_forw_lists (dep, sd_it.resolved_p,
1451 &con_back_deps, &pro_forw_deps);
1452
1453 remove_from_deps_list (DEP_NODE_BACK (n), con_back_deps);
1454 remove_from_deps_list (DEP_NODE_FORW (n), pro_forw_deps);
1455
1456 delete_dep_node (n);
1457 }
1458
1459 /* Dump size of the lists. */
1460 #define DUMP_LISTS_SIZE (2)
1461
1462 /* Dump dependencies of the lists. */
1463 #define DUMP_LISTS_DEPS (4)
1464
1465 /* Dump all information about the lists. */
1466 #define DUMP_LISTS_ALL (DUMP_LISTS_SIZE | DUMP_LISTS_DEPS)
1467
1468 /* Dump deps_lists of INSN specified by TYPES to DUMP.
1469 FLAGS is a bit mask specifying what information about the lists needs
1470 to be printed.
1471 If FLAGS has the very first bit set, then dump all information about
1472 the lists and propagate this bit into the callee dump functions. */
1473 static void
1474 dump_lists (FILE *dump, rtx insn, sd_list_types_def types, int flags)
1475 {
1476 sd_iterator_def sd_it;
1477 dep_t dep;
1478 int all;
1479
1480 all = (flags & 1);
1481
1482 if (all)
1483 flags |= DUMP_LISTS_ALL;
1484
1485 fprintf (dump, "[");
1486
1487 if (flags & DUMP_LISTS_SIZE)
1488 fprintf (dump, "%d; ", sd_lists_size (insn, types));
1489
1490 if (flags & DUMP_LISTS_DEPS)
1491 {
1492 FOR_EACH_DEP (insn, types, sd_it, dep)
1493 {
1494 dump_dep (dump, dep, dump_dep_flags | all);
1495 fprintf (dump, " ");
1496 }
1497 }
1498 }
1499
1500 /* Dump all information about deps_lists of INSN specified by TYPES
1501 to STDERR. */
1502 void
1503 sd_debug_lists (rtx insn, sd_list_types_def types)
1504 {
1505 dump_lists (stderr, insn, types, 1);
1506 fprintf (stderr, "\n");
1507 }
1508
1509 /* A wrapper around add_dependence_1, to add a dependence of CON on
1510 PRO, with type DEP_TYPE. This function implements special handling
1511 for REG_DEP_CONTROL dependencies. For these, we optionally promote
1512 the type to REG_DEP_ANTI if we can determine that predication is
1513 impossible; otherwise we add additional true dependencies on the
1514 INSN_COND_DEPS list of the jump (which PRO must be). */
1515 void
1516 add_dependence (rtx con, rtx pro, enum reg_note dep_type)
1517 {
1518 if (dep_type == REG_DEP_CONTROL
1519 && !(current_sched_info->flags & DO_PREDICATION))
1520 dep_type = REG_DEP_ANTI;
1521
1522 /* A REG_DEP_CONTROL dependence may be eliminated through predication,
1523 so we must also make the insn dependent on the setter of the
1524 condition. */
1525 if (dep_type == REG_DEP_CONTROL)
1526 {
1527 rtx real_pro = pro;
1528 rtx other = real_insn_for_shadow (real_pro);
1529 rtx cond;
1530
1531 if (other != NULL_RTX)
1532 real_pro = other;
1533 cond = sched_get_reverse_condition_uncached (real_pro);
1534 /* Verify that the insn does not use a different value in
1535 the condition register than the one that was present at
1536 the jump. */
1537 if (cond == NULL_RTX)
1538 dep_type = REG_DEP_ANTI;
1539 else if (INSN_CACHED_COND (real_pro) == const_true_rtx)
1540 {
1541 HARD_REG_SET uses;
1542 CLEAR_HARD_REG_SET (uses);
1543 note_uses (&PATTERN (con), record_hard_reg_uses, &uses);
1544 if (TEST_HARD_REG_BIT (uses, REGNO (XEXP (cond, 0))))
1545 dep_type = REG_DEP_ANTI;
1546 }
1547 if (dep_type == REG_DEP_CONTROL)
1548 {
1549 if (sched_verbose >= 5)
1550 fprintf (sched_dump, "making DEP_CONTROL for %d\n",
1551 INSN_UID (real_pro));
1552 add_dependence_list (con, INSN_COND_DEPS (real_pro), 0,
1553 REG_DEP_TRUE, false);
1554 }
1555 }
1556
1557 add_dependence_1 (con, pro, dep_type);
1558 }
1559
1560 /* A convenience wrapper to operate on an entire list. HARD should be
1561 true if DEP_NONREG should be set on newly created dependencies. */
1562
1563 static void
1564 add_dependence_list (rtx insn, rtx list, int uncond, enum reg_note dep_type,
1565 bool hard)
1566 {
1567 mark_as_hard = hard;
1568 for (; list; list = XEXP (list, 1))
1569 {
1570 if (uncond || ! sched_insns_conditions_mutex_p (insn, XEXP (list, 0)))
1571 add_dependence (insn, XEXP (list, 0), dep_type);
1572 }
1573 mark_as_hard = false;
1574 }
1575
1576 /* Similar, but free *LISTP at the same time, when the context
1577 is not readonly. HARD should be true if DEP_NONREG should be set on
1578 newly created dependencies. */
1579
1580 static void
1581 add_dependence_list_and_free (struct deps_desc *deps, rtx insn, rtx *listp,
1582 int uncond, enum reg_note dep_type, bool hard)
1583 {
1584 add_dependence_list (insn, *listp, uncond, dep_type, hard);
1585
1586 /* We don't want to short-circuit dependencies involving debug
1587 insns, because they may cause actual dependencies to be
1588 disregarded. */
1589 if (deps->readonly || DEBUG_INSN_P (insn))
1590 return;
1591
1592 free_INSN_LIST_list (listp);
1593 }
1594
1595 /* Remove all occurrences of INSN from LIST. Return the number of
1596 occurrences removed. */
1597
1598 static int
1599 remove_from_dependence_list (rtx insn, rtx* listp)
1600 {
1601 int removed = 0;
1602
1603 while (*listp)
1604 {
1605 if (XEXP (*listp, 0) == insn)
1606 {
1607 remove_free_INSN_LIST_node (listp);
1608 removed++;
1609 continue;
1610 }
1611
1612 listp = &XEXP (*listp, 1);
1613 }
1614
1615 return removed;
1616 }
1617
1618 /* Same as above, but process two lists at once. */
1619 static int
1620 remove_from_both_dependence_lists (rtx insn, rtx *listp, rtx *exprp)
1621 {
1622 int removed = 0;
1623
1624 while (*listp)
1625 {
1626 if (XEXP (*listp, 0) == insn)
1627 {
1628 remove_free_INSN_LIST_node (listp);
1629 remove_free_EXPR_LIST_node (exprp);
1630 removed++;
1631 continue;
1632 }
1633
1634 listp = &XEXP (*listp, 1);
1635 exprp = &XEXP (*exprp, 1);
1636 }
1637
1638 return removed;
1639 }
1640
1641 /* Clear all dependencies for an insn. */
1642 static void
1643 delete_all_dependences (rtx insn)
1644 {
1645 sd_iterator_def sd_it;
1646 dep_t dep;
1647
1648 /* The below cycle can be optimized to clear the caches and back_deps
1649 in one call but that would provoke duplication of code from
1650 delete_dep (). */
1651
1652 for (sd_it = sd_iterator_start (insn, SD_LIST_BACK);
1653 sd_iterator_cond (&sd_it, &dep);)
1654 sd_delete_dep (sd_it);
1655 }
1656
1657 /* All insns in a scheduling group except the first should only have
1658 dependencies on the previous insn in the group. So we find the
1659 first instruction in the scheduling group by walking the dependence
1660 chains backwards. Then we add the dependencies for the group to
1661 the previous nonnote insn. */
1662
1663 static void
1664 chain_to_prev_insn (rtx insn)
1665 {
1666 sd_iterator_def sd_it;
1667 dep_t dep;
1668 rtx prev_nonnote;
1669
1670 FOR_EACH_DEP (insn, SD_LIST_BACK, sd_it, dep)
1671 {
1672 rtx i = insn;
1673 rtx pro = DEP_PRO (dep);
1674
1675 do
1676 {
1677 i = prev_nonnote_insn (i);
1678
1679 if (pro == i)
1680 goto next_link;
1681 } while (SCHED_GROUP_P (i) || DEBUG_INSN_P (i));
1682
1683 if (! sched_insns_conditions_mutex_p (i, pro))
1684 add_dependence (i, pro, DEP_TYPE (dep));
1685 next_link:;
1686 }
1687
1688 delete_all_dependences (insn);
1689
1690 prev_nonnote = prev_nonnote_nondebug_insn (insn);
1691 if (BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (prev_nonnote)
1692 && ! sched_insns_conditions_mutex_p (insn, prev_nonnote))
1693 add_dependence (insn, prev_nonnote, REG_DEP_ANTI);
1694 }
1695 \f
1696 /* Process an insn's memory dependencies. There are four kinds of
1697 dependencies:
1698
1699 (0) read dependence: read follows read
1700 (1) true dependence: read follows write
1701 (2) output dependence: write follows write
1702 (3) anti dependence: write follows read
1703
1704 We are careful to build only dependencies which actually exist, and
1705 use transitivity to avoid building too many links. */
1706
1707 /* Add an INSN and MEM reference pair to a pending INSN_LIST and MEM_LIST.
1708 The MEM is a memory reference contained within INSN, which we are saving
1709 so that we can do memory aliasing on it. */
1710
1711 static void
1712 add_insn_mem_dependence (struct deps_desc *deps, bool read_p,
1713 rtx insn, rtx mem)
1714 {
1715 rtx *insn_list;
1716 rtx *mem_list;
1717 rtx link;
1718
1719 gcc_assert (!deps->readonly);
1720 if (read_p)
1721 {
1722 insn_list = &deps->pending_read_insns;
1723 mem_list = &deps->pending_read_mems;
1724 if (!DEBUG_INSN_P (insn))
1725 deps->pending_read_list_length++;
1726 }
1727 else
1728 {
1729 insn_list = &deps->pending_write_insns;
1730 mem_list = &deps->pending_write_mems;
1731 deps->pending_write_list_length++;
1732 }
1733
1734 link = alloc_INSN_LIST (insn, *insn_list);
1735 *insn_list = link;
1736
1737 if (sched_deps_info->use_cselib)
1738 {
1739 mem = shallow_copy_rtx (mem);
1740 XEXP (mem, 0) = cselib_subst_to_values_from_insn (XEXP (mem, 0),
1741 GET_MODE (mem), insn);
1742 }
1743 link = alloc_EXPR_LIST (VOIDmode, canon_rtx (mem), *mem_list);
1744 *mem_list = link;
1745 }
1746
1747 /* Make a dependency between every memory reference on the pending lists
1748 and INSN, thus flushing the pending lists. FOR_READ is true if emitting
1749 dependencies for a read operation, similarly with FOR_WRITE. */
1750
1751 static void
1752 flush_pending_lists (struct deps_desc *deps, rtx insn, int for_read,
1753 int for_write)
1754 {
1755 if (for_write)
1756 {
1757 add_dependence_list_and_free (deps, insn, &deps->pending_read_insns,
1758 1, REG_DEP_ANTI, true);
1759 if (!deps->readonly)
1760 {
1761 free_EXPR_LIST_list (&deps->pending_read_mems);
1762 deps->pending_read_list_length = 0;
1763 }
1764 }
1765
1766 add_dependence_list_and_free (deps, insn, &deps->pending_write_insns, 1,
1767 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1768 true);
1769
1770 add_dependence_list_and_free (deps, insn,
1771 &deps->last_pending_memory_flush, 1,
1772 for_read ? REG_DEP_ANTI : REG_DEP_OUTPUT,
1773 true);
1774
1775 add_dependence_list_and_free (deps, insn, &deps->pending_jump_insns, 1,
1776 REG_DEP_ANTI, true);
1777
1778 if (DEBUG_INSN_P (insn))
1779 {
1780 if (for_write)
1781 free_INSN_LIST_list (&deps->pending_read_insns);
1782 free_INSN_LIST_list (&deps->pending_write_insns);
1783 free_INSN_LIST_list (&deps->last_pending_memory_flush);
1784 free_INSN_LIST_list (&deps->pending_jump_insns);
1785 }
1786
1787 if (!deps->readonly)
1788 {
1789 free_EXPR_LIST_list (&deps->pending_write_mems);
1790 deps->pending_write_list_length = 0;
1791
1792 deps->last_pending_memory_flush = alloc_INSN_LIST (insn, NULL_RTX);
1793 deps->pending_flush_length = 1;
1794 }
1795 mark_as_hard = false;
1796 }
1797 \f
1798 /* Instruction which dependencies we are analyzing. */
1799 static rtx cur_insn = NULL_RTX;
1800
1801 /* Implement hooks for haifa scheduler. */
1802
1803 static void
1804 haifa_start_insn (rtx insn)
1805 {
1806 gcc_assert (insn && !cur_insn);
1807
1808 cur_insn = insn;
1809 }
1810
1811 static void
1812 haifa_finish_insn (void)
1813 {
1814 cur_insn = NULL;
1815 }
1816
1817 void
1818 haifa_note_reg_set (int regno)
1819 {
1820 SET_REGNO_REG_SET (reg_pending_sets, regno);
1821 }
1822
1823 void
1824 haifa_note_reg_clobber (int regno)
1825 {
1826 SET_REGNO_REG_SET (reg_pending_clobbers, regno);
1827 }
1828
1829 void
1830 haifa_note_reg_use (int regno)
1831 {
1832 SET_REGNO_REG_SET (reg_pending_uses, regno);
1833 }
1834
1835 static void
1836 haifa_note_mem_dep (rtx mem, rtx pending_mem, rtx pending_insn, ds_t ds)
1837 {
1838 if (!(ds & SPECULATIVE))
1839 {
1840 mem = NULL_RTX;
1841 pending_mem = NULL_RTX;
1842 }
1843 else
1844 gcc_assert (ds & BEGIN_DATA);
1845
1846 {
1847 dep_def _dep, *dep = &_dep;
1848
1849 init_dep_1 (dep, pending_insn, cur_insn, ds_to_dt (ds),
1850 current_sched_info->flags & USE_DEPS_LIST ? ds : 0);
1851 DEP_NONREG (dep) = 1;
1852 maybe_add_or_update_dep_1 (dep, false, pending_mem, mem);
1853 }
1854
1855 }
1856
1857 static void
1858 haifa_note_dep (rtx elem, ds_t ds)
1859 {
1860 dep_def _dep;
1861 dep_t dep = &_dep;
1862
1863 init_dep (dep, elem, cur_insn, ds_to_dt (ds));
1864 if (mark_as_hard)
1865 DEP_NONREG (dep) = 1;
1866 maybe_add_or_update_dep_1 (dep, false, NULL_RTX, NULL_RTX);
1867 }
1868
1869 static void
1870 note_reg_use (int r)
1871 {
1872 if (sched_deps_info->note_reg_use)
1873 sched_deps_info->note_reg_use (r);
1874 }
1875
1876 static void
1877 note_reg_set (int r)
1878 {
1879 if (sched_deps_info->note_reg_set)
1880 sched_deps_info->note_reg_set (r);
1881 }
1882
1883 static void
1884 note_reg_clobber (int r)
1885 {
1886 if (sched_deps_info->note_reg_clobber)
1887 sched_deps_info->note_reg_clobber (r);
1888 }
1889
1890 static void
1891 note_mem_dep (rtx m1, rtx m2, rtx e, ds_t ds)
1892 {
1893 if (sched_deps_info->note_mem_dep)
1894 sched_deps_info->note_mem_dep (m1, m2, e, ds);
1895 }
1896
1897 static void
1898 note_dep (rtx e, ds_t ds)
1899 {
1900 if (sched_deps_info->note_dep)
1901 sched_deps_info->note_dep (e, ds);
1902 }
1903
1904 /* Return corresponding to DS reg_note. */
1905 enum reg_note
1906 ds_to_dt (ds_t ds)
1907 {
1908 if (ds & DEP_TRUE)
1909 return REG_DEP_TRUE;
1910 else if (ds & DEP_OUTPUT)
1911 return REG_DEP_OUTPUT;
1912 else if (ds & DEP_ANTI)
1913 return REG_DEP_ANTI;
1914 else
1915 {
1916 gcc_assert (ds & DEP_CONTROL);
1917 return REG_DEP_CONTROL;
1918 }
1919 }
1920
1921 \f
1922
1923 /* Functions for computation of info needed for register pressure
1924 sensitive insn scheduling. */
1925
1926
1927 /* Allocate and return reg_use_data structure for REGNO and INSN. */
1928 static struct reg_use_data *
1929 create_insn_reg_use (int regno, rtx insn)
1930 {
1931 struct reg_use_data *use;
1932
1933 use = (struct reg_use_data *) xmalloc (sizeof (struct reg_use_data));
1934 use->regno = regno;
1935 use->insn = insn;
1936 use->next_insn_use = INSN_REG_USE_LIST (insn);
1937 INSN_REG_USE_LIST (insn) = use;
1938 return use;
1939 }
1940
1941 /* Allocate reg_set_data structure for REGNO and INSN. */
1942 static void
1943 create_insn_reg_set (int regno, rtx insn)
1944 {
1945 struct reg_set_data *set;
1946
1947 set = (struct reg_set_data *) xmalloc (sizeof (struct reg_set_data));
1948 set->regno = regno;
1949 set->insn = insn;
1950 set->next_insn_set = INSN_REG_SET_LIST (insn);
1951 INSN_REG_SET_LIST (insn) = set;
1952 }
1953
1954 /* Set up insn register uses for INSN and dependency context DEPS. */
1955 static void
1956 setup_insn_reg_uses (struct deps_desc *deps, rtx insn)
1957 {
1958 unsigned i;
1959 reg_set_iterator rsi;
1960 rtx list;
1961 struct reg_use_data *use, *use2, *next;
1962 struct deps_reg *reg_last;
1963
1964 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
1965 {
1966 if (i < FIRST_PSEUDO_REGISTER
1967 && TEST_HARD_REG_BIT (ira_no_alloc_regs, i))
1968 continue;
1969
1970 if (find_regno_note (insn, REG_DEAD, i) == NULL_RTX
1971 && ! REGNO_REG_SET_P (reg_pending_sets, i)
1972 && ! REGNO_REG_SET_P (reg_pending_clobbers, i))
1973 /* Ignore use which is not dying. */
1974 continue;
1975
1976 use = create_insn_reg_use (i, insn);
1977 use->next_regno_use = use;
1978 reg_last = &deps->reg_last[i];
1979
1980 /* Create the cycle list of uses. */
1981 for (list = reg_last->uses; list; list = XEXP (list, 1))
1982 {
1983 use2 = create_insn_reg_use (i, XEXP (list, 0));
1984 next = use->next_regno_use;
1985 use->next_regno_use = use2;
1986 use2->next_regno_use = next;
1987 }
1988 }
1989 }
1990
1991 /* Register pressure info for the currently processed insn. */
1992 static struct reg_pressure_data reg_pressure_info[N_REG_CLASSES];
1993
1994 /* Return TRUE if INSN has the use structure for REGNO. */
1995 static bool
1996 insn_use_p (rtx insn, int regno)
1997 {
1998 struct reg_use_data *use;
1999
2000 for (use = INSN_REG_USE_LIST (insn); use != NULL; use = use->next_insn_use)
2001 if (use->regno == regno)
2002 return true;
2003 return false;
2004 }
2005
2006 /* Update the register pressure info after birth of pseudo register REGNO
2007 in INSN. Arguments CLOBBER_P and UNUSED_P say correspondingly that
2008 the register is in clobber or unused after the insn. */
2009 static void
2010 mark_insn_pseudo_birth (rtx insn, int regno, bool clobber_p, bool unused_p)
2011 {
2012 int incr, new_incr;
2013 enum reg_class cl;
2014
2015 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2016 cl = sched_regno_pressure_class[regno];
2017 if (cl != NO_REGS)
2018 {
2019 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2020 if (clobber_p)
2021 {
2022 new_incr = reg_pressure_info[cl].clobber_increase + incr;
2023 reg_pressure_info[cl].clobber_increase = new_incr;
2024 }
2025 else if (unused_p)
2026 {
2027 new_incr = reg_pressure_info[cl].unused_set_increase + incr;
2028 reg_pressure_info[cl].unused_set_increase = new_incr;
2029 }
2030 else
2031 {
2032 new_incr = reg_pressure_info[cl].set_increase + incr;
2033 reg_pressure_info[cl].set_increase = new_incr;
2034 if (! insn_use_p (insn, regno))
2035 reg_pressure_info[cl].change += incr;
2036 create_insn_reg_set (regno, insn);
2037 }
2038 gcc_assert (new_incr < (1 << INCREASE_BITS));
2039 }
2040 }
2041
2042 /* Like mark_insn_pseudo_regno_birth except that NREGS saying how many
2043 hard registers involved in the birth. */
2044 static void
2045 mark_insn_hard_regno_birth (rtx insn, int regno, int nregs,
2046 bool clobber_p, bool unused_p)
2047 {
2048 enum reg_class cl;
2049 int new_incr, last = regno + nregs;
2050
2051 while (regno < last)
2052 {
2053 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2054 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2055 {
2056 cl = sched_regno_pressure_class[regno];
2057 if (cl != NO_REGS)
2058 {
2059 if (clobber_p)
2060 {
2061 new_incr = reg_pressure_info[cl].clobber_increase + 1;
2062 reg_pressure_info[cl].clobber_increase = new_incr;
2063 }
2064 else if (unused_p)
2065 {
2066 new_incr = reg_pressure_info[cl].unused_set_increase + 1;
2067 reg_pressure_info[cl].unused_set_increase = new_incr;
2068 }
2069 else
2070 {
2071 new_incr = reg_pressure_info[cl].set_increase + 1;
2072 reg_pressure_info[cl].set_increase = new_incr;
2073 if (! insn_use_p (insn, regno))
2074 reg_pressure_info[cl].change += 1;
2075 create_insn_reg_set (regno, insn);
2076 }
2077 gcc_assert (new_incr < (1 << INCREASE_BITS));
2078 }
2079 }
2080 regno++;
2081 }
2082 }
2083
2084 /* Update the register pressure info after birth of pseudo or hard
2085 register REG in INSN. Arguments CLOBBER_P and UNUSED_P say
2086 correspondingly that the register is in clobber or unused after the
2087 insn. */
2088 static void
2089 mark_insn_reg_birth (rtx insn, rtx reg, bool clobber_p, bool unused_p)
2090 {
2091 int regno;
2092
2093 if (GET_CODE (reg) == SUBREG)
2094 reg = SUBREG_REG (reg);
2095
2096 if (! REG_P (reg))
2097 return;
2098
2099 regno = REGNO (reg);
2100 if (regno < FIRST_PSEUDO_REGISTER)
2101 mark_insn_hard_regno_birth (insn, regno,
2102 hard_regno_nregs[regno][GET_MODE (reg)],
2103 clobber_p, unused_p);
2104 else
2105 mark_insn_pseudo_birth (insn, regno, clobber_p, unused_p);
2106 }
2107
2108 /* Update the register pressure info after death of pseudo register
2109 REGNO. */
2110 static void
2111 mark_pseudo_death (int regno)
2112 {
2113 int incr;
2114 enum reg_class cl;
2115
2116 gcc_assert (regno >= FIRST_PSEUDO_REGISTER);
2117 cl = sched_regno_pressure_class[regno];
2118 if (cl != NO_REGS)
2119 {
2120 incr = ira_reg_class_max_nregs[cl][PSEUDO_REGNO_MODE (regno)];
2121 reg_pressure_info[cl].change -= incr;
2122 }
2123 }
2124
2125 /* Like mark_pseudo_death except that NREGS saying how many hard
2126 registers involved in the death. */
2127 static void
2128 mark_hard_regno_death (int regno, int nregs)
2129 {
2130 enum reg_class cl;
2131 int last = regno + nregs;
2132
2133 while (regno < last)
2134 {
2135 gcc_assert (regno < FIRST_PSEUDO_REGISTER);
2136 if (! TEST_HARD_REG_BIT (ira_no_alloc_regs, regno))
2137 {
2138 cl = sched_regno_pressure_class[regno];
2139 if (cl != NO_REGS)
2140 reg_pressure_info[cl].change -= 1;
2141 }
2142 regno++;
2143 }
2144 }
2145
2146 /* Update the register pressure info after death of pseudo or hard
2147 register REG. */
2148 static void
2149 mark_reg_death (rtx reg)
2150 {
2151 int regno;
2152
2153 if (GET_CODE (reg) == SUBREG)
2154 reg = SUBREG_REG (reg);
2155
2156 if (! REG_P (reg))
2157 return;
2158
2159 regno = REGNO (reg);
2160 if (regno < FIRST_PSEUDO_REGISTER)
2161 mark_hard_regno_death (regno, hard_regno_nregs[regno][GET_MODE (reg)]);
2162 else
2163 mark_pseudo_death (regno);
2164 }
2165
2166 /* Process SETTER of REG. DATA is an insn containing the setter. */
2167 static void
2168 mark_insn_reg_store (rtx reg, const_rtx setter, void *data)
2169 {
2170 if (setter != NULL_RTX && GET_CODE (setter) != SET)
2171 return;
2172 mark_insn_reg_birth
2173 ((rtx) data, reg, false,
2174 find_reg_note ((const_rtx) data, REG_UNUSED, reg) != NULL_RTX);
2175 }
2176
2177 /* Like mark_insn_reg_store except notice just CLOBBERs; ignore SETs. */
2178 static void
2179 mark_insn_reg_clobber (rtx reg, const_rtx setter, void *data)
2180 {
2181 if (GET_CODE (setter) == CLOBBER)
2182 mark_insn_reg_birth ((rtx) data, reg, true, false);
2183 }
2184
2185 /* Set up reg pressure info related to INSN. */
2186 void
2187 init_insn_reg_pressure_info (rtx insn)
2188 {
2189 int i, len;
2190 enum reg_class cl;
2191 static struct reg_pressure_data *pressure_info;
2192 rtx link;
2193
2194 gcc_assert (sched_pressure != SCHED_PRESSURE_NONE);
2195
2196 if (! INSN_P (insn))
2197 return;
2198
2199 for (i = 0; i < ira_pressure_classes_num; i++)
2200 {
2201 cl = ira_pressure_classes[i];
2202 reg_pressure_info[cl].clobber_increase = 0;
2203 reg_pressure_info[cl].set_increase = 0;
2204 reg_pressure_info[cl].unused_set_increase = 0;
2205 reg_pressure_info[cl].change = 0;
2206 }
2207
2208 note_stores (PATTERN (insn), mark_insn_reg_clobber, insn);
2209
2210 note_stores (PATTERN (insn), mark_insn_reg_store, insn);
2211
2212 #ifdef AUTO_INC_DEC
2213 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2214 if (REG_NOTE_KIND (link) == REG_INC)
2215 mark_insn_reg_store (XEXP (link, 0), NULL_RTX, insn);
2216 #endif
2217
2218 for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
2219 if (REG_NOTE_KIND (link) == REG_DEAD)
2220 mark_reg_death (XEXP (link, 0));
2221
2222 len = sizeof (struct reg_pressure_data) * ira_pressure_classes_num;
2223 pressure_info
2224 = INSN_REG_PRESSURE (insn) = (struct reg_pressure_data *) xmalloc (len);
2225 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2226 INSN_MAX_REG_PRESSURE (insn) = (int *) xcalloc (ira_pressure_classes_num
2227 * sizeof (int), 1);
2228 for (i = 0; i < ira_pressure_classes_num; i++)
2229 {
2230 cl = ira_pressure_classes[i];
2231 pressure_info[i].clobber_increase
2232 = reg_pressure_info[cl].clobber_increase;
2233 pressure_info[i].set_increase = reg_pressure_info[cl].set_increase;
2234 pressure_info[i].unused_set_increase
2235 = reg_pressure_info[cl].unused_set_increase;
2236 pressure_info[i].change = reg_pressure_info[cl].change;
2237 }
2238 }
2239
2240
2241 \f
2242
2243 /* Internal variable for sched_analyze_[12] () functions.
2244 If it is nonzero, this means that sched_analyze_[12] looks
2245 at the most toplevel SET. */
2246 static bool can_start_lhs_rhs_p;
2247
2248 /* Extend reg info for the deps context DEPS given that
2249 we have just generated a register numbered REGNO. */
2250 static void
2251 extend_deps_reg_info (struct deps_desc *deps, int regno)
2252 {
2253 int max_regno = regno + 1;
2254
2255 gcc_assert (!reload_completed);
2256
2257 /* In a readonly context, it would not hurt to extend info,
2258 but it should not be needed. */
2259 if (reload_completed && deps->readonly)
2260 {
2261 deps->max_reg = max_regno;
2262 return;
2263 }
2264
2265 if (max_regno > deps->max_reg)
2266 {
2267 deps->reg_last = XRESIZEVEC (struct deps_reg, deps->reg_last,
2268 max_regno);
2269 memset (&deps->reg_last[deps->max_reg],
2270 0, (max_regno - deps->max_reg)
2271 * sizeof (struct deps_reg));
2272 deps->max_reg = max_regno;
2273 }
2274 }
2275
2276 /* Extends REG_INFO_P if needed. */
2277 void
2278 maybe_extend_reg_info_p (void)
2279 {
2280 /* Extend REG_INFO_P, if needed. */
2281 if ((unsigned int)max_regno - 1 >= reg_info_p_size)
2282 {
2283 size_t new_reg_info_p_size = max_regno + 128;
2284
2285 gcc_assert (!reload_completed && sel_sched_p ());
2286
2287 reg_info_p = (struct reg_info_t *) xrecalloc (reg_info_p,
2288 new_reg_info_p_size,
2289 reg_info_p_size,
2290 sizeof (*reg_info_p));
2291 reg_info_p_size = new_reg_info_p_size;
2292 }
2293 }
2294
2295 /* Analyze a single reference to register (reg:MODE REGNO) in INSN.
2296 The type of the reference is specified by REF and can be SET,
2297 CLOBBER, PRE_DEC, POST_DEC, PRE_INC, POST_INC or USE. */
2298
2299 static void
2300 sched_analyze_reg (struct deps_desc *deps, int regno, enum machine_mode mode,
2301 enum rtx_code ref, rtx insn)
2302 {
2303 /* We could emit new pseudos in renaming. Extend the reg structures. */
2304 if (!reload_completed && sel_sched_p ()
2305 && (regno >= max_reg_num () - 1 || regno >= deps->max_reg))
2306 extend_deps_reg_info (deps, regno);
2307
2308 maybe_extend_reg_info_p ();
2309
2310 /* A hard reg in a wide mode may really be multiple registers.
2311 If so, mark all of them just like the first. */
2312 if (regno < FIRST_PSEUDO_REGISTER)
2313 {
2314 int i = hard_regno_nregs[regno][mode];
2315 if (ref == SET)
2316 {
2317 while (--i >= 0)
2318 note_reg_set (regno + i);
2319 }
2320 else if (ref == USE)
2321 {
2322 while (--i >= 0)
2323 note_reg_use (regno + i);
2324 }
2325 else
2326 {
2327 while (--i >= 0)
2328 note_reg_clobber (regno + i);
2329 }
2330 }
2331
2332 /* ??? Reload sometimes emits USEs and CLOBBERs of pseudos that
2333 it does not reload. Ignore these as they have served their
2334 purpose already. */
2335 else if (regno >= deps->max_reg)
2336 {
2337 enum rtx_code code = GET_CODE (PATTERN (insn));
2338 gcc_assert (code == USE || code == CLOBBER);
2339 }
2340
2341 else
2342 {
2343 if (ref == SET)
2344 note_reg_set (regno);
2345 else if (ref == USE)
2346 note_reg_use (regno);
2347 else
2348 note_reg_clobber (regno);
2349
2350 /* Pseudos that are REG_EQUIV to something may be replaced
2351 by that during reloading. We need only add dependencies for
2352 the address in the REG_EQUIV note. */
2353 if (!reload_completed && get_reg_known_equiv_p (regno))
2354 {
2355 rtx t = get_reg_known_value (regno);
2356 if (MEM_P (t))
2357 sched_analyze_2 (deps, XEXP (t, 0), insn);
2358 }
2359
2360 /* Don't let it cross a call after scheduling if it doesn't
2361 already cross one. */
2362 if (REG_N_CALLS_CROSSED (regno) == 0)
2363 {
2364 if (!deps->readonly && ref == USE && !DEBUG_INSN_P (insn))
2365 deps->sched_before_next_call
2366 = alloc_INSN_LIST (insn, deps->sched_before_next_call);
2367 else
2368 add_dependence_list (insn, deps->last_function_call, 1,
2369 REG_DEP_ANTI, false);
2370 }
2371 }
2372 }
2373
2374 /* Analyze a single SET, CLOBBER, PRE_DEC, POST_DEC, PRE_INC or POST_INC
2375 rtx, X, creating all dependencies generated by the write to the
2376 destination of X, and reads of everything mentioned. */
2377
2378 static void
2379 sched_analyze_1 (struct deps_desc *deps, rtx x, rtx insn)
2380 {
2381 rtx dest = XEXP (x, 0);
2382 enum rtx_code code = GET_CODE (x);
2383 bool cslr_p = can_start_lhs_rhs_p;
2384
2385 can_start_lhs_rhs_p = false;
2386
2387 gcc_assert (dest);
2388 if (dest == 0)
2389 return;
2390
2391 if (cslr_p && sched_deps_info->start_lhs)
2392 sched_deps_info->start_lhs (dest);
2393
2394 if (GET_CODE (dest) == PARALLEL)
2395 {
2396 int i;
2397
2398 for (i = XVECLEN (dest, 0) - 1; i >= 0; i--)
2399 if (XEXP (XVECEXP (dest, 0, i), 0) != 0)
2400 sched_analyze_1 (deps,
2401 gen_rtx_CLOBBER (VOIDmode,
2402 XEXP (XVECEXP (dest, 0, i), 0)),
2403 insn);
2404
2405 if (cslr_p && sched_deps_info->finish_lhs)
2406 sched_deps_info->finish_lhs ();
2407
2408 if (code == SET)
2409 {
2410 can_start_lhs_rhs_p = cslr_p;
2411
2412 sched_analyze_2 (deps, SET_SRC (x), insn);
2413
2414 can_start_lhs_rhs_p = false;
2415 }
2416
2417 return;
2418 }
2419
2420 while (GET_CODE (dest) == STRICT_LOW_PART || GET_CODE (dest) == SUBREG
2421 || GET_CODE (dest) == ZERO_EXTRACT)
2422 {
2423 if (GET_CODE (dest) == STRICT_LOW_PART
2424 || GET_CODE (dest) == ZERO_EXTRACT
2425 || df_read_modify_subreg_p (dest))
2426 {
2427 /* These both read and modify the result. We must handle
2428 them as writes to get proper dependencies for following
2429 instructions. We must handle them as reads to get proper
2430 dependencies from this to previous instructions.
2431 Thus we need to call sched_analyze_2. */
2432
2433 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2434 }
2435 if (GET_CODE (dest) == ZERO_EXTRACT)
2436 {
2437 /* The second and third arguments are values read by this insn. */
2438 sched_analyze_2 (deps, XEXP (dest, 1), insn);
2439 sched_analyze_2 (deps, XEXP (dest, 2), insn);
2440 }
2441 dest = XEXP (dest, 0);
2442 }
2443
2444 if (REG_P (dest))
2445 {
2446 int regno = REGNO (dest);
2447 enum machine_mode mode = GET_MODE (dest);
2448
2449 sched_analyze_reg (deps, regno, mode, code, insn);
2450
2451 #ifdef STACK_REGS
2452 /* Treat all writes to a stack register as modifying the TOS. */
2453 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2454 {
2455 /* Avoid analyzing the same register twice. */
2456 if (regno != FIRST_STACK_REG)
2457 sched_analyze_reg (deps, FIRST_STACK_REG, mode, code, insn);
2458
2459 add_to_hard_reg_set (&implicit_reg_pending_uses, mode,
2460 FIRST_STACK_REG);
2461 }
2462 #endif
2463 }
2464 else if (MEM_P (dest))
2465 {
2466 /* Writing memory. */
2467 rtx t = dest;
2468
2469 if (sched_deps_info->use_cselib)
2470 {
2471 enum machine_mode address_mode = get_address_mode (dest);
2472
2473 t = shallow_copy_rtx (dest);
2474 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2475 GET_MODE (t), insn);
2476 XEXP (t, 0)
2477 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2478 insn);
2479 }
2480 t = canon_rtx (t);
2481
2482 /* Pending lists can't get larger with a readonly context. */
2483 if (!deps->readonly
2484 && ((deps->pending_read_list_length + deps->pending_write_list_length)
2485 > MAX_PENDING_LIST_LENGTH))
2486 {
2487 /* Flush all pending reads and writes to prevent the pending lists
2488 from getting any larger. Insn scheduling runs too slowly when
2489 these lists get long. When compiling GCC with itself,
2490 this flush occurs 8 times for sparc, and 10 times for m88k using
2491 the default value of 32. */
2492 flush_pending_lists (deps, insn, false, true);
2493 }
2494 else
2495 {
2496 rtx pending, pending_mem;
2497
2498 pending = deps->pending_read_insns;
2499 pending_mem = deps->pending_read_mems;
2500 while (pending)
2501 {
2502 if (anti_dependence (XEXP (pending_mem, 0), t)
2503 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2504 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2505 DEP_ANTI);
2506
2507 pending = XEXP (pending, 1);
2508 pending_mem = XEXP (pending_mem, 1);
2509 }
2510
2511 pending = deps->pending_write_insns;
2512 pending_mem = deps->pending_write_mems;
2513 while (pending)
2514 {
2515 if (output_dependence (XEXP (pending_mem, 0), t)
2516 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
2517 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2518 DEP_OUTPUT);
2519
2520 pending = XEXP (pending, 1);
2521 pending_mem = XEXP (pending_mem, 1);
2522 }
2523
2524 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
2525 REG_DEP_ANTI, true);
2526 add_dependence_list (insn, deps->pending_jump_insns, 1,
2527 REG_DEP_CONTROL, true);
2528
2529 if (!deps->readonly)
2530 add_insn_mem_dependence (deps, false, insn, dest);
2531 }
2532 sched_analyze_2 (deps, XEXP (dest, 0), insn);
2533 }
2534
2535 if (cslr_p && sched_deps_info->finish_lhs)
2536 sched_deps_info->finish_lhs ();
2537
2538 /* Analyze reads. */
2539 if (GET_CODE (x) == SET)
2540 {
2541 can_start_lhs_rhs_p = cslr_p;
2542
2543 sched_analyze_2 (deps, SET_SRC (x), insn);
2544
2545 can_start_lhs_rhs_p = false;
2546 }
2547 }
2548
2549 /* Analyze the uses of memory and registers in rtx X in INSN. */
2550 static void
2551 sched_analyze_2 (struct deps_desc *deps, rtx x, rtx insn)
2552 {
2553 int i;
2554 int j;
2555 enum rtx_code code;
2556 const char *fmt;
2557 bool cslr_p = can_start_lhs_rhs_p;
2558
2559 can_start_lhs_rhs_p = false;
2560
2561 gcc_assert (x);
2562 if (x == 0)
2563 return;
2564
2565 if (cslr_p && sched_deps_info->start_rhs)
2566 sched_deps_info->start_rhs (x);
2567
2568 code = GET_CODE (x);
2569
2570 switch (code)
2571 {
2572 CASE_CONST_ANY:
2573 case SYMBOL_REF:
2574 case CONST:
2575 case LABEL_REF:
2576 /* Ignore constants. */
2577 if (cslr_p && sched_deps_info->finish_rhs)
2578 sched_deps_info->finish_rhs ();
2579
2580 return;
2581
2582 #ifdef HAVE_cc0
2583 case CC0:
2584 /* User of CC0 depends on immediately preceding insn. */
2585 SCHED_GROUP_P (insn) = 1;
2586 /* Don't move CC0 setter to another block (it can set up the
2587 same flag for previous CC0 users which is safe). */
2588 CANT_MOVE (prev_nonnote_insn (insn)) = 1;
2589
2590 if (cslr_p && sched_deps_info->finish_rhs)
2591 sched_deps_info->finish_rhs ();
2592
2593 return;
2594 #endif
2595
2596 case REG:
2597 {
2598 int regno = REGNO (x);
2599 enum machine_mode mode = GET_MODE (x);
2600
2601 sched_analyze_reg (deps, regno, mode, USE, insn);
2602
2603 #ifdef STACK_REGS
2604 /* Treat all reads of a stack register as modifying the TOS. */
2605 if (regno >= FIRST_STACK_REG && regno <= LAST_STACK_REG)
2606 {
2607 /* Avoid analyzing the same register twice. */
2608 if (regno != FIRST_STACK_REG)
2609 sched_analyze_reg (deps, FIRST_STACK_REG, mode, USE, insn);
2610 sched_analyze_reg (deps, FIRST_STACK_REG, mode, SET, insn);
2611 }
2612 #endif
2613
2614 if (cslr_p && sched_deps_info->finish_rhs)
2615 sched_deps_info->finish_rhs ();
2616
2617 return;
2618 }
2619
2620 case MEM:
2621 {
2622 /* Reading memory. */
2623 rtx u;
2624 rtx pending, pending_mem;
2625 rtx t = x;
2626
2627 if (sched_deps_info->use_cselib)
2628 {
2629 enum machine_mode address_mode = get_address_mode (t);
2630
2631 t = shallow_copy_rtx (t);
2632 cselib_lookup_from_insn (XEXP (t, 0), address_mode, 1,
2633 GET_MODE (t), insn);
2634 XEXP (t, 0)
2635 = cselib_subst_to_values_from_insn (XEXP (t, 0), GET_MODE (t),
2636 insn);
2637 }
2638
2639 if (!DEBUG_INSN_P (insn))
2640 {
2641 t = canon_rtx (t);
2642 pending = deps->pending_read_insns;
2643 pending_mem = deps->pending_read_mems;
2644 while (pending)
2645 {
2646 if (read_dependence (XEXP (pending_mem, 0), t)
2647 && ! sched_insns_conditions_mutex_p (insn,
2648 XEXP (pending, 0)))
2649 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2650 DEP_ANTI);
2651
2652 pending = XEXP (pending, 1);
2653 pending_mem = XEXP (pending_mem, 1);
2654 }
2655
2656 pending = deps->pending_write_insns;
2657 pending_mem = deps->pending_write_mems;
2658 while (pending)
2659 {
2660 if (true_dependence (XEXP (pending_mem, 0), VOIDmode, t)
2661 && ! sched_insns_conditions_mutex_p (insn,
2662 XEXP (pending, 0)))
2663 note_mem_dep (t, XEXP (pending_mem, 0), XEXP (pending, 0),
2664 sched_deps_info->generate_spec_deps
2665 ? BEGIN_DATA | DEP_TRUE : DEP_TRUE);
2666
2667 pending = XEXP (pending, 1);
2668 pending_mem = XEXP (pending_mem, 1);
2669 }
2670
2671 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
2672 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
2673
2674 for (u = deps->pending_jump_insns; u; u = XEXP (u, 1))
2675 if (deps_may_trap_p (x))
2676 {
2677 if ((sched_deps_info->generate_spec_deps)
2678 && sel_sched_p () && (spec_info->mask & BEGIN_CONTROL))
2679 {
2680 ds_t ds = set_dep_weak (DEP_ANTI, BEGIN_CONTROL,
2681 MAX_DEP_WEAK);
2682
2683 note_dep (XEXP (u, 0), ds);
2684 }
2685 else
2686 add_dependence (insn, XEXP (u, 0), REG_DEP_CONTROL);
2687 }
2688 }
2689
2690 /* Always add these dependencies to pending_reads, since
2691 this insn may be followed by a write. */
2692 if (!deps->readonly)
2693 {
2694 if ((deps->pending_read_list_length
2695 + deps->pending_write_list_length)
2696 > MAX_PENDING_LIST_LENGTH
2697 && !DEBUG_INSN_P (insn))
2698 flush_pending_lists (deps, insn, true, true);
2699 add_insn_mem_dependence (deps, true, insn, x);
2700 }
2701
2702 sched_analyze_2 (deps, XEXP (x, 0), insn);
2703
2704 if (cslr_p && sched_deps_info->finish_rhs)
2705 sched_deps_info->finish_rhs ();
2706
2707 return;
2708 }
2709
2710 /* Force pending stores to memory in case a trap handler needs them. */
2711 case TRAP_IF:
2712 flush_pending_lists (deps, insn, true, false);
2713 break;
2714
2715 case PREFETCH:
2716 if (PREFETCH_SCHEDULE_BARRIER_P (x))
2717 reg_pending_barrier = TRUE_BARRIER;
2718 /* Prefetch insn contains addresses only. So if the prefetch
2719 address has no registers, there will be no dependencies on
2720 the prefetch insn. This is wrong with result code
2721 correctness point of view as such prefetch can be moved below
2722 a jump insn which usually generates MOVE_BARRIER preventing
2723 to move insns containing registers or memories through the
2724 barrier. It is also wrong with generated code performance
2725 point of view as prefetch withouth dependecies will have a
2726 tendency to be issued later instead of earlier. It is hard
2727 to generate accurate dependencies for prefetch insns as
2728 prefetch has only the start address but it is better to have
2729 something than nothing. */
2730 if (!deps->readonly)
2731 {
2732 rtx x = gen_rtx_MEM (Pmode, XEXP (PATTERN (insn), 0));
2733 if (sched_deps_info->use_cselib)
2734 cselib_lookup_from_insn (x, Pmode, true, VOIDmode, insn);
2735 add_insn_mem_dependence (deps, true, insn, x);
2736 }
2737 break;
2738
2739 case UNSPEC_VOLATILE:
2740 flush_pending_lists (deps, insn, true, true);
2741 /* FALLTHRU */
2742
2743 case ASM_OPERANDS:
2744 case ASM_INPUT:
2745 {
2746 /* Traditional and volatile asm instructions must be considered to use
2747 and clobber all hard registers, all pseudo-registers and all of
2748 memory. So must TRAP_IF and UNSPEC_VOLATILE operations.
2749
2750 Consider for instance a volatile asm that changes the fpu rounding
2751 mode. An insn should not be moved across this even if it only uses
2752 pseudo-regs because it might give an incorrectly rounded result. */
2753 if ((code != ASM_OPERANDS || MEM_VOLATILE_P (x))
2754 && !DEBUG_INSN_P (insn))
2755 reg_pending_barrier = TRUE_BARRIER;
2756
2757 /* For all ASM_OPERANDS, we must traverse the vector of input operands.
2758 We can not just fall through here since then we would be confused
2759 by the ASM_INPUT rtx inside ASM_OPERANDS, which do not indicate
2760 traditional asms unlike their normal usage. */
2761
2762 if (code == ASM_OPERANDS)
2763 {
2764 for (j = 0; j < ASM_OPERANDS_INPUT_LENGTH (x); j++)
2765 sched_analyze_2 (deps, ASM_OPERANDS_INPUT (x, j), insn);
2766
2767 if (cslr_p && sched_deps_info->finish_rhs)
2768 sched_deps_info->finish_rhs ();
2769
2770 return;
2771 }
2772 break;
2773 }
2774
2775 case PRE_DEC:
2776 case POST_DEC:
2777 case PRE_INC:
2778 case POST_INC:
2779 /* These both read and modify the result. We must handle them as writes
2780 to get proper dependencies for following instructions. We must handle
2781 them as reads to get proper dependencies from this to previous
2782 instructions. Thus we need to pass them to both sched_analyze_1
2783 and sched_analyze_2. We must call sched_analyze_2 first in order
2784 to get the proper antecedent for the read. */
2785 sched_analyze_2 (deps, XEXP (x, 0), insn);
2786 sched_analyze_1 (deps, x, insn);
2787
2788 if (cslr_p && sched_deps_info->finish_rhs)
2789 sched_deps_info->finish_rhs ();
2790
2791 return;
2792
2793 case POST_MODIFY:
2794 case PRE_MODIFY:
2795 /* op0 = op0 + op1 */
2796 sched_analyze_2 (deps, XEXP (x, 0), insn);
2797 sched_analyze_2 (deps, XEXP (x, 1), insn);
2798 sched_analyze_1 (deps, x, insn);
2799
2800 if (cslr_p && sched_deps_info->finish_rhs)
2801 sched_deps_info->finish_rhs ();
2802
2803 return;
2804
2805 default:
2806 break;
2807 }
2808
2809 /* Other cases: walk the insn. */
2810 fmt = GET_RTX_FORMAT (code);
2811 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
2812 {
2813 if (fmt[i] == 'e')
2814 sched_analyze_2 (deps, XEXP (x, i), insn);
2815 else if (fmt[i] == 'E')
2816 for (j = 0; j < XVECLEN (x, i); j++)
2817 sched_analyze_2 (deps, XVECEXP (x, i, j), insn);
2818 }
2819
2820 if (cslr_p && sched_deps_info->finish_rhs)
2821 sched_deps_info->finish_rhs ();
2822 }
2823
2824 /* Try to group two fuseable insns together to prevent scheduler
2825 from scheduling them apart. */
2826
2827 static void
2828 sched_macro_fuse_insns (rtx insn)
2829 {
2830 rtx prev;
2831
2832 if (any_condjump_p (insn))
2833 {
2834 unsigned int condreg1, condreg2;
2835 rtx cc_reg_1;
2836 targetm.fixed_condition_code_regs (&condreg1, &condreg2);
2837 cc_reg_1 = gen_rtx_REG (CCmode, condreg1);
2838 prev = prev_nonnote_nondebug_insn (insn);
2839 if (!reg_referenced_p (cc_reg_1, PATTERN (insn))
2840 || !prev
2841 || !modified_in_p (cc_reg_1, prev))
2842 return;
2843 }
2844 else
2845 {
2846 rtx insn_set = single_set (insn);
2847
2848 prev = prev_nonnote_nondebug_insn (insn);
2849 if (!prev
2850 || !insn_set
2851 || !single_set (prev)
2852 || !modified_in_p (SET_DEST (insn_set), prev))
2853 return;
2854
2855 }
2856
2857 if (targetm.sched.macro_fusion_pair_p (prev, insn))
2858 SCHED_GROUP_P (insn) = 1;
2859
2860 }
2861
2862 /* Analyze an INSN with pattern X to find all dependencies. */
2863 static void
2864 sched_analyze_insn (struct deps_desc *deps, rtx x, rtx insn)
2865 {
2866 RTX_CODE code = GET_CODE (x);
2867 rtx link;
2868 unsigned i;
2869 reg_set_iterator rsi;
2870
2871 if (! reload_completed)
2872 {
2873 HARD_REG_SET temp;
2874
2875 extract_insn (insn);
2876 preprocess_constraints (insn);
2877 ira_implicitly_set_insn_hard_regs (&temp);
2878 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2879 IOR_HARD_REG_SET (implicit_reg_pending_clobbers, temp);
2880 }
2881
2882 can_start_lhs_rhs_p = (NONJUMP_INSN_P (insn)
2883 && code == SET);
2884
2885 /* Group compare and branch insns for macro-fusion. */
2886 if (targetm.sched.macro_fusion_p
2887 && targetm.sched.macro_fusion_p ())
2888 sched_macro_fuse_insns (insn);
2889
2890 if (may_trap_p (x))
2891 /* Avoid moving trapping instructions across function calls that might
2892 not always return. */
2893 add_dependence_list (insn, deps->last_function_call_may_noreturn,
2894 1, REG_DEP_ANTI, true);
2895
2896 /* We must avoid creating a situation in which two successors of the
2897 current block have different unwind info after scheduling. If at any
2898 point the two paths re-join this leads to incorrect unwind info. */
2899 /* ??? There are certain situations involving a forced frame pointer in
2900 which, with extra effort, we could fix up the unwind info at a later
2901 CFG join. However, it seems better to notice these cases earlier
2902 during prologue generation and avoid marking the frame pointer setup
2903 as frame-related at all. */
2904 if (RTX_FRAME_RELATED_P (insn))
2905 {
2906 /* Make sure prologue insn is scheduled before next jump. */
2907 deps->sched_before_next_jump
2908 = alloc_INSN_LIST (insn, deps->sched_before_next_jump);
2909
2910 /* Make sure epilogue insn is scheduled after preceding jumps. */
2911 add_dependence_list (insn, deps->pending_jump_insns, 1, REG_DEP_ANTI,
2912 true);
2913 }
2914
2915 if (code == COND_EXEC)
2916 {
2917 sched_analyze_2 (deps, COND_EXEC_TEST (x), insn);
2918
2919 /* ??? Should be recording conditions so we reduce the number of
2920 false dependencies. */
2921 x = COND_EXEC_CODE (x);
2922 code = GET_CODE (x);
2923 }
2924 if (code == SET || code == CLOBBER)
2925 {
2926 sched_analyze_1 (deps, x, insn);
2927
2928 /* Bare clobber insns are used for letting life analysis, reg-stack
2929 and others know that a value is dead. Depend on the last call
2930 instruction so that reg-stack won't get confused. */
2931 if (code == CLOBBER)
2932 add_dependence_list (insn, deps->last_function_call, 1,
2933 REG_DEP_OUTPUT, true);
2934 }
2935 else if (code == PARALLEL)
2936 {
2937 for (i = XVECLEN (x, 0); i--;)
2938 {
2939 rtx sub = XVECEXP (x, 0, i);
2940 code = GET_CODE (sub);
2941
2942 if (code == COND_EXEC)
2943 {
2944 sched_analyze_2 (deps, COND_EXEC_TEST (sub), insn);
2945 sub = COND_EXEC_CODE (sub);
2946 code = GET_CODE (sub);
2947 }
2948 if (code == SET || code == CLOBBER)
2949 sched_analyze_1 (deps, sub, insn);
2950 else
2951 sched_analyze_2 (deps, sub, insn);
2952 }
2953 }
2954 else
2955 sched_analyze_2 (deps, x, insn);
2956
2957 /* Mark registers CLOBBERED or used by called function. */
2958 if (CALL_P (insn))
2959 {
2960 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
2961 {
2962 if (GET_CODE (XEXP (link, 0)) == CLOBBER)
2963 sched_analyze_1 (deps, XEXP (link, 0), insn);
2964 else if (GET_CODE (XEXP (link, 0)) != SET)
2965 sched_analyze_2 (deps, XEXP (link, 0), insn);
2966 }
2967 /* Don't schedule anything after a tail call, tail call needs
2968 to use at least all call-saved registers. */
2969 if (SIBLING_CALL_P (insn))
2970 reg_pending_barrier = TRUE_BARRIER;
2971 else if (find_reg_note (insn, REG_SETJMP, NULL))
2972 reg_pending_barrier = MOVE_BARRIER;
2973 }
2974
2975 if (JUMP_P (insn))
2976 {
2977 rtx next;
2978 next = next_nonnote_nondebug_insn (insn);
2979 if (next && BARRIER_P (next))
2980 reg_pending_barrier = MOVE_BARRIER;
2981 else
2982 {
2983 rtx pending, pending_mem;
2984
2985 if (sched_deps_info->compute_jump_reg_dependencies)
2986 {
2987 (*sched_deps_info->compute_jump_reg_dependencies)
2988 (insn, reg_pending_control_uses);
2989
2990 /* Make latency of jump equal to 0 by using anti-dependence. */
2991 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
2992 {
2993 struct deps_reg *reg_last = &deps->reg_last[i];
2994 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI,
2995 false);
2996 add_dependence_list (insn, reg_last->implicit_sets,
2997 0, REG_DEP_ANTI, false);
2998 add_dependence_list (insn, reg_last->clobbers, 0,
2999 REG_DEP_ANTI, false);
3000 }
3001 }
3002
3003 /* All memory writes and volatile reads must happen before the
3004 jump. Non-volatile reads must happen before the jump iff
3005 the result is needed by the above register used mask. */
3006
3007 pending = deps->pending_write_insns;
3008 pending_mem = deps->pending_write_mems;
3009 while (pending)
3010 {
3011 if (! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3012 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3013 pending = XEXP (pending, 1);
3014 pending_mem = XEXP (pending_mem, 1);
3015 }
3016
3017 pending = deps->pending_read_insns;
3018 pending_mem = deps->pending_read_mems;
3019 while (pending)
3020 {
3021 if (MEM_VOLATILE_P (XEXP (pending_mem, 0))
3022 && ! sched_insns_conditions_mutex_p (insn, XEXP (pending, 0)))
3023 add_dependence (insn, XEXP (pending, 0), REG_DEP_OUTPUT);
3024 pending = XEXP (pending, 1);
3025 pending_mem = XEXP (pending_mem, 1);
3026 }
3027
3028 add_dependence_list (insn, deps->last_pending_memory_flush, 1,
3029 REG_DEP_ANTI, true);
3030 add_dependence_list (insn, deps->pending_jump_insns, 1,
3031 REG_DEP_ANTI, true);
3032 }
3033 }
3034
3035 /* If this instruction can throw an exception, then moving it changes
3036 where block boundaries fall. This is mighty confusing elsewhere.
3037 Therefore, prevent such an instruction from being moved. Same for
3038 non-jump instructions that define block boundaries.
3039 ??? Unclear whether this is still necessary in EBB mode. If not,
3040 add_branch_dependences should be adjusted for RGN mode instead. */
3041 if (((CALL_P (insn) || JUMP_P (insn)) && can_throw_internal (insn))
3042 || (NONJUMP_INSN_P (insn) && control_flow_insn_p (insn)))
3043 reg_pending_barrier = MOVE_BARRIER;
3044
3045 if (sched_pressure != SCHED_PRESSURE_NONE)
3046 {
3047 setup_insn_reg_uses (deps, insn);
3048 init_insn_reg_pressure_info (insn);
3049 }
3050
3051 /* Add register dependencies for insn. */
3052 if (DEBUG_INSN_P (insn))
3053 {
3054 rtx prev = deps->last_debug_insn;
3055 rtx u;
3056
3057 if (!deps->readonly)
3058 deps->last_debug_insn = insn;
3059
3060 if (prev)
3061 add_dependence (insn, prev, REG_DEP_ANTI);
3062
3063 add_dependence_list (insn, deps->last_function_call, 1,
3064 REG_DEP_ANTI, false);
3065
3066 if (!sel_sched_p ())
3067 for (u = deps->last_pending_memory_flush; u; u = XEXP (u, 1))
3068 add_dependence (insn, XEXP (u, 0), REG_DEP_ANTI);
3069
3070 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3071 {
3072 struct deps_reg *reg_last = &deps->reg_last[i];
3073 add_dependence_list (insn, reg_last->sets, 1, REG_DEP_ANTI, false);
3074 /* There's no point in making REG_DEP_CONTROL dependencies for
3075 debug insns. */
3076 add_dependence_list (insn, reg_last->clobbers, 1, REG_DEP_ANTI,
3077 false);
3078
3079 if (!deps->readonly)
3080 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3081 }
3082 CLEAR_REG_SET (reg_pending_uses);
3083
3084 /* Quite often, a debug insn will refer to stuff in the
3085 previous instruction, but the reason we want this
3086 dependency here is to make sure the scheduler doesn't
3087 gratuitously move a debug insn ahead. This could dirty
3088 DF flags and cause additional analysis that wouldn't have
3089 occurred in compilation without debug insns, and such
3090 additional analysis can modify the generated code. */
3091 prev = PREV_INSN (insn);
3092
3093 if (prev && NONDEBUG_INSN_P (prev))
3094 add_dependence (insn, prev, REG_DEP_ANTI);
3095 }
3096 else
3097 {
3098 regset_head set_or_clobbered;
3099
3100 EXECUTE_IF_SET_IN_REG_SET (reg_pending_uses, 0, i, rsi)
3101 {
3102 struct deps_reg *reg_last = &deps->reg_last[i];
3103 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3104 add_dependence_list (insn, reg_last->implicit_sets, 0, REG_DEP_ANTI,
3105 false);
3106 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3107 false);
3108
3109 if (!deps->readonly)
3110 {
3111 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3112 reg_last->uses_length++;
3113 }
3114 }
3115
3116 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3117 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i))
3118 {
3119 struct deps_reg *reg_last = &deps->reg_last[i];
3120 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_TRUE, false);
3121 add_dependence_list (insn, reg_last->implicit_sets, 0,
3122 REG_DEP_ANTI, false);
3123 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_TRUE,
3124 false);
3125
3126 if (!deps->readonly)
3127 {
3128 reg_last->uses = alloc_INSN_LIST (insn, reg_last->uses);
3129 reg_last->uses_length++;
3130 }
3131 }
3132
3133 if (targetm.sched.exposed_pipeline)
3134 {
3135 INIT_REG_SET (&set_or_clobbered);
3136 bitmap_ior (&set_or_clobbered, reg_pending_clobbers,
3137 reg_pending_sets);
3138 EXECUTE_IF_SET_IN_REG_SET (&set_or_clobbered, 0, i, rsi)
3139 {
3140 struct deps_reg *reg_last = &deps->reg_last[i];
3141 rtx list;
3142 for (list = reg_last->uses; list; list = XEXP (list, 1))
3143 {
3144 rtx other = XEXP (list, 0);
3145 if (INSN_CACHED_COND (other) != const_true_rtx
3146 && refers_to_regno_p (i, i + 1, INSN_CACHED_COND (other), NULL))
3147 INSN_CACHED_COND (other) = const_true_rtx;
3148 }
3149 }
3150 }
3151
3152 /* If the current insn is conditional, we can't free any
3153 of the lists. */
3154 if (sched_has_condition_p (insn))
3155 {
3156 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3157 {
3158 struct deps_reg *reg_last = &deps->reg_last[i];
3159 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3160 false);
3161 add_dependence_list (insn, reg_last->implicit_sets, 0,
3162 REG_DEP_ANTI, false);
3163 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3164 false);
3165 add_dependence_list (insn, reg_last->control_uses, 0,
3166 REG_DEP_CONTROL, false);
3167
3168 if (!deps->readonly)
3169 {
3170 reg_last->clobbers
3171 = alloc_INSN_LIST (insn, reg_last->clobbers);
3172 reg_last->clobbers_length++;
3173 }
3174 }
3175 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3176 {
3177 struct deps_reg *reg_last = &deps->reg_last[i];
3178 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3179 false);
3180 add_dependence_list (insn, reg_last->implicit_sets, 0,
3181 REG_DEP_ANTI, false);
3182 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_OUTPUT,
3183 false);
3184 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3185 false);
3186 add_dependence_list (insn, reg_last->control_uses, 0,
3187 REG_DEP_CONTROL, false);
3188
3189 if (!deps->readonly)
3190 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3191 }
3192 }
3193 else
3194 {
3195 EXECUTE_IF_SET_IN_REG_SET (reg_pending_clobbers, 0, i, rsi)
3196 {
3197 struct deps_reg *reg_last = &deps->reg_last[i];
3198 if (reg_last->uses_length > MAX_PENDING_LIST_LENGTH
3199 || reg_last->clobbers_length > MAX_PENDING_LIST_LENGTH)
3200 {
3201 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3202 REG_DEP_OUTPUT, false);
3203 add_dependence_list_and_free (deps, insn,
3204 &reg_last->implicit_sets, 0,
3205 REG_DEP_ANTI, false);
3206 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3207 REG_DEP_ANTI, false);
3208 add_dependence_list_and_free (deps, insn,
3209 &reg_last->control_uses, 0,
3210 REG_DEP_ANTI, false);
3211 add_dependence_list_and_free (deps, insn,
3212 &reg_last->clobbers, 0,
3213 REG_DEP_OUTPUT, false);
3214
3215 if (!deps->readonly)
3216 {
3217 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3218 reg_last->clobbers_length = 0;
3219 reg_last->uses_length = 0;
3220 }
3221 }
3222 else
3223 {
3224 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_OUTPUT,
3225 false);
3226 add_dependence_list (insn, reg_last->implicit_sets, 0,
3227 REG_DEP_ANTI, false);
3228 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3229 false);
3230 add_dependence_list (insn, reg_last->control_uses, 0,
3231 REG_DEP_CONTROL, false);
3232 }
3233
3234 if (!deps->readonly)
3235 {
3236 reg_last->clobbers_length++;
3237 reg_last->clobbers
3238 = alloc_INSN_LIST (insn, reg_last->clobbers);
3239 }
3240 }
3241 EXECUTE_IF_SET_IN_REG_SET (reg_pending_sets, 0, i, rsi)
3242 {
3243 struct deps_reg *reg_last = &deps->reg_last[i];
3244
3245 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3246 REG_DEP_OUTPUT, false);
3247 add_dependence_list_and_free (deps, insn,
3248 &reg_last->implicit_sets,
3249 0, REG_DEP_ANTI, false);
3250 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3251 REG_DEP_OUTPUT, false);
3252 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3253 REG_DEP_ANTI, false);
3254 add_dependence_list (insn, reg_last->control_uses, 0,
3255 REG_DEP_CONTROL, false);
3256
3257 if (!deps->readonly)
3258 {
3259 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3260 reg_last->uses_length = 0;
3261 reg_last->clobbers_length = 0;
3262 }
3263 }
3264 }
3265 if (!deps->readonly)
3266 {
3267 EXECUTE_IF_SET_IN_REG_SET (reg_pending_control_uses, 0, i, rsi)
3268 {
3269 struct deps_reg *reg_last = &deps->reg_last[i];
3270 reg_last->control_uses
3271 = alloc_INSN_LIST (insn, reg_last->control_uses);
3272 }
3273 }
3274 }
3275
3276 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3277 if (TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3278 {
3279 struct deps_reg *reg_last = &deps->reg_last[i];
3280 add_dependence_list (insn, reg_last->sets, 0, REG_DEP_ANTI, false);
3281 add_dependence_list (insn, reg_last->clobbers, 0, REG_DEP_ANTI, false);
3282 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI, false);
3283 add_dependence_list (insn, reg_last->control_uses, 0, REG_DEP_ANTI,
3284 false);
3285
3286 if (!deps->readonly)
3287 reg_last->implicit_sets
3288 = alloc_INSN_LIST (insn, reg_last->implicit_sets);
3289 }
3290
3291 if (!deps->readonly)
3292 {
3293 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_uses);
3294 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_clobbers);
3295 IOR_REG_SET (&deps->reg_last_in_use, reg_pending_sets);
3296 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3297 if (TEST_HARD_REG_BIT (implicit_reg_pending_uses, i)
3298 || TEST_HARD_REG_BIT (implicit_reg_pending_clobbers, i))
3299 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3300
3301 /* Set up the pending barrier found. */
3302 deps->last_reg_pending_barrier = reg_pending_barrier;
3303 }
3304
3305 CLEAR_REG_SET (reg_pending_uses);
3306 CLEAR_REG_SET (reg_pending_clobbers);
3307 CLEAR_REG_SET (reg_pending_sets);
3308 CLEAR_REG_SET (reg_pending_control_uses);
3309 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
3310 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
3311
3312 /* Add dependencies if a scheduling barrier was found. */
3313 if (reg_pending_barrier)
3314 {
3315 /* In the case of barrier the most added dependencies are not
3316 real, so we use anti-dependence here. */
3317 if (sched_has_condition_p (insn))
3318 {
3319 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3320 {
3321 struct deps_reg *reg_last = &deps->reg_last[i];
3322 add_dependence_list (insn, reg_last->uses, 0, REG_DEP_ANTI,
3323 true);
3324 add_dependence_list (insn, reg_last->sets, 0,
3325 reg_pending_barrier == TRUE_BARRIER
3326 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3327 add_dependence_list (insn, reg_last->implicit_sets, 0,
3328 REG_DEP_ANTI, true);
3329 add_dependence_list (insn, reg_last->clobbers, 0,
3330 reg_pending_barrier == TRUE_BARRIER
3331 ? REG_DEP_TRUE : REG_DEP_ANTI, true);
3332 }
3333 }
3334 else
3335 {
3336 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3337 {
3338 struct deps_reg *reg_last = &deps->reg_last[i];
3339 add_dependence_list_and_free (deps, insn, &reg_last->uses, 0,
3340 REG_DEP_ANTI, true);
3341 add_dependence_list_and_free (deps, insn,
3342 &reg_last->control_uses, 0,
3343 REG_DEP_CONTROL, true);
3344 add_dependence_list_and_free (deps, insn, &reg_last->sets, 0,
3345 reg_pending_barrier == TRUE_BARRIER
3346 ? REG_DEP_TRUE : REG_DEP_ANTI,
3347 true);
3348 add_dependence_list_and_free (deps, insn,
3349 &reg_last->implicit_sets, 0,
3350 REG_DEP_ANTI, true);
3351 add_dependence_list_and_free (deps, insn, &reg_last->clobbers, 0,
3352 reg_pending_barrier == TRUE_BARRIER
3353 ? REG_DEP_TRUE : REG_DEP_ANTI,
3354 true);
3355
3356 if (!deps->readonly)
3357 {
3358 reg_last->uses_length = 0;
3359 reg_last->clobbers_length = 0;
3360 }
3361 }
3362 }
3363
3364 if (!deps->readonly)
3365 for (i = 0; i < (unsigned)deps->max_reg; i++)
3366 {
3367 struct deps_reg *reg_last = &deps->reg_last[i];
3368 reg_last->sets = alloc_INSN_LIST (insn, reg_last->sets);
3369 SET_REGNO_REG_SET (&deps->reg_last_in_use, i);
3370 }
3371
3372 /* Don't flush pending lists on speculative checks for
3373 selective scheduling. */
3374 if (!sel_sched_p () || !sel_insn_is_speculation_check (insn))
3375 flush_pending_lists (deps, insn, true, true);
3376
3377 reg_pending_barrier = NOT_A_BARRIER;
3378 }
3379
3380 /* If a post-call group is still open, see if it should remain so.
3381 This insn must be a simple move of a hard reg to a pseudo or
3382 vice-versa.
3383
3384 We must avoid moving these insns for correctness on targets
3385 with small register classes, and for special registers like
3386 PIC_OFFSET_TABLE_REGNUM. For simplicity, extend this to all
3387 hard regs for all targets. */
3388
3389 if (deps->in_post_call_group_p)
3390 {
3391 rtx tmp, set = single_set (insn);
3392 int src_regno, dest_regno;
3393
3394 if (set == NULL)
3395 {
3396 if (DEBUG_INSN_P (insn))
3397 /* We don't want to mark debug insns as part of the same
3398 sched group. We know they really aren't, but if we use
3399 debug insns to tell that a call group is over, we'll
3400 get different code if debug insns are not there and
3401 instructions that follow seem like they should be part
3402 of the call group.
3403
3404 Also, if we did, chain_to_prev_insn would move the
3405 deps of the debug insn to the call insn, modifying
3406 non-debug post-dependency counts of the debug insn
3407 dependencies and otherwise messing with the scheduling
3408 order.
3409
3410 Instead, let such debug insns be scheduled freely, but
3411 keep the call group open in case there are insns that
3412 should be part of it afterwards. Since we grant debug
3413 insns higher priority than even sched group insns, it
3414 will all turn out all right. */
3415 goto debug_dont_end_call_group;
3416 else
3417 goto end_call_group;
3418 }
3419
3420 tmp = SET_DEST (set);
3421 if (GET_CODE (tmp) == SUBREG)
3422 tmp = SUBREG_REG (tmp);
3423 if (REG_P (tmp))
3424 dest_regno = REGNO (tmp);
3425 else
3426 goto end_call_group;
3427
3428 tmp = SET_SRC (set);
3429 if (GET_CODE (tmp) == SUBREG)
3430 tmp = SUBREG_REG (tmp);
3431 if ((GET_CODE (tmp) == PLUS
3432 || GET_CODE (tmp) == MINUS)
3433 && REG_P (XEXP (tmp, 0))
3434 && REGNO (XEXP (tmp, 0)) == STACK_POINTER_REGNUM
3435 && dest_regno == STACK_POINTER_REGNUM)
3436 src_regno = STACK_POINTER_REGNUM;
3437 else if (REG_P (tmp))
3438 src_regno = REGNO (tmp);
3439 else
3440 goto end_call_group;
3441
3442 if (src_regno < FIRST_PSEUDO_REGISTER
3443 || dest_regno < FIRST_PSEUDO_REGISTER)
3444 {
3445 if (!deps->readonly
3446 && deps->in_post_call_group_p == post_call_initial)
3447 deps->in_post_call_group_p = post_call;
3448
3449 if (!sel_sched_p () || sched_emulate_haifa_p)
3450 {
3451 SCHED_GROUP_P (insn) = 1;
3452 CANT_MOVE (insn) = 1;
3453 }
3454 }
3455 else
3456 {
3457 end_call_group:
3458 if (!deps->readonly)
3459 deps->in_post_call_group_p = not_post_call;
3460 }
3461 }
3462
3463 debug_dont_end_call_group:
3464 if ((current_sched_info->flags & DO_SPECULATION)
3465 && !sched_insn_is_legitimate_for_speculation_p (insn, 0))
3466 /* INSN has an internal dependency (e.g. r14 = [r14]) and thus cannot
3467 be speculated. */
3468 {
3469 if (sel_sched_p ())
3470 sel_mark_hard_insn (insn);
3471 else
3472 {
3473 sd_iterator_def sd_it;
3474 dep_t dep;
3475
3476 for (sd_it = sd_iterator_start (insn, SD_LIST_SPEC_BACK);
3477 sd_iterator_cond (&sd_it, &dep);)
3478 change_spec_dep_to_hard (sd_it);
3479 }
3480 }
3481
3482 /* We do not yet have code to adjust REG_ARGS_SIZE, therefore we must
3483 honor their original ordering. */
3484 if (find_reg_note (insn, REG_ARGS_SIZE, NULL))
3485 {
3486 if (deps->last_args_size)
3487 add_dependence (insn, deps->last_args_size, REG_DEP_OUTPUT);
3488 deps->last_args_size = insn;
3489 }
3490 }
3491
3492 /* Return TRUE if INSN might not always return normally (e.g. call exit,
3493 longjmp, loop forever, ...). */
3494 /* FIXME: Why can't this function just use flags_from_decl_or_type and
3495 test for ECF_NORETURN? */
3496 static bool
3497 call_may_noreturn_p (rtx insn)
3498 {
3499 rtx call;
3500
3501 /* const or pure calls that aren't looping will always return. */
3502 if (RTL_CONST_OR_PURE_CALL_P (insn)
3503 && !RTL_LOOPING_CONST_OR_PURE_CALL_P (insn))
3504 return false;
3505
3506 call = get_call_rtx_from (insn);
3507 if (call && GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
3508 {
3509 rtx symbol = XEXP (XEXP (call, 0), 0);
3510 if (SYMBOL_REF_DECL (symbol)
3511 && TREE_CODE (SYMBOL_REF_DECL (symbol)) == FUNCTION_DECL)
3512 {
3513 if (DECL_BUILT_IN_CLASS (SYMBOL_REF_DECL (symbol))
3514 == BUILT_IN_NORMAL)
3515 switch (DECL_FUNCTION_CODE (SYMBOL_REF_DECL (symbol)))
3516 {
3517 case BUILT_IN_BCMP:
3518 case BUILT_IN_BCOPY:
3519 case BUILT_IN_BZERO:
3520 case BUILT_IN_INDEX:
3521 case BUILT_IN_MEMCHR:
3522 case BUILT_IN_MEMCMP:
3523 case BUILT_IN_MEMCPY:
3524 case BUILT_IN_MEMMOVE:
3525 case BUILT_IN_MEMPCPY:
3526 case BUILT_IN_MEMSET:
3527 case BUILT_IN_RINDEX:
3528 case BUILT_IN_STPCPY:
3529 case BUILT_IN_STPNCPY:
3530 case BUILT_IN_STRCAT:
3531 case BUILT_IN_STRCHR:
3532 case BUILT_IN_STRCMP:
3533 case BUILT_IN_STRCPY:
3534 case BUILT_IN_STRCSPN:
3535 case BUILT_IN_STRLEN:
3536 case BUILT_IN_STRNCAT:
3537 case BUILT_IN_STRNCMP:
3538 case BUILT_IN_STRNCPY:
3539 case BUILT_IN_STRPBRK:
3540 case BUILT_IN_STRRCHR:
3541 case BUILT_IN_STRSPN:
3542 case BUILT_IN_STRSTR:
3543 /* Assume certain string/memory builtins always return. */
3544 return false;
3545 default:
3546 break;
3547 }
3548 }
3549 }
3550
3551 /* For all other calls assume that they might not always return. */
3552 return true;
3553 }
3554
3555 /* Return true if INSN should be made dependent on the previous instruction
3556 group, and if all INSN's dependencies should be moved to the first
3557 instruction of that group. */
3558
3559 static bool
3560 chain_to_prev_insn_p (rtx insn)
3561 {
3562 rtx prev, x;
3563
3564 /* INSN forms a group with the previous instruction. */
3565 if (SCHED_GROUP_P (insn))
3566 return true;
3567
3568 /* If the previous instruction clobbers a register R and this one sets
3569 part of R, the clobber was added specifically to help us track the
3570 liveness of R. There's no point scheduling the clobber and leaving
3571 INSN behind, especially if we move the clobber to another block. */
3572 prev = prev_nonnote_nondebug_insn (insn);
3573 if (prev
3574 && INSN_P (prev)
3575 && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
3576 && GET_CODE (PATTERN (prev)) == CLOBBER)
3577 {
3578 x = XEXP (PATTERN (prev), 0);
3579 if (set_of (x, insn))
3580 return true;
3581 }
3582
3583 return false;
3584 }
3585
3586 /* Analyze INSN with DEPS as a context. */
3587 void
3588 deps_analyze_insn (struct deps_desc *deps, rtx insn)
3589 {
3590 if (sched_deps_info->start_insn)
3591 sched_deps_info->start_insn (insn);
3592
3593 /* Record the condition for this insn. */
3594 if (NONDEBUG_INSN_P (insn))
3595 {
3596 rtx t;
3597 sched_get_condition_with_rev (insn, NULL);
3598 t = INSN_CACHED_COND (insn);
3599 INSN_COND_DEPS (insn) = NULL_RTX;
3600 if (reload_completed
3601 && (current_sched_info->flags & DO_PREDICATION)
3602 && COMPARISON_P (t)
3603 && REG_P (XEXP (t, 0))
3604 && CONSTANT_P (XEXP (t, 1)))
3605 {
3606 unsigned int regno;
3607 int nregs;
3608 t = XEXP (t, 0);
3609 regno = REGNO (t);
3610 nregs = hard_regno_nregs[regno][GET_MODE (t)];
3611 t = NULL_RTX;
3612 while (nregs-- > 0)
3613 {
3614 struct deps_reg *reg_last = &deps->reg_last[regno + nregs];
3615 t = concat_INSN_LIST (reg_last->sets, t);
3616 t = concat_INSN_LIST (reg_last->clobbers, t);
3617 t = concat_INSN_LIST (reg_last->implicit_sets, t);
3618 }
3619 INSN_COND_DEPS (insn) = t;
3620 }
3621 }
3622
3623 if (JUMP_P (insn))
3624 {
3625 /* Make each JUMP_INSN (but not a speculative check)
3626 a scheduling barrier for memory references. */
3627 if (!deps->readonly
3628 && !(sel_sched_p ()
3629 && sel_insn_is_speculation_check (insn)))
3630 {
3631 /* Keep the list a reasonable size. */
3632 if (deps->pending_flush_length++ > MAX_PENDING_LIST_LENGTH)
3633 flush_pending_lists (deps, insn, true, true);
3634 else
3635 deps->pending_jump_insns
3636 = alloc_INSN_LIST (insn, deps->pending_jump_insns);
3637 }
3638
3639 /* For each insn which shouldn't cross a jump, add a dependence. */
3640 add_dependence_list_and_free (deps, insn,
3641 &deps->sched_before_next_jump, 1,
3642 REG_DEP_ANTI, true);
3643
3644 sched_analyze_insn (deps, PATTERN (insn), insn);
3645 }
3646 else if (NONJUMP_INSN_P (insn) || DEBUG_INSN_P (insn))
3647 {
3648 sched_analyze_insn (deps, PATTERN (insn), insn);
3649 }
3650 else if (CALL_P (insn))
3651 {
3652 int i;
3653
3654 CANT_MOVE (insn) = 1;
3655
3656 if (find_reg_note (insn, REG_SETJMP, NULL))
3657 {
3658 /* This is setjmp. Assume that all registers, not just
3659 hard registers, may be clobbered by this call. */
3660 reg_pending_barrier = MOVE_BARRIER;
3661 }
3662 else
3663 {
3664 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3665 /* A call may read and modify global register variables. */
3666 if (global_regs[i])
3667 {
3668 SET_REGNO_REG_SET (reg_pending_sets, i);
3669 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3670 }
3671 /* Other call-clobbered hard regs may be clobbered.
3672 Since we only have a choice between 'might be clobbered'
3673 and 'definitely not clobbered', we must include all
3674 partly call-clobbered registers here. */
3675 else if (HARD_REGNO_CALL_PART_CLOBBERED (i, reg_raw_mode[i])
3676 || TEST_HARD_REG_BIT (regs_invalidated_by_call, i))
3677 SET_REGNO_REG_SET (reg_pending_clobbers, i);
3678 /* We don't know what set of fixed registers might be used
3679 by the function, but it is certain that the stack pointer
3680 is among them, but be conservative. */
3681 else if (fixed_regs[i])
3682 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3683 /* The frame pointer is normally not used by the function
3684 itself, but by the debugger. */
3685 /* ??? MIPS o32 is an exception. It uses the frame pointer
3686 in the macro expansion of jal but does not represent this
3687 fact in the call_insn rtl. */
3688 else if (i == FRAME_POINTER_REGNUM
3689 || (i == HARD_FRAME_POINTER_REGNUM
3690 && (! reload_completed || frame_pointer_needed)))
3691 SET_HARD_REG_BIT (implicit_reg_pending_uses, i);
3692 }
3693
3694 /* For each insn which shouldn't cross a call, add a dependence
3695 between that insn and this call insn. */
3696 add_dependence_list_and_free (deps, insn,
3697 &deps->sched_before_next_call, 1,
3698 REG_DEP_ANTI, true);
3699
3700 sched_analyze_insn (deps, PATTERN (insn), insn);
3701
3702 /* If CALL would be in a sched group, then this will violate
3703 convention that sched group insns have dependencies only on the
3704 previous instruction.
3705
3706 Of course one can say: "Hey! What about head of the sched group?"
3707 And I will answer: "Basic principles (one dep per insn) are always
3708 the same." */
3709 gcc_assert (!SCHED_GROUP_P (insn));
3710
3711 /* In the absence of interprocedural alias analysis, we must flush
3712 all pending reads and writes, and start new dependencies starting
3713 from here. But only flush writes for constant calls (which may
3714 be passed a pointer to something we haven't written yet). */
3715 flush_pending_lists (deps, insn, true, ! RTL_CONST_OR_PURE_CALL_P (insn));
3716
3717 if (!deps->readonly)
3718 {
3719 /* Remember the last function call for limiting lifetimes. */
3720 free_INSN_LIST_list (&deps->last_function_call);
3721 deps->last_function_call = alloc_INSN_LIST (insn, NULL_RTX);
3722
3723 if (call_may_noreturn_p (insn))
3724 {
3725 /* Remember the last function call that might not always return
3726 normally for limiting moves of trapping insns. */
3727 free_INSN_LIST_list (&deps->last_function_call_may_noreturn);
3728 deps->last_function_call_may_noreturn
3729 = alloc_INSN_LIST (insn, NULL_RTX);
3730 }
3731
3732 /* Before reload, begin a post-call group, so as to keep the
3733 lifetimes of hard registers correct. */
3734 if (! reload_completed)
3735 deps->in_post_call_group_p = post_call;
3736 }
3737 }
3738
3739 if (sched_deps_info->use_cselib)
3740 cselib_process_insn (insn);
3741
3742 if (sched_deps_info->finish_insn)
3743 sched_deps_info->finish_insn ();
3744
3745 /* Fixup the dependencies in the sched group. */
3746 if ((NONJUMP_INSN_P (insn) || JUMP_P (insn))
3747 && chain_to_prev_insn_p (insn)
3748 && !sel_sched_p ())
3749 chain_to_prev_insn (insn);
3750 }
3751
3752 /* Initialize DEPS for the new block beginning with HEAD. */
3753 void
3754 deps_start_bb (struct deps_desc *deps, rtx head)
3755 {
3756 gcc_assert (!deps->readonly);
3757
3758 /* Before reload, if the previous block ended in a call, show that
3759 we are inside a post-call group, so as to keep the lifetimes of
3760 hard registers correct. */
3761 if (! reload_completed && !LABEL_P (head))
3762 {
3763 rtx insn = prev_nonnote_nondebug_insn (head);
3764
3765 if (insn && CALL_P (insn))
3766 deps->in_post_call_group_p = post_call_initial;
3767 }
3768 }
3769
3770 /* Analyze every insn between HEAD and TAIL inclusive, creating backward
3771 dependencies for each insn. */
3772 void
3773 sched_analyze (struct deps_desc *deps, rtx head, rtx tail)
3774 {
3775 rtx insn;
3776
3777 if (sched_deps_info->use_cselib)
3778 cselib_init (CSELIB_RECORD_MEMORY);
3779
3780 deps_start_bb (deps, head);
3781
3782 for (insn = head;; insn = NEXT_INSN (insn))
3783 {
3784
3785 if (INSN_P (insn))
3786 {
3787 /* And initialize deps_lists. */
3788 sd_init_insn (insn);
3789 /* Clean up SCHED_GROUP_P which may be set by last
3790 scheduler pass. */
3791 if (SCHED_GROUP_P (insn))
3792 SCHED_GROUP_P (insn) = 0;
3793 }
3794
3795 deps_analyze_insn (deps, insn);
3796
3797 if (insn == tail)
3798 {
3799 if (sched_deps_info->use_cselib)
3800 cselib_finish ();
3801 return;
3802 }
3803 }
3804 gcc_unreachable ();
3805 }
3806
3807 /* Helper for sched_free_deps ().
3808 Delete INSN's (RESOLVED_P) backward dependencies. */
3809 static void
3810 delete_dep_nodes_in_back_deps (rtx insn, bool resolved_p)
3811 {
3812 sd_iterator_def sd_it;
3813 dep_t dep;
3814 sd_list_types_def types;
3815
3816 if (resolved_p)
3817 types = SD_LIST_RES_BACK;
3818 else
3819 types = SD_LIST_BACK;
3820
3821 for (sd_it = sd_iterator_start (insn, types);
3822 sd_iterator_cond (&sd_it, &dep);)
3823 {
3824 dep_link_t link = *sd_it.linkp;
3825 dep_node_t node = DEP_LINK_NODE (link);
3826 deps_list_t back_list;
3827 deps_list_t forw_list;
3828
3829 get_back_and_forw_lists (dep, resolved_p, &back_list, &forw_list);
3830 remove_from_deps_list (link, back_list);
3831 delete_dep_node (node);
3832 }
3833 }
3834
3835 /* Delete (RESOLVED_P) dependencies between HEAD and TAIL together with
3836 deps_lists. */
3837 void
3838 sched_free_deps (rtx head, rtx tail, bool resolved_p)
3839 {
3840 rtx insn;
3841 rtx next_tail = NEXT_INSN (tail);
3842
3843 /* We make two passes since some insns may be scheduled before their
3844 dependencies are resolved. */
3845 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3846 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3847 {
3848 /* Clear forward deps and leave the dep_nodes to the
3849 corresponding back_deps list. */
3850 if (resolved_p)
3851 clear_deps_list (INSN_RESOLVED_FORW_DEPS (insn));
3852 else
3853 clear_deps_list (INSN_FORW_DEPS (insn));
3854 }
3855 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
3856 if (INSN_P (insn) && INSN_LUID (insn) > 0)
3857 {
3858 /* Clear resolved back deps together with its dep_nodes. */
3859 delete_dep_nodes_in_back_deps (insn, resolved_p);
3860
3861 sd_finish_insn (insn);
3862 }
3863 }
3864 \f
3865 /* Initialize variables for region data dependence analysis.
3866 When LAZY_REG_LAST is true, do not allocate reg_last array
3867 of struct deps_desc immediately. */
3868
3869 void
3870 init_deps (struct deps_desc *deps, bool lazy_reg_last)
3871 {
3872 int max_reg = (reload_completed ? FIRST_PSEUDO_REGISTER : max_reg_num ());
3873
3874 deps->max_reg = max_reg;
3875 if (lazy_reg_last)
3876 deps->reg_last = NULL;
3877 else
3878 deps->reg_last = XCNEWVEC (struct deps_reg, max_reg);
3879 INIT_REG_SET (&deps->reg_last_in_use);
3880
3881 deps->pending_read_insns = 0;
3882 deps->pending_read_mems = 0;
3883 deps->pending_write_insns = 0;
3884 deps->pending_write_mems = 0;
3885 deps->pending_jump_insns = 0;
3886 deps->pending_read_list_length = 0;
3887 deps->pending_write_list_length = 0;
3888 deps->pending_flush_length = 0;
3889 deps->last_pending_memory_flush = 0;
3890 deps->last_function_call = 0;
3891 deps->last_function_call_may_noreturn = 0;
3892 deps->sched_before_next_call = 0;
3893 deps->sched_before_next_jump = 0;
3894 deps->in_post_call_group_p = not_post_call;
3895 deps->last_debug_insn = 0;
3896 deps->last_args_size = 0;
3897 deps->last_reg_pending_barrier = NOT_A_BARRIER;
3898 deps->readonly = 0;
3899 }
3900
3901 /* Init only reg_last field of DEPS, which was not allocated before as
3902 we inited DEPS lazily. */
3903 void
3904 init_deps_reg_last (struct deps_desc *deps)
3905 {
3906 gcc_assert (deps && deps->max_reg > 0);
3907 gcc_assert (deps->reg_last == NULL);
3908
3909 deps->reg_last = XCNEWVEC (struct deps_reg, deps->max_reg);
3910 }
3911
3912
3913 /* Free insn lists found in DEPS. */
3914
3915 void
3916 free_deps (struct deps_desc *deps)
3917 {
3918 unsigned i;
3919 reg_set_iterator rsi;
3920
3921 /* We set max_reg to 0 when this context was already freed. */
3922 if (deps->max_reg == 0)
3923 {
3924 gcc_assert (deps->reg_last == NULL);
3925 return;
3926 }
3927 deps->max_reg = 0;
3928
3929 free_INSN_LIST_list (&deps->pending_read_insns);
3930 free_EXPR_LIST_list (&deps->pending_read_mems);
3931 free_INSN_LIST_list (&deps->pending_write_insns);
3932 free_EXPR_LIST_list (&deps->pending_write_mems);
3933 free_INSN_LIST_list (&deps->last_pending_memory_flush);
3934
3935 /* Without the EXECUTE_IF_SET, this loop is executed max_reg * nr_regions
3936 times. For a testcase with 42000 regs and 8000 small basic blocks,
3937 this loop accounted for nearly 60% (84 sec) of the total -O2 runtime. */
3938 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3939 {
3940 struct deps_reg *reg_last = &deps->reg_last[i];
3941 if (reg_last->uses)
3942 free_INSN_LIST_list (&reg_last->uses);
3943 if (reg_last->sets)
3944 free_INSN_LIST_list (&reg_last->sets);
3945 if (reg_last->implicit_sets)
3946 free_INSN_LIST_list (&reg_last->implicit_sets);
3947 if (reg_last->control_uses)
3948 free_INSN_LIST_list (&reg_last->control_uses);
3949 if (reg_last->clobbers)
3950 free_INSN_LIST_list (&reg_last->clobbers);
3951 }
3952 CLEAR_REG_SET (&deps->reg_last_in_use);
3953
3954 /* As we initialize reg_last lazily, it is possible that we didn't allocate
3955 it at all. */
3956 free (deps->reg_last);
3957 deps->reg_last = NULL;
3958
3959 deps = NULL;
3960 }
3961
3962 /* Remove INSN from dependence contexts DEPS. */
3963 void
3964 remove_from_deps (struct deps_desc *deps, rtx insn)
3965 {
3966 int removed;
3967 unsigned i;
3968 reg_set_iterator rsi;
3969
3970 removed = remove_from_both_dependence_lists (insn, &deps->pending_read_insns,
3971 &deps->pending_read_mems);
3972 if (!DEBUG_INSN_P (insn))
3973 deps->pending_read_list_length -= removed;
3974 removed = remove_from_both_dependence_lists (insn, &deps->pending_write_insns,
3975 &deps->pending_write_mems);
3976 deps->pending_write_list_length -= removed;
3977
3978 removed = remove_from_dependence_list (insn, &deps->pending_jump_insns);
3979 deps->pending_flush_length -= removed;
3980 removed = remove_from_dependence_list (insn, &deps->last_pending_memory_flush);
3981 deps->pending_flush_length -= removed;
3982
3983 EXECUTE_IF_SET_IN_REG_SET (&deps->reg_last_in_use, 0, i, rsi)
3984 {
3985 struct deps_reg *reg_last = &deps->reg_last[i];
3986 if (reg_last->uses)
3987 remove_from_dependence_list (insn, &reg_last->uses);
3988 if (reg_last->sets)
3989 remove_from_dependence_list (insn, &reg_last->sets);
3990 if (reg_last->implicit_sets)
3991 remove_from_dependence_list (insn, &reg_last->implicit_sets);
3992 if (reg_last->clobbers)
3993 remove_from_dependence_list (insn, &reg_last->clobbers);
3994 if (!reg_last->uses && !reg_last->sets && !reg_last->implicit_sets
3995 && !reg_last->clobbers)
3996 CLEAR_REGNO_REG_SET (&deps->reg_last_in_use, i);
3997 }
3998
3999 if (CALL_P (insn))
4000 {
4001 remove_from_dependence_list (insn, &deps->last_function_call);
4002 remove_from_dependence_list (insn,
4003 &deps->last_function_call_may_noreturn);
4004 }
4005 remove_from_dependence_list (insn, &deps->sched_before_next_call);
4006 }
4007
4008 /* Init deps data vector. */
4009 static void
4010 init_deps_data_vector (void)
4011 {
4012 int reserve = (sched_max_luid + 1 - h_d_i_d.length ());
4013 if (reserve > 0 && ! h_d_i_d.space (reserve))
4014 h_d_i_d.safe_grow_cleared (3 * sched_max_luid / 2);
4015 }
4016
4017 /* If it is profitable to use them, initialize or extend (depending on
4018 GLOBAL_P) dependency data. */
4019 void
4020 sched_deps_init (bool global_p)
4021 {
4022 /* Average number of insns in the basic block.
4023 '+ 1' is used to make it nonzero. */
4024 int insns_in_block = sched_max_luid / n_basic_blocks_for_fn (cfun) + 1;
4025
4026 init_deps_data_vector ();
4027
4028 /* We use another caching mechanism for selective scheduling, so
4029 we don't use this one. */
4030 if (!sel_sched_p () && global_p && insns_in_block > 100 * 5)
4031 {
4032 /* ?!? We could save some memory by computing a per-region luid mapping
4033 which could reduce both the number of vectors in the cache and the
4034 size of each vector. Instead we just avoid the cache entirely unless
4035 the average number of instructions in a basic block is very high. See
4036 the comment before the declaration of true_dependency_cache for
4037 what we consider "very high". */
4038 cache_size = 0;
4039 extend_dependency_caches (sched_max_luid, true);
4040 }
4041
4042 if (global_p)
4043 {
4044 dl_pool = create_alloc_pool ("deps_list", sizeof (struct _deps_list),
4045 /* Allocate lists for one block at a time. */
4046 insns_in_block);
4047 dn_pool = create_alloc_pool ("dep_node", sizeof (struct _dep_node),
4048 /* Allocate nodes for one block at a time.
4049 We assume that average insn has
4050 5 producers. */
4051 5 * insns_in_block);
4052 }
4053 }
4054
4055
4056 /* Create or extend (depending on CREATE_P) dependency caches to
4057 size N. */
4058 void
4059 extend_dependency_caches (int n, bool create_p)
4060 {
4061 if (create_p || true_dependency_cache)
4062 {
4063 int i, luid = cache_size + n;
4064
4065 true_dependency_cache = XRESIZEVEC (bitmap_head, true_dependency_cache,
4066 luid);
4067 output_dependency_cache = XRESIZEVEC (bitmap_head,
4068 output_dependency_cache, luid);
4069 anti_dependency_cache = XRESIZEVEC (bitmap_head, anti_dependency_cache,
4070 luid);
4071 control_dependency_cache = XRESIZEVEC (bitmap_head, control_dependency_cache,
4072 luid);
4073
4074 if (current_sched_info->flags & DO_SPECULATION)
4075 spec_dependency_cache = XRESIZEVEC (bitmap_head, spec_dependency_cache,
4076 luid);
4077
4078 for (i = cache_size; i < luid; i++)
4079 {
4080 bitmap_initialize (&true_dependency_cache[i], 0);
4081 bitmap_initialize (&output_dependency_cache[i], 0);
4082 bitmap_initialize (&anti_dependency_cache[i], 0);
4083 bitmap_initialize (&control_dependency_cache[i], 0);
4084
4085 if (current_sched_info->flags & DO_SPECULATION)
4086 bitmap_initialize (&spec_dependency_cache[i], 0);
4087 }
4088 cache_size = luid;
4089 }
4090 }
4091
4092 /* Finalize dependency information for the whole function. */
4093 void
4094 sched_deps_finish (void)
4095 {
4096 gcc_assert (deps_pools_are_empty_p ());
4097 free_alloc_pool_if_empty (&dn_pool);
4098 free_alloc_pool_if_empty (&dl_pool);
4099 gcc_assert (dn_pool == NULL && dl_pool == NULL);
4100
4101 h_d_i_d.release ();
4102 cache_size = 0;
4103
4104 if (true_dependency_cache)
4105 {
4106 int i;
4107
4108 for (i = 0; i < cache_size; i++)
4109 {
4110 bitmap_clear (&true_dependency_cache[i]);
4111 bitmap_clear (&output_dependency_cache[i]);
4112 bitmap_clear (&anti_dependency_cache[i]);
4113 bitmap_clear (&control_dependency_cache[i]);
4114
4115 if (sched_deps_info->generate_spec_deps)
4116 bitmap_clear (&spec_dependency_cache[i]);
4117 }
4118 free (true_dependency_cache);
4119 true_dependency_cache = NULL;
4120 free (output_dependency_cache);
4121 output_dependency_cache = NULL;
4122 free (anti_dependency_cache);
4123 anti_dependency_cache = NULL;
4124 free (control_dependency_cache);
4125 control_dependency_cache = NULL;
4126
4127 if (sched_deps_info->generate_spec_deps)
4128 {
4129 free (spec_dependency_cache);
4130 spec_dependency_cache = NULL;
4131 }
4132
4133 }
4134 }
4135
4136 /* Initialize some global variables needed by the dependency analysis
4137 code. */
4138
4139 void
4140 init_deps_global (void)
4141 {
4142 CLEAR_HARD_REG_SET (implicit_reg_pending_clobbers);
4143 CLEAR_HARD_REG_SET (implicit_reg_pending_uses);
4144 reg_pending_sets = ALLOC_REG_SET (&reg_obstack);
4145 reg_pending_clobbers = ALLOC_REG_SET (&reg_obstack);
4146 reg_pending_uses = ALLOC_REG_SET (&reg_obstack);
4147 reg_pending_control_uses = ALLOC_REG_SET (&reg_obstack);
4148 reg_pending_barrier = NOT_A_BARRIER;
4149
4150 if (!sel_sched_p () || sched_emulate_haifa_p)
4151 {
4152 sched_deps_info->start_insn = haifa_start_insn;
4153 sched_deps_info->finish_insn = haifa_finish_insn;
4154
4155 sched_deps_info->note_reg_set = haifa_note_reg_set;
4156 sched_deps_info->note_reg_clobber = haifa_note_reg_clobber;
4157 sched_deps_info->note_reg_use = haifa_note_reg_use;
4158
4159 sched_deps_info->note_mem_dep = haifa_note_mem_dep;
4160 sched_deps_info->note_dep = haifa_note_dep;
4161 }
4162 }
4163
4164 /* Free everything used by the dependency analysis code. */
4165
4166 void
4167 finish_deps_global (void)
4168 {
4169 FREE_REG_SET (reg_pending_sets);
4170 FREE_REG_SET (reg_pending_clobbers);
4171 FREE_REG_SET (reg_pending_uses);
4172 FREE_REG_SET (reg_pending_control_uses);
4173 }
4174
4175 /* Estimate the weakness of dependence between MEM1 and MEM2. */
4176 dw_t
4177 estimate_dep_weak (rtx mem1, rtx mem2)
4178 {
4179 rtx r1, r2;
4180
4181 if (mem1 == mem2)
4182 /* MEMs are the same - don't speculate. */
4183 return MIN_DEP_WEAK;
4184
4185 r1 = XEXP (mem1, 0);
4186 r2 = XEXP (mem2, 0);
4187
4188 if (r1 == r2
4189 || (REG_P (r1) && REG_P (r2)
4190 && REGNO (r1) == REGNO (r2)))
4191 /* Again, MEMs are the same. */
4192 return MIN_DEP_WEAK;
4193 else if ((REG_P (r1) && !REG_P (r2))
4194 || (!REG_P (r1) && REG_P (r2)))
4195 /* Different addressing modes - reason to be more speculative,
4196 than usual. */
4197 return NO_DEP_WEAK - (NO_DEP_WEAK - UNCERTAIN_DEP_WEAK) / 2;
4198 else
4199 /* We can't say anything about the dependence. */
4200 return UNCERTAIN_DEP_WEAK;
4201 }
4202
4203 /* Add or update backward dependence between INSN and ELEM with type DEP_TYPE.
4204 This function can handle same INSN and ELEM (INSN == ELEM).
4205 It is a convenience wrapper. */
4206 static void
4207 add_dependence_1 (rtx insn, rtx elem, enum reg_note dep_type)
4208 {
4209 ds_t ds;
4210 bool internal;
4211
4212 if (dep_type == REG_DEP_TRUE)
4213 ds = DEP_TRUE;
4214 else if (dep_type == REG_DEP_OUTPUT)
4215 ds = DEP_OUTPUT;
4216 else if (dep_type == REG_DEP_CONTROL)
4217 ds = DEP_CONTROL;
4218 else
4219 {
4220 gcc_assert (dep_type == REG_DEP_ANTI);
4221 ds = DEP_ANTI;
4222 }
4223
4224 /* When add_dependence is called from inside sched-deps.c, we expect
4225 cur_insn to be non-null. */
4226 internal = cur_insn != NULL;
4227 if (internal)
4228 gcc_assert (insn == cur_insn);
4229 else
4230 cur_insn = insn;
4231
4232 note_dep (elem, ds);
4233 if (!internal)
4234 cur_insn = NULL;
4235 }
4236
4237 /* Return weakness of speculative type TYPE in the dep_status DS,
4238 without checking to prevent ICEs on malformed input. */
4239 static dw_t
4240 get_dep_weak_1 (ds_t ds, ds_t type)
4241 {
4242 ds = ds & type;
4243
4244 switch (type)
4245 {
4246 case BEGIN_DATA: ds >>= BEGIN_DATA_BITS_OFFSET; break;
4247 case BE_IN_DATA: ds >>= BE_IN_DATA_BITS_OFFSET; break;
4248 case BEGIN_CONTROL: ds >>= BEGIN_CONTROL_BITS_OFFSET; break;
4249 case BE_IN_CONTROL: ds >>= BE_IN_CONTROL_BITS_OFFSET; break;
4250 default: gcc_unreachable ();
4251 }
4252
4253 return (dw_t) ds;
4254 }
4255
4256 /* Return weakness of speculative type TYPE in the dep_status DS. */
4257 dw_t
4258 get_dep_weak (ds_t ds, ds_t type)
4259 {
4260 dw_t dw = get_dep_weak_1 (ds, type);
4261
4262 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4263 return dw;
4264 }
4265
4266 /* Return the dep_status, which has the same parameters as DS, except for
4267 speculative type TYPE, that will have weakness DW. */
4268 ds_t
4269 set_dep_weak (ds_t ds, ds_t type, dw_t dw)
4270 {
4271 gcc_assert (MIN_DEP_WEAK <= dw && dw <= MAX_DEP_WEAK);
4272
4273 ds &= ~type;
4274 switch (type)
4275 {
4276 case BEGIN_DATA: ds |= ((ds_t) dw) << BEGIN_DATA_BITS_OFFSET; break;
4277 case BE_IN_DATA: ds |= ((ds_t) dw) << BE_IN_DATA_BITS_OFFSET; break;
4278 case BEGIN_CONTROL: ds |= ((ds_t) dw) << BEGIN_CONTROL_BITS_OFFSET; break;
4279 case BE_IN_CONTROL: ds |= ((ds_t) dw) << BE_IN_CONTROL_BITS_OFFSET; break;
4280 default: gcc_unreachable ();
4281 }
4282 return ds;
4283 }
4284
4285 /* Return the join of two dep_statuses DS1 and DS2.
4286 If MAX_P is true then choose the greater probability,
4287 otherwise multiply probabilities.
4288 This function assumes that both DS1 and DS2 contain speculative bits. */
4289 static ds_t
4290 ds_merge_1 (ds_t ds1, ds_t ds2, bool max_p)
4291 {
4292 ds_t ds, t;
4293
4294 gcc_assert ((ds1 & SPECULATIVE) && (ds2 & SPECULATIVE));
4295
4296 ds = (ds1 & DEP_TYPES) | (ds2 & DEP_TYPES);
4297
4298 t = FIRST_SPEC_TYPE;
4299 do
4300 {
4301 if ((ds1 & t) && !(ds2 & t))
4302 ds |= ds1 & t;
4303 else if (!(ds1 & t) && (ds2 & t))
4304 ds |= ds2 & t;
4305 else if ((ds1 & t) && (ds2 & t))
4306 {
4307 dw_t dw1 = get_dep_weak (ds1, t);
4308 dw_t dw2 = get_dep_weak (ds2, t);
4309 ds_t dw;
4310
4311 if (!max_p)
4312 {
4313 dw = ((ds_t) dw1) * ((ds_t) dw2);
4314 dw /= MAX_DEP_WEAK;
4315 if (dw < MIN_DEP_WEAK)
4316 dw = MIN_DEP_WEAK;
4317 }
4318 else
4319 {
4320 if (dw1 >= dw2)
4321 dw = dw1;
4322 else
4323 dw = dw2;
4324 }
4325
4326 ds = set_dep_weak (ds, t, (dw_t) dw);
4327 }
4328
4329 if (t == LAST_SPEC_TYPE)
4330 break;
4331 t <<= SPEC_TYPE_SHIFT;
4332 }
4333 while (1);
4334
4335 return ds;
4336 }
4337
4338 /* Return the join of two dep_statuses DS1 and DS2.
4339 This function assumes that both DS1 and DS2 contain speculative bits. */
4340 ds_t
4341 ds_merge (ds_t ds1, ds_t ds2)
4342 {
4343 return ds_merge_1 (ds1, ds2, false);
4344 }
4345
4346 /* Return the join of two dep_statuses DS1 and DS2. */
4347 ds_t
4348 ds_full_merge (ds_t ds, ds_t ds2, rtx mem1, rtx mem2)
4349 {
4350 ds_t new_status = ds | ds2;
4351
4352 if (new_status & SPECULATIVE)
4353 {
4354 if ((ds && !(ds & SPECULATIVE))
4355 || (ds2 && !(ds2 & SPECULATIVE)))
4356 /* Then this dep can't be speculative. */
4357 new_status &= ~SPECULATIVE;
4358 else
4359 {
4360 /* Both are speculative. Merging probabilities. */
4361 if (mem1)
4362 {
4363 dw_t dw;
4364
4365 dw = estimate_dep_weak (mem1, mem2);
4366 ds = set_dep_weak (ds, BEGIN_DATA, dw);
4367 }
4368
4369 if (!ds)
4370 new_status = ds2;
4371 else if (!ds2)
4372 new_status = ds;
4373 else
4374 new_status = ds_merge (ds2, ds);
4375 }
4376 }
4377
4378 return new_status;
4379 }
4380
4381 /* Return the join of DS1 and DS2. Use maximum instead of multiplying
4382 probabilities. */
4383 ds_t
4384 ds_max_merge (ds_t ds1, ds_t ds2)
4385 {
4386 if (ds1 == 0 && ds2 == 0)
4387 return 0;
4388
4389 if (ds1 == 0 && ds2 != 0)
4390 return ds2;
4391
4392 if (ds1 != 0 && ds2 == 0)
4393 return ds1;
4394
4395 return ds_merge_1 (ds1, ds2, true);
4396 }
4397
4398 /* Return the probability of speculation success for the speculation
4399 status DS. */
4400 dw_t
4401 ds_weak (ds_t ds)
4402 {
4403 ds_t res = 1, dt;
4404 int n = 0;
4405
4406 dt = FIRST_SPEC_TYPE;
4407 do
4408 {
4409 if (ds & dt)
4410 {
4411 res *= (ds_t) get_dep_weak (ds, dt);
4412 n++;
4413 }
4414
4415 if (dt == LAST_SPEC_TYPE)
4416 break;
4417 dt <<= SPEC_TYPE_SHIFT;
4418 }
4419 while (1);
4420
4421 gcc_assert (n);
4422 while (--n)
4423 res /= MAX_DEP_WEAK;
4424
4425 if (res < MIN_DEP_WEAK)
4426 res = MIN_DEP_WEAK;
4427
4428 gcc_assert (res <= MAX_DEP_WEAK);
4429
4430 return (dw_t) res;
4431 }
4432
4433 /* Return a dep status that contains all speculation types of DS. */
4434 ds_t
4435 ds_get_speculation_types (ds_t ds)
4436 {
4437 if (ds & BEGIN_DATA)
4438 ds |= BEGIN_DATA;
4439 if (ds & BE_IN_DATA)
4440 ds |= BE_IN_DATA;
4441 if (ds & BEGIN_CONTROL)
4442 ds |= BEGIN_CONTROL;
4443 if (ds & BE_IN_CONTROL)
4444 ds |= BE_IN_CONTROL;
4445
4446 return ds & SPECULATIVE;
4447 }
4448
4449 /* Return a dep status that contains maximal weakness for each speculation
4450 type present in DS. */
4451 ds_t
4452 ds_get_max_dep_weak (ds_t ds)
4453 {
4454 if (ds & BEGIN_DATA)
4455 ds = set_dep_weak (ds, BEGIN_DATA, MAX_DEP_WEAK);
4456 if (ds & BE_IN_DATA)
4457 ds = set_dep_weak (ds, BE_IN_DATA, MAX_DEP_WEAK);
4458 if (ds & BEGIN_CONTROL)
4459 ds = set_dep_weak (ds, BEGIN_CONTROL, MAX_DEP_WEAK);
4460 if (ds & BE_IN_CONTROL)
4461 ds = set_dep_weak (ds, BE_IN_CONTROL, MAX_DEP_WEAK);
4462
4463 return ds;
4464 }
4465
4466 /* Dump information about the dependence status S. */
4467 static void
4468 dump_ds (FILE *f, ds_t s)
4469 {
4470 fprintf (f, "{");
4471
4472 if (s & BEGIN_DATA)
4473 fprintf (f, "BEGIN_DATA: %d; ", get_dep_weak_1 (s, BEGIN_DATA));
4474 if (s & BE_IN_DATA)
4475 fprintf (f, "BE_IN_DATA: %d; ", get_dep_weak_1 (s, BE_IN_DATA));
4476 if (s & BEGIN_CONTROL)
4477 fprintf (f, "BEGIN_CONTROL: %d; ", get_dep_weak_1 (s, BEGIN_CONTROL));
4478 if (s & BE_IN_CONTROL)
4479 fprintf (f, "BE_IN_CONTROL: %d; ", get_dep_weak_1 (s, BE_IN_CONTROL));
4480
4481 if (s & HARD_DEP)
4482 fprintf (f, "HARD_DEP; ");
4483
4484 if (s & DEP_TRUE)
4485 fprintf (f, "DEP_TRUE; ");
4486 if (s & DEP_OUTPUT)
4487 fprintf (f, "DEP_OUTPUT; ");
4488 if (s & DEP_ANTI)
4489 fprintf (f, "DEP_ANTI; ");
4490 if (s & DEP_CONTROL)
4491 fprintf (f, "DEP_CONTROL; ");
4492
4493 fprintf (f, "}");
4494 }
4495
4496 DEBUG_FUNCTION void
4497 debug_ds (ds_t s)
4498 {
4499 dump_ds (stderr, s);
4500 fprintf (stderr, "\n");
4501 }
4502
4503 #ifdef ENABLE_CHECKING
4504 /* Verify that dependence type and status are consistent.
4505 If RELAXED_P is true, then skip dep_weakness checks. */
4506 static void
4507 check_dep (dep_t dep, bool relaxed_p)
4508 {
4509 enum reg_note dt = DEP_TYPE (dep);
4510 ds_t ds = DEP_STATUS (dep);
4511
4512 gcc_assert (DEP_PRO (dep) != DEP_CON (dep));
4513
4514 if (!(current_sched_info->flags & USE_DEPS_LIST))
4515 {
4516 gcc_assert (ds == 0);
4517 return;
4518 }
4519
4520 /* Check that dependence type contains the same bits as the status. */
4521 if (dt == REG_DEP_TRUE)
4522 gcc_assert (ds & DEP_TRUE);
4523 else if (dt == REG_DEP_OUTPUT)
4524 gcc_assert ((ds & DEP_OUTPUT)
4525 && !(ds & DEP_TRUE));
4526 else if (dt == REG_DEP_ANTI)
4527 gcc_assert ((ds & DEP_ANTI)
4528 && !(ds & (DEP_OUTPUT | DEP_TRUE)));
4529 else
4530 gcc_assert (dt == REG_DEP_CONTROL
4531 && (ds & DEP_CONTROL)
4532 && !(ds & (DEP_OUTPUT | DEP_ANTI | DEP_TRUE)));
4533
4534 /* HARD_DEP can not appear in dep_status of a link. */
4535 gcc_assert (!(ds & HARD_DEP));
4536
4537 /* Check that dependence status is set correctly when speculation is not
4538 supported. */
4539 if (!sched_deps_info->generate_spec_deps)
4540 gcc_assert (!(ds & SPECULATIVE));
4541 else if (ds & SPECULATIVE)
4542 {
4543 if (!relaxed_p)
4544 {
4545 ds_t type = FIRST_SPEC_TYPE;
4546
4547 /* Check that dependence weakness is in proper range. */
4548 do
4549 {
4550 if (ds & type)
4551 get_dep_weak (ds, type);
4552
4553 if (type == LAST_SPEC_TYPE)
4554 break;
4555 type <<= SPEC_TYPE_SHIFT;
4556 }
4557 while (1);
4558 }
4559
4560 if (ds & BEGIN_SPEC)
4561 {
4562 /* Only true dependence can be data speculative. */
4563 if (ds & BEGIN_DATA)
4564 gcc_assert (ds & DEP_TRUE);
4565
4566 /* Control dependencies in the insn scheduler are represented by
4567 anti-dependencies, therefore only anti dependence can be
4568 control speculative. */
4569 if (ds & BEGIN_CONTROL)
4570 gcc_assert (ds & DEP_ANTI);
4571 }
4572 else
4573 {
4574 /* Subsequent speculations should resolve true dependencies. */
4575 gcc_assert ((ds & DEP_TYPES) == DEP_TRUE);
4576 }
4577
4578 /* Check that true and anti dependencies can't have other speculative
4579 statuses. */
4580 if (ds & DEP_TRUE)
4581 gcc_assert (ds & (BEGIN_DATA | BE_IN_SPEC));
4582 /* An output dependence can't be speculative at all. */
4583 gcc_assert (!(ds & DEP_OUTPUT));
4584 if (ds & DEP_ANTI)
4585 gcc_assert (ds & BEGIN_CONTROL);
4586 }
4587 }
4588 #endif /* ENABLE_CHECKING */
4589
4590 /* The following code discovers opportunities to switch a memory reference
4591 and an increment by modifying the address. We ensure that this is done
4592 only for dependencies that are only used to show a single register
4593 dependence (using DEP_NONREG and DEP_MULTIPLE), and so that every memory
4594 instruction involved is subject to only one dep that can cause a pattern
4595 change.
4596
4597 When we discover a suitable dependency, we fill in the dep_replacement
4598 structure to show how to modify the memory reference. */
4599
4600 /* Holds information about a pair of memory reference and register increment
4601 insns which depend on each other, but could possibly be interchanged. */
4602 struct mem_inc_info
4603 {
4604 rtx inc_insn;
4605 rtx mem_insn;
4606
4607 rtx *mem_loc;
4608 /* A register occurring in the memory address for which we wish to break
4609 the dependence. This must be identical to the destination register of
4610 the increment. */
4611 rtx mem_reg0;
4612 /* Any kind of index that is added to that register. */
4613 rtx mem_index;
4614 /* The constant offset used in the memory address. */
4615 HOST_WIDE_INT mem_constant;
4616 /* The constant added in the increment insn. Negated if the increment is
4617 after the memory address. */
4618 HOST_WIDE_INT inc_constant;
4619 /* The source register used in the increment. May be different from mem_reg0
4620 if the increment occurs before the memory address. */
4621 rtx inc_input;
4622 };
4623
4624 /* Verify that the memory location described in MII can be replaced with
4625 one using NEW_ADDR. Return the new memory reference or NULL_RTX. The
4626 insn remains unchanged by this function. */
4627
4628 static rtx
4629 attempt_change (struct mem_inc_info *mii, rtx new_addr)
4630 {
4631 rtx mem = *mii->mem_loc;
4632 rtx new_mem;
4633
4634 /* Jump through a lot of hoops to keep the attributes up to date. We
4635 do not want to call one of the change address variants that take
4636 an offset even though we know the offset in many cases. These
4637 assume you are changing where the address is pointing by the
4638 offset. */
4639 new_mem = replace_equiv_address_nv (mem, new_addr);
4640 if (! validate_change (mii->mem_insn, mii->mem_loc, new_mem, 0))
4641 {
4642 if (sched_verbose >= 5)
4643 fprintf (sched_dump, "validation failure\n");
4644 return NULL_RTX;
4645 }
4646
4647 /* Put back the old one. */
4648 validate_change (mii->mem_insn, mii->mem_loc, mem, 0);
4649
4650 return new_mem;
4651 }
4652
4653 /* Return true if INSN is of a form "a = b op c" where a and b are
4654 regs. op is + if c is a reg and +|- if c is a const. Fill in
4655 informantion in MII about what is found.
4656 BEFORE_MEM indicates whether the increment is found before or after
4657 a corresponding memory reference. */
4658
4659 static bool
4660 parse_add_or_inc (struct mem_inc_info *mii, rtx insn, bool before_mem)
4661 {
4662 rtx pat = single_set (insn);
4663 rtx src, cst;
4664 bool regs_equal;
4665
4666 if (RTX_FRAME_RELATED_P (insn) || !pat)
4667 return false;
4668
4669 /* Result must be single reg. */
4670 if (!REG_P (SET_DEST (pat)))
4671 return false;
4672
4673 if (GET_CODE (SET_SRC (pat)) != PLUS)
4674 return false;
4675
4676 mii->inc_insn = insn;
4677 src = SET_SRC (pat);
4678 mii->inc_input = XEXP (src, 0);
4679
4680 if (!REG_P (XEXP (src, 0)))
4681 return false;
4682
4683 if (!rtx_equal_p (SET_DEST (pat), mii->mem_reg0))
4684 return false;
4685
4686 cst = XEXP (src, 1);
4687 if (!CONST_INT_P (cst))
4688 return false;
4689 mii->inc_constant = INTVAL (cst);
4690
4691 regs_equal = rtx_equal_p (mii->inc_input, mii->mem_reg0);
4692
4693 if (!before_mem)
4694 {
4695 mii->inc_constant = -mii->inc_constant;
4696 if (!regs_equal)
4697 return false;
4698 }
4699
4700 if (regs_equal && REGNO (SET_DEST (pat)) == STACK_POINTER_REGNUM)
4701 {
4702 /* Note that the sign has already been reversed for !before_mem. */
4703 #ifdef STACK_GROWS_DOWNWARD
4704 return mii->inc_constant > 0;
4705 #else
4706 return mii->inc_constant < 0;
4707 #endif
4708 }
4709 return true;
4710 }
4711
4712 /* Once a suitable mem reference has been found and the corresponding data
4713 in MII has been filled in, this function is called to find a suitable
4714 add or inc insn involving the register we found in the memory
4715 reference. */
4716
4717 static bool
4718 find_inc (struct mem_inc_info *mii, bool backwards)
4719 {
4720 sd_iterator_def sd_it;
4721 dep_t dep;
4722
4723 sd_it = sd_iterator_start (mii->mem_insn,
4724 backwards ? SD_LIST_HARD_BACK : SD_LIST_FORW);
4725 while (sd_iterator_cond (&sd_it, &dep))
4726 {
4727 dep_node_t node = DEP_LINK_NODE (*sd_it.linkp);
4728 rtx pro = DEP_PRO (dep);
4729 rtx con = DEP_CON (dep);
4730 rtx inc_cand = backwards ? pro : con;
4731 if (DEP_NONREG (dep) || DEP_MULTIPLE (dep))
4732 goto next;
4733 if (parse_add_or_inc (mii, inc_cand, backwards))
4734 {
4735 struct dep_replacement *desc;
4736 df_ref def;
4737 rtx newaddr, newmem;
4738
4739 if (sched_verbose >= 5)
4740 fprintf (sched_dump, "candidate mem/inc pair: %d %d\n",
4741 INSN_UID (mii->mem_insn), INSN_UID (inc_cand));
4742
4743 /* Need to assure that none of the operands of the inc
4744 instruction are assigned to by the mem insn. */
4745 FOR_EACH_INSN_DEF (def, mii->mem_insn)
4746 if (reg_overlap_mentioned_p (DF_REF_REG (def), mii->inc_input)
4747 || reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4748 {
4749 if (sched_verbose >= 5)
4750 fprintf (sched_dump,
4751 "inc conflicts with store failure.\n");
4752 goto next;
4753 }
4754
4755 /* The inc instruction could have clobbers, make sure those
4756 registers are not used in mem insn. */
4757 FOR_EACH_INSN_DEF (def, mii->inc_insn)
4758 if (!reg_overlap_mentioned_p (DF_REF_REG (def), mii->mem_reg0))
4759 {
4760 df_ref use;
4761 FOR_EACH_INSN_USE (use, mii->mem_insn)
4762 if (reg_overlap_mentioned_p (DF_REF_REG (def),
4763 DF_REF_REG (use)))
4764 {
4765 if (sched_verbose >= 5)
4766 fprintf (sched_dump,
4767 "inc clobber used in store failure.\n");
4768 goto next;
4769 }
4770 }
4771
4772 newaddr = mii->inc_input;
4773 if (mii->mem_index != NULL_RTX)
4774 newaddr = gen_rtx_PLUS (GET_MODE (newaddr), newaddr,
4775 mii->mem_index);
4776 newaddr = plus_constant (GET_MODE (newaddr), newaddr,
4777 mii->mem_constant + mii->inc_constant);
4778 newmem = attempt_change (mii, newaddr);
4779 if (newmem == NULL_RTX)
4780 goto next;
4781 if (sched_verbose >= 5)
4782 fprintf (sched_dump, "successful address replacement\n");
4783 desc = XCNEW (struct dep_replacement);
4784 DEP_REPLACE (dep) = desc;
4785 desc->loc = mii->mem_loc;
4786 desc->newval = newmem;
4787 desc->orig = *desc->loc;
4788 desc->insn = mii->mem_insn;
4789 move_dep_link (DEP_NODE_BACK (node), INSN_HARD_BACK_DEPS (con),
4790 INSN_SPEC_BACK_DEPS (con));
4791 if (backwards)
4792 {
4793 FOR_EACH_DEP (mii->inc_insn, SD_LIST_BACK, sd_it, dep)
4794 add_dependence_1 (mii->mem_insn, DEP_PRO (dep),
4795 REG_DEP_TRUE);
4796 }
4797 else
4798 {
4799 FOR_EACH_DEP (mii->inc_insn, SD_LIST_FORW, sd_it, dep)
4800 add_dependence_1 (DEP_CON (dep), mii->mem_insn,
4801 REG_DEP_ANTI);
4802 }
4803 return true;
4804 }
4805 next:
4806 sd_iterator_next (&sd_it);
4807 }
4808 return false;
4809 }
4810
4811 /* A recursive function that walks ADDRESS_OF_X to find memory references
4812 which could be modified during scheduling. We call find_inc for each
4813 one we find that has a recognizable form. MII holds information about
4814 the pair of memory/increment instructions.
4815 We ensure that every instruction with a memory reference (which will be
4816 the location of the replacement) is assigned at most one breakable
4817 dependency. */
4818
4819 static bool
4820 find_mem (struct mem_inc_info *mii, rtx *address_of_x)
4821 {
4822 rtx x = *address_of_x;
4823 enum rtx_code code = GET_CODE (x);
4824 const char *const fmt = GET_RTX_FORMAT (code);
4825 int i;
4826
4827 if (code == MEM)
4828 {
4829 rtx reg0 = XEXP (x, 0);
4830
4831 mii->mem_loc = address_of_x;
4832 mii->mem_index = NULL_RTX;
4833 mii->mem_constant = 0;
4834 if (GET_CODE (reg0) == PLUS && CONST_INT_P (XEXP (reg0, 1)))
4835 {
4836 mii->mem_constant = INTVAL (XEXP (reg0, 1));
4837 reg0 = XEXP (reg0, 0);
4838 }
4839 if (GET_CODE (reg0) == PLUS)
4840 {
4841 mii->mem_index = XEXP (reg0, 1);
4842 reg0 = XEXP (reg0, 0);
4843 }
4844 if (REG_P (reg0))
4845 {
4846 df_ref use;
4847 int occurrences = 0;
4848
4849 /* Make sure this reg appears only once in this insn. Can't use
4850 count_occurrences since that only works for pseudos. */
4851 FOR_EACH_INSN_USE (use, mii->mem_insn)
4852 if (reg_overlap_mentioned_p (reg0, DF_REF_REG (use)))
4853 if (++occurrences > 1)
4854 {
4855 if (sched_verbose >= 5)
4856 fprintf (sched_dump, "mem count failure\n");
4857 return false;
4858 }
4859
4860 mii->mem_reg0 = reg0;
4861 return find_inc (mii, true) || find_inc (mii, false);
4862 }
4863 return false;
4864 }
4865
4866 if (code == SIGN_EXTRACT || code == ZERO_EXTRACT)
4867 {
4868 /* If REG occurs inside a MEM used in a bit-field reference,
4869 that is unacceptable. */
4870 return false;
4871 }
4872
4873 /* Time for some deep diving. */
4874 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4875 {
4876 if (fmt[i] == 'e')
4877 {
4878 if (find_mem (mii, &XEXP (x, i)))
4879 return true;
4880 }
4881 else if (fmt[i] == 'E')
4882 {
4883 int j;
4884 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4885 if (find_mem (mii, &XVECEXP (x, i, j)))
4886 return true;
4887 }
4888 }
4889 return false;
4890 }
4891
4892
4893 /* Examine the instructions between HEAD and TAIL and try to find
4894 dependencies that can be broken by modifying one of the patterns. */
4895
4896 void
4897 find_modifiable_mems (rtx head, rtx tail)
4898 {
4899 rtx insn, next_tail = NEXT_INSN (tail);
4900 int success_in_block = 0;
4901
4902 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
4903 {
4904 struct mem_inc_info mii;
4905
4906 if (!NONDEBUG_INSN_P (insn) || RTX_FRAME_RELATED_P (insn))
4907 continue;
4908
4909 mii.mem_insn = insn;
4910 if (find_mem (&mii, &PATTERN (insn)))
4911 success_in_block++;
4912 }
4913 if (success_in_block && sched_verbose >= 5)
4914 fprintf (sched_dump, "%d candidates for address modification found.\n",
4915 success_in_block);
4916 }
4917
4918 rtx_insn *DEP_PRO (dep_t dep)
4919 {
4920 return safe_as_a <rtx_insn *> (dep->pro);
4921 }
4922
4923 rtx_insn *DEP_CON (dep_t dep)
4924 {
4925 return safe_as_a <rtx_insn *> (dep->con);
4926 }
4927
4928 rtx& SET_DEP_PRO (dep_t dep)
4929 {
4930 return dep->pro;
4931 }
4932
4933 rtx& SET_DEP_CON (dep_t dep)
4934 {
4935 return dep->con;
4936 }
4937
4938 #endif /* INSN_SCHEDULING */