sbitmap.c: Convert prototypes to ISO C90.
[gcc.git] / gcc / sched-ebb.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23 \f
24 #include "config.h"
25 #include "system.h"
26 #include "coretypes.h"
27 #include "tm.h"
28 #include "toplev.h"
29 #include "rtl.h"
30 #include "tm_p.h"
31 #include "hard-reg-set.h"
32 #include "basic-block.h"
33 #include "regs.h"
34 #include "function.h"
35 #include "flags.h"
36 #include "insn-config.h"
37 #include "insn-attr.h"
38 #include "except.h"
39 #include "toplev.h"
40 #include "recog.h"
41 #include "cfglayout.h"
42 #include "sched-int.h"
43 #include "target.h"
44 \f
45 /* The number of insns to be scheduled in total. */
46 static int target_n_insns;
47 /* The number of insns scheduled so far. */
48 static int sched_n_insns;
49
50 /* Implementations of the sched_info functions for region scheduling. */
51 static void init_ready_list (struct ready_list *);
52 static int can_schedule_ready_p (rtx);
53 static int new_ready (rtx);
54 static int schedule_more_p (void);
55 static const char *ebb_print_insn (rtx, int);
56 static int rank (rtx, rtx);
57 static int contributes_to_priority (rtx, rtx);
58 static void compute_jump_reg_dependencies (rtx, regset);
59 static basic_block earliest_block_with_similiar_load (basic_block, rtx);
60 static void add_deps_for_risky_insns (rtx, rtx);
61 static basic_block schedule_ebb (rtx, rtx);
62 static basic_block fix_basic_block_boundaries (basic_block, basic_block, rtx,
63 rtx);
64 static void add_missing_bbs (rtx, basic_block, basic_block);
65
66 /* Return nonzero if there are more insns that should be scheduled. */
67
68 static int
69 schedule_more_p (void)
70 {
71 return sched_n_insns < target_n_insns;
72 }
73
74 /* Add all insns that are initially ready to the ready list READY. Called
75 once before scheduling a set of insns. */
76
77 static void
78 init_ready_list (struct ready_list *ready)
79 {
80 rtx prev_head = current_sched_info->prev_head;
81 rtx next_tail = current_sched_info->next_tail;
82 rtx insn;
83
84 target_n_insns = 0;
85 sched_n_insns = 0;
86
87 #if 0
88 /* Print debugging information. */
89 if (sched_verbose >= 5)
90 debug_dependencies ();
91 #endif
92
93 /* Initialize ready list with all 'ready' insns in target block.
94 Count number of insns in the target block being scheduled. */
95 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
96 {
97 if (INSN_DEP_COUNT (insn) == 0)
98 ready_add (ready, insn);
99 target_n_insns++;
100 }
101 }
102
103 /* Called after taking INSN from the ready list. Returns nonzero if this
104 insn can be scheduled, nonzero if we should silently discard it. */
105
106 static int
107 can_schedule_ready_p (rtx insn ATTRIBUTE_UNUSED)
108 {
109 sched_n_insns++;
110 return 1;
111 }
112
113 /* Called after INSN has all its dependencies resolved. Return nonzero
114 if it should be moved to the ready list or the queue, or zero if we
115 should silently discard it. */
116 static int
117 new_ready (rtx next ATTRIBUTE_UNUSED)
118 {
119 return 1;
120 }
121
122 /* Return a string that contains the insn uid and optionally anything else
123 necessary to identify this insn in an output. It's valid to use a
124 static buffer for this. The ALIGNED parameter should cause the string
125 to be formatted so that multiple output lines will line up nicely. */
126
127 static const char *
128 ebb_print_insn (rtx insn, int aligned ATTRIBUTE_UNUSED)
129 {
130 static char tmp[80];
131
132 sprintf (tmp, "%4d", INSN_UID (insn));
133 return tmp;
134 }
135
136 /* Compare priority of two insns. Return a positive number if the second
137 insn is to be preferred for scheduling, and a negative one if the first
138 is to be preferred. Zero if they are equally good. */
139
140 static int
141 rank (rtx insn1, rtx insn2)
142 {
143 basic_block bb1 = BLOCK_FOR_INSN (insn1);
144 basic_block bb2 = BLOCK_FOR_INSN (insn2);
145
146 if (bb1->count > bb2->count
147 || bb1->frequency > bb2->frequency)
148 return -1;
149 if (bb1->count < bb2->count
150 || bb1->frequency < bb2->frequency)
151 return 1;
152 return 0;
153 }
154
155 /* NEXT is an instruction that depends on INSN (a backward dependence);
156 return nonzero if we should include this dependence in priority
157 calculations. */
158
159 static int
160 contributes_to_priority (rtx next ATTRIBUTE_UNUSED,
161 rtx insn ATTRIBUTE_UNUSED)
162 {
163 return 1;
164 }
165
166 /* INSN is a JUMP_INSN. Store the set of registers that must be considered
167 to be set by this jump in SET. */
168
169 static void
170 compute_jump_reg_dependencies (rtx insn, regset set)
171 {
172 basic_block b = BLOCK_FOR_INSN (insn);
173 edge e;
174 for (e = b->succ; e; e = e->succ_next)
175 if ((e->flags & EDGE_FALLTHRU) == 0)
176 {
177 bitmap_operation (set, set, e->dest->global_live_at_start,
178 BITMAP_IOR);
179 }
180 }
181
182 /* Used in schedule_insns to initialize current_sched_info for scheduling
183 regions (or single basic blocks). */
184
185 static struct sched_info ebb_sched_info =
186 {
187 init_ready_list,
188 can_schedule_ready_p,
189 schedule_more_p,
190 new_ready,
191 rank,
192 ebb_print_insn,
193 contributes_to_priority,
194 compute_jump_reg_dependencies,
195
196 NULL, NULL,
197 NULL, NULL,
198 0, 1
199 };
200 \f
201 /* It is possible that ebb scheduling eliminated some blocks.
202 Place blocks from FIRST to LAST before BEFORE. */
203
204 static void
205 add_missing_bbs (rtx before, basic_block first, basic_block last)
206 {
207 for (; last != first->prev_bb; last = last->prev_bb)
208 {
209 before = emit_note_before (NOTE_INSN_BASIC_BLOCK, before);
210 NOTE_BASIC_BLOCK (before) = last;
211 last->head = before;
212 last->end = before;
213 update_bb_for_insn (last);
214 }
215 }
216
217 /* Fixup the CFG after EBB scheduling. Re-recognize the basic
218 block boundaries in between HEAD and TAIL and update basic block
219 structures between BB and LAST. */
220
221 static basic_block
222 fix_basic_block_boundaries (basic_block bb, basic_block last, rtx head,
223 rtx tail)
224 {
225 rtx insn = head;
226 rtx last_inside = bb->head;
227 rtx aftertail = NEXT_INSN (tail);
228
229 head = bb->head;
230
231 for (; insn != aftertail; insn = NEXT_INSN (insn))
232 {
233 if (GET_CODE (insn) == CODE_LABEL)
234 abort ();
235 /* Create new basic blocks just before first insn. */
236 if (inside_basic_block_p (insn))
237 {
238 if (!last_inside)
239 {
240 rtx note;
241
242 /* Re-emit the basic block note for newly found BB header. */
243 if (GET_CODE (insn) == CODE_LABEL)
244 {
245 note = emit_note_after (NOTE_INSN_BASIC_BLOCK, insn);
246 head = insn;
247 last_inside = note;
248 }
249 else
250 {
251 note = emit_note_before (NOTE_INSN_BASIC_BLOCK, insn);
252 head = note;
253 last_inside = insn;
254 }
255 }
256 else
257 last_inside = insn;
258 }
259 /* Control flow instruction terminate basic block. It is possible
260 that we've eliminated some basic blocks (made them empty).
261 Find the proper basic block using BLOCK_FOR_INSN and arrange things in
262 a sensible way by inserting empty basic blocks as needed. */
263 if (control_flow_insn_p (insn) || (insn == tail && last_inside))
264 {
265 basic_block curr_bb = BLOCK_FOR_INSN (insn);
266 rtx note;
267
268 if (!control_flow_insn_p (insn))
269 curr_bb = last;
270 if (bb == last->next_bb)
271 {
272 edge f;
273 rtx h;
274
275 /* An obscure special case, where we do have partially dead
276 instruction scheduled after last control flow instruction.
277 In this case we can create new basic block. It is
278 always exactly one basic block last in the sequence. Handle
279 it by splitting the edge and repositioning the block.
280 This is somewhat hackish, but at least avoid cut&paste
281
282 A safer solution can be to bring the code into sequence,
283 do the split and re-emit it back in case this will ever
284 trigger problem. */
285 f = bb->prev_bb->succ;
286 while (f && !(f->flags & EDGE_FALLTHRU))
287 f = f->succ_next;
288
289 if (f)
290 {
291 last = curr_bb = split_edge (f);
292 h = curr_bb->head;
293 curr_bb->head = head;
294 curr_bb->end = insn;
295 /* Edge splitting created misplaced BASIC_BLOCK note, kill
296 it. */
297 delete_insn (h);
298 }
299 /* It may happen that code got moved past unconditional jump in
300 case the code is completely dead. Kill it. */
301 else
302 {
303 rtx next = next_nonnote_insn (insn);
304 delete_insn_chain (head, insn);
305 /* We keep some notes in the way that may split barrier from the
306 jump. */
307 if (GET_CODE (next) == BARRIER)
308 {
309 emit_barrier_after (prev_nonnote_insn (head));
310 delete_insn (next);
311 }
312 insn = NULL;
313 }
314 }
315 else
316 {
317 curr_bb->head = head;
318 curr_bb->end = insn;
319 add_missing_bbs (curr_bb->head, bb, curr_bb->prev_bb);
320 }
321 note = GET_CODE (head) == CODE_LABEL ? NEXT_INSN (head) : head;
322 NOTE_BASIC_BLOCK (note) = curr_bb;
323 update_bb_for_insn (curr_bb);
324 bb = curr_bb->next_bb;
325 last_inside = NULL;
326 if (!insn)
327 break;
328 }
329 }
330 add_missing_bbs (last->next_bb->head, bb, last);
331 return bb->prev_bb;
332 }
333
334 /* Returns the earliest block in EBB currently being processed where a
335 "similar load" 'insn2' is found, and hence LOAD_INSN can move
336 speculatively into the found block. All the following must hold:
337
338 (1) both loads have 1 base register (PFREE_CANDIDATEs).
339 (2) load_insn and load2 have a def-use dependence upon
340 the same insn 'insn1'.
341
342 From all these we can conclude that the two loads access memory
343 addresses that differ at most by a constant, and hence if moving
344 load_insn would cause an exception, it would have been caused by
345 load2 anyhow.
346
347 The function uses list (given by LAST_BLOCK) of already processed
348 blocks in EBB. The list is formed in `add_deps_for_risky_insns'. */
349
350 static basic_block
351 earliest_block_with_similiar_load (basic_block last_block, rtx load_insn)
352 {
353 rtx back_link;
354 basic_block bb, earliest_block = NULL;
355
356 for (back_link = LOG_LINKS (load_insn);
357 back_link;
358 back_link = XEXP (back_link, 1))
359 {
360 rtx insn1 = XEXP (back_link, 0);
361
362 if (GET_MODE (back_link) == VOIDmode)
363 {
364 /* Found a DEF-USE dependence (insn1, load_insn). */
365 rtx fore_link;
366
367 for (fore_link = INSN_DEPEND (insn1);
368 fore_link;
369 fore_link = XEXP (fore_link, 1))
370 {
371 rtx insn2 = XEXP (fore_link, 0);
372 basic_block insn2_block = BLOCK_FOR_INSN (insn2);
373
374 if (GET_MODE (fore_link) == VOIDmode)
375 {
376 if (earliest_block != NULL
377 && earliest_block->index < insn2_block->index)
378 continue;
379
380 /* Found a DEF-USE dependence (insn1, insn2). */
381 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
382 /* insn2 not guaranteed to be a 1 base reg load. */
383 continue;
384
385 for (bb = last_block; bb; bb = bb->aux)
386 if (insn2_block == bb)
387 break;
388
389 if (!bb)
390 /* insn2 is the similar load. */
391 earliest_block = insn2_block;
392 }
393 }
394 }
395 }
396
397 return earliest_block;
398 }
399
400 /* The following function adds dependencies between jumps and risky
401 insns in given ebb. */
402
403 static void
404 add_deps_for_risky_insns (rtx head, rtx tail)
405 {
406 rtx insn, prev;
407 int class;
408 rtx last_jump = NULL_RTX;
409 rtx next_tail = NEXT_INSN (tail);
410 basic_block last_block = NULL, bb;
411
412 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
413 if (GET_CODE (insn) == JUMP_INSN)
414 {
415 bb = BLOCK_FOR_INSN (insn);
416 bb->aux = last_block;
417 last_block = bb;
418 last_jump = insn;
419 }
420 else if (INSN_P (insn) && last_jump != NULL_RTX)
421 {
422 class = haifa_classify_insn (insn);
423 prev = last_jump;
424 switch (class)
425 {
426 case PFREE_CANDIDATE:
427 if (flag_schedule_speculative_load)
428 {
429 bb = earliest_block_with_similiar_load (last_block, insn);
430 if (bb)
431 {
432 bb = bb->aux;
433 if (!bb)
434 break;
435 prev = bb->end;
436 }
437 }
438 /* FALLTHRU */
439 case TRAP_RISKY:
440 case IRISKY:
441 case PRISKY_CANDIDATE:
442 /* ??? We could implement better checking PRISKY_CANDIDATEs
443 analogous to sched-rgn.c. */
444 /* We can not change the mode of the backward
445 dependency because REG_DEP_ANTI has the lowest
446 rank. */
447 if (add_dependence (insn, prev, REG_DEP_ANTI))
448 add_forward_dependence (prev, insn, REG_DEP_ANTI);
449 break;
450
451 default:
452 break;
453 }
454 }
455 /* Maintain the invariant that bb->aux is clear after use. */
456 while (last_block)
457 {
458 bb = last_block->aux;
459 last_block->aux = NULL;
460 last_block = bb;
461 }
462 }
463
464 /* Schedule a single extended basic block, defined by the boundaries HEAD
465 and TAIL. */
466
467 static basic_block
468 schedule_ebb (rtx head, rtx tail)
469 {
470 int n_insns;
471 basic_block b;
472 struct deps tmp_deps;
473 basic_block first_bb = BLOCK_FOR_INSN (head);
474 basic_block last_bb = BLOCK_FOR_INSN (tail);
475
476 if (no_real_insns_p (head, tail))
477 return BLOCK_FOR_INSN (tail);
478
479 init_deps_global ();
480
481 /* Compute LOG_LINKS. */
482 init_deps (&tmp_deps);
483 sched_analyze (&tmp_deps, head, tail);
484 free_deps (&tmp_deps);
485
486 /* Compute INSN_DEPEND. */
487 compute_forward_dependences (head, tail);
488
489 add_deps_for_risky_insns (head, tail);
490
491 if (targetm.sched.dependencies_evaluation_hook)
492 targetm.sched.dependencies_evaluation_hook (head, tail);
493
494 /* Set priorities. */
495 n_insns = set_priorities (head, tail);
496
497 current_sched_info->prev_head = PREV_INSN (head);
498 current_sched_info->next_tail = NEXT_INSN (tail);
499
500 if (write_symbols != NO_DEBUG)
501 {
502 save_line_notes (first_bb->index, head, tail);
503 rm_line_notes (head, tail);
504 }
505
506 /* rm_other_notes only removes notes which are _inside_ the
507 block---that is, it won't remove notes before the first real insn
508 or after the last real insn of the block. So if the first insn
509 has a REG_SAVE_NOTE which would otherwise be emitted before the
510 insn, it is redundant with the note before the start of the
511 block, and so we have to take it out. */
512 if (INSN_P (head))
513 {
514 rtx note;
515
516 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
517 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
518 {
519 remove_note (head, note);
520 note = XEXP (note, 1);
521 remove_note (head, note);
522 }
523 }
524
525 /* Remove remaining note insns from the block, save them in
526 note_list. These notes are restored at the end of
527 schedule_block (). */
528 rm_other_notes (head, tail);
529
530 current_sched_info->queue_must_finish_empty = 1;
531
532 schedule_block (-1, n_insns);
533
534 /* Sanity check: verify that all region insns were scheduled. */
535 if (sched_n_insns != n_insns)
536 abort ();
537 head = current_sched_info->head;
538 tail = current_sched_info->tail;
539
540 if (write_symbols != NO_DEBUG)
541 restore_line_notes (head, tail);
542 b = fix_basic_block_boundaries (first_bb, last_bb, head, tail);
543
544 finish_deps_global ();
545 return b;
546 }
547
548 /* The one entry point in this file. DUMP_FILE is the dump file for
549 this pass. */
550
551 void
552 schedule_ebbs (FILE *dump_file)
553 {
554 basic_block bb;
555
556 /* Taking care of this degenerate case makes the rest of
557 this code simpler. */
558 if (n_basic_blocks == 0)
559 return;
560
561 sched_init (dump_file);
562
563 current_sched_info = &ebb_sched_info;
564
565 allocate_reg_life_data ();
566 compute_bb_for_insn ();
567
568 /* Schedule every region in the subroutine. */
569 FOR_EACH_BB (bb)
570 {
571 rtx head = bb->head;
572 rtx tail;
573
574 for (;;)
575 {
576 edge e;
577 tail = bb->end;
578 if (bb->next_bb == EXIT_BLOCK_PTR
579 || GET_CODE (bb->next_bb->head) == CODE_LABEL)
580 break;
581 for (e = bb->succ; e; e = e->succ_next)
582 if ((e->flags & EDGE_FALLTHRU) != 0)
583 break;
584 if (! e)
585 break;
586 if (e->probability < REG_BR_PROB_BASE / 2)
587 break;
588 bb = bb->next_bb;
589 }
590
591 /* Blah. We should fix the rest of the code not to get confused by
592 a note or two. */
593 while (head != tail)
594 {
595 if (GET_CODE (head) == NOTE)
596 head = NEXT_INSN (head);
597 else if (GET_CODE (tail) == NOTE)
598 tail = PREV_INSN (tail);
599 else if (GET_CODE (head) == CODE_LABEL)
600 head = NEXT_INSN (head);
601 else
602 break;
603 }
604
605 bb = schedule_ebb (head, tail);
606 }
607
608 /* Updating life info can be done by local propagation over the modified
609 superblocks. */
610
611 /* Reposition the prologue and epilogue notes in case we moved the
612 prologue/epilogue insns. */
613 if (reload_completed)
614 reposition_prologue_and_epilogue_notes (get_insns ());
615
616 if (write_symbols != NO_DEBUG)
617 rm_redundant_line_notes ();
618
619 sched_finish ();
620 }