loop splitting
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2016 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
25
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
29
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
35
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
45 \f
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "backend.h"
50 #include "target.h"
51 #include "rtl.h"
52 #include "df.h"
53 #include "memmodel.h"
54 #include "tm_p.h"
55 #include "insn-config.h"
56 #include "emit-rtl.h"
57 #include "recog.h"
58 #include "profile.h"
59 #include "insn-attr.h"
60 #include "except.h"
61 #include "params.h"
62 #include "cfganal.h"
63 #include "sched-int.h"
64 #include "sel-sched.h"
65 #include "tree-pass.h"
66 #include "dbgcnt.h"
67 #include "pretty-print.h"
68 #include "print-rtl.h"
69
70 #ifdef INSN_SCHEDULING
71
72 /* Some accessor macros for h_i_d members only used within this file. */
73 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
74 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
75
76 /* nr_inter/spec counts interblock/speculative motion for the function. */
77 static int nr_inter, nr_spec;
78
79 static int is_cfg_nonregular (void);
80
81 /* Number of regions in the procedure. */
82 int nr_regions = 0;
83
84 /* Same as above before adding any new regions. */
85 static int nr_regions_initial = 0;
86
87 /* Table of region descriptions. */
88 region *rgn_table = NULL;
89
90 /* Array of lists of regions' blocks. */
91 int *rgn_bb_table = NULL;
92
93 /* Topological order of blocks in the region (if b2 is reachable from
94 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
95 always referred to by either block or b, while its topological
96 order name (in the region) is referred to by bb. */
97 int *block_to_bb = NULL;
98
99 /* The number of the region containing a block. */
100 int *containing_rgn = NULL;
101
102 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
103 Currently we can get a ebb only through splitting of currently
104 scheduling block, therefore, we don't need ebb_head array for every region,
105 hence, its sufficient to hold it for current one only. */
106 int *ebb_head = NULL;
107
108 /* The minimum probability of reaching a source block so that it will be
109 considered for speculative scheduling. */
110 static int min_spec_prob;
111
112 static void find_single_block_region (bool);
113 static void find_rgns (void);
114 static bool too_large (int, int *, int *);
115
116 /* Blocks of the current region being scheduled. */
117 int current_nr_blocks;
118 int current_blocks;
119
120 /* A speculative motion requires checking live information on the path
121 from 'source' to 'target'. The split blocks are those to be checked.
122 After a speculative motion, live information should be modified in
123 the 'update' blocks.
124
125 Lists of split and update blocks for each candidate of the current
126 target are in array bblst_table. */
127 static basic_block *bblst_table;
128 static int bblst_size, bblst_last;
129
130 /* Arrays that hold the DFA state at the end of a basic block, to re-use
131 as the initial state at the start of successor blocks. The BB_STATE
132 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
133 into BB_STATE for basic block I. FIXME: This should be a vec. */
134 static char *bb_state_array = NULL;
135 static state_t *bb_state = NULL;
136
137 /* Target info declarations.
138
139 The block currently being scheduled is referred to as the "target" block,
140 while other blocks in the region from which insns can be moved to the
141 target are called "source" blocks. The candidate structure holds info
142 about such sources: are they valid? Speculative? Etc. */
143 struct bblst
144 {
145 basic_block *first_member;
146 int nr_members;
147 };
148
149 struct candidate
150 {
151 char is_valid;
152 char is_speculative;
153 int src_prob;
154 bblst split_bbs;
155 bblst update_bbs;
156 };
157
158 static candidate *candidate_table;
159 #define IS_VALID(src) (candidate_table[src].is_valid)
160 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
161 #define IS_SPECULATIVE_INSN(INSN) \
162 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
163 #define SRC_PROB(src) ( candidate_table[src].src_prob )
164
165 /* The bb being currently scheduled. */
166 int target_bb;
167
168 /* List of edges. */
169 struct edgelst
170 {
171 edge *first_member;
172 int nr_members;
173 };
174
175 static edge *edgelst_table;
176 static int edgelst_last;
177
178 static void extract_edgelst (sbitmap, edgelst *);
179
180 /* Target info functions. */
181 static void split_edges (int, int, edgelst *);
182 static void compute_trg_info (int);
183 void debug_candidate (int);
184 void debug_candidates (int);
185
186 /* Dominators array: dom[i] contains the sbitmap of dominators of
187 bb i in the region. */
188 static sbitmap *dom;
189
190 /* bb 0 is the only region entry. */
191 #define IS_RGN_ENTRY(bb) (!bb)
192
193 /* Is bb_src dominated by bb_trg. */
194 #define IS_DOMINATED(bb_src, bb_trg) \
195 ( bitmap_bit_p (dom[bb_src], bb_trg) )
196
197 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
198 the probability of bb i relative to the region entry. */
199 static int *prob;
200
201 /* Bit-set of edges, where bit i stands for edge i. */
202 typedef sbitmap edgeset;
203
204 /* Number of edges in the region. */
205 static int rgn_nr_edges;
206
207 /* Array of size rgn_nr_edges. */
208 static edge *rgn_edges;
209
210 /* Mapping from each edge in the graph to its number in the rgn. */
211 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
212 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
213
214 /* The split edges of a source bb is different for each target
215 bb. In order to compute this efficiently, the 'potential-split edges'
216 are computed for each bb prior to scheduling a region. This is actually
217 the split edges of each bb relative to the region entry.
218
219 pot_split[bb] is the set of potential split edges of bb. */
220 static edgeset *pot_split;
221
222 /* For every bb, a set of its ancestor edges. */
223 static edgeset *ancestor_edges;
224
225 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
226
227 /* Speculative scheduling functions. */
228 static int check_live_1 (int, rtx);
229 static void update_live_1 (int, rtx);
230 static int is_pfree (rtx, int, int);
231 static int find_conditional_protection (rtx_insn *, int);
232 static int is_conditionally_protected (rtx, int, int);
233 static int is_prisky (rtx, int, int);
234 static int is_exception_free (rtx_insn *, int, int);
235
236 static bool sets_likely_spilled (rtx);
237 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
238 static void add_branch_dependences (rtx_insn *, rtx_insn *);
239 static void compute_block_dependences (int);
240
241 static void schedule_region (int);
242 static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
243 rtx_insn_list **, rtx_expr_list **);
244 static void propagate_deps (int, struct deps_desc *);
245 static void free_pending_lists (void);
246
247 /* Functions for construction of the control flow graph. */
248
249 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
250
251 We decide not to build the control flow graph if there is possibly more
252 than one entry to the function, if computed branches exist, if we
253 have nonlocal gotos, or if we have an unreachable loop. */
254
255 static int
256 is_cfg_nonregular (void)
257 {
258 basic_block b;
259 rtx_insn *insn;
260
261 /* If we have a label that could be the target of a nonlocal goto, then
262 the cfg is not well structured. */
263 if (nonlocal_goto_handler_labels)
264 return 1;
265
266 /* If we have any forced labels, then the cfg is not well structured. */
267 if (forced_labels)
268 return 1;
269
270 /* If we have exception handlers, then we consider the cfg not well
271 structured. ?!? We should be able to handle this now that we
272 compute an accurate cfg for EH. */
273 if (current_function_has_exception_handlers ())
274 return 1;
275
276 /* If we have insns which refer to labels as non-jumped-to operands,
277 then we consider the cfg not well structured. */
278 FOR_EACH_BB_FN (b, cfun)
279 FOR_BB_INSNS (b, insn)
280 {
281 rtx note, set, dest;
282 rtx_insn *next;
283
284 /* If this function has a computed jump, then we consider the cfg
285 not well structured. */
286 if (JUMP_P (insn) && computed_jump_p (insn))
287 return 1;
288
289 if (!INSN_P (insn))
290 continue;
291
292 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
293 if (note == NULL_RTX)
294 continue;
295
296 /* For that label not to be seen as a referred-to label, this
297 must be a single-set which is feeding a jump *only*. This
298 could be a conditional jump with the label split off for
299 machine-specific reasons or a casesi/tablejump. */
300 next = next_nonnote_insn (insn);
301 if (next == NULL_RTX
302 || !JUMP_P (next)
303 || (JUMP_LABEL (next) != XEXP (note, 0)
304 && find_reg_note (next, REG_LABEL_TARGET,
305 XEXP (note, 0)) == NULL_RTX)
306 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
307 return 1;
308
309 set = single_set (insn);
310 if (set == NULL_RTX)
311 return 1;
312
313 dest = SET_DEST (set);
314 if (!REG_P (dest) || !dead_or_set_p (next, dest))
315 return 1;
316 }
317
318 /* Unreachable loops with more than one basic block are detected
319 during the DFS traversal in find_rgns.
320
321 Unreachable loops with a single block are detected here. This
322 test is redundant with the one in find_rgns, but it's much
323 cheaper to go ahead and catch the trivial case here. */
324 FOR_EACH_BB_FN (b, cfun)
325 {
326 if (EDGE_COUNT (b->preds) == 0
327 || (single_pred_p (b)
328 && single_pred (b) == b))
329 return 1;
330 }
331
332 /* All the tests passed. Consider the cfg well structured. */
333 return 0;
334 }
335
336 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
337
338 static void
339 extract_edgelst (sbitmap set, edgelst *el)
340 {
341 unsigned int i = 0;
342 sbitmap_iterator sbi;
343
344 /* edgelst table space is reused in each call to extract_edgelst. */
345 edgelst_last = 0;
346
347 el->first_member = &edgelst_table[edgelst_last];
348 el->nr_members = 0;
349
350 /* Iterate over each word in the bitset. */
351 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
352 {
353 edgelst_table[edgelst_last++] = rgn_edges[i];
354 el->nr_members++;
355 }
356 }
357
358 /* Functions for the construction of regions. */
359
360 /* Print the regions, for debugging purposes. Callable from debugger. */
361
362 DEBUG_FUNCTION void
363 debug_regions (void)
364 {
365 int rgn, bb;
366
367 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
368 for (rgn = 0; rgn < nr_regions; rgn++)
369 {
370 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
371 rgn_table[rgn].rgn_nr_blocks);
372 fprintf (sched_dump, ";;\tbb/block: ");
373
374 /* We don't have ebb_head initialized yet, so we can't use
375 BB_TO_BLOCK (). */
376 current_blocks = RGN_BLOCKS (rgn);
377
378 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
379 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
380
381 fprintf (sched_dump, "\n\n");
382 }
383 }
384
385 /* Print the region's basic blocks. */
386
387 DEBUG_FUNCTION void
388 debug_region (int rgn)
389 {
390 int bb;
391
392 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
393 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
394 rgn_table[rgn].rgn_nr_blocks);
395 fprintf (stderr, ";;\tbb/block: ");
396
397 /* We don't have ebb_head initialized yet, so we can't use
398 BB_TO_BLOCK (). */
399 current_blocks = RGN_BLOCKS (rgn);
400
401 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
402 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
403
404 fprintf (stderr, "\n\n");
405
406 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
407 {
408 dump_bb (stderr,
409 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
410 0, TDF_SLIM | TDF_BLOCKS);
411 fprintf (stderr, "\n");
412 }
413
414 fprintf (stderr, "\n");
415
416 }
417
418 /* True when a bb with index BB_INDEX contained in region RGN. */
419 static bool
420 bb_in_region_p (int bb_index, int rgn)
421 {
422 int i;
423
424 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
425 if (rgn_bb_table[current_blocks + i] == bb_index)
426 return true;
427
428 return false;
429 }
430
431 /* Dump region RGN to file F using dot syntax. */
432 void
433 dump_region_dot (FILE *f, int rgn)
434 {
435 int i;
436
437 fprintf (f, "digraph Region_%d {\n", rgn);
438
439 /* We don't have ebb_head initialized yet, so we can't use
440 BB_TO_BLOCK (). */
441 current_blocks = RGN_BLOCKS (rgn);
442
443 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
444 {
445 edge e;
446 edge_iterator ei;
447 int src_bb_num = rgn_bb_table[current_blocks + i];
448 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
449
450 FOR_EACH_EDGE (e, ei, bb->succs)
451 if (bb_in_region_p (e->dest->index, rgn))
452 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
453 }
454 fprintf (f, "}\n");
455 }
456
457 /* The same, but first open a file specified by FNAME. */
458 void
459 dump_region_dot_file (const char *fname, int rgn)
460 {
461 FILE *f = fopen (fname, "wt");
462 dump_region_dot (f, rgn);
463 fclose (f);
464 }
465
466 /* Build a single block region for each basic block in the function.
467 This allows for using the same code for interblock and basic block
468 scheduling. */
469
470 static void
471 find_single_block_region (bool ebbs_p)
472 {
473 basic_block bb, ebb_start;
474 int i = 0;
475
476 nr_regions = 0;
477
478 if (ebbs_p) {
479 int probability_cutoff;
480 if (profile_info && flag_branch_probabilities)
481 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
482 else
483 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
484 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
485
486 FOR_EACH_BB_FN (ebb_start, cfun)
487 {
488 RGN_NR_BLOCKS (nr_regions) = 0;
489 RGN_BLOCKS (nr_regions) = i;
490 RGN_DONT_CALC_DEPS (nr_regions) = 0;
491 RGN_HAS_REAL_EBB (nr_regions) = 0;
492
493 for (bb = ebb_start; ; bb = bb->next_bb)
494 {
495 edge e;
496
497 rgn_bb_table[i] = bb->index;
498 RGN_NR_BLOCKS (nr_regions)++;
499 CONTAINING_RGN (bb->index) = nr_regions;
500 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
501 i++;
502
503 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
504 || LABEL_P (BB_HEAD (bb->next_bb)))
505 break;
506
507 e = find_fallthru_edge (bb->succs);
508 if (! e)
509 break;
510 if (e->probability <= probability_cutoff)
511 break;
512 }
513
514 ebb_start = bb;
515 nr_regions++;
516 }
517 }
518 else
519 FOR_EACH_BB_FN (bb, cfun)
520 {
521 rgn_bb_table[nr_regions] = bb->index;
522 RGN_NR_BLOCKS (nr_regions) = 1;
523 RGN_BLOCKS (nr_regions) = nr_regions;
524 RGN_DONT_CALC_DEPS (nr_regions) = 0;
525 RGN_HAS_REAL_EBB (nr_regions) = 0;
526
527 CONTAINING_RGN (bb->index) = nr_regions;
528 BLOCK_TO_BB (bb->index) = 0;
529 nr_regions++;
530 }
531 }
532
533 /* Estimate number of the insns in the BB. */
534 static int
535 rgn_estimate_number_of_insns (basic_block bb)
536 {
537 int count;
538
539 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
540
541 if (MAY_HAVE_DEBUG_INSNS)
542 {
543 rtx_insn *insn;
544
545 FOR_BB_INSNS (bb, insn)
546 if (DEBUG_INSN_P (insn))
547 count--;
548 }
549
550 return count;
551 }
552
553 /* Update number of blocks and the estimate for number of insns
554 in the region. Return true if the region is "too large" for interblock
555 scheduling (compile time considerations). */
556
557 static bool
558 too_large (int block, int *num_bbs, int *num_insns)
559 {
560 (*num_bbs)++;
561 (*num_insns) += (common_sched_info->estimate_number_of_insns
562 (BASIC_BLOCK_FOR_FN (cfun, block)));
563
564 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
565 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
566 }
567
568 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
569 is still an inner loop. Put in max_hdr[blk] the header of the most inner
570 loop containing blk. */
571 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
572 { \
573 if (max_hdr[blk] == -1) \
574 max_hdr[blk] = hdr; \
575 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
576 bitmap_clear_bit (inner, hdr); \
577 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
578 { \
579 bitmap_clear_bit (inner,max_hdr[blk]); \
580 max_hdr[blk] = hdr; \
581 } \
582 }
583
584 /* Find regions for interblock scheduling.
585
586 A region for scheduling can be:
587
588 * A loop-free procedure, or
589
590 * A reducible inner loop, or
591
592 * A basic block not contained in any other region.
593
594 ?!? In theory we could build other regions based on extended basic
595 blocks or reverse extended basic blocks. Is it worth the trouble?
596
597 Loop blocks that form a region are put into the region's block list
598 in topological order.
599
600 This procedure stores its results into the following global (ick) variables
601
602 * rgn_nr
603 * rgn_table
604 * rgn_bb_table
605 * block_to_bb
606 * containing region
607
608 We use dominator relationships to avoid making regions out of non-reducible
609 loops.
610
611 This procedure needs to be converted to work on pred/succ lists instead
612 of edge tables. That would simplify it somewhat. */
613
614 static void
615 haifa_find_rgns (void)
616 {
617 int *max_hdr, *dfs_nr, *degree;
618 char no_loops = 1;
619 int node, child, loop_head, i, head, tail;
620 int count = 0, sp, idx = 0;
621 edge_iterator current_edge;
622 edge_iterator *stack;
623 int num_bbs, num_insns, unreachable;
624 int too_large_failure;
625 basic_block bb;
626
627 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
628 and a mapping from block to its loop header (if the block is contained
629 in a loop, else -1).
630
631 Store results in HEADER, INNER, and MAX_HDR respectively, these will
632 be used as inputs to the second traversal.
633
634 STACK, SP and DFS_NR are only used during the first traversal. */
635
636 /* Allocate and initialize variables for the first traversal. */
637 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
638 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
639 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
640
641 /* Note if a block is a natural inner loop header. */
642 auto_sbitmap inner (last_basic_block_for_fn (cfun));
643 bitmap_ones (inner);
644
645 /* Note if a block is a natural loop header. */
646 auto_sbitmap header (last_basic_block_for_fn (cfun));
647 bitmap_clear (header);
648
649 /* Note if a block is in the block queue. */
650 auto_sbitmap in_queue (last_basic_block_for_fn (cfun));
651 bitmap_clear (in_queue);
652
653 /* Note if a block is in the block queue. */
654 auto_sbitmap in_stack (last_basic_block_for_fn (cfun));
655 bitmap_clear (in_stack);
656
657 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
658 max_hdr[i] = -1;
659
660 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
661 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
662
663 /* DFS traversal to find inner loops in the cfg. */
664
665 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
666 sp = -1;
667
668 while (1)
669 {
670 if (EDGE_PASSED (current_edge))
671 {
672 /* We have reached a leaf node or a node that was already
673 processed. Pop edges off the stack until we find
674 an edge that has not yet been processed. */
675 while (sp >= 0 && EDGE_PASSED (current_edge))
676 {
677 /* Pop entry off the stack. */
678 current_edge = stack[sp--];
679 node = ei_edge (current_edge)->src->index;
680 gcc_assert (node != ENTRY_BLOCK);
681 child = ei_edge (current_edge)->dest->index;
682 gcc_assert (child != EXIT_BLOCK);
683 bitmap_clear_bit (in_stack, child);
684 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
685 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
686 ei_next (&current_edge);
687 }
688
689 /* See if have finished the DFS tree traversal. */
690 if (sp < 0 && EDGE_PASSED (current_edge))
691 break;
692
693 /* Nope, continue the traversal with the popped node. */
694 continue;
695 }
696
697 /* Process a node. */
698 node = ei_edge (current_edge)->src->index;
699 gcc_assert (node != ENTRY_BLOCK);
700 bitmap_set_bit (in_stack, node);
701 dfs_nr[node] = ++count;
702
703 /* We don't traverse to the exit block. */
704 child = ei_edge (current_edge)->dest->index;
705 if (child == EXIT_BLOCK)
706 {
707 SET_EDGE_PASSED (current_edge);
708 ei_next (&current_edge);
709 continue;
710 }
711
712 /* If the successor is in the stack, then we've found a loop.
713 Mark the loop, if it is not a natural loop, then it will
714 be rejected during the second traversal. */
715 if (bitmap_bit_p (in_stack, child))
716 {
717 no_loops = 0;
718 bitmap_set_bit (header, child);
719 UPDATE_LOOP_RELATIONS (node, child);
720 SET_EDGE_PASSED (current_edge);
721 ei_next (&current_edge);
722 continue;
723 }
724
725 /* If the child was already visited, then there is no need to visit
726 it again. Just update the loop relationships and restart
727 with a new edge. */
728 if (dfs_nr[child])
729 {
730 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
731 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
732 SET_EDGE_PASSED (current_edge);
733 ei_next (&current_edge);
734 continue;
735 }
736
737 /* Push an entry on the stack and continue DFS traversal. */
738 stack[++sp] = current_edge;
739 SET_EDGE_PASSED (current_edge);
740 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
741 }
742
743 /* Reset ->aux field used by EDGE_PASSED. */
744 FOR_ALL_BB_FN (bb, cfun)
745 {
746 edge_iterator ei;
747 edge e;
748 FOR_EACH_EDGE (e, ei, bb->succs)
749 e->aux = NULL;
750 }
751
752
753 /* Another check for unreachable blocks. The earlier test in
754 is_cfg_nonregular only finds unreachable blocks that do not
755 form a loop.
756
757 The DFS traversal will mark every block that is reachable from
758 the entry node by placing a nonzero value in dfs_nr. Thus if
759 dfs_nr is zero for any block, then it must be unreachable. */
760 unreachable = 0;
761 FOR_EACH_BB_FN (bb, cfun)
762 if (dfs_nr[bb->index] == 0)
763 {
764 unreachable = 1;
765 break;
766 }
767
768 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
769 to hold degree counts. */
770 degree = dfs_nr;
771
772 FOR_EACH_BB_FN (bb, cfun)
773 degree[bb->index] = EDGE_COUNT (bb->preds);
774
775 /* Do not perform region scheduling if there are any unreachable
776 blocks. */
777 if (!unreachable)
778 {
779 int *queue, *degree1 = NULL;
780 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
781 there basic blocks, which are forced to be region heads.
782 This is done to try to assemble few smaller regions
783 from a too_large region. */
784 sbitmap extended_rgn_header = NULL;
785 bool extend_regions_p;
786
787 if (no_loops)
788 bitmap_set_bit (header, 0);
789
790 /* Second traversal:find reducible inner loops and topologically sort
791 block of each region. */
792
793 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
794
795 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
796 if (extend_regions_p)
797 {
798 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
799 extended_rgn_header =
800 sbitmap_alloc (last_basic_block_for_fn (cfun));
801 bitmap_clear (extended_rgn_header);
802 }
803
804 /* Find blocks which are inner loop headers. We still have non-reducible
805 loops to consider at this point. */
806 FOR_EACH_BB_FN (bb, cfun)
807 {
808 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
809 {
810 edge e;
811 edge_iterator ei;
812 basic_block jbb;
813
814 /* Now check that the loop is reducible. We do this separate
815 from finding inner loops so that we do not find a reducible
816 loop which contains an inner non-reducible loop.
817
818 A simple way to find reducible/natural loops is to verify
819 that each block in the loop is dominated by the loop
820 header.
821
822 If there exists a block that is not dominated by the loop
823 header, then the block is reachable from outside the loop
824 and thus the loop is not a natural loop. */
825 FOR_EACH_BB_FN (jbb, cfun)
826 {
827 /* First identify blocks in the loop, except for the loop
828 entry block. */
829 if (bb->index == max_hdr[jbb->index] && bb != jbb)
830 {
831 /* Now verify that the block is dominated by the loop
832 header. */
833 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
834 break;
835 }
836 }
837
838 /* If we exited the loop early, then I is the header of
839 a non-reducible loop and we should quit processing it
840 now. */
841 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
842 continue;
843
844 /* I is a header of an inner loop, or block 0 in a subroutine
845 with no loops at all. */
846 head = tail = -1;
847 too_large_failure = 0;
848 loop_head = max_hdr[bb->index];
849
850 if (extend_regions_p)
851 /* We save degree in case when we meet a too_large region
852 and cancel it. We need a correct degree later when
853 calling extend_rgns. */
854 memcpy (degree1, degree,
855 last_basic_block_for_fn (cfun) * sizeof (int));
856
857 /* Decrease degree of all I's successors for topological
858 ordering. */
859 FOR_EACH_EDGE (e, ei, bb->succs)
860 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
861 --degree[e->dest->index];
862
863 /* Estimate # insns, and count # blocks in the region. */
864 num_bbs = 1;
865 num_insns = common_sched_info->estimate_number_of_insns (bb);
866
867 /* Find all loop latches (blocks with back edges to the loop
868 header) or all the leaf blocks in the cfg has no loops.
869
870 Place those blocks into the queue. */
871 if (no_loops)
872 {
873 FOR_EACH_BB_FN (jbb, cfun)
874 /* Leaf nodes have only a single successor which must
875 be EXIT_BLOCK. */
876 if (single_succ_p (jbb)
877 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
878 {
879 queue[++tail] = jbb->index;
880 bitmap_set_bit (in_queue, jbb->index);
881
882 if (too_large (jbb->index, &num_bbs, &num_insns))
883 {
884 too_large_failure = 1;
885 break;
886 }
887 }
888 }
889 else
890 {
891 edge e;
892
893 FOR_EACH_EDGE (e, ei, bb->preds)
894 {
895 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
896 continue;
897
898 node = e->src->index;
899
900 if (max_hdr[node] == loop_head && node != bb->index)
901 {
902 /* This is a loop latch. */
903 queue[++tail] = node;
904 bitmap_set_bit (in_queue, node);
905
906 if (too_large (node, &num_bbs, &num_insns))
907 {
908 too_large_failure = 1;
909 break;
910 }
911 }
912 }
913 }
914
915 /* Now add all the blocks in the loop to the queue.
916
917 We know the loop is a natural loop; however the algorithm
918 above will not always mark certain blocks as being in the
919 loop. Consider:
920 node children
921 a b,c
922 b c
923 c a,d
924 d b
925
926 The algorithm in the DFS traversal may not mark B & D as part
927 of the loop (i.e. they will not have max_hdr set to A).
928
929 We know they can not be loop latches (else they would have
930 had max_hdr set since they'd have a backedge to a dominator
931 block). So we don't need them on the initial queue.
932
933 We know they are part of the loop because they are dominated
934 by the loop header and can be reached by a backwards walk of
935 the edges starting with nodes on the initial queue.
936
937 It is safe and desirable to include those nodes in the
938 loop/scheduling region. To do so we would need to decrease
939 the degree of a node if it is the target of a backedge
940 within the loop itself as the node is placed in the queue.
941
942 We do not do this because I'm not sure that the actual
943 scheduling code will properly handle this case. ?!? */
944
945 while (head < tail && !too_large_failure)
946 {
947 edge e;
948 child = queue[++head];
949
950 FOR_EACH_EDGE (e, ei,
951 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
952 {
953 node = e->src->index;
954
955 /* See discussion above about nodes not marked as in
956 this loop during the initial DFS traversal. */
957 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
958 || max_hdr[node] != loop_head)
959 {
960 tail = -1;
961 break;
962 }
963 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
964 {
965 queue[++tail] = node;
966 bitmap_set_bit (in_queue, node);
967
968 if (too_large (node, &num_bbs, &num_insns))
969 {
970 too_large_failure = 1;
971 break;
972 }
973 }
974 }
975 }
976
977 if (tail >= 0 && !too_large_failure)
978 {
979 /* Place the loop header into list of region blocks. */
980 degree[bb->index] = -1;
981 rgn_bb_table[idx] = bb->index;
982 RGN_NR_BLOCKS (nr_regions) = num_bbs;
983 RGN_BLOCKS (nr_regions) = idx++;
984 RGN_DONT_CALC_DEPS (nr_regions) = 0;
985 RGN_HAS_REAL_EBB (nr_regions) = 0;
986 CONTAINING_RGN (bb->index) = nr_regions;
987 BLOCK_TO_BB (bb->index) = count = 0;
988
989 /* Remove blocks from queue[] when their in degree
990 becomes zero. Repeat until no blocks are left on the
991 list. This produces a topological list of blocks in
992 the region. */
993 while (tail >= 0)
994 {
995 if (head < 0)
996 head = tail;
997 child = queue[head];
998 if (degree[child] == 0)
999 {
1000 edge e;
1001
1002 degree[child] = -1;
1003 rgn_bb_table[idx++] = child;
1004 BLOCK_TO_BB (child) = ++count;
1005 CONTAINING_RGN (child) = nr_regions;
1006 queue[head] = queue[tail--];
1007
1008 FOR_EACH_EDGE (e, ei,
1009 BASIC_BLOCK_FOR_FN (cfun,
1010 child)->succs)
1011 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1012 --degree[e->dest->index];
1013 }
1014 else
1015 --head;
1016 }
1017 ++nr_regions;
1018 }
1019 else if (extend_regions_p)
1020 {
1021 /* Restore DEGREE. */
1022 int *t = degree;
1023
1024 degree = degree1;
1025 degree1 = t;
1026
1027 /* And force successors of BB to be region heads.
1028 This may provide several smaller regions instead
1029 of one too_large region. */
1030 FOR_EACH_EDGE (e, ei, bb->succs)
1031 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1032 bitmap_set_bit (extended_rgn_header, e->dest->index);
1033 }
1034 }
1035 }
1036 free (queue);
1037
1038 if (extend_regions_p)
1039 {
1040 free (degree1);
1041
1042 bitmap_ior (header, header, extended_rgn_header);
1043 sbitmap_free (extended_rgn_header);
1044
1045 extend_rgns (degree, &idx, header, max_hdr);
1046 }
1047 }
1048
1049 /* Any block that did not end up in a region is placed into a region
1050 by itself. */
1051 FOR_EACH_BB_FN (bb, cfun)
1052 if (degree[bb->index] >= 0)
1053 {
1054 rgn_bb_table[idx] = bb->index;
1055 RGN_NR_BLOCKS (nr_regions) = 1;
1056 RGN_BLOCKS (nr_regions) = idx++;
1057 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1058 RGN_HAS_REAL_EBB (nr_regions) = 0;
1059 CONTAINING_RGN (bb->index) = nr_regions++;
1060 BLOCK_TO_BB (bb->index) = 0;
1061 }
1062
1063 free (max_hdr);
1064 free (degree);
1065 free (stack);
1066 }
1067
1068
1069 /* Wrapper function.
1070 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1071 regions. Otherwise just call find_rgns_haifa. */
1072 static void
1073 find_rgns (void)
1074 {
1075 if (sel_sched_p () && flag_sel_sched_pipelining)
1076 sel_find_rgns ();
1077 else
1078 haifa_find_rgns ();
1079 }
1080
1081 static int gather_region_statistics (int **);
1082 static void print_region_statistics (int *, int, int *, int);
1083
1084 /* Calculate the histogram that shows the number of regions having the
1085 given number of basic blocks, and store it in the RSP array. Return
1086 the size of this array. */
1087 static int
1088 gather_region_statistics (int **rsp)
1089 {
1090 int i, *a = 0, a_sz = 0;
1091
1092 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1093 for (i = 0; i < nr_regions; i++)
1094 {
1095 int nr_blocks = RGN_NR_BLOCKS (i);
1096
1097 gcc_assert (nr_blocks >= 1);
1098
1099 if (nr_blocks > a_sz)
1100 {
1101 a = XRESIZEVEC (int, a, nr_blocks);
1102 do
1103 a[a_sz++] = 0;
1104 while (a_sz != nr_blocks);
1105 }
1106
1107 a[nr_blocks - 1]++;
1108 }
1109
1110 *rsp = a;
1111 return a_sz;
1112 }
1113
1114 /* Print regions statistics. S1 and S2 denote the data before and after
1115 calling extend_rgns, respectively. */
1116 static void
1117 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1118 {
1119 int i;
1120
1121 /* We iterate until s2_sz because extend_rgns does not decrease
1122 the maximal region size. */
1123 for (i = 1; i < s2_sz; i++)
1124 {
1125 int n1, n2;
1126
1127 n2 = s2[i];
1128
1129 if (n2 == 0)
1130 continue;
1131
1132 if (i >= s1_sz)
1133 n1 = 0;
1134 else
1135 n1 = s1[i];
1136
1137 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1138 "was %d + %d more\n", i + 1, n1, n2 - n1);
1139 }
1140 }
1141
1142 /* Extend regions.
1143 DEGREE - Array of incoming edge count, considering only
1144 the edges, that don't have their sources in formed regions yet.
1145 IDXP - pointer to the next available index in rgn_bb_table.
1146 HEADER - set of all region heads.
1147 LOOP_HDR - mapping from block to the containing loop
1148 (two blocks can reside within one region if they have
1149 the same loop header). */
1150 void
1151 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1152 {
1153 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1154 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1155
1156 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1157
1158 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1159
1160 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1161 post_order_compute (order, false, false);
1162
1163 for (i = nblocks - 1; i >= 0; i--)
1164 {
1165 int bbn = order[i];
1166 if (degree[bbn] >= 0)
1167 {
1168 max_hdr[bbn] = bbn;
1169 rescan = 1;
1170 }
1171 else
1172 /* This block already was processed in find_rgns. */
1173 max_hdr[bbn] = -1;
1174 }
1175
1176 /* The idea is to topologically walk through CFG in top-down order.
1177 During the traversal, if all the predecessors of a node are
1178 marked to be in the same region (they all have the same max_hdr),
1179 then current node is also marked to be a part of that region.
1180 Otherwise the node starts its own region.
1181 CFG should be traversed until no further changes are made. On each
1182 iteration the set of the region heads is extended (the set of those
1183 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1184 set of all basic blocks, thus the algorithm is guaranteed to
1185 terminate. */
1186
1187 while (rescan && iter < max_iter)
1188 {
1189 rescan = 0;
1190
1191 for (i = nblocks - 1; i >= 0; i--)
1192 {
1193 edge e;
1194 edge_iterator ei;
1195 int bbn = order[i];
1196
1197 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1198 {
1199 int hdr = -1;
1200
1201 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1202 {
1203 int predn = e->src->index;
1204
1205 if (predn != ENTRY_BLOCK
1206 /* If pred wasn't processed in find_rgns. */
1207 && max_hdr[predn] != -1
1208 /* And pred and bb reside in the same loop.
1209 (Or out of any loop). */
1210 && loop_hdr[bbn] == loop_hdr[predn])
1211 {
1212 if (hdr == -1)
1213 /* Then bb extends the containing region of pred. */
1214 hdr = max_hdr[predn];
1215 else if (hdr != max_hdr[predn])
1216 /* Too bad, there are at least two predecessors
1217 that reside in different regions. Thus, BB should
1218 begin its own region. */
1219 {
1220 hdr = bbn;
1221 break;
1222 }
1223 }
1224 else
1225 /* BB starts its own region. */
1226 {
1227 hdr = bbn;
1228 break;
1229 }
1230 }
1231
1232 if (hdr == bbn)
1233 {
1234 /* If BB start its own region,
1235 update set of headers with BB. */
1236 bitmap_set_bit (header, bbn);
1237 rescan = 1;
1238 }
1239 else
1240 gcc_assert (hdr != -1);
1241
1242 max_hdr[bbn] = hdr;
1243 }
1244 }
1245
1246 iter++;
1247 }
1248
1249 /* Statistics were gathered on the SPEC2000 package of tests with
1250 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1251
1252 Statistics for SPECint:
1253 1 iteration : 1751 cases (38.7%)
1254 2 iterations: 2770 cases (61.3%)
1255 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1256 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1257 (We don't count single block regions here).
1258
1259 Statistics for SPECfp:
1260 1 iteration : 621 cases (35.9%)
1261 2 iterations: 1110 cases (64.1%)
1262 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1263 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1264 (We don't count single block regions here).
1265
1266 By default we do at most 2 iterations.
1267 This can be overridden with max-sched-extend-regions-iters parameter:
1268 0 - disable region extension,
1269 N > 0 - do at most N iterations. */
1270
1271 if (sched_verbose && iter != 0)
1272 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1273 rescan ? "... failed" : "");
1274
1275 if (!rescan && iter != 0)
1276 {
1277 int *s1 = NULL, s1_sz = 0;
1278
1279 /* Save the old statistics for later printout. */
1280 if (sched_verbose >= 6)
1281 s1_sz = gather_region_statistics (&s1);
1282
1283 /* We have succeeded. Now assemble the regions. */
1284 for (i = nblocks - 1; i >= 0; i--)
1285 {
1286 int bbn = order[i];
1287
1288 if (max_hdr[bbn] == bbn)
1289 /* BBN is a region head. */
1290 {
1291 edge e;
1292 edge_iterator ei;
1293 int num_bbs = 0, j, num_insns = 0, large;
1294
1295 large = too_large (bbn, &num_bbs, &num_insns);
1296
1297 degree[bbn] = -1;
1298 rgn_bb_table[idx] = bbn;
1299 RGN_BLOCKS (nr_regions) = idx++;
1300 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1301 RGN_HAS_REAL_EBB (nr_regions) = 0;
1302 CONTAINING_RGN (bbn) = nr_regions;
1303 BLOCK_TO_BB (bbn) = 0;
1304
1305 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1306 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1307 degree[e->dest->index]--;
1308
1309 if (!large)
1310 /* Here we check whether the region is too_large. */
1311 for (j = i - 1; j >= 0; j--)
1312 {
1313 int succn = order[j];
1314 if (max_hdr[succn] == bbn)
1315 {
1316 if ((large = too_large (succn, &num_bbs, &num_insns)))
1317 break;
1318 }
1319 }
1320
1321 if (large)
1322 /* If the region is too_large, then wrap every block of
1323 the region into single block region.
1324 Here we wrap region head only. Other blocks are
1325 processed in the below cycle. */
1326 {
1327 RGN_NR_BLOCKS (nr_regions) = 1;
1328 nr_regions++;
1329 }
1330
1331 num_bbs = 1;
1332
1333 for (j = i - 1; j >= 0; j--)
1334 {
1335 int succn = order[j];
1336
1337 if (max_hdr[succn] == bbn)
1338 /* This cycle iterates over all basic blocks, that
1339 are supposed to be in the region with head BBN,
1340 and wraps them into that region (or in single
1341 block region). */
1342 {
1343 gcc_assert (degree[succn] == 0);
1344
1345 degree[succn] = -1;
1346 rgn_bb_table[idx] = succn;
1347 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1348 CONTAINING_RGN (succn) = nr_regions;
1349
1350 if (large)
1351 /* Wrap SUCCN into single block region. */
1352 {
1353 RGN_BLOCKS (nr_regions) = idx;
1354 RGN_NR_BLOCKS (nr_regions) = 1;
1355 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1356 RGN_HAS_REAL_EBB (nr_regions) = 0;
1357 nr_regions++;
1358 }
1359
1360 idx++;
1361
1362 FOR_EACH_EDGE (e, ei,
1363 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1364 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1365 degree[e->dest->index]--;
1366 }
1367 }
1368
1369 if (!large)
1370 {
1371 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1372 nr_regions++;
1373 }
1374 }
1375 }
1376
1377 if (sched_verbose >= 6)
1378 {
1379 int *s2, s2_sz;
1380
1381 /* Get the new statistics and print the comparison with the
1382 one before calling this function. */
1383 s2_sz = gather_region_statistics (&s2);
1384 print_region_statistics (s1, s1_sz, s2, s2_sz);
1385 free (s1);
1386 free (s2);
1387 }
1388 }
1389
1390 free (order);
1391 free (max_hdr);
1392
1393 *idxp = idx;
1394 }
1395
1396 /* Functions for regions scheduling information. */
1397
1398 /* Compute dominators, probability, and potential-split-edges of bb.
1399 Assume that these values were already computed for bb's predecessors. */
1400
1401 static void
1402 compute_dom_prob_ps (int bb)
1403 {
1404 edge_iterator in_ei;
1405 edge in_edge;
1406
1407 /* We shouldn't have any real ebbs yet. */
1408 gcc_assert (ebb_head [bb] == bb + current_blocks);
1409
1410 if (IS_RGN_ENTRY (bb))
1411 {
1412 bitmap_set_bit (dom[bb], 0);
1413 prob[bb] = REG_BR_PROB_BASE;
1414 return;
1415 }
1416
1417 prob[bb] = 0;
1418
1419 /* Initialize dom[bb] to '111..1'. */
1420 bitmap_ones (dom[bb]);
1421
1422 FOR_EACH_EDGE (in_edge, in_ei,
1423 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1424 {
1425 int pred_bb;
1426 edge out_edge;
1427 edge_iterator out_ei;
1428
1429 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1430 continue;
1431
1432 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1433 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1434 bitmap_ior (ancestor_edges[bb],
1435 ancestor_edges[bb], ancestor_edges[pred_bb]);
1436
1437 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1438
1439 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1440
1441 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1442 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1443
1444 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1445 // The rounding divide in combine_probabilities can result in an extra
1446 // probability increment propagating along 50-50 edges. Eventually when
1447 // the edges re-merge, the accumulated probability can go slightly above
1448 // REG_BR_PROB_BASE.
1449 if (prob[bb] > REG_BR_PROB_BASE)
1450 prob[bb] = REG_BR_PROB_BASE;
1451 }
1452
1453 bitmap_set_bit (dom[bb], bb);
1454 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1455
1456 if (sched_verbose >= 2)
1457 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1458 (100 * prob[bb]) / REG_BR_PROB_BASE);
1459 }
1460
1461 /* Functions for target info. */
1462
1463 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1464 Note that bb_trg dominates bb_src. */
1465
1466 static void
1467 split_edges (int bb_src, int bb_trg, edgelst *bl)
1468 {
1469 auto_sbitmap src (SBITMAP_SIZE (pot_split[bb_src]));
1470 bitmap_copy (src, pot_split[bb_src]);
1471
1472 bitmap_and_compl (src, src, pot_split[bb_trg]);
1473 extract_edgelst (src, bl);
1474 }
1475
1476 /* Find the valid candidate-source-blocks for the target block TRG, compute
1477 their probability, and check if they are speculative or not.
1478 For speculative sources, compute their update-blocks and split-blocks. */
1479
1480 static void
1481 compute_trg_info (int trg)
1482 {
1483 candidate *sp;
1484 edgelst el = { NULL, 0 };
1485 int i, j, k, update_idx;
1486 basic_block block;
1487 edge_iterator ei;
1488 edge e;
1489
1490 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1491
1492 bblst_last = 0;
1493 /* bblst_table holds split blocks and update blocks for each block after
1494 the current one in the region. split blocks and update blocks are
1495 the TO blocks of region edges, so there can be at most rgn_nr_edges
1496 of them. */
1497 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1498 bblst_table = XNEWVEC (basic_block, bblst_size);
1499
1500 edgelst_last = 0;
1501 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1502
1503 /* Define some of the fields for the target bb as well. */
1504 sp = candidate_table + trg;
1505 sp->is_valid = 1;
1506 sp->is_speculative = 0;
1507 sp->src_prob = REG_BR_PROB_BASE;
1508
1509 auto_sbitmap visited (last_basic_block_for_fn (cfun));
1510
1511 for (i = trg + 1; i < current_nr_blocks; i++)
1512 {
1513 sp = candidate_table + i;
1514
1515 sp->is_valid = IS_DOMINATED (i, trg);
1516 if (sp->is_valid)
1517 {
1518 int tf = prob[trg], cf = prob[i];
1519
1520 /* In CFGs with low probability edges TF can possibly be zero. */
1521 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1522 sp->is_valid = (sp->src_prob >= min_spec_prob);
1523 }
1524
1525 if (sp->is_valid)
1526 {
1527 split_edges (i, trg, &el);
1528 sp->is_speculative = (el.nr_members) ? 1 : 0;
1529 if (sp->is_speculative && !flag_schedule_speculative)
1530 sp->is_valid = 0;
1531 }
1532
1533 if (sp->is_valid)
1534 {
1535 /* Compute split blocks and store them in bblst_table.
1536 The TO block of every split edge is a split block. */
1537 sp->split_bbs.first_member = &bblst_table[bblst_last];
1538 sp->split_bbs.nr_members = el.nr_members;
1539 for (j = 0; j < el.nr_members; bblst_last++, j++)
1540 bblst_table[bblst_last] = el.first_member[j]->dest;
1541 sp->update_bbs.first_member = &bblst_table[bblst_last];
1542
1543 /* Compute update blocks and store them in bblst_table.
1544 For every split edge, look at the FROM block, and check
1545 all out edges. For each out edge that is not a split edge,
1546 add the TO block to the update block list. This list can end
1547 up with a lot of duplicates. We need to weed them out to avoid
1548 overrunning the end of the bblst_table. */
1549
1550 update_idx = 0;
1551 bitmap_clear (visited);
1552 for (j = 0; j < el.nr_members; j++)
1553 {
1554 block = el.first_member[j]->src;
1555 FOR_EACH_EDGE (e, ei, block->succs)
1556 {
1557 if (!bitmap_bit_p (visited, e->dest->index))
1558 {
1559 for (k = 0; k < el.nr_members; k++)
1560 if (e == el.first_member[k])
1561 break;
1562
1563 if (k >= el.nr_members)
1564 {
1565 bblst_table[bblst_last++] = e->dest;
1566 bitmap_set_bit (visited, e->dest->index);
1567 update_idx++;
1568 }
1569 }
1570 }
1571 }
1572 sp->update_bbs.nr_members = update_idx;
1573
1574 /* Make sure we didn't overrun the end of bblst_table. */
1575 gcc_assert (bblst_last <= bblst_size);
1576 }
1577 else
1578 {
1579 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1580
1581 sp->is_speculative = 0;
1582 sp->src_prob = 0;
1583 }
1584 }
1585 }
1586
1587 /* Free the computed target info. */
1588 static void
1589 free_trg_info (void)
1590 {
1591 free (candidate_table);
1592 free (bblst_table);
1593 free (edgelst_table);
1594 }
1595
1596 /* Print candidates info, for debugging purposes. Callable from debugger. */
1597
1598 DEBUG_FUNCTION void
1599 debug_candidate (int i)
1600 {
1601 if (!candidate_table[i].is_valid)
1602 return;
1603
1604 if (candidate_table[i].is_speculative)
1605 {
1606 int j;
1607 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1608
1609 fprintf (sched_dump, "split path: ");
1610 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1611 {
1612 int b = candidate_table[i].split_bbs.first_member[j]->index;
1613
1614 fprintf (sched_dump, " %d ", b);
1615 }
1616 fprintf (sched_dump, "\n");
1617
1618 fprintf (sched_dump, "update path: ");
1619 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1620 {
1621 int b = candidate_table[i].update_bbs.first_member[j]->index;
1622
1623 fprintf (sched_dump, " %d ", b);
1624 }
1625 fprintf (sched_dump, "\n");
1626 }
1627 else
1628 {
1629 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1630 }
1631 }
1632
1633 /* Print candidates info, for debugging purposes. Callable from debugger. */
1634
1635 DEBUG_FUNCTION void
1636 debug_candidates (int trg)
1637 {
1638 int i;
1639
1640 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1641 BB_TO_BLOCK (trg), trg);
1642 for (i = trg + 1; i < current_nr_blocks; i++)
1643 debug_candidate (i);
1644 }
1645
1646 /* Functions for speculative scheduling. */
1647
1648 static bitmap_head not_in_df;
1649
1650 /* Return 0 if x is a set of a register alive in the beginning of one
1651 of the split-blocks of src, otherwise return 1. */
1652
1653 static int
1654 check_live_1 (int src, rtx x)
1655 {
1656 int i;
1657 int regno;
1658 rtx reg = SET_DEST (x);
1659
1660 if (reg == 0)
1661 return 1;
1662
1663 while (GET_CODE (reg) == SUBREG
1664 || GET_CODE (reg) == ZERO_EXTRACT
1665 || GET_CODE (reg) == STRICT_LOW_PART)
1666 reg = XEXP (reg, 0);
1667
1668 if (GET_CODE (reg) == PARALLEL)
1669 {
1670 int i;
1671
1672 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1673 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1674 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1675 return 1;
1676
1677 return 0;
1678 }
1679
1680 if (!REG_P (reg))
1681 return 1;
1682
1683 regno = REGNO (reg);
1684
1685 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1686 {
1687 /* Global registers are assumed live. */
1688 return 0;
1689 }
1690 else
1691 {
1692 if (regno < FIRST_PSEUDO_REGISTER)
1693 {
1694 /* Check for hard registers. */
1695 int j = REG_NREGS (reg);
1696 while (--j >= 0)
1697 {
1698 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1699 {
1700 basic_block b = candidate_table[src].split_bbs.first_member[i];
1701 int t = bitmap_bit_p (&not_in_df, b->index);
1702
1703 /* We can have split blocks, that were recently generated.
1704 Such blocks are always outside current region. */
1705 gcc_assert (!t || (CONTAINING_RGN (b->index)
1706 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1707
1708 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1709 return 0;
1710 }
1711 }
1712 }
1713 else
1714 {
1715 /* Check for pseudo registers. */
1716 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1717 {
1718 basic_block b = candidate_table[src].split_bbs.first_member[i];
1719 int t = bitmap_bit_p (&not_in_df, b->index);
1720
1721 gcc_assert (!t || (CONTAINING_RGN (b->index)
1722 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1723
1724 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1725 return 0;
1726 }
1727 }
1728 }
1729
1730 return 1;
1731 }
1732
1733 /* If x is a set of a register R, mark that R is alive in the beginning
1734 of every update-block of src. */
1735
1736 static void
1737 update_live_1 (int src, rtx x)
1738 {
1739 int i;
1740 int regno;
1741 rtx reg = SET_DEST (x);
1742
1743 if (reg == 0)
1744 return;
1745
1746 while (GET_CODE (reg) == SUBREG
1747 || GET_CODE (reg) == ZERO_EXTRACT
1748 || GET_CODE (reg) == STRICT_LOW_PART)
1749 reg = XEXP (reg, 0);
1750
1751 if (GET_CODE (reg) == PARALLEL)
1752 {
1753 int i;
1754
1755 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1756 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1757 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1758
1759 return;
1760 }
1761
1762 if (!REG_P (reg))
1763 return;
1764
1765 /* Global registers are always live, so the code below does not apply
1766 to them. */
1767
1768 regno = REGNO (reg);
1769
1770 if (! HARD_REGISTER_NUM_P (regno)
1771 || !global_regs[regno])
1772 {
1773 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1774 {
1775 basic_block b = candidate_table[src].update_bbs.first_member[i];
1776 bitmap_set_range (df_get_live_in (b), regno, REG_NREGS (reg));
1777 }
1778 }
1779 }
1780
1781 /* Return 1 if insn can be speculatively moved from block src to trg,
1782 otherwise return 0. Called before first insertion of insn to
1783 ready-list or before the scheduling. */
1784
1785 static int
1786 check_live (rtx_insn *insn, int src)
1787 {
1788 /* Find the registers set by instruction. */
1789 if (GET_CODE (PATTERN (insn)) == SET
1790 || GET_CODE (PATTERN (insn)) == CLOBBER)
1791 return check_live_1 (src, PATTERN (insn));
1792 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1793 {
1794 int j;
1795 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1796 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1797 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1798 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1799 return 0;
1800
1801 return 1;
1802 }
1803
1804 return 1;
1805 }
1806
1807 /* Update the live registers info after insn was moved speculatively from
1808 block src to trg. */
1809
1810 static void
1811 update_live (rtx_insn *insn, int src)
1812 {
1813 /* Find the registers set by instruction. */
1814 if (GET_CODE (PATTERN (insn)) == SET
1815 || GET_CODE (PATTERN (insn)) == CLOBBER)
1816 update_live_1 (src, PATTERN (insn));
1817 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1818 {
1819 int j;
1820 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1821 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1822 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1823 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1824 }
1825 }
1826
1827 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1828 #define IS_REACHABLE(bb_from, bb_to) \
1829 (bb_from == bb_to \
1830 || IS_RGN_ENTRY (bb_from) \
1831 || (bitmap_bit_p (ancestor_edges[bb_to], \
1832 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1833 BB_TO_BLOCK (bb_from)))))))
1834
1835 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1836
1837 static void
1838 set_spec_fed (rtx load_insn)
1839 {
1840 sd_iterator_def sd_it;
1841 dep_t dep;
1842
1843 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1844 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1845 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1846 }
1847
1848 /* On the path from the insn to load_insn_bb, find a conditional
1849 branch depending on insn, that guards the speculative load. */
1850
1851 static int
1852 find_conditional_protection (rtx_insn *insn, int load_insn_bb)
1853 {
1854 sd_iterator_def sd_it;
1855 dep_t dep;
1856
1857 /* Iterate through DEF-USE forward dependences. */
1858 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1859 {
1860 rtx_insn *next = DEP_CON (dep);
1861
1862 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1863 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1864 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1865 && load_insn_bb != INSN_BB (next)
1866 && DEP_TYPE (dep) == REG_DEP_TRUE
1867 && (JUMP_P (next)
1868 || find_conditional_protection (next, load_insn_bb)))
1869 return 1;
1870 }
1871 return 0;
1872 } /* find_conditional_protection */
1873
1874 /* Returns 1 if the same insn1 that participates in the computation
1875 of load_insn's address is feeding a conditional branch that is
1876 guarding on load_insn. This is true if we find two DEF-USE
1877 chains:
1878 insn1 -> ... -> conditional-branch
1879 insn1 -> ... -> load_insn,
1880 and if a flow path exists:
1881 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1882 and if insn1 is on the path
1883 region-entry -> ... -> bb_trg -> ... load_insn.
1884
1885 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1886 Locate the branch by following INSN_FORW_DEPS from insn1. */
1887
1888 static int
1889 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1890 {
1891 sd_iterator_def sd_it;
1892 dep_t dep;
1893
1894 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1895 {
1896 rtx_insn *insn1 = DEP_PRO (dep);
1897
1898 /* Must be a DEF-USE dependence upon non-branch. */
1899 if (DEP_TYPE (dep) != REG_DEP_TRUE
1900 || JUMP_P (insn1))
1901 continue;
1902
1903 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1904 if (INSN_BB (insn1) == bb_src
1905 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1906 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1907 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1908 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1909 continue;
1910
1911 /* Now search for the conditional-branch. */
1912 if (find_conditional_protection (insn1, bb_src))
1913 return 1;
1914
1915 /* Recursive step: search another insn1, "above" current insn1. */
1916 return is_conditionally_protected (insn1, bb_src, bb_trg);
1917 }
1918
1919 /* The chain does not exist. */
1920 return 0;
1921 } /* is_conditionally_protected */
1922
1923 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1924 load_insn can move speculatively from bb_src to bb_trg. All the
1925 following must hold:
1926
1927 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1928 (2) load_insn and load1 have a def-use dependence upon
1929 the same insn 'insn1'.
1930 (3) either load2 is in bb_trg, or:
1931 - there's only one split-block, and
1932 - load1 is on the escape path, and
1933
1934 From all these we can conclude that the two loads access memory
1935 addresses that differ at most by a constant, and hence if moving
1936 load_insn would cause an exception, it would have been caused by
1937 load2 anyhow. */
1938
1939 static int
1940 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1941 {
1942 sd_iterator_def back_sd_it;
1943 dep_t back_dep;
1944 candidate *candp = candidate_table + bb_src;
1945
1946 if (candp->split_bbs.nr_members != 1)
1947 /* Must have exactly one escape block. */
1948 return 0;
1949
1950 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1951 {
1952 rtx_insn *insn1 = DEP_PRO (back_dep);
1953
1954 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1955 /* Found a DEF-USE dependence (insn1, load_insn). */
1956 {
1957 sd_iterator_def fore_sd_it;
1958 dep_t fore_dep;
1959
1960 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1961 {
1962 rtx_insn *insn2 = DEP_CON (fore_dep);
1963
1964 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1965 {
1966 /* Found a DEF-USE dependence (insn1, insn2). */
1967 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1968 /* insn2 not guaranteed to be a 1 base reg load. */
1969 continue;
1970
1971 if (INSN_BB (insn2) == bb_trg)
1972 /* insn2 is the similar load, in the target block. */
1973 return 1;
1974
1975 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1976 /* insn2 is a similar load, in a split-block. */
1977 return 1;
1978 }
1979 }
1980 }
1981 }
1982
1983 /* Couldn't find a similar load. */
1984 return 0;
1985 } /* is_pfree */
1986
1987 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1988 a load moved speculatively, or if load_insn is protected by
1989 a compare on load_insn's address). */
1990
1991 static int
1992 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1993 {
1994 if (FED_BY_SPEC_LOAD (load_insn))
1995 return 1;
1996
1997 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
1998 /* Dependence may 'hide' out of the region. */
1999 return 1;
2000
2001 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2002 return 1;
2003
2004 return 0;
2005 }
2006
2007 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2008 Return 1 if insn is exception-free (and the motion is valid)
2009 and 0 otherwise. */
2010
2011 static int
2012 is_exception_free (rtx_insn *insn, int bb_src, int bb_trg)
2013 {
2014 int insn_class = haifa_classify_insn (insn);
2015
2016 /* Handle non-load insns. */
2017 switch (insn_class)
2018 {
2019 case TRAP_FREE:
2020 return 1;
2021 case TRAP_RISKY:
2022 return 0;
2023 default:;
2024 }
2025
2026 /* Handle loads. */
2027 if (!flag_schedule_speculative_load)
2028 return 0;
2029 IS_LOAD_INSN (insn) = 1;
2030 switch (insn_class)
2031 {
2032 case IFREE:
2033 return (1);
2034 case IRISKY:
2035 return 0;
2036 case PFREE_CANDIDATE:
2037 if (is_pfree (insn, bb_src, bb_trg))
2038 return 1;
2039 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2040 /* FALLTHRU */
2041 case PRISKY_CANDIDATE:
2042 if (!flag_schedule_speculative_load_dangerous
2043 || is_prisky (insn, bb_src, bb_trg))
2044 return 0;
2045 break;
2046 default:;
2047 }
2048
2049 return flag_schedule_speculative_load_dangerous;
2050 }
2051 \f
2052 /* The number of insns from the current block scheduled so far. */
2053 static int sched_target_n_insns;
2054 /* The number of insns from the current block to be scheduled in total. */
2055 static int target_n_insns;
2056 /* The number of insns from the entire region scheduled so far. */
2057 static int sched_n_insns;
2058
2059 /* Implementations of the sched_info functions for region scheduling. */
2060 static void init_ready_list (void);
2061 static int can_schedule_ready_p (rtx_insn *);
2062 static void begin_schedule_ready (rtx_insn *);
2063 static ds_t new_ready (rtx_insn *, ds_t);
2064 static int schedule_more_p (void);
2065 static const char *rgn_print_insn (const rtx_insn *, int);
2066 static int rgn_rank (rtx_insn *, rtx_insn *);
2067 static void compute_jump_reg_dependencies (rtx, regset);
2068
2069 /* Functions for speculative scheduling. */
2070 static void rgn_add_remove_insn (rtx_insn *, int);
2071 static void rgn_add_block (basic_block, basic_block);
2072 static void rgn_fix_recovery_cfg (int, int, int);
2073 static basic_block advance_target_bb (basic_block, rtx_insn *);
2074
2075 /* Return nonzero if there are more insns that should be scheduled. */
2076
2077 static int
2078 schedule_more_p (void)
2079 {
2080 return sched_target_n_insns < target_n_insns;
2081 }
2082
2083 /* Add all insns that are initially ready to the ready list READY. Called
2084 once before scheduling a set of insns. */
2085
2086 static void
2087 init_ready_list (void)
2088 {
2089 rtx_insn *prev_head = current_sched_info->prev_head;
2090 rtx_insn *next_tail = current_sched_info->next_tail;
2091 int bb_src;
2092 rtx_insn *insn;
2093
2094 target_n_insns = 0;
2095 sched_target_n_insns = 0;
2096 sched_n_insns = 0;
2097
2098 /* Print debugging information. */
2099 if (sched_verbose >= 5)
2100 debug_rgn_dependencies (target_bb);
2101
2102 /* Prepare current target block info. */
2103 if (current_nr_blocks > 1)
2104 compute_trg_info (target_bb);
2105
2106 /* Initialize ready list with all 'ready' insns in target block.
2107 Count number of insns in the target block being scheduled. */
2108 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2109 {
2110 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2111 TODO_SPEC (insn) = HARD_DEP;
2112 try_ready (insn);
2113 target_n_insns++;
2114
2115 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2116 }
2117
2118 /* Add to ready list all 'ready' insns in valid source blocks.
2119 For speculative insns, check-live, exception-free, and
2120 issue-delay. */
2121 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2122 if (IS_VALID (bb_src))
2123 {
2124 rtx_insn *src_head;
2125 rtx_insn *src_next_tail;
2126 rtx_insn *tail, *head;
2127
2128 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2129 &head, &tail);
2130 src_next_tail = NEXT_INSN (tail);
2131 src_head = head;
2132
2133 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2134 if (INSN_P (insn))
2135 {
2136 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2137 TODO_SPEC (insn) = HARD_DEP;
2138 try_ready (insn);
2139 }
2140 }
2141 }
2142
2143 /* Called after taking INSN from the ready list. Returns nonzero if this
2144 insn can be scheduled, nonzero if we should silently discard it. */
2145
2146 static int
2147 can_schedule_ready_p (rtx_insn *insn)
2148 {
2149 /* An interblock motion? */
2150 if (INSN_BB (insn) != target_bb
2151 && IS_SPECULATIVE_INSN (insn)
2152 && !check_live (insn, INSN_BB (insn)))
2153 return 0;
2154 else
2155 return 1;
2156 }
2157
2158 /* Updates counter and other information. Split from can_schedule_ready_p ()
2159 because when we schedule insn speculatively then insn passed to
2160 can_schedule_ready_p () differs from the one passed to
2161 begin_schedule_ready (). */
2162 static void
2163 begin_schedule_ready (rtx_insn *insn)
2164 {
2165 /* An interblock motion? */
2166 if (INSN_BB (insn) != target_bb)
2167 {
2168 if (IS_SPECULATIVE_INSN (insn))
2169 {
2170 gcc_assert (check_live (insn, INSN_BB (insn)));
2171
2172 update_live (insn, INSN_BB (insn));
2173
2174 /* For speculative load, mark insns fed by it. */
2175 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2176 set_spec_fed (insn);
2177
2178 nr_spec++;
2179 }
2180 nr_inter++;
2181 }
2182 else
2183 {
2184 /* In block motion. */
2185 sched_target_n_insns++;
2186 }
2187 sched_n_insns++;
2188 }
2189
2190 /* Called after INSN has all its hard dependencies resolved and the speculation
2191 of type TS is enough to overcome them all.
2192 Return nonzero if it should be moved to the ready list or the queue, or zero
2193 if we should silently discard it. */
2194 static ds_t
2195 new_ready (rtx_insn *next, ds_t ts)
2196 {
2197 if (INSN_BB (next) != target_bb)
2198 {
2199 int not_ex_free = 0;
2200
2201 /* For speculative insns, before inserting to ready/queue,
2202 check live, exception-free, and issue-delay. */
2203 if (!IS_VALID (INSN_BB (next))
2204 || CANT_MOVE (next)
2205 || (IS_SPECULATIVE_INSN (next)
2206 && ((recog_memoized (next) >= 0
2207 && min_insn_conflict_delay (curr_state, next, next)
2208 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2209 || IS_SPECULATION_CHECK_P (next)
2210 || !check_live (next, INSN_BB (next))
2211 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2212 target_bb)))))
2213 {
2214 if (not_ex_free
2215 /* We are here because is_exception_free () == false.
2216 But we possibly can handle that with control speculation. */
2217 && sched_deps_info->generate_spec_deps
2218 && spec_info->mask & BEGIN_CONTROL)
2219 {
2220 ds_t new_ds;
2221
2222 /* Add control speculation to NEXT's dependency type. */
2223 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2224
2225 /* Check if NEXT can be speculated with new dependency type. */
2226 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2227 /* Here we got new control-speculative instruction. */
2228 ts = new_ds;
2229 else
2230 /* NEXT isn't ready yet. */
2231 ts = DEP_POSTPONED;
2232 }
2233 else
2234 /* NEXT isn't ready yet. */
2235 ts = DEP_POSTPONED;
2236 }
2237 }
2238
2239 return ts;
2240 }
2241
2242 /* Return a string that contains the insn uid and optionally anything else
2243 necessary to identify this insn in an output. It's valid to use a
2244 static buffer for this. The ALIGNED parameter should cause the string
2245 to be formatted so that multiple output lines will line up nicely. */
2246
2247 static const char *
2248 rgn_print_insn (const rtx_insn *insn, int aligned)
2249 {
2250 static char tmp[80];
2251
2252 if (aligned)
2253 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2254 else
2255 {
2256 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2257 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2258 else
2259 sprintf (tmp, "%d", INSN_UID (insn));
2260 }
2261 return tmp;
2262 }
2263
2264 /* Compare priority of two insns. Return a positive number if the second
2265 insn is to be preferred for scheduling, and a negative one if the first
2266 is to be preferred. Zero if they are equally good. */
2267
2268 static int
2269 rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2270 {
2271 /* Some comparison make sense in interblock scheduling only. */
2272 if (INSN_BB (insn1) != INSN_BB (insn2))
2273 {
2274 int spec_val, prob_val;
2275
2276 /* Prefer an inblock motion on an interblock motion. */
2277 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2278 return 1;
2279 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2280 return -1;
2281
2282 /* Prefer a useful motion on a speculative one. */
2283 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2284 if (spec_val)
2285 return spec_val;
2286
2287 /* Prefer a more probable (speculative) insn. */
2288 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2289 if (prob_val)
2290 return prob_val;
2291 }
2292 return 0;
2293 }
2294
2295 /* NEXT is an instruction that depends on INSN (a backward dependence);
2296 return nonzero if we should include this dependence in priority
2297 calculations. */
2298
2299 int
2300 contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2301 {
2302 /* NEXT and INSN reside in one ebb. */
2303 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2304 }
2305
2306 /* INSN is a JUMP_INSN. Store the set of registers that must be
2307 considered as used by this jump in USED. */
2308
2309 static void
2310 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2311 regset used ATTRIBUTE_UNUSED)
2312 {
2313 /* Nothing to do here, since we postprocess jumps in
2314 add_branch_dependences. */
2315 }
2316
2317 /* This variable holds common_sched_info hooks and data relevant to
2318 the interblock scheduler. */
2319 static struct common_sched_info_def rgn_common_sched_info;
2320
2321
2322 /* This holds data for the dependence analysis relevant to
2323 the interblock scheduler. */
2324 static struct sched_deps_info_def rgn_sched_deps_info;
2325
2326 /* This holds constant data used for initializing the above structure
2327 for the Haifa scheduler. */
2328 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2329 {
2330 compute_jump_reg_dependencies,
2331 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2332 0, 0, 0
2333 };
2334
2335 /* Same as above, but for the selective scheduler. */
2336 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2337 {
2338 compute_jump_reg_dependencies,
2339 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2340 0, 0, 0
2341 };
2342
2343 /* Return true if scheduling INSN will trigger finish of scheduling
2344 current block. */
2345 static bool
2346 rgn_insn_finishes_block_p (rtx_insn *insn)
2347 {
2348 if (INSN_BB (insn) == target_bb
2349 && sched_target_n_insns + 1 == target_n_insns)
2350 /* INSN is the last not-scheduled instruction in the current block. */
2351 return true;
2352
2353 return false;
2354 }
2355
2356 /* Used in schedule_insns to initialize current_sched_info for scheduling
2357 regions (or single basic blocks). */
2358
2359 static const struct haifa_sched_info rgn_const_sched_info =
2360 {
2361 init_ready_list,
2362 can_schedule_ready_p,
2363 schedule_more_p,
2364 new_ready,
2365 rgn_rank,
2366 rgn_print_insn,
2367 contributes_to_priority,
2368 rgn_insn_finishes_block_p,
2369
2370 NULL, NULL,
2371 NULL, NULL,
2372 0, 0,
2373
2374 rgn_add_remove_insn,
2375 begin_schedule_ready,
2376 NULL,
2377 advance_target_bb,
2378 NULL, NULL,
2379 SCHED_RGN
2380 };
2381
2382 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2383 for the interblock scheduler frontend. */
2384 static struct haifa_sched_info rgn_sched_info;
2385
2386 /* Returns maximum priority that an insn was assigned to. */
2387
2388 int
2389 get_rgn_sched_max_insns_priority (void)
2390 {
2391 return rgn_sched_info.sched_max_insns_priority;
2392 }
2393
2394 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2395
2396 static bool
2397 sets_likely_spilled (rtx pat)
2398 {
2399 bool ret = false;
2400 note_stores (pat, sets_likely_spilled_1, &ret);
2401 return ret;
2402 }
2403
2404 static void
2405 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2406 {
2407 bool *ret = (bool *) data;
2408
2409 if (GET_CODE (pat) == SET
2410 && REG_P (x)
2411 && HARD_REGISTER_P (x)
2412 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2413 *ret = true;
2414 }
2415
2416 /* A bitmap to note insns that participate in any dependency. Used in
2417 add_branch_dependences. */
2418 static sbitmap insn_referenced;
2419
2420 /* Add dependences so that branches are scheduled to run last in their
2421 block. */
2422 static void
2423 add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2424 {
2425 rtx_insn *insn, *last;
2426
2427 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2428 that can throw exceptions, force them to remain in order at the end of
2429 the block by adding dependencies and giving the last a high priority.
2430 There may be notes present, and prev_head may also be a note.
2431
2432 Branches must obviously remain at the end. Calls should remain at the
2433 end since moving them results in worse register allocation. Uses remain
2434 at the end to ensure proper register allocation.
2435
2436 cc0 setters remain at the end because they can't be moved away from
2437 their cc0 user.
2438
2439 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2440
2441 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2442
2443 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2444 values) are not moved before reload because we can wind up with register
2445 allocation failures. */
2446
2447 while (tail != head && DEBUG_INSN_P (tail))
2448 tail = PREV_INSN (tail);
2449
2450 insn = tail;
2451 last = 0;
2452 while (CALL_P (insn)
2453 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2454 || (NONJUMP_INSN_P (insn)
2455 && (GET_CODE (PATTERN (insn)) == USE
2456 || GET_CODE (PATTERN (insn)) == CLOBBER
2457 || can_throw_internal (insn)
2458 || (HAVE_cc0 && sets_cc0_p (PATTERN (insn)))
2459 || (!reload_completed
2460 && sets_likely_spilled (PATTERN (insn)))))
2461 || NOTE_P (insn)
2462 || (last != 0 && SCHED_GROUP_P (last)))
2463 {
2464 if (!NOTE_P (insn))
2465 {
2466 if (last != 0
2467 && sd_find_dep_between (insn, last, false) == NULL)
2468 {
2469 if (! sched_insns_conditions_mutex_p (last, insn))
2470 add_dependence (last, insn, REG_DEP_ANTI);
2471 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2472 }
2473
2474 CANT_MOVE (insn) = 1;
2475
2476 last = insn;
2477 }
2478
2479 /* Don't overrun the bounds of the basic block. */
2480 if (insn == head)
2481 break;
2482
2483 do
2484 insn = PREV_INSN (insn);
2485 while (insn != head && DEBUG_INSN_P (insn));
2486 }
2487
2488 /* Make sure these insns are scheduled last in their block. */
2489 insn = last;
2490 if (insn != 0)
2491 while (insn != head)
2492 {
2493 insn = prev_nonnote_insn (insn);
2494
2495 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2496 || DEBUG_INSN_P (insn))
2497 continue;
2498
2499 if (! sched_insns_conditions_mutex_p (last, insn))
2500 add_dependence (last, insn, REG_DEP_ANTI);
2501 }
2502
2503 if (!targetm.have_conditional_execution ())
2504 return;
2505
2506 /* Finally, if the block ends in a jump, and we are doing intra-block
2507 scheduling, make sure that the branch depends on any COND_EXEC insns
2508 inside the block to avoid moving the COND_EXECs past the branch insn.
2509
2510 We only have to do this after reload, because (1) before reload there
2511 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2512 scheduler after reload.
2513
2514 FIXME: We could in some cases move COND_EXEC insns past the branch if
2515 this scheduler would be a little smarter. Consider this code:
2516
2517 T = [addr]
2518 C ? addr += 4
2519 !C ? X += 12
2520 C ? T += 1
2521 C ? jump foo
2522
2523 On a target with a one cycle stall on a memory access the optimal
2524 sequence would be:
2525
2526 T = [addr]
2527 C ? addr += 4
2528 C ? T += 1
2529 C ? jump foo
2530 !C ? X += 12
2531
2532 We don't want to put the 'X += 12' before the branch because it just
2533 wastes a cycle of execution time when the branch is taken.
2534
2535 Note that in the example "!C" will always be true. That is another
2536 possible improvement for handling COND_EXECs in this scheduler: it
2537 could remove always-true predicates. */
2538
2539 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2540 return;
2541
2542 insn = tail;
2543 while (insn != head)
2544 {
2545 insn = PREV_INSN (insn);
2546
2547 /* Note that we want to add this dependency even when
2548 sched_insns_conditions_mutex_p returns true. The whole point
2549 is that we _want_ this dependency, even if these insns really
2550 are independent. */
2551 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2552 add_dependence (tail, insn, REG_DEP_ANTI);
2553 }
2554 }
2555
2556 /* Data structures for the computation of data dependences in a regions. We
2557 keep one `deps' structure for every basic block. Before analyzing the
2558 data dependences for a bb, its variables are initialized as a function of
2559 the variables of its predecessors. When the analysis for a bb completes,
2560 we save the contents to the corresponding bb_deps[bb] variable. */
2561
2562 static struct deps_desc *bb_deps;
2563
2564 static void
2565 concat_insn_mem_list (rtx_insn_list *copy_insns,
2566 rtx_expr_list *copy_mems,
2567 rtx_insn_list **old_insns_p,
2568 rtx_expr_list **old_mems_p)
2569 {
2570 rtx_insn_list *new_insns = *old_insns_p;
2571 rtx_expr_list *new_mems = *old_mems_p;
2572
2573 while (copy_insns)
2574 {
2575 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2576 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2577 copy_insns = copy_insns->next ();
2578 copy_mems = copy_mems->next ();
2579 }
2580
2581 *old_insns_p = new_insns;
2582 *old_mems_p = new_mems;
2583 }
2584
2585 /* Join PRED_DEPS to the SUCC_DEPS. */
2586 void
2587 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2588 {
2589 unsigned reg;
2590 reg_set_iterator rsi;
2591
2592 /* The reg_last lists are inherited by successor. */
2593 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2594 {
2595 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2596 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2597
2598 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2599 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2600 succ_rl->implicit_sets
2601 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2602 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2603 succ_rl->clobbers);
2604 succ_rl->uses_length += pred_rl->uses_length;
2605 succ_rl->clobbers_length += pred_rl->clobbers_length;
2606 }
2607 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2608
2609 /* Mem read/write lists are inherited by successor. */
2610 concat_insn_mem_list (pred_deps->pending_read_insns,
2611 pred_deps->pending_read_mems,
2612 &succ_deps->pending_read_insns,
2613 &succ_deps->pending_read_mems);
2614 concat_insn_mem_list (pred_deps->pending_write_insns,
2615 pred_deps->pending_write_mems,
2616 &succ_deps->pending_write_insns,
2617 &succ_deps->pending_write_mems);
2618
2619 succ_deps->pending_jump_insns
2620 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2621 succ_deps->pending_jump_insns);
2622 succ_deps->last_pending_memory_flush
2623 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2624 succ_deps->last_pending_memory_flush);
2625
2626 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2627 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2628 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2629
2630 /* last_function_call is inherited by successor. */
2631 succ_deps->last_function_call
2632 = concat_INSN_LIST (pred_deps->last_function_call,
2633 succ_deps->last_function_call);
2634
2635 /* last_function_call_may_noreturn is inherited by successor. */
2636 succ_deps->last_function_call_may_noreturn
2637 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2638 succ_deps->last_function_call_may_noreturn);
2639
2640 /* sched_before_next_call is inherited by successor. */
2641 succ_deps->sched_before_next_call
2642 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2643 succ_deps->sched_before_next_call);
2644 }
2645
2646 /* After computing the dependencies for block BB, propagate the dependencies
2647 found in TMP_DEPS to the successors of the block. */
2648 static void
2649 propagate_deps (int bb, struct deps_desc *pred_deps)
2650 {
2651 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2652 edge_iterator ei;
2653 edge e;
2654
2655 /* bb's structures are inherited by its successors. */
2656 FOR_EACH_EDGE (e, ei, block->succs)
2657 {
2658 /* Only bbs "below" bb, in the same region, are interesting. */
2659 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2660 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2661 || BLOCK_TO_BB (e->dest->index) <= bb)
2662 continue;
2663
2664 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2665 }
2666
2667 /* These lists should point to the right place, for correct
2668 freeing later. */
2669 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2670 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2671 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2672 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2673 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2674
2675 /* Can't allow these to be freed twice. */
2676 pred_deps->pending_read_insns = 0;
2677 pred_deps->pending_read_mems = 0;
2678 pred_deps->pending_write_insns = 0;
2679 pred_deps->pending_write_mems = 0;
2680 pred_deps->pending_jump_insns = 0;
2681 }
2682
2683 /* Compute dependences inside bb. In a multiple blocks region:
2684 (1) a bb is analyzed after its predecessors, and (2) the lists in
2685 effect at the end of bb (after analyzing for bb) are inherited by
2686 bb's successors.
2687
2688 Specifically for reg-reg data dependences, the block insns are
2689 scanned by sched_analyze () top-to-bottom. Three lists are
2690 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2691 reg_last[].implicit_sets for implicit hard register DEFs, and
2692 reg_last[].uses for register USEs.
2693
2694 When analysis is completed for bb, we update for its successors:
2695 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2696 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2697 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2698
2699 The mechanism for computing mem-mem data dependence is very
2700 similar, and the result is interblock dependences in the region. */
2701
2702 static void
2703 compute_block_dependences (int bb)
2704 {
2705 rtx_insn *head, *tail;
2706 struct deps_desc tmp_deps;
2707
2708 tmp_deps = bb_deps[bb];
2709
2710 /* Do the analysis for this block. */
2711 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2712 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2713
2714 sched_analyze (&tmp_deps, head, tail);
2715
2716 /* Selective scheduling handles control dependencies by itself. */
2717 if (!sel_sched_p ())
2718 add_branch_dependences (head, tail);
2719
2720 if (current_nr_blocks > 1)
2721 propagate_deps (bb, &tmp_deps);
2722
2723 /* Free up the INSN_LISTs. */
2724 free_deps (&tmp_deps);
2725
2726 if (targetm.sched.dependencies_evaluation_hook)
2727 targetm.sched.dependencies_evaluation_hook (head, tail);
2728 }
2729
2730 /* Free dependencies of instructions inside BB. */
2731 static void
2732 free_block_dependencies (int bb)
2733 {
2734 rtx_insn *head;
2735 rtx_insn *tail;
2736
2737 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2738
2739 if (no_real_insns_p (head, tail))
2740 return;
2741
2742 sched_free_deps (head, tail, true);
2743 }
2744
2745 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2746 them to the unused_*_list variables, so that they can be reused. */
2747
2748 static void
2749 free_pending_lists (void)
2750 {
2751 int bb;
2752
2753 for (bb = 0; bb < current_nr_blocks; bb++)
2754 {
2755 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2756 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2757 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2758 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2759 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2760 }
2761 }
2762 \f
2763 /* Print dependences for debugging starting from FROM_BB.
2764 Callable from debugger. */
2765 /* Print dependences for debugging starting from FROM_BB.
2766 Callable from debugger. */
2767 DEBUG_FUNCTION void
2768 debug_rgn_dependencies (int from_bb)
2769 {
2770 int bb;
2771
2772 fprintf (sched_dump,
2773 ";; --------------- forward dependences: ------------ \n");
2774
2775 for (bb = from_bb; bb < current_nr_blocks; bb++)
2776 {
2777 rtx_insn *head, *tail;
2778
2779 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2780 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2781 BB_TO_BLOCK (bb), bb);
2782
2783 debug_dependencies (head, tail);
2784 }
2785 }
2786
2787 /* Print dependencies information for instructions between HEAD and TAIL.
2788 ??? This function would probably fit best in haifa-sched.c. */
2789 void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2790 {
2791 rtx_insn *insn;
2792 rtx_insn *next_tail = NEXT_INSN (tail);
2793
2794 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2795 "insn", "code", "bb", "dep", "prio", "cost",
2796 "reservation");
2797 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2798 "----", "----", "--", "---", "----", "----",
2799 "-----------");
2800
2801 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2802 {
2803 if (! INSN_P (insn))
2804 {
2805 int n;
2806 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2807 if (NOTE_P (insn))
2808 {
2809 n = NOTE_KIND (insn);
2810 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2811 }
2812 else
2813 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2814 continue;
2815 }
2816
2817 fprintf (sched_dump,
2818 ";; %s%5d%6d%6d%6d%6d%6d ",
2819 (SCHED_GROUP_P (insn) ? "+" : " "),
2820 INSN_UID (insn),
2821 INSN_CODE (insn),
2822 BLOCK_NUM (insn),
2823 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2824 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2825 : INSN_PRIORITY (insn))
2826 : INSN_PRIORITY (insn)),
2827 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2828 : insn_cost (insn))
2829 : insn_cost (insn)));
2830
2831 if (recog_memoized (insn) < 0)
2832 fprintf (sched_dump, "nothing");
2833 else
2834 print_reservation (sched_dump, insn);
2835
2836 fprintf (sched_dump, "\t: ");
2837 {
2838 sd_iterator_def sd_it;
2839 dep_t dep;
2840
2841 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2842 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2843 DEP_NONREG (dep) ? "n" : "",
2844 DEP_MULTIPLE (dep) ? "m" : "");
2845 }
2846 fprintf (sched_dump, "\n");
2847 }
2848
2849 fprintf (sched_dump, "\n");
2850 }
2851
2852 /* Dump dependency graph for the current region to a file using dot syntax. */
2853
2854 void
2855 dump_rgn_dependencies_dot (FILE *file)
2856 {
2857 rtx_insn *head, *tail, *con, *pro;
2858 sd_iterator_def sd_it;
2859 dep_t dep;
2860 int bb;
2861 pretty_printer pp;
2862
2863 pp.buffer->stream = file;
2864 pp_printf (&pp, "digraph SchedDG {\n");
2865
2866 for (bb = 0; bb < current_nr_blocks; ++bb)
2867 {
2868 /* Begin subgraph (basic block). */
2869 pp_printf (&pp, "subgraph cluster_block_%d {\n", bb);
2870 pp_printf (&pp, "\t" "color=blue;" "\n");
2871 pp_printf (&pp, "\t" "style=bold;" "\n");
2872 pp_printf (&pp, "\t" "label=\"BB #%d\";\n", BB_TO_BLOCK (bb));
2873
2874 /* Setup head and tail (no support for EBBs). */
2875 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2876 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2877 tail = NEXT_INSN (tail);
2878
2879 /* Dump all insns. */
2880 for (con = head; con != tail; con = NEXT_INSN (con))
2881 {
2882 if (!INSN_P (con))
2883 continue;
2884
2885 /* Pretty print the insn. */
2886 pp_printf (&pp, "\t%d [label=\"{", INSN_UID (con));
2887 pp_write_text_to_stream (&pp);
2888 print_insn (&pp, con, /*verbose=*/false);
2889 pp_write_text_as_dot_label_to_stream (&pp, /*for_record=*/true);
2890 pp_write_text_to_stream (&pp);
2891
2892 /* Dump instruction attributes. */
2893 pp_printf (&pp, "|{ uid:%d | luid:%d | prio:%d }}\",shape=record]\n",
2894 INSN_UID (con), INSN_LUID (con), INSN_PRIORITY (con));
2895
2896 /* Dump all deps. */
2897 FOR_EACH_DEP (con, SD_LIST_BACK, sd_it, dep)
2898 {
2899 int weight = 0;
2900 const char *color;
2901 pro = DEP_PRO (dep);
2902
2903 switch (DEP_TYPE (dep))
2904 {
2905 case REG_DEP_TRUE:
2906 color = "black";
2907 weight = 1;
2908 break;
2909 case REG_DEP_OUTPUT:
2910 case REG_DEP_ANTI:
2911 color = "orange";
2912 break;
2913 case REG_DEP_CONTROL:
2914 color = "blue";
2915 break;
2916 default:
2917 gcc_unreachable ();
2918 }
2919
2920 pp_printf (&pp, "\t%d -> %d [color=%s",
2921 INSN_UID (pro), INSN_UID (con), color);
2922 if (int cost = dep_cost (dep))
2923 pp_printf (&pp, ",label=%d", cost);
2924 pp_printf (&pp, ",weight=%d", weight);
2925 pp_printf (&pp, "];\n");
2926 }
2927 }
2928 pp_printf (&pp, "}\n");
2929 }
2930
2931 pp_printf (&pp, "}\n");
2932 pp_flush (&pp);
2933 }
2934
2935 /* Dump dependency graph for the current region to a file using dot syntax. */
2936
2937 DEBUG_FUNCTION void
2938 dump_rgn_dependencies_dot (const char *fname)
2939 {
2940 FILE *fp;
2941
2942 fp = fopen (fname, "w");
2943 if (!fp)
2944 {
2945 perror ("fopen");
2946 return;
2947 }
2948
2949 dump_rgn_dependencies_dot (fp);
2950 fclose (fp);
2951 }
2952
2953 \f
2954 /* Returns true if all the basic blocks of the current region have
2955 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2956 bool
2957 sched_is_disabled_for_current_region_p (void)
2958 {
2959 int bb;
2960
2961 for (bb = 0; bb < current_nr_blocks; bb++)
2962 if (!(BASIC_BLOCK_FOR_FN (cfun,
2963 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2964 return false;
2965
2966 return true;
2967 }
2968
2969 /* Free all region dependencies saved in INSN_BACK_DEPS and
2970 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2971 when scheduling, so this function is supposed to be called from
2972 the selective scheduling only. */
2973 void
2974 free_rgn_deps (void)
2975 {
2976 int bb;
2977
2978 for (bb = 0; bb < current_nr_blocks; bb++)
2979 {
2980 rtx_insn *head, *tail;
2981
2982 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2983 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2984
2985 sched_free_deps (head, tail, false);
2986 }
2987 }
2988
2989 static int rgn_n_insns;
2990
2991 /* Compute insn priority for a current region. */
2992 void
2993 compute_priorities (void)
2994 {
2995 int bb;
2996
2997 current_sched_info->sched_max_insns_priority = 0;
2998 for (bb = 0; bb < current_nr_blocks; bb++)
2999 {
3000 rtx_insn *head, *tail;
3001
3002 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
3003 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
3004
3005 if (no_real_insns_p (head, tail))
3006 continue;
3007
3008 rgn_n_insns += set_priorities (head, tail);
3009 }
3010 current_sched_info->sched_max_insns_priority++;
3011 }
3012
3013 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
3014
3015 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
3016 zero for the first call to this function, to allocate the arrays for the
3017 first time.
3018
3019 This function is called once during initialization of the scheduler, and
3020 called again to resize the arrays if new basic blocks have been created,
3021 for example for speculation recovery code. */
3022
3023 static void
3024 realloc_bb_state_array (int saved_last_basic_block)
3025 {
3026 char *old_bb_state_array = bb_state_array;
3027 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
3028 size_t slbb = (size_t) saved_last_basic_block;
3029
3030 /* Nothing to do if nothing changed since the last time this was called. */
3031 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
3032 return;
3033
3034 /* The selective scheduler doesn't use the state arrays. */
3035 if (sel_sched_p ())
3036 {
3037 gcc_assert (bb_state_array == NULL && bb_state == NULL);
3038 return;
3039 }
3040
3041 gcc_checking_assert (saved_last_basic_block == 0
3042 || (bb_state_array != NULL && bb_state != NULL));
3043
3044 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
3045 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
3046
3047 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
3048 Otherwise only fixup the newly allocated ones. For the state
3049 array itself, only initialize the new entries. */
3050 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
3051 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
3052 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
3053 for (size_t i = slbb; i < lbb; i++)
3054 state_reset (bb_state[i]);
3055 }
3056
3057 /* Free the arrays of DFA states at the end of each basic block. */
3058
3059 static void
3060 free_bb_state_array (void)
3061 {
3062 free (bb_state_array);
3063 free (bb_state);
3064 bb_state_array = NULL;
3065 bb_state = NULL;
3066 }
3067
3068 /* Schedule a region. A region is either an inner loop, a loop-free
3069 subroutine, or a single basic block. Each bb in the region is
3070 scheduled after its flow predecessors. */
3071
3072 static void
3073 schedule_region (int rgn)
3074 {
3075 int bb;
3076 int sched_rgn_n_insns = 0;
3077
3078 rgn_n_insns = 0;
3079
3080 /* Do not support register pressure sensitive scheduling for the new regions
3081 as we don't update the liveness info for them. */
3082 if (sched_pressure != SCHED_PRESSURE_NONE
3083 && rgn >= nr_regions_initial)
3084 {
3085 free_global_sched_pressure_data ();
3086 sched_pressure = SCHED_PRESSURE_NONE;
3087 }
3088
3089 rgn_setup_region (rgn);
3090
3091 /* Don't schedule region that is marked by
3092 NOTE_DISABLE_SCHED_OF_BLOCK. */
3093 if (sched_is_disabled_for_current_region_p ())
3094 return;
3095
3096 sched_rgn_compute_dependencies (rgn);
3097
3098 sched_rgn_local_init (rgn);
3099
3100 /* Set priorities. */
3101 compute_priorities ();
3102
3103 sched_extend_ready_list (rgn_n_insns);
3104
3105 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3106 {
3107 sched_init_region_reg_pressure_info ();
3108 for (bb = 0; bb < current_nr_blocks; bb++)
3109 {
3110 basic_block first_bb, last_bb;
3111 rtx_insn *head, *tail;
3112
3113 first_bb = EBB_FIRST_BB (bb);
3114 last_bb = EBB_LAST_BB (bb);
3115
3116 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3117
3118 if (no_real_insns_p (head, tail))
3119 {
3120 gcc_assert (first_bb == last_bb);
3121 continue;
3122 }
3123 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3124 }
3125 }
3126
3127 /* Now we can schedule all blocks. */
3128 for (bb = 0; bb < current_nr_blocks; bb++)
3129 {
3130 basic_block first_bb, last_bb, curr_bb;
3131 rtx_insn *head, *tail;
3132
3133 first_bb = EBB_FIRST_BB (bb);
3134 last_bb = EBB_LAST_BB (bb);
3135
3136 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3137
3138 if (no_real_insns_p (head, tail))
3139 {
3140 gcc_assert (first_bb == last_bb);
3141 continue;
3142 }
3143
3144 current_sched_info->prev_head = PREV_INSN (head);
3145 current_sched_info->next_tail = NEXT_INSN (tail);
3146
3147 remove_notes (head, tail);
3148
3149 unlink_bb_notes (first_bb, last_bb);
3150
3151 target_bb = bb;
3152
3153 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3154 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3155
3156 curr_bb = first_bb;
3157 if (dbg_cnt (sched_block))
3158 {
3159 edge f;
3160 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3161
3162 schedule_block (&curr_bb, bb_state[first_bb->index]);
3163 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3164 sched_rgn_n_insns += sched_n_insns;
3165 realloc_bb_state_array (saved_last_basic_block);
3166 f = find_fallthru_edge (last_bb->succs);
3167 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3168 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3169 {
3170 memcpy (bb_state[f->dest->index], curr_state,
3171 dfa_state_size);
3172 if (sched_verbose >= 5)
3173 fprintf (sched_dump, "saving state for edge %d->%d\n",
3174 f->src->index, f->dest->index);
3175 }
3176 }
3177 else
3178 {
3179 sched_rgn_n_insns += rgn_n_insns;
3180 }
3181
3182 /* Clean up. */
3183 if (current_nr_blocks > 1)
3184 free_trg_info ();
3185 }
3186
3187 /* Sanity check: verify that all region insns were scheduled. */
3188 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3189
3190 sched_finish_ready_list ();
3191
3192 /* Done with this region. */
3193 sched_rgn_local_finish ();
3194
3195 /* Free dependencies. */
3196 for (bb = 0; bb < current_nr_blocks; ++bb)
3197 free_block_dependencies (bb);
3198
3199 gcc_assert (haifa_recovery_bb_ever_added_p
3200 || deps_pools_are_empty_p ());
3201 }
3202
3203 /* Initialize data structures for region scheduling. */
3204
3205 void
3206 sched_rgn_init (bool single_blocks_p)
3207 {
3208 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3209 / 100);
3210
3211 nr_inter = 0;
3212 nr_spec = 0;
3213
3214 extend_regions ();
3215
3216 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3217 CONTAINING_RGN (EXIT_BLOCK) = -1;
3218
3219 realloc_bb_state_array (0);
3220
3221 /* Compute regions for scheduling. */
3222 if (single_blocks_p
3223 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3224 || !flag_schedule_interblock
3225 || is_cfg_nonregular ())
3226 {
3227 find_single_block_region (sel_sched_p ());
3228 }
3229 else
3230 {
3231 /* Compute the dominators and post dominators. */
3232 if (!sel_sched_p ())
3233 calculate_dominance_info (CDI_DOMINATORS);
3234
3235 /* Find regions. */
3236 find_rgns ();
3237
3238 if (sched_verbose >= 3)
3239 debug_regions ();
3240
3241 /* For now. This will move as more and more of haifa is converted
3242 to using the cfg code. */
3243 if (!sel_sched_p ())
3244 free_dominance_info (CDI_DOMINATORS);
3245 }
3246
3247 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3248
3249 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3250 RGN_NR_BLOCKS (nr_regions - 1));
3251 nr_regions_initial = nr_regions;
3252 }
3253
3254 /* Free data structures for region scheduling. */
3255 void
3256 sched_rgn_finish (void)
3257 {
3258 free_bb_state_array ();
3259
3260 /* Reposition the prologue and epilogue notes in case we moved the
3261 prologue/epilogue insns. */
3262 if (reload_completed)
3263 reposition_prologue_and_epilogue_notes ();
3264
3265 if (sched_verbose)
3266 {
3267 if (reload_completed == 0
3268 && flag_schedule_interblock)
3269 {
3270 fprintf (sched_dump,
3271 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3272 nr_inter, nr_spec);
3273 }
3274 else
3275 gcc_assert (nr_inter <= 0);
3276 fprintf (sched_dump, "\n\n");
3277 }
3278
3279 nr_regions = 0;
3280
3281 free (rgn_table);
3282 rgn_table = NULL;
3283
3284 free (rgn_bb_table);
3285 rgn_bb_table = NULL;
3286
3287 free (block_to_bb);
3288 block_to_bb = NULL;
3289
3290 free (containing_rgn);
3291 containing_rgn = NULL;
3292
3293 free (ebb_head);
3294 ebb_head = NULL;
3295 }
3296
3297 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3298 point to the region RGN. */
3299 void
3300 rgn_setup_region (int rgn)
3301 {
3302 int bb;
3303
3304 /* Set variables for the current region. */
3305 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3306 current_blocks = RGN_BLOCKS (rgn);
3307
3308 /* EBB_HEAD is a region-scope structure. But we realloc it for
3309 each region to save time/memory/something else.
3310 See comments in add_block1, for what reasons we allocate +1 element. */
3311 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3312 for (bb = 0; bb <= current_nr_blocks; bb++)
3313 ebb_head[bb] = current_blocks + bb;
3314 }
3315
3316 /* Compute instruction dependencies in region RGN. */
3317 void
3318 sched_rgn_compute_dependencies (int rgn)
3319 {
3320 if (!RGN_DONT_CALC_DEPS (rgn))
3321 {
3322 int bb;
3323
3324 if (sel_sched_p ())
3325 sched_emulate_haifa_p = 1;
3326
3327 init_deps_global ();
3328
3329 /* Initializations for region data dependence analysis. */
3330 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3331 for (bb = 0; bb < current_nr_blocks; bb++)
3332 init_deps (bb_deps + bb, false);
3333
3334 /* Initialize bitmap used in add_branch_dependences. */
3335 insn_referenced = sbitmap_alloc (sched_max_luid);
3336 bitmap_clear (insn_referenced);
3337
3338 /* Compute backward dependencies. */
3339 for (bb = 0; bb < current_nr_blocks; bb++)
3340 compute_block_dependences (bb);
3341
3342 sbitmap_free (insn_referenced);
3343 free_pending_lists ();
3344 finish_deps_global ();
3345 free (bb_deps);
3346
3347 /* We don't want to recalculate this twice. */
3348 RGN_DONT_CALC_DEPS (rgn) = 1;
3349
3350 if (sel_sched_p ())
3351 sched_emulate_haifa_p = 0;
3352 }
3353 else
3354 /* (This is a recovery block. It is always a single block region.)
3355 OR (We use selective scheduling.) */
3356 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3357 }
3358
3359 /* Init region data structures. Returns true if this region should
3360 not be scheduled. */
3361 void
3362 sched_rgn_local_init (int rgn)
3363 {
3364 int bb;
3365
3366 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3367 if (current_nr_blocks > 1)
3368 {
3369 basic_block block;
3370 edge e;
3371 edge_iterator ei;
3372
3373 prob = XNEWVEC (int, current_nr_blocks);
3374
3375 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3376 bitmap_vector_clear (dom, current_nr_blocks);
3377
3378 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3379 rgn_nr_edges = 0;
3380 FOR_EACH_BB_FN (block, cfun)
3381 {
3382 if (CONTAINING_RGN (block->index) != rgn)
3383 continue;
3384 FOR_EACH_EDGE (e, ei, block->succs)
3385 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3386 }
3387
3388 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3389 rgn_nr_edges = 0;
3390 FOR_EACH_BB_FN (block, cfun)
3391 {
3392 if (CONTAINING_RGN (block->index) != rgn)
3393 continue;
3394 FOR_EACH_EDGE (e, ei, block->succs)
3395 rgn_edges[rgn_nr_edges++] = e;
3396 }
3397
3398 /* Split edges. */
3399 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3400 bitmap_vector_clear (pot_split, current_nr_blocks);
3401 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3402 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3403
3404 /* Compute probabilities, dominators, split_edges. */
3405 for (bb = 0; bb < current_nr_blocks; bb++)
3406 compute_dom_prob_ps (bb);
3407
3408 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3409 /* We don't need them anymore. But we want to avoid duplication of
3410 aux fields in the newly created edges. */
3411 FOR_EACH_BB_FN (block, cfun)
3412 {
3413 if (CONTAINING_RGN (block->index) != rgn)
3414 continue;
3415 FOR_EACH_EDGE (e, ei, block->succs)
3416 e->aux = NULL;
3417 }
3418 }
3419 }
3420
3421 /* Free data computed for the finished region. */
3422 void
3423 sched_rgn_local_free (void)
3424 {
3425 free (prob);
3426 sbitmap_vector_free (dom);
3427 sbitmap_vector_free (pot_split);
3428 sbitmap_vector_free (ancestor_edges);
3429 free (rgn_edges);
3430 }
3431
3432 /* Free data computed for the finished region. */
3433 void
3434 sched_rgn_local_finish (void)
3435 {
3436 if (current_nr_blocks > 1 && !sel_sched_p ())
3437 {
3438 sched_rgn_local_free ();
3439 }
3440 }
3441
3442 /* Setup scheduler infos. */
3443 void
3444 rgn_setup_common_sched_info (void)
3445 {
3446 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3447 sizeof (rgn_common_sched_info));
3448
3449 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3450 rgn_common_sched_info.add_block = rgn_add_block;
3451 rgn_common_sched_info.estimate_number_of_insns
3452 = rgn_estimate_number_of_insns;
3453 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3454
3455 common_sched_info = &rgn_common_sched_info;
3456 }
3457
3458 /* Setup all *_sched_info structures (for the Haifa frontend
3459 and for the dependence analysis) in the interblock scheduler. */
3460 void
3461 rgn_setup_sched_infos (void)
3462 {
3463 if (!sel_sched_p ())
3464 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3465 sizeof (rgn_sched_deps_info));
3466 else
3467 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3468 sizeof (rgn_sched_deps_info));
3469
3470 sched_deps_info = &rgn_sched_deps_info;
3471
3472 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3473 current_sched_info = &rgn_sched_info;
3474 }
3475
3476 /* The one entry point in this file. */
3477 void
3478 schedule_insns (void)
3479 {
3480 int rgn;
3481
3482 /* Taking care of this degenerate case makes the rest of
3483 this code simpler. */
3484 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3485 return;
3486
3487 rgn_setup_common_sched_info ();
3488 rgn_setup_sched_infos ();
3489
3490 haifa_sched_init ();
3491 sched_rgn_init (reload_completed);
3492
3493 bitmap_initialize (&not_in_df, 0);
3494 bitmap_clear (&not_in_df);
3495
3496 /* Schedule every region in the subroutine. */
3497 for (rgn = 0; rgn < nr_regions; rgn++)
3498 if (dbg_cnt (sched_region))
3499 schedule_region (rgn);
3500
3501 /* Clean up. */
3502 sched_rgn_finish ();
3503 bitmap_clear (&not_in_df);
3504
3505 haifa_sched_finish ();
3506 }
3507
3508 /* INSN has been added to/removed from current region. */
3509 static void
3510 rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3511 {
3512 if (!remove_p)
3513 rgn_n_insns++;
3514 else
3515 rgn_n_insns--;
3516
3517 if (INSN_BB (insn) == target_bb)
3518 {
3519 if (!remove_p)
3520 target_n_insns++;
3521 else
3522 target_n_insns--;
3523 }
3524 }
3525
3526 /* Extend internal data structures. */
3527 void
3528 extend_regions (void)
3529 {
3530 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3531 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3532 n_basic_blocks_for_fn (cfun));
3533 block_to_bb = XRESIZEVEC (int, block_to_bb,
3534 last_basic_block_for_fn (cfun));
3535 containing_rgn = XRESIZEVEC (int, containing_rgn,
3536 last_basic_block_for_fn (cfun));
3537 }
3538
3539 void
3540 rgn_make_new_region_out_of_new_block (basic_block bb)
3541 {
3542 int i;
3543
3544 i = RGN_BLOCKS (nr_regions);
3545 /* I - first free position in rgn_bb_table. */
3546
3547 rgn_bb_table[i] = bb->index;
3548 RGN_NR_BLOCKS (nr_regions) = 1;
3549 RGN_HAS_REAL_EBB (nr_regions) = 0;
3550 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3551 CONTAINING_RGN (bb->index) = nr_regions;
3552 BLOCK_TO_BB (bb->index) = 0;
3553
3554 nr_regions++;
3555
3556 RGN_BLOCKS (nr_regions) = i + 1;
3557 }
3558
3559 /* BB was added to ebb after AFTER. */
3560 static void
3561 rgn_add_block (basic_block bb, basic_block after)
3562 {
3563 extend_regions ();
3564 bitmap_set_bit (&not_in_df, bb->index);
3565
3566 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3567 {
3568 rgn_make_new_region_out_of_new_block (bb);
3569 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3570 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3571 }
3572 else
3573 {
3574 int i, pos;
3575
3576 /* We need to fix rgn_table, block_to_bb, containing_rgn
3577 and ebb_head. */
3578
3579 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3580
3581 /* We extend ebb_head to one more position to
3582 easily find the last position of the last ebb in
3583 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3584 is _always_ valid for access. */
3585
3586 i = BLOCK_TO_BB (after->index) + 1;
3587 pos = ebb_head[i] - 1;
3588 /* Now POS is the index of the last block in the region. */
3589
3590 /* Find index of basic block AFTER. */
3591 for (; rgn_bb_table[pos] != after->index; pos--)
3592 ;
3593
3594 pos++;
3595 gcc_assert (pos > ebb_head[i - 1]);
3596
3597 /* i - ebb right after "AFTER". */
3598 /* ebb_head[i] - VALID. */
3599
3600 /* Source position: ebb_head[i]
3601 Destination position: ebb_head[i] + 1
3602 Last position:
3603 RGN_BLOCKS (nr_regions) - 1
3604 Number of elements to copy: (last_position) - (source_position) + 1
3605 */
3606
3607 memmove (rgn_bb_table + pos + 1,
3608 rgn_bb_table + pos,
3609 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3610 * sizeof (*rgn_bb_table));
3611
3612 rgn_bb_table[pos] = bb->index;
3613
3614 for (; i <= current_nr_blocks; i++)
3615 ebb_head [i]++;
3616
3617 i = CONTAINING_RGN (after->index);
3618 CONTAINING_RGN (bb->index) = i;
3619
3620 RGN_HAS_REAL_EBB (i) = 1;
3621
3622 for (++i; i <= nr_regions; i++)
3623 RGN_BLOCKS (i)++;
3624 }
3625 }
3626
3627 /* Fix internal data after interblock movement of jump instruction.
3628 For parameter meaning please refer to
3629 sched-int.h: struct sched_info: fix_recovery_cfg. */
3630 static void
3631 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3632 {
3633 int old_pos, new_pos, i;
3634
3635 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3636
3637 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3638 rgn_bb_table[old_pos] != check_bb_nexti;
3639 old_pos--)
3640 ;
3641 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3642
3643 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3644 rgn_bb_table[new_pos] != bbi;
3645 new_pos--)
3646 ;
3647 new_pos++;
3648 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3649
3650 gcc_assert (new_pos < old_pos);
3651
3652 memmove (rgn_bb_table + new_pos + 1,
3653 rgn_bb_table + new_pos,
3654 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3655
3656 rgn_bb_table[new_pos] = check_bb_nexti;
3657
3658 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3659 ebb_head[i]++;
3660 }
3661
3662 /* Return next block in ebb chain. For parameter meaning please refer to
3663 sched-int.h: struct sched_info: advance_target_bb. */
3664 static basic_block
3665 advance_target_bb (basic_block bb, rtx_insn *insn)
3666 {
3667 if (insn)
3668 return 0;
3669
3670 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3671 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3672 return bb->next_bb;
3673 }
3674
3675 #endif
3676 \f
3677 /* Run instruction scheduler. */
3678 static unsigned int
3679 rest_of_handle_live_range_shrinkage (void)
3680 {
3681 #ifdef INSN_SCHEDULING
3682 int saved;
3683
3684 initialize_live_range_shrinkage ();
3685 saved = flag_schedule_interblock;
3686 flag_schedule_interblock = false;
3687 schedule_insns ();
3688 flag_schedule_interblock = saved;
3689 finish_live_range_shrinkage ();
3690 #endif
3691 return 0;
3692 }
3693
3694 /* Run instruction scheduler. */
3695 static unsigned int
3696 rest_of_handle_sched (void)
3697 {
3698 #ifdef INSN_SCHEDULING
3699 if (flag_selective_scheduling
3700 && ! maybe_skip_selective_scheduling ())
3701 run_selective_scheduling ();
3702 else
3703 schedule_insns ();
3704 #endif
3705 return 0;
3706 }
3707
3708 /* Run second scheduling pass after reload. */
3709 static unsigned int
3710 rest_of_handle_sched2 (void)
3711 {
3712 #ifdef INSN_SCHEDULING
3713 if (flag_selective_scheduling2
3714 && ! maybe_skip_selective_scheduling ())
3715 run_selective_scheduling ();
3716 else
3717 {
3718 /* Do control and data sched analysis again,
3719 and write some more of the results to dump file. */
3720 if (flag_sched2_use_superblocks)
3721 schedule_ebbs ();
3722 else
3723 schedule_insns ();
3724 }
3725 #endif
3726 return 0;
3727 }
3728
3729 static unsigned int
3730 rest_of_handle_sched_fusion (void)
3731 {
3732 #ifdef INSN_SCHEDULING
3733 sched_fusion = true;
3734 schedule_insns ();
3735 sched_fusion = false;
3736 #endif
3737 return 0;
3738 }
3739
3740 namespace {
3741
3742 const pass_data pass_data_live_range_shrinkage =
3743 {
3744 RTL_PASS, /* type */
3745 "lr_shrinkage", /* name */
3746 OPTGROUP_NONE, /* optinfo_flags */
3747 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3748 0, /* properties_required */
3749 0, /* properties_provided */
3750 0, /* properties_destroyed */
3751 0, /* todo_flags_start */
3752 TODO_df_finish, /* todo_flags_finish */
3753 };
3754
3755 class pass_live_range_shrinkage : public rtl_opt_pass
3756 {
3757 public:
3758 pass_live_range_shrinkage(gcc::context *ctxt)
3759 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3760 {}
3761
3762 /* opt_pass methods: */
3763 virtual bool gate (function *)
3764 {
3765 #ifdef INSN_SCHEDULING
3766 return flag_live_range_shrinkage;
3767 #else
3768 return 0;
3769 #endif
3770 }
3771
3772 virtual unsigned int execute (function *)
3773 {
3774 return rest_of_handle_live_range_shrinkage ();
3775 }
3776
3777 }; // class pass_live_range_shrinkage
3778
3779 } // anon namespace
3780
3781 rtl_opt_pass *
3782 make_pass_live_range_shrinkage (gcc::context *ctxt)
3783 {
3784 return new pass_live_range_shrinkage (ctxt);
3785 }
3786
3787 namespace {
3788
3789 const pass_data pass_data_sched =
3790 {
3791 RTL_PASS, /* type */
3792 "sched1", /* name */
3793 OPTGROUP_NONE, /* optinfo_flags */
3794 TV_SCHED, /* tv_id */
3795 0, /* properties_required */
3796 0, /* properties_provided */
3797 0, /* properties_destroyed */
3798 0, /* todo_flags_start */
3799 TODO_df_finish, /* todo_flags_finish */
3800 };
3801
3802 class pass_sched : public rtl_opt_pass
3803 {
3804 public:
3805 pass_sched (gcc::context *ctxt)
3806 : rtl_opt_pass (pass_data_sched, ctxt)
3807 {}
3808
3809 /* opt_pass methods: */
3810 virtual bool gate (function *);
3811 virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3812
3813 }; // class pass_sched
3814
3815 bool
3816 pass_sched::gate (function *)
3817 {
3818 #ifdef INSN_SCHEDULING
3819 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3820 #else
3821 return 0;
3822 #endif
3823 }
3824
3825 } // anon namespace
3826
3827 rtl_opt_pass *
3828 make_pass_sched (gcc::context *ctxt)
3829 {
3830 return new pass_sched (ctxt);
3831 }
3832
3833 namespace {
3834
3835 const pass_data pass_data_sched2 =
3836 {
3837 RTL_PASS, /* type */
3838 "sched2", /* name */
3839 OPTGROUP_NONE, /* optinfo_flags */
3840 TV_SCHED2, /* tv_id */
3841 0, /* properties_required */
3842 0, /* properties_provided */
3843 0, /* properties_destroyed */
3844 0, /* todo_flags_start */
3845 TODO_df_finish, /* todo_flags_finish */
3846 };
3847
3848 class pass_sched2 : public rtl_opt_pass
3849 {
3850 public:
3851 pass_sched2 (gcc::context *ctxt)
3852 : rtl_opt_pass (pass_data_sched2, ctxt)
3853 {}
3854
3855 /* opt_pass methods: */
3856 virtual bool gate (function *);
3857 virtual unsigned int execute (function *)
3858 {
3859 return rest_of_handle_sched2 ();
3860 }
3861
3862 }; // class pass_sched2
3863
3864 bool
3865 pass_sched2::gate (function *)
3866 {
3867 #ifdef INSN_SCHEDULING
3868 return optimize > 0 && flag_schedule_insns_after_reload
3869 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3870 #else
3871 return 0;
3872 #endif
3873 }
3874
3875 } // anon namespace
3876
3877 rtl_opt_pass *
3878 make_pass_sched2 (gcc::context *ctxt)
3879 {
3880 return new pass_sched2 (ctxt);
3881 }
3882
3883 namespace {
3884
3885 const pass_data pass_data_sched_fusion =
3886 {
3887 RTL_PASS, /* type */
3888 "sched_fusion", /* name */
3889 OPTGROUP_NONE, /* optinfo_flags */
3890 TV_SCHED_FUSION, /* tv_id */
3891 0, /* properties_required */
3892 0, /* properties_provided */
3893 0, /* properties_destroyed */
3894 0, /* todo_flags_start */
3895 TODO_df_finish, /* todo_flags_finish */
3896 };
3897
3898 class pass_sched_fusion : public rtl_opt_pass
3899 {
3900 public:
3901 pass_sched_fusion (gcc::context *ctxt)
3902 : rtl_opt_pass (pass_data_sched_fusion, ctxt)
3903 {}
3904
3905 /* opt_pass methods: */
3906 virtual bool gate (function *);
3907 virtual unsigned int execute (function *)
3908 {
3909 return rest_of_handle_sched_fusion ();
3910 }
3911
3912 }; // class pass_sched2
3913
3914 bool
3915 pass_sched_fusion::gate (function *)
3916 {
3917 #ifdef INSN_SCHEDULING
3918 /* Scheduling fusion relies on peephole2 to do real fusion work,
3919 so only enable it if peephole2 is in effect. */
3920 return (optimize > 0 && flag_peephole2
3921 && flag_schedule_fusion && targetm.sched.fusion_priority != NULL);
3922 #else
3923 return 0;
3924 #endif
3925 }
3926
3927 } // anon namespace
3928
3929 rtl_opt_pass *
3930 make_pass_sched_fusion (gcc::context *ctxt)
3931 {
3932 return new pass_sched_fusion (ctxt);
3933 }