tree.h (PHI_CHAIN): New.
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 2, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING. If not, write to the Free
21 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
22 02111-1307, USA. */
23
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "toplev.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "basic-block.h"
57 #include "regs.h"
58 #include "function.h"
59 #include "flags.h"
60 #include "insn-config.h"
61 #include "insn-attr.h"
62 #include "except.h"
63 #include "toplev.h"
64 #include "recog.h"
65 #include "cfglayout.h"
66 #include "params.h"
67 #include "sched-int.h"
68 #include "target.h"
69
70 /* Define when we want to do count REG_DEAD notes before and after scheduling
71 for sanity checking. We can't do that when conditional execution is used,
72 as REG_DEAD exist only for unconditional deaths. */
73
74 #if !defined (HAVE_conditional_execution) && defined (ENABLE_CHECKING)
75 #define CHECK_DEAD_NOTES 1
76 #else
77 #define CHECK_DEAD_NOTES 0
78 #endif
79
80
81 #ifdef INSN_SCHEDULING
82 /* Some accessor macros for h_i_d members only used within this file. */
83 #define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
84 #define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
85 #define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
86
87 /* nr_inter/spec counts interblock/speculative motion for the function. */
88 static int nr_inter, nr_spec;
89
90 /* Control flow graph edges are kept in circular lists. */
91 typedef struct
92 {
93 int from_block;
94 int to_block;
95 int next_in;
96 int next_out;
97 }
98 haifa_edge;
99 static haifa_edge *edge_table;
100
101 #define NEXT_IN(edge) (edge_table[edge].next_in)
102 #define NEXT_OUT(edge) (edge_table[edge].next_out)
103 #define FROM_BLOCK(edge) (edge_table[edge].from_block)
104 #define TO_BLOCK(edge) (edge_table[edge].to_block)
105
106 /* Number of edges in the control flow graph. (In fact, larger than
107 that by 1, since edge 0 is unused.) */
108 static int nr_edges;
109
110 /* Circular list of incoming/outgoing edges of a block. */
111 static int *in_edges;
112 static int *out_edges;
113
114 #define IN_EDGES(block) (in_edges[block])
115 #define OUT_EDGES(block) (out_edges[block])
116
117 static int is_cfg_nonregular (void);
118 static int build_control_flow (struct edge_list *);
119 static void new_edge (int, int);
120
121 /* A region is the main entity for interblock scheduling: insns
122 are allowed to move between blocks in the same region, along
123 control flow graph edges, in the 'up' direction. */
124 typedef struct
125 {
126 int rgn_nr_blocks; /* Number of blocks in region. */
127 int rgn_blocks; /* cblocks in the region (actually index in rgn_bb_table). */
128 }
129 region;
130
131 /* Number of regions in the procedure. */
132 static int nr_regions;
133
134 /* Table of region descriptions. */
135 static region *rgn_table;
136
137 /* Array of lists of regions' blocks. */
138 static int *rgn_bb_table;
139
140 /* Topological order of blocks in the region (if b2 is reachable from
141 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
142 always referred to by either block or b, while its topological
143 order name (in the region) is referred to by bb. */
144 static int *block_to_bb;
145
146 /* The number of the region containing a block. */
147 static int *containing_rgn;
148
149 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
150 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
151 #define BLOCK_TO_BB(block) (block_to_bb[block])
152 #define CONTAINING_RGN(block) (containing_rgn[block])
153
154 void debug_regions (void);
155 static void find_single_block_region (void);
156 static void find_rgns (struct edge_list *);
157 static bool too_large (int, int *, int *);
158
159 extern void debug_live (int, int);
160
161 /* Blocks of the current region being scheduled. */
162 static int current_nr_blocks;
163 static int current_blocks;
164
165 /* The mapping from bb to block. */
166 #define BB_TO_BLOCK(bb) (rgn_bb_table[current_blocks + (bb)])
167
168 typedef struct
169 {
170 int *first_member; /* Pointer to the list start in bitlst_table. */
171 int nr_members; /* The number of members of the bit list. */
172 }
173 bitlst;
174
175 static int bitlst_table_last;
176 static int *bitlst_table;
177
178 static void extract_bitlst (sbitmap, bitlst *);
179
180 /* Target info declarations.
181
182 The block currently being scheduled is referred to as the "target" block,
183 while other blocks in the region from which insns can be moved to the
184 target are called "source" blocks. The candidate structure holds info
185 about such sources: are they valid? Speculative? Etc. */
186 typedef bitlst bblst;
187 typedef struct
188 {
189 char is_valid;
190 char is_speculative;
191 int src_prob;
192 bblst split_bbs;
193 bblst update_bbs;
194 }
195 candidate;
196
197 static candidate *candidate_table;
198
199 /* A speculative motion requires checking live information on the path
200 from 'source' to 'target'. The split blocks are those to be checked.
201 After a speculative motion, live information should be modified in
202 the 'update' blocks.
203
204 Lists of split and update blocks for each candidate of the current
205 target are in array bblst_table. */
206 static int *bblst_table, bblst_size, bblst_last;
207
208 #define IS_VALID(src) ( candidate_table[src].is_valid )
209 #define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
210 #define SRC_PROB(src) ( candidate_table[src].src_prob )
211
212 /* The bb being currently scheduled. */
213 static int target_bb;
214
215 /* List of edges. */
216 typedef bitlst edgelst;
217
218 /* Target info functions. */
219 static void split_edges (int, int, edgelst *);
220 static void compute_trg_info (int);
221 void debug_candidate (int);
222 void debug_candidates (int);
223
224 /* Dominators array: dom[i] contains the sbitmap of dominators of
225 bb i in the region. */
226 static sbitmap *dom;
227
228 /* bb 0 is the only region entry. */
229 #define IS_RGN_ENTRY(bb) (!bb)
230
231 /* Is bb_src dominated by bb_trg. */
232 #define IS_DOMINATED(bb_src, bb_trg) \
233 ( TEST_BIT (dom[bb_src], bb_trg) )
234
235 /* Probability: Prob[i] is a float in [0, 1] which is the probability
236 of bb i relative to the region entry. */
237 static float *prob;
238
239 /* The probability of bb_src, relative to bb_trg. Note, that while the
240 'prob[bb]' is a float in [0, 1], this macro returns an integer
241 in [0, 100]. */
242 #define GET_SRC_PROB(bb_src, bb_trg) ((int) (100.0 * (prob[bb_src] / \
243 prob[bb_trg])))
244
245 /* Bit-set of edges, where bit i stands for edge i. */
246 typedef sbitmap edgeset;
247
248 /* Number of edges in the region. */
249 static int rgn_nr_edges;
250
251 /* Array of size rgn_nr_edges. */
252 static int *rgn_edges;
253
254
255 /* Mapping from each edge in the graph to its number in the rgn. */
256 static int *edge_to_bit;
257 #define EDGE_TO_BIT(edge) (edge_to_bit[edge])
258
259 /* The split edges of a source bb is different for each target
260 bb. In order to compute this efficiently, the 'potential-split edges'
261 are computed for each bb prior to scheduling a region. This is actually
262 the split edges of each bb relative to the region entry.
263
264 pot_split[bb] is the set of potential split edges of bb. */
265 static edgeset *pot_split;
266
267 /* For every bb, a set of its ancestor edges. */
268 static edgeset *ancestor_edges;
269
270 static void compute_dom_prob_ps (int);
271
272 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
273 #define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
274 #define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
275
276 /* Parameters affecting the decision of rank_for_schedule().
277 ??? Nope. But MIN_PROBABILITY is used in compute_trg_info. */
278 #define MIN_PROBABILITY 40
279
280 /* Speculative scheduling functions. */
281 static int check_live_1 (int, rtx);
282 static void update_live_1 (int, rtx);
283 static int check_live (rtx, int);
284 static void update_live (rtx, int);
285 static void set_spec_fed (rtx);
286 static int is_pfree (rtx, int, int);
287 static int find_conditional_protection (rtx, int);
288 static int is_conditionally_protected (rtx, int, int);
289 static int is_prisky (rtx, int, int);
290 static int is_exception_free (rtx, int, int);
291
292 static bool sets_likely_spilled (rtx);
293 static void sets_likely_spilled_1 (rtx, rtx, void *);
294 static void add_branch_dependences (rtx, rtx);
295 static void compute_block_backward_dependences (int);
296 void debug_dependencies (void);
297
298 static void init_regions (void);
299 static void schedule_region (int);
300 static rtx concat_INSN_LIST (rtx, rtx);
301 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
302 static void propagate_deps (int, struct deps *);
303 static void free_pending_lists (void);
304
305 /* Functions for construction of the control flow graph. */
306
307 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
308
309 We decide not to build the control flow graph if there is possibly more
310 than one entry to the function, if computed branches exist, of if we
311 have nonlocal gotos. */
312
313 static int
314 is_cfg_nonregular (void)
315 {
316 basic_block b;
317 rtx insn;
318 RTX_CODE code;
319
320 /* If we have a label that could be the target of a nonlocal goto, then
321 the cfg is not well structured. */
322 if (nonlocal_goto_handler_labels)
323 return 1;
324
325 /* If we have any forced labels, then the cfg is not well structured. */
326 if (forced_labels)
327 return 1;
328
329 /* If this function has a computed jump, then we consider the cfg
330 not well structured. */
331 if (current_function_has_computed_jump)
332 return 1;
333
334 /* If we have exception handlers, then we consider the cfg not well
335 structured. ?!? We should be able to handle this now that flow.c
336 computes an accurate cfg for EH. */
337 if (current_function_has_exception_handlers ())
338 return 1;
339
340 /* If we have non-jumping insns which refer to labels, then we consider
341 the cfg not well structured. */
342 /* Check for labels referred to other thn by jumps. */
343 FOR_EACH_BB (b)
344 for (insn = BB_HEAD (b); ; insn = NEXT_INSN (insn))
345 {
346 code = GET_CODE (insn);
347 if (INSN_P (insn) && code != JUMP_INSN)
348 {
349 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
350
351 if (note
352 && ! (GET_CODE (NEXT_INSN (insn)) == JUMP_INSN
353 && find_reg_note (NEXT_INSN (insn), REG_LABEL,
354 XEXP (note, 0))))
355 return 1;
356 }
357
358 if (insn == BB_END (b))
359 break;
360 }
361
362 /* All the tests passed. Consider the cfg well structured. */
363 return 0;
364 }
365
366 /* Build the control flow graph and set nr_edges.
367
368 Instead of trying to build a cfg ourselves, we rely on flow to
369 do it for us. Stamp out useless code (and bug) duplication.
370
371 Return nonzero if an irregularity in the cfg is found which would
372 prevent cross block scheduling. */
373
374 static int
375 build_control_flow (struct edge_list *edge_list)
376 {
377 int i, unreachable, num_edges;
378 basic_block b;
379
380 /* This already accounts for entry/exit edges. */
381 num_edges = NUM_EDGES (edge_list);
382
383 /* Unreachable loops with more than one basic block are detected
384 during the DFS traversal in find_rgns.
385
386 Unreachable loops with a single block are detected here. This
387 test is redundant with the one in find_rgns, but it's much
388 cheaper to go ahead and catch the trivial case here. */
389 unreachable = 0;
390 FOR_EACH_BB (b)
391 {
392 if (b->pred == NULL
393 || (b->pred->src == b
394 && b->pred->pred_next == NULL))
395 unreachable = 1;
396 }
397
398 /* ??? We can kill these soon. */
399 in_edges = xcalloc (last_basic_block, sizeof (int));
400 out_edges = xcalloc (last_basic_block, sizeof (int));
401 edge_table = xcalloc (num_edges, sizeof (haifa_edge));
402
403 nr_edges = 0;
404 for (i = 0; i < num_edges; i++)
405 {
406 edge e = INDEX_EDGE (edge_list, i);
407
408 if (e->dest != EXIT_BLOCK_PTR
409 && e->src != ENTRY_BLOCK_PTR)
410 new_edge (e->src->index, e->dest->index);
411 }
412
413 /* Increment by 1, since edge 0 is unused. */
414 nr_edges++;
415
416 return unreachable;
417 }
418
419 /* Record an edge in the control flow graph from SOURCE to TARGET.
420
421 In theory, this is redundant with the s_succs computed above, but
422 we have not converted all of haifa to use information from the
423 integer lists. */
424
425 static void
426 new_edge (int source, int target)
427 {
428 int e, next_edge;
429 int curr_edge, fst_edge;
430
431 /* Check for duplicates. */
432 fst_edge = curr_edge = OUT_EDGES (source);
433 while (curr_edge)
434 {
435 if (FROM_BLOCK (curr_edge) == source
436 && TO_BLOCK (curr_edge) == target)
437 {
438 return;
439 }
440
441 curr_edge = NEXT_OUT (curr_edge);
442
443 if (fst_edge == curr_edge)
444 break;
445 }
446
447 e = ++nr_edges;
448
449 FROM_BLOCK (e) = source;
450 TO_BLOCK (e) = target;
451
452 if (OUT_EDGES (source))
453 {
454 next_edge = NEXT_OUT (OUT_EDGES (source));
455 NEXT_OUT (OUT_EDGES (source)) = e;
456 NEXT_OUT (e) = next_edge;
457 }
458 else
459 {
460 OUT_EDGES (source) = e;
461 NEXT_OUT (e) = e;
462 }
463
464 if (IN_EDGES (target))
465 {
466 next_edge = NEXT_IN (IN_EDGES (target));
467 NEXT_IN (IN_EDGES (target)) = e;
468 NEXT_IN (e) = next_edge;
469 }
470 else
471 {
472 IN_EDGES (target) = e;
473 NEXT_IN (e) = e;
474 }
475 }
476
477 /* Translate a bit-set SET to a list BL of the bit-set members. */
478
479 static void
480 extract_bitlst (sbitmap set, bitlst *bl)
481 {
482 int i;
483
484 /* bblst table space is reused in each call to extract_bitlst. */
485 bitlst_table_last = 0;
486
487 bl->first_member = &bitlst_table[bitlst_table_last];
488 bl->nr_members = 0;
489
490 /* Iterate over each word in the bitset. */
491 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i,
492 {
493 bitlst_table[bitlst_table_last++] = i;
494 (bl->nr_members)++;
495 });
496
497 }
498
499 /* Functions for the construction of regions. */
500
501 /* Print the regions, for debugging purposes. Callable from debugger. */
502
503 void
504 debug_regions (void)
505 {
506 int rgn, bb;
507
508 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
509 for (rgn = 0; rgn < nr_regions; rgn++)
510 {
511 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
512 rgn_table[rgn].rgn_nr_blocks);
513 fprintf (sched_dump, ";;\tbb/block: ");
514
515 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
516 {
517 current_blocks = RGN_BLOCKS (rgn);
518
519 if (bb != BLOCK_TO_BB (BB_TO_BLOCK (bb)))
520 abort ();
521
522 fprintf (sched_dump, " %d/%d ", bb, BB_TO_BLOCK (bb));
523 }
524
525 fprintf (sched_dump, "\n\n");
526 }
527 }
528
529 /* Build a single block region for each basic block in the function.
530 This allows for using the same code for interblock and basic block
531 scheduling. */
532
533 static void
534 find_single_block_region (void)
535 {
536 basic_block bb;
537
538 nr_regions = 0;
539
540 FOR_EACH_BB (bb)
541 {
542 rgn_bb_table[nr_regions] = bb->index;
543 RGN_NR_BLOCKS (nr_regions) = 1;
544 RGN_BLOCKS (nr_regions) = nr_regions;
545 CONTAINING_RGN (bb->index) = nr_regions;
546 BLOCK_TO_BB (bb->index) = 0;
547 nr_regions++;
548 }
549 }
550
551 /* Update number of blocks and the estimate for number of insns
552 in the region. Return true if the region is "too large" for interblock
553 scheduling (compile time considerations). */
554
555 static bool
556 too_large (int block, int *num_bbs, int *num_insns)
557 {
558 (*num_bbs)++;
559 (*num_insns) += (INSN_LUID (BB_END (BASIC_BLOCK (block)))
560 - INSN_LUID (BB_HEAD (BASIC_BLOCK (block))));
561
562 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
563 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
564 }
565
566 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
567 is still an inner loop. Put in max_hdr[blk] the header of the most inner
568 loop containing blk. */
569 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
570 { \
571 if (max_hdr[blk] == -1) \
572 max_hdr[blk] = hdr; \
573 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
574 RESET_BIT (inner, hdr); \
575 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
576 { \
577 RESET_BIT (inner,max_hdr[blk]); \
578 max_hdr[blk] = hdr; \
579 } \
580 }
581
582 /* Find regions for interblock scheduling.
583
584 A region for scheduling can be:
585
586 * A loop-free procedure, or
587
588 * A reducible inner loop, or
589
590 * A basic block not contained in any other region.
591
592 ?!? In theory we could build other regions based on extended basic
593 blocks or reverse extended basic blocks. Is it worth the trouble?
594
595 Loop blocks that form a region are put into the region's block list
596 in topological order.
597
598 This procedure stores its results into the following global (ick) variables
599
600 * rgn_nr
601 * rgn_table
602 * rgn_bb_table
603 * block_to_bb
604 * containing region
605
606 We use dominator relationships to avoid making regions out of non-reducible
607 loops.
608
609 This procedure needs to be converted to work on pred/succ lists instead
610 of edge tables. That would simplify it somewhat. */
611
612 static void
613 find_rgns (struct edge_list *edge_list)
614 {
615 int *max_hdr, *dfs_nr, *stack, *degree;
616 char no_loops = 1;
617 int node, child, loop_head, i, head, tail;
618 int count = 0, sp, idx = 0;
619 int current_edge = out_edges[ENTRY_BLOCK_PTR->succ->dest->index];
620 int num_bbs, num_insns, unreachable;
621 int too_large_failure;
622 basic_block bb;
623
624 /* Note if an edge has been passed. */
625 sbitmap passed;
626
627 /* Note if a block is a natural loop header. */
628 sbitmap header;
629
630 /* Note if a block is a natural inner loop header. */
631 sbitmap inner;
632
633 /* Note if a block is in the block queue. */
634 sbitmap in_queue;
635
636 /* Note if a block is in the block queue. */
637 sbitmap in_stack;
638
639 int num_edges = NUM_EDGES (edge_list);
640
641 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
642 and a mapping from block to its loop header (if the block is contained
643 in a loop, else -1).
644
645 Store results in HEADER, INNER, and MAX_HDR respectively, these will
646 be used as inputs to the second traversal.
647
648 STACK, SP and DFS_NR are only used during the first traversal. */
649
650 /* Allocate and initialize variables for the first traversal. */
651 max_hdr = xmalloc (last_basic_block * sizeof (int));
652 dfs_nr = xcalloc (last_basic_block, sizeof (int));
653 stack = xmalloc (nr_edges * sizeof (int));
654
655 inner = sbitmap_alloc (last_basic_block);
656 sbitmap_ones (inner);
657
658 header = sbitmap_alloc (last_basic_block);
659 sbitmap_zero (header);
660
661 passed = sbitmap_alloc (nr_edges);
662 sbitmap_zero (passed);
663
664 in_queue = sbitmap_alloc (last_basic_block);
665 sbitmap_zero (in_queue);
666
667 in_stack = sbitmap_alloc (last_basic_block);
668 sbitmap_zero (in_stack);
669
670 for (i = 0; i < last_basic_block; i++)
671 max_hdr[i] = -1;
672
673 /* DFS traversal to find inner loops in the cfg. */
674
675 sp = -1;
676 while (1)
677 {
678 if (current_edge == 0 || TEST_BIT (passed, current_edge))
679 {
680 /* We have reached a leaf node or a node that was already
681 processed. Pop edges off the stack until we find
682 an edge that has not yet been processed. */
683 while (sp >= 0
684 && (current_edge == 0 || TEST_BIT (passed, current_edge)))
685 {
686 /* Pop entry off the stack. */
687 current_edge = stack[sp--];
688 node = FROM_BLOCK (current_edge);
689 child = TO_BLOCK (current_edge);
690 RESET_BIT (in_stack, child);
691 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
692 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
693 current_edge = NEXT_OUT (current_edge);
694 }
695
696 /* See if have finished the DFS tree traversal. */
697 if (sp < 0 && TEST_BIT (passed, current_edge))
698 break;
699
700 /* Nope, continue the traversal with the popped node. */
701 continue;
702 }
703
704 /* Process a node. */
705 node = FROM_BLOCK (current_edge);
706 child = TO_BLOCK (current_edge);
707 SET_BIT (in_stack, node);
708 dfs_nr[node] = ++count;
709
710 /* If the successor is in the stack, then we've found a loop.
711 Mark the loop, if it is not a natural loop, then it will
712 be rejected during the second traversal. */
713 if (TEST_BIT (in_stack, child))
714 {
715 no_loops = 0;
716 SET_BIT (header, child);
717 UPDATE_LOOP_RELATIONS (node, child);
718 SET_BIT (passed, current_edge);
719 current_edge = NEXT_OUT (current_edge);
720 continue;
721 }
722
723 /* If the child was already visited, then there is no need to visit
724 it again. Just update the loop relationships and restart
725 with a new edge. */
726 if (dfs_nr[child])
727 {
728 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
729 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
730 SET_BIT (passed, current_edge);
731 current_edge = NEXT_OUT (current_edge);
732 continue;
733 }
734
735 /* Push an entry on the stack and continue DFS traversal. */
736 stack[++sp] = current_edge;
737 SET_BIT (passed, current_edge);
738 current_edge = OUT_EDGES (child);
739
740 /* This is temporary until haifa is converted to use rth's new
741 cfg routines which have true entry/exit blocks and the
742 appropriate edges from/to those blocks.
743
744 Generally we update dfs_nr for a node when we process its
745 out edge. However, if the node has no out edge then we will
746 not set dfs_nr for that node. This can confuse the scheduler
747 into thinking that we have unreachable blocks, which in turn
748 disables cross block scheduling.
749
750 So, if we have a node with no out edges, go ahead and mark it
751 as reachable now. */
752 if (current_edge == 0)
753 dfs_nr[child] = ++count;
754 }
755
756 /* Another check for unreachable blocks. The earlier test in
757 is_cfg_nonregular only finds unreachable blocks that do not
758 form a loop.
759
760 The DFS traversal will mark every block that is reachable from
761 the entry node by placing a nonzero value in dfs_nr. Thus if
762 dfs_nr is zero for any block, then it must be unreachable. */
763 unreachable = 0;
764 FOR_EACH_BB (bb)
765 if (dfs_nr[bb->index] == 0)
766 {
767 unreachable = 1;
768 break;
769 }
770
771 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
772 to hold degree counts. */
773 degree = dfs_nr;
774
775 FOR_EACH_BB (bb)
776 degree[bb->index] = 0;
777 for (i = 0; i < num_edges; i++)
778 {
779 edge e = INDEX_EDGE (edge_list, i);
780
781 if (e->dest != EXIT_BLOCK_PTR)
782 degree[e->dest->index]++;
783 }
784
785 /* Do not perform region scheduling if there are any unreachable
786 blocks. */
787 if (!unreachable)
788 {
789 int *queue;
790
791 if (no_loops)
792 SET_BIT (header, 0);
793
794 /* Second traversal:find reducible inner loops and topologically sort
795 block of each region. */
796
797 queue = xmalloc (n_basic_blocks * sizeof (int));
798
799 /* Find blocks which are inner loop headers. We still have non-reducible
800 loops to consider at this point. */
801 FOR_EACH_BB (bb)
802 {
803 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
804 {
805 edge e;
806 basic_block jbb;
807
808 /* Now check that the loop is reducible. We do this separate
809 from finding inner loops so that we do not find a reducible
810 loop which contains an inner non-reducible loop.
811
812 A simple way to find reducible/natural loops is to verify
813 that each block in the loop is dominated by the loop
814 header.
815
816 If there exists a block that is not dominated by the loop
817 header, then the block is reachable from outside the loop
818 and thus the loop is not a natural loop. */
819 FOR_EACH_BB (jbb)
820 {
821 /* First identify blocks in the loop, except for the loop
822 entry block. */
823 if (bb->index == max_hdr[jbb->index] && bb != jbb)
824 {
825 /* Now verify that the block is dominated by the loop
826 header. */
827 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
828 break;
829 }
830 }
831
832 /* If we exited the loop early, then I is the header of
833 a non-reducible loop and we should quit processing it
834 now. */
835 if (jbb != EXIT_BLOCK_PTR)
836 continue;
837
838 /* I is a header of an inner loop, or block 0 in a subroutine
839 with no loops at all. */
840 head = tail = -1;
841 too_large_failure = 0;
842 loop_head = max_hdr[bb->index];
843
844 /* Decrease degree of all I's successors for topological
845 ordering. */
846 for (e = bb->succ; e; e = e->succ_next)
847 if (e->dest != EXIT_BLOCK_PTR)
848 --degree[e->dest->index];
849
850 /* Estimate # insns, and count # blocks in the region. */
851 num_bbs = 1;
852 num_insns = (INSN_LUID (BB_END (bb))
853 - INSN_LUID (BB_HEAD (bb)));
854
855 /* Find all loop latches (blocks with back edges to the loop
856 header) or all the leaf blocks in the cfg has no loops.
857
858 Place those blocks into the queue. */
859 if (no_loops)
860 {
861 FOR_EACH_BB (jbb)
862 /* Leaf nodes have only a single successor which must
863 be EXIT_BLOCK. */
864 if (jbb->succ
865 && jbb->succ->dest == EXIT_BLOCK_PTR
866 && jbb->succ->succ_next == NULL)
867 {
868 queue[++tail] = jbb->index;
869 SET_BIT (in_queue, jbb->index);
870
871 if (too_large (jbb->index, &num_bbs, &num_insns))
872 {
873 too_large_failure = 1;
874 break;
875 }
876 }
877 }
878 else
879 {
880 edge e;
881
882 for (e = bb->pred; e; e = e->pred_next)
883 {
884 if (e->src == ENTRY_BLOCK_PTR)
885 continue;
886
887 node = e->src->index;
888
889 if (max_hdr[node] == loop_head && node != bb->index)
890 {
891 /* This is a loop latch. */
892 queue[++tail] = node;
893 SET_BIT (in_queue, node);
894
895 if (too_large (node, &num_bbs, &num_insns))
896 {
897 too_large_failure = 1;
898 break;
899 }
900 }
901 }
902 }
903
904 /* Now add all the blocks in the loop to the queue.
905
906 We know the loop is a natural loop; however the algorithm
907 above will not always mark certain blocks as being in the
908 loop. Consider:
909 node children
910 a b,c
911 b c
912 c a,d
913 d b
914
915 The algorithm in the DFS traversal may not mark B & D as part
916 of the loop (ie they will not have max_hdr set to A).
917
918 We know they can not be loop latches (else they would have
919 had max_hdr set since they'd have a backedge to a dominator
920 block). So we don't need them on the initial queue.
921
922 We know they are part of the loop because they are dominated
923 by the loop header and can be reached by a backwards walk of
924 the edges starting with nodes on the initial queue.
925
926 It is safe and desirable to include those nodes in the
927 loop/scheduling region. To do so we would need to decrease
928 the degree of a node if it is the target of a backedge
929 within the loop itself as the node is placed in the queue.
930
931 We do not do this because I'm not sure that the actual
932 scheduling code will properly handle this case. ?!? */
933
934 while (head < tail && !too_large_failure)
935 {
936 edge e;
937 child = queue[++head];
938
939 for (e = BASIC_BLOCK (child)->pred; e; e = e->pred_next)
940 {
941 node = e->src->index;
942
943 /* See discussion above about nodes not marked as in
944 this loop during the initial DFS traversal. */
945 if (e->src == ENTRY_BLOCK_PTR
946 || max_hdr[node] != loop_head)
947 {
948 tail = -1;
949 break;
950 }
951 else if (!TEST_BIT (in_queue, node) && node != bb->index)
952 {
953 queue[++tail] = node;
954 SET_BIT (in_queue, node);
955
956 if (too_large (node, &num_bbs, &num_insns))
957 {
958 too_large_failure = 1;
959 break;
960 }
961 }
962 }
963 }
964
965 if (tail >= 0 && !too_large_failure)
966 {
967 /* Place the loop header into list of region blocks. */
968 degree[bb->index] = -1;
969 rgn_bb_table[idx] = bb->index;
970 RGN_NR_BLOCKS (nr_regions) = num_bbs;
971 RGN_BLOCKS (nr_regions) = idx++;
972 CONTAINING_RGN (bb->index) = nr_regions;
973 BLOCK_TO_BB (bb->index) = count = 0;
974
975 /* Remove blocks from queue[] when their in degree
976 becomes zero. Repeat until no blocks are left on the
977 list. This produces a topological list of blocks in
978 the region. */
979 while (tail >= 0)
980 {
981 if (head < 0)
982 head = tail;
983 child = queue[head];
984 if (degree[child] == 0)
985 {
986 edge e;
987
988 degree[child] = -1;
989 rgn_bb_table[idx++] = child;
990 BLOCK_TO_BB (child) = ++count;
991 CONTAINING_RGN (child) = nr_regions;
992 queue[head] = queue[tail--];
993
994 for (e = BASIC_BLOCK (child)->succ;
995 e;
996 e = e->succ_next)
997 if (e->dest != EXIT_BLOCK_PTR)
998 --degree[e->dest->index];
999 }
1000 else
1001 --head;
1002 }
1003 ++nr_regions;
1004 }
1005 }
1006 }
1007 free (queue);
1008 }
1009
1010 /* Any block that did not end up in a region is placed into a region
1011 by itself. */
1012 FOR_EACH_BB (bb)
1013 if (degree[bb->index] >= 0)
1014 {
1015 rgn_bb_table[idx] = bb->index;
1016 RGN_NR_BLOCKS (nr_regions) = 1;
1017 RGN_BLOCKS (nr_regions) = idx++;
1018 CONTAINING_RGN (bb->index) = nr_regions++;
1019 BLOCK_TO_BB (bb->index) = 0;
1020 }
1021
1022 free (max_hdr);
1023 free (dfs_nr);
1024 free (stack);
1025 sbitmap_free (passed);
1026 sbitmap_free (header);
1027 sbitmap_free (inner);
1028 sbitmap_free (in_queue);
1029 sbitmap_free (in_stack);
1030 }
1031
1032 /* Functions for regions scheduling information. */
1033
1034 /* Compute dominators, probability, and potential-split-edges of bb.
1035 Assume that these values were already computed for bb's predecessors. */
1036
1037 static void
1038 compute_dom_prob_ps (int bb)
1039 {
1040 int nxt_in_edge, fst_in_edge, pred;
1041 int fst_out_edge, nxt_out_edge, nr_out_edges, nr_rgn_out_edges;
1042
1043 prob[bb] = 0.0;
1044 if (IS_RGN_ENTRY (bb))
1045 {
1046 SET_BIT (dom[bb], 0);
1047 prob[bb] = 1.0;
1048 return;
1049 }
1050
1051 fst_in_edge = nxt_in_edge = IN_EDGES (BB_TO_BLOCK (bb));
1052
1053 /* Initialize dom[bb] to '111..1'. */
1054 sbitmap_ones (dom[bb]);
1055
1056 do
1057 {
1058 pred = FROM_BLOCK (nxt_in_edge);
1059 sbitmap_a_and_b (dom[bb], dom[bb], dom[BLOCK_TO_BB (pred)]);
1060 sbitmap_a_or_b (ancestor_edges[bb], ancestor_edges[bb], ancestor_edges[BLOCK_TO_BB (pred)]);
1061
1062 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (nxt_in_edge));
1063
1064 nr_out_edges = 1;
1065 nr_rgn_out_edges = 0;
1066 fst_out_edge = OUT_EDGES (pred);
1067 nxt_out_edge = NEXT_OUT (fst_out_edge);
1068
1069 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[BLOCK_TO_BB (pred)]);
1070
1071 SET_BIT (pot_split[bb], EDGE_TO_BIT (fst_out_edge));
1072
1073 /* The successor doesn't belong in the region? */
1074 if (CONTAINING_RGN (TO_BLOCK (fst_out_edge)) !=
1075 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1076 ++nr_rgn_out_edges;
1077
1078 while (fst_out_edge != nxt_out_edge)
1079 {
1080 ++nr_out_edges;
1081 /* The successor doesn't belong in the region? */
1082 if (CONTAINING_RGN (TO_BLOCK (nxt_out_edge)) !=
1083 CONTAINING_RGN (BB_TO_BLOCK (bb)))
1084 ++nr_rgn_out_edges;
1085 SET_BIT (pot_split[bb], EDGE_TO_BIT (nxt_out_edge));
1086 nxt_out_edge = NEXT_OUT (nxt_out_edge);
1087
1088 }
1089
1090 /* Now nr_rgn_out_edges is the number of region-exit edges from
1091 pred, and nr_out_edges will be the number of pred out edges
1092 not leaving the region. */
1093 nr_out_edges -= nr_rgn_out_edges;
1094 if (nr_rgn_out_edges > 0)
1095 prob[bb] += 0.9 * prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1096 else
1097 prob[bb] += prob[BLOCK_TO_BB (pred)] / nr_out_edges;
1098 nxt_in_edge = NEXT_IN (nxt_in_edge);
1099 }
1100 while (fst_in_edge != nxt_in_edge);
1101
1102 SET_BIT (dom[bb], bb);
1103 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1104
1105 if (sched_verbose >= 2)
1106 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1107 (int) (100.0 * prob[bb]));
1108 }
1109
1110 /* Functions for target info. */
1111
1112 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1113 Note that bb_trg dominates bb_src. */
1114
1115 static void
1116 split_edges (int bb_src, int bb_trg, edgelst *bl)
1117 {
1118 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1119 sbitmap_copy (src, pot_split[bb_src]);
1120
1121 sbitmap_difference (src, src, pot_split[bb_trg]);
1122 extract_bitlst (src, bl);
1123 sbitmap_free (src);
1124 }
1125
1126 /* Find the valid candidate-source-blocks for the target block TRG, compute
1127 their probability, and check if they are speculative or not.
1128 For speculative sources, compute their update-blocks and split-blocks. */
1129
1130 static void
1131 compute_trg_info (int trg)
1132 {
1133 candidate *sp;
1134 edgelst el;
1135 int check_block, update_idx;
1136 int i, j, k, fst_edge, nxt_edge;
1137
1138 /* Define some of the fields for the target bb as well. */
1139 sp = candidate_table + trg;
1140 sp->is_valid = 1;
1141 sp->is_speculative = 0;
1142 sp->src_prob = 100;
1143
1144 for (i = trg + 1; i < current_nr_blocks; i++)
1145 {
1146 sp = candidate_table + i;
1147
1148 sp->is_valid = IS_DOMINATED (i, trg);
1149 if (sp->is_valid)
1150 {
1151 sp->src_prob = GET_SRC_PROB (i, trg);
1152 sp->is_valid = (sp->src_prob >= MIN_PROBABILITY);
1153 }
1154
1155 if (sp->is_valid)
1156 {
1157 split_edges (i, trg, &el);
1158 sp->is_speculative = (el.nr_members) ? 1 : 0;
1159 if (sp->is_speculative && !flag_schedule_speculative)
1160 sp->is_valid = 0;
1161 }
1162
1163 if (sp->is_valid)
1164 {
1165 char *update_blocks;
1166
1167 /* Compute split blocks and store them in bblst_table.
1168 The TO block of every split edge is a split block. */
1169 sp->split_bbs.first_member = &bblst_table[bblst_last];
1170 sp->split_bbs.nr_members = el.nr_members;
1171 for (j = 0; j < el.nr_members; bblst_last++, j++)
1172 bblst_table[bblst_last] =
1173 TO_BLOCK (rgn_edges[el.first_member[j]]);
1174 sp->update_bbs.first_member = &bblst_table[bblst_last];
1175
1176 /* Compute update blocks and store them in bblst_table.
1177 For every split edge, look at the FROM block, and check
1178 all out edges. For each out edge that is not a split edge,
1179 add the TO block to the update block list. This list can end
1180 up with a lot of duplicates. We need to weed them out to avoid
1181 overrunning the end of the bblst_table. */
1182 update_blocks = alloca (last_basic_block);
1183 memset (update_blocks, 0, last_basic_block);
1184
1185 update_idx = 0;
1186 for (j = 0; j < el.nr_members; j++)
1187 {
1188 check_block = FROM_BLOCK (rgn_edges[el.first_member[j]]);
1189 fst_edge = nxt_edge = OUT_EDGES (check_block);
1190 do
1191 {
1192 if (! update_blocks[TO_BLOCK (nxt_edge)])
1193 {
1194 for (k = 0; k < el.nr_members; k++)
1195 if (EDGE_TO_BIT (nxt_edge) == el.first_member[k])
1196 break;
1197
1198 if (k >= el.nr_members)
1199 {
1200 bblst_table[bblst_last++] = TO_BLOCK (nxt_edge);
1201 update_blocks[TO_BLOCK (nxt_edge)] = 1;
1202 update_idx++;
1203 }
1204 }
1205
1206 nxt_edge = NEXT_OUT (nxt_edge);
1207 }
1208 while (fst_edge != nxt_edge);
1209 }
1210 sp->update_bbs.nr_members = update_idx;
1211
1212 /* Make sure we didn't overrun the end of bblst_table. */
1213 if (bblst_last > bblst_size)
1214 abort ();
1215 }
1216 else
1217 {
1218 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1219
1220 sp->is_speculative = 0;
1221 sp->src_prob = 0;
1222 }
1223 }
1224 }
1225
1226 /* Print candidates info, for debugging purposes. Callable from debugger. */
1227
1228 void
1229 debug_candidate (int i)
1230 {
1231 if (!candidate_table[i].is_valid)
1232 return;
1233
1234 if (candidate_table[i].is_speculative)
1235 {
1236 int j;
1237 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1238
1239 fprintf (sched_dump, "split path: ");
1240 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1241 {
1242 int b = candidate_table[i].split_bbs.first_member[j];
1243
1244 fprintf (sched_dump, " %d ", b);
1245 }
1246 fprintf (sched_dump, "\n");
1247
1248 fprintf (sched_dump, "update path: ");
1249 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1250 {
1251 int b = candidate_table[i].update_bbs.first_member[j];
1252
1253 fprintf (sched_dump, " %d ", b);
1254 }
1255 fprintf (sched_dump, "\n");
1256 }
1257 else
1258 {
1259 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1260 }
1261 }
1262
1263 /* Print candidates info, for debugging purposes. Callable from debugger. */
1264
1265 void
1266 debug_candidates (int trg)
1267 {
1268 int i;
1269
1270 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1271 BB_TO_BLOCK (trg), trg);
1272 for (i = trg + 1; i < current_nr_blocks; i++)
1273 debug_candidate (i);
1274 }
1275
1276 /* Functions for speculative scheduling. */
1277
1278 /* Return 0 if x is a set of a register alive in the beginning of one
1279 of the split-blocks of src, otherwise return 1. */
1280
1281 static int
1282 check_live_1 (int src, rtx x)
1283 {
1284 int i;
1285 int regno;
1286 rtx reg = SET_DEST (x);
1287
1288 if (reg == 0)
1289 return 1;
1290
1291 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1292 || GET_CODE (reg) == SIGN_EXTRACT
1293 || GET_CODE (reg) == STRICT_LOW_PART)
1294 reg = XEXP (reg, 0);
1295
1296 if (GET_CODE (reg) == PARALLEL)
1297 {
1298 int i;
1299
1300 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1301 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1302 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1303 return 1;
1304
1305 return 0;
1306 }
1307
1308 if (!REG_P (reg))
1309 return 1;
1310
1311 regno = REGNO (reg);
1312
1313 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1314 {
1315 /* Global registers are assumed live. */
1316 return 0;
1317 }
1318 else
1319 {
1320 if (regno < FIRST_PSEUDO_REGISTER)
1321 {
1322 /* Check for hard registers. */
1323 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1324 while (--j >= 0)
1325 {
1326 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1327 {
1328 int b = candidate_table[src].split_bbs.first_member[i];
1329
1330 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start,
1331 regno + j))
1332 {
1333 return 0;
1334 }
1335 }
1336 }
1337 }
1338 else
1339 {
1340 /* Check for pseudo registers. */
1341 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1342 {
1343 int b = candidate_table[src].split_bbs.first_member[i];
1344
1345 if (REGNO_REG_SET_P (BASIC_BLOCK (b)->global_live_at_start, regno))
1346 {
1347 return 0;
1348 }
1349 }
1350 }
1351 }
1352
1353 return 1;
1354 }
1355
1356 /* If x is a set of a register R, mark that R is alive in the beginning
1357 of every update-block of src. */
1358
1359 static void
1360 update_live_1 (int src, rtx x)
1361 {
1362 int i;
1363 int regno;
1364 rtx reg = SET_DEST (x);
1365
1366 if (reg == 0)
1367 return;
1368
1369 while (GET_CODE (reg) == SUBREG || GET_CODE (reg) == ZERO_EXTRACT
1370 || GET_CODE (reg) == SIGN_EXTRACT
1371 || GET_CODE (reg) == STRICT_LOW_PART)
1372 reg = XEXP (reg, 0);
1373
1374 if (GET_CODE (reg) == PARALLEL)
1375 {
1376 int i;
1377
1378 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1379 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1380 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1381
1382 return;
1383 }
1384
1385 if (!REG_P (reg))
1386 return;
1387
1388 /* Global registers are always live, so the code below does not apply
1389 to them. */
1390
1391 regno = REGNO (reg);
1392
1393 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1394 {
1395 if (regno < FIRST_PSEUDO_REGISTER)
1396 {
1397 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1398 while (--j >= 0)
1399 {
1400 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1401 {
1402 int b = candidate_table[src].update_bbs.first_member[i];
1403
1404 SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start,
1405 regno + j);
1406 }
1407 }
1408 }
1409 else
1410 {
1411 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1412 {
1413 int b = candidate_table[src].update_bbs.first_member[i];
1414
1415 SET_REGNO_REG_SET (BASIC_BLOCK (b)->global_live_at_start, regno);
1416 }
1417 }
1418 }
1419 }
1420
1421 /* Return 1 if insn can be speculatively moved from block src to trg,
1422 otherwise return 0. Called before first insertion of insn to
1423 ready-list or before the scheduling. */
1424
1425 static int
1426 check_live (rtx insn, int src)
1427 {
1428 /* Find the registers set by instruction. */
1429 if (GET_CODE (PATTERN (insn)) == SET
1430 || GET_CODE (PATTERN (insn)) == CLOBBER)
1431 return check_live_1 (src, PATTERN (insn));
1432 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1433 {
1434 int j;
1435 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1436 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1437 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1438 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1439 return 0;
1440
1441 return 1;
1442 }
1443
1444 return 1;
1445 }
1446
1447 /* Update the live registers info after insn was moved speculatively from
1448 block src to trg. */
1449
1450 static void
1451 update_live (rtx insn, int src)
1452 {
1453 /* Find the registers set by instruction. */
1454 if (GET_CODE (PATTERN (insn)) == SET
1455 || GET_CODE (PATTERN (insn)) == CLOBBER)
1456 update_live_1 (src, PATTERN (insn));
1457 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1458 {
1459 int j;
1460 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1461 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1462 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1463 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1464 }
1465 }
1466
1467 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1468 #define IS_REACHABLE(bb_from, bb_to) \
1469 (bb_from == bb_to \
1470 || IS_RGN_ENTRY (bb_from) \
1471 || (TEST_BIT (ancestor_edges[bb_to], \
1472 EDGE_TO_BIT (IN_EDGES (BB_TO_BLOCK (bb_from))))))
1473
1474 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1475
1476 static void
1477 set_spec_fed (rtx load_insn)
1478 {
1479 rtx link;
1480
1481 for (link = INSN_DEPEND (load_insn); link; link = XEXP (link, 1))
1482 if (GET_MODE (link) == VOIDmode)
1483 FED_BY_SPEC_LOAD (XEXP (link, 0)) = 1;
1484 } /* set_spec_fed */
1485
1486 /* On the path from the insn to load_insn_bb, find a conditional
1487 branch depending on insn, that guards the speculative load. */
1488
1489 static int
1490 find_conditional_protection (rtx insn, int load_insn_bb)
1491 {
1492 rtx link;
1493
1494 /* Iterate through DEF-USE forward dependences. */
1495 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
1496 {
1497 rtx next = XEXP (link, 0);
1498 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1499 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1500 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1501 && load_insn_bb != INSN_BB (next)
1502 && GET_MODE (link) == VOIDmode
1503 && (GET_CODE (next) == JUMP_INSN
1504 || find_conditional_protection (next, load_insn_bb)))
1505 return 1;
1506 }
1507 return 0;
1508 } /* find_conditional_protection */
1509
1510 /* Returns 1 if the same insn1 that participates in the computation
1511 of load_insn's address is feeding a conditional branch that is
1512 guarding on load_insn. This is true if we find a the two DEF-USE
1513 chains:
1514 insn1 -> ... -> conditional-branch
1515 insn1 -> ... -> load_insn,
1516 and if a flow path exist:
1517 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1518 and if insn1 is on the path
1519 region-entry -> ... -> bb_trg -> ... load_insn.
1520
1521 Locate insn1 by climbing on LOG_LINKS from load_insn.
1522 Locate the branch by following INSN_DEPEND from insn1. */
1523
1524 static int
1525 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1526 {
1527 rtx link;
1528
1529 for (link = LOG_LINKS (load_insn); link; link = XEXP (link, 1))
1530 {
1531 rtx insn1 = XEXP (link, 0);
1532
1533 /* Must be a DEF-USE dependence upon non-branch. */
1534 if (GET_MODE (link) != VOIDmode
1535 || GET_CODE (insn1) == JUMP_INSN)
1536 continue;
1537
1538 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1539 if (INSN_BB (insn1) == bb_src
1540 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1541 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1542 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1543 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1544 continue;
1545
1546 /* Now search for the conditional-branch. */
1547 if (find_conditional_protection (insn1, bb_src))
1548 return 1;
1549
1550 /* Recursive step: search another insn1, "above" current insn1. */
1551 return is_conditionally_protected (insn1, bb_src, bb_trg);
1552 }
1553
1554 /* The chain does not exist. */
1555 return 0;
1556 } /* is_conditionally_protected */
1557
1558 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1559 load_insn can move speculatively from bb_src to bb_trg. All the
1560 following must hold:
1561
1562 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1563 (2) load_insn and load1 have a def-use dependence upon
1564 the same insn 'insn1'.
1565 (3) either load2 is in bb_trg, or:
1566 - there's only one split-block, and
1567 - load1 is on the escape path, and
1568
1569 From all these we can conclude that the two loads access memory
1570 addresses that differ at most by a constant, and hence if moving
1571 load_insn would cause an exception, it would have been caused by
1572 load2 anyhow. */
1573
1574 static int
1575 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1576 {
1577 rtx back_link;
1578 candidate *candp = candidate_table + bb_src;
1579
1580 if (candp->split_bbs.nr_members != 1)
1581 /* Must have exactly one escape block. */
1582 return 0;
1583
1584 for (back_link = LOG_LINKS (load_insn);
1585 back_link; back_link = XEXP (back_link, 1))
1586 {
1587 rtx insn1 = XEXP (back_link, 0);
1588
1589 if (GET_MODE (back_link) == VOIDmode)
1590 {
1591 /* Found a DEF-USE dependence (insn1, load_insn). */
1592 rtx fore_link;
1593
1594 for (fore_link = INSN_DEPEND (insn1);
1595 fore_link; fore_link = XEXP (fore_link, 1))
1596 {
1597 rtx insn2 = XEXP (fore_link, 0);
1598 if (GET_MODE (fore_link) == VOIDmode)
1599 {
1600 /* Found a DEF-USE dependence (insn1, insn2). */
1601 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1602 /* insn2 not guaranteed to be a 1 base reg load. */
1603 continue;
1604
1605 if (INSN_BB (insn2) == bb_trg)
1606 /* insn2 is the similar load, in the target block. */
1607 return 1;
1608
1609 if (*(candp->split_bbs.first_member) == BLOCK_NUM (insn2))
1610 /* insn2 is a similar load, in a split-block. */
1611 return 1;
1612 }
1613 }
1614 }
1615 }
1616
1617 /* Couldn't find a similar load. */
1618 return 0;
1619 } /* is_pfree */
1620
1621 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1622 a load moved speculatively, or if load_insn is protected by
1623 a compare on load_insn's address). */
1624
1625 static int
1626 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1627 {
1628 if (FED_BY_SPEC_LOAD (load_insn))
1629 return 1;
1630
1631 if (LOG_LINKS (load_insn) == NULL)
1632 /* Dependence may 'hide' out of the region. */
1633 return 1;
1634
1635 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1636 return 1;
1637
1638 return 0;
1639 }
1640
1641 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
1642 Return 1 if insn is exception-free (and the motion is valid)
1643 and 0 otherwise. */
1644
1645 static int
1646 is_exception_free (rtx insn, int bb_src, int bb_trg)
1647 {
1648 int insn_class = haifa_classify_insn (insn);
1649
1650 /* Handle non-load insns. */
1651 switch (insn_class)
1652 {
1653 case TRAP_FREE:
1654 return 1;
1655 case TRAP_RISKY:
1656 return 0;
1657 default:;
1658 }
1659
1660 /* Handle loads. */
1661 if (!flag_schedule_speculative_load)
1662 return 0;
1663 IS_LOAD_INSN (insn) = 1;
1664 switch (insn_class)
1665 {
1666 case IFREE:
1667 return (1);
1668 case IRISKY:
1669 return 0;
1670 case PFREE_CANDIDATE:
1671 if (is_pfree (insn, bb_src, bb_trg))
1672 return 1;
1673 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
1674 case PRISKY_CANDIDATE:
1675 if (!flag_schedule_speculative_load_dangerous
1676 || is_prisky (insn, bb_src, bb_trg))
1677 return 0;
1678 break;
1679 default:;
1680 }
1681
1682 return flag_schedule_speculative_load_dangerous;
1683 }
1684 \f
1685 /* The number of insns from the current block scheduled so far. */
1686 static int sched_target_n_insns;
1687 /* The number of insns from the current block to be scheduled in total. */
1688 static int target_n_insns;
1689 /* The number of insns from the entire region scheduled so far. */
1690 static int sched_n_insns;
1691 /* Nonzero if the last scheduled insn was a jump. */
1692 static int last_was_jump;
1693
1694 /* Implementations of the sched_info functions for region scheduling. */
1695 static void init_ready_list (struct ready_list *);
1696 static int can_schedule_ready_p (rtx);
1697 static int new_ready (rtx);
1698 static int schedule_more_p (void);
1699 static const char *rgn_print_insn (rtx, int);
1700 static int rgn_rank (rtx, rtx);
1701 static int contributes_to_priority (rtx, rtx);
1702 static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
1703
1704 /* Return nonzero if there are more insns that should be scheduled. */
1705
1706 static int
1707 schedule_more_p (void)
1708 {
1709 return ! last_was_jump && sched_target_n_insns < target_n_insns;
1710 }
1711
1712 /* Add all insns that are initially ready to the ready list READY. Called
1713 once before scheduling a set of insns. */
1714
1715 static void
1716 init_ready_list (struct ready_list *ready)
1717 {
1718 rtx prev_head = current_sched_info->prev_head;
1719 rtx next_tail = current_sched_info->next_tail;
1720 int bb_src;
1721 rtx insn;
1722
1723 target_n_insns = 0;
1724 sched_target_n_insns = 0;
1725 sched_n_insns = 0;
1726 last_was_jump = 0;
1727
1728 /* Print debugging information. */
1729 if (sched_verbose >= 5)
1730 debug_dependencies ();
1731
1732 /* Prepare current target block info. */
1733 if (current_nr_blocks > 1)
1734 {
1735 candidate_table = xmalloc (current_nr_blocks * sizeof (candidate));
1736
1737 bblst_last = 0;
1738 /* bblst_table holds split blocks and update blocks for each block after
1739 the current one in the region. split blocks and update blocks are
1740 the TO blocks of region edges, so there can be at most rgn_nr_edges
1741 of them. */
1742 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1743 bblst_table = xmalloc (bblst_size * sizeof (int));
1744
1745 bitlst_table_last = 0;
1746 bitlst_table = xmalloc (rgn_nr_edges * sizeof (int));
1747
1748 compute_trg_info (target_bb);
1749 }
1750
1751 /* Initialize ready list with all 'ready' insns in target block.
1752 Count number of insns in the target block being scheduled. */
1753 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
1754 {
1755 if (INSN_DEP_COUNT (insn) == 0)
1756 {
1757 ready_add (ready, insn);
1758
1759 if (targetm.sched.adjust_priority)
1760 INSN_PRIORITY (insn) =
1761 targetm.sched.adjust_priority (insn, INSN_PRIORITY (insn));
1762 }
1763 target_n_insns++;
1764 }
1765
1766 /* Add to ready list all 'ready' insns in valid source blocks.
1767 For speculative insns, check-live, exception-free, and
1768 issue-delay. */
1769 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
1770 if (IS_VALID (bb_src))
1771 {
1772 rtx src_head;
1773 rtx src_next_tail;
1774 rtx tail, head;
1775
1776 get_block_head_tail (BB_TO_BLOCK (bb_src), &head, &tail);
1777 src_next_tail = NEXT_INSN (tail);
1778 src_head = head;
1779
1780 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
1781 {
1782 if (! INSN_P (insn))
1783 continue;
1784
1785 if (!CANT_MOVE (insn)
1786 && (!IS_SPECULATIVE_INSN (insn)
1787 || ((((!targetm.sched.use_dfa_pipeline_interface
1788 || !targetm.sched.use_dfa_pipeline_interface ())
1789 && insn_issue_delay (insn) <= 3)
1790 || (targetm.sched.use_dfa_pipeline_interface
1791 && targetm.sched.use_dfa_pipeline_interface ()
1792 && (recog_memoized (insn) < 0
1793 || min_insn_conflict_delay (curr_state,
1794 insn, insn) <= 3)))
1795 && check_live (insn, bb_src)
1796 && is_exception_free (insn, bb_src, target_bb))))
1797 if (INSN_DEP_COUNT (insn) == 0)
1798 {
1799 ready_add (ready, insn);
1800
1801 if (targetm.sched.adjust_priority)
1802 INSN_PRIORITY (insn) =
1803 targetm.sched.adjust_priority (insn, INSN_PRIORITY (insn));
1804 }
1805 }
1806 }
1807 }
1808
1809 /* Called after taking INSN from the ready list. Returns nonzero if this
1810 insn can be scheduled, nonzero if we should silently discard it. */
1811
1812 static int
1813 can_schedule_ready_p (rtx insn)
1814 {
1815 if (GET_CODE (insn) == JUMP_INSN)
1816 last_was_jump = 1;
1817
1818 /* An interblock motion? */
1819 if (INSN_BB (insn) != target_bb)
1820 {
1821 basic_block b1;
1822
1823 if (IS_SPECULATIVE_INSN (insn))
1824 {
1825 if (!check_live (insn, INSN_BB (insn)))
1826 return 0;
1827 update_live (insn, INSN_BB (insn));
1828
1829 /* For speculative load, mark insns fed by it. */
1830 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
1831 set_spec_fed (insn);
1832
1833 nr_spec++;
1834 }
1835 nr_inter++;
1836
1837 /* Update source block boundaries. */
1838 b1 = BLOCK_FOR_INSN (insn);
1839 if (insn == BB_HEAD (b1) && insn == BB_END (b1))
1840 {
1841 /* We moved all the insns in the basic block.
1842 Emit a note after the last insn and update the
1843 begin/end boundaries to point to the note. */
1844 rtx note = emit_note_after (NOTE_INSN_DELETED, insn);
1845 BB_HEAD (b1) = note;
1846 BB_END (b1) = note;
1847 }
1848 else if (insn == BB_END (b1))
1849 {
1850 /* We took insns from the end of the basic block,
1851 so update the end of block boundary so that it
1852 points to the first insn we did not move. */
1853 BB_END (b1) = PREV_INSN (insn);
1854 }
1855 else if (insn == BB_HEAD (b1))
1856 {
1857 /* We took insns from the start of the basic block,
1858 so update the start of block boundary so that
1859 it points to the first insn we did not move. */
1860 BB_HEAD (b1) = NEXT_INSN (insn);
1861 }
1862 }
1863 else
1864 {
1865 /* In block motion. */
1866 sched_target_n_insns++;
1867 }
1868 sched_n_insns++;
1869
1870 return 1;
1871 }
1872
1873 /* Called after INSN has all its dependencies resolved. Return nonzero
1874 if it should be moved to the ready list or the queue, or zero if we
1875 should silently discard it. */
1876 static int
1877 new_ready (rtx next)
1878 {
1879 /* For speculative insns, before inserting to ready/queue,
1880 check live, exception-free, and issue-delay. */
1881 if (INSN_BB (next) != target_bb
1882 && (!IS_VALID (INSN_BB (next))
1883 || CANT_MOVE (next)
1884 || (IS_SPECULATIVE_INSN (next)
1885 && (0
1886 || (targetm.sched.use_dfa_pipeline_interface
1887 && targetm.sched.use_dfa_pipeline_interface ()
1888 && recog_memoized (next) >= 0
1889 && min_insn_conflict_delay (curr_state, next,
1890 next) > 3)
1891 || ((!targetm.sched.use_dfa_pipeline_interface
1892 || !targetm.sched.use_dfa_pipeline_interface ())
1893 && insn_issue_delay (next) > 3)
1894 || !check_live (next, INSN_BB (next))
1895 || !is_exception_free (next, INSN_BB (next), target_bb)))))
1896 return 0;
1897 return 1;
1898 }
1899
1900 /* Return a string that contains the insn uid and optionally anything else
1901 necessary to identify this insn in an output. It's valid to use a
1902 static buffer for this. The ALIGNED parameter should cause the string
1903 to be formatted so that multiple output lines will line up nicely. */
1904
1905 static const char *
1906 rgn_print_insn (rtx insn, int aligned)
1907 {
1908 static char tmp[80];
1909
1910 if (aligned)
1911 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
1912 else
1913 {
1914 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
1915 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
1916 else
1917 sprintf (tmp, "%d", INSN_UID (insn));
1918 }
1919 return tmp;
1920 }
1921
1922 /* Compare priority of two insns. Return a positive number if the second
1923 insn is to be preferred for scheduling, and a negative one if the first
1924 is to be preferred. Zero if they are equally good. */
1925
1926 static int
1927 rgn_rank (rtx insn1, rtx insn2)
1928 {
1929 /* Some comparison make sense in interblock scheduling only. */
1930 if (INSN_BB (insn1) != INSN_BB (insn2))
1931 {
1932 int spec_val, prob_val;
1933
1934 /* Prefer an inblock motion on an interblock motion. */
1935 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
1936 return 1;
1937 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
1938 return -1;
1939
1940 /* Prefer a useful motion on a speculative one. */
1941 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
1942 if (spec_val)
1943 return spec_val;
1944
1945 /* Prefer a more probable (speculative) insn. */
1946 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
1947 if (prob_val)
1948 return prob_val;
1949 }
1950 return 0;
1951 }
1952
1953 /* NEXT is an instruction that depends on INSN (a backward dependence);
1954 return nonzero if we should include this dependence in priority
1955 calculations. */
1956
1957 static int
1958 contributes_to_priority (rtx next, rtx insn)
1959 {
1960 return BLOCK_NUM (next) == BLOCK_NUM (insn);
1961 }
1962
1963 /* INSN is a JUMP_INSN, COND_SET is the set of registers that are
1964 conditionally set before INSN. Store the set of registers that
1965 must be considered as used by this jump in USED and that of
1966 registers that must be considered as set in SET. */
1967
1968 static void
1969 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
1970 regset cond_exec ATTRIBUTE_UNUSED,
1971 regset used ATTRIBUTE_UNUSED,
1972 regset set ATTRIBUTE_UNUSED)
1973 {
1974 /* Nothing to do here, since we postprocess jumps in
1975 add_branch_dependences. */
1976 }
1977
1978 /* Used in schedule_insns to initialize current_sched_info for scheduling
1979 regions (or single basic blocks). */
1980
1981 static struct sched_info region_sched_info =
1982 {
1983 init_ready_list,
1984 can_schedule_ready_p,
1985 schedule_more_p,
1986 new_ready,
1987 rgn_rank,
1988 rgn_print_insn,
1989 contributes_to_priority,
1990 compute_jump_reg_dependencies,
1991
1992 NULL, NULL,
1993 NULL, NULL,
1994 0, 0, 0
1995 };
1996
1997 /* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
1998
1999 static bool
2000 sets_likely_spilled (rtx pat)
2001 {
2002 bool ret = false;
2003 note_stores (pat, sets_likely_spilled_1, &ret);
2004 return ret;
2005 }
2006
2007 static void
2008 sets_likely_spilled_1 (rtx x, rtx pat, void *data)
2009 {
2010 bool *ret = (bool *) data;
2011
2012 if (GET_CODE (pat) == SET
2013 && REG_P (x)
2014 && REGNO (x) < FIRST_PSEUDO_REGISTER
2015 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
2016 *ret = true;
2017 }
2018
2019 /* Add dependences so that branches are scheduled to run last in their
2020 block. */
2021
2022 static void
2023 add_branch_dependences (rtx head, rtx tail)
2024 {
2025 rtx insn, last;
2026
2027 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2028 that can throw exceptions, force them to remain in order at the end of
2029 the block by adding dependencies and giving the last a high priority.
2030 There may be notes present, and prev_head may also be a note.
2031
2032 Branches must obviously remain at the end. Calls should remain at the
2033 end since moving them results in worse register allocation. Uses remain
2034 at the end to ensure proper register allocation.
2035
2036 cc0 setters remain at the end because they can't be moved away from
2037 their cc0 user.
2038
2039 Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
2040 are not moved before reload because we can wind up with register
2041 allocation failures. */
2042
2043 insn = tail;
2044 last = 0;
2045 while (GET_CODE (insn) == CALL_INSN
2046 || GET_CODE (insn) == JUMP_INSN
2047 || (GET_CODE (insn) == INSN
2048 && (GET_CODE (PATTERN (insn)) == USE
2049 || GET_CODE (PATTERN (insn)) == CLOBBER
2050 || can_throw_internal (insn)
2051 #ifdef HAVE_cc0
2052 || sets_cc0_p (PATTERN (insn))
2053 #endif
2054 || (!reload_completed
2055 && sets_likely_spilled (PATTERN (insn)))))
2056 || GET_CODE (insn) == NOTE)
2057 {
2058 if (GET_CODE (insn) != NOTE)
2059 {
2060 if (last != 0 && !find_insn_list (insn, LOG_LINKS (last)))
2061 {
2062 add_dependence (last, insn, REG_DEP_ANTI);
2063 INSN_REF_COUNT (insn)++;
2064 }
2065
2066 CANT_MOVE (insn) = 1;
2067
2068 last = insn;
2069 }
2070
2071 /* Don't overrun the bounds of the basic block. */
2072 if (insn == head)
2073 break;
2074
2075 insn = PREV_INSN (insn);
2076 }
2077
2078 /* Make sure these insns are scheduled last in their block. */
2079 insn = last;
2080 if (insn != 0)
2081 while (insn != head)
2082 {
2083 insn = prev_nonnote_insn (insn);
2084
2085 if (INSN_REF_COUNT (insn) != 0)
2086 continue;
2087
2088 add_dependence (last, insn, REG_DEP_ANTI);
2089 INSN_REF_COUNT (insn) = 1;
2090 }
2091 }
2092
2093 /* Data structures for the computation of data dependences in a regions. We
2094 keep one `deps' structure for every basic block. Before analyzing the
2095 data dependences for a bb, its variables are initialized as a function of
2096 the variables of its predecessors. When the analysis for a bb completes,
2097 we save the contents to the corresponding bb_deps[bb] variable. */
2098
2099 static struct deps *bb_deps;
2100
2101 /* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
2102
2103 static rtx
2104 concat_INSN_LIST (rtx copy, rtx old)
2105 {
2106 rtx new = old;
2107 for (; copy ; copy = XEXP (copy, 1))
2108 new = alloc_INSN_LIST (XEXP (copy, 0), new);
2109 return new;
2110 }
2111
2112 static void
2113 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2114 rtx *old_mems_p)
2115 {
2116 rtx new_insns = *old_insns_p;
2117 rtx new_mems = *old_mems_p;
2118
2119 while (copy_insns)
2120 {
2121 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2122 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2123 copy_insns = XEXP (copy_insns, 1);
2124 copy_mems = XEXP (copy_mems, 1);
2125 }
2126
2127 *old_insns_p = new_insns;
2128 *old_mems_p = new_mems;
2129 }
2130
2131 /* After computing the dependencies for block BB, propagate the dependencies
2132 found in TMP_DEPS to the successors of the block. */
2133 static void
2134 propagate_deps (int bb, struct deps *pred_deps)
2135 {
2136 int b = BB_TO_BLOCK (bb);
2137 int e, first_edge;
2138
2139 /* bb's structures are inherited by its successors. */
2140 first_edge = e = OUT_EDGES (b);
2141 if (e > 0)
2142 do
2143 {
2144 int b_succ = TO_BLOCK (e);
2145 int bb_succ = BLOCK_TO_BB (b_succ);
2146 struct deps *succ_deps = bb_deps + bb_succ;
2147 int reg;
2148
2149 /* Only bbs "below" bb, in the same region, are interesting. */
2150 if (CONTAINING_RGN (b) != CONTAINING_RGN (b_succ)
2151 || bb_succ <= bb)
2152 {
2153 e = NEXT_OUT (e);
2154 continue;
2155 }
2156
2157 /* The reg_last lists are inherited by bb_succ. */
2158 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg,
2159 {
2160 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2161 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2162
2163 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2164 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2165 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2166 succ_rl->clobbers);
2167 succ_rl->uses_length += pred_rl->uses_length;
2168 succ_rl->clobbers_length += pred_rl->clobbers_length;
2169 });
2170 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2171
2172 /* Mem read/write lists are inherited by bb_succ. */
2173 concat_insn_mem_list (pred_deps->pending_read_insns,
2174 pred_deps->pending_read_mems,
2175 &succ_deps->pending_read_insns,
2176 &succ_deps->pending_read_mems);
2177 concat_insn_mem_list (pred_deps->pending_write_insns,
2178 pred_deps->pending_write_mems,
2179 &succ_deps->pending_write_insns,
2180 &succ_deps->pending_write_mems);
2181
2182 succ_deps->last_pending_memory_flush
2183 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2184 succ_deps->last_pending_memory_flush);
2185
2186 succ_deps->pending_lists_length += pred_deps->pending_lists_length;
2187 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2188
2189 /* last_function_call is inherited by bb_succ. */
2190 succ_deps->last_function_call
2191 = concat_INSN_LIST (pred_deps->last_function_call,
2192 succ_deps->last_function_call);
2193
2194 /* sched_before_next_call is inherited by bb_succ. */
2195 succ_deps->sched_before_next_call
2196 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2197 succ_deps->sched_before_next_call);
2198
2199 e = NEXT_OUT (e);
2200 }
2201 while (e != first_edge);
2202
2203 /* These lists should point to the right place, for correct
2204 freeing later. */
2205 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2206 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2207 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2208 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2209
2210 /* Can't allow these to be freed twice. */
2211 pred_deps->pending_read_insns = 0;
2212 pred_deps->pending_read_mems = 0;
2213 pred_deps->pending_write_insns = 0;
2214 pred_deps->pending_write_mems = 0;
2215 }
2216
2217 /* Compute backward dependences inside bb. In a multiple blocks region:
2218 (1) a bb is analyzed after its predecessors, and (2) the lists in
2219 effect at the end of bb (after analyzing for bb) are inherited by
2220 bb's successors.
2221
2222 Specifically for reg-reg data dependences, the block insns are
2223 scanned by sched_analyze () top-to-bottom. Two lists are
2224 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2225 and reg_last[].uses for register USEs.
2226
2227 When analysis is completed for bb, we update for its successors:
2228 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2229 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2230
2231 The mechanism for computing mem-mem data dependence is very
2232 similar, and the result is interblock dependences in the region. */
2233
2234 static void
2235 compute_block_backward_dependences (int bb)
2236 {
2237 rtx head, tail;
2238 struct deps tmp_deps;
2239
2240 tmp_deps = bb_deps[bb];
2241
2242 /* Do the analysis for this block. */
2243 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2244 sched_analyze (&tmp_deps, head, tail);
2245 add_branch_dependences (head, tail);
2246
2247 if (current_nr_blocks > 1)
2248 propagate_deps (bb, &tmp_deps);
2249
2250 /* Free up the INSN_LISTs. */
2251 free_deps (&tmp_deps);
2252 }
2253
2254 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2255 them to the unused_*_list variables, so that they can be reused. */
2256
2257 static void
2258 free_pending_lists (void)
2259 {
2260 int bb;
2261
2262 for (bb = 0; bb < current_nr_blocks; bb++)
2263 {
2264 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2265 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2266 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2267 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2268 }
2269 }
2270 \f
2271 /* Print dependences for debugging, callable from debugger. */
2272
2273 void
2274 debug_dependencies (void)
2275 {
2276 int bb;
2277
2278 fprintf (sched_dump, ";; --------------- forward dependences: ------------ \n");
2279 for (bb = 0; bb < current_nr_blocks; bb++)
2280 {
2281 if (1)
2282 {
2283 rtx head, tail;
2284 rtx next_tail;
2285 rtx insn;
2286
2287 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2288 next_tail = NEXT_INSN (tail);
2289 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2290 BB_TO_BLOCK (bb), bb);
2291
2292 if (targetm.sched.use_dfa_pipeline_interface
2293 && targetm.sched.use_dfa_pipeline_interface ())
2294 {
2295 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2296 "insn", "code", "bb", "dep", "prio", "cost",
2297 "reservation");
2298 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2299 "----", "----", "--", "---", "----", "----",
2300 "-----------");
2301 }
2302 else
2303 {
2304 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
2305 "insn", "code", "bb", "dep", "prio", "cost", "blockage", "units");
2306 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%11s%6s\n",
2307 "----", "----", "--", "---", "----", "----", "--------", "-----");
2308 }
2309
2310 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2311 {
2312 rtx link;
2313
2314 if (! INSN_P (insn))
2315 {
2316 int n;
2317 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2318 if (GET_CODE (insn) == NOTE)
2319 {
2320 n = NOTE_LINE_NUMBER (insn);
2321 if (n < 0)
2322 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2323 else
2324 fprintf (sched_dump, "line %d, file %s\n", n,
2325 NOTE_SOURCE_FILE (insn));
2326 }
2327 else
2328 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2329 continue;
2330 }
2331
2332 if (targetm.sched.use_dfa_pipeline_interface
2333 && targetm.sched.use_dfa_pipeline_interface ())
2334 {
2335 fprintf (sched_dump,
2336 ";; %s%5d%6d%6d%6d%6d%6d ",
2337 (SCHED_GROUP_P (insn) ? "+" : " "),
2338 INSN_UID (insn),
2339 INSN_CODE (insn),
2340 INSN_BB (insn),
2341 INSN_DEP_COUNT (insn),
2342 INSN_PRIORITY (insn),
2343 insn_cost (insn, 0, 0));
2344
2345 if (recog_memoized (insn) < 0)
2346 fprintf (sched_dump, "nothing");
2347 else
2348 print_reservation (sched_dump, insn);
2349 }
2350 else
2351 {
2352 int unit = insn_unit (insn);
2353 int range
2354 = (unit < 0
2355 || function_units[unit].blockage_range_function == 0
2356 ? 0
2357 : function_units[unit].blockage_range_function (insn));
2358 fprintf (sched_dump,
2359 ";; %s%5d%6d%6d%6d%6d%6d %3d -%3d ",
2360 (SCHED_GROUP_P (insn) ? "+" : " "),
2361 INSN_UID (insn),
2362 INSN_CODE (insn),
2363 INSN_BB (insn),
2364 INSN_DEP_COUNT (insn),
2365 INSN_PRIORITY (insn),
2366 insn_cost (insn, 0, 0),
2367 (int) MIN_BLOCKAGE_COST (range),
2368 (int) MAX_BLOCKAGE_COST (range));
2369 insn_print_units (insn);
2370 }
2371
2372 fprintf (sched_dump, "\t: ");
2373 for (link = INSN_DEPEND (insn); link; link = XEXP (link, 1))
2374 fprintf (sched_dump, "%d ", INSN_UID (XEXP (link, 0)));
2375 fprintf (sched_dump, "\n");
2376 }
2377 }
2378 }
2379 fprintf (sched_dump, "\n");
2380 }
2381 \f
2382 /* Schedule a region. A region is either an inner loop, a loop-free
2383 subroutine, or a single basic block. Each bb in the region is
2384 scheduled after its flow predecessors. */
2385
2386 static void
2387 schedule_region (int rgn)
2388 {
2389 int bb;
2390 int rgn_n_insns = 0;
2391 int sched_rgn_n_insns = 0;
2392
2393 /* Set variables for the current region. */
2394 current_nr_blocks = RGN_NR_BLOCKS (rgn);
2395 current_blocks = RGN_BLOCKS (rgn);
2396
2397 init_deps_global ();
2398
2399 /* Initializations for region data dependence analysis. */
2400 bb_deps = xmalloc (sizeof (struct deps) * current_nr_blocks);
2401 for (bb = 0; bb < current_nr_blocks; bb++)
2402 init_deps (bb_deps + bb);
2403
2404 /* Compute LOG_LINKS. */
2405 for (bb = 0; bb < current_nr_blocks; bb++)
2406 compute_block_backward_dependences (bb);
2407
2408 /* Compute INSN_DEPEND. */
2409 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
2410 {
2411 rtx head, tail;
2412 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2413
2414 compute_forward_dependences (head, tail);
2415
2416 if (targetm.sched.dependencies_evaluation_hook)
2417 targetm.sched.dependencies_evaluation_hook (head, tail);
2418
2419 }
2420
2421 /* Set priorities. */
2422 for (bb = 0; bb < current_nr_blocks; bb++)
2423 {
2424 rtx head, tail;
2425 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2426
2427 rgn_n_insns += set_priorities (head, tail);
2428 }
2429
2430 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
2431 if (current_nr_blocks > 1)
2432 {
2433 int i;
2434
2435 prob = xmalloc ((current_nr_blocks) * sizeof (float));
2436
2437 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
2438 sbitmap_vector_zero (dom, current_nr_blocks);
2439 /* Edge to bit. */
2440 rgn_nr_edges = 0;
2441 edge_to_bit = xmalloc (nr_edges * sizeof (int));
2442 for (i = 1; i < nr_edges; i++)
2443 if (CONTAINING_RGN (FROM_BLOCK (i)) == rgn)
2444 EDGE_TO_BIT (i) = rgn_nr_edges++;
2445 rgn_edges = xmalloc (rgn_nr_edges * sizeof (int));
2446
2447 rgn_nr_edges = 0;
2448 for (i = 1; i < nr_edges; i++)
2449 if (CONTAINING_RGN (FROM_BLOCK (i)) == (rgn))
2450 rgn_edges[rgn_nr_edges++] = i;
2451
2452 /* Split edges. */
2453 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2454 sbitmap_vector_zero (pot_split, current_nr_blocks);
2455 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2456 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
2457
2458 /* Compute probabilities, dominators, split_edges. */
2459 for (bb = 0; bb < current_nr_blocks; bb++)
2460 compute_dom_prob_ps (bb);
2461 }
2462
2463 /* Now we can schedule all blocks. */
2464 for (bb = 0; bb < current_nr_blocks; bb++)
2465 {
2466 rtx head, tail;
2467 int b = BB_TO_BLOCK (bb);
2468
2469 get_block_head_tail (b, &head, &tail);
2470
2471 if (no_real_insns_p (head, tail))
2472 continue;
2473
2474 current_sched_info->prev_head = PREV_INSN (head);
2475 current_sched_info->next_tail = NEXT_INSN (tail);
2476
2477 if (write_symbols != NO_DEBUG)
2478 {
2479 save_line_notes (b, head, tail);
2480 rm_line_notes (head, tail);
2481 }
2482
2483 /* rm_other_notes only removes notes which are _inside_ the
2484 block---that is, it won't remove notes before the first real insn
2485 or after the last real insn of the block. So if the first insn
2486 has a REG_SAVE_NOTE which would otherwise be emitted before the
2487 insn, it is redundant with the note before the start of the
2488 block, and so we have to take it out. */
2489 if (INSN_P (head))
2490 {
2491 rtx note;
2492
2493 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
2494 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2495 {
2496 remove_note (head, note);
2497 note = XEXP (note, 1);
2498 remove_note (head, note);
2499 }
2500 }
2501
2502 /* Remove remaining note insns from the block, save them in
2503 note_list. These notes are restored at the end of
2504 schedule_block (). */
2505 rm_other_notes (head, tail);
2506
2507 target_bb = bb;
2508
2509 current_sched_info->queue_must_finish_empty
2510 = current_nr_blocks > 1 && !flag_schedule_interblock;
2511
2512 schedule_block (b, rgn_n_insns);
2513 sched_rgn_n_insns += sched_n_insns;
2514
2515 /* Update target block boundaries. */
2516 if (head == BB_HEAD (BASIC_BLOCK (b)))
2517 BB_HEAD (BASIC_BLOCK (b)) = current_sched_info->head;
2518 if (tail == BB_END (BASIC_BLOCK (b)))
2519 BB_END (BASIC_BLOCK (b)) = current_sched_info->tail;
2520
2521 /* Clean up. */
2522 if (current_nr_blocks > 1)
2523 {
2524 free (candidate_table);
2525 free (bblst_table);
2526 free (bitlst_table);
2527 }
2528 }
2529
2530 /* Sanity check: verify that all region insns were scheduled. */
2531 if (sched_rgn_n_insns != rgn_n_insns)
2532 abort ();
2533
2534 /* Restore line notes. */
2535 if (write_symbols != NO_DEBUG)
2536 {
2537 for (bb = 0; bb < current_nr_blocks; bb++)
2538 {
2539 rtx head, tail;
2540 get_block_head_tail (BB_TO_BLOCK (bb), &head, &tail);
2541 restore_line_notes (head, tail);
2542 }
2543 }
2544
2545 /* Done with this region. */
2546 free_pending_lists ();
2547
2548 finish_deps_global ();
2549
2550 free (bb_deps);
2551
2552 if (current_nr_blocks > 1)
2553 {
2554 free (prob);
2555 sbitmap_vector_free (dom);
2556 sbitmap_vector_free (pot_split);
2557 sbitmap_vector_free (ancestor_edges);
2558 free (edge_to_bit);
2559 free (rgn_edges);
2560 }
2561 }
2562
2563 /* Indexed by region, holds the number of death notes found in that region.
2564 Used for consistency checks. */
2565 static int *deaths_in_region;
2566
2567 /* Initialize data structures for region scheduling. */
2568
2569 static void
2570 init_regions (void)
2571 {
2572 sbitmap blocks;
2573 int rgn;
2574
2575 nr_regions = 0;
2576 rgn_table = xmalloc ((n_basic_blocks) * sizeof (region));
2577 rgn_bb_table = xmalloc ((n_basic_blocks) * sizeof (int));
2578 block_to_bb = xmalloc ((last_basic_block) * sizeof (int));
2579 containing_rgn = xmalloc ((last_basic_block) * sizeof (int));
2580
2581 /* Compute regions for scheduling. */
2582 if (reload_completed
2583 || n_basic_blocks == 1
2584 || !flag_schedule_interblock)
2585 {
2586 find_single_block_region ();
2587 }
2588 else
2589 {
2590 /* Verify that a 'good' control flow graph can be built. */
2591 if (is_cfg_nonregular ())
2592 {
2593 find_single_block_region ();
2594 }
2595 else
2596 {
2597 struct edge_list *edge_list;
2598
2599 /* The scheduler runs after estimate_probabilities; therefore, we
2600 can't blindly call back into find_basic_blocks since doing so
2601 could invalidate the branch probability info. We could,
2602 however, call cleanup_cfg. */
2603 edge_list = create_edge_list ();
2604
2605 /* Compute the dominators and post dominators. */
2606 calculate_dominance_info (CDI_DOMINATORS);
2607
2608 /* build_control_flow will return nonzero if it detects unreachable
2609 blocks or any other irregularity with the cfg which prevents
2610 cross block scheduling. */
2611 if (build_control_flow (edge_list) != 0)
2612 find_single_block_region ();
2613 else
2614 find_rgns (edge_list);
2615
2616 if (sched_verbose >= 3)
2617 debug_regions ();
2618
2619 /* We are done with flow's edge list. */
2620 free_edge_list (edge_list);
2621
2622 /* For now. This will move as more and more of haifa is converted
2623 to using the cfg code in flow.c. */
2624 free_dominance_info (CDI_DOMINATORS);
2625 }
2626 }
2627
2628
2629 if (CHECK_DEAD_NOTES)
2630 {
2631 blocks = sbitmap_alloc (last_basic_block);
2632 deaths_in_region = xmalloc (sizeof (int) * nr_regions);
2633 /* Remove all death notes from the subroutine. */
2634 for (rgn = 0; rgn < nr_regions; rgn++)
2635 {
2636 int b;
2637
2638 sbitmap_zero (blocks);
2639 for (b = RGN_NR_BLOCKS (rgn) - 1; b >= 0; --b)
2640 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn) + b]);
2641
2642 deaths_in_region[rgn] = count_or_remove_death_notes (blocks, 1);
2643 }
2644 sbitmap_free (blocks);
2645 }
2646 else
2647 count_or_remove_death_notes (NULL, 1);
2648 }
2649
2650 /* The one entry point in this file. DUMP_FILE is the dump file for
2651 this pass. */
2652
2653 void
2654 schedule_insns (FILE *dump_file)
2655 {
2656 sbitmap large_region_blocks, blocks;
2657 int rgn;
2658 int any_large_regions;
2659 basic_block bb;
2660
2661 /* Taking care of this degenerate case makes the rest of
2662 this code simpler. */
2663 if (n_basic_blocks == 0)
2664 return;
2665
2666 nr_inter = 0;
2667 nr_spec = 0;
2668
2669 sched_init (dump_file);
2670
2671 init_regions ();
2672
2673 current_sched_info = &region_sched_info;
2674
2675 /* Schedule every region in the subroutine. */
2676 for (rgn = 0; rgn < nr_regions; rgn++)
2677 schedule_region (rgn);
2678
2679 /* Update life analysis for the subroutine. Do single block regions
2680 first so that we can verify that live_at_start didn't change. Then
2681 do all other blocks. */
2682 /* ??? There is an outside possibility that update_life_info, or more
2683 to the point propagate_block, could get called with nonzero flags
2684 more than once for one basic block. This would be kinda bad if it
2685 were to happen, since REG_INFO would be accumulated twice for the
2686 block, and we'd have twice the REG_DEAD notes.
2687
2688 I'm fairly certain that this _shouldn't_ happen, since I don't think
2689 that live_at_start should change at region heads. Not sure what the
2690 best way to test for this kind of thing... */
2691
2692 allocate_reg_life_data ();
2693 compute_bb_for_insn ();
2694
2695 any_large_regions = 0;
2696 large_region_blocks = sbitmap_alloc (last_basic_block);
2697 sbitmap_zero (large_region_blocks);
2698 FOR_EACH_BB (bb)
2699 SET_BIT (large_region_blocks, bb->index);
2700
2701 blocks = sbitmap_alloc (last_basic_block);
2702 sbitmap_zero (blocks);
2703
2704 /* Update life information. For regions consisting of multiple blocks
2705 we've possibly done interblock scheduling that affects global liveness.
2706 For regions consisting of single blocks we need to do only local
2707 liveness. */
2708 for (rgn = 0; rgn < nr_regions; rgn++)
2709 if (RGN_NR_BLOCKS (rgn) > 1)
2710 any_large_regions = 1;
2711 else
2712 {
2713 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
2714 RESET_BIT (large_region_blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
2715 }
2716
2717 /* Don't update reg info after reload, since that affects
2718 regs_ever_live, which should not change after reload. */
2719 update_life_info (blocks, UPDATE_LIFE_LOCAL,
2720 (reload_completed ? PROP_DEATH_NOTES
2721 : PROP_DEATH_NOTES | PROP_REG_INFO));
2722 if (any_large_regions)
2723 {
2724 update_life_info (large_region_blocks, UPDATE_LIFE_GLOBAL,
2725 PROP_DEATH_NOTES | PROP_REG_INFO);
2726 }
2727
2728 if (CHECK_DEAD_NOTES)
2729 {
2730 /* Verify the counts of basic block notes in single the basic block
2731 regions. */
2732 for (rgn = 0; rgn < nr_regions; rgn++)
2733 if (RGN_NR_BLOCKS (rgn) == 1)
2734 {
2735 sbitmap_zero (blocks);
2736 SET_BIT (blocks, rgn_bb_table[RGN_BLOCKS (rgn)]);
2737
2738 if (deaths_in_region[rgn]
2739 != count_or_remove_death_notes (blocks, 0))
2740 abort ();
2741 }
2742 free (deaths_in_region);
2743 }
2744
2745 /* Reposition the prologue and epilogue notes in case we moved the
2746 prologue/epilogue insns. */
2747 if (reload_completed)
2748 reposition_prologue_and_epilogue_notes (get_insns ());
2749
2750 /* Delete redundant line notes. */
2751 if (write_symbols != NO_DEBUG)
2752 rm_redundant_line_notes ();
2753
2754 if (sched_verbose)
2755 {
2756 if (reload_completed == 0 && flag_schedule_interblock)
2757 {
2758 fprintf (sched_dump,
2759 "\n;; Procedure interblock/speculative motions == %d/%d \n",
2760 nr_inter, nr_spec);
2761 }
2762 else
2763 {
2764 if (nr_inter > 0)
2765 abort ();
2766 }
2767 fprintf (sched_dump, "\n\n");
2768 }
2769
2770 /* Clean up. */
2771 free (rgn_table);
2772 free (rgn_bb_table);
2773 free (block_to_bb);
2774 free (containing_rgn);
2775
2776 sched_finish ();
2777
2778 if (edge_table)
2779 {
2780 free (edge_table);
2781 edge_table = NULL;
2782 }
2783
2784 if (in_edges)
2785 {
2786 free (in_edges);
2787 in_edges = NULL;
2788 }
2789 if (out_edges)
2790 {
2791 free (out_edges);
2792 out_edges = NULL;
2793 }
2794
2795 sbitmap_free (blocks);
2796 sbitmap_free (large_region_blocks);
2797 }
2798 #endif