sh.md (negc): Delete expander.
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "diagnostic-core.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "recog.h"
63 #include "params.h"
64 #include "sched-int.h"
65 #include "sel-sched.h"
66 #include "target.h"
67 #include "tree-pass.h"
68 #include "dbgcnt.h"
69
70 #ifdef INSN_SCHEDULING
71
72 /* Some accessor macros for h_i_d members only used within this file. */
73 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
74 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
75
76 /* nr_inter/spec counts interblock/speculative motion for the function. */
77 static int nr_inter, nr_spec;
78
79 static int is_cfg_nonregular (void);
80
81 /* Number of regions in the procedure. */
82 int nr_regions = 0;
83
84 /* Table of region descriptions. */
85 region *rgn_table = NULL;
86
87 /* Array of lists of regions' blocks. */
88 int *rgn_bb_table = NULL;
89
90 /* Topological order of blocks in the region (if b2 is reachable from
91 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
92 always referred to by either block or b, while its topological
93 order name (in the region) is referred to by bb. */
94 int *block_to_bb = NULL;
95
96 /* The number of the region containing a block. */
97 int *containing_rgn = NULL;
98
99 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
100 Currently we can get a ebb only through splitting of currently
101 scheduling block, therefore, we don't need ebb_head array for every region,
102 hence, its sufficient to hold it for current one only. */
103 int *ebb_head = NULL;
104
105 /* The minimum probability of reaching a source block so that it will be
106 considered for speculative scheduling. */
107 static int min_spec_prob;
108
109 static void find_single_block_region (bool);
110 static void find_rgns (void);
111 static bool too_large (int, int *, int *);
112
113 /* Blocks of the current region being scheduled. */
114 int current_nr_blocks;
115 int current_blocks;
116
117 /* A speculative motion requires checking live information on the path
118 from 'source' to 'target'. The split blocks are those to be checked.
119 After a speculative motion, live information should be modified in
120 the 'update' blocks.
121
122 Lists of split and update blocks for each candidate of the current
123 target are in array bblst_table. */
124 static basic_block *bblst_table;
125 static int bblst_size, bblst_last;
126
127 /* Target info declarations.
128
129 The block currently being scheduled is referred to as the "target" block,
130 while other blocks in the region from which insns can be moved to the
131 target are called "source" blocks. The candidate structure holds info
132 about such sources: are they valid? Speculative? Etc. */
133 typedef struct
134 {
135 basic_block *first_member;
136 int nr_members;
137 }
138 bblst;
139
140 typedef struct
141 {
142 char is_valid;
143 char is_speculative;
144 int src_prob;
145 bblst split_bbs;
146 bblst update_bbs;
147 }
148 candidate;
149
150 static candidate *candidate_table;
151 #define IS_VALID(src) (candidate_table[src].is_valid)
152 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
153 #define IS_SPECULATIVE_INSN(INSN) \
154 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
155 #define SRC_PROB(src) ( candidate_table[src].src_prob )
156
157 /* The bb being currently scheduled. */
158 int target_bb;
159
160 /* List of edges. */
161 typedef struct
162 {
163 edge *first_member;
164 int nr_members;
165 }
166 edgelst;
167
168 static edge *edgelst_table;
169 static int edgelst_last;
170
171 static void extract_edgelst (sbitmap, edgelst *);
172
173 /* Target info functions. */
174 static void split_edges (int, int, edgelst *);
175 static void compute_trg_info (int);
176 void debug_candidate (int);
177 void debug_candidates (int);
178
179 /* Dominators array: dom[i] contains the sbitmap of dominators of
180 bb i in the region. */
181 static sbitmap *dom;
182
183 /* bb 0 is the only region entry. */
184 #define IS_RGN_ENTRY(bb) (!bb)
185
186 /* Is bb_src dominated by bb_trg. */
187 #define IS_DOMINATED(bb_src, bb_trg) \
188 ( TEST_BIT (dom[bb_src], bb_trg) )
189
190 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
191 the probability of bb i relative to the region entry. */
192 static int *prob;
193
194 /* Bit-set of edges, where bit i stands for edge i. */
195 typedef sbitmap edgeset;
196
197 /* Number of edges in the region. */
198 static int rgn_nr_edges;
199
200 /* Array of size rgn_nr_edges. */
201 static edge *rgn_edges;
202
203 /* Mapping from each edge in the graph to its number in the rgn. */
204 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
205 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
206
207 /* The split edges of a source bb is different for each target
208 bb. In order to compute this efficiently, the 'potential-split edges'
209 are computed for each bb prior to scheduling a region. This is actually
210 the split edges of each bb relative to the region entry.
211
212 pot_split[bb] is the set of potential split edges of bb. */
213 static edgeset *pot_split;
214
215 /* For every bb, a set of its ancestor edges. */
216 static edgeset *ancestor_edges;
217
218 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
219
220 /* Speculative scheduling functions. */
221 static int check_live_1 (int, rtx);
222 static void update_live_1 (int, rtx);
223 static int is_pfree (rtx, int, int);
224 static int find_conditional_protection (rtx, int);
225 static int is_conditionally_protected (rtx, int, int);
226 static int is_prisky (rtx, int, int);
227 static int is_exception_free (rtx, int, int);
228
229 static bool sets_likely_spilled (rtx);
230 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
231 static void add_branch_dependences (rtx, rtx);
232 static void compute_block_dependences (int);
233
234 static void schedule_region (int);
235 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
236 static void propagate_deps (int, struct deps_desc *);
237 static void free_pending_lists (void);
238
239 /* Functions for construction of the control flow graph. */
240
241 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
242
243 We decide not to build the control flow graph if there is possibly more
244 than one entry to the function, if computed branches exist, if we
245 have nonlocal gotos, or if we have an unreachable loop. */
246
247 static int
248 is_cfg_nonregular (void)
249 {
250 basic_block b;
251 rtx insn;
252
253 /* If we have a label that could be the target of a nonlocal goto, then
254 the cfg is not well structured. */
255 if (nonlocal_goto_handler_labels)
256 return 1;
257
258 /* If we have any forced labels, then the cfg is not well structured. */
259 if (forced_labels)
260 return 1;
261
262 /* If we have exception handlers, then we consider the cfg not well
263 structured. ?!? We should be able to handle this now that we
264 compute an accurate cfg for EH. */
265 if (current_function_has_exception_handlers ())
266 return 1;
267
268 /* If we have insns which refer to labels as non-jumped-to operands,
269 then we consider the cfg not well structured. */
270 FOR_EACH_BB (b)
271 FOR_BB_INSNS (b, insn)
272 {
273 rtx note, next, set, dest;
274
275 /* If this function has a computed jump, then we consider the cfg
276 not well structured. */
277 if (JUMP_P (insn) && computed_jump_p (insn))
278 return 1;
279
280 if (!INSN_P (insn))
281 continue;
282
283 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
284 if (note == NULL_RTX)
285 continue;
286
287 /* For that label not to be seen as a referred-to label, this
288 must be a single-set which is feeding a jump *only*. This
289 could be a conditional jump with the label split off for
290 machine-specific reasons or a casesi/tablejump. */
291 next = next_nonnote_insn (insn);
292 if (next == NULL_RTX
293 || !JUMP_P (next)
294 || (JUMP_LABEL (next) != XEXP (note, 0)
295 && find_reg_note (next, REG_LABEL_TARGET,
296 XEXP (note, 0)) == NULL_RTX)
297 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
298 return 1;
299
300 set = single_set (insn);
301 if (set == NULL_RTX)
302 return 1;
303
304 dest = SET_DEST (set);
305 if (!REG_P (dest) || !dead_or_set_p (next, dest))
306 return 1;
307 }
308
309 /* Unreachable loops with more than one basic block are detected
310 during the DFS traversal in find_rgns.
311
312 Unreachable loops with a single block are detected here. This
313 test is redundant with the one in find_rgns, but it's much
314 cheaper to go ahead and catch the trivial case here. */
315 FOR_EACH_BB (b)
316 {
317 if (EDGE_COUNT (b->preds) == 0
318 || (single_pred_p (b)
319 && single_pred (b) == b))
320 return 1;
321 }
322
323 /* All the tests passed. Consider the cfg well structured. */
324 return 0;
325 }
326
327 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
328
329 static void
330 extract_edgelst (sbitmap set, edgelst *el)
331 {
332 unsigned int i = 0;
333 sbitmap_iterator sbi;
334
335 /* edgelst table space is reused in each call to extract_edgelst. */
336 edgelst_last = 0;
337
338 el->first_member = &edgelst_table[edgelst_last];
339 el->nr_members = 0;
340
341 /* Iterate over each word in the bitset. */
342 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
343 {
344 edgelst_table[edgelst_last++] = rgn_edges[i];
345 el->nr_members++;
346 }
347 }
348
349 /* Functions for the construction of regions. */
350
351 /* Print the regions, for debugging purposes. Callable from debugger. */
352
353 DEBUG_FUNCTION void
354 debug_regions (void)
355 {
356 int rgn, bb;
357
358 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
359 for (rgn = 0; rgn < nr_regions; rgn++)
360 {
361 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
362 rgn_table[rgn].rgn_nr_blocks);
363 fprintf (sched_dump, ";;\tbb/block: ");
364
365 /* We don't have ebb_head initialized yet, so we can't use
366 BB_TO_BLOCK (). */
367 current_blocks = RGN_BLOCKS (rgn);
368
369 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
370 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
371
372 fprintf (sched_dump, "\n\n");
373 }
374 }
375
376 /* Print the region's basic blocks. */
377
378 DEBUG_FUNCTION void
379 debug_region (int rgn)
380 {
381 int bb;
382
383 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
384 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
385 rgn_table[rgn].rgn_nr_blocks);
386 fprintf (stderr, ";;\tbb/block: ");
387
388 /* We don't have ebb_head initialized yet, so we can't use
389 BB_TO_BLOCK (). */
390 current_blocks = RGN_BLOCKS (rgn);
391
392 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
393 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
394
395 fprintf (stderr, "\n\n");
396
397 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
398 {
399 dump_bb (stderr, BASIC_BLOCK (rgn_bb_table[current_blocks + bb]),
400 0, TDF_SLIM | TDF_BLOCKS);
401 fprintf (stderr, "\n");
402 }
403
404 fprintf (stderr, "\n");
405
406 }
407
408 /* True when a bb with index BB_INDEX contained in region RGN. */
409 static bool
410 bb_in_region_p (int bb_index, int rgn)
411 {
412 int i;
413
414 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
415 if (rgn_bb_table[current_blocks + i] == bb_index)
416 return true;
417
418 return false;
419 }
420
421 /* Dump region RGN to file F using dot syntax. */
422 void
423 dump_region_dot (FILE *f, int rgn)
424 {
425 int i;
426
427 fprintf (f, "digraph Region_%d {\n", rgn);
428
429 /* We don't have ebb_head initialized yet, so we can't use
430 BB_TO_BLOCK (). */
431 current_blocks = RGN_BLOCKS (rgn);
432
433 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
434 {
435 edge e;
436 edge_iterator ei;
437 int src_bb_num = rgn_bb_table[current_blocks + i];
438 basic_block bb = BASIC_BLOCK (src_bb_num);
439
440 FOR_EACH_EDGE (e, ei, bb->succs)
441 if (bb_in_region_p (e->dest->index, rgn))
442 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
443 }
444 fprintf (f, "}\n");
445 }
446
447 /* The same, but first open a file specified by FNAME. */
448 void
449 dump_region_dot_file (const char *fname, int rgn)
450 {
451 FILE *f = fopen (fname, "wt");
452 dump_region_dot (f, rgn);
453 fclose (f);
454 }
455
456 /* Build a single block region for each basic block in the function.
457 This allows for using the same code for interblock and basic block
458 scheduling. */
459
460 static void
461 find_single_block_region (bool ebbs_p)
462 {
463 basic_block bb, ebb_start;
464 int i = 0;
465
466 nr_regions = 0;
467
468 if (ebbs_p) {
469 int probability_cutoff;
470 if (profile_info && flag_branch_probabilities)
471 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
472 else
473 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
474 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
475
476 FOR_EACH_BB (ebb_start)
477 {
478 RGN_NR_BLOCKS (nr_regions) = 0;
479 RGN_BLOCKS (nr_regions) = i;
480 RGN_DONT_CALC_DEPS (nr_regions) = 0;
481 RGN_HAS_REAL_EBB (nr_regions) = 0;
482
483 for (bb = ebb_start; ; bb = bb->next_bb)
484 {
485 edge e;
486
487 rgn_bb_table[i] = bb->index;
488 RGN_NR_BLOCKS (nr_regions)++;
489 CONTAINING_RGN (bb->index) = nr_regions;
490 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
491 i++;
492
493 if (bb->next_bb == EXIT_BLOCK_PTR
494 || LABEL_P (BB_HEAD (bb->next_bb)))
495 break;
496
497 e = find_fallthru_edge (bb->succs);
498 if (! e)
499 break;
500 if (e->probability <= probability_cutoff)
501 break;
502 }
503
504 ebb_start = bb;
505 nr_regions++;
506 }
507 }
508 else
509 FOR_EACH_BB (bb)
510 {
511 rgn_bb_table[nr_regions] = bb->index;
512 RGN_NR_BLOCKS (nr_regions) = 1;
513 RGN_BLOCKS (nr_regions) = nr_regions;
514 RGN_DONT_CALC_DEPS (nr_regions) = 0;
515 RGN_HAS_REAL_EBB (nr_regions) = 0;
516
517 CONTAINING_RGN (bb->index) = nr_regions;
518 BLOCK_TO_BB (bb->index) = 0;
519 nr_regions++;
520 }
521 }
522
523 /* Estimate number of the insns in the BB. */
524 static int
525 rgn_estimate_number_of_insns (basic_block bb)
526 {
527 int count;
528
529 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
530
531 if (MAY_HAVE_DEBUG_INSNS)
532 {
533 rtx insn;
534
535 FOR_BB_INSNS (bb, insn)
536 if (DEBUG_INSN_P (insn))
537 count--;
538 }
539
540 return count;
541 }
542
543 /* Update number of blocks and the estimate for number of insns
544 in the region. Return true if the region is "too large" for interblock
545 scheduling (compile time considerations). */
546
547 static bool
548 too_large (int block, int *num_bbs, int *num_insns)
549 {
550 (*num_bbs)++;
551 (*num_insns) += (common_sched_info->estimate_number_of_insns
552 (BASIC_BLOCK (block)));
553
554 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
555 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
556 }
557
558 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
559 is still an inner loop. Put in max_hdr[blk] the header of the most inner
560 loop containing blk. */
561 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
562 { \
563 if (max_hdr[blk] == -1) \
564 max_hdr[blk] = hdr; \
565 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
566 RESET_BIT (inner, hdr); \
567 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
568 { \
569 RESET_BIT (inner,max_hdr[blk]); \
570 max_hdr[blk] = hdr; \
571 } \
572 }
573
574 /* Find regions for interblock scheduling.
575
576 A region for scheduling can be:
577
578 * A loop-free procedure, or
579
580 * A reducible inner loop, or
581
582 * A basic block not contained in any other region.
583
584 ?!? In theory we could build other regions based on extended basic
585 blocks or reverse extended basic blocks. Is it worth the trouble?
586
587 Loop blocks that form a region are put into the region's block list
588 in topological order.
589
590 This procedure stores its results into the following global (ick) variables
591
592 * rgn_nr
593 * rgn_table
594 * rgn_bb_table
595 * block_to_bb
596 * containing region
597
598 We use dominator relationships to avoid making regions out of non-reducible
599 loops.
600
601 This procedure needs to be converted to work on pred/succ lists instead
602 of edge tables. That would simplify it somewhat. */
603
604 static void
605 haifa_find_rgns (void)
606 {
607 int *max_hdr, *dfs_nr, *degree;
608 char no_loops = 1;
609 int node, child, loop_head, i, head, tail;
610 int count = 0, sp, idx = 0;
611 edge_iterator current_edge;
612 edge_iterator *stack;
613 int num_bbs, num_insns, unreachable;
614 int too_large_failure;
615 basic_block bb;
616
617 /* Note if a block is a natural loop header. */
618 sbitmap header;
619
620 /* Note if a block is a natural inner loop header. */
621 sbitmap inner;
622
623 /* Note if a block is in the block queue. */
624 sbitmap in_queue;
625
626 /* Note if a block is in the block queue. */
627 sbitmap in_stack;
628
629 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
630 and a mapping from block to its loop header (if the block is contained
631 in a loop, else -1).
632
633 Store results in HEADER, INNER, and MAX_HDR respectively, these will
634 be used as inputs to the second traversal.
635
636 STACK, SP and DFS_NR are only used during the first traversal. */
637
638 /* Allocate and initialize variables for the first traversal. */
639 max_hdr = XNEWVEC (int, last_basic_block);
640 dfs_nr = XCNEWVEC (int, last_basic_block);
641 stack = XNEWVEC (edge_iterator, n_edges);
642
643 inner = sbitmap_alloc (last_basic_block);
644 sbitmap_ones (inner);
645
646 header = sbitmap_alloc (last_basic_block);
647 sbitmap_zero (header);
648
649 in_queue = sbitmap_alloc (last_basic_block);
650 sbitmap_zero (in_queue);
651
652 in_stack = sbitmap_alloc (last_basic_block);
653 sbitmap_zero (in_stack);
654
655 for (i = 0; i < last_basic_block; i++)
656 max_hdr[i] = -1;
657
658 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
659 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
660
661 /* DFS traversal to find inner loops in the cfg. */
662
663 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
664 sp = -1;
665
666 while (1)
667 {
668 if (EDGE_PASSED (current_edge))
669 {
670 /* We have reached a leaf node or a node that was already
671 processed. Pop edges off the stack until we find
672 an edge that has not yet been processed. */
673 while (sp >= 0 && EDGE_PASSED (current_edge))
674 {
675 /* Pop entry off the stack. */
676 current_edge = stack[sp--];
677 node = ei_edge (current_edge)->src->index;
678 gcc_assert (node != ENTRY_BLOCK);
679 child = ei_edge (current_edge)->dest->index;
680 gcc_assert (child != EXIT_BLOCK);
681 RESET_BIT (in_stack, child);
682 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
683 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
684 ei_next (&current_edge);
685 }
686
687 /* See if have finished the DFS tree traversal. */
688 if (sp < 0 && EDGE_PASSED (current_edge))
689 break;
690
691 /* Nope, continue the traversal with the popped node. */
692 continue;
693 }
694
695 /* Process a node. */
696 node = ei_edge (current_edge)->src->index;
697 gcc_assert (node != ENTRY_BLOCK);
698 SET_BIT (in_stack, node);
699 dfs_nr[node] = ++count;
700
701 /* We don't traverse to the exit block. */
702 child = ei_edge (current_edge)->dest->index;
703 if (child == EXIT_BLOCK)
704 {
705 SET_EDGE_PASSED (current_edge);
706 ei_next (&current_edge);
707 continue;
708 }
709
710 /* If the successor is in the stack, then we've found a loop.
711 Mark the loop, if it is not a natural loop, then it will
712 be rejected during the second traversal. */
713 if (TEST_BIT (in_stack, child))
714 {
715 no_loops = 0;
716 SET_BIT (header, child);
717 UPDATE_LOOP_RELATIONS (node, child);
718 SET_EDGE_PASSED (current_edge);
719 ei_next (&current_edge);
720 continue;
721 }
722
723 /* If the child was already visited, then there is no need to visit
724 it again. Just update the loop relationships and restart
725 with a new edge. */
726 if (dfs_nr[child])
727 {
728 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
729 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
730 SET_EDGE_PASSED (current_edge);
731 ei_next (&current_edge);
732 continue;
733 }
734
735 /* Push an entry on the stack and continue DFS traversal. */
736 stack[++sp] = current_edge;
737 SET_EDGE_PASSED (current_edge);
738 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
739 }
740
741 /* Reset ->aux field used by EDGE_PASSED. */
742 FOR_ALL_BB (bb)
743 {
744 edge_iterator ei;
745 edge e;
746 FOR_EACH_EDGE (e, ei, bb->succs)
747 e->aux = NULL;
748 }
749
750
751 /* Another check for unreachable blocks. The earlier test in
752 is_cfg_nonregular only finds unreachable blocks that do not
753 form a loop.
754
755 The DFS traversal will mark every block that is reachable from
756 the entry node by placing a nonzero value in dfs_nr. Thus if
757 dfs_nr is zero for any block, then it must be unreachable. */
758 unreachable = 0;
759 FOR_EACH_BB (bb)
760 if (dfs_nr[bb->index] == 0)
761 {
762 unreachable = 1;
763 break;
764 }
765
766 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
767 to hold degree counts. */
768 degree = dfs_nr;
769
770 FOR_EACH_BB (bb)
771 degree[bb->index] = EDGE_COUNT (bb->preds);
772
773 /* Do not perform region scheduling if there are any unreachable
774 blocks. */
775 if (!unreachable)
776 {
777 int *queue, *degree1 = NULL;
778 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
779 there basic blocks, which are forced to be region heads.
780 This is done to try to assemble few smaller regions
781 from a too_large region. */
782 sbitmap extended_rgn_header = NULL;
783 bool extend_regions_p;
784
785 if (no_loops)
786 SET_BIT (header, 0);
787
788 /* Second traversal:find reducible inner loops and topologically sort
789 block of each region. */
790
791 queue = XNEWVEC (int, n_basic_blocks);
792
793 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
794 if (extend_regions_p)
795 {
796 degree1 = XNEWVEC (int, last_basic_block);
797 extended_rgn_header = sbitmap_alloc (last_basic_block);
798 sbitmap_zero (extended_rgn_header);
799 }
800
801 /* Find blocks which are inner loop headers. We still have non-reducible
802 loops to consider at this point. */
803 FOR_EACH_BB (bb)
804 {
805 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
806 {
807 edge e;
808 edge_iterator ei;
809 basic_block jbb;
810
811 /* Now check that the loop is reducible. We do this separate
812 from finding inner loops so that we do not find a reducible
813 loop which contains an inner non-reducible loop.
814
815 A simple way to find reducible/natural loops is to verify
816 that each block in the loop is dominated by the loop
817 header.
818
819 If there exists a block that is not dominated by the loop
820 header, then the block is reachable from outside the loop
821 and thus the loop is not a natural loop. */
822 FOR_EACH_BB (jbb)
823 {
824 /* First identify blocks in the loop, except for the loop
825 entry block. */
826 if (bb->index == max_hdr[jbb->index] && bb != jbb)
827 {
828 /* Now verify that the block is dominated by the loop
829 header. */
830 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
831 break;
832 }
833 }
834
835 /* If we exited the loop early, then I is the header of
836 a non-reducible loop and we should quit processing it
837 now. */
838 if (jbb != EXIT_BLOCK_PTR)
839 continue;
840
841 /* I is a header of an inner loop, or block 0 in a subroutine
842 with no loops at all. */
843 head = tail = -1;
844 too_large_failure = 0;
845 loop_head = max_hdr[bb->index];
846
847 if (extend_regions_p)
848 /* We save degree in case when we meet a too_large region
849 and cancel it. We need a correct degree later when
850 calling extend_rgns. */
851 memcpy (degree1, degree, last_basic_block * sizeof (int));
852
853 /* Decrease degree of all I's successors for topological
854 ordering. */
855 FOR_EACH_EDGE (e, ei, bb->succs)
856 if (e->dest != EXIT_BLOCK_PTR)
857 --degree[e->dest->index];
858
859 /* Estimate # insns, and count # blocks in the region. */
860 num_bbs = 1;
861 num_insns = common_sched_info->estimate_number_of_insns (bb);
862
863 /* Find all loop latches (blocks with back edges to the loop
864 header) or all the leaf blocks in the cfg has no loops.
865
866 Place those blocks into the queue. */
867 if (no_loops)
868 {
869 FOR_EACH_BB (jbb)
870 /* Leaf nodes have only a single successor which must
871 be EXIT_BLOCK. */
872 if (single_succ_p (jbb)
873 && single_succ (jbb) == EXIT_BLOCK_PTR)
874 {
875 queue[++tail] = jbb->index;
876 SET_BIT (in_queue, jbb->index);
877
878 if (too_large (jbb->index, &num_bbs, &num_insns))
879 {
880 too_large_failure = 1;
881 break;
882 }
883 }
884 }
885 else
886 {
887 edge e;
888
889 FOR_EACH_EDGE (e, ei, bb->preds)
890 {
891 if (e->src == ENTRY_BLOCK_PTR)
892 continue;
893
894 node = e->src->index;
895
896 if (max_hdr[node] == loop_head && node != bb->index)
897 {
898 /* This is a loop latch. */
899 queue[++tail] = node;
900 SET_BIT (in_queue, node);
901
902 if (too_large (node, &num_bbs, &num_insns))
903 {
904 too_large_failure = 1;
905 break;
906 }
907 }
908 }
909 }
910
911 /* Now add all the blocks in the loop to the queue.
912
913 We know the loop is a natural loop; however the algorithm
914 above will not always mark certain blocks as being in the
915 loop. Consider:
916 node children
917 a b,c
918 b c
919 c a,d
920 d b
921
922 The algorithm in the DFS traversal may not mark B & D as part
923 of the loop (i.e. they will not have max_hdr set to A).
924
925 We know they can not be loop latches (else they would have
926 had max_hdr set since they'd have a backedge to a dominator
927 block). So we don't need them on the initial queue.
928
929 We know they are part of the loop because they are dominated
930 by the loop header and can be reached by a backwards walk of
931 the edges starting with nodes on the initial queue.
932
933 It is safe and desirable to include those nodes in the
934 loop/scheduling region. To do so we would need to decrease
935 the degree of a node if it is the target of a backedge
936 within the loop itself as the node is placed in the queue.
937
938 We do not do this because I'm not sure that the actual
939 scheduling code will properly handle this case. ?!? */
940
941 while (head < tail && !too_large_failure)
942 {
943 edge e;
944 child = queue[++head];
945
946 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
947 {
948 node = e->src->index;
949
950 /* See discussion above about nodes not marked as in
951 this loop during the initial DFS traversal. */
952 if (e->src == ENTRY_BLOCK_PTR
953 || max_hdr[node] != loop_head)
954 {
955 tail = -1;
956 break;
957 }
958 else if (!TEST_BIT (in_queue, node) && node != bb->index)
959 {
960 queue[++tail] = node;
961 SET_BIT (in_queue, node);
962
963 if (too_large (node, &num_bbs, &num_insns))
964 {
965 too_large_failure = 1;
966 break;
967 }
968 }
969 }
970 }
971
972 if (tail >= 0 && !too_large_failure)
973 {
974 /* Place the loop header into list of region blocks. */
975 degree[bb->index] = -1;
976 rgn_bb_table[idx] = bb->index;
977 RGN_NR_BLOCKS (nr_regions) = num_bbs;
978 RGN_BLOCKS (nr_regions) = idx++;
979 RGN_DONT_CALC_DEPS (nr_regions) = 0;
980 RGN_HAS_REAL_EBB (nr_regions) = 0;
981 CONTAINING_RGN (bb->index) = nr_regions;
982 BLOCK_TO_BB (bb->index) = count = 0;
983
984 /* Remove blocks from queue[] when their in degree
985 becomes zero. Repeat until no blocks are left on the
986 list. This produces a topological list of blocks in
987 the region. */
988 while (tail >= 0)
989 {
990 if (head < 0)
991 head = tail;
992 child = queue[head];
993 if (degree[child] == 0)
994 {
995 edge e;
996
997 degree[child] = -1;
998 rgn_bb_table[idx++] = child;
999 BLOCK_TO_BB (child) = ++count;
1000 CONTAINING_RGN (child) = nr_regions;
1001 queue[head] = queue[tail--];
1002
1003 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1004 if (e->dest != EXIT_BLOCK_PTR)
1005 --degree[e->dest->index];
1006 }
1007 else
1008 --head;
1009 }
1010 ++nr_regions;
1011 }
1012 else if (extend_regions_p)
1013 {
1014 /* Restore DEGREE. */
1015 int *t = degree;
1016
1017 degree = degree1;
1018 degree1 = t;
1019
1020 /* And force successors of BB to be region heads.
1021 This may provide several smaller regions instead
1022 of one too_large region. */
1023 FOR_EACH_EDGE (e, ei, bb->succs)
1024 if (e->dest != EXIT_BLOCK_PTR)
1025 SET_BIT (extended_rgn_header, e->dest->index);
1026 }
1027 }
1028 }
1029 free (queue);
1030
1031 if (extend_regions_p)
1032 {
1033 free (degree1);
1034
1035 sbitmap_a_or_b (header, header, extended_rgn_header);
1036 sbitmap_free (extended_rgn_header);
1037
1038 extend_rgns (degree, &idx, header, max_hdr);
1039 }
1040 }
1041
1042 /* Any block that did not end up in a region is placed into a region
1043 by itself. */
1044 FOR_EACH_BB (bb)
1045 if (degree[bb->index] >= 0)
1046 {
1047 rgn_bb_table[idx] = bb->index;
1048 RGN_NR_BLOCKS (nr_regions) = 1;
1049 RGN_BLOCKS (nr_regions) = idx++;
1050 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1051 RGN_HAS_REAL_EBB (nr_regions) = 0;
1052 CONTAINING_RGN (bb->index) = nr_regions++;
1053 BLOCK_TO_BB (bb->index) = 0;
1054 }
1055
1056 free (max_hdr);
1057 free (degree);
1058 free (stack);
1059 sbitmap_free (header);
1060 sbitmap_free (inner);
1061 sbitmap_free (in_queue);
1062 sbitmap_free (in_stack);
1063 }
1064
1065
1066 /* Wrapper function.
1067 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1068 regions. Otherwise just call find_rgns_haifa. */
1069 static void
1070 find_rgns (void)
1071 {
1072 if (sel_sched_p () && flag_sel_sched_pipelining)
1073 sel_find_rgns ();
1074 else
1075 haifa_find_rgns ();
1076 }
1077
1078 static int gather_region_statistics (int **);
1079 static void print_region_statistics (int *, int, int *, int);
1080
1081 /* Calculate the histogram that shows the number of regions having the
1082 given number of basic blocks, and store it in the RSP array. Return
1083 the size of this array. */
1084 static int
1085 gather_region_statistics (int **rsp)
1086 {
1087 int i, *a = 0, a_sz = 0;
1088
1089 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1090 for (i = 0; i < nr_regions; i++)
1091 {
1092 int nr_blocks = RGN_NR_BLOCKS (i);
1093
1094 gcc_assert (nr_blocks >= 1);
1095
1096 if (nr_blocks > a_sz)
1097 {
1098 a = XRESIZEVEC (int, a, nr_blocks);
1099 do
1100 a[a_sz++] = 0;
1101 while (a_sz != nr_blocks);
1102 }
1103
1104 a[nr_blocks - 1]++;
1105 }
1106
1107 *rsp = a;
1108 return a_sz;
1109 }
1110
1111 /* Print regions statistics. S1 and S2 denote the data before and after
1112 calling extend_rgns, respectively. */
1113 static void
1114 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1115 {
1116 int i;
1117
1118 /* We iterate until s2_sz because extend_rgns does not decrease
1119 the maximal region size. */
1120 for (i = 1; i < s2_sz; i++)
1121 {
1122 int n1, n2;
1123
1124 n2 = s2[i];
1125
1126 if (n2 == 0)
1127 continue;
1128
1129 if (i >= s1_sz)
1130 n1 = 0;
1131 else
1132 n1 = s1[i];
1133
1134 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1135 "was %d + %d more\n", i + 1, n1, n2 - n1);
1136 }
1137 }
1138
1139 /* Extend regions.
1140 DEGREE - Array of incoming edge count, considering only
1141 the edges, that don't have their sources in formed regions yet.
1142 IDXP - pointer to the next available index in rgn_bb_table.
1143 HEADER - set of all region heads.
1144 LOOP_HDR - mapping from block to the containing loop
1145 (two blocks can reside within one region if they have
1146 the same loop header). */
1147 void
1148 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1149 {
1150 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1151 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1152
1153 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1154
1155 max_hdr = XNEWVEC (int, last_basic_block);
1156
1157 order = XNEWVEC (int, last_basic_block);
1158 post_order_compute (order, false, false);
1159
1160 for (i = nblocks - 1; i >= 0; i--)
1161 {
1162 int bbn = order[i];
1163 if (degree[bbn] >= 0)
1164 {
1165 max_hdr[bbn] = bbn;
1166 rescan = 1;
1167 }
1168 else
1169 /* This block already was processed in find_rgns. */
1170 max_hdr[bbn] = -1;
1171 }
1172
1173 /* The idea is to topologically walk through CFG in top-down order.
1174 During the traversal, if all the predecessors of a node are
1175 marked to be in the same region (they all have the same max_hdr),
1176 then current node is also marked to be a part of that region.
1177 Otherwise the node starts its own region.
1178 CFG should be traversed until no further changes are made. On each
1179 iteration the set of the region heads is extended (the set of those
1180 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1181 set of all basic blocks, thus the algorithm is guaranteed to
1182 terminate. */
1183
1184 while (rescan && iter < max_iter)
1185 {
1186 rescan = 0;
1187
1188 for (i = nblocks - 1; i >= 0; i--)
1189 {
1190 edge e;
1191 edge_iterator ei;
1192 int bbn = order[i];
1193
1194 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1195 {
1196 int hdr = -1;
1197
1198 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1199 {
1200 int predn = e->src->index;
1201
1202 if (predn != ENTRY_BLOCK
1203 /* If pred wasn't processed in find_rgns. */
1204 && max_hdr[predn] != -1
1205 /* And pred and bb reside in the same loop.
1206 (Or out of any loop). */
1207 && loop_hdr[bbn] == loop_hdr[predn])
1208 {
1209 if (hdr == -1)
1210 /* Then bb extends the containing region of pred. */
1211 hdr = max_hdr[predn];
1212 else if (hdr != max_hdr[predn])
1213 /* Too bad, there are at least two predecessors
1214 that reside in different regions. Thus, BB should
1215 begin its own region. */
1216 {
1217 hdr = bbn;
1218 break;
1219 }
1220 }
1221 else
1222 /* BB starts its own region. */
1223 {
1224 hdr = bbn;
1225 break;
1226 }
1227 }
1228
1229 if (hdr == bbn)
1230 {
1231 /* If BB start its own region,
1232 update set of headers with BB. */
1233 SET_BIT (header, bbn);
1234 rescan = 1;
1235 }
1236 else
1237 gcc_assert (hdr != -1);
1238
1239 max_hdr[bbn] = hdr;
1240 }
1241 }
1242
1243 iter++;
1244 }
1245
1246 /* Statistics were gathered on the SPEC2000 package of tests with
1247 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1248
1249 Statistics for SPECint:
1250 1 iteration : 1751 cases (38.7%)
1251 2 iterations: 2770 cases (61.3%)
1252 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1253 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1254 (We don't count single block regions here).
1255
1256 Statistics for SPECfp:
1257 1 iteration : 621 cases (35.9%)
1258 2 iterations: 1110 cases (64.1%)
1259 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1260 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1261 (We don't count single block regions here).
1262
1263 By default we do at most 2 iterations.
1264 This can be overridden with max-sched-extend-regions-iters parameter:
1265 0 - disable region extension,
1266 N > 0 - do at most N iterations. */
1267
1268 if (sched_verbose && iter != 0)
1269 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1270 rescan ? "... failed" : "");
1271
1272 if (!rescan && iter != 0)
1273 {
1274 int *s1 = NULL, s1_sz = 0;
1275
1276 /* Save the old statistics for later printout. */
1277 if (sched_verbose >= 6)
1278 s1_sz = gather_region_statistics (&s1);
1279
1280 /* We have succeeded. Now assemble the regions. */
1281 for (i = nblocks - 1; i >= 0; i--)
1282 {
1283 int bbn = order[i];
1284
1285 if (max_hdr[bbn] == bbn)
1286 /* BBN is a region head. */
1287 {
1288 edge e;
1289 edge_iterator ei;
1290 int num_bbs = 0, j, num_insns = 0, large;
1291
1292 large = too_large (bbn, &num_bbs, &num_insns);
1293
1294 degree[bbn] = -1;
1295 rgn_bb_table[idx] = bbn;
1296 RGN_BLOCKS (nr_regions) = idx++;
1297 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1298 RGN_HAS_REAL_EBB (nr_regions) = 0;
1299 CONTAINING_RGN (bbn) = nr_regions;
1300 BLOCK_TO_BB (bbn) = 0;
1301
1302 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1303 if (e->dest != EXIT_BLOCK_PTR)
1304 degree[e->dest->index]--;
1305
1306 if (!large)
1307 /* Here we check whether the region is too_large. */
1308 for (j = i - 1; j >= 0; j--)
1309 {
1310 int succn = order[j];
1311 if (max_hdr[succn] == bbn)
1312 {
1313 if ((large = too_large (succn, &num_bbs, &num_insns)))
1314 break;
1315 }
1316 }
1317
1318 if (large)
1319 /* If the region is too_large, then wrap every block of
1320 the region into single block region.
1321 Here we wrap region head only. Other blocks are
1322 processed in the below cycle. */
1323 {
1324 RGN_NR_BLOCKS (nr_regions) = 1;
1325 nr_regions++;
1326 }
1327
1328 num_bbs = 1;
1329
1330 for (j = i - 1; j >= 0; j--)
1331 {
1332 int succn = order[j];
1333
1334 if (max_hdr[succn] == bbn)
1335 /* This cycle iterates over all basic blocks, that
1336 are supposed to be in the region with head BBN,
1337 and wraps them into that region (or in single
1338 block region). */
1339 {
1340 gcc_assert (degree[succn] == 0);
1341
1342 degree[succn] = -1;
1343 rgn_bb_table[idx] = succn;
1344 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1345 CONTAINING_RGN (succn) = nr_regions;
1346
1347 if (large)
1348 /* Wrap SUCCN into single block region. */
1349 {
1350 RGN_BLOCKS (nr_regions) = idx;
1351 RGN_NR_BLOCKS (nr_regions) = 1;
1352 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1353 RGN_HAS_REAL_EBB (nr_regions) = 0;
1354 nr_regions++;
1355 }
1356
1357 idx++;
1358
1359 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1360 if (e->dest != EXIT_BLOCK_PTR)
1361 degree[e->dest->index]--;
1362 }
1363 }
1364
1365 if (!large)
1366 {
1367 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1368 nr_regions++;
1369 }
1370 }
1371 }
1372
1373 if (sched_verbose >= 6)
1374 {
1375 int *s2, s2_sz;
1376
1377 /* Get the new statistics and print the comparison with the
1378 one before calling this function. */
1379 s2_sz = gather_region_statistics (&s2);
1380 print_region_statistics (s1, s1_sz, s2, s2_sz);
1381 free (s1);
1382 free (s2);
1383 }
1384 }
1385
1386 free (order);
1387 free (max_hdr);
1388
1389 *idxp = idx;
1390 }
1391
1392 /* Functions for regions scheduling information. */
1393
1394 /* Compute dominators, probability, and potential-split-edges of bb.
1395 Assume that these values were already computed for bb's predecessors. */
1396
1397 static void
1398 compute_dom_prob_ps (int bb)
1399 {
1400 edge_iterator in_ei;
1401 edge in_edge;
1402
1403 /* We shouldn't have any real ebbs yet. */
1404 gcc_assert (ebb_head [bb] == bb + current_blocks);
1405
1406 if (IS_RGN_ENTRY (bb))
1407 {
1408 SET_BIT (dom[bb], 0);
1409 prob[bb] = REG_BR_PROB_BASE;
1410 return;
1411 }
1412
1413 prob[bb] = 0;
1414
1415 /* Initialize dom[bb] to '111..1'. */
1416 sbitmap_ones (dom[bb]);
1417
1418 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1419 {
1420 int pred_bb;
1421 edge out_edge;
1422 edge_iterator out_ei;
1423
1424 if (in_edge->src == ENTRY_BLOCK_PTR)
1425 continue;
1426
1427 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1428 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1429 sbitmap_a_or_b (ancestor_edges[bb],
1430 ancestor_edges[bb], ancestor_edges[pred_bb]);
1431
1432 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1433
1434 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1435
1436 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1437 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
1438
1439 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1440 }
1441
1442 SET_BIT (dom[bb], bb);
1443 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1444
1445 if (sched_verbose >= 2)
1446 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1447 (100 * prob[bb]) / REG_BR_PROB_BASE);
1448 }
1449
1450 /* Functions for target info. */
1451
1452 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1453 Note that bb_trg dominates bb_src. */
1454
1455 static void
1456 split_edges (int bb_src, int bb_trg, edgelst *bl)
1457 {
1458 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1459 sbitmap_copy (src, pot_split[bb_src]);
1460
1461 sbitmap_difference (src, src, pot_split[bb_trg]);
1462 extract_edgelst (src, bl);
1463 sbitmap_free (src);
1464 }
1465
1466 /* Find the valid candidate-source-blocks for the target block TRG, compute
1467 their probability, and check if they are speculative or not.
1468 For speculative sources, compute their update-blocks and split-blocks. */
1469
1470 static void
1471 compute_trg_info (int trg)
1472 {
1473 candidate *sp;
1474 edgelst el = { NULL, 0 };
1475 int i, j, k, update_idx;
1476 basic_block block;
1477 sbitmap visited;
1478 edge_iterator ei;
1479 edge e;
1480
1481 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1482
1483 bblst_last = 0;
1484 /* bblst_table holds split blocks and update blocks for each block after
1485 the current one in the region. split blocks and update blocks are
1486 the TO blocks of region edges, so there can be at most rgn_nr_edges
1487 of them. */
1488 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1489 bblst_table = XNEWVEC (basic_block, bblst_size);
1490
1491 edgelst_last = 0;
1492 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1493
1494 /* Define some of the fields for the target bb as well. */
1495 sp = candidate_table + trg;
1496 sp->is_valid = 1;
1497 sp->is_speculative = 0;
1498 sp->src_prob = REG_BR_PROB_BASE;
1499
1500 visited = sbitmap_alloc (last_basic_block);
1501
1502 for (i = trg + 1; i < current_nr_blocks; i++)
1503 {
1504 sp = candidate_table + i;
1505
1506 sp->is_valid = IS_DOMINATED (i, trg);
1507 if (sp->is_valid)
1508 {
1509 int tf = prob[trg], cf = prob[i];
1510
1511 /* In CFGs with low probability edges TF can possibly be zero. */
1512 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1513 sp->is_valid = (sp->src_prob >= min_spec_prob);
1514 }
1515
1516 if (sp->is_valid)
1517 {
1518 split_edges (i, trg, &el);
1519 sp->is_speculative = (el.nr_members) ? 1 : 0;
1520 if (sp->is_speculative && !flag_schedule_speculative)
1521 sp->is_valid = 0;
1522 }
1523
1524 if (sp->is_valid)
1525 {
1526 /* Compute split blocks and store them in bblst_table.
1527 The TO block of every split edge is a split block. */
1528 sp->split_bbs.first_member = &bblst_table[bblst_last];
1529 sp->split_bbs.nr_members = el.nr_members;
1530 for (j = 0; j < el.nr_members; bblst_last++, j++)
1531 bblst_table[bblst_last] = el.first_member[j]->dest;
1532 sp->update_bbs.first_member = &bblst_table[bblst_last];
1533
1534 /* Compute update blocks and store them in bblst_table.
1535 For every split edge, look at the FROM block, and check
1536 all out edges. For each out edge that is not a split edge,
1537 add the TO block to the update block list. This list can end
1538 up with a lot of duplicates. We need to weed them out to avoid
1539 overrunning the end of the bblst_table. */
1540
1541 update_idx = 0;
1542 sbitmap_zero (visited);
1543 for (j = 0; j < el.nr_members; j++)
1544 {
1545 block = el.first_member[j]->src;
1546 FOR_EACH_EDGE (e, ei, block->succs)
1547 {
1548 if (!TEST_BIT (visited, e->dest->index))
1549 {
1550 for (k = 0; k < el.nr_members; k++)
1551 if (e == el.first_member[k])
1552 break;
1553
1554 if (k >= el.nr_members)
1555 {
1556 bblst_table[bblst_last++] = e->dest;
1557 SET_BIT (visited, e->dest->index);
1558 update_idx++;
1559 }
1560 }
1561 }
1562 }
1563 sp->update_bbs.nr_members = update_idx;
1564
1565 /* Make sure we didn't overrun the end of bblst_table. */
1566 gcc_assert (bblst_last <= bblst_size);
1567 }
1568 else
1569 {
1570 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1571
1572 sp->is_speculative = 0;
1573 sp->src_prob = 0;
1574 }
1575 }
1576
1577 sbitmap_free (visited);
1578 }
1579
1580 /* Free the computed target info. */
1581 static void
1582 free_trg_info (void)
1583 {
1584 free (candidate_table);
1585 free (bblst_table);
1586 free (edgelst_table);
1587 }
1588
1589 /* Print candidates info, for debugging purposes. Callable from debugger. */
1590
1591 DEBUG_FUNCTION void
1592 debug_candidate (int i)
1593 {
1594 if (!candidate_table[i].is_valid)
1595 return;
1596
1597 if (candidate_table[i].is_speculative)
1598 {
1599 int j;
1600 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1601
1602 fprintf (sched_dump, "split path: ");
1603 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1604 {
1605 int b = candidate_table[i].split_bbs.first_member[j]->index;
1606
1607 fprintf (sched_dump, " %d ", b);
1608 }
1609 fprintf (sched_dump, "\n");
1610
1611 fprintf (sched_dump, "update path: ");
1612 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1613 {
1614 int b = candidate_table[i].update_bbs.first_member[j]->index;
1615
1616 fprintf (sched_dump, " %d ", b);
1617 }
1618 fprintf (sched_dump, "\n");
1619 }
1620 else
1621 {
1622 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1623 }
1624 }
1625
1626 /* Print candidates info, for debugging purposes. Callable from debugger. */
1627
1628 DEBUG_FUNCTION void
1629 debug_candidates (int trg)
1630 {
1631 int i;
1632
1633 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1634 BB_TO_BLOCK (trg), trg);
1635 for (i = trg + 1; i < current_nr_blocks; i++)
1636 debug_candidate (i);
1637 }
1638
1639 /* Functions for speculative scheduling. */
1640
1641 static bitmap_head not_in_df;
1642
1643 /* Return 0 if x is a set of a register alive in the beginning of one
1644 of the split-blocks of src, otherwise return 1. */
1645
1646 static int
1647 check_live_1 (int src, rtx x)
1648 {
1649 int i;
1650 int regno;
1651 rtx reg = SET_DEST (x);
1652
1653 if (reg == 0)
1654 return 1;
1655
1656 while (GET_CODE (reg) == SUBREG
1657 || GET_CODE (reg) == ZERO_EXTRACT
1658 || GET_CODE (reg) == STRICT_LOW_PART)
1659 reg = XEXP (reg, 0);
1660
1661 if (GET_CODE (reg) == PARALLEL)
1662 {
1663 int i;
1664
1665 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1666 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1667 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1668 return 1;
1669
1670 return 0;
1671 }
1672
1673 if (!REG_P (reg))
1674 return 1;
1675
1676 regno = REGNO (reg);
1677
1678 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1679 {
1680 /* Global registers are assumed live. */
1681 return 0;
1682 }
1683 else
1684 {
1685 if (regno < FIRST_PSEUDO_REGISTER)
1686 {
1687 /* Check for hard registers. */
1688 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1689 while (--j >= 0)
1690 {
1691 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1692 {
1693 basic_block b = candidate_table[src].split_bbs.first_member[i];
1694 int t = bitmap_bit_p (&not_in_df, b->index);
1695
1696 /* We can have split blocks, that were recently generated.
1697 Such blocks are always outside current region. */
1698 gcc_assert (!t || (CONTAINING_RGN (b->index)
1699 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1700
1701 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1702 return 0;
1703 }
1704 }
1705 }
1706 else
1707 {
1708 /* Check for pseudo registers. */
1709 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1710 {
1711 basic_block b = candidate_table[src].split_bbs.first_member[i];
1712 int t = bitmap_bit_p (&not_in_df, b->index);
1713
1714 gcc_assert (!t || (CONTAINING_RGN (b->index)
1715 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1716
1717 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1718 return 0;
1719 }
1720 }
1721 }
1722
1723 return 1;
1724 }
1725
1726 /* If x is a set of a register R, mark that R is alive in the beginning
1727 of every update-block of src. */
1728
1729 static void
1730 update_live_1 (int src, rtx x)
1731 {
1732 int i;
1733 int regno;
1734 rtx reg = SET_DEST (x);
1735
1736 if (reg == 0)
1737 return;
1738
1739 while (GET_CODE (reg) == SUBREG
1740 || GET_CODE (reg) == ZERO_EXTRACT
1741 || GET_CODE (reg) == STRICT_LOW_PART)
1742 reg = XEXP (reg, 0);
1743
1744 if (GET_CODE (reg) == PARALLEL)
1745 {
1746 int i;
1747
1748 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1749 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1750 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1751
1752 return;
1753 }
1754
1755 if (!REG_P (reg))
1756 return;
1757
1758 /* Global registers are always live, so the code below does not apply
1759 to them. */
1760
1761 regno = REGNO (reg);
1762
1763 if (! HARD_REGISTER_NUM_P (regno)
1764 || !global_regs[regno])
1765 {
1766 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1767 {
1768 basic_block b = candidate_table[src].update_bbs.first_member[i];
1769
1770 if (HARD_REGISTER_NUM_P (regno))
1771 bitmap_set_range (df_get_live_in (b), regno,
1772 hard_regno_nregs[regno][GET_MODE (reg)]);
1773 else
1774 bitmap_set_bit (df_get_live_in (b), regno);
1775 }
1776 }
1777 }
1778
1779 /* Return 1 if insn can be speculatively moved from block src to trg,
1780 otherwise return 0. Called before first insertion of insn to
1781 ready-list or before the scheduling. */
1782
1783 static int
1784 check_live (rtx insn, int src)
1785 {
1786 /* Find the registers set by instruction. */
1787 if (GET_CODE (PATTERN (insn)) == SET
1788 || GET_CODE (PATTERN (insn)) == CLOBBER)
1789 return check_live_1 (src, PATTERN (insn));
1790 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1791 {
1792 int j;
1793 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1794 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1795 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1796 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1797 return 0;
1798
1799 return 1;
1800 }
1801
1802 return 1;
1803 }
1804
1805 /* Update the live registers info after insn was moved speculatively from
1806 block src to trg. */
1807
1808 static void
1809 update_live (rtx insn, int src)
1810 {
1811 /* Find the registers set by instruction. */
1812 if (GET_CODE (PATTERN (insn)) == SET
1813 || GET_CODE (PATTERN (insn)) == CLOBBER)
1814 update_live_1 (src, PATTERN (insn));
1815 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1816 {
1817 int j;
1818 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1819 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1820 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1821 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1822 }
1823 }
1824
1825 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1826 #define IS_REACHABLE(bb_from, bb_to) \
1827 (bb_from == bb_to \
1828 || IS_RGN_ENTRY (bb_from) \
1829 || (TEST_BIT (ancestor_edges[bb_to], \
1830 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1831
1832 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1833
1834 static void
1835 set_spec_fed (rtx load_insn)
1836 {
1837 sd_iterator_def sd_it;
1838 dep_t dep;
1839
1840 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1841 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1842 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1843 }
1844
1845 /* On the path from the insn to load_insn_bb, find a conditional
1846 branch depending on insn, that guards the speculative load. */
1847
1848 static int
1849 find_conditional_protection (rtx insn, int load_insn_bb)
1850 {
1851 sd_iterator_def sd_it;
1852 dep_t dep;
1853
1854 /* Iterate through DEF-USE forward dependences. */
1855 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1856 {
1857 rtx next = DEP_CON (dep);
1858
1859 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1860 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1861 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1862 && load_insn_bb != INSN_BB (next)
1863 && DEP_TYPE (dep) == REG_DEP_TRUE
1864 && (JUMP_P (next)
1865 || find_conditional_protection (next, load_insn_bb)))
1866 return 1;
1867 }
1868 return 0;
1869 } /* find_conditional_protection */
1870
1871 /* Returns 1 if the same insn1 that participates in the computation
1872 of load_insn's address is feeding a conditional branch that is
1873 guarding on load_insn. This is true if we find two DEF-USE
1874 chains:
1875 insn1 -> ... -> conditional-branch
1876 insn1 -> ... -> load_insn,
1877 and if a flow path exists:
1878 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1879 and if insn1 is on the path
1880 region-entry -> ... -> bb_trg -> ... load_insn.
1881
1882 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1883 Locate the branch by following INSN_FORW_DEPS from insn1. */
1884
1885 static int
1886 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1887 {
1888 sd_iterator_def sd_it;
1889 dep_t dep;
1890
1891 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1892 {
1893 rtx insn1 = DEP_PRO (dep);
1894
1895 /* Must be a DEF-USE dependence upon non-branch. */
1896 if (DEP_TYPE (dep) != REG_DEP_TRUE
1897 || JUMP_P (insn1))
1898 continue;
1899
1900 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1901 if (INSN_BB (insn1) == bb_src
1902 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1903 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1904 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1905 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1906 continue;
1907
1908 /* Now search for the conditional-branch. */
1909 if (find_conditional_protection (insn1, bb_src))
1910 return 1;
1911
1912 /* Recursive step: search another insn1, "above" current insn1. */
1913 return is_conditionally_protected (insn1, bb_src, bb_trg);
1914 }
1915
1916 /* The chain does not exist. */
1917 return 0;
1918 } /* is_conditionally_protected */
1919
1920 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1921 load_insn can move speculatively from bb_src to bb_trg. All the
1922 following must hold:
1923
1924 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1925 (2) load_insn and load1 have a def-use dependence upon
1926 the same insn 'insn1'.
1927 (3) either load2 is in bb_trg, or:
1928 - there's only one split-block, and
1929 - load1 is on the escape path, and
1930
1931 From all these we can conclude that the two loads access memory
1932 addresses that differ at most by a constant, and hence if moving
1933 load_insn would cause an exception, it would have been caused by
1934 load2 anyhow. */
1935
1936 static int
1937 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1938 {
1939 sd_iterator_def back_sd_it;
1940 dep_t back_dep;
1941 candidate *candp = candidate_table + bb_src;
1942
1943 if (candp->split_bbs.nr_members != 1)
1944 /* Must have exactly one escape block. */
1945 return 0;
1946
1947 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1948 {
1949 rtx insn1 = DEP_PRO (back_dep);
1950
1951 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1952 /* Found a DEF-USE dependence (insn1, load_insn). */
1953 {
1954 sd_iterator_def fore_sd_it;
1955 dep_t fore_dep;
1956
1957 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1958 {
1959 rtx insn2 = DEP_CON (fore_dep);
1960
1961 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1962 {
1963 /* Found a DEF-USE dependence (insn1, insn2). */
1964 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1965 /* insn2 not guaranteed to be a 1 base reg load. */
1966 continue;
1967
1968 if (INSN_BB (insn2) == bb_trg)
1969 /* insn2 is the similar load, in the target block. */
1970 return 1;
1971
1972 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1973 /* insn2 is a similar load, in a split-block. */
1974 return 1;
1975 }
1976 }
1977 }
1978 }
1979
1980 /* Couldn't find a similar load. */
1981 return 0;
1982 } /* is_pfree */
1983
1984 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1985 a load moved speculatively, or if load_insn is protected by
1986 a compare on load_insn's address). */
1987
1988 static int
1989 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1990 {
1991 if (FED_BY_SPEC_LOAD (load_insn))
1992 return 1;
1993
1994 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
1995 /* Dependence may 'hide' out of the region. */
1996 return 1;
1997
1998 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1999 return 1;
2000
2001 return 0;
2002 }
2003
2004 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2005 Return 1 if insn is exception-free (and the motion is valid)
2006 and 0 otherwise. */
2007
2008 static int
2009 is_exception_free (rtx insn, int bb_src, int bb_trg)
2010 {
2011 int insn_class = haifa_classify_insn (insn);
2012
2013 /* Handle non-load insns. */
2014 switch (insn_class)
2015 {
2016 case TRAP_FREE:
2017 return 1;
2018 case TRAP_RISKY:
2019 return 0;
2020 default:;
2021 }
2022
2023 /* Handle loads. */
2024 if (!flag_schedule_speculative_load)
2025 return 0;
2026 IS_LOAD_INSN (insn) = 1;
2027 switch (insn_class)
2028 {
2029 case IFREE:
2030 return (1);
2031 case IRISKY:
2032 return 0;
2033 case PFREE_CANDIDATE:
2034 if (is_pfree (insn, bb_src, bb_trg))
2035 return 1;
2036 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2037 case PRISKY_CANDIDATE:
2038 if (!flag_schedule_speculative_load_dangerous
2039 || is_prisky (insn, bb_src, bb_trg))
2040 return 0;
2041 break;
2042 default:;
2043 }
2044
2045 return flag_schedule_speculative_load_dangerous;
2046 }
2047 \f
2048 /* The number of insns from the current block scheduled so far. */
2049 static int sched_target_n_insns;
2050 /* The number of insns from the current block to be scheduled in total. */
2051 static int target_n_insns;
2052 /* The number of insns from the entire region scheduled so far. */
2053 static int sched_n_insns;
2054
2055 /* Implementations of the sched_info functions for region scheduling. */
2056 static void init_ready_list (void);
2057 static int can_schedule_ready_p (rtx);
2058 static void begin_schedule_ready (rtx);
2059 static ds_t new_ready (rtx, ds_t);
2060 static int schedule_more_p (void);
2061 static const char *rgn_print_insn (const_rtx, int);
2062 static int rgn_rank (rtx, rtx);
2063 static void compute_jump_reg_dependencies (rtx, regset);
2064
2065 /* Functions for speculative scheduling. */
2066 static void rgn_add_remove_insn (rtx, int);
2067 static void rgn_add_block (basic_block, basic_block);
2068 static void rgn_fix_recovery_cfg (int, int, int);
2069 static basic_block advance_target_bb (basic_block, rtx);
2070
2071 /* Return nonzero if there are more insns that should be scheduled. */
2072
2073 static int
2074 schedule_more_p (void)
2075 {
2076 return sched_target_n_insns < target_n_insns;
2077 }
2078
2079 /* Add all insns that are initially ready to the ready list READY. Called
2080 once before scheduling a set of insns. */
2081
2082 static void
2083 init_ready_list (void)
2084 {
2085 rtx prev_head = current_sched_info->prev_head;
2086 rtx next_tail = current_sched_info->next_tail;
2087 int bb_src;
2088 rtx insn;
2089
2090 target_n_insns = 0;
2091 sched_target_n_insns = 0;
2092 sched_n_insns = 0;
2093
2094 /* Print debugging information. */
2095 if (sched_verbose >= 5)
2096 debug_rgn_dependencies (target_bb);
2097
2098 /* Prepare current target block info. */
2099 if (current_nr_blocks > 1)
2100 compute_trg_info (target_bb);
2101
2102 /* Initialize ready list with all 'ready' insns in target block.
2103 Count number of insns in the target block being scheduled. */
2104 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2105 {
2106 try_ready (insn);
2107 target_n_insns++;
2108
2109 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2110 }
2111
2112 /* Add to ready list all 'ready' insns in valid source blocks.
2113 For speculative insns, check-live, exception-free, and
2114 issue-delay. */
2115 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2116 if (IS_VALID (bb_src))
2117 {
2118 rtx src_head;
2119 rtx src_next_tail;
2120 rtx tail, head;
2121
2122 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2123 &head, &tail);
2124 src_next_tail = NEXT_INSN (tail);
2125 src_head = head;
2126
2127 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2128 if (INSN_P (insn))
2129 try_ready (insn);
2130 }
2131 }
2132
2133 /* Called after taking INSN from the ready list. Returns nonzero if this
2134 insn can be scheduled, nonzero if we should silently discard it. */
2135
2136 static int
2137 can_schedule_ready_p (rtx insn)
2138 {
2139 /* An interblock motion? */
2140 if (INSN_BB (insn) != target_bb
2141 && IS_SPECULATIVE_INSN (insn)
2142 && !check_live (insn, INSN_BB (insn)))
2143 return 0;
2144 else
2145 return 1;
2146 }
2147
2148 /* Updates counter and other information. Split from can_schedule_ready_p ()
2149 because when we schedule insn speculatively then insn passed to
2150 can_schedule_ready_p () differs from the one passed to
2151 begin_schedule_ready (). */
2152 static void
2153 begin_schedule_ready (rtx insn)
2154 {
2155 /* An interblock motion? */
2156 if (INSN_BB (insn) != target_bb)
2157 {
2158 if (IS_SPECULATIVE_INSN (insn))
2159 {
2160 gcc_assert (check_live (insn, INSN_BB (insn)));
2161
2162 update_live (insn, INSN_BB (insn));
2163
2164 /* For speculative load, mark insns fed by it. */
2165 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2166 set_spec_fed (insn);
2167
2168 nr_spec++;
2169 }
2170 nr_inter++;
2171 }
2172 else
2173 {
2174 /* In block motion. */
2175 sched_target_n_insns++;
2176 }
2177 sched_n_insns++;
2178 }
2179
2180 /* Called after INSN has all its hard dependencies resolved and the speculation
2181 of type TS is enough to overcome them all.
2182 Return nonzero if it should be moved to the ready list or the queue, or zero
2183 if we should silently discard it. */
2184 static ds_t
2185 new_ready (rtx next, ds_t ts)
2186 {
2187 if (INSN_BB (next) != target_bb)
2188 {
2189 int not_ex_free = 0;
2190
2191 /* For speculative insns, before inserting to ready/queue,
2192 check live, exception-free, and issue-delay. */
2193 if (!IS_VALID (INSN_BB (next))
2194 || CANT_MOVE (next)
2195 || (IS_SPECULATIVE_INSN (next)
2196 && ((recog_memoized (next) >= 0
2197 && min_insn_conflict_delay (curr_state, next, next)
2198 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2199 || IS_SPECULATION_CHECK_P (next)
2200 || !check_live (next, INSN_BB (next))
2201 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2202 target_bb)))))
2203 {
2204 if (not_ex_free
2205 /* We are here because is_exception_free () == false.
2206 But we possibly can handle that with control speculation. */
2207 && sched_deps_info->generate_spec_deps
2208 && spec_info->mask & BEGIN_CONTROL)
2209 {
2210 ds_t new_ds;
2211
2212 /* Add control speculation to NEXT's dependency type. */
2213 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2214
2215 /* Check if NEXT can be speculated with new dependency type. */
2216 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2217 /* Here we got new control-speculative instruction. */
2218 ts = new_ds;
2219 else
2220 /* NEXT isn't ready yet. */
2221 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2222 }
2223 else
2224 /* NEXT isn't ready yet. */
2225 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2226 }
2227 }
2228
2229 return ts;
2230 }
2231
2232 /* Return a string that contains the insn uid and optionally anything else
2233 necessary to identify this insn in an output. It's valid to use a
2234 static buffer for this. The ALIGNED parameter should cause the string
2235 to be formatted so that multiple output lines will line up nicely. */
2236
2237 static const char *
2238 rgn_print_insn (const_rtx insn, int aligned)
2239 {
2240 static char tmp[80];
2241
2242 if (aligned)
2243 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2244 else
2245 {
2246 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2247 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2248 else
2249 sprintf (tmp, "%d", INSN_UID (insn));
2250 }
2251 return tmp;
2252 }
2253
2254 /* Compare priority of two insns. Return a positive number if the second
2255 insn is to be preferred for scheduling, and a negative one if the first
2256 is to be preferred. Zero if they are equally good. */
2257
2258 static int
2259 rgn_rank (rtx insn1, rtx insn2)
2260 {
2261 /* Some comparison make sense in interblock scheduling only. */
2262 if (INSN_BB (insn1) != INSN_BB (insn2))
2263 {
2264 int spec_val, prob_val;
2265
2266 /* Prefer an inblock motion on an interblock motion. */
2267 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2268 return 1;
2269 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2270 return -1;
2271
2272 /* Prefer a useful motion on a speculative one. */
2273 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2274 if (spec_val)
2275 return spec_val;
2276
2277 /* Prefer a more probable (speculative) insn. */
2278 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2279 if (prob_val)
2280 return prob_val;
2281 }
2282 return 0;
2283 }
2284
2285 /* NEXT is an instruction that depends on INSN (a backward dependence);
2286 return nonzero if we should include this dependence in priority
2287 calculations. */
2288
2289 int
2290 contributes_to_priority (rtx next, rtx insn)
2291 {
2292 /* NEXT and INSN reside in one ebb. */
2293 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2294 }
2295
2296 /* INSN is a JUMP_INSN. Store the set of registers that must be
2297 considered as used by this jump in USED. */
2298
2299 static void
2300 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2301 regset used ATTRIBUTE_UNUSED)
2302 {
2303 /* Nothing to do here, since we postprocess jumps in
2304 add_branch_dependences. */
2305 }
2306
2307 /* This variable holds common_sched_info hooks and data relevant to
2308 the interblock scheduler. */
2309 static struct common_sched_info_def rgn_common_sched_info;
2310
2311
2312 /* This holds data for the dependence analysis relevant to
2313 the interblock scheduler. */
2314 static struct sched_deps_info_def rgn_sched_deps_info;
2315
2316 /* This holds constant data used for initializing the above structure
2317 for the Haifa scheduler. */
2318 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2319 {
2320 compute_jump_reg_dependencies,
2321 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2322 0, 0, 0
2323 };
2324
2325 /* Same as above, but for the selective scheduler. */
2326 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2327 {
2328 compute_jump_reg_dependencies,
2329 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2330 0, 0, 0
2331 };
2332
2333 /* Return true if scheduling INSN will trigger finish of scheduling
2334 current block. */
2335 static bool
2336 rgn_insn_finishes_block_p (rtx insn)
2337 {
2338 if (INSN_BB (insn) == target_bb
2339 && sched_target_n_insns + 1 == target_n_insns)
2340 /* INSN is the last not-scheduled instruction in the current block. */
2341 return true;
2342
2343 return false;
2344 }
2345
2346 /* Used in schedule_insns to initialize current_sched_info for scheduling
2347 regions (or single basic blocks). */
2348
2349 static const struct haifa_sched_info rgn_const_sched_info =
2350 {
2351 init_ready_list,
2352 can_schedule_ready_p,
2353 schedule_more_p,
2354 new_ready,
2355 rgn_rank,
2356 rgn_print_insn,
2357 contributes_to_priority,
2358 rgn_insn_finishes_block_p,
2359
2360 NULL, NULL,
2361 NULL, NULL,
2362 0, 0,
2363
2364 rgn_add_remove_insn,
2365 begin_schedule_ready,
2366 NULL,
2367 advance_target_bb,
2368 NULL, NULL,
2369 SCHED_RGN
2370 };
2371
2372 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2373 for the interblock scheduler frontend. */
2374 static struct haifa_sched_info rgn_sched_info;
2375
2376 /* Returns maximum priority that an insn was assigned to. */
2377
2378 int
2379 get_rgn_sched_max_insns_priority (void)
2380 {
2381 return rgn_sched_info.sched_max_insns_priority;
2382 }
2383
2384 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2385
2386 static bool
2387 sets_likely_spilled (rtx pat)
2388 {
2389 bool ret = false;
2390 note_stores (pat, sets_likely_spilled_1, &ret);
2391 return ret;
2392 }
2393
2394 static void
2395 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2396 {
2397 bool *ret = (bool *) data;
2398
2399 if (GET_CODE (pat) == SET
2400 && REG_P (x)
2401 && HARD_REGISTER_P (x)
2402 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2403 *ret = true;
2404 }
2405
2406 /* A bitmap to note insns that participate in any dependency. Used in
2407 add_branch_dependences. */
2408 static sbitmap insn_referenced;
2409
2410 /* Add dependences so that branches are scheduled to run last in their
2411 block. */
2412 static void
2413 add_branch_dependences (rtx head, rtx tail)
2414 {
2415 rtx insn, last;
2416
2417 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2418 that can throw exceptions, force them to remain in order at the end of
2419 the block by adding dependencies and giving the last a high priority.
2420 There may be notes present, and prev_head may also be a note.
2421
2422 Branches must obviously remain at the end. Calls should remain at the
2423 end since moving them results in worse register allocation. Uses remain
2424 at the end to ensure proper register allocation.
2425
2426 cc0 setters remain at the end because they can't be moved away from
2427 their cc0 user.
2428
2429 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2430
2431 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2432 values) are not moved before reload because we can wind up with register
2433 allocation failures. */
2434
2435 while (tail != head && DEBUG_INSN_P (tail))
2436 tail = PREV_INSN (tail);
2437
2438 insn = tail;
2439 last = 0;
2440 while (CALL_P (insn)
2441 || JUMP_P (insn)
2442 || (NONJUMP_INSN_P (insn)
2443 && (GET_CODE (PATTERN (insn)) == USE
2444 || GET_CODE (PATTERN (insn)) == CLOBBER
2445 || can_throw_internal (insn)
2446 #ifdef HAVE_cc0
2447 || sets_cc0_p (PATTERN (insn))
2448 #endif
2449 || (!reload_completed
2450 && sets_likely_spilled (PATTERN (insn)))))
2451 || NOTE_P (insn))
2452 {
2453 if (!NOTE_P (insn))
2454 {
2455 if (last != 0
2456 && sd_find_dep_between (insn, last, false) == NULL)
2457 {
2458 if (! sched_insns_conditions_mutex_p (last, insn))
2459 add_dependence (last, insn, REG_DEP_ANTI);
2460 SET_BIT (insn_referenced, INSN_LUID (insn));
2461 }
2462
2463 CANT_MOVE (insn) = 1;
2464
2465 last = insn;
2466 }
2467
2468 /* Don't overrun the bounds of the basic block. */
2469 if (insn == head)
2470 break;
2471
2472 do
2473 insn = PREV_INSN (insn);
2474 while (insn != head && DEBUG_INSN_P (insn));
2475 }
2476
2477 /* Make sure these insns are scheduled last in their block. */
2478 insn = last;
2479 if (insn != 0)
2480 while (insn != head)
2481 {
2482 insn = prev_nonnote_insn (insn);
2483
2484 if (TEST_BIT (insn_referenced, INSN_LUID (insn))
2485 || DEBUG_INSN_P (insn))
2486 continue;
2487
2488 if (! sched_insns_conditions_mutex_p (last, insn))
2489 add_dependence (last, insn, REG_DEP_ANTI);
2490 }
2491
2492 if (!targetm.have_conditional_execution ())
2493 return;
2494
2495 /* Finally, if the block ends in a jump, and we are doing intra-block
2496 scheduling, make sure that the branch depends on any COND_EXEC insns
2497 inside the block to avoid moving the COND_EXECs past the branch insn.
2498
2499 We only have to do this after reload, because (1) before reload there
2500 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2501 scheduler after reload.
2502
2503 FIXME: We could in some cases move COND_EXEC insns past the branch if
2504 this scheduler would be a little smarter. Consider this code:
2505
2506 T = [addr]
2507 C ? addr += 4
2508 !C ? X += 12
2509 C ? T += 1
2510 C ? jump foo
2511
2512 On a target with a one cycle stall on a memory access the optimal
2513 sequence would be:
2514
2515 T = [addr]
2516 C ? addr += 4
2517 C ? T += 1
2518 C ? jump foo
2519 !C ? X += 12
2520
2521 We don't want to put the 'X += 12' before the branch because it just
2522 wastes a cycle of execution time when the branch is taken.
2523
2524 Note that in the example "!C" will always be true. That is another
2525 possible improvement for handling COND_EXECs in this scheduler: it
2526 could remove always-true predicates. */
2527
2528 if (!reload_completed || ! JUMP_P (tail))
2529 return;
2530
2531 insn = tail;
2532 while (insn != head)
2533 {
2534 insn = PREV_INSN (insn);
2535
2536 /* Note that we want to add this dependency even when
2537 sched_insns_conditions_mutex_p returns true. The whole point
2538 is that we _want_ this dependency, even if these insns really
2539 are independent. */
2540 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2541 add_dependence (tail, insn, REG_DEP_ANTI);
2542 }
2543 }
2544
2545 /* Data structures for the computation of data dependences in a regions. We
2546 keep one `deps' structure for every basic block. Before analyzing the
2547 data dependences for a bb, its variables are initialized as a function of
2548 the variables of its predecessors. When the analysis for a bb completes,
2549 we save the contents to the corresponding bb_deps[bb] variable. */
2550
2551 static struct deps_desc *bb_deps;
2552
2553 static void
2554 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2555 rtx *old_mems_p)
2556 {
2557 rtx new_insns = *old_insns_p;
2558 rtx new_mems = *old_mems_p;
2559
2560 while (copy_insns)
2561 {
2562 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2563 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2564 copy_insns = XEXP (copy_insns, 1);
2565 copy_mems = XEXP (copy_mems, 1);
2566 }
2567
2568 *old_insns_p = new_insns;
2569 *old_mems_p = new_mems;
2570 }
2571
2572 /* Join PRED_DEPS to the SUCC_DEPS. */
2573 void
2574 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2575 {
2576 unsigned reg;
2577 reg_set_iterator rsi;
2578
2579 /* The reg_last lists are inherited by successor. */
2580 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2581 {
2582 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2583 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2584
2585 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2586 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2587 succ_rl->implicit_sets
2588 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2589 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2590 succ_rl->clobbers);
2591 succ_rl->uses_length += pred_rl->uses_length;
2592 succ_rl->clobbers_length += pred_rl->clobbers_length;
2593 }
2594 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2595
2596 /* Mem read/write lists are inherited by successor. */
2597 concat_insn_mem_list (pred_deps->pending_read_insns,
2598 pred_deps->pending_read_mems,
2599 &succ_deps->pending_read_insns,
2600 &succ_deps->pending_read_mems);
2601 concat_insn_mem_list (pred_deps->pending_write_insns,
2602 pred_deps->pending_write_mems,
2603 &succ_deps->pending_write_insns,
2604 &succ_deps->pending_write_mems);
2605
2606 succ_deps->pending_jump_insns
2607 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2608 succ_deps->pending_jump_insns);
2609 succ_deps->last_pending_memory_flush
2610 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2611 succ_deps->last_pending_memory_flush);
2612
2613 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2614 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2615 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2616
2617 /* last_function_call is inherited by successor. */
2618 succ_deps->last_function_call
2619 = concat_INSN_LIST (pred_deps->last_function_call,
2620 succ_deps->last_function_call);
2621
2622 /* last_function_call_may_noreturn is inherited by successor. */
2623 succ_deps->last_function_call_may_noreturn
2624 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2625 succ_deps->last_function_call_may_noreturn);
2626
2627 /* sched_before_next_call is inherited by successor. */
2628 succ_deps->sched_before_next_call
2629 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2630 succ_deps->sched_before_next_call);
2631 }
2632
2633 /* After computing the dependencies for block BB, propagate the dependencies
2634 found in TMP_DEPS to the successors of the block. */
2635 static void
2636 propagate_deps (int bb, struct deps_desc *pred_deps)
2637 {
2638 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2639 edge_iterator ei;
2640 edge e;
2641
2642 /* bb's structures are inherited by its successors. */
2643 FOR_EACH_EDGE (e, ei, block->succs)
2644 {
2645 /* Only bbs "below" bb, in the same region, are interesting. */
2646 if (e->dest == EXIT_BLOCK_PTR
2647 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2648 || BLOCK_TO_BB (e->dest->index) <= bb)
2649 continue;
2650
2651 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2652 }
2653
2654 /* These lists should point to the right place, for correct
2655 freeing later. */
2656 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2657 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2658 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2659 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2660 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2661
2662 /* Can't allow these to be freed twice. */
2663 pred_deps->pending_read_insns = 0;
2664 pred_deps->pending_read_mems = 0;
2665 pred_deps->pending_write_insns = 0;
2666 pred_deps->pending_write_mems = 0;
2667 pred_deps->pending_jump_insns = 0;
2668 }
2669
2670 /* Compute dependences inside bb. In a multiple blocks region:
2671 (1) a bb is analyzed after its predecessors, and (2) the lists in
2672 effect at the end of bb (after analyzing for bb) are inherited by
2673 bb's successors.
2674
2675 Specifically for reg-reg data dependences, the block insns are
2676 scanned by sched_analyze () top-to-bottom. Three lists are
2677 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2678 reg_last[].implicit_sets for implicit hard register DEFs, and
2679 reg_last[].uses for register USEs.
2680
2681 When analysis is completed for bb, we update for its successors:
2682 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2683 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2684 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2685
2686 The mechanism for computing mem-mem data dependence is very
2687 similar, and the result is interblock dependences in the region. */
2688
2689 static void
2690 compute_block_dependences (int bb)
2691 {
2692 rtx head, tail;
2693 struct deps_desc tmp_deps;
2694
2695 tmp_deps = bb_deps[bb];
2696
2697 /* Do the analysis for this block. */
2698 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2699 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2700
2701 sched_analyze (&tmp_deps, head, tail);
2702
2703 /* Selective scheduling handles control dependencies by itself. */
2704 if (!sel_sched_p ())
2705 add_branch_dependences (head, tail);
2706
2707 if (current_nr_blocks > 1)
2708 propagate_deps (bb, &tmp_deps);
2709
2710 /* Free up the INSN_LISTs. */
2711 free_deps (&tmp_deps);
2712
2713 if (targetm.sched.dependencies_evaluation_hook)
2714 targetm.sched.dependencies_evaluation_hook (head, tail);
2715 }
2716
2717 /* Free dependencies of instructions inside BB. */
2718 static void
2719 free_block_dependencies (int bb)
2720 {
2721 rtx head;
2722 rtx tail;
2723
2724 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2725
2726 if (no_real_insns_p (head, tail))
2727 return;
2728
2729 sched_free_deps (head, tail, true);
2730 }
2731
2732 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2733 them to the unused_*_list variables, so that they can be reused. */
2734
2735 static void
2736 free_pending_lists (void)
2737 {
2738 int bb;
2739
2740 for (bb = 0; bb < current_nr_blocks; bb++)
2741 {
2742 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2743 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2744 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2745 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2746 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2747 }
2748 }
2749 \f
2750 /* Print dependences for debugging starting from FROM_BB.
2751 Callable from debugger. */
2752 /* Print dependences for debugging starting from FROM_BB.
2753 Callable from debugger. */
2754 DEBUG_FUNCTION void
2755 debug_rgn_dependencies (int from_bb)
2756 {
2757 int bb;
2758
2759 fprintf (sched_dump,
2760 ";; --------------- forward dependences: ------------ \n");
2761
2762 for (bb = from_bb; bb < current_nr_blocks; bb++)
2763 {
2764 rtx head, tail;
2765
2766 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2767 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2768 BB_TO_BLOCK (bb), bb);
2769
2770 debug_dependencies (head, tail);
2771 }
2772 }
2773
2774 /* Print dependencies information for instructions between HEAD and TAIL.
2775 ??? This function would probably fit best in haifa-sched.c. */
2776 void debug_dependencies (rtx head, rtx tail)
2777 {
2778 rtx insn;
2779 rtx next_tail = NEXT_INSN (tail);
2780
2781 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2782 "insn", "code", "bb", "dep", "prio", "cost",
2783 "reservation");
2784 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2785 "----", "----", "--", "---", "----", "----",
2786 "-----------");
2787
2788 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2789 {
2790 if (! INSN_P (insn))
2791 {
2792 int n;
2793 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2794 if (NOTE_P (insn))
2795 {
2796 n = NOTE_KIND (insn);
2797 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2798 }
2799 else
2800 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2801 continue;
2802 }
2803
2804 fprintf (sched_dump,
2805 ";; %s%5d%6d%6d%6d%6d%6d ",
2806 (SCHED_GROUP_P (insn) ? "+" : " "),
2807 INSN_UID (insn),
2808 INSN_CODE (insn),
2809 BLOCK_NUM (insn),
2810 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2811 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2812 : INSN_PRIORITY (insn))
2813 : INSN_PRIORITY (insn)),
2814 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2815 : insn_cost (insn))
2816 : insn_cost (insn)));
2817
2818 if (recog_memoized (insn) < 0)
2819 fprintf (sched_dump, "nothing");
2820 else
2821 print_reservation (sched_dump, insn);
2822
2823 fprintf (sched_dump, "\t: ");
2824 {
2825 sd_iterator_def sd_it;
2826 dep_t dep;
2827
2828 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2829 fprintf (sched_dump, "%d ", INSN_UID (DEP_CON (dep)));
2830 }
2831 fprintf (sched_dump, "\n");
2832 }
2833
2834 fprintf (sched_dump, "\n");
2835 }
2836 \f
2837 /* Returns true if all the basic blocks of the current region have
2838 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2839 bool
2840 sched_is_disabled_for_current_region_p (void)
2841 {
2842 int bb;
2843
2844 for (bb = 0; bb < current_nr_blocks; bb++)
2845 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2846 return false;
2847
2848 return true;
2849 }
2850
2851 /* Free all region dependencies saved in INSN_BACK_DEPS and
2852 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2853 when scheduling, so this function is supposed to be called from
2854 the selective scheduling only. */
2855 void
2856 free_rgn_deps (void)
2857 {
2858 int bb;
2859
2860 for (bb = 0; bb < current_nr_blocks; bb++)
2861 {
2862 rtx head, tail;
2863
2864 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2865 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2866
2867 sched_free_deps (head, tail, false);
2868 }
2869 }
2870
2871 static int rgn_n_insns;
2872
2873 /* Compute insn priority for a current region. */
2874 void
2875 compute_priorities (void)
2876 {
2877 int bb;
2878
2879 current_sched_info->sched_max_insns_priority = 0;
2880 for (bb = 0; bb < current_nr_blocks; bb++)
2881 {
2882 rtx head, tail;
2883
2884 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2885 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2886
2887 if (no_real_insns_p (head, tail))
2888 continue;
2889
2890 rgn_n_insns += set_priorities (head, tail);
2891 }
2892 current_sched_info->sched_max_insns_priority++;
2893 }
2894
2895 /* Schedule a region. A region is either an inner loop, a loop-free
2896 subroutine, or a single basic block. Each bb in the region is
2897 scheduled after its flow predecessors. */
2898
2899 static void
2900 schedule_region (int rgn)
2901 {
2902 int bb;
2903 int sched_rgn_n_insns = 0;
2904
2905 rgn_n_insns = 0;
2906
2907 rgn_setup_region (rgn);
2908
2909 /* Don't schedule region that is marked by
2910 NOTE_DISABLE_SCHED_OF_BLOCK. */
2911 if (sched_is_disabled_for_current_region_p ())
2912 return;
2913
2914 sched_rgn_compute_dependencies (rgn);
2915
2916 sched_rgn_local_init (rgn);
2917
2918 /* Set priorities. */
2919 compute_priorities ();
2920
2921 sched_extend_ready_list (rgn_n_insns);
2922
2923 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2924 {
2925 sched_init_region_reg_pressure_info ();
2926 for (bb = 0; bb < current_nr_blocks; bb++)
2927 {
2928 basic_block first_bb, last_bb;
2929 rtx head, tail;
2930
2931 first_bb = EBB_FIRST_BB (bb);
2932 last_bb = EBB_LAST_BB (bb);
2933
2934 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2935
2936 if (no_real_insns_p (head, tail))
2937 {
2938 gcc_assert (first_bb == last_bb);
2939 continue;
2940 }
2941 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
2942 }
2943 }
2944
2945 /* Now we can schedule all blocks. */
2946 for (bb = 0; bb < current_nr_blocks; bb++)
2947 {
2948 basic_block first_bb, last_bb, curr_bb;
2949 rtx head, tail;
2950
2951 first_bb = EBB_FIRST_BB (bb);
2952 last_bb = EBB_LAST_BB (bb);
2953
2954 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2955
2956 if (no_real_insns_p (head, tail))
2957 {
2958 gcc_assert (first_bb == last_bb);
2959 continue;
2960 }
2961
2962 current_sched_info->prev_head = PREV_INSN (head);
2963 current_sched_info->next_tail = NEXT_INSN (tail);
2964
2965 remove_notes (head, tail);
2966
2967 unlink_bb_notes (first_bb, last_bb);
2968
2969 target_bb = bb;
2970
2971 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2972 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
2973
2974 curr_bb = first_bb;
2975 if (dbg_cnt (sched_block))
2976 {
2977 schedule_block (&curr_bb);
2978 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
2979 sched_rgn_n_insns += sched_n_insns;
2980 }
2981 else
2982 {
2983 sched_rgn_n_insns += rgn_n_insns;
2984 }
2985
2986 /* Clean up. */
2987 if (current_nr_blocks > 1)
2988 free_trg_info ();
2989 }
2990
2991 /* Sanity check: verify that all region insns were scheduled. */
2992 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
2993
2994 sched_finish_ready_list ();
2995
2996 /* Done with this region. */
2997 sched_rgn_local_finish ();
2998
2999 /* Free dependencies. */
3000 for (bb = 0; bb < current_nr_blocks; ++bb)
3001 free_block_dependencies (bb);
3002
3003 gcc_assert (haifa_recovery_bb_ever_added_p
3004 || deps_pools_are_empty_p ());
3005 }
3006
3007 /* Initialize data structures for region scheduling. */
3008
3009 void
3010 sched_rgn_init (bool single_blocks_p)
3011 {
3012 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3013 / 100);
3014
3015 nr_inter = 0;
3016 nr_spec = 0;
3017
3018 extend_regions ();
3019
3020 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3021 CONTAINING_RGN (EXIT_BLOCK) = -1;
3022
3023 /* Compute regions for scheduling. */
3024 if (single_blocks_p
3025 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3026 || !flag_schedule_interblock
3027 || is_cfg_nonregular ())
3028 {
3029 find_single_block_region (sel_sched_p ());
3030 }
3031 else
3032 {
3033 /* Compute the dominators and post dominators. */
3034 if (!sel_sched_p ())
3035 calculate_dominance_info (CDI_DOMINATORS);
3036
3037 /* Find regions. */
3038 find_rgns ();
3039
3040 if (sched_verbose >= 3)
3041 debug_regions ();
3042
3043 /* For now. This will move as more and more of haifa is converted
3044 to using the cfg code. */
3045 if (!sel_sched_p ())
3046 free_dominance_info (CDI_DOMINATORS);
3047 }
3048
3049 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3050
3051 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3052 RGN_NR_BLOCKS (nr_regions - 1));
3053 }
3054
3055 /* Free data structures for region scheduling. */
3056 void
3057 sched_rgn_finish (void)
3058 {
3059 /* Reposition the prologue and epilogue notes in case we moved the
3060 prologue/epilogue insns. */
3061 if (reload_completed)
3062 reposition_prologue_and_epilogue_notes ();
3063
3064 if (sched_verbose)
3065 {
3066 if (reload_completed == 0
3067 && flag_schedule_interblock)
3068 {
3069 fprintf (sched_dump,
3070 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3071 nr_inter, nr_spec);
3072 }
3073 else
3074 gcc_assert (nr_inter <= 0);
3075 fprintf (sched_dump, "\n\n");
3076 }
3077
3078 nr_regions = 0;
3079
3080 free (rgn_table);
3081 rgn_table = NULL;
3082
3083 free (rgn_bb_table);
3084 rgn_bb_table = NULL;
3085
3086 free (block_to_bb);
3087 block_to_bb = NULL;
3088
3089 free (containing_rgn);
3090 containing_rgn = NULL;
3091
3092 free (ebb_head);
3093 ebb_head = NULL;
3094 }
3095
3096 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3097 point to the region RGN. */
3098 void
3099 rgn_setup_region (int rgn)
3100 {
3101 int bb;
3102
3103 /* Set variables for the current region. */
3104 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3105 current_blocks = RGN_BLOCKS (rgn);
3106
3107 /* EBB_HEAD is a region-scope structure. But we realloc it for
3108 each region to save time/memory/something else.
3109 See comments in add_block1, for what reasons we allocate +1 element. */
3110 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3111 for (bb = 0; bb <= current_nr_blocks; bb++)
3112 ebb_head[bb] = current_blocks + bb;
3113 }
3114
3115 /* Compute instruction dependencies in region RGN. */
3116 void
3117 sched_rgn_compute_dependencies (int rgn)
3118 {
3119 if (!RGN_DONT_CALC_DEPS (rgn))
3120 {
3121 int bb;
3122
3123 if (sel_sched_p ())
3124 sched_emulate_haifa_p = 1;
3125
3126 init_deps_global ();
3127
3128 /* Initializations for region data dependence analysis. */
3129 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3130 for (bb = 0; bb < current_nr_blocks; bb++)
3131 init_deps (bb_deps + bb, false);
3132
3133 /* Initialize bitmap used in add_branch_dependences. */
3134 insn_referenced = sbitmap_alloc (sched_max_luid);
3135 sbitmap_zero (insn_referenced);
3136
3137 /* Compute backward dependencies. */
3138 for (bb = 0; bb < current_nr_blocks; bb++)
3139 compute_block_dependences (bb);
3140
3141 sbitmap_free (insn_referenced);
3142 free_pending_lists ();
3143 finish_deps_global ();
3144 free (bb_deps);
3145
3146 /* We don't want to recalculate this twice. */
3147 RGN_DONT_CALC_DEPS (rgn) = 1;
3148
3149 if (sel_sched_p ())
3150 sched_emulate_haifa_p = 0;
3151 }
3152 else
3153 /* (This is a recovery block. It is always a single block region.)
3154 OR (We use selective scheduling.) */
3155 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3156 }
3157
3158 /* Init region data structures. Returns true if this region should
3159 not be scheduled. */
3160 void
3161 sched_rgn_local_init (int rgn)
3162 {
3163 int bb;
3164
3165 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3166 if (current_nr_blocks > 1)
3167 {
3168 basic_block block;
3169 edge e;
3170 edge_iterator ei;
3171
3172 prob = XNEWVEC (int, current_nr_blocks);
3173
3174 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3175 sbitmap_vector_zero (dom, current_nr_blocks);
3176
3177 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3178 rgn_nr_edges = 0;
3179 FOR_EACH_BB (block)
3180 {
3181 if (CONTAINING_RGN (block->index) != rgn)
3182 continue;
3183 FOR_EACH_EDGE (e, ei, block->succs)
3184 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3185 }
3186
3187 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3188 rgn_nr_edges = 0;
3189 FOR_EACH_BB (block)
3190 {
3191 if (CONTAINING_RGN (block->index) != rgn)
3192 continue;
3193 FOR_EACH_EDGE (e, ei, block->succs)
3194 rgn_edges[rgn_nr_edges++] = e;
3195 }
3196
3197 /* Split edges. */
3198 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3199 sbitmap_vector_zero (pot_split, current_nr_blocks);
3200 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3201 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
3202
3203 /* Compute probabilities, dominators, split_edges. */
3204 for (bb = 0; bb < current_nr_blocks; bb++)
3205 compute_dom_prob_ps (bb);
3206
3207 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3208 /* We don't need them anymore. But we want to avoid duplication of
3209 aux fields in the newly created edges. */
3210 FOR_EACH_BB (block)
3211 {
3212 if (CONTAINING_RGN (block->index) != rgn)
3213 continue;
3214 FOR_EACH_EDGE (e, ei, block->succs)
3215 e->aux = NULL;
3216 }
3217 }
3218 }
3219
3220 /* Free data computed for the finished region. */
3221 void
3222 sched_rgn_local_free (void)
3223 {
3224 free (prob);
3225 sbitmap_vector_free (dom);
3226 sbitmap_vector_free (pot_split);
3227 sbitmap_vector_free (ancestor_edges);
3228 free (rgn_edges);
3229 }
3230
3231 /* Free data computed for the finished region. */
3232 void
3233 sched_rgn_local_finish (void)
3234 {
3235 if (current_nr_blocks > 1 && !sel_sched_p ())
3236 {
3237 sched_rgn_local_free ();
3238 }
3239 }
3240
3241 /* Setup scheduler infos. */
3242 void
3243 rgn_setup_common_sched_info (void)
3244 {
3245 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3246 sizeof (rgn_common_sched_info));
3247
3248 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3249 rgn_common_sched_info.add_block = rgn_add_block;
3250 rgn_common_sched_info.estimate_number_of_insns
3251 = rgn_estimate_number_of_insns;
3252 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3253
3254 common_sched_info = &rgn_common_sched_info;
3255 }
3256
3257 /* Setup all *_sched_info structures (for the Haifa frontend
3258 and for the dependence analysis) in the interblock scheduler. */
3259 void
3260 rgn_setup_sched_infos (void)
3261 {
3262 if (!sel_sched_p ())
3263 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3264 sizeof (rgn_sched_deps_info));
3265 else
3266 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3267 sizeof (rgn_sched_deps_info));
3268
3269 sched_deps_info = &rgn_sched_deps_info;
3270
3271 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3272 current_sched_info = &rgn_sched_info;
3273 }
3274
3275 /* The one entry point in this file. */
3276 void
3277 schedule_insns (void)
3278 {
3279 int rgn;
3280
3281 /* Taking care of this degenerate case makes the rest of
3282 this code simpler. */
3283 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3284 return;
3285
3286 rgn_setup_common_sched_info ();
3287 rgn_setup_sched_infos ();
3288
3289 haifa_sched_init ();
3290 sched_rgn_init (reload_completed);
3291
3292 bitmap_initialize (&not_in_df, 0);
3293 bitmap_clear (&not_in_df);
3294
3295 /* Schedule every region in the subroutine. */
3296 for (rgn = 0; rgn < nr_regions; rgn++)
3297 if (dbg_cnt (sched_region))
3298 schedule_region (rgn);
3299
3300 /* Clean up. */
3301 sched_rgn_finish ();
3302 bitmap_clear (&not_in_df);
3303
3304 haifa_sched_finish ();
3305 }
3306
3307 /* INSN has been added to/removed from current region. */
3308 static void
3309 rgn_add_remove_insn (rtx insn, int remove_p)
3310 {
3311 if (!remove_p)
3312 rgn_n_insns++;
3313 else
3314 rgn_n_insns--;
3315
3316 if (INSN_BB (insn) == target_bb)
3317 {
3318 if (!remove_p)
3319 target_n_insns++;
3320 else
3321 target_n_insns--;
3322 }
3323 }
3324
3325 /* Extend internal data structures. */
3326 void
3327 extend_regions (void)
3328 {
3329 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3330 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3331 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3332 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3333 }
3334
3335 void
3336 rgn_make_new_region_out_of_new_block (basic_block bb)
3337 {
3338 int i;
3339
3340 i = RGN_BLOCKS (nr_regions);
3341 /* I - first free position in rgn_bb_table. */
3342
3343 rgn_bb_table[i] = bb->index;
3344 RGN_NR_BLOCKS (nr_regions) = 1;
3345 RGN_HAS_REAL_EBB (nr_regions) = 0;
3346 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3347 CONTAINING_RGN (bb->index) = nr_regions;
3348 BLOCK_TO_BB (bb->index) = 0;
3349
3350 nr_regions++;
3351
3352 RGN_BLOCKS (nr_regions) = i + 1;
3353 }
3354
3355 /* BB was added to ebb after AFTER. */
3356 static void
3357 rgn_add_block (basic_block bb, basic_block after)
3358 {
3359 extend_regions ();
3360 bitmap_set_bit (&not_in_df, bb->index);
3361
3362 if (after == 0 || after == EXIT_BLOCK_PTR)
3363 {
3364 rgn_make_new_region_out_of_new_block (bb);
3365 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3366 }
3367 else
3368 {
3369 int i, pos;
3370
3371 /* We need to fix rgn_table, block_to_bb, containing_rgn
3372 and ebb_head. */
3373
3374 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3375
3376 /* We extend ebb_head to one more position to
3377 easily find the last position of the last ebb in
3378 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3379 is _always_ valid for access. */
3380
3381 i = BLOCK_TO_BB (after->index) + 1;
3382 pos = ebb_head[i] - 1;
3383 /* Now POS is the index of the last block in the region. */
3384
3385 /* Find index of basic block AFTER. */
3386 for (; rgn_bb_table[pos] != after->index; pos--)
3387 ;
3388
3389 pos++;
3390 gcc_assert (pos > ebb_head[i - 1]);
3391
3392 /* i - ebb right after "AFTER". */
3393 /* ebb_head[i] - VALID. */
3394
3395 /* Source position: ebb_head[i]
3396 Destination position: ebb_head[i] + 1
3397 Last position:
3398 RGN_BLOCKS (nr_regions) - 1
3399 Number of elements to copy: (last_position) - (source_position) + 1
3400 */
3401
3402 memmove (rgn_bb_table + pos + 1,
3403 rgn_bb_table + pos,
3404 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3405 * sizeof (*rgn_bb_table));
3406
3407 rgn_bb_table[pos] = bb->index;
3408
3409 for (; i <= current_nr_blocks; i++)
3410 ebb_head [i]++;
3411
3412 i = CONTAINING_RGN (after->index);
3413 CONTAINING_RGN (bb->index) = i;
3414
3415 RGN_HAS_REAL_EBB (i) = 1;
3416
3417 for (++i; i <= nr_regions; i++)
3418 RGN_BLOCKS (i)++;
3419 }
3420 }
3421
3422 /* Fix internal data after interblock movement of jump instruction.
3423 For parameter meaning please refer to
3424 sched-int.h: struct sched_info: fix_recovery_cfg. */
3425 static void
3426 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3427 {
3428 int old_pos, new_pos, i;
3429
3430 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3431
3432 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3433 rgn_bb_table[old_pos] != check_bb_nexti;
3434 old_pos--)
3435 ;
3436 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3437
3438 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3439 rgn_bb_table[new_pos] != bbi;
3440 new_pos--)
3441 ;
3442 new_pos++;
3443 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3444
3445 gcc_assert (new_pos < old_pos);
3446
3447 memmove (rgn_bb_table + new_pos + 1,
3448 rgn_bb_table + new_pos,
3449 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3450
3451 rgn_bb_table[new_pos] = check_bb_nexti;
3452
3453 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3454 ebb_head[i]++;
3455 }
3456
3457 /* Return next block in ebb chain. For parameter meaning please refer to
3458 sched-int.h: struct sched_info: advance_target_bb. */
3459 static basic_block
3460 advance_target_bb (basic_block bb, rtx insn)
3461 {
3462 if (insn)
3463 return 0;
3464
3465 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3466 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3467 return bb->next_bb;
3468 }
3469
3470 #endif
3471 \f
3472 static bool
3473 gate_handle_sched (void)
3474 {
3475 #ifdef INSN_SCHEDULING
3476 return flag_schedule_insns && dbg_cnt (sched_func);
3477 #else
3478 return 0;
3479 #endif
3480 }
3481
3482 /* Run instruction scheduler. */
3483 static unsigned int
3484 rest_of_handle_sched (void)
3485 {
3486 #ifdef INSN_SCHEDULING
3487 if (flag_selective_scheduling
3488 && ! maybe_skip_selective_scheduling ())
3489 run_selective_scheduling ();
3490 else
3491 schedule_insns ();
3492 #endif
3493 return 0;
3494 }
3495
3496 static bool
3497 gate_handle_sched2 (void)
3498 {
3499 #ifdef INSN_SCHEDULING
3500 return optimize > 0 && flag_schedule_insns_after_reload
3501 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3502 #else
3503 return 0;
3504 #endif
3505 }
3506
3507 /* Run second scheduling pass after reload. */
3508 static unsigned int
3509 rest_of_handle_sched2 (void)
3510 {
3511 #ifdef INSN_SCHEDULING
3512 if (flag_selective_scheduling2
3513 && ! maybe_skip_selective_scheduling ())
3514 run_selective_scheduling ();
3515 else
3516 {
3517 /* Do control and data sched analysis again,
3518 and write some more of the results to dump file. */
3519 if (flag_sched2_use_superblocks)
3520 schedule_ebbs ();
3521 else
3522 schedule_insns ();
3523 }
3524 #endif
3525 return 0;
3526 }
3527
3528 struct rtl_opt_pass pass_sched =
3529 {
3530 {
3531 RTL_PASS,
3532 "sched1", /* name */
3533 gate_handle_sched, /* gate */
3534 rest_of_handle_sched, /* execute */
3535 NULL, /* sub */
3536 NULL, /* next */
3537 0, /* static_pass_number */
3538 TV_SCHED, /* tv_id */
3539 0, /* properties_required */
3540 0, /* properties_provided */
3541 0, /* properties_destroyed */
3542 0, /* todo_flags_start */
3543 TODO_df_finish | TODO_verify_rtl_sharing |
3544 TODO_verify_flow |
3545 TODO_ggc_collect /* todo_flags_finish */
3546 }
3547 };
3548
3549 struct rtl_opt_pass pass_sched2 =
3550 {
3551 {
3552 RTL_PASS,
3553 "sched2", /* name */
3554 gate_handle_sched2, /* gate */
3555 rest_of_handle_sched2, /* execute */
3556 NULL, /* sub */
3557 NULL, /* next */
3558 0, /* static_pass_number */
3559 TV_SCHED2, /* tv_id */
3560 0, /* properties_required */
3561 0, /* properties_provided */
3562 0, /* properties_destroyed */
3563 0, /* todo_flags_start */
3564 TODO_df_finish | TODO_verify_rtl_sharing |
3565 TODO_verify_flow |
3566 TODO_ggc_collect /* todo_flags_finish */
3567 }
3568 };