i386.c (legitimize_tls_address): Generate tls_initial_exec_64_sun only when !TARGET_X32.
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, 2011
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "diagnostic-core.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "recog.h"
63 #include "cfglayout.h"
64 #include "params.h"
65 #include "sched-int.h"
66 #include "sel-sched.h"
67 #include "target.h"
68 #include "timevar.h"
69 #include "tree-pass.h"
70 #include "dbgcnt.h"
71
72 #ifdef INSN_SCHEDULING
73
74 /* Some accessor macros for h_i_d members only used within this file. */
75 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
76 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
77
78 /* nr_inter/spec counts interblock/speculative motion for the function. */
79 static int nr_inter, nr_spec;
80
81 static int is_cfg_nonregular (void);
82
83 /* Number of regions in the procedure. */
84 int nr_regions = 0;
85
86 /* Table of region descriptions. */
87 region *rgn_table = NULL;
88
89 /* Array of lists of regions' blocks. */
90 int *rgn_bb_table = NULL;
91
92 /* Topological order of blocks in the region (if b2 is reachable from
93 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
94 always referred to by either block or b, while its topological
95 order name (in the region) is referred to by bb. */
96 int *block_to_bb = NULL;
97
98 /* The number of the region containing a block. */
99 int *containing_rgn = NULL;
100
101 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
102 Currently we can get a ebb only through splitting of currently
103 scheduling block, therefore, we don't need ebb_head array for every region,
104 hence, its sufficient to hold it for current one only. */
105 int *ebb_head = NULL;
106
107 /* The minimum probability of reaching a source block so that it will be
108 considered for speculative scheduling. */
109 static int min_spec_prob;
110
111 static void find_single_block_region (bool);
112 static void find_rgns (void);
113 static bool too_large (int, int *, int *);
114
115 /* Blocks of the current region being scheduled. */
116 int current_nr_blocks;
117 int current_blocks;
118
119 /* A speculative motion requires checking live information on the path
120 from 'source' to 'target'. The split blocks are those to be checked.
121 After a speculative motion, live information should be modified in
122 the 'update' blocks.
123
124 Lists of split and update blocks for each candidate of the current
125 target are in array bblst_table. */
126 static basic_block *bblst_table;
127 static int bblst_size, bblst_last;
128
129 /* Target info declarations.
130
131 The block currently being scheduled is referred to as the "target" block,
132 while other blocks in the region from which insns can be moved to the
133 target are called "source" blocks. The candidate structure holds info
134 about such sources: are they valid? Speculative? Etc. */
135 typedef struct
136 {
137 basic_block *first_member;
138 int nr_members;
139 }
140 bblst;
141
142 typedef struct
143 {
144 char is_valid;
145 char is_speculative;
146 int src_prob;
147 bblst split_bbs;
148 bblst update_bbs;
149 }
150 candidate;
151
152 static candidate *candidate_table;
153 #define IS_VALID(src) (candidate_table[src].is_valid)
154 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
155 #define IS_SPECULATIVE_INSN(INSN) \
156 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
157 #define SRC_PROB(src) ( candidate_table[src].src_prob )
158
159 /* The bb being currently scheduled. */
160 int target_bb;
161
162 /* List of edges. */
163 typedef struct
164 {
165 edge *first_member;
166 int nr_members;
167 }
168 edgelst;
169
170 static edge *edgelst_table;
171 static int edgelst_last;
172
173 static void extract_edgelst (sbitmap, edgelst *);
174
175 /* Target info functions. */
176 static void split_edges (int, int, edgelst *);
177 static void compute_trg_info (int);
178 void debug_candidate (int);
179 void debug_candidates (int);
180
181 /* Dominators array: dom[i] contains the sbitmap of dominators of
182 bb i in the region. */
183 static sbitmap *dom;
184
185 /* bb 0 is the only region entry. */
186 #define IS_RGN_ENTRY(bb) (!bb)
187
188 /* Is bb_src dominated by bb_trg. */
189 #define IS_DOMINATED(bb_src, bb_trg) \
190 ( TEST_BIT (dom[bb_src], bb_trg) )
191
192 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
193 the probability of bb i relative to the region entry. */
194 static int *prob;
195
196 /* Bit-set of edges, where bit i stands for edge i. */
197 typedef sbitmap edgeset;
198
199 /* Number of edges in the region. */
200 static int rgn_nr_edges;
201
202 /* Array of size rgn_nr_edges. */
203 static edge *rgn_edges;
204
205 /* Mapping from each edge in the graph to its number in the rgn. */
206 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
207 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
208
209 /* The split edges of a source bb is different for each target
210 bb. In order to compute this efficiently, the 'potential-split edges'
211 are computed for each bb prior to scheduling a region. This is actually
212 the split edges of each bb relative to the region entry.
213
214 pot_split[bb] is the set of potential split edges of bb. */
215 static edgeset *pot_split;
216
217 /* For every bb, a set of its ancestor edges. */
218 static edgeset *ancestor_edges;
219
220 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
221
222 /* Speculative scheduling functions. */
223 static int check_live_1 (int, rtx);
224 static void update_live_1 (int, rtx);
225 static int is_pfree (rtx, int, int);
226 static int find_conditional_protection (rtx, int);
227 static int is_conditionally_protected (rtx, int, int);
228 static int is_prisky (rtx, int, int);
229 static int is_exception_free (rtx, int, int);
230
231 static bool sets_likely_spilled (rtx);
232 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
233 static void add_branch_dependences (rtx, rtx);
234 static void compute_block_dependences (int);
235
236 static void schedule_region (int);
237 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
238 static void propagate_deps (int, struct deps_desc *);
239 static void free_pending_lists (void);
240
241 /* Functions for construction of the control flow graph. */
242
243 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
244
245 We decide not to build the control flow graph if there is possibly more
246 than one entry to the function, if computed branches exist, if we
247 have nonlocal gotos, or if we have an unreachable loop. */
248
249 static int
250 is_cfg_nonregular (void)
251 {
252 basic_block b;
253 rtx insn;
254
255 /* If we have a label that could be the target of a nonlocal goto, then
256 the cfg is not well structured. */
257 if (nonlocal_goto_handler_labels)
258 return 1;
259
260 /* If we have any forced labels, then the cfg is not well structured. */
261 if (forced_labels)
262 return 1;
263
264 /* If we have exception handlers, then we consider the cfg not well
265 structured. ?!? We should be able to handle this now that we
266 compute an accurate cfg for EH. */
267 if (current_function_has_exception_handlers ())
268 return 1;
269
270 /* If we have insns which refer to labels as non-jumped-to operands,
271 then we consider the cfg not well structured. */
272 FOR_EACH_BB (b)
273 FOR_BB_INSNS (b, insn)
274 {
275 rtx note, next, set, dest;
276
277 /* If this function has a computed jump, then we consider the cfg
278 not well structured. */
279 if (JUMP_P (insn) && computed_jump_p (insn))
280 return 1;
281
282 if (!INSN_P (insn))
283 continue;
284
285 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
286 if (note == NULL_RTX)
287 continue;
288
289 /* For that label not to be seen as a referred-to label, this
290 must be a single-set which is feeding a jump *only*. This
291 could be a conditional jump with the label split off for
292 machine-specific reasons or a casesi/tablejump. */
293 next = next_nonnote_insn (insn);
294 if (next == NULL_RTX
295 || !JUMP_P (next)
296 || (JUMP_LABEL (next) != XEXP (note, 0)
297 && find_reg_note (next, REG_LABEL_TARGET,
298 XEXP (note, 0)) == NULL_RTX)
299 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
300 return 1;
301
302 set = single_set (insn);
303 if (set == NULL_RTX)
304 return 1;
305
306 dest = SET_DEST (set);
307 if (!REG_P (dest) || !dead_or_set_p (next, dest))
308 return 1;
309 }
310
311 /* Unreachable loops with more than one basic block are detected
312 during the DFS traversal in find_rgns.
313
314 Unreachable loops with a single block are detected here. This
315 test is redundant with the one in find_rgns, but it's much
316 cheaper to go ahead and catch the trivial case here. */
317 FOR_EACH_BB (b)
318 {
319 if (EDGE_COUNT (b->preds) == 0
320 || (single_pred_p (b)
321 && single_pred (b) == b))
322 return 1;
323 }
324
325 /* All the tests passed. Consider the cfg well structured. */
326 return 0;
327 }
328
329 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
330
331 static void
332 extract_edgelst (sbitmap set, edgelst *el)
333 {
334 unsigned int i = 0;
335 sbitmap_iterator sbi;
336
337 /* edgelst table space is reused in each call to extract_edgelst. */
338 edgelst_last = 0;
339
340 el->first_member = &edgelst_table[edgelst_last];
341 el->nr_members = 0;
342
343 /* Iterate over each word in the bitset. */
344 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
345 {
346 edgelst_table[edgelst_last++] = rgn_edges[i];
347 el->nr_members++;
348 }
349 }
350
351 /* Functions for the construction of regions. */
352
353 /* Print the regions, for debugging purposes. Callable from debugger. */
354
355 DEBUG_FUNCTION void
356 debug_regions (void)
357 {
358 int rgn, bb;
359
360 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
361 for (rgn = 0; rgn < nr_regions; rgn++)
362 {
363 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
364 rgn_table[rgn].rgn_nr_blocks);
365 fprintf (sched_dump, ";;\tbb/block: ");
366
367 /* We don't have ebb_head initialized yet, so we can't use
368 BB_TO_BLOCK (). */
369 current_blocks = RGN_BLOCKS (rgn);
370
371 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
372 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
373
374 fprintf (sched_dump, "\n\n");
375 }
376 }
377
378 /* Print the region's basic blocks. */
379
380 DEBUG_FUNCTION void
381 debug_region (int rgn)
382 {
383 int bb;
384
385 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
386 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
387 rgn_table[rgn].rgn_nr_blocks);
388 fprintf (stderr, ";;\tbb/block: ");
389
390 /* We don't have ebb_head initialized yet, so we can't use
391 BB_TO_BLOCK (). */
392 current_blocks = RGN_BLOCKS (rgn);
393
394 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
395 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
396
397 fprintf (stderr, "\n\n");
398
399 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
400 {
401 debug_bb_n_slim (rgn_bb_table[current_blocks + bb]);
402 fprintf (stderr, "\n");
403 }
404
405 fprintf (stderr, "\n");
406
407 }
408
409 /* True when a bb with index BB_INDEX contained in region RGN. */
410 static bool
411 bb_in_region_p (int bb_index, int rgn)
412 {
413 int i;
414
415 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
416 if (rgn_bb_table[current_blocks + i] == bb_index)
417 return true;
418
419 return false;
420 }
421
422 /* Dump region RGN to file F using dot syntax. */
423 void
424 dump_region_dot (FILE *f, int rgn)
425 {
426 int i;
427
428 fprintf (f, "digraph Region_%d {\n", rgn);
429
430 /* We don't have ebb_head initialized yet, so we can't use
431 BB_TO_BLOCK (). */
432 current_blocks = RGN_BLOCKS (rgn);
433
434 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
435 {
436 edge e;
437 edge_iterator ei;
438 int src_bb_num = rgn_bb_table[current_blocks + i];
439 struct basic_block_def *bb = BASIC_BLOCK (src_bb_num);
440
441 FOR_EACH_EDGE (e, ei, bb->succs)
442 if (bb_in_region_p (e->dest->index, rgn))
443 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
444 }
445 fprintf (f, "}\n");
446 }
447
448 /* The same, but first open a file specified by FNAME. */
449 void
450 dump_region_dot_file (const char *fname, int rgn)
451 {
452 FILE *f = fopen (fname, "wt");
453 dump_region_dot (f, rgn);
454 fclose (f);
455 }
456
457 /* Build a single block region for each basic block in the function.
458 This allows for using the same code for interblock and basic block
459 scheduling. */
460
461 static void
462 find_single_block_region (bool ebbs_p)
463 {
464 basic_block bb, ebb_start;
465 int i = 0;
466
467 nr_regions = 0;
468
469 if (ebbs_p) {
470 int probability_cutoff;
471 if (profile_info && flag_branch_probabilities)
472 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
473 else
474 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
475 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
476
477 FOR_EACH_BB (ebb_start)
478 {
479 RGN_NR_BLOCKS (nr_regions) = 0;
480 RGN_BLOCKS (nr_regions) = i;
481 RGN_DONT_CALC_DEPS (nr_regions) = 0;
482 RGN_HAS_REAL_EBB (nr_regions) = 0;
483
484 for (bb = ebb_start; ; bb = bb->next_bb)
485 {
486 edge e;
487
488 rgn_bb_table[i] = bb->index;
489 RGN_NR_BLOCKS (nr_regions)++;
490 CONTAINING_RGN (bb->index) = nr_regions;
491 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
492 i++;
493
494 if (bb->next_bb == EXIT_BLOCK_PTR
495 || LABEL_P (BB_HEAD (bb->next_bb)))
496 break;
497
498 e = find_fallthru_edge (bb->succs);
499 if (! e)
500 break;
501 if (e->probability <= probability_cutoff)
502 break;
503 }
504
505 ebb_start = bb;
506 nr_regions++;
507 }
508 }
509 else
510 FOR_EACH_BB (bb)
511 {
512 rgn_bb_table[nr_regions] = bb->index;
513 RGN_NR_BLOCKS (nr_regions) = 1;
514 RGN_BLOCKS (nr_regions) = nr_regions;
515 RGN_DONT_CALC_DEPS (nr_regions) = 0;
516 RGN_HAS_REAL_EBB (nr_regions) = 0;
517
518 CONTAINING_RGN (bb->index) = nr_regions;
519 BLOCK_TO_BB (bb->index) = 0;
520 nr_regions++;
521 }
522 }
523
524 /* Estimate number of the insns in the BB. */
525 static int
526 rgn_estimate_number_of_insns (basic_block bb)
527 {
528 int count;
529
530 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
531
532 if (MAY_HAVE_DEBUG_INSNS)
533 {
534 rtx insn;
535
536 FOR_BB_INSNS (bb, insn)
537 if (DEBUG_INSN_P (insn))
538 count--;
539 }
540
541 return count;
542 }
543
544 /* Update number of blocks and the estimate for number of insns
545 in the region. Return true if the region is "too large" for interblock
546 scheduling (compile time considerations). */
547
548 static bool
549 too_large (int block, int *num_bbs, int *num_insns)
550 {
551 (*num_bbs)++;
552 (*num_insns) += (common_sched_info->estimate_number_of_insns
553 (BASIC_BLOCK (block)));
554
555 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
556 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
557 }
558
559 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
560 is still an inner loop. Put in max_hdr[blk] the header of the most inner
561 loop containing blk. */
562 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
563 { \
564 if (max_hdr[blk] == -1) \
565 max_hdr[blk] = hdr; \
566 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
567 RESET_BIT (inner, hdr); \
568 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
569 { \
570 RESET_BIT (inner,max_hdr[blk]); \
571 max_hdr[blk] = hdr; \
572 } \
573 }
574
575 /* Find regions for interblock scheduling.
576
577 A region for scheduling can be:
578
579 * A loop-free procedure, or
580
581 * A reducible inner loop, or
582
583 * A basic block not contained in any other region.
584
585 ?!? In theory we could build other regions based on extended basic
586 blocks or reverse extended basic blocks. Is it worth the trouble?
587
588 Loop blocks that form a region are put into the region's block list
589 in topological order.
590
591 This procedure stores its results into the following global (ick) variables
592
593 * rgn_nr
594 * rgn_table
595 * rgn_bb_table
596 * block_to_bb
597 * containing region
598
599 We use dominator relationships to avoid making regions out of non-reducible
600 loops.
601
602 This procedure needs to be converted to work on pred/succ lists instead
603 of edge tables. That would simplify it somewhat. */
604
605 static void
606 haifa_find_rgns (void)
607 {
608 int *max_hdr, *dfs_nr, *degree;
609 char no_loops = 1;
610 int node, child, loop_head, i, head, tail;
611 int count = 0, sp, idx = 0;
612 edge_iterator current_edge;
613 edge_iterator *stack;
614 int num_bbs, num_insns, unreachable;
615 int too_large_failure;
616 basic_block bb;
617
618 /* Note if a block is a natural loop header. */
619 sbitmap header;
620
621 /* Note if a block is a natural inner loop header. */
622 sbitmap inner;
623
624 /* Note if a block is in the block queue. */
625 sbitmap in_queue;
626
627 /* Note if a block is in the block queue. */
628 sbitmap in_stack;
629
630 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
631 and a mapping from block to its loop header (if the block is contained
632 in a loop, else -1).
633
634 Store results in HEADER, INNER, and MAX_HDR respectively, these will
635 be used as inputs to the second traversal.
636
637 STACK, SP and DFS_NR are only used during the first traversal. */
638
639 /* Allocate and initialize variables for the first traversal. */
640 max_hdr = XNEWVEC (int, last_basic_block);
641 dfs_nr = XCNEWVEC (int, last_basic_block);
642 stack = XNEWVEC (edge_iterator, n_edges);
643
644 inner = sbitmap_alloc (last_basic_block);
645 sbitmap_ones (inner);
646
647 header = sbitmap_alloc (last_basic_block);
648 sbitmap_zero (header);
649
650 in_queue = sbitmap_alloc (last_basic_block);
651 sbitmap_zero (in_queue);
652
653 in_stack = sbitmap_alloc (last_basic_block);
654 sbitmap_zero (in_stack);
655
656 for (i = 0; i < last_basic_block; i++)
657 max_hdr[i] = -1;
658
659 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
660 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
661
662 /* DFS traversal to find inner loops in the cfg. */
663
664 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
665 sp = -1;
666
667 while (1)
668 {
669 if (EDGE_PASSED (current_edge))
670 {
671 /* We have reached a leaf node or a node that was already
672 processed. Pop edges off the stack until we find
673 an edge that has not yet been processed. */
674 while (sp >= 0 && EDGE_PASSED (current_edge))
675 {
676 /* Pop entry off the stack. */
677 current_edge = stack[sp--];
678 node = ei_edge (current_edge)->src->index;
679 gcc_assert (node != ENTRY_BLOCK);
680 child = ei_edge (current_edge)->dest->index;
681 gcc_assert (child != EXIT_BLOCK);
682 RESET_BIT (in_stack, child);
683 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
684 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
685 ei_next (&current_edge);
686 }
687
688 /* See if have finished the DFS tree traversal. */
689 if (sp < 0 && EDGE_PASSED (current_edge))
690 break;
691
692 /* Nope, continue the traversal with the popped node. */
693 continue;
694 }
695
696 /* Process a node. */
697 node = ei_edge (current_edge)->src->index;
698 gcc_assert (node != ENTRY_BLOCK);
699 SET_BIT (in_stack, node);
700 dfs_nr[node] = ++count;
701
702 /* We don't traverse to the exit block. */
703 child = ei_edge (current_edge)->dest->index;
704 if (child == EXIT_BLOCK)
705 {
706 SET_EDGE_PASSED (current_edge);
707 ei_next (&current_edge);
708 continue;
709 }
710
711 /* If the successor is in the stack, then we've found a loop.
712 Mark the loop, if it is not a natural loop, then it will
713 be rejected during the second traversal. */
714 if (TEST_BIT (in_stack, child))
715 {
716 no_loops = 0;
717 SET_BIT (header, child);
718 UPDATE_LOOP_RELATIONS (node, child);
719 SET_EDGE_PASSED (current_edge);
720 ei_next (&current_edge);
721 continue;
722 }
723
724 /* If the child was already visited, then there is no need to visit
725 it again. Just update the loop relationships and restart
726 with a new edge. */
727 if (dfs_nr[child])
728 {
729 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
730 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
731 SET_EDGE_PASSED (current_edge);
732 ei_next (&current_edge);
733 continue;
734 }
735
736 /* Push an entry on the stack and continue DFS traversal. */
737 stack[++sp] = current_edge;
738 SET_EDGE_PASSED (current_edge);
739 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
740 }
741
742 /* Reset ->aux field used by EDGE_PASSED. */
743 FOR_ALL_BB (bb)
744 {
745 edge_iterator ei;
746 edge e;
747 FOR_EACH_EDGE (e, ei, bb->succs)
748 e->aux = NULL;
749 }
750
751
752 /* Another check for unreachable blocks. The earlier test in
753 is_cfg_nonregular only finds unreachable blocks that do not
754 form a loop.
755
756 The DFS traversal will mark every block that is reachable from
757 the entry node by placing a nonzero value in dfs_nr. Thus if
758 dfs_nr is zero for any block, then it must be unreachable. */
759 unreachable = 0;
760 FOR_EACH_BB (bb)
761 if (dfs_nr[bb->index] == 0)
762 {
763 unreachable = 1;
764 break;
765 }
766
767 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
768 to hold degree counts. */
769 degree = dfs_nr;
770
771 FOR_EACH_BB (bb)
772 degree[bb->index] = EDGE_COUNT (bb->preds);
773
774 /* Do not perform region scheduling if there are any unreachable
775 blocks. */
776 if (!unreachable)
777 {
778 int *queue, *degree1 = NULL;
779 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
780 there basic blocks, which are forced to be region heads.
781 This is done to try to assemble few smaller regions
782 from a too_large region. */
783 sbitmap extended_rgn_header = NULL;
784 bool extend_regions_p;
785
786 if (no_loops)
787 SET_BIT (header, 0);
788
789 /* Second traversal:find reducible inner loops and topologically sort
790 block of each region. */
791
792 queue = XNEWVEC (int, n_basic_blocks);
793
794 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
795 if (extend_regions_p)
796 {
797 degree1 = XNEWVEC (int, last_basic_block);
798 extended_rgn_header = sbitmap_alloc (last_basic_block);
799 sbitmap_zero (extended_rgn_header);
800 }
801
802 /* Find blocks which are inner loop headers. We still have non-reducible
803 loops to consider at this point. */
804 FOR_EACH_BB (bb)
805 {
806 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
807 {
808 edge e;
809 edge_iterator ei;
810 basic_block jbb;
811
812 /* Now check that the loop is reducible. We do this separate
813 from finding inner loops so that we do not find a reducible
814 loop which contains an inner non-reducible loop.
815
816 A simple way to find reducible/natural loops is to verify
817 that each block in the loop is dominated by the loop
818 header.
819
820 If there exists a block that is not dominated by the loop
821 header, then the block is reachable from outside the loop
822 and thus the loop is not a natural loop. */
823 FOR_EACH_BB (jbb)
824 {
825 /* First identify blocks in the loop, except for the loop
826 entry block. */
827 if (bb->index == max_hdr[jbb->index] && bb != jbb)
828 {
829 /* Now verify that the block is dominated by the loop
830 header. */
831 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
832 break;
833 }
834 }
835
836 /* If we exited the loop early, then I is the header of
837 a non-reducible loop and we should quit processing it
838 now. */
839 if (jbb != EXIT_BLOCK_PTR)
840 continue;
841
842 /* I is a header of an inner loop, or block 0 in a subroutine
843 with no loops at all. */
844 head = tail = -1;
845 too_large_failure = 0;
846 loop_head = max_hdr[bb->index];
847
848 if (extend_regions_p)
849 /* We save degree in case when we meet a too_large region
850 and cancel it. We need a correct degree later when
851 calling extend_rgns. */
852 memcpy (degree1, degree, last_basic_block * sizeof (int));
853
854 /* Decrease degree of all I's successors for topological
855 ordering. */
856 FOR_EACH_EDGE (e, ei, bb->succs)
857 if (e->dest != EXIT_BLOCK_PTR)
858 --degree[e->dest->index];
859
860 /* Estimate # insns, and count # blocks in the region. */
861 num_bbs = 1;
862 num_insns = common_sched_info->estimate_number_of_insns (bb);
863
864 /* Find all loop latches (blocks with back edges to the loop
865 header) or all the leaf blocks in the cfg has no loops.
866
867 Place those blocks into the queue. */
868 if (no_loops)
869 {
870 FOR_EACH_BB (jbb)
871 /* Leaf nodes have only a single successor which must
872 be EXIT_BLOCK. */
873 if (single_succ_p (jbb)
874 && single_succ (jbb) == EXIT_BLOCK_PTR)
875 {
876 queue[++tail] = jbb->index;
877 SET_BIT (in_queue, jbb->index);
878
879 if (too_large (jbb->index, &num_bbs, &num_insns))
880 {
881 too_large_failure = 1;
882 break;
883 }
884 }
885 }
886 else
887 {
888 edge e;
889
890 FOR_EACH_EDGE (e, ei, bb->preds)
891 {
892 if (e->src == ENTRY_BLOCK_PTR)
893 continue;
894
895 node = e->src->index;
896
897 if (max_hdr[node] == loop_head && node != bb->index)
898 {
899 /* This is a loop latch. */
900 queue[++tail] = node;
901 SET_BIT (in_queue, node);
902
903 if (too_large (node, &num_bbs, &num_insns))
904 {
905 too_large_failure = 1;
906 break;
907 }
908 }
909 }
910 }
911
912 /* Now add all the blocks in the loop to the queue.
913
914 We know the loop is a natural loop; however the algorithm
915 above will not always mark certain blocks as being in the
916 loop. Consider:
917 node children
918 a b,c
919 b c
920 c a,d
921 d b
922
923 The algorithm in the DFS traversal may not mark B & D as part
924 of the loop (i.e. they will not have max_hdr set to A).
925
926 We know they can not be loop latches (else they would have
927 had max_hdr set since they'd have a backedge to a dominator
928 block). So we don't need them on the initial queue.
929
930 We know they are part of the loop because they are dominated
931 by the loop header and can be reached by a backwards walk of
932 the edges starting with nodes on the initial queue.
933
934 It is safe and desirable to include those nodes in the
935 loop/scheduling region. To do so we would need to decrease
936 the degree of a node if it is the target of a backedge
937 within the loop itself as the node is placed in the queue.
938
939 We do not do this because I'm not sure that the actual
940 scheduling code will properly handle this case. ?!? */
941
942 while (head < tail && !too_large_failure)
943 {
944 edge e;
945 child = queue[++head];
946
947 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
948 {
949 node = e->src->index;
950
951 /* See discussion above about nodes not marked as in
952 this loop during the initial DFS traversal. */
953 if (e->src == ENTRY_BLOCK_PTR
954 || max_hdr[node] != loop_head)
955 {
956 tail = -1;
957 break;
958 }
959 else if (!TEST_BIT (in_queue, node) && node != bb->index)
960 {
961 queue[++tail] = node;
962 SET_BIT (in_queue, node);
963
964 if (too_large (node, &num_bbs, &num_insns))
965 {
966 too_large_failure = 1;
967 break;
968 }
969 }
970 }
971 }
972
973 if (tail >= 0 && !too_large_failure)
974 {
975 /* Place the loop header into list of region blocks. */
976 degree[bb->index] = -1;
977 rgn_bb_table[idx] = bb->index;
978 RGN_NR_BLOCKS (nr_regions) = num_bbs;
979 RGN_BLOCKS (nr_regions) = idx++;
980 RGN_DONT_CALC_DEPS (nr_regions) = 0;
981 RGN_HAS_REAL_EBB (nr_regions) = 0;
982 CONTAINING_RGN (bb->index) = nr_regions;
983 BLOCK_TO_BB (bb->index) = count = 0;
984
985 /* Remove blocks from queue[] when their in degree
986 becomes zero. Repeat until no blocks are left on the
987 list. This produces a topological list of blocks in
988 the region. */
989 while (tail >= 0)
990 {
991 if (head < 0)
992 head = tail;
993 child = queue[head];
994 if (degree[child] == 0)
995 {
996 edge e;
997
998 degree[child] = -1;
999 rgn_bb_table[idx++] = child;
1000 BLOCK_TO_BB (child) = ++count;
1001 CONTAINING_RGN (child) = nr_regions;
1002 queue[head] = queue[tail--];
1003
1004 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1005 if (e->dest != EXIT_BLOCK_PTR)
1006 --degree[e->dest->index];
1007 }
1008 else
1009 --head;
1010 }
1011 ++nr_regions;
1012 }
1013 else if (extend_regions_p)
1014 {
1015 /* Restore DEGREE. */
1016 int *t = degree;
1017
1018 degree = degree1;
1019 degree1 = t;
1020
1021 /* And force successors of BB to be region heads.
1022 This may provide several smaller regions instead
1023 of one too_large region. */
1024 FOR_EACH_EDGE (e, ei, bb->succs)
1025 if (e->dest != EXIT_BLOCK_PTR)
1026 SET_BIT (extended_rgn_header, e->dest->index);
1027 }
1028 }
1029 }
1030 free (queue);
1031
1032 if (extend_regions_p)
1033 {
1034 free (degree1);
1035
1036 sbitmap_a_or_b (header, header, extended_rgn_header);
1037 sbitmap_free (extended_rgn_header);
1038
1039 extend_rgns (degree, &idx, header, max_hdr);
1040 }
1041 }
1042
1043 /* Any block that did not end up in a region is placed into a region
1044 by itself. */
1045 FOR_EACH_BB (bb)
1046 if (degree[bb->index] >= 0)
1047 {
1048 rgn_bb_table[idx] = bb->index;
1049 RGN_NR_BLOCKS (nr_regions) = 1;
1050 RGN_BLOCKS (nr_regions) = idx++;
1051 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1052 RGN_HAS_REAL_EBB (nr_regions) = 0;
1053 CONTAINING_RGN (bb->index) = nr_regions++;
1054 BLOCK_TO_BB (bb->index) = 0;
1055 }
1056
1057 free (max_hdr);
1058 free (degree);
1059 free (stack);
1060 sbitmap_free (header);
1061 sbitmap_free (inner);
1062 sbitmap_free (in_queue);
1063 sbitmap_free (in_stack);
1064 }
1065
1066
1067 /* Wrapper function.
1068 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1069 regions. Otherwise just call find_rgns_haifa. */
1070 static void
1071 find_rgns (void)
1072 {
1073 if (sel_sched_p () && flag_sel_sched_pipelining)
1074 sel_find_rgns ();
1075 else
1076 haifa_find_rgns ();
1077 }
1078
1079 static int gather_region_statistics (int **);
1080 static void print_region_statistics (int *, int, int *, int);
1081
1082 /* Calculate the histogram that shows the number of regions having the
1083 given number of basic blocks, and store it in the RSP array. Return
1084 the size of this array. */
1085 static int
1086 gather_region_statistics (int **rsp)
1087 {
1088 int i, *a = 0, a_sz = 0;
1089
1090 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1091 for (i = 0; i < nr_regions; i++)
1092 {
1093 int nr_blocks = RGN_NR_BLOCKS (i);
1094
1095 gcc_assert (nr_blocks >= 1);
1096
1097 if (nr_blocks > a_sz)
1098 {
1099 a = XRESIZEVEC (int, a, nr_blocks);
1100 do
1101 a[a_sz++] = 0;
1102 while (a_sz != nr_blocks);
1103 }
1104
1105 a[nr_blocks - 1]++;
1106 }
1107
1108 *rsp = a;
1109 return a_sz;
1110 }
1111
1112 /* Print regions statistics. S1 and S2 denote the data before and after
1113 calling extend_rgns, respectively. */
1114 static void
1115 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1116 {
1117 int i;
1118
1119 /* We iterate until s2_sz because extend_rgns does not decrease
1120 the maximal region size. */
1121 for (i = 1; i < s2_sz; i++)
1122 {
1123 int n1, n2;
1124
1125 n2 = s2[i];
1126
1127 if (n2 == 0)
1128 continue;
1129
1130 if (i >= s1_sz)
1131 n1 = 0;
1132 else
1133 n1 = s1[i];
1134
1135 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1136 "was %d + %d more\n", i + 1, n1, n2 - n1);
1137 }
1138 }
1139
1140 /* Extend regions.
1141 DEGREE - Array of incoming edge count, considering only
1142 the edges, that don't have their sources in formed regions yet.
1143 IDXP - pointer to the next available index in rgn_bb_table.
1144 HEADER - set of all region heads.
1145 LOOP_HDR - mapping from block to the containing loop
1146 (two blocks can reside within one region if they have
1147 the same loop header). */
1148 void
1149 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1150 {
1151 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1152 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1153
1154 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1155
1156 max_hdr = XNEWVEC (int, last_basic_block);
1157
1158 order = XNEWVEC (int, last_basic_block);
1159 post_order_compute (order, false, false);
1160
1161 for (i = nblocks - 1; i >= 0; i--)
1162 {
1163 int bbn = order[i];
1164 if (degree[bbn] >= 0)
1165 {
1166 max_hdr[bbn] = bbn;
1167 rescan = 1;
1168 }
1169 else
1170 /* This block already was processed in find_rgns. */
1171 max_hdr[bbn] = -1;
1172 }
1173
1174 /* The idea is to topologically walk through CFG in top-down order.
1175 During the traversal, if all the predecessors of a node are
1176 marked to be in the same region (they all have the same max_hdr),
1177 then current node is also marked to be a part of that region.
1178 Otherwise the node starts its own region.
1179 CFG should be traversed until no further changes are made. On each
1180 iteration the set of the region heads is extended (the set of those
1181 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1182 set of all basic blocks, thus the algorithm is guaranteed to
1183 terminate. */
1184
1185 while (rescan && iter < max_iter)
1186 {
1187 rescan = 0;
1188
1189 for (i = nblocks - 1; i >= 0; i--)
1190 {
1191 edge e;
1192 edge_iterator ei;
1193 int bbn = order[i];
1194
1195 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1196 {
1197 int hdr = -1;
1198
1199 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1200 {
1201 int predn = e->src->index;
1202
1203 if (predn != ENTRY_BLOCK
1204 /* If pred wasn't processed in find_rgns. */
1205 && max_hdr[predn] != -1
1206 /* And pred and bb reside in the same loop.
1207 (Or out of any loop). */
1208 && loop_hdr[bbn] == loop_hdr[predn])
1209 {
1210 if (hdr == -1)
1211 /* Then bb extends the containing region of pred. */
1212 hdr = max_hdr[predn];
1213 else if (hdr != max_hdr[predn])
1214 /* Too bad, there are at least two predecessors
1215 that reside in different regions. Thus, BB should
1216 begin its own region. */
1217 {
1218 hdr = bbn;
1219 break;
1220 }
1221 }
1222 else
1223 /* BB starts its own region. */
1224 {
1225 hdr = bbn;
1226 break;
1227 }
1228 }
1229
1230 if (hdr == bbn)
1231 {
1232 /* If BB start its own region,
1233 update set of headers with BB. */
1234 SET_BIT (header, bbn);
1235 rescan = 1;
1236 }
1237 else
1238 gcc_assert (hdr != -1);
1239
1240 max_hdr[bbn] = hdr;
1241 }
1242 }
1243
1244 iter++;
1245 }
1246
1247 /* Statistics were gathered on the SPEC2000 package of tests with
1248 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1249
1250 Statistics for SPECint:
1251 1 iteration : 1751 cases (38.7%)
1252 2 iterations: 2770 cases (61.3%)
1253 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1254 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1255 (We don't count single block regions here).
1256
1257 Statistics for SPECfp:
1258 1 iteration : 621 cases (35.9%)
1259 2 iterations: 1110 cases (64.1%)
1260 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1261 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1262 (We don't count single block regions here).
1263
1264 By default we do at most 2 iterations.
1265 This can be overridden with max-sched-extend-regions-iters parameter:
1266 0 - disable region extension,
1267 N > 0 - do at most N iterations. */
1268
1269 if (sched_verbose && iter != 0)
1270 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1271 rescan ? "... failed" : "");
1272
1273 if (!rescan && iter != 0)
1274 {
1275 int *s1 = NULL, s1_sz = 0;
1276
1277 /* Save the old statistics for later printout. */
1278 if (sched_verbose >= 6)
1279 s1_sz = gather_region_statistics (&s1);
1280
1281 /* We have succeeded. Now assemble the regions. */
1282 for (i = nblocks - 1; i >= 0; i--)
1283 {
1284 int bbn = order[i];
1285
1286 if (max_hdr[bbn] == bbn)
1287 /* BBN is a region head. */
1288 {
1289 edge e;
1290 edge_iterator ei;
1291 int num_bbs = 0, j, num_insns = 0, large;
1292
1293 large = too_large (bbn, &num_bbs, &num_insns);
1294
1295 degree[bbn] = -1;
1296 rgn_bb_table[idx] = bbn;
1297 RGN_BLOCKS (nr_regions) = idx++;
1298 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1299 RGN_HAS_REAL_EBB (nr_regions) = 0;
1300 CONTAINING_RGN (bbn) = nr_regions;
1301 BLOCK_TO_BB (bbn) = 0;
1302
1303 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1304 if (e->dest != EXIT_BLOCK_PTR)
1305 degree[e->dest->index]--;
1306
1307 if (!large)
1308 /* Here we check whether the region is too_large. */
1309 for (j = i - 1; j >= 0; j--)
1310 {
1311 int succn = order[j];
1312 if (max_hdr[succn] == bbn)
1313 {
1314 if ((large = too_large (succn, &num_bbs, &num_insns)))
1315 break;
1316 }
1317 }
1318
1319 if (large)
1320 /* If the region is too_large, then wrap every block of
1321 the region into single block region.
1322 Here we wrap region head only. Other blocks are
1323 processed in the below cycle. */
1324 {
1325 RGN_NR_BLOCKS (nr_regions) = 1;
1326 nr_regions++;
1327 }
1328
1329 num_bbs = 1;
1330
1331 for (j = i - 1; j >= 0; j--)
1332 {
1333 int succn = order[j];
1334
1335 if (max_hdr[succn] == bbn)
1336 /* This cycle iterates over all basic blocks, that
1337 are supposed to be in the region with head BBN,
1338 and wraps them into that region (or in single
1339 block region). */
1340 {
1341 gcc_assert (degree[succn] == 0);
1342
1343 degree[succn] = -1;
1344 rgn_bb_table[idx] = succn;
1345 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1346 CONTAINING_RGN (succn) = nr_regions;
1347
1348 if (large)
1349 /* Wrap SUCCN into single block region. */
1350 {
1351 RGN_BLOCKS (nr_regions) = idx;
1352 RGN_NR_BLOCKS (nr_regions) = 1;
1353 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1354 RGN_HAS_REAL_EBB (nr_regions) = 0;
1355 nr_regions++;
1356 }
1357
1358 idx++;
1359
1360 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1361 if (e->dest != EXIT_BLOCK_PTR)
1362 degree[e->dest->index]--;
1363 }
1364 }
1365
1366 if (!large)
1367 {
1368 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1369 nr_regions++;
1370 }
1371 }
1372 }
1373
1374 if (sched_verbose >= 6)
1375 {
1376 int *s2, s2_sz;
1377
1378 /* Get the new statistics and print the comparison with the
1379 one before calling this function. */
1380 s2_sz = gather_region_statistics (&s2);
1381 print_region_statistics (s1, s1_sz, s2, s2_sz);
1382 free (s1);
1383 free (s2);
1384 }
1385 }
1386
1387 free (order);
1388 free (max_hdr);
1389
1390 *idxp = idx;
1391 }
1392
1393 /* Functions for regions scheduling information. */
1394
1395 /* Compute dominators, probability, and potential-split-edges of bb.
1396 Assume that these values were already computed for bb's predecessors. */
1397
1398 static void
1399 compute_dom_prob_ps (int bb)
1400 {
1401 edge_iterator in_ei;
1402 edge in_edge;
1403
1404 /* We shouldn't have any real ebbs yet. */
1405 gcc_assert (ebb_head [bb] == bb + current_blocks);
1406
1407 if (IS_RGN_ENTRY (bb))
1408 {
1409 SET_BIT (dom[bb], 0);
1410 prob[bb] = REG_BR_PROB_BASE;
1411 return;
1412 }
1413
1414 prob[bb] = 0;
1415
1416 /* Initialize dom[bb] to '111..1'. */
1417 sbitmap_ones (dom[bb]);
1418
1419 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1420 {
1421 int pred_bb;
1422 edge out_edge;
1423 edge_iterator out_ei;
1424
1425 if (in_edge->src == ENTRY_BLOCK_PTR)
1426 continue;
1427
1428 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1429 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1430 sbitmap_a_or_b (ancestor_edges[bb],
1431 ancestor_edges[bb], ancestor_edges[pred_bb]);
1432
1433 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1434
1435 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1436
1437 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1438 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
1439
1440 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1441 }
1442
1443 SET_BIT (dom[bb], bb);
1444 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1445
1446 if (sched_verbose >= 2)
1447 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1448 (100 * prob[bb]) / REG_BR_PROB_BASE);
1449 }
1450
1451 /* Functions for target info. */
1452
1453 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1454 Note that bb_trg dominates bb_src. */
1455
1456 static void
1457 split_edges (int bb_src, int bb_trg, edgelst *bl)
1458 {
1459 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1460 sbitmap_copy (src, pot_split[bb_src]);
1461
1462 sbitmap_difference (src, src, pot_split[bb_trg]);
1463 extract_edgelst (src, bl);
1464 sbitmap_free (src);
1465 }
1466
1467 /* Find the valid candidate-source-blocks for the target block TRG, compute
1468 their probability, and check if they are speculative or not.
1469 For speculative sources, compute their update-blocks and split-blocks. */
1470
1471 static void
1472 compute_trg_info (int trg)
1473 {
1474 candidate *sp;
1475 edgelst el = { NULL, 0 };
1476 int i, j, k, update_idx;
1477 basic_block block;
1478 sbitmap visited;
1479 edge_iterator ei;
1480 edge e;
1481
1482 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1483
1484 bblst_last = 0;
1485 /* bblst_table holds split blocks and update blocks for each block after
1486 the current one in the region. split blocks and update blocks are
1487 the TO blocks of region edges, so there can be at most rgn_nr_edges
1488 of them. */
1489 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1490 bblst_table = XNEWVEC (basic_block, bblst_size);
1491
1492 edgelst_last = 0;
1493 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1494
1495 /* Define some of the fields for the target bb as well. */
1496 sp = candidate_table + trg;
1497 sp->is_valid = 1;
1498 sp->is_speculative = 0;
1499 sp->src_prob = REG_BR_PROB_BASE;
1500
1501 visited = sbitmap_alloc (last_basic_block);
1502
1503 for (i = trg + 1; i < current_nr_blocks; i++)
1504 {
1505 sp = candidate_table + i;
1506
1507 sp->is_valid = IS_DOMINATED (i, trg);
1508 if (sp->is_valid)
1509 {
1510 int tf = prob[trg], cf = prob[i];
1511
1512 /* In CFGs with low probability edges TF can possibly be zero. */
1513 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1514 sp->is_valid = (sp->src_prob >= min_spec_prob);
1515 }
1516
1517 if (sp->is_valid)
1518 {
1519 split_edges (i, trg, &el);
1520 sp->is_speculative = (el.nr_members) ? 1 : 0;
1521 if (sp->is_speculative && !flag_schedule_speculative)
1522 sp->is_valid = 0;
1523 }
1524
1525 if (sp->is_valid)
1526 {
1527 /* Compute split blocks and store them in bblst_table.
1528 The TO block of every split edge is a split block. */
1529 sp->split_bbs.first_member = &bblst_table[bblst_last];
1530 sp->split_bbs.nr_members = el.nr_members;
1531 for (j = 0; j < el.nr_members; bblst_last++, j++)
1532 bblst_table[bblst_last] = el.first_member[j]->dest;
1533 sp->update_bbs.first_member = &bblst_table[bblst_last];
1534
1535 /* Compute update blocks and store them in bblst_table.
1536 For every split edge, look at the FROM block, and check
1537 all out edges. For each out edge that is not a split edge,
1538 add the TO block to the update block list. This list can end
1539 up with a lot of duplicates. We need to weed them out to avoid
1540 overrunning the end of the bblst_table. */
1541
1542 update_idx = 0;
1543 sbitmap_zero (visited);
1544 for (j = 0; j < el.nr_members; j++)
1545 {
1546 block = el.first_member[j]->src;
1547 FOR_EACH_EDGE (e, ei, block->succs)
1548 {
1549 if (!TEST_BIT (visited, e->dest->index))
1550 {
1551 for (k = 0; k < el.nr_members; k++)
1552 if (e == el.first_member[k])
1553 break;
1554
1555 if (k >= el.nr_members)
1556 {
1557 bblst_table[bblst_last++] = e->dest;
1558 SET_BIT (visited, e->dest->index);
1559 update_idx++;
1560 }
1561 }
1562 }
1563 }
1564 sp->update_bbs.nr_members = update_idx;
1565
1566 /* Make sure we didn't overrun the end of bblst_table. */
1567 gcc_assert (bblst_last <= bblst_size);
1568 }
1569 else
1570 {
1571 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1572
1573 sp->is_speculative = 0;
1574 sp->src_prob = 0;
1575 }
1576 }
1577
1578 sbitmap_free (visited);
1579 }
1580
1581 /* Free the computed target info. */
1582 static void
1583 free_trg_info (void)
1584 {
1585 free (candidate_table);
1586 free (bblst_table);
1587 free (edgelst_table);
1588 }
1589
1590 /* Print candidates info, for debugging purposes. Callable from debugger. */
1591
1592 DEBUG_FUNCTION void
1593 debug_candidate (int i)
1594 {
1595 if (!candidate_table[i].is_valid)
1596 return;
1597
1598 if (candidate_table[i].is_speculative)
1599 {
1600 int j;
1601 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1602
1603 fprintf (sched_dump, "split path: ");
1604 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1605 {
1606 int b = candidate_table[i].split_bbs.first_member[j]->index;
1607
1608 fprintf (sched_dump, " %d ", b);
1609 }
1610 fprintf (sched_dump, "\n");
1611
1612 fprintf (sched_dump, "update path: ");
1613 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1614 {
1615 int b = candidate_table[i].update_bbs.first_member[j]->index;
1616
1617 fprintf (sched_dump, " %d ", b);
1618 }
1619 fprintf (sched_dump, "\n");
1620 }
1621 else
1622 {
1623 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1624 }
1625 }
1626
1627 /* Print candidates info, for debugging purposes. Callable from debugger. */
1628
1629 DEBUG_FUNCTION void
1630 debug_candidates (int trg)
1631 {
1632 int i;
1633
1634 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1635 BB_TO_BLOCK (trg), trg);
1636 for (i = trg + 1; i < current_nr_blocks; i++)
1637 debug_candidate (i);
1638 }
1639
1640 /* Functions for speculative scheduling. */
1641
1642 static bitmap_head not_in_df;
1643
1644 /* Return 0 if x is a set of a register alive in the beginning of one
1645 of the split-blocks of src, otherwise return 1. */
1646
1647 static int
1648 check_live_1 (int src, rtx x)
1649 {
1650 int i;
1651 int regno;
1652 rtx reg = SET_DEST (x);
1653
1654 if (reg == 0)
1655 return 1;
1656
1657 while (GET_CODE (reg) == SUBREG
1658 || GET_CODE (reg) == ZERO_EXTRACT
1659 || GET_CODE (reg) == STRICT_LOW_PART)
1660 reg = XEXP (reg, 0);
1661
1662 if (GET_CODE (reg) == PARALLEL)
1663 {
1664 int i;
1665
1666 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1667 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1668 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1669 return 1;
1670
1671 return 0;
1672 }
1673
1674 if (!REG_P (reg))
1675 return 1;
1676
1677 regno = REGNO (reg);
1678
1679 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1680 {
1681 /* Global registers are assumed live. */
1682 return 0;
1683 }
1684 else
1685 {
1686 if (regno < FIRST_PSEUDO_REGISTER)
1687 {
1688 /* Check for hard registers. */
1689 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1690 while (--j >= 0)
1691 {
1692 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1693 {
1694 basic_block b = candidate_table[src].split_bbs.first_member[i];
1695 int t = bitmap_bit_p (&not_in_df, b->index);
1696
1697 /* We can have split blocks, that were recently generated.
1698 Such blocks are always outside current region. */
1699 gcc_assert (!t || (CONTAINING_RGN (b->index)
1700 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1701
1702 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1703 return 0;
1704 }
1705 }
1706 }
1707 else
1708 {
1709 /* Check for pseudo registers. */
1710 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1711 {
1712 basic_block b = candidate_table[src].split_bbs.first_member[i];
1713 int t = bitmap_bit_p (&not_in_df, b->index);
1714
1715 gcc_assert (!t || (CONTAINING_RGN (b->index)
1716 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1717
1718 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1719 return 0;
1720 }
1721 }
1722 }
1723
1724 return 1;
1725 }
1726
1727 /* If x is a set of a register R, mark that R is alive in the beginning
1728 of every update-block of src. */
1729
1730 static void
1731 update_live_1 (int src, rtx x)
1732 {
1733 int i;
1734 int regno;
1735 rtx reg = SET_DEST (x);
1736
1737 if (reg == 0)
1738 return;
1739
1740 while (GET_CODE (reg) == SUBREG
1741 || GET_CODE (reg) == ZERO_EXTRACT
1742 || GET_CODE (reg) == STRICT_LOW_PART)
1743 reg = XEXP (reg, 0);
1744
1745 if (GET_CODE (reg) == PARALLEL)
1746 {
1747 int i;
1748
1749 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1750 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1751 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1752
1753 return;
1754 }
1755
1756 if (!REG_P (reg))
1757 return;
1758
1759 /* Global registers are always live, so the code below does not apply
1760 to them. */
1761
1762 regno = REGNO (reg);
1763
1764 if (! HARD_REGISTER_NUM_P (regno)
1765 || !global_regs[regno])
1766 {
1767 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1768 {
1769 basic_block b = candidate_table[src].update_bbs.first_member[i];
1770
1771 if (HARD_REGISTER_NUM_P (regno))
1772 bitmap_set_range (df_get_live_in (b), regno,
1773 hard_regno_nregs[regno][GET_MODE (reg)]);
1774 else
1775 bitmap_set_bit (df_get_live_in (b), regno);
1776 }
1777 }
1778 }
1779
1780 /* Return 1 if insn can be speculatively moved from block src to trg,
1781 otherwise return 0. Called before first insertion of insn to
1782 ready-list or before the scheduling. */
1783
1784 static int
1785 check_live (rtx insn, int src)
1786 {
1787 /* Find the registers set by instruction. */
1788 if (GET_CODE (PATTERN (insn)) == SET
1789 || GET_CODE (PATTERN (insn)) == CLOBBER)
1790 return check_live_1 (src, PATTERN (insn));
1791 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1792 {
1793 int j;
1794 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1795 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1796 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1797 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1798 return 0;
1799
1800 return 1;
1801 }
1802
1803 return 1;
1804 }
1805
1806 /* Update the live registers info after insn was moved speculatively from
1807 block src to trg. */
1808
1809 static void
1810 update_live (rtx insn, int src)
1811 {
1812 /* Find the registers set by instruction. */
1813 if (GET_CODE (PATTERN (insn)) == SET
1814 || GET_CODE (PATTERN (insn)) == CLOBBER)
1815 update_live_1 (src, PATTERN (insn));
1816 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1817 {
1818 int j;
1819 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1820 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1821 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1822 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1823 }
1824 }
1825
1826 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1827 #define IS_REACHABLE(bb_from, bb_to) \
1828 (bb_from == bb_to \
1829 || IS_RGN_ENTRY (bb_from) \
1830 || (TEST_BIT (ancestor_edges[bb_to], \
1831 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1832
1833 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1834
1835 static void
1836 set_spec_fed (rtx load_insn)
1837 {
1838 sd_iterator_def sd_it;
1839 dep_t dep;
1840
1841 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1842 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1843 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1844 }
1845
1846 /* On the path from the insn to load_insn_bb, find a conditional
1847 branch depending on insn, that guards the speculative load. */
1848
1849 static int
1850 find_conditional_protection (rtx insn, int load_insn_bb)
1851 {
1852 sd_iterator_def sd_it;
1853 dep_t dep;
1854
1855 /* Iterate through DEF-USE forward dependences. */
1856 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1857 {
1858 rtx next = DEP_CON (dep);
1859
1860 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1861 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1862 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1863 && load_insn_bb != INSN_BB (next)
1864 && DEP_TYPE (dep) == REG_DEP_TRUE
1865 && (JUMP_P (next)
1866 || find_conditional_protection (next, load_insn_bb)))
1867 return 1;
1868 }
1869 return 0;
1870 } /* find_conditional_protection */
1871
1872 /* Returns 1 if the same insn1 that participates in the computation
1873 of load_insn's address is feeding a conditional branch that is
1874 guarding on load_insn. This is true if we find two DEF-USE
1875 chains:
1876 insn1 -> ... -> conditional-branch
1877 insn1 -> ... -> load_insn,
1878 and if a flow path exists:
1879 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1880 and if insn1 is on the path
1881 region-entry -> ... -> bb_trg -> ... load_insn.
1882
1883 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1884 Locate the branch by following INSN_FORW_DEPS from insn1. */
1885
1886 static int
1887 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1888 {
1889 sd_iterator_def sd_it;
1890 dep_t dep;
1891
1892 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1893 {
1894 rtx insn1 = DEP_PRO (dep);
1895
1896 /* Must be a DEF-USE dependence upon non-branch. */
1897 if (DEP_TYPE (dep) != REG_DEP_TRUE
1898 || JUMP_P (insn1))
1899 continue;
1900
1901 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1902 if (INSN_BB (insn1) == bb_src
1903 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1904 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1905 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1906 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1907 continue;
1908
1909 /* Now search for the conditional-branch. */
1910 if (find_conditional_protection (insn1, bb_src))
1911 return 1;
1912
1913 /* Recursive step: search another insn1, "above" current insn1. */
1914 return is_conditionally_protected (insn1, bb_src, bb_trg);
1915 }
1916
1917 /* The chain does not exist. */
1918 return 0;
1919 } /* is_conditionally_protected */
1920
1921 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1922 load_insn can move speculatively from bb_src to bb_trg. All the
1923 following must hold:
1924
1925 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1926 (2) load_insn and load1 have a def-use dependence upon
1927 the same insn 'insn1'.
1928 (3) either load2 is in bb_trg, or:
1929 - there's only one split-block, and
1930 - load1 is on the escape path, and
1931
1932 From all these we can conclude that the two loads access memory
1933 addresses that differ at most by a constant, and hence if moving
1934 load_insn would cause an exception, it would have been caused by
1935 load2 anyhow. */
1936
1937 static int
1938 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1939 {
1940 sd_iterator_def back_sd_it;
1941 dep_t back_dep;
1942 candidate *candp = candidate_table + bb_src;
1943
1944 if (candp->split_bbs.nr_members != 1)
1945 /* Must have exactly one escape block. */
1946 return 0;
1947
1948 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1949 {
1950 rtx insn1 = DEP_PRO (back_dep);
1951
1952 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1953 /* Found a DEF-USE dependence (insn1, load_insn). */
1954 {
1955 sd_iterator_def fore_sd_it;
1956 dep_t fore_dep;
1957
1958 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1959 {
1960 rtx insn2 = DEP_CON (fore_dep);
1961
1962 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1963 {
1964 /* Found a DEF-USE dependence (insn1, insn2). */
1965 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1966 /* insn2 not guaranteed to be a 1 base reg load. */
1967 continue;
1968
1969 if (INSN_BB (insn2) == bb_trg)
1970 /* insn2 is the similar load, in the target block. */
1971 return 1;
1972
1973 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1974 /* insn2 is a similar load, in a split-block. */
1975 return 1;
1976 }
1977 }
1978 }
1979 }
1980
1981 /* Couldn't find a similar load. */
1982 return 0;
1983 } /* is_pfree */
1984
1985 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1986 a load moved speculatively, or if load_insn is protected by
1987 a compare on load_insn's address). */
1988
1989 static int
1990 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1991 {
1992 if (FED_BY_SPEC_LOAD (load_insn))
1993 return 1;
1994
1995 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
1996 /* Dependence may 'hide' out of the region. */
1997 return 1;
1998
1999 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2000 return 1;
2001
2002 return 0;
2003 }
2004
2005 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2006 Return 1 if insn is exception-free (and the motion is valid)
2007 and 0 otherwise. */
2008
2009 static int
2010 is_exception_free (rtx insn, int bb_src, int bb_trg)
2011 {
2012 int insn_class = haifa_classify_insn (insn);
2013
2014 /* Handle non-load insns. */
2015 switch (insn_class)
2016 {
2017 case TRAP_FREE:
2018 return 1;
2019 case TRAP_RISKY:
2020 return 0;
2021 default:;
2022 }
2023
2024 /* Handle loads. */
2025 if (!flag_schedule_speculative_load)
2026 return 0;
2027 IS_LOAD_INSN (insn) = 1;
2028 switch (insn_class)
2029 {
2030 case IFREE:
2031 return (1);
2032 case IRISKY:
2033 return 0;
2034 case PFREE_CANDIDATE:
2035 if (is_pfree (insn, bb_src, bb_trg))
2036 return 1;
2037 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2038 case PRISKY_CANDIDATE:
2039 if (!flag_schedule_speculative_load_dangerous
2040 || is_prisky (insn, bb_src, bb_trg))
2041 return 0;
2042 break;
2043 default:;
2044 }
2045
2046 return flag_schedule_speculative_load_dangerous;
2047 }
2048 \f
2049 /* The number of insns from the current block scheduled so far. */
2050 static int sched_target_n_insns;
2051 /* The number of insns from the current block to be scheduled in total. */
2052 static int target_n_insns;
2053 /* The number of insns from the entire region scheduled so far. */
2054 static int sched_n_insns;
2055
2056 /* Implementations of the sched_info functions for region scheduling. */
2057 static void init_ready_list (void);
2058 static int can_schedule_ready_p (rtx);
2059 static void begin_schedule_ready (rtx);
2060 static ds_t new_ready (rtx, ds_t);
2061 static int schedule_more_p (void);
2062 static const char *rgn_print_insn (const_rtx, int);
2063 static int rgn_rank (rtx, rtx);
2064 static void compute_jump_reg_dependencies (rtx, regset);
2065
2066 /* Functions for speculative scheduling. */
2067 static void rgn_add_remove_insn (rtx, int);
2068 static void rgn_add_block (basic_block, basic_block);
2069 static void rgn_fix_recovery_cfg (int, int, int);
2070 static basic_block advance_target_bb (basic_block, rtx);
2071
2072 /* Return nonzero if there are more insns that should be scheduled. */
2073
2074 static int
2075 schedule_more_p (void)
2076 {
2077 return sched_target_n_insns < target_n_insns;
2078 }
2079
2080 /* Add all insns that are initially ready to the ready list READY. Called
2081 once before scheduling a set of insns. */
2082
2083 static void
2084 init_ready_list (void)
2085 {
2086 rtx prev_head = current_sched_info->prev_head;
2087 rtx next_tail = current_sched_info->next_tail;
2088 int bb_src;
2089 rtx insn;
2090
2091 target_n_insns = 0;
2092 sched_target_n_insns = 0;
2093 sched_n_insns = 0;
2094
2095 /* Print debugging information. */
2096 if (sched_verbose >= 5)
2097 debug_rgn_dependencies (target_bb);
2098
2099 /* Prepare current target block info. */
2100 if (current_nr_blocks > 1)
2101 compute_trg_info (target_bb);
2102
2103 /* Initialize ready list with all 'ready' insns in target block.
2104 Count number of insns in the target block being scheduled. */
2105 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2106 {
2107 try_ready (insn);
2108 target_n_insns++;
2109
2110 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2111 }
2112
2113 /* Add to ready list all 'ready' insns in valid source blocks.
2114 For speculative insns, check-live, exception-free, and
2115 issue-delay. */
2116 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2117 if (IS_VALID (bb_src))
2118 {
2119 rtx src_head;
2120 rtx src_next_tail;
2121 rtx tail, head;
2122
2123 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2124 &head, &tail);
2125 src_next_tail = NEXT_INSN (tail);
2126 src_head = head;
2127
2128 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2129 if (INSN_P (insn))
2130 try_ready (insn);
2131 }
2132 }
2133
2134 /* Called after taking INSN from the ready list. Returns nonzero if this
2135 insn can be scheduled, nonzero if we should silently discard it. */
2136
2137 static int
2138 can_schedule_ready_p (rtx insn)
2139 {
2140 /* An interblock motion? */
2141 if (INSN_BB (insn) != target_bb
2142 && IS_SPECULATIVE_INSN (insn)
2143 && !check_live (insn, INSN_BB (insn)))
2144 return 0;
2145 else
2146 return 1;
2147 }
2148
2149 /* Updates counter and other information. Split from can_schedule_ready_p ()
2150 because when we schedule insn speculatively then insn passed to
2151 can_schedule_ready_p () differs from the one passed to
2152 begin_schedule_ready (). */
2153 static void
2154 begin_schedule_ready (rtx insn)
2155 {
2156 /* An interblock motion? */
2157 if (INSN_BB (insn) != target_bb)
2158 {
2159 if (IS_SPECULATIVE_INSN (insn))
2160 {
2161 gcc_assert (check_live (insn, INSN_BB (insn)));
2162
2163 update_live (insn, INSN_BB (insn));
2164
2165 /* For speculative load, mark insns fed by it. */
2166 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2167 set_spec_fed (insn);
2168
2169 nr_spec++;
2170 }
2171 nr_inter++;
2172 }
2173 else
2174 {
2175 /* In block motion. */
2176 sched_target_n_insns++;
2177 }
2178 sched_n_insns++;
2179 }
2180
2181 /* Called after INSN has all its hard dependencies resolved and the speculation
2182 of type TS is enough to overcome them all.
2183 Return nonzero if it should be moved to the ready list or the queue, or zero
2184 if we should silently discard it. */
2185 static ds_t
2186 new_ready (rtx next, ds_t ts)
2187 {
2188 if (INSN_BB (next) != target_bb)
2189 {
2190 int not_ex_free = 0;
2191
2192 /* For speculative insns, before inserting to ready/queue,
2193 check live, exception-free, and issue-delay. */
2194 if (!IS_VALID (INSN_BB (next))
2195 || CANT_MOVE (next)
2196 || (IS_SPECULATIVE_INSN (next)
2197 && ((recog_memoized (next) >= 0
2198 && min_insn_conflict_delay (curr_state, next, next)
2199 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2200 || IS_SPECULATION_CHECK_P (next)
2201 || !check_live (next, INSN_BB (next))
2202 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2203 target_bb)))))
2204 {
2205 if (not_ex_free
2206 /* We are here because is_exception_free () == false.
2207 But we possibly can handle that with control speculation. */
2208 && sched_deps_info->generate_spec_deps
2209 && spec_info->mask & BEGIN_CONTROL)
2210 {
2211 ds_t new_ds;
2212
2213 /* Add control speculation to NEXT's dependency type. */
2214 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2215
2216 /* Check if NEXT can be speculated with new dependency type. */
2217 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2218 /* Here we got new control-speculative instruction. */
2219 ts = new_ds;
2220 else
2221 /* NEXT isn't ready yet. */
2222 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2223 }
2224 else
2225 /* NEXT isn't ready yet. */
2226 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2227 }
2228 }
2229
2230 return ts;
2231 }
2232
2233 /* Return a string that contains the insn uid and optionally anything else
2234 necessary to identify this insn in an output. It's valid to use a
2235 static buffer for this. The ALIGNED parameter should cause the string
2236 to be formatted so that multiple output lines will line up nicely. */
2237
2238 static const char *
2239 rgn_print_insn (const_rtx insn, int aligned)
2240 {
2241 static char tmp[80];
2242
2243 if (aligned)
2244 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2245 else
2246 {
2247 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2248 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2249 else
2250 sprintf (tmp, "%d", INSN_UID (insn));
2251 }
2252 return tmp;
2253 }
2254
2255 /* Compare priority of two insns. Return a positive number if the second
2256 insn is to be preferred for scheduling, and a negative one if the first
2257 is to be preferred. Zero if they are equally good. */
2258
2259 static int
2260 rgn_rank (rtx insn1, rtx insn2)
2261 {
2262 /* Some comparison make sense in interblock scheduling only. */
2263 if (INSN_BB (insn1) != INSN_BB (insn2))
2264 {
2265 int spec_val, prob_val;
2266
2267 /* Prefer an inblock motion on an interblock motion. */
2268 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2269 return 1;
2270 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2271 return -1;
2272
2273 /* Prefer a useful motion on a speculative one. */
2274 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2275 if (spec_val)
2276 return spec_val;
2277
2278 /* Prefer a more probable (speculative) insn. */
2279 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2280 if (prob_val)
2281 return prob_val;
2282 }
2283 return 0;
2284 }
2285
2286 /* NEXT is an instruction that depends on INSN (a backward dependence);
2287 return nonzero if we should include this dependence in priority
2288 calculations. */
2289
2290 int
2291 contributes_to_priority (rtx next, rtx insn)
2292 {
2293 /* NEXT and INSN reside in one ebb. */
2294 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2295 }
2296
2297 /* INSN is a JUMP_INSN. Store the set of registers that must be
2298 considered as used by this jump in USED. */
2299
2300 static void
2301 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2302 regset used ATTRIBUTE_UNUSED)
2303 {
2304 /* Nothing to do here, since we postprocess jumps in
2305 add_branch_dependences. */
2306 }
2307
2308 /* This variable holds common_sched_info hooks and data relevant to
2309 the interblock scheduler. */
2310 static struct common_sched_info_def rgn_common_sched_info;
2311
2312
2313 /* This holds data for the dependence analysis relevant to
2314 the interblock scheduler. */
2315 static struct sched_deps_info_def rgn_sched_deps_info;
2316
2317 /* This holds constant data used for initializing the above structure
2318 for the Haifa scheduler. */
2319 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2320 {
2321 compute_jump_reg_dependencies,
2322 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2323 0, 0, 0
2324 };
2325
2326 /* Same as above, but for the selective scheduler. */
2327 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2328 {
2329 compute_jump_reg_dependencies,
2330 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2331 0, 0, 0
2332 };
2333
2334 /* Return true if scheduling INSN will trigger finish of scheduling
2335 current block. */
2336 static bool
2337 rgn_insn_finishes_block_p (rtx insn)
2338 {
2339 if (INSN_BB (insn) == target_bb
2340 && sched_target_n_insns + 1 == target_n_insns)
2341 /* INSN is the last not-scheduled instruction in the current block. */
2342 return true;
2343
2344 return false;
2345 }
2346
2347 /* Used in schedule_insns to initialize current_sched_info for scheduling
2348 regions (or single basic blocks). */
2349
2350 static const struct haifa_sched_info rgn_const_sched_info =
2351 {
2352 init_ready_list,
2353 can_schedule_ready_p,
2354 schedule_more_p,
2355 new_ready,
2356 rgn_rank,
2357 rgn_print_insn,
2358 contributes_to_priority,
2359 rgn_insn_finishes_block_p,
2360
2361 NULL, NULL,
2362 NULL, NULL,
2363 0, 0,
2364
2365 rgn_add_remove_insn,
2366 begin_schedule_ready,
2367 NULL,
2368 advance_target_bb,
2369 NULL, NULL,
2370 SCHED_RGN
2371 };
2372
2373 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2374 for the interblock scheduler frontend. */
2375 static struct haifa_sched_info rgn_sched_info;
2376
2377 /* Returns maximum priority that an insn was assigned to. */
2378
2379 int
2380 get_rgn_sched_max_insns_priority (void)
2381 {
2382 return rgn_sched_info.sched_max_insns_priority;
2383 }
2384
2385 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2386
2387 static bool
2388 sets_likely_spilled (rtx pat)
2389 {
2390 bool ret = false;
2391 note_stores (pat, sets_likely_spilled_1, &ret);
2392 return ret;
2393 }
2394
2395 static void
2396 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2397 {
2398 bool *ret = (bool *) data;
2399
2400 if (GET_CODE (pat) == SET
2401 && REG_P (x)
2402 && HARD_REGISTER_P (x)
2403 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2404 *ret = true;
2405 }
2406
2407 /* A bitmap to note insns that participate in any dependency. Used in
2408 add_branch_dependences. */
2409 static sbitmap insn_referenced;
2410
2411 /* Add dependences so that branches are scheduled to run last in their
2412 block. */
2413 static void
2414 add_branch_dependences (rtx head, rtx tail)
2415 {
2416 rtx insn, last;
2417
2418 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2419 that can throw exceptions, force them to remain in order at the end of
2420 the block by adding dependencies and giving the last a high priority.
2421 There may be notes present, and prev_head may also be a note.
2422
2423 Branches must obviously remain at the end. Calls should remain at the
2424 end since moving them results in worse register allocation. Uses remain
2425 at the end to ensure proper register allocation.
2426
2427 cc0 setters remain at the end because they can't be moved away from
2428 their cc0 user.
2429
2430 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2431
2432 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2433 values) are not moved before reload because we can wind up with register
2434 allocation failures. */
2435
2436 while (tail != head && DEBUG_INSN_P (tail))
2437 tail = PREV_INSN (tail);
2438
2439 insn = tail;
2440 last = 0;
2441 while (CALL_P (insn)
2442 || JUMP_P (insn)
2443 || (NONJUMP_INSN_P (insn)
2444 && (GET_CODE (PATTERN (insn)) == USE
2445 || GET_CODE (PATTERN (insn)) == CLOBBER
2446 || can_throw_internal (insn)
2447 #ifdef HAVE_cc0
2448 || sets_cc0_p (PATTERN (insn))
2449 #endif
2450 || (!reload_completed
2451 && sets_likely_spilled (PATTERN (insn)))))
2452 || NOTE_P (insn))
2453 {
2454 if (!NOTE_P (insn))
2455 {
2456 if (last != 0
2457 && sd_find_dep_between (insn, last, false) == NULL)
2458 {
2459 if (! sched_insns_conditions_mutex_p (last, insn))
2460 add_dependence (last, insn, REG_DEP_ANTI);
2461 SET_BIT (insn_referenced, INSN_LUID (insn));
2462 }
2463
2464 CANT_MOVE (insn) = 1;
2465
2466 last = insn;
2467 }
2468
2469 /* Don't overrun the bounds of the basic block. */
2470 if (insn == head)
2471 break;
2472
2473 do
2474 insn = PREV_INSN (insn);
2475 while (insn != head && DEBUG_INSN_P (insn));
2476 }
2477
2478 /* Make sure these insns are scheduled last in their block. */
2479 insn = last;
2480 if (insn != 0)
2481 while (insn != head)
2482 {
2483 insn = prev_nonnote_insn (insn);
2484
2485 if (TEST_BIT (insn_referenced, INSN_LUID (insn))
2486 || DEBUG_INSN_P (insn))
2487 continue;
2488
2489 if (! sched_insns_conditions_mutex_p (last, insn))
2490 add_dependence (last, insn, REG_DEP_ANTI);
2491 }
2492
2493 if (!targetm.have_conditional_execution ())
2494 return;
2495
2496 /* Finally, if the block ends in a jump, and we are doing intra-block
2497 scheduling, make sure that the branch depends on any COND_EXEC insns
2498 inside the block to avoid moving the COND_EXECs past the branch insn.
2499
2500 We only have to do this after reload, because (1) before reload there
2501 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2502 scheduler after reload.
2503
2504 FIXME: We could in some cases move COND_EXEC insns past the branch if
2505 this scheduler would be a little smarter. Consider this code:
2506
2507 T = [addr]
2508 C ? addr += 4
2509 !C ? X += 12
2510 C ? T += 1
2511 C ? jump foo
2512
2513 On a target with a one cycle stall on a memory access the optimal
2514 sequence would be:
2515
2516 T = [addr]
2517 C ? addr += 4
2518 C ? T += 1
2519 C ? jump foo
2520 !C ? X += 12
2521
2522 We don't want to put the 'X += 12' before the branch because it just
2523 wastes a cycle of execution time when the branch is taken.
2524
2525 Note that in the example "!C" will always be true. That is another
2526 possible improvement for handling COND_EXECs in this scheduler: it
2527 could remove always-true predicates. */
2528
2529 if (!reload_completed || ! JUMP_P (tail))
2530 return;
2531
2532 insn = tail;
2533 while (insn != head)
2534 {
2535 insn = PREV_INSN (insn);
2536
2537 /* Note that we want to add this dependency even when
2538 sched_insns_conditions_mutex_p returns true. The whole point
2539 is that we _want_ this dependency, even if these insns really
2540 are independent. */
2541 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2542 add_dependence (tail, insn, REG_DEP_ANTI);
2543 }
2544 }
2545
2546 /* Data structures for the computation of data dependences in a regions. We
2547 keep one `deps' structure for every basic block. Before analyzing the
2548 data dependences for a bb, its variables are initialized as a function of
2549 the variables of its predecessors. When the analysis for a bb completes,
2550 we save the contents to the corresponding bb_deps[bb] variable. */
2551
2552 static struct deps_desc *bb_deps;
2553
2554 static void
2555 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2556 rtx *old_mems_p)
2557 {
2558 rtx new_insns = *old_insns_p;
2559 rtx new_mems = *old_mems_p;
2560
2561 while (copy_insns)
2562 {
2563 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2564 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2565 copy_insns = XEXP (copy_insns, 1);
2566 copy_mems = XEXP (copy_mems, 1);
2567 }
2568
2569 *old_insns_p = new_insns;
2570 *old_mems_p = new_mems;
2571 }
2572
2573 /* Join PRED_DEPS to the SUCC_DEPS. */
2574 void
2575 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2576 {
2577 unsigned reg;
2578 reg_set_iterator rsi;
2579
2580 /* The reg_last lists are inherited by successor. */
2581 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2582 {
2583 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2584 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2585
2586 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2587 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2588 succ_rl->implicit_sets
2589 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2590 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2591 succ_rl->clobbers);
2592 succ_rl->uses_length += pred_rl->uses_length;
2593 succ_rl->clobbers_length += pred_rl->clobbers_length;
2594 }
2595 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2596
2597 /* Mem read/write lists are inherited by successor. */
2598 concat_insn_mem_list (pred_deps->pending_read_insns,
2599 pred_deps->pending_read_mems,
2600 &succ_deps->pending_read_insns,
2601 &succ_deps->pending_read_mems);
2602 concat_insn_mem_list (pred_deps->pending_write_insns,
2603 pred_deps->pending_write_mems,
2604 &succ_deps->pending_write_insns,
2605 &succ_deps->pending_write_mems);
2606
2607 succ_deps->pending_jump_insns
2608 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2609 succ_deps->pending_jump_insns);
2610 succ_deps->last_pending_memory_flush
2611 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2612 succ_deps->last_pending_memory_flush);
2613
2614 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2615 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2616 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2617
2618 /* last_function_call is inherited by successor. */
2619 succ_deps->last_function_call
2620 = concat_INSN_LIST (pred_deps->last_function_call,
2621 succ_deps->last_function_call);
2622
2623 /* last_function_call_may_noreturn is inherited by successor. */
2624 succ_deps->last_function_call_may_noreturn
2625 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2626 succ_deps->last_function_call_may_noreturn);
2627
2628 /* sched_before_next_call is inherited by successor. */
2629 succ_deps->sched_before_next_call
2630 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2631 succ_deps->sched_before_next_call);
2632 }
2633
2634 /* After computing the dependencies for block BB, propagate the dependencies
2635 found in TMP_DEPS to the successors of the block. */
2636 static void
2637 propagate_deps (int bb, struct deps_desc *pred_deps)
2638 {
2639 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2640 edge_iterator ei;
2641 edge e;
2642
2643 /* bb's structures are inherited by its successors. */
2644 FOR_EACH_EDGE (e, ei, block->succs)
2645 {
2646 /* Only bbs "below" bb, in the same region, are interesting. */
2647 if (e->dest == EXIT_BLOCK_PTR
2648 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2649 || BLOCK_TO_BB (e->dest->index) <= bb)
2650 continue;
2651
2652 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2653 }
2654
2655 /* These lists should point to the right place, for correct
2656 freeing later. */
2657 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2658 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2659 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2660 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2661 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2662
2663 /* Can't allow these to be freed twice. */
2664 pred_deps->pending_read_insns = 0;
2665 pred_deps->pending_read_mems = 0;
2666 pred_deps->pending_write_insns = 0;
2667 pred_deps->pending_write_mems = 0;
2668 pred_deps->pending_jump_insns = 0;
2669 }
2670
2671 /* Compute dependences inside bb. In a multiple blocks region:
2672 (1) a bb is analyzed after its predecessors, and (2) the lists in
2673 effect at the end of bb (after analyzing for bb) are inherited by
2674 bb's successors.
2675
2676 Specifically for reg-reg data dependences, the block insns are
2677 scanned by sched_analyze () top-to-bottom. Three lists are
2678 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2679 reg_last[].implicit_sets for implicit hard register DEFs, and
2680 reg_last[].uses for register USEs.
2681
2682 When analysis is completed for bb, we update for its successors:
2683 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2684 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2685 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2686
2687 The mechanism for computing mem-mem data dependence is very
2688 similar, and the result is interblock dependences in the region. */
2689
2690 static void
2691 compute_block_dependences (int bb)
2692 {
2693 rtx head, tail;
2694 struct deps_desc tmp_deps;
2695
2696 tmp_deps = bb_deps[bb];
2697
2698 /* Do the analysis for this block. */
2699 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2700 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2701
2702 sched_analyze (&tmp_deps, head, tail);
2703
2704 /* Selective scheduling handles control dependencies by itself. */
2705 if (!sel_sched_p ())
2706 add_branch_dependences (head, tail);
2707
2708 if (current_nr_blocks > 1)
2709 propagate_deps (bb, &tmp_deps);
2710
2711 /* Free up the INSN_LISTs. */
2712 free_deps (&tmp_deps);
2713
2714 if (targetm.sched.dependencies_evaluation_hook)
2715 targetm.sched.dependencies_evaluation_hook (head, tail);
2716 }
2717
2718 /* Free dependencies of instructions inside BB. */
2719 static void
2720 free_block_dependencies (int bb)
2721 {
2722 rtx head;
2723 rtx tail;
2724
2725 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2726
2727 if (no_real_insns_p (head, tail))
2728 return;
2729
2730 sched_free_deps (head, tail, true);
2731 }
2732
2733 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2734 them to the unused_*_list variables, so that they can be reused. */
2735
2736 static void
2737 free_pending_lists (void)
2738 {
2739 int bb;
2740
2741 for (bb = 0; bb < current_nr_blocks; bb++)
2742 {
2743 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2744 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2745 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2746 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2747 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2748 }
2749 }
2750 \f
2751 /* Print dependences for debugging starting from FROM_BB.
2752 Callable from debugger. */
2753 /* Print dependences for debugging starting from FROM_BB.
2754 Callable from debugger. */
2755 DEBUG_FUNCTION void
2756 debug_rgn_dependencies (int from_bb)
2757 {
2758 int bb;
2759
2760 fprintf (sched_dump,
2761 ";; --------------- forward dependences: ------------ \n");
2762
2763 for (bb = from_bb; bb < current_nr_blocks; bb++)
2764 {
2765 rtx head, tail;
2766
2767 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2768 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2769 BB_TO_BLOCK (bb), bb);
2770
2771 debug_dependencies (head, tail);
2772 }
2773 }
2774
2775 /* Print dependencies information for instructions between HEAD and TAIL.
2776 ??? This function would probably fit best in haifa-sched.c. */
2777 void debug_dependencies (rtx head, rtx tail)
2778 {
2779 rtx insn;
2780 rtx next_tail = NEXT_INSN (tail);
2781
2782 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2783 "insn", "code", "bb", "dep", "prio", "cost",
2784 "reservation");
2785 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2786 "----", "----", "--", "---", "----", "----",
2787 "-----------");
2788
2789 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2790 {
2791 if (! INSN_P (insn))
2792 {
2793 int n;
2794 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2795 if (NOTE_P (insn))
2796 {
2797 n = NOTE_KIND (insn);
2798 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2799 }
2800 else
2801 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2802 continue;
2803 }
2804
2805 fprintf (sched_dump,
2806 ";; %s%5d%6d%6d%6d%6d%6d ",
2807 (SCHED_GROUP_P (insn) ? "+" : " "),
2808 INSN_UID (insn),
2809 INSN_CODE (insn),
2810 BLOCK_NUM (insn),
2811 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2812 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2813 : INSN_PRIORITY (insn))
2814 : INSN_PRIORITY (insn)),
2815 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2816 : insn_cost (insn))
2817 : insn_cost (insn)));
2818
2819 if (recog_memoized (insn) < 0)
2820 fprintf (sched_dump, "nothing");
2821 else
2822 print_reservation (sched_dump, insn);
2823
2824 fprintf (sched_dump, "\t: ");
2825 {
2826 sd_iterator_def sd_it;
2827 dep_t dep;
2828
2829 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2830 fprintf (sched_dump, "%d ", INSN_UID (DEP_CON (dep)));
2831 }
2832 fprintf (sched_dump, "\n");
2833 }
2834
2835 fprintf (sched_dump, "\n");
2836 }
2837 \f
2838 /* Returns true if all the basic blocks of the current region have
2839 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2840 bool
2841 sched_is_disabled_for_current_region_p (void)
2842 {
2843 int bb;
2844
2845 for (bb = 0; bb < current_nr_blocks; bb++)
2846 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2847 return false;
2848
2849 return true;
2850 }
2851
2852 /* Free all region dependencies saved in INSN_BACK_DEPS and
2853 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2854 when scheduling, so this function is supposed to be called from
2855 the selective scheduling only. */
2856 void
2857 free_rgn_deps (void)
2858 {
2859 int bb;
2860
2861 for (bb = 0; bb < current_nr_blocks; bb++)
2862 {
2863 rtx head, tail;
2864
2865 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2866 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2867
2868 sched_free_deps (head, tail, false);
2869 }
2870 }
2871
2872 static int rgn_n_insns;
2873
2874 /* Compute insn priority for a current region. */
2875 void
2876 compute_priorities (void)
2877 {
2878 int bb;
2879
2880 current_sched_info->sched_max_insns_priority = 0;
2881 for (bb = 0; bb < current_nr_blocks; bb++)
2882 {
2883 rtx head, tail;
2884
2885 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2886 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2887
2888 if (no_real_insns_p (head, tail))
2889 continue;
2890
2891 rgn_n_insns += set_priorities (head, tail);
2892 }
2893 current_sched_info->sched_max_insns_priority++;
2894 }
2895
2896 /* Schedule a region. A region is either an inner loop, a loop-free
2897 subroutine, or a single basic block. Each bb in the region is
2898 scheduled after its flow predecessors. */
2899
2900 static void
2901 schedule_region (int rgn)
2902 {
2903 int bb;
2904 int sched_rgn_n_insns = 0;
2905
2906 rgn_n_insns = 0;
2907
2908 rgn_setup_region (rgn);
2909
2910 /* Don't schedule region that is marked by
2911 NOTE_DISABLE_SCHED_OF_BLOCK. */
2912 if (sched_is_disabled_for_current_region_p ())
2913 return;
2914
2915 sched_rgn_compute_dependencies (rgn);
2916
2917 sched_rgn_local_init (rgn);
2918
2919 /* Set priorities. */
2920 compute_priorities ();
2921
2922 sched_extend_ready_list (rgn_n_insns);
2923
2924 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
2925 {
2926 sched_init_region_reg_pressure_info ();
2927 for (bb = 0; bb < current_nr_blocks; bb++)
2928 {
2929 basic_block first_bb, last_bb;
2930 rtx head, tail;
2931
2932 first_bb = EBB_FIRST_BB (bb);
2933 last_bb = EBB_LAST_BB (bb);
2934
2935 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2936
2937 if (no_real_insns_p (head, tail))
2938 {
2939 gcc_assert (first_bb == last_bb);
2940 continue;
2941 }
2942 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
2943 }
2944 }
2945
2946 /* Now we can schedule all blocks. */
2947 for (bb = 0; bb < current_nr_blocks; bb++)
2948 {
2949 basic_block first_bb, last_bb, curr_bb;
2950 rtx head, tail;
2951
2952 first_bb = EBB_FIRST_BB (bb);
2953 last_bb = EBB_LAST_BB (bb);
2954
2955 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2956
2957 if (no_real_insns_p (head, tail))
2958 {
2959 gcc_assert (first_bb == last_bb);
2960 continue;
2961 }
2962
2963 current_sched_info->prev_head = PREV_INSN (head);
2964 current_sched_info->next_tail = NEXT_INSN (tail);
2965
2966 remove_notes (head, tail);
2967
2968 unlink_bb_notes (first_bb, last_bb);
2969
2970 target_bb = bb;
2971
2972 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2973 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
2974
2975 curr_bb = first_bb;
2976 if (dbg_cnt (sched_block))
2977 {
2978 schedule_block (&curr_bb);
2979 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
2980 sched_rgn_n_insns += sched_n_insns;
2981 }
2982 else
2983 {
2984 sched_rgn_n_insns += rgn_n_insns;
2985 }
2986
2987 /* Clean up. */
2988 if (current_nr_blocks > 1)
2989 free_trg_info ();
2990 }
2991
2992 /* Sanity check: verify that all region insns were scheduled. */
2993 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
2994
2995 sched_finish_ready_list ();
2996
2997 /* Done with this region. */
2998 sched_rgn_local_finish ();
2999
3000 /* Free dependencies. */
3001 for (bb = 0; bb < current_nr_blocks; ++bb)
3002 free_block_dependencies (bb);
3003
3004 gcc_assert (haifa_recovery_bb_ever_added_p
3005 || deps_pools_are_empty_p ());
3006 }
3007
3008 /* Initialize data structures for region scheduling. */
3009
3010 void
3011 sched_rgn_init (bool single_blocks_p)
3012 {
3013 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3014 / 100);
3015
3016 nr_inter = 0;
3017 nr_spec = 0;
3018
3019 extend_regions ();
3020
3021 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3022 CONTAINING_RGN (EXIT_BLOCK) = -1;
3023
3024 /* Compute regions for scheduling. */
3025 if (single_blocks_p
3026 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3027 || !flag_schedule_interblock
3028 || is_cfg_nonregular ())
3029 {
3030 find_single_block_region (sel_sched_p ());
3031 }
3032 else
3033 {
3034 /* Compute the dominators and post dominators. */
3035 if (!sel_sched_p ())
3036 calculate_dominance_info (CDI_DOMINATORS);
3037
3038 /* Find regions. */
3039 find_rgns ();
3040
3041 if (sched_verbose >= 3)
3042 debug_regions ();
3043
3044 /* For now. This will move as more and more of haifa is converted
3045 to using the cfg code. */
3046 if (!sel_sched_p ())
3047 free_dominance_info (CDI_DOMINATORS);
3048 }
3049
3050 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3051
3052 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3053 RGN_NR_BLOCKS (nr_regions - 1));
3054 }
3055
3056 /* Free data structures for region scheduling. */
3057 void
3058 sched_rgn_finish (void)
3059 {
3060 /* Reposition the prologue and epilogue notes in case we moved the
3061 prologue/epilogue insns. */
3062 if (reload_completed)
3063 reposition_prologue_and_epilogue_notes ();
3064
3065 if (sched_verbose)
3066 {
3067 if (reload_completed == 0
3068 && flag_schedule_interblock)
3069 {
3070 fprintf (sched_dump,
3071 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3072 nr_inter, nr_spec);
3073 }
3074 else
3075 gcc_assert (nr_inter <= 0);
3076 fprintf (sched_dump, "\n\n");
3077 }
3078
3079 nr_regions = 0;
3080
3081 free (rgn_table);
3082 rgn_table = NULL;
3083
3084 free (rgn_bb_table);
3085 rgn_bb_table = NULL;
3086
3087 free (block_to_bb);
3088 block_to_bb = NULL;
3089
3090 free (containing_rgn);
3091 containing_rgn = NULL;
3092
3093 free (ebb_head);
3094 ebb_head = NULL;
3095 }
3096
3097 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3098 point to the region RGN. */
3099 void
3100 rgn_setup_region (int rgn)
3101 {
3102 int bb;
3103
3104 /* Set variables for the current region. */
3105 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3106 current_blocks = RGN_BLOCKS (rgn);
3107
3108 /* EBB_HEAD is a region-scope structure. But we realloc it for
3109 each region to save time/memory/something else.
3110 See comments in add_block1, for what reasons we allocate +1 element. */
3111 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3112 for (bb = 0; bb <= current_nr_blocks; bb++)
3113 ebb_head[bb] = current_blocks + bb;
3114 }
3115
3116 /* Compute instruction dependencies in region RGN. */
3117 void
3118 sched_rgn_compute_dependencies (int rgn)
3119 {
3120 if (!RGN_DONT_CALC_DEPS (rgn))
3121 {
3122 int bb;
3123
3124 if (sel_sched_p ())
3125 sched_emulate_haifa_p = 1;
3126
3127 init_deps_global ();
3128
3129 /* Initializations for region data dependence analysis. */
3130 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3131 for (bb = 0; bb < current_nr_blocks; bb++)
3132 init_deps (bb_deps + bb, false);
3133
3134 /* Initialize bitmap used in add_branch_dependences. */
3135 insn_referenced = sbitmap_alloc (sched_max_luid);
3136 sbitmap_zero (insn_referenced);
3137
3138 /* Compute backward dependencies. */
3139 for (bb = 0; bb < current_nr_blocks; bb++)
3140 compute_block_dependences (bb);
3141
3142 sbitmap_free (insn_referenced);
3143 free_pending_lists ();
3144 finish_deps_global ();
3145 free (bb_deps);
3146
3147 /* We don't want to recalculate this twice. */
3148 RGN_DONT_CALC_DEPS (rgn) = 1;
3149
3150 if (sel_sched_p ())
3151 sched_emulate_haifa_p = 0;
3152 }
3153 else
3154 /* (This is a recovery block. It is always a single block region.)
3155 OR (We use selective scheduling.) */
3156 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3157 }
3158
3159 /* Init region data structures. Returns true if this region should
3160 not be scheduled. */
3161 void
3162 sched_rgn_local_init (int rgn)
3163 {
3164 int bb;
3165
3166 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3167 if (current_nr_blocks > 1)
3168 {
3169 basic_block block;
3170 edge e;
3171 edge_iterator ei;
3172
3173 prob = XNEWVEC (int, current_nr_blocks);
3174
3175 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3176 sbitmap_vector_zero (dom, current_nr_blocks);
3177
3178 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3179 rgn_nr_edges = 0;
3180 FOR_EACH_BB (block)
3181 {
3182 if (CONTAINING_RGN (block->index) != rgn)
3183 continue;
3184 FOR_EACH_EDGE (e, ei, block->succs)
3185 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3186 }
3187
3188 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3189 rgn_nr_edges = 0;
3190 FOR_EACH_BB (block)
3191 {
3192 if (CONTAINING_RGN (block->index) != rgn)
3193 continue;
3194 FOR_EACH_EDGE (e, ei, block->succs)
3195 rgn_edges[rgn_nr_edges++] = e;
3196 }
3197
3198 /* Split edges. */
3199 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3200 sbitmap_vector_zero (pot_split, current_nr_blocks);
3201 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3202 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
3203
3204 /* Compute probabilities, dominators, split_edges. */
3205 for (bb = 0; bb < current_nr_blocks; bb++)
3206 compute_dom_prob_ps (bb);
3207
3208 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3209 /* We don't need them anymore. But we want to avoid duplication of
3210 aux fields in the newly created edges. */
3211 FOR_EACH_BB (block)
3212 {
3213 if (CONTAINING_RGN (block->index) != rgn)
3214 continue;
3215 FOR_EACH_EDGE (e, ei, block->succs)
3216 e->aux = NULL;
3217 }
3218 }
3219 }
3220
3221 /* Free data computed for the finished region. */
3222 void
3223 sched_rgn_local_free (void)
3224 {
3225 free (prob);
3226 sbitmap_vector_free (dom);
3227 sbitmap_vector_free (pot_split);
3228 sbitmap_vector_free (ancestor_edges);
3229 free (rgn_edges);
3230 }
3231
3232 /* Free data computed for the finished region. */
3233 void
3234 sched_rgn_local_finish (void)
3235 {
3236 if (current_nr_blocks > 1 && !sel_sched_p ())
3237 {
3238 sched_rgn_local_free ();
3239 }
3240 }
3241
3242 /* Setup scheduler infos. */
3243 void
3244 rgn_setup_common_sched_info (void)
3245 {
3246 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3247 sizeof (rgn_common_sched_info));
3248
3249 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3250 rgn_common_sched_info.add_block = rgn_add_block;
3251 rgn_common_sched_info.estimate_number_of_insns
3252 = rgn_estimate_number_of_insns;
3253 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3254
3255 common_sched_info = &rgn_common_sched_info;
3256 }
3257
3258 /* Setup all *_sched_info structures (for the Haifa frontend
3259 and for the dependence analysis) in the interblock scheduler. */
3260 void
3261 rgn_setup_sched_infos (void)
3262 {
3263 if (!sel_sched_p ())
3264 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3265 sizeof (rgn_sched_deps_info));
3266 else
3267 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3268 sizeof (rgn_sched_deps_info));
3269
3270 sched_deps_info = &rgn_sched_deps_info;
3271
3272 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3273 current_sched_info = &rgn_sched_info;
3274 }
3275
3276 /* The one entry point in this file. */
3277 void
3278 schedule_insns (void)
3279 {
3280 int rgn;
3281
3282 /* Taking care of this degenerate case makes the rest of
3283 this code simpler. */
3284 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3285 return;
3286
3287 rgn_setup_common_sched_info ();
3288 rgn_setup_sched_infos ();
3289
3290 haifa_sched_init ();
3291 sched_rgn_init (reload_completed);
3292
3293 bitmap_initialize (&not_in_df, 0);
3294 bitmap_clear (&not_in_df);
3295
3296 /* Schedule every region in the subroutine. */
3297 for (rgn = 0; rgn < nr_regions; rgn++)
3298 if (dbg_cnt (sched_region))
3299 schedule_region (rgn);
3300
3301 /* Clean up. */
3302 sched_rgn_finish ();
3303 bitmap_clear (&not_in_df);
3304
3305 haifa_sched_finish ();
3306 }
3307
3308 /* INSN has been added to/removed from current region. */
3309 static void
3310 rgn_add_remove_insn (rtx insn, int remove_p)
3311 {
3312 if (!remove_p)
3313 rgn_n_insns++;
3314 else
3315 rgn_n_insns--;
3316
3317 if (INSN_BB (insn) == target_bb)
3318 {
3319 if (!remove_p)
3320 target_n_insns++;
3321 else
3322 target_n_insns--;
3323 }
3324 }
3325
3326 /* Extend internal data structures. */
3327 void
3328 extend_regions (void)
3329 {
3330 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3331 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3332 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3333 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3334 }
3335
3336 void
3337 rgn_make_new_region_out_of_new_block (basic_block bb)
3338 {
3339 int i;
3340
3341 i = RGN_BLOCKS (nr_regions);
3342 /* I - first free position in rgn_bb_table. */
3343
3344 rgn_bb_table[i] = bb->index;
3345 RGN_NR_BLOCKS (nr_regions) = 1;
3346 RGN_HAS_REAL_EBB (nr_regions) = 0;
3347 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3348 CONTAINING_RGN (bb->index) = nr_regions;
3349 BLOCK_TO_BB (bb->index) = 0;
3350
3351 nr_regions++;
3352
3353 RGN_BLOCKS (nr_regions) = i + 1;
3354 }
3355
3356 /* BB was added to ebb after AFTER. */
3357 static void
3358 rgn_add_block (basic_block bb, basic_block after)
3359 {
3360 extend_regions ();
3361 bitmap_set_bit (&not_in_df, bb->index);
3362
3363 if (after == 0 || after == EXIT_BLOCK_PTR)
3364 {
3365 rgn_make_new_region_out_of_new_block (bb);
3366 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3367 }
3368 else
3369 {
3370 int i, pos;
3371
3372 /* We need to fix rgn_table, block_to_bb, containing_rgn
3373 and ebb_head. */
3374
3375 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3376
3377 /* We extend ebb_head to one more position to
3378 easily find the last position of the last ebb in
3379 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3380 is _always_ valid for access. */
3381
3382 i = BLOCK_TO_BB (after->index) + 1;
3383 pos = ebb_head[i] - 1;
3384 /* Now POS is the index of the last block in the region. */
3385
3386 /* Find index of basic block AFTER. */
3387 for (; rgn_bb_table[pos] != after->index; pos--)
3388 ;
3389
3390 pos++;
3391 gcc_assert (pos > ebb_head[i - 1]);
3392
3393 /* i - ebb right after "AFTER". */
3394 /* ebb_head[i] - VALID. */
3395
3396 /* Source position: ebb_head[i]
3397 Destination position: ebb_head[i] + 1
3398 Last position:
3399 RGN_BLOCKS (nr_regions) - 1
3400 Number of elements to copy: (last_position) - (source_position) + 1
3401 */
3402
3403 memmove (rgn_bb_table + pos + 1,
3404 rgn_bb_table + pos,
3405 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3406 * sizeof (*rgn_bb_table));
3407
3408 rgn_bb_table[pos] = bb->index;
3409
3410 for (; i <= current_nr_blocks; i++)
3411 ebb_head [i]++;
3412
3413 i = CONTAINING_RGN (after->index);
3414 CONTAINING_RGN (bb->index) = i;
3415
3416 RGN_HAS_REAL_EBB (i) = 1;
3417
3418 for (++i; i <= nr_regions; i++)
3419 RGN_BLOCKS (i)++;
3420 }
3421 }
3422
3423 /* Fix internal data after interblock movement of jump instruction.
3424 For parameter meaning please refer to
3425 sched-int.h: struct sched_info: fix_recovery_cfg. */
3426 static void
3427 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3428 {
3429 int old_pos, new_pos, i;
3430
3431 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3432
3433 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3434 rgn_bb_table[old_pos] != check_bb_nexti;
3435 old_pos--)
3436 ;
3437 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3438
3439 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3440 rgn_bb_table[new_pos] != bbi;
3441 new_pos--)
3442 ;
3443 new_pos++;
3444 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3445
3446 gcc_assert (new_pos < old_pos);
3447
3448 memmove (rgn_bb_table + new_pos + 1,
3449 rgn_bb_table + new_pos,
3450 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3451
3452 rgn_bb_table[new_pos] = check_bb_nexti;
3453
3454 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3455 ebb_head[i]++;
3456 }
3457
3458 /* Return next block in ebb chain. For parameter meaning please refer to
3459 sched-int.h: struct sched_info: advance_target_bb. */
3460 static basic_block
3461 advance_target_bb (basic_block bb, rtx insn)
3462 {
3463 if (insn)
3464 return 0;
3465
3466 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3467 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3468 return bb->next_bb;
3469 }
3470
3471 #endif
3472 \f
3473 static bool
3474 gate_handle_sched (void)
3475 {
3476 #ifdef INSN_SCHEDULING
3477 return flag_schedule_insns && dbg_cnt (sched_func);
3478 #else
3479 return 0;
3480 #endif
3481 }
3482
3483 /* Run instruction scheduler. */
3484 static unsigned int
3485 rest_of_handle_sched (void)
3486 {
3487 #ifdef INSN_SCHEDULING
3488 if (flag_selective_scheduling
3489 && ! maybe_skip_selective_scheduling ())
3490 run_selective_scheduling ();
3491 else
3492 schedule_insns ();
3493 #endif
3494 return 0;
3495 }
3496
3497 static bool
3498 gate_handle_sched2 (void)
3499 {
3500 #ifdef INSN_SCHEDULING
3501 return optimize > 0 && flag_schedule_insns_after_reload
3502 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3503 #else
3504 return 0;
3505 #endif
3506 }
3507
3508 /* Run second scheduling pass after reload. */
3509 static unsigned int
3510 rest_of_handle_sched2 (void)
3511 {
3512 #ifdef INSN_SCHEDULING
3513 if (flag_selective_scheduling2
3514 && ! maybe_skip_selective_scheduling ())
3515 run_selective_scheduling ();
3516 else
3517 {
3518 /* Do control and data sched analysis again,
3519 and write some more of the results to dump file. */
3520 if (flag_sched2_use_superblocks)
3521 schedule_ebbs ();
3522 else
3523 schedule_insns ();
3524 }
3525 #endif
3526 return 0;
3527 }
3528
3529 struct rtl_opt_pass pass_sched =
3530 {
3531 {
3532 RTL_PASS,
3533 "sched1", /* name */
3534 gate_handle_sched, /* gate */
3535 rest_of_handle_sched, /* execute */
3536 NULL, /* sub */
3537 NULL, /* next */
3538 0, /* static_pass_number */
3539 TV_SCHED, /* tv_id */
3540 0, /* properties_required */
3541 0, /* properties_provided */
3542 0, /* properties_destroyed */
3543 0, /* todo_flags_start */
3544 TODO_df_finish | TODO_verify_rtl_sharing |
3545 TODO_verify_flow |
3546 TODO_ggc_collect /* todo_flags_finish */
3547 }
3548 };
3549
3550 struct rtl_opt_pass pass_sched2 =
3551 {
3552 {
3553 RTL_PASS,
3554 "sched2", /* name */
3555 gate_handle_sched2, /* gate */
3556 rest_of_handle_sched2, /* execute */
3557 NULL, /* sub */
3558 NULL, /* next */
3559 0, /* static_pass_number */
3560 TV_SCHED2, /* tv_id */
3561 0, /* properties_required */
3562 0, /* properties_provided */
3563 0, /* properties_destroyed */
3564 0, /* todo_flags_start */
3565 TODO_df_finish | TODO_verify_rtl_sharing |
3566 TODO_verify_flow |
3567 TODO_ggc_collect /* todo_flags_finish */
3568 }
3569 };