revert: re PR debug/45136 (-fcompare-debug failure with -Os -fschedule-insns)
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "diagnostic-core.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "recog.h"
63 #include "cfglayout.h"
64 #include "params.h"
65 #include "sched-int.h"
66 #include "sel-sched.h"
67 #include "target.h"
68 #include "timevar.h"
69 #include "tree-pass.h"
70 #include "dbgcnt.h"
71
72 #ifdef INSN_SCHEDULING
73
74 /* Some accessor macros for h_i_d members only used within this file. */
75 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
76 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
77
78 /* nr_inter/spec counts interblock/speculative motion for the function. */
79 static int nr_inter, nr_spec;
80
81 static int is_cfg_nonregular (void);
82
83 /* Number of regions in the procedure. */
84 int nr_regions = 0;
85
86 /* Table of region descriptions. */
87 region *rgn_table = NULL;
88
89 /* Array of lists of regions' blocks. */
90 int *rgn_bb_table = NULL;
91
92 /* Topological order of blocks in the region (if b2 is reachable from
93 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
94 always referred to by either block or b, while its topological
95 order name (in the region) is referred to by bb. */
96 int *block_to_bb = NULL;
97
98 /* The number of the region containing a block. */
99 int *containing_rgn = NULL;
100
101 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
102 Currently we can get a ebb only through splitting of currently
103 scheduling block, therefore, we don't need ebb_head array for every region,
104 hence, its sufficient to hold it for current one only. */
105 int *ebb_head = NULL;
106
107 /* The minimum probability of reaching a source block so that it will be
108 considered for speculative scheduling. */
109 static int min_spec_prob;
110
111 static void find_single_block_region (bool);
112 static void find_rgns (void);
113 static bool too_large (int, int *, int *);
114
115 /* Blocks of the current region being scheduled. */
116 int current_nr_blocks;
117 int current_blocks;
118
119 /* A speculative motion requires checking live information on the path
120 from 'source' to 'target'. The split blocks are those to be checked.
121 After a speculative motion, live information should be modified in
122 the 'update' blocks.
123
124 Lists of split and update blocks for each candidate of the current
125 target are in array bblst_table. */
126 static basic_block *bblst_table;
127 static int bblst_size, bblst_last;
128
129 /* Target info declarations.
130
131 The block currently being scheduled is referred to as the "target" block,
132 while other blocks in the region from which insns can be moved to the
133 target are called "source" blocks. The candidate structure holds info
134 about such sources: are they valid? Speculative? Etc. */
135 typedef struct
136 {
137 basic_block *first_member;
138 int nr_members;
139 }
140 bblst;
141
142 typedef struct
143 {
144 char is_valid;
145 char is_speculative;
146 int src_prob;
147 bblst split_bbs;
148 bblst update_bbs;
149 }
150 candidate;
151
152 static candidate *candidate_table;
153 #define IS_VALID(src) (candidate_table[src].is_valid)
154 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
155 #define IS_SPECULATIVE_INSN(INSN) \
156 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
157 #define SRC_PROB(src) ( candidate_table[src].src_prob )
158
159 /* The bb being currently scheduled. */
160 int target_bb;
161
162 /* List of edges. */
163 typedef struct
164 {
165 edge *first_member;
166 int nr_members;
167 }
168 edgelst;
169
170 static edge *edgelst_table;
171 static int edgelst_last;
172
173 static void extract_edgelst (sbitmap, edgelst *);
174
175 /* Target info functions. */
176 static void split_edges (int, int, edgelst *);
177 static void compute_trg_info (int);
178 void debug_candidate (int);
179 void debug_candidates (int);
180
181 /* Dominators array: dom[i] contains the sbitmap of dominators of
182 bb i in the region. */
183 static sbitmap *dom;
184
185 /* bb 0 is the only region entry. */
186 #define IS_RGN_ENTRY(bb) (!bb)
187
188 /* Is bb_src dominated by bb_trg. */
189 #define IS_DOMINATED(bb_src, bb_trg) \
190 ( TEST_BIT (dom[bb_src], bb_trg) )
191
192 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
193 the probability of bb i relative to the region entry. */
194 static int *prob;
195
196 /* Bit-set of edges, where bit i stands for edge i. */
197 typedef sbitmap edgeset;
198
199 /* Number of edges in the region. */
200 static int rgn_nr_edges;
201
202 /* Array of size rgn_nr_edges. */
203 static edge *rgn_edges;
204
205 /* Mapping from each edge in the graph to its number in the rgn. */
206 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
207 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
208
209 /* The split edges of a source bb is different for each target
210 bb. In order to compute this efficiently, the 'potential-split edges'
211 are computed for each bb prior to scheduling a region. This is actually
212 the split edges of each bb relative to the region entry.
213
214 pot_split[bb] is the set of potential split edges of bb. */
215 static edgeset *pot_split;
216
217 /* For every bb, a set of its ancestor edges. */
218 static edgeset *ancestor_edges;
219
220 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
221
222 /* Speculative scheduling functions. */
223 static int check_live_1 (int, rtx);
224 static void update_live_1 (int, rtx);
225 static int is_pfree (rtx, int, int);
226 static int find_conditional_protection (rtx, int);
227 static int is_conditionally_protected (rtx, int, int);
228 static int is_prisky (rtx, int, int);
229 static int is_exception_free (rtx, int, int);
230
231 static bool sets_likely_spilled (rtx);
232 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
233 static void add_branch_dependences (rtx, rtx);
234 static void compute_block_dependences (int);
235
236 static void schedule_region (int);
237 static rtx concat_INSN_LIST (rtx, rtx);
238 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
239 static void propagate_deps (int, struct deps_desc *);
240 static void free_pending_lists (void);
241
242 /* Functions for construction of the control flow graph. */
243
244 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
245
246 We decide not to build the control flow graph if there is possibly more
247 than one entry to the function, if computed branches exist, if we
248 have nonlocal gotos, or if we have an unreachable loop. */
249
250 static int
251 is_cfg_nonregular (void)
252 {
253 basic_block b;
254 rtx insn;
255
256 /* If we have a label that could be the target of a nonlocal goto, then
257 the cfg is not well structured. */
258 if (nonlocal_goto_handler_labels)
259 return 1;
260
261 /* If we have any forced labels, then the cfg is not well structured. */
262 if (forced_labels)
263 return 1;
264
265 /* If we have exception handlers, then we consider the cfg not well
266 structured. ?!? We should be able to handle this now that we
267 compute an accurate cfg for EH. */
268 if (current_function_has_exception_handlers ())
269 return 1;
270
271 /* If we have insns which refer to labels as non-jumped-to operands,
272 then we consider the cfg not well structured. */
273 FOR_EACH_BB (b)
274 FOR_BB_INSNS (b, insn)
275 {
276 rtx note, next, set, dest;
277
278 /* If this function has a computed jump, then we consider the cfg
279 not well structured. */
280 if (JUMP_P (insn) && computed_jump_p (insn))
281 return 1;
282
283 if (!INSN_P (insn))
284 continue;
285
286 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
287 if (note == NULL_RTX)
288 continue;
289
290 /* For that label not to be seen as a referred-to label, this
291 must be a single-set which is feeding a jump *only*. This
292 could be a conditional jump with the label split off for
293 machine-specific reasons or a casesi/tablejump. */
294 next = next_nonnote_insn (insn);
295 if (next == NULL_RTX
296 || !JUMP_P (next)
297 || (JUMP_LABEL (next) != XEXP (note, 0)
298 && find_reg_note (next, REG_LABEL_TARGET,
299 XEXP (note, 0)) == NULL_RTX)
300 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
301 return 1;
302
303 set = single_set (insn);
304 if (set == NULL_RTX)
305 return 1;
306
307 dest = SET_DEST (set);
308 if (!REG_P (dest) || !dead_or_set_p (next, dest))
309 return 1;
310 }
311
312 /* Unreachable loops with more than one basic block are detected
313 during the DFS traversal in find_rgns.
314
315 Unreachable loops with a single block are detected here. This
316 test is redundant with the one in find_rgns, but it's much
317 cheaper to go ahead and catch the trivial case here. */
318 FOR_EACH_BB (b)
319 {
320 if (EDGE_COUNT (b->preds) == 0
321 || (single_pred_p (b)
322 && single_pred (b) == b))
323 return 1;
324 }
325
326 /* All the tests passed. Consider the cfg well structured. */
327 return 0;
328 }
329
330 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
331
332 static void
333 extract_edgelst (sbitmap set, edgelst *el)
334 {
335 unsigned int i = 0;
336 sbitmap_iterator sbi;
337
338 /* edgelst table space is reused in each call to extract_edgelst. */
339 edgelst_last = 0;
340
341 el->first_member = &edgelst_table[edgelst_last];
342 el->nr_members = 0;
343
344 /* Iterate over each word in the bitset. */
345 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
346 {
347 edgelst_table[edgelst_last++] = rgn_edges[i];
348 el->nr_members++;
349 }
350 }
351
352 /* Functions for the construction of regions. */
353
354 /* Print the regions, for debugging purposes. Callable from debugger. */
355
356 DEBUG_FUNCTION void
357 debug_regions (void)
358 {
359 int rgn, bb;
360
361 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
362 for (rgn = 0; rgn < nr_regions; rgn++)
363 {
364 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
365 rgn_table[rgn].rgn_nr_blocks);
366 fprintf (sched_dump, ";;\tbb/block: ");
367
368 /* We don't have ebb_head initialized yet, so we can't use
369 BB_TO_BLOCK (). */
370 current_blocks = RGN_BLOCKS (rgn);
371
372 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
373 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
374
375 fprintf (sched_dump, "\n\n");
376 }
377 }
378
379 /* Print the region's basic blocks. */
380
381 DEBUG_FUNCTION void
382 debug_region (int rgn)
383 {
384 int bb;
385
386 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
387 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
388 rgn_table[rgn].rgn_nr_blocks);
389 fprintf (stderr, ";;\tbb/block: ");
390
391 /* We don't have ebb_head initialized yet, so we can't use
392 BB_TO_BLOCK (). */
393 current_blocks = RGN_BLOCKS (rgn);
394
395 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
396 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
397
398 fprintf (stderr, "\n\n");
399
400 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
401 {
402 debug_bb_n_slim (rgn_bb_table[current_blocks + bb]);
403 fprintf (stderr, "\n");
404 }
405
406 fprintf (stderr, "\n");
407
408 }
409
410 /* True when a bb with index BB_INDEX contained in region RGN. */
411 static bool
412 bb_in_region_p (int bb_index, int rgn)
413 {
414 int i;
415
416 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
417 if (rgn_bb_table[current_blocks + i] == bb_index)
418 return true;
419
420 return false;
421 }
422
423 /* Dump region RGN to file F using dot syntax. */
424 void
425 dump_region_dot (FILE *f, int rgn)
426 {
427 int i;
428
429 fprintf (f, "digraph Region_%d {\n", rgn);
430
431 /* We don't have ebb_head initialized yet, so we can't use
432 BB_TO_BLOCK (). */
433 current_blocks = RGN_BLOCKS (rgn);
434
435 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
436 {
437 edge e;
438 edge_iterator ei;
439 int src_bb_num = rgn_bb_table[current_blocks + i];
440 struct basic_block_def *bb = BASIC_BLOCK (src_bb_num);
441
442 FOR_EACH_EDGE (e, ei, bb->succs)
443 if (bb_in_region_p (e->dest->index, rgn))
444 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
445 }
446 fprintf (f, "}\n");
447 }
448
449 /* The same, but first open a file specified by FNAME. */
450 void
451 dump_region_dot_file (const char *fname, int rgn)
452 {
453 FILE *f = fopen (fname, "wt");
454 dump_region_dot (f, rgn);
455 fclose (f);
456 }
457
458 /* Build a single block region for each basic block in the function.
459 This allows for using the same code for interblock and basic block
460 scheduling. */
461
462 static void
463 find_single_block_region (bool ebbs_p)
464 {
465 basic_block bb, ebb_start;
466 int i = 0;
467
468 nr_regions = 0;
469
470 if (ebbs_p) {
471 int probability_cutoff;
472 if (profile_info && flag_branch_probabilities)
473 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
474 else
475 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
476 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
477
478 FOR_EACH_BB (ebb_start)
479 {
480 RGN_NR_BLOCKS (nr_regions) = 0;
481 RGN_BLOCKS (nr_regions) = i;
482 RGN_DONT_CALC_DEPS (nr_regions) = 0;
483 RGN_HAS_REAL_EBB (nr_regions) = 0;
484
485 for (bb = ebb_start; ; bb = bb->next_bb)
486 {
487 edge e;
488
489 rgn_bb_table[i] = bb->index;
490 RGN_NR_BLOCKS (nr_regions)++;
491 CONTAINING_RGN (bb->index) = nr_regions;
492 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
493 i++;
494
495 if (bb->next_bb == EXIT_BLOCK_PTR
496 || LABEL_P (BB_HEAD (bb->next_bb)))
497 break;
498
499 e = find_fallthru_edge (bb->succs);
500 if (! e)
501 break;
502 if (e->probability <= probability_cutoff)
503 break;
504 }
505
506 ebb_start = bb;
507 nr_regions++;
508 }
509 }
510 else
511 FOR_EACH_BB (bb)
512 {
513 rgn_bb_table[nr_regions] = bb->index;
514 RGN_NR_BLOCKS (nr_regions) = 1;
515 RGN_BLOCKS (nr_regions) = nr_regions;
516 RGN_DONT_CALC_DEPS (nr_regions) = 0;
517 RGN_HAS_REAL_EBB (nr_regions) = 0;
518
519 CONTAINING_RGN (bb->index) = nr_regions;
520 BLOCK_TO_BB (bb->index) = 0;
521 nr_regions++;
522 }
523 }
524
525 /* Estimate number of the insns in the BB. */
526 static int
527 rgn_estimate_number_of_insns (basic_block bb)
528 {
529 int count;
530
531 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
532
533 if (MAY_HAVE_DEBUG_INSNS)
534 {
535 rtx insn;
536
537 FOR_BB_INSNS (bb, insn)
538 if (DEBUG_INSN_P (insn))
539 count--;
540 }
541
542 return count;
543 }
544
545 /* Update number of blocks and the estimate for number of insns
546 in the region. Return true if the region is "too large" for interblock
547 scheduling (compile time considerations). */
548
549 static bool
550 too_large (int block, int *num_bbs, int *num_insns)
551 {
552 (*num_bbs)++;
553 (*num_insns) += (common_sched_info->estimate_number_of_insns
554 (BASIC_BLOCK (block)));
555
556 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
557 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
558 }
559
560 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
561 is still an inner loop. Put in max_hdr[blk] the header of the most inner
562 loop containing blk. */
563 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
564 { \
565 if (max_hdr[blk] == -1) \
566 max_hdr[blk] = hdr; \
567 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
568 RESET_BIT (inner, hdr); \
569 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
570 { \
571 RESET_BIT (inner,max_hdr[blk]); \
572 max_hdr[blk] = hdr; \
573 } \
574 }
575
576 /* Find regions for interblock scheduling.
577
578 A region for scheduling can be:
579
580 * A loop-free procedure, or
581
582 * A reducible inner loop, or
583
584 * A basic block not contained in any other region.
585
586 ?!? In theory we could build other regions based on extended basic
587 blocks or reverse extended basic blocks. Is it worth the trouble?
588
589 Loop blocks that form a region are put into the region's block list
590 in topological order.
591
592 This procedure stores its results into the following global (ick) variables
593
594 * rgn_nr
595 * rgn_table
596 * rgn_bb_table
597 * block_to_bb
598 * containing region
599
600 We use dominator relationships to avoid making regions out of non-reducible
601 loops.
602
603 This procedure needs to be converted to work on pred/succ lists instead
604 of edge tables. That would simplify it somewhat. */
605
606 static void
607 haifa_find_rgns (void)
608 {
609 int *max_hdr, *dfs_nr, *degree;
610 char no_loops = 1;
611 int node, child, loop_head, i, head, tail;
612 int count = 0, sp, idx = 0;
613 edge_iterator current_edge;
614 edge_iterator *stack;
615 int num_bbs, num_insns, unreachable;
616 int too_large_failure;
617 basic_block bb;
618
619 /* Note if a block is a natural loop header. */
620 sbitmap header;
621
622 /* Note if a block is a natural inner loop header. */
623 sbitmap inner;
624
625 /* Note if a block is in the block queue. */
626 sbitmap in_queue;
627
628 /* Note if a block is in the block queue. */
629 sbitmap in_stack;
630
631 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
632 and a mapping from block to its loop header (if the block is contained
633 in a loop, else -1).
634
635 Store results in HEADER, INNER, and MAX_HDR respectively, these will
636 be used as inputs to the second traversal.
637
638 STACK, SP and DFS_NR are only used during the first traversal. */
639
640 /* Allocate and initialize variables for the first traversal. */
641 max_hdr = XNEWVEC (int, last_basic_block);
642 dfs_nr = XCNEWVEC (int, last_basic_block);
643 stack = XNEWVEC (edge_iterator, n_edges);
644
645 inner = sbitmap_alloc (last_basic_block);
646 sbitmap_ones (inner);
647
648 header = sbitmap_alloc (last_basic_block);
649 sbitmap_zero (header);
650
651 in_queue = sbitmap_alloc (last_basic_block);
652 sbitmap_zero (in_queue);
653
654 in_stack = sbitmap_alloc (last_basic_block);
655 sbitmap_zero (in_stack);
656
657 for (i = 0; i < last_basic_block; i++)
658 max_hdr[i] = -1;
659
660 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
661 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
662
663 /* DFS traversal to find inner loops in the cfg. */
664
665 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
666 sp = -1;
667
668 while (1)
669 {
670 if (EDGE_PASSED (current_edge))
671 {
672 /* We have reached a leaf node or a node that was already
673 processed. Pop edges off the stack until we find
674 an edge that has not yet been processed. */
675 while (sp >= 0 && EDGE_PASSED (current_edge))
676 {
677 /* Pop entry off the stack. */
678 current_edge = stack[sp--];
679 node = ei_edge (current_edge)->src->index;
680 gcc_assert (node != ENTRY_BLOCK);
681 child = ei_edge (current_edge)->dest->index;
682 gcc_assert (child != EXIT_BLOCK);
683 RESET_BIT (in_stack, child);
684 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
685 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
686 ei_next (&current_edge);
687 }
688
689 /* See if have finished the DFS tree traversal. */
690 if (sp < 0 && EDGE_PASSED (current_edge))
691 break;
692
693 /* Nope, continue the traversal with the popped node. */
694 continue;
695 }
696
697 /* Process a node. */
698 node = ei_edge (current_edge)->src->index;
699 gcc_assert (node != ENTRY_BLOCK);
700 SET_BIT (in_stack, node);
701 dfs_nr[node] = ++count;
702
703 /* We don't traverse to the exit block. */
704 child = ei_edge (current_edge)->dest->index;
705 if (child == EXIT_BLOCK)
706 {
707 SET_EDGE_PASSED (current_edge);
708 ei_next (&current_edge);
709 continue;
710 }
711
712 /* If the successor is in the stack, then we've found a loop.
713 Mark the loop, if it is not a natural loop, then it will
714 be rejected during the second traversal. */
715 if (TEST_BIT (in_stack, child))
716 {
717 no_loops = 0;
718 SET_BIT (header, child);
719 UPDATE_LOOP_RELATIONS (node, child);
720 SET_EDGE_PASSED (current_edge);
721 ei_next (&current_edge);
722 continue;
723 }
724
725 /* If the child was already visited, then there is no need to visit
726 it again. Just update the loop relationships and restart
727 with a new edge. */
728 if (dfs_nr[child])
729 {
730 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
731 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
732 SET_EDGE_PASSED (current_edge);
733 ei_next (&current_edge);
734 continue;
735 }
736
737 /* Push an entry on the stack and continue DFS traversal. */
738 stack[++sp] = current_edge;
739 SET_EDGE_PASSED (current_edge);
740 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
741 }
742
743 /* Reset ->aux field used by EDGE_PASSED. */
744 FOR_ALL_BB (bb)
745 {
746 edge_iterator ei;
747 edge e;
748 FOR_EACH_EDGE (e, ei, bb->succs)
749 e->aux = NULL;
750 }
751
752
753 /* Another check for unreachable blocks. The earlier test in
754 is_cfg_nonregular only finds unreachable blocks that do not
755 form a loop.
756
757 The DFS traversal will mark every block that is reachable from
758 the entry node by placing a nonzero value in dfs_nr. Thus if
759 dfs_nr is zero for any block, then it must be unreachable. */
760 unreachable = 0;
761 FOR_EACH_BB (bb)
762 if (dfs_nr[bb->index] == 0)
763 {
764 unreachable = 1;
765 break;
766 }
767
768 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
769 to hold degree counts. */
770 degree = dfs_nr;
771
772 FOR_EACH_BB (bb)
773 degree[bb->index] = EDGE_COUNT (bb->preds);
774
775 /* Do not perform region scheduling if there are any unreachable
776 blocks. */
777 if (!unreachable)
778 {
779 int *queue, *degree1 = NULL;
780 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
781 there basic blocks, which are forced to be region heads.
782 This is done to try to assemble few smaller regions
783 from a too_large region. */
784 sbitmap extended_rgn_header = NULL;
785 bool extend_regions_p;
786
787 if (no_loops)
788 SET_BIT (header, 0);
789
790 /* Second traversal:find reducible inner loops and topologically sort
791 block of each region. */
792
793 queue = XNEWVEC (int, n_basic_blocks);
794
795 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
796 if (extend_regions_p)
797 {
798 degree1 = XNEWVEC (int, last_basic_block);
799 extended_rgn_header = sbitmap_alloc (last_basic_block);
800 sbitmap_zero (extended_rgn_header);
801 }
802
803 /* Find blocks which are inner loop headers. We still have non-reducible
804 loops to consider at this point. */
805 FOR_EACH_BB (bb)
806 {
807 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
808 {
809 edge e;
810 edge_iterator ei;
811 basic_block jbb;
812
813 /* Now check that the loop is reducible. We do this separate
814 from finding inner loops so that we do not find a reducible
815 loop which contains an inner non-reducible loop.
816
817 A simple way to find reducible/natural loops is to verify
818 that each block in the loop is dominated by the loop
819 header.
820
821 If there exists a block that is not dominated by the loop
822 header, then the block is reachable from outside the loop
823 and thus the loop is not a natural loop. */
824 FOR_EACH_BB (jbb)
825 {
826 /* First identify blocks in the loop, except for the loop
827 entry block. */
828 if (bb->index == max_hdr[jbb->index] && bb != jbb)
829 {
830 /* Now verify that the block is dominated by the loop
831 header. */
832 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
833 break;
834 }
835 }
836
837 /* If we exited the loop early, then I is the header of
838 a non-reducible loop and we should quit processing it
839 now. */
840 if (jbb != EXIT_BLOCK_PTR)
841 continue;
842
843 /* I is a header of an inner loop, or block 0 in a subroutine
844 with no loops at all. */
845 head = tail = -1;
846 too_large_failure = 0;
847 loop_head = max_hdr[bb->index];
848
849 if (extend_regions_p)
850 /* We save degree in case when we meet a too_large region
851 and cancel it. We need a correct degree later when
852 calling extend_rgns. */
853 memcpy (degree1, degree, last_basic_block * sizeof (int));
854
855 /* Decrease degree of all I's successors for topological
856 ordering. */
857 FOR_EACH_EDGE (e, ei, bb->succs)
858 if (e->dest != EXIT_BLOCK_PTR)
859 --degree[e->dest->index];
860
861 /* Estimate # insns, and count # blocks in the region. */
862 num_bbs = 1;
863 num_insns = common_sched_info->estimate_number_of_insns (bb);
864
865 /* Find all loop latches (blocks with back edges to the loop
866 header) or all the leaf blocks in the cfg has no loops.
867
868 Place those blocks into the queue. */
869 if (no_loops)
870 {
871 FOR_EACH_BB (jbb)
872 /* Leaf nodes have only a single successor which must
873 be EXIT_BLOCK. */
874 if (single_succ_p (jbb)
875 && single_succ (jbb) == EXIT_BLOCK_PTR)
876 {
877 queue[++tail] = jbb->index;
878 SET_BIT (in_queue, jbb->index);
879
880 if (too_large (jbb->index, &num_bbs, &num_insns))
881 {
882 too_large_failure = 1;
883 break;
884 }
885 }
886 }
887 else
888 {
889 edge e;
890
891 FOR_EACH_EDGE (e, ei, bb->preds)
892 {
893 if (e->src == ENTRY_BLOCK_PTR)
894 continue;
895
896 node = e->src->index;
897
898 if (max_hdr[node] == loop_head && node != bb->index)
899 {
900 /* This is a loop latch. */
901 queue[++tail] = node;
902 SET_BIT (in_queue, node);
903
904 if (too_large (node, &num_bbs, &num_insns))
905 {
906 too_large_failure = 1;
907 break;
908 }
909 }
910 }
911 }
912
913 /* Now add all the blocks in the loop to the queue.
914
915 We know the loop is a natural loop; however the algorithm
916 above will not always mark certain blocks as being in the
917 loop. Consider:
918 node children
919 a b,c
920 b c
921 c a,d
922 d b
923
924 The algorithm in the DFS traversal may not mark B & D as part
925 of the loop (i.e. they will not have max_hdr set to A).
926
927 We know they can not be loop latches (else they would have
928 had max_hdr set since they'd have a backedge to a dominator
929 block). So we don't need them on the initial queue.
930
931 We know they are part of the loop because they are dominated
932 by the loop header and can be reached by a backwards walk of
933 the edges starting with nodes on the initial queue.
934
935 It is safe and desirable to include those nodes in the
936 loop/scheduling region. To do so we would need to decrease
937 the degree of a node if it is the target of a backedge
938 within the loop itself as the node is placed in the queue.
939
940 We do not do this because I'm not sure that the actual
941 scheduling code will properly handle this case. ?!? */
942
943 while (head < tail && !too_large_failure)
944 {
945 edge e;
946 child = queue[++head];
947
948 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
949 {
950 node = e->src->index;
951
952 /* See discussion above about nodes not marked as in
953 this loop during the initial DFS traversal. */
954 if (e->src == ENTRY_BLOCK_PTR
955 || max_hdr[node] != loop_head)
956 {
957 tail = -1;
958 break;
959 }
960 else if (!TEST_BIT (in_queue, node) && node != bb->index)
961 {
962 queue[++tail] = node;
963 SET_BIT (in_queue, node);
964
965 if (too_large (node, &num_bbs, &num_insns))
966 {
967 too_large_failure = 1;
968 break;
969 }
970 }
971 }
972 }
973
974 if (tail >= 0 && !too_large_failure)
975 {
976 /* Place the loop header into list of region blocks. */
977 degree[bb->index] = -1;
978 rgn_bb_table[idx] = bb->index;
979 RGN_NR_BLOCKS (nr_regions) = num_bbs;
980 RGN_BLOCKS (nr_regions) = idx++;
981 RGN_DONT_CALC_DEPS (nr_regions) = 0;
982 RGN_HAS_REAL_EBB (nr_regions) = 0;
983 CONTAINING_RGN (bb->index) = nr_regions;
984 BLOCK_TO_BB (bb->index) = count = 0;
985
986 /* Remove blocks from queue[] when their in degree
987 becomes zero. Repeat until no blocks are left on the
988 list. This produces a topological list of blocks in
989 the region. */
990 while (tail >= 0)
991 {
992 if (head < 0)
993 head = tail;
994 child = queue[head];
995 if (degree[child] == 0)
996 {
997 edge e;
998
999 degree[child] = -1;
1000 rgn_bb_table[idx++] = child;
1001 BLOCK_TO_BB (child) = ++count;
1002 CONTAINING_RGN (child) = nr_regions;
1003 queue[head] = queue[tail--];
1004
1005 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
1006 if (e->dest != EXIT_BLOCK_PTR)
1007 --degree[e->dest->index];
1008 }
1009 else
1010 --head;
1011 }
1012 ++nr_regions;
1013 }
1014 else if (extend_regions_p)
1015 {
1016 /* Restore DEGREE. */
1017 int *t = degree;
1018
1019 degree = degree1;
1020 degree1 = t;
1021
1022 /* And force successors of BB to be region heads.
1023 This may provide several smaller regions instead
1024 of one too_large region. */
1025 FOR_EACH_EDGE (e, ei, bb->succs)
1026 if (e->dest != EXIT_BLOCK_PTR)
1027 SET_BIT (extended_rgn_header, e->dest->index);
1028 }
1029 }
1030 }
1031 free (queue);
1032
1033 if (extend_regions_p)
1034 {
1035 free (degree1);
1036
1037 sbitmap_a_or_b (header, header, extended_rgn_header);
1038 sbitmap_free (extended_rgn_header);
1039
1040 extend_rgns (degree, &idx, header, max_hdr);
1041 }
1042 }
1043
1044 /* Any block that did not end up in a region is placed into a region
1045 by itself. */
1046 FOR_EACH_BB (bb)
1047 if (degree[bb->index] >= 0)
1048 {
1049 rgn_bb_table[idx] = bb->index;
1050 RGN_NR_BLOCKS (nr_regions) = 1;
1051 RGN_BLOCKS (nr_regions) = idx++;
1052 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1053 RGN_HAS_REAL_EBB (nr_regions) = 0;
1054 CONTAINING_RGN (bb->index) = nr_regions++;
1055 BLOCK_TO_BB (bb->index) = 0;
1056 }
1057
1058 free (max_hdr);
1059 free (degree);
1060 free (stack);
1061 sbitmap_free (header);
1062 sbitmap_free (inner);
1063 sbitmap_free (in_queue);
1064 sbitmap_free (in_stack);
1065 }
1066
1067
1068 /* Wrapper function.
1069 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1070 regions. Otherwise just call find_rgns_haifa. */
1071 static void
1072 find_rgns (void)
1073 {
1074 if (sel_sched_p () && flag_sel_sched_pipelining)
1075 sel_find_rgns ();
1076 else
1077 haifa_find_rgns ();
1078 }
1079
1080 static int gather_region_statistics (int **);
1081 static void print_region_statistics (int *, int, int *, int);
1082
1083 /* Calculate the histogram that shows the number of regions having the
1084 given number of basic blocks, and store it in the RSP array. Return
1085 the size of this array. */
1086 static int
1087 gather_region_statistics (int **rsp)
1088 {
1089 int i, *a = 0, a_sz = 0;
1090
1091 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1092 for (i = 0; i < nr_regions; i++)
1093 {
1094 int nr_blocks = RGN_NR_BLOCKS (i);
1095
1096 gcc_assert (nr_blocks >= 1);
1097
1098 if (nr_blocks > a_sz)
1099 {
1100 a = XRESIZEVEC (int, a, nr_blocks);
1101 do
1102 a[a_sz++] = 0;
1103 while (a_sz != nr_blocks);
1104 }
1105
1106 a[nr_blocks - 1]++;
1107 }
1108
1109 *rsp = a;
1110 return a_sz;
1111 }
1112
1113 /* Print regions statistics. S1 and S2 denote the data before and after
1114 calling extend_rgns, respectively. */
1115 static void
1116 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1117 {
1118 int i;
1119
1120 /* We iterate until s2_sz because extend_rgns does not decrease
1121 the maximal region size. */
1122 for (i = 1; i < s2_sz; i++)
1123 {
1124 int n1, n2;
1125
1126 n2 = s2[i];
1127
1128 if (n2 == 0)
1129 continue;
1130
1131 if (i >= s1_sz)
1132 n1 = 0;
1133 else
1134 n1 = s1[i];
1135
1136 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1137 "was %d + %d more\n", i + 1, n1, n2 - n1);
1138 }
1139 }
1140
1141 /* Extend regions.
1142 DEGREE - Array of incoming edge count, considering only
1143 the edges, that don't have their sources in formed regions yet.
1144 IDXP - pointer to the next available index in rgn_bb_table.
1145 HEADER - set of all region heads.
1146 LOOP_HDR - mapping from block to the containing loop
1147 (two blocks can reside within one region if they have
1148 the same loop header). */
1149 void
1150 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1151 {
1152 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1153 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1154
1155 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1156
1157 max_hdr = XNEWVEC (int, last_basic_block);
1158
1159 order = XNEWVEC (int, last_basic_block);
1160 post_order_compute (order, false, false);
1161
1162 for (i = nblocks - 1; i >= 0; i--)
1163 {
1164 int bbn = order[i];
1165 if (degree[bbn] >= 0)
1166 {
1167 max_hdr[bbn] = bbn;
1168 rescan = 1;
1169 }
1170 else
1171 /* This block already was processed in find_rgns. */
1172 max_hdr[bbn] = -1;
1173 }
1174
1175 /* The idea is to topologically walk through CFG in top-down order.
1176 During the traversal, if all the predecessors of a node are
1177 marked to be in the same region (they all have the same max_hdr),
1178 then current node is also marked to be a part of that region.
1179 Otherwise the node starts its own region.
1180 CFG should be traversed until no further changes are made. On each
1181 iteration the set of the region heads is extended (the set of those
1182 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1183 set of all basic blocks, thus the algorithm is guaranteed to
1184 terminate. */
1185
1186 while (rescan && iter < max_iter)
1187 {
1188 rescan = 0;
1189
1190 for (i = nblocks - 1; i >= 0; i--)
1191 {
1192 edge e;
1193 edge_iterator ei;
1194 int bbn = order[i];
1195
1196 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1197 {
1198 int hdr = -1;
1199
1200 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1201 {
1202 int predn = e->src->index;
1203
1204 if (predn != ENTRY_BLOCK
1205 /* If pred wasn't processed in find_rgns. */
1206 && max_hdr[predn] != -1
1207 /* And pred and bb reside in the same loop.
1208 (Or out of any loop). */
1209 && loop_hdr[bbn] == loop_hdr[predn])
1210 {
1211 if (hdr == -1)
1212 /* Then bb extends the containing region of pred. */
1213 hdr = max_hdr[predn];
1214 else if (hdr != max_hdr[predn])
1215 /* Too bad, there are at least two predecessors
1216 that reside in different regions. Thus, BB should
1217 begin its own region. */
1218 {
1219 hdr = bbn;
1220 break;
1221 }
1222 }
1223 else
1224 /* BB starts its own region. */
1225 {
1226 hdr = bbn;
1227 break;
1228 }
1229 }
1230
1231 if (hdr == bbn)
1232 {
1233 /* If BB start its own region,
1234 update set of headers with BB. */
1235 SET_BIT (header, bbn);
1236 rescan = 1;
1237 }
1238 else
1239 gcc_assert (hdr != -1);
1240
1241 max_hdr[bbn] = hdr;
1242 }
1243 }
1244
1245 iter++;
1246 }
1247
1248 /* Statistics were gathered on the SPEC2000 package of tests with
1249 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1250
1251 Statistics for SPECint:
1252 1 iteration : 1751 cases (38.7%)
1253 2 iterations: 2770 cases (61.3%)
1254 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1255 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1256 (We don't count single block regions here).
1257
1258 Statistics for SPECfp:
1259 1 iteration : 621 cases (35.9%)
1260 2 iterations: 1110 cases (64.1%)
1261 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1262 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1263 (We don't count single block regions here).
1264
1265 By default we do at most 2 iterations.
1266 This can be overridden with max-sched-extend-regions-iters parameter:
1267 0 - disable region extension,
1268 N > 0 - do at most N iterations. */
1269
1270 if (sched_verbose && iter != 0)
1271 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1272 rescan ? "... failed" : "");
1273
1274 if (!rescan && iter != 0)
1275 {
1276 int *s1 = NULL, s1_sz = 0;
1277
1278 /* Save the old statistics for later printout. */
1279 if (sched_verbose >= 6)
1280 s1_sz = gather_region_statistics (&s1);
1281
1282 /* We have succeeded. Now assemble the regions. */
1283 for (i = nblocks - 1; i >= 0; i--)
1284 {
1285 int bbn = order[i];
1286
1287 if (max_hdr[bbn] == bbn)
1288 /* BBN is a region head. */
1289 {
1290 edge e;
1291 edge_iterator ei;
1292 int num_bbs = 0, j, num_insns = 0, large;
1293
1294 large = too_large (bbn, &num_bbs, &num_insns);
1295
1296 degree[bbn] = -1;
1297 rgn_bb_table[idx] = bbn;
1298 RGN_BLOCKS (nr_regions) = idx++;
1299 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1300 RGN_HAS_REAL_EBB (nr_regions) = 0;
1301 CONTAINING_RGN (bbn) = nr_regions;
1302 BLOCK_TO_BB (bbn) = 0;
1303
1304 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1305 if (e->dest != EXIT_BLOCK_PTR)
1306 degree[e->dest->index]--;
1307
1308 if (!large)
1309 /* Here we check whether the region is too_large. */
1310 for (j = i - 1; j >= 0; j--)
1311 {
1312 int succn = order[j];
1313 if (max_hdr[succn] == bbn)
1314 {
1315 if ((large = too_large (succn, &num_bbs, &num_insns)))
1316 break;
1317 }
1318 }
1319
1320 if (large)
1321 /* If the region is too_large, then wrap every block of
1322 the region into single block region.
1323 Here we wrap region head only. Other blocks are
1324 processed in the below cycle. */
1325 {
1326 RGN_NR_BLOCKS (nr_regions) = 1;
1327 nr_regions++;
1328 }
1329
1330 num_bbs = 1;
1331
1332 for (j = i - 1; j >= 0; j--)
1333 {
1334 int succn = order[j];
1335
1336 if (max_hdr[succn] == bbn)
1337 /* This cycle iterates over all basic blocks, that
1338 are supposed to be in the region with head BBN,
1339 and wraps them into that region (or in single
1340 block region). */
1341 {
1342 gcc_assert (degree[succn] == 0);
1343
1344 degree[succn] = -1;
1345 rgn_bb_table[idx] = succn;
1346 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1347 CONTAINING_RGN (succn) = nr_regions;
1348
1349 if (large)
1350 /* Wrap SUCCN into single block region. */
1351 {
1352 RGN_BLOCKS (nr_regions) = idx;
1353 RGN_NR_BLOCKS (nr_regions) = 1;
1354 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1355 RGN_HAS_REAL_EBB (nr_regions) = 0;
1356 nr_regions++;
1357 }
1358
1359 idx++;
1360
1361 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1362 if (e->dest != EXIT_BLOCK_PTR)
1363 degree[e->dest->index]--;
1364 }
1365 }
1366
1367 if (!large)
1368 {
1369 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1370 nr_regions++;
1371 }
1372 }
1373 }
1374
1375 if (sched_verbose >= 6)
1376 {
1377 int *s2, s2_sz;
1378
1379 /* Get the new statistics and print the comparison with the
1380 one before calling this function. */
1381 s2_sz = gather_region_statistics (&s2);
1382 print_region_statistics (s1, s1_sz, s2, s2_sz);
1383 free (s1);
1384 free (s2);
1385 }
1386 }
1387
1388 free (order);
1389 free (max_hdr);
1390
1391 *idxp = idx;
1392 }
1393
1394 /* Functions for regions scheduling information. */
1395
1396 /* Compute dominators, probability, and potential-split-edges of bb.
1397 Assume that these values were already computed for bb's predecessors. */
1398
1399 static void
1400 compute_dom_prob_ps (int bb)
1401 {
1402 edge_iterator in_ei;
1403 edge in_edge;
1404
1405 /* We shouldn't have any real ebbs yet. */
1406 gcc_assert (ebb_head [bb] == bb + current_blocks);
1407
1408 if (IS_RGN_ENTRY (bb))
1409 {
1410 SET_BIT (dom[bb], 0);
1411 prob[bb] = REG_BR_PROB_BASE;
1412 return;
1413 }
1414
1415 prob[bb] = 0;
1416
1417 /* Initialize dom[bb] to '111..1'. */
1418 sbitmap_ones (dom[bb]);
1419
1420 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1421 {
1422 int pred_bb;
1423 edge out_edge;
1424 edge_iterator out_ei;
1425
1426 if (in_edge->src == ENTRY_BLOCK_PTR)
1427 continue;
1428
1429 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1430 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1431 sbitmap_a_or_b (ancestor_edges[bb],
1432 ancestor_edges[bb], ancestor_edges[pred_bb]);
1433
1434 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1435
1436 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1437
1438 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1439 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
1440
1441 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1442 }
1443
1444 SET_BIT (dom[bb], bb);
1445 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1446
1447 if (sched_verbose >= 2)
1448 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1449 (100 * prob[bb]) / REG_BR_PROB_BASE);
1450 }
1451
1452 /* Functions for target info. */
1453
1454 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1455 Note that bb_trg dominates bb_src. */
1456
1457 static void
1458 split_edges (int bb_src, int bb_trg, edgelst *bl)
1459 {
1460 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1461 sbitmap_copy (src, pot_split[bb_src]);
1462
1463 sbitmap_difference (src, src, pot_split[bb_trg]);
1464 extract_edgelst (src, bl);
1465 sbitmap_free (src);
1466 }
1467
1468 /* Find the valid candidate-source-blocks for the target block TRG, compute
1469 their probability, and check if they are speculative or not.
1470 For speculative sources, compute their update-blocks and split-blocks. */
1471
1472 static void
1473 compute_trg_info (int trg)
1474 {
1475 candidate *sp;
1476 edgelst el = { NULL, 0 };
1477 int i, j, k, update_idx;
1478 basic_block block;
1479 sbitmap visited;
1480 edge_iterator ei;
1481 edge e;
1482
1483 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1484
1485 bblst_last = 0;
1486 /* bblst_table holds split blocks and update blocks for each block after
1487 the current one in the region. split blocks and update blocks are
1488 the TO blocks of region edges, so there can be at most rgn_nr_edges
1489 of them. */
1490 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1491 bblst_table = XNEWVEC (basic_block, bblst_size);
1492
1493 edgelst_last = 0;
1494 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1495
1496 /* Define some of the fields for the target bb as well. */
1497 sp = candidate_table + trg;
1498 sp->is_valid = 1;
1499 sp->is_speculative = 0;
1500 sp->src_prob = REG_BR_PROB_BASE;
1501
1502 visited = sbitmap_alloc (last_basic_block);
1503
1504 for (i = trg + 1; i < current_nr_blocks; i++)
1505 {
1506 sp = candidate_table + i;
1507
1508 sp->is_valid = IS_DOMINATED (i, trg);
1509 if (sp->is_valid)
1510 {
1511 int tf = prob[trg], cf = prob[i];
1512
1513 /* In CFGs with low probability edges TF can possibly be zero. */
1514 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1515 sp->is_valid = (sp->src_prob >= min_spec_prob);
1516 }
1517
1518 if (sp->is_valid)
1519 {
1520 split_edges (i, trg, &el);
1521 sp->is_speculative = (el.nr_members) ? 1 : 0;
1522 if (sp->is_speculative && !flag_schedule_speculative)
1523 sp->is_valid = 0;
1524 }
1525
1526 if (sp->is_valid)
1527 {
1528 /* Compute split blocks and store them in bblst_table.
1529 The TO block of every split edge is a split block. */
1530 sp->split_bbs.first_member = &bblst_table[bblst_last];
1531 sp->split_bbs.nr_members = el.nr_members;
1532 for (j = 0; j < el.nr_members; bblst_last++, j++)
1533 bblst_table[bblst_last] = el.first_member[j]->dest;
1534 sp->update_bbs.first_member = &bblst_table[bblst_last];
1535
1536 /* Compute update blocks and store them in bblst_table.
1537 For every split edge, look at the FROM block, and check
1538 all out edges. For each out edge that is not a split edge,
1539 add the TO block to the update block list. This list can end
1540 up with a lot of duplicates. We need to weed them out to avoid
1541 overrunning the end of the bblst_table. */
1542
1543 update_idx = 0;
1544 sbitmap_zero (visited);
1545 for (j = 0; j < el.nr_members; j++)
1546 {
1547 block = el.first_member[j]->src;
1548 FOR_EACH_EDGE (e, ei, block->succs)
1549 {
1550 if (!TEST_BIT (visited, e->dest->index))
1551 {
1552 for (k = 0; k < el.nr_members; k++)
1553 if (e == el.first_member[k])
1554 break;
1555
1556 if (k >= el.nr_members)
1557 {
1558 bblst_table[bblst_last++] = e->dest;
1559 SET_BIT (visited, e->dest->index);
1560 update_idx++;
1561 }
1562 }
1563 }
1564 }
1565 sp->update_bbs.nr_members = update_idx;
1566
1567 /* Make sure we didn't overrun the end of bblst_table. */
1568 gcc_assert (bblst_last <= bblst_size);
1569 }
1570 else
1571 {
1572 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1573
1574 sp->is_speculative = 0;
1575 sp->src_prob = 0;
1576 }
1577 }
1578
1579 sbitmap_free (visited);
1580 }
1581
1582 /* Free the computed target info. */
1583 static void
1584 free_trg_info (void)
1585 {
1586 free (candidate_table);
1587 free (bblst_table);
1588 free (edgelst_table);
1589 }
1590
1591 /* Print candidates info, for debugging purposes. Callable from debugger. */
1592
1593 DEBUG_FUNCTION void
1594 debug_candidate (int i)
1595 {
1596 if (!candidate_table[i].is_valid)
1597 return;
1598
1599 if (candidate_table[i].is_speculative)
1600 {
1601 int j;
1602 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1603
1604 fprintf (sched_dump, "split path: ");
1605 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1606 {
1607 int b = candidate_table[i].split_bbs.first_member[j]->index;
1608
1609 fprintf (sched_dump, " %d ", b);
1610 }
1611 fprintf (sched_dump, "\n");
1612
1613 fprintf (sched_dump, "update path: ");
1614 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1615 {
1616 int b = candidate_table[i].update_bbs.first_member[j]->index;
1617
1618 fprintf (sched_dump, " %d ", b);
1619 }
1620 fprintf (sched_dump, "\n");
1621 }
1622 else
1623 {
1624 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1625 }
1626 }
1627
1628 /* Print candidates info, for debugging purposes. Callable from debugger. */
1629
1630 DEBUG_FUNCTION void
1631 debug_candidates (int trg)
1632 {
1633 int i;
1634
1635 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1636 BB_TO_BLOCK (trg), trg);
1637 for (i = trg + 1; i < current_nr_blocks; i++)
1638 debug_candidate (i);
1639 }
1640
1641 /* Functions for speculative scheduling. */
1642
1643 static bitmap_head not_in_df;
1644
1645 /* Return 0 if x is a set of a register alive in the beginning of one
1646 of the split-blocks of src, otherwise return 1. */
1647
1648 static int
1649 check_live_1 (int src, rtx x)
1650 {
1651 int i;
1652 int regno;
1653 rtx reg = SET_DEST (x);
1654
1655 if (reg == 0)
1656 return 1;
1657
1658 while (GET_CODE (reg) == SUBREG
1659 || GET_CODE (reg) == ZERO_EXTRACT
1660 || GET_CODE (reg) == STRICT_LOW_PART)
1661 reg = XEXP (reg, 0);
1662
1663 if (GET_CODE (reg) == PARALLEL)
1664 {
1665 int i;
1666
1667 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1668 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1669 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1670 return 1;
1671
1672 return 0;
1673 }
1674
1675 if (!REG_P (reg))
1676 return 1;
1677
1678 regno = REGNO (reg);
1679
1680 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1681 {
1682 /* Global registers are assumed live. */
1683 return 0;
1684 }
1685 else
1686 {
1687 if (regno < FIRST_PSEUDO_REGISTER)
1688 {
1689 /* Check for hard registers. */
1690 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1691 while (--j >= 0)
1692 {
1693 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1694 {
1695 basic_block b = candidate_table[src].split_bbs.first_member[i];
1696 int t = bitmap_bit_p (&not_in_df, b->index);
1697
1698 /* We can have split blocks, that were recently generated.
1699 Such blocks are always outside current region. */
1700 gcc_assert (!t || (CONTAINING_RGN (b->index)
1701 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1702
1703 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1704 return 0;
1705 }
1706 }
1707 }
1708 else
1709 {
1710 /* Check for pseudo registers. */
1711 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1712 {
1713 basic_block b = candidate_table[src].split_bbs.first_member[i];
1714 int t = bitmap_bit_p (&not_in_df, b->index);
1715
1716 gcc_assert (!t || (CONTAINING_RGN (b->index)
1717 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1718
1719 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1720 return 0;
1721 }
1722 }
1723 }
1724
1725 return 1;
1726 }
1727
1728 /* If x is a set of a register R, mark that R is alive in the beginning
1729 of every update-block of src. */
1730
1731 static void
1732 update_live_1 (int src, rtx x)
1733 {
1734 int i;
1735 int regno;
1736 rtx reg = SET_DEST (x);
1737
1738 if (reg == 0)
1739 return;
1740
1741 while (GET_CODE (reg) == SUBREG
1742 || GET_CODE (reg) == ZERO_EXTRACT
1743 || GET_CODE (reg) == STRICT_LOW_PART)
1744 reg = XEXP (reg, 0);
1745
1746 if (GET_CODE (reg) == PARALLEL)
1747 {
1748 int i;
1749
1750 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1751 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1752 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1753
1754 return;
1755 }
1756
1757 if (!REG_P (reg))
1758 return;
1759
1760 /* Global registers are always live, so the code below does not apply
1761 to them. */
1762
1763 regno = REGNO (reg);
1764
1765 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1766 {
1767 if (regno < FIRST_PSEUDO_REGISTER)
1768 {
1769 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1770 while (--j >= 0)
1771 {
1772 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1773 {
1774 basic_block b = candidate_table[src].update_bbs.first_member[i];
1775
1776 SET_REGNO_REG_SET (df_get_live_in (b), regno + j);
1777 }
1778 }
1779 }
1780 else
1781 {
1782 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1783 {
1784 basic_block b = candidate_table[src].update_bbs.first_member[i];
1785
1786 SET_REGNO_REG_SET (df_get_live_in (b), regno);
1787 }
1788 }
1789 }
1790 }
1791
1792 /* Return 1 if insn can be speculatively moved from block src to trg,
1793 otherwise return 0. Called before first insertion of insn to
1794 ready-list or before the scheduling. */
1795
1796 static int
1797 check_live (rtx insn, int src)
1798 {
1799 /* Find the registers set by instruction. */
1800 if (GET_CODE (PATTERN (insn)) == SET
1801 || GET_CODE (PATTERN (insn)) == CLOBBER)
1802 return check_live_1 (src, PATTERN (insn));
1803 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1804 {
1805 int j;
1806 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1807 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1808 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1809 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1810 return 0;
1811
1812 return 1;
1813 }
1814
1815 return 1;
1816 }
1817
1818 /* Update the live registers info after insn was moved speculatively from
1819 block src to trg. */
1820
1821 static void
1822 update_live (rtx insn, int src)
1823 {
1824 /* Find the registers set by instruction. */
1825 if (GET_CODE (PATTERN (insn)) == SET
1826 || GET_CODE (PATTERN (insn)) == CLOBBER)
1827 update_live_1 (src, PATTERN (insn));
1828 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1829 {
1830 int j;
1831 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1832 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1833 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1834 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1835 }
1836 }
1837
1838 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1839 #define IS_REACHABLE(bb_from, bb_to) \
1840 (bb_from == bb_to \
1841 || IS_RGN_ENTRY (bb_from) \
1842 || (TEST_BIT (ancestor_edges[bb_to], \
1843 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1844
1845 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1846
1847 static void
1848 set_spec_fed (rtx load_insn)
1849 {
1850 sd_iterator_def sd_it;
1851 dep_t dep;
1852
1853 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1854 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1855 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1856 }
1857
1858 /* On the path from the insn to load_insn_bb, find a conditional
1859 branch depending on insn, that guards the speculative load. */
1860
1861 static int
1862 find_conditional_protection (rtx insn, int load_insn_bb)
1863 {
1864 sd_iterator_def sd_it;
1865 dep_t dep;
1866
1867 /* Iterate through DEF-USE forward dependences. */
1868 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1869 {
1870 rtx next = DEP_CON (dep);
1871
1872 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1873 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1874 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1875 && load_insn_bb != INSN_BB (next)
1876 && DEP_TYPE (dep) == REG_DEP_TRUE
1877 && (JUMP_P (next)
1878 || find_conditional_protection (next, load_insn_bb)))
1879 return 1;
1880 }
1881 return 0;
1882 } /* find_conditional_protection */
1883
1884 /* Returns 1 if the same insn1 that participates in the computation
1885 of load_insn's address is feeding a conditional branch that is
1886 guarding on load_insn. This is true if we find two DEF-USE
1887 chains:
1888 insn1 -> ... -> conditional-branch
1889 insn1 -> ... -> load_insn,
1890 and if a flow path exists:
1891 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1892 and if insn1 is on the path
1893 region-entry -> ... -> bb_trg -> ... load_insn.
1894
1895 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1896 Locate the branch by following INSN_FORW_DEPS from insn1. */
1897
1898 static int
1899 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1900 {
1901 sd_iterator_def sd_it;
1902 dep_t dep;
1903
1904 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1905 {
1906 rtx insn1 = DEP_PRO (dep);
1907
1908 /* Must be a DEF-USE dependence upon non-branch. */
1909 if (DEP_TYPE (dep) != REG_DEP_TRUE
1910 || JUMP_P (insn1))
1911 continue;
1912
1913 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1914 if (INSN_BB (insn1) == bb_src
1915 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1916 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1917 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1918 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1919 continue;
1920
1921 /* Now search for the conditional-branch. */
1922 if (find_conditional_protection (insn1, bb_src))
1923 return 1;
1924
1925 /* Recursive step: search another insn1, "above" current insn1. */
1926 return is_conditionally_protected (insn1, bb_src, bb_trg);
1927 }
1928
1929 /* The chain does not exist. */
1930 return 0;
1931 } /* is_conditionally_protected */
1932
1933 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1934 load_insn can move speculatively from bb_src to bb_trg. All the
1935 following must hold:
1936
1937 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1938 (2) load_insn and load1 have a def-use dependence upon
1939 the same insn 'insn1'.
1940 (3) either load2 is in bb_trg, or:
1941 - there's only one split-block, and
1942 - load1 is on the escape path, and
1943
1944 From all these we can conclude that the two loads access memory
1945 addresses that differ at most by a constant, and hence if moving
1946 load_insn would cause an exception, it would have been caused by
1947 load2 anyhow. */
1948
1949 static int
1950 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1951 {
1952 sd_iterator_def back_sd_it;
1953 dep_t back_dep;
1954 candidate *candp = candidate_table + bb_src;
1955
1956 if (candp->split_bbs.nr_members != 1)
1957 /* Must have exactly one escape block. */
1958 return 0;
1959
1960 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1961 {
1962 rtx insn1 = DEP_PRO (back_dep);
1963
1964 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1965 /* Found a DEF-USE dependence (insn1, load_insn). */
1966 {
1967 sd_iterator_def fore_sd_it;
1968 dep_t fore_dep;
1969
1970 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1971 {
1972 rtx insn2 = DEP_CON (fore_dep);
1973
1974 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1975 {
1976 /* Found a DEF-USE dependence (insn1, insn2). */
1977 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1978 /* insn2 not guaranteed to be a 1 base reg load. */
1979 continue;
1980
1981 if (INSN_BB (insn2) == bb_trg)
1982 /* insn2 is the similar load, in the target block. */
1983 return 1;
1984
1985 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1986 /* insn2 is a similar load, in a split-block. */
1987 return 1;
1988 }
1989 }
1990 }
1991 }
1992
1993 /* Couldn't find a similar load. */
1994 return 0;
1995 } /* is_pfree */
1996
1997 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1998 a load moved speculatively, or if load_insn is protected by
1999 a compare on load_insn's address). */
2000
2001 static int
2002 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2003 {
2004 if (FED_BY_SPEC_LOAD (load_insn))
2005 return 1;
2006
2007 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2008 /* Dependence may 'hide' out of the region. */
2009 return 1;
2010
2011 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2012 return 1;
2013
2014 return 0;
2015 }
2016
2017 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2018 Return 1 if insn is exception-free (and the motion is valid)
2019 and 0 otherwise. */
2020
2021 static int
2022 is_exception_free (rtx insn, int bb_src, int bb_trg)
2023 {
2024 int insn_class = haifa_classify_insn (insn);
2025
2026 /* Handle non-load insns. */
2027 switch (insn_class)
2028 {
2029 case TRAP_FREE:
2030 return 1;
2031 case TRAP_RISKY:
2032 return 0;
2033 default:;
2034 }
2035
2036 /* Handle loads. */
2037 if (!flag_schedule_speculative_load)
2038 return 0;
2039 IS_LOAD_INSN (insn) = 1;
2040 switch (insn_class)
2041 {
2042 case IFREE:
2043 return (1);
2044 case IRISKY:
2045 return 0;
2046 case PFREE_CANDIDATE:
2047 if (is_pfree (insn, bb_src, bb_trg))
2048 return 1;
2049 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2050 case PRISKY_CANDIDATE:
2051 if (!flag_schedule_speculative_load_dangerous
2052 || is_prisky (insn, bb_src, bb_trg))
2053 return 0;
2054 break;
2055 default:;
2056 }
2057
2058 return flag_schedule_speculative_load_dangerous;
2059 }
2060 \f
2061 /* The number of insns from the current block scheduled so far. */
2062 static int sched_target_n_insns;
2063 /* The number of insns from the current block to be scheduled in total. */
2064 static int target_n_insns;
2065 /* The number of insns from the entire region scheduled so far. */
2066 static int sched_n_insns;
2067
2068 /* Implementations of the sched_info functions for region scheduling. */
2069 static void init_ready_list (void);
2070 static int can_schedule_ready_p (rtx);
2071 static void begin_schedule_ready (rtx, rtx);
2072 static ds_t new_ready (rtx, ds_t);
2073 static int schedule_more_p (void);
2074 static const char *rgn_print_insn (const_rtx, int);
2075 static int rgn_rank (rtx, rtx);
2076 static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
2077
2078 /* Functions for speculative scheduling. */
2079 static void rgn_add_remove_insn (rtx, int);
2080 static void rgn_add_block (basic_block, basic_block);
2081 static void rgn_fix_recovery_cfg (int, int, int);
2082 static basic_block advance_target_bb (basic_block, rtx);
2083
2084 /* Return nonzero if there are more insns that should be scheduled. */
2085
2086 static int
2087 schedule_more_p (void)
2088 {
2089 return sched_target_n_insns < target_n_insns;
2090 }
2091
2092 /* Add all insns that are initially ready to the ready list READY. Called
2093 once before scheduling a set of insns. */
2094
2095 static void
2096 init_ready_list (void)
2097 {
2098 rtx prev_head = current_sched_info->prev_head;
2099 rtx next_tail = current_sched_info->next_tail;
2100 int bb_src;
2101 rtx insn;
2102
2103 target_n_insns = 0;
2104 sched_target_n_insns = 0;
2105 sched_n_insns = 0;
2106
2107 /* Print debugging information. */
2108 if (sched_verbose >= 5)
2109 debug_rgn_dependencies (target_bb);
2110
2111 /* Prepare current target block info. */
2112 if (current_nr_blocks > 1)
2113 compute_trg_info (target_bb);
2114
2115 /* Initialize ready list with all 'ready' insns in target block.
2116 Count number of insns in the target block being scheduled. */
2117 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2118 {
2119 try_ready (insn);
2120 target_n_insns++;
2121
2122 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2123 }
2124
2125 /* Add to ready list all 'ready' insns in valid source blocks.
2126 For speculative insns, check-live, exception-free, and
2127 issue-delay. */
2128 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2129 if (IS_VALID (bb_src))
2130 {
2131 rtx src_head;
2132 rtx src_next_tail;
2133 rtx tail, head;
2134
2135 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2136 &head, &tail);
2137 src_next_tail = NEXT_INSN (tail);
2138 src_head = head;
2139
2140 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2141 if (INSN_P (insn) && !BOUNDARY_DEBUG_INSN_P (insn))
2142 try_ready (insn);
2143 }
2144 }
2145
2146 /* Called after taking INSN from the ready list. Returns nonzero if this
2147 insn can be scheduled, nonzero if we should silently discard it. */
2148
2149 static int
2150 can_schedule_ready_p (rtx insn)
2151 {
2152 /* An interblock motion? */
2153 if (INSN_BB (insn) != target_bb
2154 && IS_SPECULATIVE_INSN (insn)
2155 && !check_live (insn, INSN_BB (insn)))
2156 return 0;
2157 else
2158 return 1;
2159 }
2160
2161 /* Updates counter and other information. Split from can_schedule_ready_p ()
2162 because when we schedule insn speculatively then insn passed to
2163 can_schedule_ready_p () differs from the one passed to
2164 begin_schedule_ready (). */
2165 static void
2166 begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
2167 {
2168 /* An interblock motion? */
2169 if (INSN_BB (insn) != target_bb)
2170 {
2171 if (IS_SPECULATIVE_INSN (insn))
2172 {
2173 gcc_assert (check_live (insn, INSN_BB (insn)));
2174
2175 update_live (insn, INSN_BB (insn));
2176
2177 /* For speculative load, mark insns fed by it. */
2178 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2179 set_spec_fed (insn);
2180
2181 nr_spec++;
2182 }
2183 nr_inter++;
2184 }
2185 else
2186 {
2187 /* In block motion. */
2188 sched_target_n_insns++;
2189 }
2190 sched_n_insns++;
2191 }
2192
2193 /* Called after INSN has all its hard dependencies resolved and the speculation
2194 of type TS is enough to overcome them all.
2195 Return nonzero if it should be moved to the ready list or the queue, or zero
2196 if we should silently discard it. */
2197 static ds_t
2198 new_ready (rtx next, ds_t ts)
2199 {
2200 if (INSN_BB (next) != target_bb)
2201 {
2202 int not_ex_free = 0;
2203
2204 /* For speculative insns, before inserting to ready/queue,
2205 check live, exception-free, and issue-delay. */
2206 if (!IS_VALID (INSN_BB (next))
2207 || CANT_MOVE (next)
2208 || (IS_SPECULATIVE_INSN (next)
2209 && ((recog_memoized (next) >= 0
2210 && min_insn_conflict_delay (curr_state, next, next)
2211 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2212 || IS_SPECULATION_CHECK_P (next)
2213 || !check_live (next, INSN_BB (next))
2214 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2215 target_bb)))))
2216 {
2217 if (not_ex_free
2218 /* We are here because is_exception_free () == false.
2219 But we possibly can handle that with control speculation. */
2220 && sched_deps_info->generate_spec_deps
2221 && spec_info->mask & BEGIN_CONTROL)
2222 {
2223 ds_t new_ds;
2224
2225 /* Add control speculation to NEXT's dependency type. */
2226 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2227
2228 /* Check if NEXT can be speculated with new dependency type. */
2229 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2230 /* Here we got new control-speculative instruction. */
2231 ts = new_ds;
2232 else
2233 /* NEXT isn't ready yet. */
2234 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2235 }
2236 else
2237 /* NEXT isn't ready yet. */
2238 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2239 }
2240 }
2241
2242 return ts;
2243 }
2244
2245 /* Return a string that contains the insn uid and optionally anything else
2246 necessary to identify this insn in an output. It's valid to use a
2247 static buffer for this. The ALIGNED parameter should cause the string
2248 to be formatted so that multiple output lines will line up nicely. */
2249
2250 static const char *
2251 rgn_print_insn (const_rtx insn, int aligned)
2252 {
2253 static char tmp[80];
2254
2255 if (aligned)
2256 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2257 else
2258 {
2259 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2260 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2261 else
2262 sprintf (tmp, "%d", INSN_UID (insn));
2263 }
2264 return tmp;
2265 }
2266
2267 /* Compare priority of two insns. Return a positive number if the second
2268 insn is to be preferred for scheduling, and a negative one if the first
2269 is to be preferred. Zero if they are equally good. */
2270
2271 static int
2272 rgn_rank (rtx insn1, rtx insn2)
2273 {
2274 /* Some comparison make sense in interblock scheduling only. */
2275 if (INSN_BB (insn1) != INSN_BB (insn2))
2276 {
2277 int spec_val, prob_val;
2278
2279 /* Prefer an inblock motion on an interblock motion. */
2280 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2281 return 1;
2282 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2283 return -1;
2284
2285 /* Prefer a useful motion on a speculative one. */
2286 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2287 if (spec_val)
2288 return spec_val;
2289
2290 /* Prefer a more probable (speculative) insn. */
2291 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2292 if (prob_val)
2293 return prob_val;
2294 }
2295 return 0;
2296 }
2297
2298 /* NEXT is an instruction that depends on INSN (a backward dependence);
2299 return nonzero if we should include this dependence in priority
2300 calculations. */
2301
2302 int
2303 contributes_to_priority (rtx next, rtx insn)
2304 {
2305 /* NEXT and INSN reside in one ebb. */
2306 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2307 }
2308
2309 /* INSN is a JUMP_INSN, COND_SET is the set of registers that are
2310 conditionally set before INSN. Store the set of registers that
2311 must be considered as used by this jump in USED and that of
2312 registers that must be considered as set in SET. */
2313
2314 static void
2315 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2316 regset cond_exec ATTRIBUTE_UNUSED,
2317 regset used ATTRIBUTE_UNUSED,
2318 regset set ATTRIBUTE_UNUSED)
2319 {
2320 /* Nothing to do here, since we postprocess jumps in
2321 add_branch_dependences. */
2322 }
2323
2324 /* This variable holds common_sched_info hooks and data relevant to
2325 the interblock scheduler. */
2326 static struct common_sched_info_def rgn_common_sched_info;
2327
2328
2329 /* This holds data for the dependence analysis relevant to
2330 the interblock scheduler. */
2331 static struct sched_deps_info_def rgn_sched_deps_info;
2332
2333 /* This holds constant data used for initializing the above structure
2334 for the Haifa scheduler. */
2335 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2336 {
2337 compute_jump_reg_dependencies,
2338 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2339 0, 0, 0
2340 };
2341
2342 /* Same as above, but for the selective scheduler. */
2343 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2344 {
2345 compute_jump_reg_dependencies,
2346 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2347 0, 0, 0
2348 };
2349
2350 /* Return true if scheduling INSN will trigger finish of scheduling
2351 current block. */
2352 static bool
2353 rgn_insn_finishes_block_p (rtx insn)
2354 {
2355 if (INSN_BB (insn) == target_bb
2356 && sched_target_n_insns + 1 == target_n_insns)
2357 /* INSN is the last not-scheduled instruction in the current block. */
2358 return true;
2359
2360 return false;
2361 }
2362
2363 /* Used in schedule_insns to initialize current_sched_info for scheduling
2364 regions (or single basic blocks). */
2365
2366 static const struct haifa_sched_info rgn_const_sched_info =
2367 {
2368 init_ready_list,
2369 can_schedule_ready_p,
2370 schedule_more_p,
2371 new_ready,
2372 rgn_rank,
2373 rgn_print_insn,
2374 contributes_to_priority,
2375 rgn_insn_finishes_block_p,
2376
2377 NULL, NULL,
2378 NULL, NULL,
2379 0, 0,
2380
2381 rgn_add_remove_insn,
2382 begin_schedule_ready,
2383 advance_target_bb,
2384 SCHED_RGN
2385 };
2386
2387 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2388 for the interblock scheduler frontend. */
2389 static struct haifa_sched_info rgn_sched_info;
2390
2391 /* Returns maximum priority that an insn was assigned to. */
2392
2393 int
2394 get_rgn_sched_max_insns_priority (void)
2395 {
2396 return rgn_sched_info.sched_max_insns_priority;
2397 }
2398
2399 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2400
2401 static bool
2402 sets_likely_spilled (rtx pat)
2403 {
2404 bool ret = false;
2405 note_stores (pat, sets_likely_spilled_1, &ret);
2406 return ret;
2407 }
2408
2409 static void
2410 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2411 {
2412 bool *ret = (bool *) data;
2413
2414 if (GET_CODE (pat) == SET
2415 && REG_P (x)
2416 && HARD_REGISTER_P (x)
2417 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2418 *ret = true;
2419 }
2420
2421 /* A bitmap to note insns that participate in any dependency. Used in
2422 add_branch_dependences. */
2423 static sbitmap insn_referenced;
2424
2425 /* Add dependences so that branches are scheduled to run last in their
2426 block. */
2427 static void
2428 add_branch_dependences (rtx head, rtx tail)
2429 {
2430 rtx insn, last;
2431
2432 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2433 that can throw exceptions, force them to remain in order at the end of
2434 the block by adding dependencies and giving the last a high priority.
2435 There may be notes present, and prev_head may also be a note.
2436
2437 Branches must obviously remain at the end. Calls should remain at the
2438 end since moving them results in worse register allocation. Uses remain
2439 at the end to ensure proper register allocation.
2440
2441 cc0 setters remain at the end because they can't be moved away from
2442 their cc0 user.
2443
2444 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2445
2446 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2447 values) are not moved before reload because we can wind up with register
2448 allocation failures. */
2449
2450 while (tail != head && DEBUG_INSN_P (tail))
2451 tail = PREV_INSN (tail);
2452
2453 insn = tail;
2454 last = 0;
2455 while (CALL_P (insn)
2456 || JUMP_P (insn)
2457 || (NONJUMP_INSN_P (insn)
2458 && (GET_CODE (PATTERN (insn)) == USE
2459 || GET_CODE (PATTERN (insn)) == CLOBBER
2460 || can_throw_internal (insn)
2461 #ifdef HAVE_cc0
2462 || sets_cc0_p (PATTERN (insn))
2463 #endif
2464 || (!reload_completed
2465 && sets_likely_spilled (PATTERN (insn)))))
2466 || NOTE_P (insn))
2467 {
2468 if (!NOTE_P (insn))
2469 {
2470 if (last != 0
2471 && sd_find_dep_between (insn, last, false) == NULL)
2472 {
2473 if (! sched_insns_conditions_mutex_p (last, insn))
2474 add_dependence (last, insn, REG_DEP_ANTI);
2475 SET_BIT (insn_referenced, INSN_LUID (insn));
2476 }
2477
2478 CANT_MOVE (insn) = 1;
2479
2480 last = insn;
2481 }
2482
2483 /* Don't overrun the bounds of the basic block. */
2484 if (insn == head)
2485 break;
2486
2487 do
2488 insn = PREV_INSN (insn);
2489 while (insn != head && DEBUG_INSN_P (insn));
2490 }
2491
2492 /* Make sure these insns are scheduled last in their block. */
2493 insn = last;
2494 if (insn != 0)
2495 while (insn != head)
2496 {
2497 insn = prev_nonnote_insn (insn);
2498
2499 if (TEST_BIT (insn_referenced, INSN_LUID (insn))
2500 || DEBUG_INSN_P (insn))
2501 continue;
2502
2503 if (! sched_insns_conditions_mutex_p (last, insn))
2504 add_dependence (last, insn, REG_DEP_ANTI);
2505 }
2506
2507 if (!targetm.have_conditional_execution ())
2508 return;
2509
2510 /* Finally, if the block ends in a jump, and we are doing intra-block
2511 scheduling, make sure that the branch depends on any COND_EXEC insns
2512 inside the block to avoid moving the COND_EXECs past the branch insn.
2513
2514 We only have to do this after reload, because (1) before reload there
2515 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2516 scheduler after reload.
2517
2518 FIXME: We could in some cases move COND_EXEC insns past the branch if
2519 this scheduler would be a little smarter. Consider this code:
2520
2521 T = [addr]
2522 C ? addr += 4
2523 !C ? X += 12
2524 C ? T += 1
2525 C ? jump foo
2526
2527 On a target with a one cycle stall on a memory access the optimal
2528 sequence would be:
2529
2530 T = [addr]
2531 C ? addr += 4
2532 C ? T += 1
2533 C ? jump foo
2534 !C ? X += 12
2535
2536 We don't want to put the 'X += 12' before the branch because it just
2537 wastes a cycle of execution time when the branch is taken.
2538
2539 Note that in the example "!C" will always be true. That is another
2540 possible improvement for handling COND_EXECs in this scheduler: it
2541 could remove always-true predicates. */
2542
2543 if (!reload_completed || ! JUMP_P (tail))
2544 return;
2545
2546 insn = tail;
2547 while (insn != head)
2548 {
2549 insn = PREV_INSN (insn);
2550
2551 /* Note that we want to add this dependency even when
2552 sched_insns_conditions_mutex_p returns true. The whole point
2553 is that we _want_ this dependency, even if these insns really
2554 are independent. */
2555 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2556 add_dependence (tail, insn, REG_DEP_ANTI);
2557 }
2558 }
2559
2560 /* Data structures for the computation of data dependences in a regions. We
2561 keep one `deps' structure for every basic block. Before analyzing the
2562 data dependences for a bb, its variables are initialized as a function of
2563 the variables of its predecessors. When the analysis for a bb completes,
2564 we save the contents to the corresponding bb_deps[bb] variable. */
2565
2566 static struct deps_desc *bb_deps;
2567
2568 /* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
2569
2570 static rtx
2571 concat_INSN_LIST (rtx copy, rtx old)
2572 {
2573 rtx new_rtx = old;
2574 for (; copy ; copy = XEXP (copy, 1))
2575 {
2576 new_rtx = alloc_INSN_LIST (XEXP (copy, 0), new_rtx);
2577 PUT_REG_NOTE_KIND (new_rtx, REG_NOTE_KIND (copy));
2578 }
2579 return new_rtx;
2580 }
2581
2582 static void
2583 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2584 rtx *old_mems_p)
2585 {
2586 rtx new_insns = *old_insns_p;
2587 rtx new_mems = *old_mems_p;
2588
2589 while (copy_insns)
2590 {
2591 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2592 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2593 copy_insns = XEXP (copy_insns, 1);
2594 copy_mems = XEXP (copy_mems, 1);
2595 }
2596
2597 *old_insns_p = new_insns;
2598 *old_mems_p = new_mems;
2599 }
2600
2601 /* Join PRED_DEPS to the SUCC_DEPS. */
2602 void
2603 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2604 {
2605 unsigned reg;
2606 reg_set_iterator rsi;
2607
2608 /* The reg_last lists are inherited by successor. */
2609 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2610 {
2611 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2612 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2613
2614 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2615 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2616 succ_rl->implicit_sets
2617 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2618 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2619 succ_rl->clobbers);
2620 succ_rl->uses_length += pred_rl->uses_length;
2621 succ_rl->clobbers_length += pred_rl->clobbers_length;
2622 }
2623 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2624
2625 /* Mem read/write lists are inherited by successor. */
2626 concat_insn_mem_list (pred_deps->pending_read_insns,
2627 pred_deps->pending_read_mems,
2628 &succ_deps->pending_read_insns,
2629 &succ_deps->pending_read_mems);
2630 concat_insn_mem_list (pred_deps->pending_write_insns,
2631 pred_deps->pending_write_mems,
2632 &succ_deps->pending_write_insns,
2633 &succ_deps->pending_write_mems);
2634
2635 succ_deps->last_pending_memory_flush
2636 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2637 succ_deps->last_pending_memory_flush);
2638
2639 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2640 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2641 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2642
2643 /* last_function_call is inherited by successor. */
2644 succ_deps->last_function_call
2645 = concat_INSN_LIST (pred_deps->last_function_call,
2646 succ_deps->last_function_call);
2647
2648 /* last_function_call_may_noreturn is inherited by successor. */
2649 succ_deps->last_function_call_may_noreturn
2650 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2651 succ_deps->last_function_call_may_noreturn);
2652
2653 /* sched_before_next_call is inherited by successor. */
2654 succ_deps->sched_before_next_call
2655 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2656 succ_deps->sched_before_next_call);
2657 }
2658
2659 /* After computing the dependencies for block BB, propagate the dependencies
2660 found in TMP_DEPS to the successors of the block. */
2661 static void
2662 propagate_deps (int bb, struct deps_desc *pred_deps)
2663 {
2664 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2665 edge_iterator ei;
2666 edge e;
2667
2668 /* bb's structures are inherited by its successors. */
2669 FOR_EACH_EDGE (e, ei, block->succs)
2670 {
2671 /* Only bbs "below" bb, in the same region, are interesting. */
2672 if (e->dest == EXIT_BLOCK_PTR
2673 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2674 || BLOCK_TO_BB (e->dest->index) <= bb)
2675 continue;
2676
2677 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2678 }
2679
2680 /* These lists should point to the right place, for correct
2681 freeing later. */
2682 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2683 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2684 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2685 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2686
2687 /* Can't allow these to be freed twice. */
2688 pred_deps->pending_read_insns = 0;
2689 pred_deps->pending_read_mems = 0;
2690 pred_deps->pending_write_insns = 0;
2691 pred_deps->pending_write_mems = 0;
2692 }
2693
2694 /* Compute dependences inside bb. In a multiple blocks region:
2695 (1) a bb is analyzed after its predecessors, and (2) the lists in
2696 effect at the end of bb (after analyzing for bb) are inherited by
2697 bb's successors.
2698
2699 Specifically for reg-reg data dependences, the block insns are
2700 scanned by sched_analyze () top-to-bottom. Three lists are
2701 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2702 reg_last[].implicit_sets for implicit hard register DEFs, and
2703 reg_last[].uses for register USEs.
2704
2705 When analysis is completed for bb, we update for its successors:
2706 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2707 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2708 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2709
2710 The mechanism for computing mem-mem data dependence is very
2711 similar, and the result is interblock dependences in the region. */
2712
2713 static void
2714 compute_block_dependences (int bb)
2715 {
2716 rtx head, tail;
2717 struct deps_desc tmp_deps;
2718
2719 tmp_deps = bb_deps[bb];
2720
2721 /* Do the analysis for this block. */
2722 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2723 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2724
2725 sched_analyze (&tmp_deps, head, tail);
2726
2727 /* Selective scheduling handles control dependencies by itself. */
2728 if (!sel_sched_p ())
2729 add_branch_dependences (head, tail);
2730
2731 if (current_nr_blocks > 1)
2732 propagate_deps (bb, &tmp_deps);
2733
2734 /* Free up the INSN_LISTs. */
2735 free_deps (&tmp_deps);
2736
2737 if (targetm.sched.dependencies_evaluation_hook)
2738 targetm.sched.dependencies_evaluation_hook (head, tail);
2739 }
2740
2741 /* Free dependencies of instructions inside BB. */
2742 static void
2743 free_block_dependencies (int bb)
2744 {
2745 rtx head;
2746 rtx tail;
2747
2748 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2749
2750 if (no_real_insns_p (head, tail))
2751 return;
2752
2753 sched_free_deps (head, tail, true);
2754 }
2755
2756 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2757 them to the unused_*_list variables, so that they can be reused. */
2758
2759 static void
2760 free_pending_lists (void)
2761 {
2762 int bb;
2763
2764 for (bb = 0; bb < current_nr_blocks; bb++)
2765 {
2766 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2767 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2768 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2769 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2770 }
2771 }
2772 \f
2773 /* Print dependences for debugging starting from FROM_BB.
2774 Callable from debugger. */
2775 /* Print dependences for debugging starting from FROM_BB.
2776 Callable from debugger. */
2777 DEBUG_FUNCTION void
2778 debug_rgn_dependencies (int from_bb)
2779 {
2780 int bb;
2781
2782 fprintf (sched_dump,
2783 ";; --------------- forward dependences: ------------ \n");
2784
2785 for (bb = from_bb; bb < current_nr_blocks; bb++)
2786 {
2787 rtx head, tail;
2788
2789 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2790 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2791 BB_TO_BLOCK (bb), bb);
2792
2793 debug_dependencies (head, tail);
2794 }
2795 }
2796
2797 /* Print dependencies information for instructions between HEAD and TAIL.
2798 ??? This function would probably fit best in haifa-sched.c. */
2799 void debug_dependencies (rtx head, rtx tail)
2800 {
2801 rtx insn;
2802 rtx next_tail = NEXT_INSN (tail);
2803
2804 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2805 "insn", "code", "bb", "dep", "prio", "cost",
2806 "reservation");
2807 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2808 "----", "----", "--", "---", "----", "----",
2809 "-----------");
2810
2811 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2812 {
2813 if (! INSN_P (insn))
2814 {
2815 int n;
2816 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2817 if (NOTE_P (insn))
2818 {
2819 n = NOTE_KIND (insn);
2820 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2821 }
2822 else
2823 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2824 continue;
2825 }
2826
2827 fprintf (sched_dump,
2828 ";; %s%5d%6d%6d%6d%6d%6d ",
2829 (SCHED_GROUP_P (insn) ? "+" : " "),
2830 INSN_UID (insn),
2831 INSN_CODE (insn),
2832 BLOCK_NUM (insn),
2833 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2834 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2835 : INSN_PRIORITY (insn))
2836 : INSN_PRIORITY (insn)),
2837 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2838 : insn_cost (insn))
2839 : insn_cost (insn)));
2840
2841 if (recog_memoized (insn) < 0)
2842 fprintf (sched_dump, "nothing");
2843 else
2844 print_reservation (sched_dump, insn);
2845
2846 fprintf (sched_dump, "\t: ");
2847 {
2848 sd_iterator_def sd_it;
2849 dep_t dep;
2850
2851 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2852 fprintf (sched_dump, "%d ", INSN_UID (DEP_CON (dep)));
2853 }
2854 fprintf (sched_dump, "\n");
2855 }
2856
2857 fprintf (sched_dump, "\n");
2858 }
2859 \f
2860 /* Returns true if all the basic blocks of the current region have
2861 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2862 bool
2863 sched_is_disabled_for_current_region_p (void)
2864 {
2865 int bb;
2866
2867 for (bb = 0; bb < current_nr_blocks; bb++)
2868 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2869 return false;
2870
2871 return true;
2872 }
2873
2874 /* Free all region dependencies saved in INSN_BACK_DEPS and
2875 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2876 when scheduling, so this function is supposed to be called from
2877 the selective scheduling only. */
2878 void
2879 free_rgn_deps (void)
2880 {
2881 int bb;
2882
2883 for (bb = 0; bb < current_nr_blocks; bb++)
2884 {
2885 rtx head, tail;
2886
2887 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2888 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2889
2890 sched_free_deps (head, tail, false);
2891 }
2892 }
2893
2894 static int rgn_n_insns;
2895
2896 /* Compute insn priority for a current region. */
2897 void
2898 compute_priorities (void)
2899 {
2900 int bb;
2901
2902 current_sched_info->sched_max_insns_priority = 0;
2903 for (bb = 0; bb < current_nr_blocks; bb++)
2904 {
2905 rtx head, tail;
2906
2907 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2908 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2909
2910 if (no_real_insns_p (head, tail))
2911 continue;
2912
2913 rgn_n_insns += set_priorities (head, tail);
2914 }
2915 current_sched_info->sched_max_insns_priority++;
2916 }
2917
2918 /* Schedule a region. A region is either an inner loop, a loop-free
2919 subroutine, or a single basic block. Each bb in the region is
2920 scheduled after its flow predecessors. */
2921
2922 static void
2923 schedule_region (int rgn)
2924 {
2925 int bb;
2926 int sched_rgn_n_insns = 0;
2927
2928 rgn_n_insns = 0;
2929
2930 rgn_setup_region (rgn);
2931
2932 /* Don't schedule region that is marked by
2933 NOTE_DISABLE_SCHED_OF_BLOCK. */
2934 if (sched_is_disabled_for_current_region_p ())
2935 return;
2936
2937 sched_rgn_compute_dependencies (rgn);
2938
2939 sched_rgn_local_init (rgn);
2940
2941 /* Set priorities. */
2942 compute_priorities ();
2943
2944 sched_extend_ready_list (rgn_n_insns);
2945
2946 if (sched_pressure_p)
2947 {
2948 sched_init_region_reg_pressure_info ();
2949 for (bb = 0; bb < current_nr_blocks; bb++)
2950 {
2951 basic_block first_bb, last_bb;
2952 rtx head, tail;
2953
2954 first_bb = EBB_FIRST_BB (bb);
2955 last_bb = EBB_LAST_BB (bb);
2956
2957 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2958
2959 if (no_real_insns_p (head, tail))
2960 {
2961 gcc_assert (first_bb == last_bb);
2962 continue;
2963 }
2964 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
2965 }
2966 }
2967
2968 /* Now we can schedule all blocks. */
2969 for (bb = 0; bb < current_nr_blocks; bb++)
2970 {
2971 basic_block first_bb, last_bb, curr_bb;
2972 rtx head, tail;
2973
2974 first_bb = EBB_FIRST_BB (bb);
2975 last_bb = EBB_LAST_BB (bb);
2976
2977 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2978
2979 if (no_real_insns_p (head, tail))
2980 {
2981 gcc_assert (first_bb == last_bb);
2982 continue;
2983 }
2984
2985 current_sched_info->prev_head = PREV_INSN (head);
2986 current_sched_info->next_tail = NEXT_INSN (tail);
2987
2988 remove_notes (head, tail);
2989
2990 unlink_bb_notes (first_bb, last_bb);
2991
2992 target_bb = bb;
2993
2994 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2995 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
2996
2997 curr_bb = first_bb;
2998 if (dbg_cnt (sched_block))
2999 {
3000 schedule_block (&curr_bb);
3001 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3002 sched_rgn_n_insns += sched_n_insns;
3003 }
3004 else
3005 {
3006 sched_rgn_n_insns += rgn_n_insns;
3007 }
3008
3009 /* Clean up. */
3010 if (current_nr_blocks > 1)
3011 free_trg_info ();
3012 }
3013
3014 /* Sanity check: verify that all region insns were scheduled. */
3015 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3016
3017 sched_finish_ready_list ();
3018
3019 /* Done with this region. */
3020 sched_rgn_local_finish ();
3021
3022 /* Free dependencies. */
3023 for (bb = 0; bb < current_nr_blocks; ++bb)
3024 free_block_dependencies (bb);
3025
3026 gcc_assert (haifa_recovery_bb_ever_added_p
3027 || deps_pools_are_empty_p ());
3028 }
3029
3030 /* Initialize data structures for region scheduling. */
3031
3032 void
3033 sched_rgn_init (bool single_blocks_p)
3034 {
3035 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3036 / 100);
3037
3038 nr_inter = 0;
3039 nr_spec = 0;
3040
3041 extend_regions ();
3042
3043 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3044 CONTAINING_RGN (EXIT_BLOCK) = -1;
3045
3046 /* Compute regions for scheduling. */
3047 if (single_blocks_p
3048 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
3049 || !flag_schedule_interblock
3050 || is_cfg_nonregular ())
3051 {
3052 find_single_block_region (sel_sched_p ());
3053 }
3054 else
3055 {
3056 /* Compute the dominators and post dominators. */
3057 if (!sel_sched_p ())
3058 calculate_dominance_info (CDI_DOMINATORS);
3059
3060 /* Find regions. */
3061 find_rgns ();
3062
3063 if (sched_verbose >= 3)
3064 debug_regions ();
3065
3066 /* For now. This will move as more and more of haifa is converted
3067 to using the cfg code. */
3068 if (!sel_sched_p ())
3069 free_dominance_info (CDI_DOMINATORS);
3070 }
3071
3072 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks);
3073
3074 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3075 RGN_NR_BLOCKS (nr_regions - 1));
3076 }
3077
3078 /* Free data structures for region scheduling. */
3079 void
3080 sched_rgn_finish (void)
3081 {
3082 /* Reposition the prologue and epilogue notes in case we moved the
3083 prologue/epilogue insns. */
3084 if (reload_completed)
3085 reposition_prologue_and_epilogue_notes ();
3086
3087 if (sched_verbose)
3088 {
3089 if (reload_completed == 0
3090 && flag_schedule_interblock)
3091 {
3092 fprintf (sched_dump,
3093 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3094 nr_inter, nr_spec);
3095 }
3096 else
3097 gcc_assert (nr_inter <= 0);
3098 fprintf (sched_dump, "\n\n");
3099 }
3100
3101 nr_regions = 0;
3102
3103 free (rgn_table);
3104 rgn_table = NULL;
3105
3106 free (rgn_bb_table);
3107 rgn_bb_table = NULL;
3108
3109 free (block_to_bb);
3110 block_to_bb = NULL;
3111
3112 free (containing_rgn);
3113 containing_rgn = NULL;
3114
3115 free (ebb_head);
3116 ebb_head = NULL;
3117 }
3118
3119 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3120 point to the region RGN. */
3121 void
3122 rgn_setup_region (int rgn)
3123 {
3124 int bb;
3125
3126 /* Set variables for the current region. */
3127 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3128 current_blocks = RGN_BLOCKS (rgn);
3129
3130 /* EBB_HEAD is a region-scope structure. But we realloc it for
3131 each region to save time/memory/something else.
3132 See comments in add_block1, for what reasons we allocate +1 element. */
3133 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3134 for (bb = 0; bb <= current_nr_blocks; bb++)
3135 ebb_head[bb] = current_blocks + bb;
3136 }
3137
3138 /* Compute instruction dependencies in region RGN. */
3139 void
3140 sched_rgn_compute_dependencies (int rgn)
3141 {
3142 if (!RGN_DONT_CALC_DEPS (rgn))
3143 {
3144 int bb;
3145
3146 if (sel_sched_p ())
3147 sched_emulate_haifa_p = 1;
3148
3149 init_deps_global ();
3150
3151 /* Initializations for region data dependence analysis. */
3152 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3153 for (bb = 0; bb < current_nr_blocks; bb++)
3154 init_deps (bb_deps + bb, false);
3155
3156 /* Initialize bitmap used in add_branch_dependences. */
3157 insn_referenced = sbitmap_alloc (sched_max_luid);
3158 sbitmap_zero (insn_referenced);
3159
3160 /* Compute backward dependencies. */
3161 for (bb = 0; bb < current_nr_blocks; bb++)
3162 compute_block_dependences (bb);
3163
3164 sbitmap_free (insn_referenced);
3165 free_pending_lists ();
3166 finish_deps_global ();
3167 free (bb_deps);
3168
3169 /* We don't want to recalculate this twice. */
3170 RGN_DONT_CALC_DEPS (rgn) = 1;
3171
3172 if (sel_sched_p ())
3173 sched_emulate_haifa_p = 0;
3174 }
3175 else
3176 /* (This is a recovery block. It is always a single block region.)
3177 OR (We use selective scheduling.) */
3178 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3179 }
3180
3181 /* Init region data structures. Returns true if this region should
3182 not be scheduled. */
3183 void
3184 sched_rgn_local_init (int rgn)
3185 {
3186 int bb;
3187
3188 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3189 if (current_nr_blocks > 1)
3190 {
3191 basic_block block;
3192 edge e;
3193 edge_iterator ei;
3194
3195 prob = XNEWVEC (int, current_nr_blocks);
3196
3197 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3198 sbitmap_vector_zero (dom, current_nr_blocks);
3199
3200 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3201 rgn_nr_edges = 0;
3202 FOR_EACH_BB (block)
3203 {
3204 if (CONTAINING_RGN (block->index) != rgn)
3205 continue;
3206 FOR_EACH_EDGE (e, ei, block->succs)
3207 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3208 }
3209
3210 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3211 rgn_nr_edges = 0;
3212 FOR_EACH_BB (block)
3213 {
3214 if (CONTAINING_RGN (block->index) != rgn)
3215 continue;
3216 FOR_EACH_EDGE (e, ei, block->succs)
3217 rgn_edges[rgn_nr_edges++] = e;
3218 }
3219
3220 /* Split edges. */
3221 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3222 sbitmap_vector_zero (pot_split, current_nr_blocks);
3223 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3224 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
3225
3226 /* Compute probabilities, dominators, split_edges. */
3227 for (bb = 0; bb < current_nr_blocks; bb++)
3228 compute_dom_prob_ps (bb);
3229
3230 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3231 /* We don't need them anymore. But we want to avoid duplication of
3232 aux fields in the newly created edges. */
3233 FOR_EACH_BB (block)
3234 {
3235 if (CONTAINING_RGN (block->index) != rgn)
3236 continue;
3237 FOR_EACH_EDGE (e, ei, block->succs)
3238 e->aux = NULL;
3239 }
3240 }
3241 }
3242
3243 /* Free data computed for the finished region. */
3244 void
3245 sched_rgn_local_free (void)
3246 {
3247 free (prob);
3248 sbitmap_vector_free (dom);
3249 sbitmap_vector_free (pot_split);
3250 sbitmap_vector_free (ancestor_edges);
3251 free (rgn_edges);
3252 }
3253
3254 /* Free data computed for the finished region. */
3255 void
3256 sched_rgn_local_finish (void)
3257 {
3258 if (current_nr_blocks > 1 && !sel_sched_p ())
3259 {
3260 sched_rgn_local_free ();
3261 }
3262 }
3263
3264 /* Setup scheduler infos. */
3265 void
3266 rgn_setup_common_sched_info (void)
3267 {
3268 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3269 sizeof (rgn_common_sched_info));
3270
3271 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3272 rgn_common_sched_info.add_block = rgn_add_block;
3273 rgn_common_sched_info.estimate_number_of_insns
3274 = rgn_estimate_number_of_insns;
3275 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3276
3277 common_sched_info = &rgn_common_sched_info;
3278 }
3279
3280 /* Setup all *_sched_info structures (for the Haifa frontend
3281 and for the dependence analysis) in the interblock scheduler. */
3282 void
3283 rgn_setup_sched_infos (void)
3284 {
3285 if (!sel_sched_p ())
3286 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3287 sizeof (rgn_sched_deps_info));
3288 else
3289 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3290 sizeof (rgn_sched_deps_info));
3291
3292 sched_deps_info = &rgn_sched_deps_info;
3293
3294 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3295 current_sched_info = &rgn_sched_info;
3296 }
3297
3298 /* The one entry point in this file. */
3299 void
3300 schedule_insns (void)
3301 {
3302 int rgn;
3303
3304 /* Taking care of this degenerate case makes the rest of
3305 this code simpler. */
3306 if (n_basic_blocks == NUM_FIXED_BLOCKS)
3307 return;
3308
3309 rgn_setup_common_sched_info ();
3310 rgn_setup_sched_infos ();
3311
3312 haifa_sched_init ();
3313 sched_rgn_init (reload_completed);
3314
3315 bitmap_initialize (&not_in_df, 0);
3316 bitmap_clear (&not_in_df);
3317
3318 /* Schedule every region in the subroutine. */
3319 for (rgn = 0; rgn < nr_regions; rgn++)
3320 if (dbg_cnt (sched_region))
3321 schedule_region (rgn);
3322
3323 /* Clean up. */
3324 sched_rgn_finish ();
3325 bitmap_clear (&not_in_df);
3326
3327 haifa_sched_finish ();
3328 }
3329
3330 /* INSN has been added to/removed from current region. */
3331 static void
3332 rgn_add_remove_insn (rtx insn, int remove_p)
3333 {
3334 if (!remove_p)
3335 rgn_n_insns++;
3336 else
3337 rgn_n_insns--;
3338
3339 if (INSN_BB (insn) == target_bb)
3340 {
3341 if (!remove_p)
3342 target_n_insns++;
3343 else
3344 target_n_insns--;
3345 }
3346 }
3347
3348 /* Extend internal data structures. */
3349 void
3350 extend_regions (void)
3351 {
3352 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
3353 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
3354 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
3355 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
3356 }
3357
3358 void
3359 rgn_make_new_region_out_of_new_block (basic_block bb)
3360 {
3361 int i;
3362
3363 i = RGN_BLOCKS (nr_regions);
3364 /* I - first free position in rgn_bb_table. */
3365
3366 rgn_bb_table[i] = bb->index;
3367 RGN_NR_BLOCKS (nr_regions) = 1;
3368 RGN_HAS_REAL_EBB (nr_regions) = 0;
3369 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3370 CONTAINING_RGN (bb->index) = nr_regions;
3371 BLOCK_TO_BB (bb->index) = 0;
3372
3373 nr_regions++;
3374
3375 RGN_BLOCKS (nr_regions) = i + 1;
3376 }
3377
3378 /* BB was added to ebb after AFTER. */
3379 static void
3380 rgn_add_block (basic_block bb, basic_block after)
3381 {
3382 extend_regions ();
3383 bitmap_set_bit (&not_in_df, bb->index);
3384
3385 if (after == 0 || after == EXIT_BLOCK_PTR)
3386 {
3387 rgn_make_new_region_out_of_new_block (bb);
3388 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after == EXIT_BLOCK_PTR);
3389 }
3390 else
3391 {
3392 int i, pos;
3393
3394 /* We need to fix rgn_table, block_to_bb, containing_rgn
3395 and ebb_head. */
3396
3397 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3398
3399 /* We extend ebb_head to one more position to
3400 easily find the last position of the last ebb in
3401 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3402 is _always_ valid for access. */
3403
3404 i = BLOCK_TO_BB (after->index) + 1;
3405 pos = ebb_head[i] - 1;
3406 /* Now POS is the index of the last block in the region. */
3407
3408 /* Find index of basic block AFTER. */
3409 for (; rgn_bb_table[pos] != after->index; pos--);
3410
3411 pos++;
3412 gcc_assert (pos > ebb_head[i - 1]);
3413
3414 /* i - ebb right after "AFTER". */
3415 /* ebb_head[i] - VALID. */
3416
3417 /* Source position: ebb_head[i]
3418 Destination position: ebb_head[i] + 1
3419 Last position:
3420 RGN_BLOCKS (nr_regions) - 1
3421 Number of elements to copy: (last_position) - (source_position) + 1
3422 */
3423
3424 memmove (rgn_bb_table + pos + 1,
3425 rgn_bb_table + pos,
3426 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3427 * sizeof (*rgn_bb_table));
3428
3429 rgn_bb_table[pos] = bb->index;
3430
3431 for (; i <= current_nr_blocks; i++)
3432 ebb_head [i]++;
3433
3434 i = CONTAINING_RGN (after->index);
3435 CONTAINING_RGN (bb->index) = i;
3436
3437 RGN_HAS_REAL_EBB (i) = 1;
3438
3439 for (++i; i <= nr_regions; i++)
3440 RGN_BLOCKS (i)++;
3441 }
3442 }
3443
3444 /* Fix internal data after interblock movement of jump instruction.
3445 For parameter meaning please refer to
3446 sched-int.h: struct sched_info: fix_recovery_cfg. */
3447 static void
3448 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3449 {
3450 int old_pos, new_pos, i;
3451
3452 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3453
3454 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3455 rgn_bb_table[old_pos] != check_bb_nexti;
3456 old_pos--);
3457 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3458
3459 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3460 rgn_bb_table[new_pos] != bbi;
3461 new_pos--);
3462 new_pos++;
3463 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3464
3465 gcc_assert (new_pos < old_pos);
3466
3467 memmove (rgn_bb_table + new_pos + 1,
3468 rgn_bb_table + new_pos,
3469 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3470
3471 rgn_bb_table[new_pos] = check_bb_nexti;
3472
3473 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3474 ebb_head[i]++;
3475 }
3476
3477 /* Return next block in ebb chain. For parameter meaning please refer to
3478 sched-int.h: struct sched_info: advance_target_bb. */
3479 static basic_block
3480 advance_target_bb (basic_block bb, rtx insn)
3481 {
3482 if (insn)
3483 return 0;
3484
3485 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3486 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3487 return bb->next_bb;
3488 }
3489
3490 #endif
3491 \f
3492 static bool
3493 gate_handle_sched (void)
3494 {
3495 #ifdef INSN_SCHEDULING
3496 return flag_schedule_insns && dbg_cnt (sched_func);
3497 #else
3498 return 0;
3499 #endif
3500 }
3501
3502 /* Run instruction scheduler. */
3503 static unsigned int
3504 rest_of_handle_sched (void)
3505 {
3506 #ifdef INSN_SCHEDULING
3507 if (flag_selective_scheduling
3508 && ! maybe_skip_selective_scheduling ())
3509 run_selective_scheduling ();
3510 else
3511 schedule_insns ();
3512 #endif
3513 return 0;
3514 }
3515
3516 static bool
3517 gate_handle_sched2 (void)
3518 {
3519 #ifdef INSN_SCHEDULING
3520 return optimize > 0 && flag_schedule_insns_after_reload
3521 && dbg_cnt (sched2_func);
3522 #else
3523 return 0;
3524 #endif
3525 }
3526
3527 /* Run second scheduling pass after reload. */
3528 static unsigned int
3529 rest_of_handle_sched2 (void)
3530 {
3531 #ifdef INSN_SCHEDULING
3532 if (flag_selective_scheduling2
3533 && ! maybe_skip_selective_scheduling ())
3534 run_selective_scheduling ();
3535 else
3536 {
3537 /* Do control and data sched analysis again,
3538 and write some more of the results to dump file. */
3539 if (flag_sched2_use_superblocks)
3540 schedule_ebbs ();
3541 else
3542 schedule_insns ();
3543 }
3544 #endif
3545 return 0;
3546 }
3547
3548 struct rtl_opt_pass pass_sched =
3549 {
3550 {
3551 RTL_PASS,
3552 "sched1", /* name */
3553 gate_handle_sched, /* gate */
3554 rest_of_handle_sched, /* execute */
3555 NULL, /* sub */
3556 NULL, /* next */
3557 0, /* static_pass_number */
3558 TV_SCHED, /* tv_id */
3559 0, /* properties_required */
3560 0, /* properties_provided */
3561 0, /* properties_destroyed */
3562 0, /* todo_flags_start */
3563 TODO_df_finish | TODO_verify_rtl_sharing |
3564 TODO_dump_func |
3565 TODO_verify_flow |
3566 TODO_ggc_collect /* todo_flags_finish */
3567 }
3568 };
3569
3570 struct rtl_opt_pass pass_sched2 =
3571 {
3572 {
3573 RTL_PASS,
3574 "sched2", /* name */
3575 gate_handle_sched2, /* gate */
3576 rest_of_handle_sched2, /* execute */
3577 NULL, /* sub */
3578 NULL, /* next */
3579 0, /* static_pass_number */
3580 TV_SCHED2, /* tv_id */
3581 0, /* properties_required */
3582 0, /* properties_provided */
3583 0, /* properties_destroyed */
3584 0, /* todo_flags_start */
3585 TODO_df_finish | TODO_verify_rtl_sharing |
3586 TODO_dump_func |
3587 TODO_verify_flow |
3588 TODO_ggc_collect /* todo_flags_finish */
3589 }
3590 };