alias.c (record_set, [...]): Constify.
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
6 and currently maintained by, Jim Wilson (wilson@cygnus.com)
7
8 This file is part of GCC.
9
10 GCC is free software; you can redistribute it and/or modify it under
11 the terms of the GNU General Public License as published by the Free
12 Software Foundation; either version 3, or (at your option) any later
13 version.
14
15 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
16 WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with GCC; see the file COPYING3. If not see
22 <http://www.gnu.org/licenses/>. */
23
24 /* This pass implements list scheduling within basic blocks. It is
25 run twice: (1) after flow analysis, but before register allocation,
26 and (2) after register allocation.
27
28 The first run performs interblock scheduling, moving insns between
29 different blocks in the same "region", and the second runs only
30 basic block scheduling.
31
32 Interblock motions performed are useful motions and speculative
33 motions, including speculative loads. Motions requiring code
34 duplication are not supported. The identification of motion type
35 and the check for validity of speculative motions requires
36 construction and analysis of the function's control flow graph.
37
38 The main entry point for this pass is schedule_insns(), called for
39 each function. The work of the scheduler is organized in three
40 levels: (1) function level: insns are subject to splitting,
41 control-flow-graph is constructed, regions are computed (after
42 reload, each region is of one block), (2) region level: control
43 flow graph attributes required for interblock scheduling are
44 computed (dominators, reachability, etc.), data dependences and
45 priorities are computed, and (3) block level: insns in the block
46 are actually scheduled. */
47 \f
48 #include "config.h"
49 #include "system.h"
50 #include "coretypes.h"
51 #include "tm.h"
52 #include "toplev.h"
53 #include "rtl.h"
54 #include "tm_p.h"
55 #include "hard-reg-set.h"
56 #include "regs.h"
57 #include "function.h"
58 #include "flags.h"
59 #include "insn-config.h"
60 #include "insn-attr.h"
61 #include "except.h"
62 #include "toplev.h"
63 #include "recog.h"
64 #include "cfglayout.h"
65 #include "params.h"
66 #include "sched-int.h"
67 #include "target.h"
68 #include "timevar.h"
69 #include "tree-pass.h"
70 #include "dbgcnt.h"
71
72 #ifdef INSN_SCHEDULING
73 /* Some accessor macros for h_i_d members only used within this file. */
74 #define INSN_REF_COUNT(INSN) (h_i_d[INSN_UID (INSN)].ref_count)
75 #define FED_BY_SPEC_LOAD(insn) (h_i_d[INSN_UID (insn)].fed_by_spec_load)
76 #define IS_LOAD_INSN(insn) (h_i_d[INSN_UID (insn)].is_load_insn)
77
78 /* nr_inter/spec counts interblock/speculative motion for the function. */
79 static int nr_inter, nr_spec;
80
81 static int is_cfg_nonregular (void);
82 static bool sched_is_disabled_for_current_region_p (void);
83
84 /* A region is the main entity for interblock scheduling: insns
85 are allowed to move between blocks in the same region, along
86 control flow graph edges, in the 'up' direction. */
87 typedef struct
88 {
89 /* Number of extended basic blocks in region. */
90 int rgn_nr_blocks;
91 /* cblocks in the region (actually index in rgn_bb_table). */
92 int rgn_blocks;
93 /* Dependencies for this region are already computed. Basically, indicates,
94 that this is a recovery block. */
95 unsigned int dont_calc_deps : 1;
96 /* This region has at least one non-trivial ebb. */
97 unsigned int has_real_ebb : 1;
98 }
99 region;
100
101 /* Number of regions in the procedure. */
102 static int nr_regions;
103
104 /* Table of region descriptions. */
105 static region *rgn_table;
106
107 /* Array of lists of regions' blocks. */
108 static int *rgn_bb_table;
109
110 /* Topological order of blocks in the region (if b2 is reachable from
111 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
112 always referred to by either block or b, while its topological
113 order name (in the region) is referred to by bb. */
114 static int *block_to_bb;
115
116 /* The number of the region containing a block. */
117 static int *containing_rgn;
118
119 /* The minimum probability of reaching a source block so that it will be
120 considered for speculative scheduling. */
121 static int min_spec_prob;
122
123 #define RGN_NR_BLOCKS(rgn) (rgn_table[rgn].rgn_nr_blocks)
124 #define RGN_BLOCKS(rgn) (rgn_table[rgn].rgn_blocks)
125 #define RGN_DONT_CALC_DEPS(rgn) (rgn_table[rgn].dont_calc_deps)
126 #define RGN_HAS_REAL_EBB(rgn) (rgn_table[rgn].has_real_ebb)
127 #define BLOCK_TO_BB(block) (block_to_bb[block])
128 #define CONTAINING_RGN(block) (containing_rgn[block])
129
130 void debug_regions (void);
131 static void find_single_block_region (void);
132 static void find_rgns (void);
133 static void extend_rgns (int *, int *, sbitmap, int *);
134 static bool too_large (int, int *, int *);
135
136 extern void debug_live (int, int);
137
138 /* Blocks of the current region being scheduled. */
139 static int current_nr_blocks;
140 static int current_blocks;
141
142 static int rgn_n_insns;
143
144 /* The mapping from ebb to block. */
145 /* ebb_head [i] - is index in rgn_bb_table, while
146 EBB_HEAD (i) - is basic block index.
147 BASIC_BLOCK (EBB_HEAD (i)) - head of ebb. */
148 #define BB_TO_BLOCK(ebb) (rgn_bb_table[ebb_head[ebb]])
149 #define EBB_FIRST_BB(ebb) BASIC_BLOCK (BB_TO_BLOCK (ebb))
150 #define EBB_LAST_BB(ebb) BASIC_BLOCK (rgn_bb_table[ebb_head[ebb + 1] - 1])
151
152 /* Target info declarations.
153
154 The block currently being scheduled is referred to as the "target" block,
155 while other blocks in the region from which insns can be moved to the
156 target are called "source" blocks. The candidate structure holds info
157 about such sources: are they valid? Speculative? Etc. */
158 typedef struct
159 {
160 basic_block *first_member;
161 int nr_members;
162 }
163 bblst;
164
165 typedef struct
166 {
167 char is_valid;
168 char is_speculative;
169 int src_prob;
170 bblst split_bbs;
171 bblst update_bbs;
172 }
173 candidate;
174
175 static candidate *candidate_table;
176
177 /* A speculative motion requires checking live information on the path
178 from 'source' to 'target'. The split blocks are those to be checked.
179 After a speculative motion, live information should be modified in
180 the 'update' blocks.
181
182 Lists of split and update blocks for each candidate of the current
183 target are in array bblst_table. */
184 static basic_block *bblst_table;
185 static int bblst_size, bblst_last;
186
187 #define IS_VALID(src) ( candidate_table[src].is_valid )
188 #define IS_SPECULATIVE(src) ( candidate_table[src].is_speculative )
189 #define SRC_PROB(src) ( candidate_table[src].src_prob )
190
191 /* The bb being currently scheduled. */
192 static int target_bb;
193
194 /* List of edges. */
195 typedef struct
196 {
197 edge *first_member;
198 int nr_members;
199 }
200 edgelst;
201
202 static edge *edgelst_table;
203 static int edgelst_last;
204
205 static void extract_edgelst (sbitmap, edgelst *);
206
207
208 /* Target info functions. */
209 static void split_edges (int, int, edgelst *);
210 static void compute_trg_info (int);
211 void debug_candidate (int);
212 void debug_candidates (int);
213
214 /* Dominators array: dom[i] contains the sbitmap of dominators of
215 bb i in the region. */
216 static sbitmap *dom;
217
218 /* bb 0 is the only region entry. */
219 #define IS_RGN_ENTRY(bb) (!bb)
220
221 /* Is bb_src dominated by bb_trg. */
222 #define IS_DOMINATED(bb_src, bb_trg) \
223 ( TEST_BIT (dom[bb_src], bb_trg) )
224
225 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
226 the probability of bb i relative to the region entry. */
227 static int *prob;
228
229 /* Bit-set of edges, where bit i stands for edge i. */
230 typedef sbitmap edgeset;
231
232 /* Number of edges in the region. */
233 static int rgn_nr_edges;
234
235 /* Array of size rgn_nr_edges. */
236 static edge *rgn_edges;
237
238 /* Mapping from each edge in the graph to its number in the rgn. */
239 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
240 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
241
242 /* The split edges of a source bb is different for each target
243 bb. In order to compute this efficiently, the 'potential-split edges'
244 are computed for each bb prior to scheduling a region. This is actually
245 the split edges of each bb relative to the region entry.
246
247 pot_split[bb] is the set of potential split edges of bb. */
248 static edgeset *pot_split;
249
250 /* For every bb, a set of its ancestor edges. */
251 static edgeset *ancestor_edges;
252
253 /* Array of EBBs sizes. Currently we can get a ebb only through
254 splitting of currently scheduling block, therefore, we don't need
255 ebb_head array for every region, its sufficient to hold it only
256 for current one. */
257 static int *ebb_head;
258
259 static void compute_dom_prob_ps (int);
260
261 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
262 #define IS_SPECULATIVE_INSN(INSN) (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
263 #define INSN_BB(INSN) (BLOCK_TO_BB (BLOCK_NUM (INSN)))
264
265 /* Speculative scheduling functions. */
266 static int check_live_1 (int, rtx);
267 static void update_live_1 (int, rtx);
268 static int check_live (rtx, int);
269 static void update_live (rtx, int);
270 static void set_spec_fed (rtx);
271 static int is_pfree (rtx, int, int);
272 static int find_conditional_protection (rtx, int);
273 static int is_conditionally_protected (rtx, int, int);
274 static int is_prisky (rtx, int, int);
275 static int is_exception_free (rtx, int, int);
276
277 static bool sets_likely_spilled (rtx);
278 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
279 static void add_branch_dependences (rtx, rtx);
280 static void compute_block_backward_dependences (int);
281
282 static void init_regions (void);
283 static void schedule_region (int);
284 static rtx concat_INSN_LIST (rtx, rtx);
285 static void concat_insn_mem_list (rtx, rtx, rtx *, rtx *);
286 static void propagate_deps (int, struct deps *);
287 static void free_pending_lists (void);
288
289 /* Functions for construction of the control flow graph. */
290
291 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
292
293 We decide not to build the control flow graph if there is possibly more
294 than one entry to the function, if computed branches exist, if we
295 have nonlocal gotos, or if we have an unreachable loop. */
296
297 static int
298 is_cfg_nonregular (void)
299 {
300 basic_block b;
301 rtx insn;
302
303 /* If we have a label that could be the target of a nonlocal goto, then
304 the cfg is not well structured. */
305 if (nonlocal_goto_handler_labels)
306 return 1;
307
308 /* If we have any forced labels, then the cfg is not well structured. */
309 if (forced_labels)
310 return 1;
311
312 /* If we have exception handlers, then we consider the cfg not well
313 structured. ?!? We should be able to handle this now that we
314 compute an accurate cfg for EH. */
315 if (current_function_has_exception_handlers ())
316 return 1;
317
318 /* If we have non-jumping insns which refer to labels, then we consider
319 the cfg not well structured. */
320 FOR_EACH_BB (b)
321 FOR_BB_INSNS (b, insn)
322 {
323 /* Check for labels referred by non-jump insns. */
324 if (NONJUMP_INSN_P (insn) || CALL_P (insn))
325 {
326 rtx note = find_reg_note (insn, REG_LABEL, NULL_RTX);
327 if (note
328 && ! (JUMP_P (NEXT_INSN (insn))
329 && find_reg_note (NEXT_INSN (insn), REG_LABEL,
330 XEXP (note, 0))))
331 return 1;
332 }
333 /* If this function has a computed jump, then we consider the cfg
334 not well structured. */
335 else if (JUMP_P (insn) && computed_jump_p (insn))
336 return 1;
337 }
338
339 /* Unreachable loops with more than one basic block are detected
340 during the DFS traversal in find_rgns.
341
342 Unreachable loops with a single block are detected here. This
343 test is redundant with the one in find_rgns, but it's much
344 cheaper to go ahead and catch the trivial case here. */
345 FOR_EACH_BB (b)
346 {
347 if (EDGE_COUNT (b->preds) == 0
348 || (single_pred_p (b)
349 && single_pred (b) == b))
350 return 1;
351 }
352
353 /* All the tests passed. Consider the cfg well structured. */
354 return 0;
355 }
356
357 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
358
359 static void
360 extract_edgelst (sbitmap set, edgelst *el)
361 {
362 unsigned int i = 0;
363 sbitmap_iterator sbi;
364
365 /* edgelst table space is reused in each call to extract_edgelst. */
366 edgelst_last = 0;
367
368 el->first_member = &edgelst_table[edgelst_last];
369 el->nr_members = 0;
370
371 /* Iterate over each word in the bitset. */
372 EXECUTE_IF_SET_IN_SBITMAP (set, 0, i, sbi)
373 {
374 edgelst_table[edgelst_last++] = rgn_edges[i];
375 el->nr_members++;
376 }
377 }
378
379 /* Functions for the construction of regions. */
380
381 /* Print the regions, for debugging purposes. Callable from debugger. */
382
383 void
384 debug_regions (void)
385 {
386 int rgn, bb;
387
388 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
389 for (rgn = 0; rgn < nr_regions; rgn++)
390 {
391 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
392 rgn_table[rgn].rgn_nr_blocks);
393 fprintf (sched_dump, ";;\tbb/block: ");
394
395 /* We don't have ebb_head initialized yet, so we can't use
396 BB_TO_BLOCK (). */
397 current_blocks = RGN_BLOCKS (rgn);
398
399 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
400 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
401
402 fprintf (sched_dump, "\n\n");
403 }
404 }
405
406 /* Build a single block region for each basic block in the function.
407 This allows for using the same code for interblock and basic block
408 scheduling. */
409
410 static void
411 find_single_block_region (void)
412 {
413 basic_block bb;
414
415 nr_regions = 0;
416
417 FOR_EACH_BB (bb)
418 {
419 rgn_bb_table[nr_regions] = bb->index;
420 RGN_NR_BLOCKS (nr_regions) = 1;
421 RGN_BLOCKS (nr_regions) = nr_regions;
422 RGN_DONT_CALC_DEPS (nr_regions) = 0;
423 RGN_HAS_REAL_EBB (nr_regions) = 0;
424 CONTAINING_RGN (bb->index) = nr_regions;
425 BLOCK_TO_BB (bb->index) = 0;
426 nr_regions++;
427 }
428 }
429
430 /* Update number of blocks and the estimate for number of insns
431 in the region. Return true if the region is "too large" for interblock
432 scheduling (compile time considerations). */
433
434 static bool
435 too_large (int block, int *num_bbs, int *num_insns)
436 {
437 (*num_bbs)++;
438 (*num_insns) += (INSN_LUID (BB_END (BASIC_BLOCK (block)))
439 - INSN_LUID (BB_HEAD (BASIC_BLOCK (block))));
440
441 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
442 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
443 }
444
445 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
446 is still an inner loop. Put in max_hdr[blk] the header of the most inner
447 loop containing blk. */
448 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
449 { \
450 if (max_hdr[blk] == -1) \
451 max_hdr[blk] = hdr; \
452 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
453 RESET_BIT (inner, hdr); \
454 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
455 { \
456 RESET_BIT (inner,max_hdr[blk]); \
457 max_hdr[blk] = hdr; \
458 } \
459 }
460
461 /* Find regions for interblock scheduling.
462
463 A region for scheduling can be:
464
465 * A loop-free procedure, or
466
467 * A reducible inner loop, or
468
469 * A basic block not contained in any other region.
470
471 ?!? In theory we could build other regions based on extended basic
472 blocks or reverse extended basic blocks. Is it worth the trouble?
473
474 Loop blocks that form a region are put into the region's block list
475 in topological order.
476
477 This procedure stores its results into the following global (ick) variables
478
479 * rgn_nr
480 * rgn_table
481 * rgn_bb_table
482 * block_to_bb
483 * containing region
484
485 We use dominator relationships to avoid making regions out of non-reducible
486 loops.
487
488 This procedure needs to be converted to work on pred/succ lists instead
489 of edge tables. That would simplify it somewhat. */
490
491 static void
492 find_rgns (void)
493 {
494 int *max_hdr, *dfs_nr, *degree;
495 char no_loops = 1;
496 int node, child, loop_head, i, head, tail;
497 int count = 0, sp, idx = 0;
498 edge_iterator current_edge;
499 edge_iterator *stack;
500 int num_bbs, num_insns, unreachable;
501 int too_large_failure;
502 basic_block bb;
503
504 /* Note if a block is a natural loop header. */
505 sbitmap header;
506
507 /* Note if a block is a natural inner loop header. */
508 sbitmap inner;
509
510 /* Note if a block is in the block queue. */
511 sbitmap in_queue;
512
513 /* Note if a block is in the block queue. */
514 sbitmap in_stack;
515
516 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
517 and a mapping from block to its loop header (if the block is contained
518 in a loop, else -1).
519
520 Store results in HEADER, INNER, and MAX_HDR respectively, these will
521 be used as inputs to the second traversal.
522
523 STACK, SP and DFS_NR are only used during the first traversal. */
524
525 /* Allocate and initialize variables for the first traversal. */
526 max_hdr = XNEWVEC (int, last_basic_block);
527 dfs_nr = XCNEWVEC (int, last_basic_block);
528 stack = XNEWVEC (edge_iterator, n_edges);
529
530 inner = sbitmap_alloc (last_basic_block);
531 sbitmap_ones (inner);
532
533 header = sbitmap_alloc (last_basic_block);
534 sbitmap_zero (header);
535
536 in_queue = sbitmap_alloc (last_basic_block);
537 sbitmap_zero (in_queue);
538
539 in_stack = sbitmap_alloc (last_basic_block);
540 sbitmap_zero (in_stack);
541
542 for (i = 0; i < last_basic_block; i++)
543 max_hdr[i] = -1;
544
545 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
546 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
547
548 /* DFS traversal to find inner loops in the cfg. */
549
550 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR)->succs);
551 sp = -1;
552
553 while (1)
554 {
555 if (EDGE_PASSED (current_edge))
556 {
557 /* We have reached a leaf node or a node that was already
558 processed. Pop edges off the stack until we find
559 an edge that has not yet been processed. */
560 while (sp >= 0 && EDGE_PASSED (current_edge))
561 {
562 /* Pop entry off the stack. */
563 current_edge = stack[sp--];
564 node = ei_edge (current_edge)->src->index;
565 gcc_assert (node != ENTRY_BLOCK);
566 child = ei_edge (current_edge)->dest->index;
567 gcc_assert (child != EXIT_BLOCK);
568 RESET_BIT (in_stack, child);
569 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
570 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
571 ei_next (&current_edge);
572 }
573
574 /* See if have finished the DFS tree traversal. */
575 if (sp < 0 && EDGE_PASSED (current_edge))
576 break;
577
578 /* Nope, continue the traversal with the popped node. */
579 continue;
580 }
581
582 /* Process a node. */
583 node = ei_edge (current_edge)->src->index;
584 gcc_assert (node != ENTRY_BLOCK);
585 SET_BIT (in_stack, node);
586 dfs_nr[node] = ++count;
587
588 /* We don't traverse to the exit block. */
589 child = ei_edge (current_edge)->dest->index;
590 if (child == EXIT_BLOCK)
591 {
592 SET_EDGE_PASSED (current_edge);
593 ei_next (&current_edge);
594 continue;
595 }
596
597 /* If the successor is in the stack, then we've found a loop.
598 Mark the loop, if it is not a natural loop, then it will
599 be rejected during the second traversal. */
600 if (TEST_BIT (in_stack, child))
601 {
602 no_loops = 0;
603 SET_BIT (header, child);
604 UPDATE_LOOP_RELATIONS (node, child);
605 SET_EDGE_PASSED (current_edge);
606 ei_next (&current_edge);
607 continue;
608 }
609
610 /* If the child was already visited, then there is no need to visit
611 it again. Just update the loop relationships and restart
612 with a new edge. */
613 if (dfs_nr[child])
614 {
615 if (max_hdr[child] >= 0 && TEST_BIT (in_stack, max_hdr[child]))
616 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
617 SET_EDGE_PASSED (current_edge);
618 ei_next (&current_edge);
619 continue;
620 }
621
622 /* Push an entry on the stack and continue DFS traversal. */
623 stack[++sp] = current_edge;
624 SET_EDGE_PASSED (current_edge);
625 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
626 }
627
628 /* Reset ->aux field used by EDGE_PASSED. */
629 FOR_ALL_BB (bb)
630 {
631 edge_iterator ei;
632 edge e;
633 FOR_EACH_EDGE (e, ei, bb->succs)
634 e->aux = NULL;
635 }
636
637
638 /* Another check for unreachable blocks. The earlier test in
639 is_cfg_nonregular only finds unreachable blocks that do not
640 form a loop.
641
642 The DFS traversal will mark every block that is reachable from
643 the entry node by placing a nonzero value in dfs_nr. Thus if
644 dfs_nr is zero for any block, then it must be unreachable. */
645 unreachable = 0;
646 FOR_EACH_BB (bb)
647 if (dfs_nr[bb->index] == 0)
648 {
649 unreachable = 1;
650 break;
651 }
652
653 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
654 to hold degree counts. */
655 degree = dfs_nr;
656
657 FOR_EACH_BB (bb)
658 degree[bb->index] = EDGE_COUNT (bb->preds);
659
660 /* Do not perform region scheduling if there are any unreachable
661 blocks. */
662 if (!unreachable)
663 {
664 int *queue, *degree1 = NULL;
665 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
666 there basic blocks, which are forced to be region heads.
667 This is done to try to assemble few smaller regions
668 from a too_large region. */
669 sbitmap extended_rgn_header = NULL;
670 bool extend_regions_p;
671
672 if (no_loops)
673 SET_BIT (header, 0);
674
675 /* Second traversal:find reducible inner loops and topologically sort
676 block of each region. */
677
678 queue = XNEWVEC (int, n_basic_blocks);
679
680 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
681 if (extend_regions_p)
682 {
683 degree1 = xmalloc (last_basic_block * sizeof (int));
684 extended_rgn_header = sbitmap_alloc (last_basic_block);
685 sbitmap_zero (extended_rgn_header);
686 }
687
688 /* Find blocks which are inner loop headers. We still have non-reducible
689 loops to consider at this point. */
690 FOR_EACH_BB (bb)
691 {
692 if (TEST_BIT (header, bb->index) && TEST_BIT (inner, bb->index))
693 {
694 edge e;
695 edge_iterator ei;
696 basic_block jbb;
697
698 /* Now check that the loop is reducible. We do this separate
699 from finding inner loops so that we do not find a reducible
700 loop which contains an inner non-reducible loop.
701
702 A simple way to find reducible/natural loops is to verify
703 that each block in the loop is dominated by the loop
704 header.
705
706 If there exists a block that is not dominated by the loop
707 header, then the block is reachable from outside the loop
708 and thus the loop is not a natural loop. */
709 FOR_EACH_BB (jbb)
710 {
711 /* First identify blocks in the loop, except for the loop
712 entry block. */
713 if (bb->index == max_hdr[jbb->index] && bb != jbb)
714 {
715 /* Now verify that the block is dominated by the loop
716 header. */
717 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
718 break;
719 }
720 }
721
722 /* If we exited the loop early, then I is the header of
723 a non-reducible loop and we should quit processing it
724 now. */
725 if (jbb != EXIT_BLOCK_PTR)
726 continue;
727
728 /* I is a header of an inner loop, or block 0 in a subroutine
729 with no loops at all. */
730 head = tail = -1;
731 too_large_failure = 0;
732 loop_head = max_hdr[bb->index];
733
734 if (extend_regions_p)
735 /* We save degree in case when we meet a too_large region
736 and cancel it. We need a correct degree later when
737 calling extend_rgns. */
738 memcpy (degree1, degree, last_basic_block * sizeof (int));
739
740 /* Decrease degree of all I's successors for topological
741 ordering. */
742 FOR_EACH_EDGE (e, ei, bb->succs)
743 if (e->dest != EXIT_BLOCK_PTR)
744 --degree[e->dest->index];
745
746 /* Estimate # insns, and count # blocks in the region. */
747 num_bbs = 1;
748 num_insns = (INSN_LUID (BB_END (bb))
749 - INSN_LUID (BB_HEAD (bb)));
750
751 /* Find all loop latches (blocks with back edges to the loop
752 header) or all the leaf blocks in the cfg has no loops.
753
754 Place those blocks into the queue. */
755 if (no_loops)
756 {
757 FOR_EACH_BB (jbb)
758 /* Leaf nodes have only a single successor which must
759 be EXIT_BLOCK. */
760 if (single_succ_p (jbb)
761 && single_succ (jbb) == EXIT_BLOCK_PTR)
762 {
763 queue[++tail] = jbb->index;
764 SET_BIT (in_queue, jbb->index);
765
766 if (too_large (jbb->index, &num_bbs, &num_insns))
767 {
768 too_large_failure = 1;
769 break;
770 }
771 }
772 }
773 else
774 {
775 edge e;
776
777 FOR_EACH_EDGE (e, ei, bb->preds)
778 {
779 if (e->src == ENTRY_BLOCK_PTR)
780 continue;
781
782 node = e->src->index;
783
784 if (max_hdr[node] == loop_head && node != bb->index)
785 {
786 /* This is a loop latch. */
787 queue[++tail] = node;
788 SET_BIT (in_queue, node);
789
790 if (too_large (node, &num_bbs, &num_insns))
791 {
792 too_large_failure = 1;
793 break;
794 }
795 }
796 }
797 }
798
799 /* Now add all the blocks in the loop to the queue.
800
801 We know the loop is a natural loop; however the algorithm
802 above will not always mark certain blocks as being in the
803 loop. Consider:
804 node children
805 a b,c
806 b c
807 c a,d
808 d b
809
810 The algorithm in the DFS traversal may not mark B & D as part
811 of the loop (i.e. they will not have max_hdr set to A).
812
813 We know they can not be loop latches (else they would have
814 had max_hdr set since they'd have a backedge to a dominator
815 block). So we don't need them on the initial queue.
816
817 We know they are part of the loop because they are dominated
818 by the loop header and can be reached by a backwards walk of
819 the edges starting with nodes on the initial queue.
820
821 It is safe and desirable to include those nodes in the
822 loop/scheduling region. To do so we would need to decrease
823 the degree of a node if it is the target of a backedge
824 within the loop itself as the node is placed in the queue.
825
826 We do not do this because I'm not sure that the actual
827 scheduling code will properly handle this case. ?!? */
828
829 while (head < tail && !too_large_failure)
830 {
831 edge e;
832 child = queue[++head];
833
834 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->preds)
835 {
836 node = e->src->index;
837
838 /* See discussion above about nodes not marked as in
839 this loop during the initial DFS traversal. */
840 if (e->src == ENTRY_BLOCK_PTR
841 || max_hdr[node] != loop_head)
842 {
843 tail = -1;
844 break;
845 }
846 else if (!TEST_BIT (in_queue, node) && node != bb->index)
847 {
848 queue[++tail] = node;
849 SET_BIT (in_queue, node);
850
851 if (too_large (node, &num_bbs, &num_insns))
852 {
853 too_large_failure = 1;
854 break;
855 }
856 }
857 }
858 }
859
860 if (tail >= 0 && !too_large_failure)
861 {
862 /* Place the loop header into list of region blocks. */
863 degree[bb->index] = -1;
864 rgn_bb_table[idx] = bb->index;
865 RGN_NR_BLOCKS (nr_regions) = num_bbs;
866 RGN_BLOCKS (nr_regions) = idx++;
867 RGN_DONT_CALC_DEPS (nr_regions) = 0;
868 RGN_HAS_REAL_EBB (nr_regions) = 0;
869 CONTAINING_RGN (bb->index) = nr_regions;
870 BLOCK_TO_BB (bb->index) = count = 0;
871
872 /* Remove blocks from queue[] when their in degree
873 becomes zero. Repeat until no blocks are left on the
874 list. This produces a topological list of blocks in
875 the region. */
876 while (tail >= 0)
877 {
878 if (head < 0)
879 head = tail;
880 child = queue[head];
881 if (degree[child] == 0)
882 {
883 edge e;
884
885 degree[child] = -1;
886 rgn_bb_table[idx++] = child;
887 BLOCK_TO_BB (child) = ++count;
888 CONTAINING_RGN (child) = nr_regions;
889 queue[head] = queue[tail--];
890
891 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (child)->succs)
892 if (e->dest != EXIT_BLOCK_PTR)
893 --degree[e->dest->index];
894 }
895 else
896 --head;
897 }
898 ++nr_regions;
899 }
900 else if (extend_regions_p)
901 {
902 /* Restore DEGREE. */
903 int *t = degree;
904
905 degree = degree1;
906 degree1 = t;
907
908 /* And force successors of BB to be region heads.
909 This may provide several smaller regions instead
910 of one too_large region. */
911 FOR_EACH_EDGE (e, ei, bb->succs)
912 if (e->dest != EXIT_BLOCK_PTR)
913 SET_BIT (extended_rgn_header, e->dest->index);
914 }
915 }
916 }
917 free (queue);
918
919 if (extend_regions_p)
920 {
921 free (degree1);
922
923 sbitmap_a_or_b (header, header, extended_rgn_header);
924 sbitmap_free (extended_rgn_header);
925
926 extend_rgns (degree, &idx, header, max_hdr);
927 }
928 }
929
930 /* Any block that did not end up in a region is placed into a region
931 by itself. */
932 FOR_EACH_BB (bb)
933 if (degree[bb->index] >= 0)
934 {
935 rgn_bb_table[idx] = bb->index;
936 RGN_NR_BLOCKS (nr_regions) = 1;
937 RGN_BLOCKS (nr_regions) = idx++;
938 RGN_DONT_CALC_DEPS (nr_regions) = 0;
939 RGN_HAS_REAL_EBB (nr_regions) = 0;
940 CONTAINING_RGN (bb->index) = nr_regions++;
941 BLOCK_TO_BB (bb->index) = 0;
942 }
943
944 free (max_hdr);
945 free (degree);
946 free (stack);
947 sbitmap_free (header);
948 sbitmap_free (inner);
949 sbitmap_free (in_queue);
950 sbitmap_free (in_stack);
951 }
952
953 static int gather_region_statistics (int **);
954 static void print_region_statistics (int *, int, int *, int);
955
956 /* Calculate the histogram that shows the number of regions having the
957 given number of basic blocks, and store it in the RSP array. Return
958 the size of this array. */
959 static int
960 gather_region_statistics (int **rsp)
961 {
962 int i, *a = 0, a_sz = 0;
963
964 /* a[i] is the number of regions that have (i + 1) basic blocks. */
965 for (i = 0; i < nr_regions; i++)
966 {
967 int nr_blocks = RGN_NR_BLOCKS (i);
968
969 gcc_assert (nr_blocks >= 1);
970
971 if (nr_blocks > a_sz)
972 {
973 a = xrealloc (a, nr_blocks * sizeof (*a));
974 do
975 a[a_sz++] = 0;
976 while (a_sz != nr_blocks);
977 }
978
979 a[nr_blocks - 1]++;
980 }
981
982 *rsp = a;
983 return a_sz;
984 }
985
986 /* Print regions statistics. S1 and S2 denote the data before and after
987 calling extend_rgns, respectively. */
988 static void
989 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
990 {
991 int i;
992
993 /* We iterate until s2_sz because extend_rgns does not decrease
994 the maximal region size. */
995 for (i = 1; i < s2_sz; i++)
996 {
997 int n1, n2;
998
999 n2 = s2[i];
1000
1001 if (n2 == 0)
1002 continue;
1003
1004 if (i >= s1_sz)
1005 n1 = 0;
1006 else
1007 n1 = s1[i];
1008
1009 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1010 "was %d + %d more\n", i + 1, n1, n2 - n1);
1011 }
1012 }
1013
1014 /* Extend regions.
1015 DEGREE - Array of incoming edge count, considering only
1016 the edges, that don't have their sources in formed regions yet.
1017 IDXP - pointer to the next available index in rgn_bb_table.
1018 HEADER - set of all region heads.
1019 LOOP_HDR - mapping from block to the containing loop
1020 (two blocks can reside within one region if they have
1021 the same loop header). */
1022 static void
1023 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1024 {
1025 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1026 int nblocks = n_basic_blocks - NUM_FIXED_BLOCKS;
1027
1028 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1029
1030 max_hdr = xmalloc (last_basic_block * sizeof (*max_hdr));
1031
1032 order = xmalloc (last_basic_block * sizeof (*order));
1033 post_order_compute (order, false, false);
1034
1035 for (i = nblocks - 1; i >= 0; i--)
1036 {
1037 int bbn = order[i];
1038 if (degree[bbn] >= 0)
1039 {
1040 max_hdr[bbn] = bbn;
1041 rescan = 1;
1042 }
1043 else
1044 /* This block already was processed in find_rgns. */
1045 max_hdr[bbn] = -1;
1046 }
1047
1048 /* The idea is to topologically walk through CFG in top-down order.
1049 During the traversal, if all the predecessors of a node are
1050 marked to be in the same region (they all have the same max_hdr),
1051 then current node is also marked to be a part of that region.
1052 Otherwise the node starts its own region.
1053 CFG should be traversed until no further changes are made. On each
1054 iteration the set of the region heads is extended (the set of those
1055 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1056 set of all basic blocks, thus the algorithm is guaranteed to terminate. */
1057
1058 while (rescan && iter < max_iter)
1059 {
1060 rescan = 0;
1061
1062 for (i = nblocks - 1; i >= 0; i--)
1063 {
1064 edge e;
1065 edge_iterator ei;
1066 int bbn = order[i];
1067
1068 if (max_hdr[bbn] != -1 && !TEST_BIT (header, bbn))
1069 {
1070 int hdr = -1;
1071
1072 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->preds)
1073 {
1074 int predn = e->src->index;
1075
1076 if (predn != ENTRY_BLOCK
1077 /* If pred wasn't processed in find_rgns. */
1078 && max_hdr[predn] != -1
1079 /* And pred and bb reside in the same loop.
1080 (Or out of any loop). */
1081 && loop_hdr[bbn] == loop_hdr[predn])
1082 {
1083 if (hdr == -1)
1084 /* Then bb extends the containing region of pred. */
1085 hdr = max_hdr[predn];
1086 else if (hdr != max_hdr[predn])
1087 /* Too bad, there are at least two predecessors
1088 that reside in different regions. Thus, BB should
1089 begin its own region. */
1090 {
1091 hdr = bbn;
1092 break;
1093 }
1094 }
1095 else
1096 /* BB starts its own region. */
1097 {
1098 hdr = bbn;
1099 break;
1100 }
1101 }
1102
1103 if (hdr == bbn)
1104 {
1105 /* If BB start its own region,
1106 update set of headers with BB. */
1107 SET_BIT (header, bbn);
1108 rescan = 1;
1109 }
1110 else
1111 gcc_assert (hdr != -1);
1112
1113 max_hdr[bbn] = hdr;
1114 }
1115 }
1116
1117 iter++;
1118 }
1119
1120 /* Statistics were gathered on the SPEC2000 package of tests with
1121 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1122
1123 Statistics for SPECint:
1124 1 iteration : 1751 cases (38.7%)
1125 2 iterations: 2770 cases (61.3%)
1126 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1127 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1128 (We don't count single block regions here).
1129
1130 Statistics for SPECfp:
1131 1 iteration : 621 cases (35.9%)
1132 2 iterations: 1110 cases (64.1%)
1133 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1134 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1135 (We don't count single block regions here).
1136
1137 By default we do at most 2 iterations.
1138 This can be overridden with max-sched-extend-regions-iters parameter:
1139 0 - disable region extension,
1140 N > 0 - do at most N iterations. */
1141
1142 if (sched_verbose && iter != 0)
1143 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1144 rescan ? "... failed" : "");
1145
1146 if (!rescan && iter != 0)
1147 {
1148 int *s1 = NULL, s1_sz = 0;
1149
1150 /* Save the old statistics for later printout. */
1151 if (sched_verbose >= 6)
1152 s1_sz = gather_region_statistics (&s1);
1153
1154 /* We have succeeded. Now assemble the regions. */
1155 for (i = nblocks - 1; i >= 0; i--)
1156 {
1157 int bbn = order[i];
1158
1159 if (max_hdr[bbn] == bbn)
1160 /* BBN is a region head. */
1161 {
1162 edge e;
1163 edge_iterator ei;
1164 int num_bbs = 0, j, num_insns = 0, large;
1165
1166 large = too_large (bbn, &num_bbs, &num_insns);
1167
1168 degree[bbn] = -1;
1169 rgn_bb_table[idx] = bbn;
1170 RGN_BLOCKS (nr_regions) = idx++;
1171 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1172 RGN_HAS_REAL_EBB (nr_regions) = 0;
1173 CONTAINING_RGN (bbn) = nr_regions;
1174 BLOCK_TO_BB (bbn) = 0;
1175
1176 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (bbn)->succs)
1177 if (e->dest != EXIT_BLOCK_PTR)
1178 degree[e->dest->index]--;
1179
1180 if (!large)
1181 /* Here we check whether the region is too_large. */
1182 for (j = i - 1; j >= 0; j--)
1183 {
1184 int succn = order[j];
1185 if (max_hdr[succn] == bbn)
1186 {
1187 if ((large = too_large (succn, &num_bbs, &num_insns)))
1188 break;
1189 }
1190 }
1191
1192 if (large)
1193 /* If the region is too_large, then wrap every block of
1194 the region into single block region.
1195 Here we wrap region head only. Other blocks are
1196 processed in the below cycle. */
1197 {
1198 RGN_NR_BLOCKS (nr_regions) = 1;
1199 nr_regions++;
1200 }
1201
1202 num_bbs = 1;
1203
1204 for (j = i - 1; j >= 0; j--)
1205 {
1206 int succn = order[j];
1207
1208 if (max_hdr[succn] == bbn)
1209 /* This cycle iterates over all basic blocks, that
1210 are supposed to be in the region with head BBN,
1211 and wraps them into that region (or in single
1212 block region). */
1213 {
1214 gcc_assert (degree[succn] == 0);
1215
1216 degree[succn] = -1;
1217 rgn_bb_table[idx] = succn;
1218 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1219 CONTAINING_RGN (succn) = nr_regions;
1220
1221 if (large)
1222 /* Wrap SUCCN into single block region. */
1223 {
1224 RGN_BLOCKS (nr_regions) = idx;
1225 RGN_NR_BLOCKS (nr_regions) = 1;
1226 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1227 RGN_HAS_REAL_EBB (nr_regions) = 0;
1228 nr_regions++;
1229 }
1230
1231 idx++;
1232
1233 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (succn)->succs)
1234 if (e->dest != EXIT_BLOCK_PTR)
1235 degree[e->dest->index]--;
1236 }
1237 }
1238
1239 if (!large)
1240 {
1241 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1242 nr_regions++;
1243 }
1244 }
1245 }
1246
1247 if (sched_verbose >= 6)
1248 {
1249 int *s2, s2_sz;
1250
1251 /* Get the new statistics and print the comparison with the
1252 one before calling this function. */
1253 s2_sz = gather_region_statistics (&s2);
1254 print_region_statistics (s1, s1_sz, s2, s2_sz);
1255 free (s1);
1256 free (s2);
1257 }
1258 }
1259
1260 free (order);
1261 free (max_hdr);
1262
1263 *idxp = idx;
1264 }
1265
1266 /* Functions for regions scheduling information. */
1267
1268 /* Compute dominators, probability, and potential-split-edges of bb.
1269 Assume that these values were already computed for bb's predecessors. */
1270
1271 static void
1272 compute_dom_prob_ps (int bb)
1273 {
1274 edge_iterator in_ei;
1275 edge in_edge;
1276
1277 /* We shouldn't have any real ebbs yet. */
1278 gcc_assert (ebb_head [bb] == bb + current_blocks);
1279
1280 if (IS_RGN_ENTRY (bb))
1281 {
1282 SET_BIT (dom[bb], 0);
1283 prob[bb] = REG_BR_PROB_BASE;
1284 return;
1285 }
1286
1287 prob[bb] = 0;
1288
1289 /* Initialize dom[bb] to '111..1'. */
1290 sbitmap_ones (dom[bb]);
1291
1292 FOR_EACH_EDGE (in_edge, in_ei, BASIC_BLOCK (BB_TO_BLOCK (bb))->preds)
1293 {
1294 int pred_bb;
1295 edge out_edge;
1296 edge_iterator out_ei;
1297
1298 if (in_edge->src == ENTRY_BLOCK_PTR)
1299 continue;
1300
1301 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1302 sbitmap_a_and_b (dom[bb], dom[bb], dom[pred_bb]);
1303 sbitmap_a_or_b (ancestor_edges[bb],
1304 ancestor_edges[bb], ancestor_edges[pred_bb]);
1305
1306 SET_BIT (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1307
1308 sbitmap_a_or_b (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1309
1310 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1311 SET_BIT (pot_split[bb], EDGE_TO_BIT (out_edge));
1312
1313 prob[bb] += ((prob[pred_bb] * in_edge->probability) / REG_BR_PROB_BASE);
1314 }
1315
1316 SET_BIT (dom[bb], bb);
1317 sbitmap_difference (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1318
1319 if (sched_verbose >= 2)
1320 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1321 (100 * prob[bb]) / REG_BR_PROB_BASE);
1322 }
1323
1324 /* Functions for target info. */
1325
1326 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1327 Note that bb_trg dominates bb_src. */
1328
1329 static void
1330 split_edges (int bb_src, int bb_trg, edgelst *bl)
1331 {
1332 sbitmap src = sbitmap_alloc (pot_split[bb_src]->n_bits);
1333 sbitmap_copy (src, pot_split[bb_src]);
1334
1335 sbitmap_difference (src, src, pot_split[bb_trg]);
1336 extract_edgelst (src, bl);
1337 sbitmap_free (src);
1338 }
1339
1340 /* Find the valid candidate-source-blocks for the target block TRG, compute
1341 their probability, and check if they are speculative or not.
1342 For speculative sources, compute their update-blocks and split-blocks. */
1343
1344 static void
1345 compute_trg_info (int trg)
1346 {
1347 candidate *sp;
1348 edgelst el;
1349 int i, j, k, update_idx;
1350 basic_block block;
1351 sbitmap visited;
1352 edge_iterator ei;
1353 edge e;
1354
1355 /* Define some of the fields for the target bb as well. */
1356 sp = candidate_table + trg;
1357 sp->is_valid = 1;
1358 sp->is_speculative = 0;
1359 sp->src_prob = REG_BR_PROB_BASE;
1360
1361 visited = sbitmap_alloc (last_basic_block);
1362
1363 for (i = trg + 1; i < current_nr_blocks; i++)
1364 {
1365 sp = candidate_table + i;
1366
1367 sp->is_valid = IS_DOMINATED (i, trg);
1368 if (sp->is_valid)
1369 {
1370 int tf = prob[trg], cf = prob[i];
1371
1372 /* In CFGs with low probability edges TF can possibly be zero. */
1373 sp->src_prob = (tf ? ((cf * REG_BR_PROB_BASE) / tf) : 0);
1374 sp->is_valid = (sp->src_prob >= min_spec_prob);
1375 }
1376
1377 if (sp->is_valid)
1378 {
1379 split_edges (i, trg, &el);
1380 sp->is_speculative = (el.nr_members) ? 1 : 0;
1381 if (sp->is_speculative && !flag_schedule_speculative)
1382 sp->is_valid = 0;
1383 }
1384
1385 if (sp->is_valid)
1386 {
1387 /* Compute split blocks and store them in bblst_table.
1388 The TO block of every split edge is a split block. */
1389 sp->split_bbs.first_member = &bblst_table[bblst_last];
1390 sp->split_bbs.nr_members = el.nr_members;
1391 for (j = 0; j < el.nr_members; bblst_last++, j++)
1392 bblst_table[bblst_last] = el.first_member[j]->dest;
1393 sp->update_bbs.first_member = &bblst_table[bblst_last];
1394
1395 /* Compute update blocks and store them in bblst_table.
1396 For every split edge, look at the FROM block, and check
1397 all out edges. For each out edge that is not a split edge,
1398 add the TO block to the update block list. This list can end
1399 up with a lot of duplicates. We need to weed them out to avoid
1400 overrunning the end of the bblst_table. */
1401
1402 update_idx = 0;
1403 sbitmap_zero (visited);
1404 for (j = 0; j < el.nr_members; j++)
1405 {
1406 block = el.first_member[j]->src;
1407 FOR_EACH_EDGE (e, ei, block->succs)
1408 {
1409 if (!TEST_BIT (visited, e->dest->index))
1410 {
1411 for (k = 0; k < el.nr_members; k++)
1412 if (e == el.first_member[k])
1413 break;
1414
1415 if (k >= el.nr_members)
1416 {
1417 bblst_table[bblst_last++] = e->dest;
1418 SET_BIT (visited, e->dest->index);
1419 update_idx++;
1420 }
1421 }
1422 }
1423 }
1424 sp->update_bbs.nr_members = update_idx;
1425
1426 /* Make sure we didn't overrun the end of bblst_table. */
1427 gcc_assert (bblst_last <= bblst_size);
1428 }
1429 else
1430 {
1431 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1432
1433 sp->is_speculative = 0;
1434 sp->src_prob = 0;
1435 }
1436 }
1437
1438 sbitmap_free (visited);
1439 }
1440
1441 /* Print candidates info, for debugging purposes. Callable from debugger. */
1442
1443 void
1444 debug_candidate (int i)
1445 {
1446 if (!candidate_table[i].is_valid)
1447 return;
1448
1449 if (candidate_table[i].is_speculative)
1450 {
1451 int j;
1452 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1453
1454 fprintf (sched_dump, "split path: ");
1455 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1456 {
1457 int b = candidate_table[i].split_bbs.first_member[j]->index;
1458
1459 fprintf (sched_dump, " %d ", b);
1460 }
1461 fprintf (sched_dump, "\n");
1462
1463 fprintf (sched_dump, "update path: ");
1464 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1465 {
1466 int b = candidate_table[i].update_bbs.first_member[j]->index;
1467
1468 fprintf (sched_dump, " %d ", b);
1469 }
1470 fprintf (sched_dump, "\n");
1471 }
1472 else
1473 {
1474 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1475 }
1476 }
1477
1478 /* Print candidates info, for debugging purposes. Callable from debugger. */
1479
1480 void
1481 debug_candidates (int trg)
1482 {
1483 int i;
1484
1485 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1486 BB_TO_BLOCK (trg), trg);
1487 for (i = trg + 1; i < current_nr_blocks; i++)
1488 debug_candidate (i);
1489 }
1490
1491 /* Functions for speculative scheduling. */
1492
1493 static bitmap_head not_in_df;
1494
1495 /* Return 0 if x is a set of a register alive in the beginning of one
1496 of the split-blocks of src, otherwise return 1. */
1497
1498 static int
1499 check_live_1 (int src, rtx x)
1500 {
1501 int i;
1502 int regno;
1503 rtx reg = SET_DEST (x);
1504
1505 if (reg == 0)
1506 return 1;
1507
1508 while (GET_CODE (reg) == SUBREG
1509 || GET_CODE (reg) == ZERO_EXTRACT
1510 || GET_CODE (reg) == STRICT_LOW_PART)
1511 reg = XEXP (reg, 0);
1512
1513 if (GET_CODE (reg) == PARALLEL)
1514 {
1515 int i;
1516
1517 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1518 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1519 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1520 return 1;
1521
1522 return 0;
1523 }
1524
1525 if (!REG_P (reg))
1526 return 1;
1527
1528 regno = REGNO (reg);
1529
1530 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1531 {
1532 /* Global registers are assumed live. */
1533 return 0;
1534 }
1535 else
1536 {
1537 if (regno < FIRST_PSEUDO_REGISTER)
1538 {
1539 /* Check for hard registers. */
1540 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1541 while (--j >= 0)
1542 {
1543 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1544 {
1545 basic_block b = candidate_table[src].split_bbs.first_member[i];
1546 int t = bitmap_bit_p (&not_in_df, b->index);
1547
1548 /* We can have split blocks, that were recently generated.
1549 such blocks are always outside current region. */
1550 gcc_assert (!t || (CONTAINING_RGN (b->index)
1551 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1552
1553 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1554 return 0;
1555 }
1556 }
1557 }
1558 else
1559 {
1560 /* Check for pseudo registers. */
1561 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1562 {
1563 basic_block b = candidate_table[src].split_bbs.first_member[i];
1564 int t = bitmap_bit_p (&not_in_df, b->index);
1565
1566 gcc_assert (!t || (CONTAINING_RGN (b->index)
1567 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1568
1569 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1570 return 0;
1571 }
1572 }
1573 }
1574
1575 return 1;
1576 }
1577
1578 /* If x is a set of a register R, mark that R is alive in the beginning
1579 of every update-block of src. */
1580
1581 static void
1582 update_live_1 (int src, rtx x)
1583 {
1584 int i;
1585 int regno;
1586 rtx reg = SET_DEST (x);
1587
1588 if (reg == 0)
1589 return;
1590
1591 while (GET_CODE (reg) == SUBREG
1592 || GET_CODE (reg) == ZERO_EXTRACT
1593 || GET_CODE (reg) == STRICT_LOW_PART)
1594 reg = XEXP (reg, 0);
1595
1596 if (GET_CODE (reg) == PARALLEL)
1597 {
1598 int i;
1599
1600 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1601 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1602 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1603
1604 return;
1605 }
1606
1607 if (!REG_P (reg))
1608 return;
1609
1610 /* Global registers are always live, so the code below does not apply
1611 to them. */
1612
1613 regno = REGNO (reg);
1614
1615 if (regno >= FIRST_PSEUDO_REGISTER || !global_regs[regno])
1616 {
1617 if (regno < FIRST_PSEUDO_REGISTER)
1618 {
1619 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1620 while (--j >= 0)
1621 {
1622 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1623 {
1624 basic_block b = candidate_table[src].update_bbs.first_member[i];
1625
1626 SET_REGNO_REG_SET (df_get_live_in (b), regno + j);
1627 }
1628 }
1629 }
1630 else
1631 {
1632 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1633 {
1634 basic_block b = candidate_table[src].update_bbs.first_member[i];
1635
1636 SET_REGNO_REG_SET (df_get_live_in (b), regno);
1637 }
1638 }
1639 }
1640 }
1641
1642 /* Return 1 if insn can be speculatively moved from block src to trg,
1643 otherwise return 0. Called before first insertion of insn to
1644 ready-list or before the scheduling. */
1645
1646 static int
1647 check_live (rtx insn, int src)
1648 {
1649 /* Find the registers set by instruction. */
1650 if (GET_CODE (PATTERN (insn)) == SET
1651 || GET_CODE (PATTERN (insn)) == CLOBBER)
1652 return check_live_1 (src, PATTERN (insn));
1653 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1654 {
1655 int j;
1656 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1657 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1658 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1659 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1660 return 0;
1661
1662 return 1;
1663 }
1664
1665 return 1;
1666 }
1667
1668 /* Update the live registers info after insn was moved speculatively from
1669 block src to trg. */
1670
1671 static void
1672 update_live (rtx insn, int src)
1673 {
1674 /* Find the registers set by instruction. */
1675 if (GET_CODE (PATTERN (insn)) == SET
1676 || GET_CODE (PATTERN (insn)) == CLOBBER)
1677 update_live_1 (src, PATTERN (insn));
1678 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1679 {
1680 int j;
1681 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1682 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1683 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1684 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1685 }
1686 }
1687
1688 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1689 #define IS_REACHABLE(bb_from, bb_to) \
1690 (bb_from == bb_to \
1691 || IS_RGN_ENTRY (bb_from) \
1692 || (TEST_BIT (ancestor_edges[bb_to], \
1693 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK (BB_TO_BLOCK (bb_from)))))))
1694
1695 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1696
1697 static void
1698 set_spec_fed (rtx load_insn)
1699 {
1700 dep_link_t link;
1701
1702 FOR_EACH_DEP_LINK (link, INSN_FORW_DEPS (load_insn))
1703 if (DEP_LINK_KIND (link) == REG_DEP_TRUE)
1704 FED_BY_SPEC_LOAD (DEP_LINK_CON (link)) = 1;
1705 }
1706
1707 /* On the path from the insn to load_insn_bb, find a conditional
1708 branch depending on insn, that guards the speculative load. */
1709
1710 static int
1711 find_conditional_protection (rtx insn, int load_insn_bb)
1712 {
1713 dep_link_t link;
1714
1715 /* Iterate through DEF-USE forward dependences. */
1716 FOR_EACH_DEP_LINK (link, INSN_FORW_DEPS (insn))
1717 {
1718 rtx next = DEP_LINK_CON (link);
1719
1720 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1721 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1722 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1723 && load_insn_bb != INSN_BB (next)
1724 && DEP_LINK_KIND (link) == REG_DEP_TRUE
1725 && (JUMP_P (next)
1726 || find_conditional_protection (next, load_insn_bb)))
1727 return 1;
1728 }
1729 return 0;
1730 } /* find_conditional_protection */
1731
1732 /* Returns 1 if the same insn1 that participates in the computation
1733 of load_insn's address is feeding a conditional branch that is
1734 guarding on load_insn. This is true if we find a the two DEF-USE
1735 chains:
1736 insn1 -> ... -> conditional-branch
1737 insn1 -> ... -> load_insn,
1738 and if a flow path exist:
1739 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1740 and if insn1 is on the path
1741 region-entry -> ... -> bb_trg -> ... load_insn.
1742
1743 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1744 Locate the branch by following INSN_FORW_DEPS from insn1. */
1745
1746 static int
1747 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1748 {
1749 dep_link_t link;
1750
1751 FOR_EACH_DEP_LINK (link, INSN_BACK_DEPS (load_insn))
1752 {
1753 rtx insn1 = DEP_LINK_PRO (link);
1754
1755 /* Must be a DEF-USE dependence upon non-branch. */
1756 if (DEP_LINK_KIND (link) != REG_DEP_TRUE
1757 || JUMP_P (insn1))
1758 continue;
1759
1760 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1761 if (INSN_BB (insn1) == bb_src
1762 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1763 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1764 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1765 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1766 continue;
1767
1768 /* Now search for the conditional-branch. */
1769 if (find_conditional_protection (insn1, bb_src))
1770 return 1;
1771
1772 /* Recursive step: search another insn1, "above" current insn1. */
1773 return is_conditionally_protected (insn1, bb_src, bb_trg);
1774 }
1775
1776 /* The chain does not exist. */
1777 return 0;
1778 } /* is_conditionally_protected */
1779
1780 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1781 load_insn can move speculatively from bb_src to bb_trg. All the
1782 following must hold:
1783
1784 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1785 (2) load_insn and load1 have a def-use dependence upon
1786 the same insn 'insn1'.
1787 (3) either load2 is in bb_trg, or:
1788 - there's only one split-block, and
1789 - load1 is on the escape path, and
1790
1791 From all these we can conclude that the two loads access memory
1792 addresses that differ at most by a constant, and hence if moving
1793 load_insn would cause an exception, it would have been caused by
1794 load2 anyhow. */
1795
1796 static int
1797 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1798 {
1799 dep_link_t back_link;
1800 candidate *candp = candidate_table + bb_src;
1801
1802 if (candp->split_bbs.nr_members != 1)
1803 /* Must have exactly one escape block. */
1804 return 0;
1805
1806 FOR_EACH_DEP_LINK (back_link, INSN_BACK_DEPS (load_insn))
1807 {
1808 rtx insn1 = DEP_LINK_PRO (back_link);
1809
1810 if (DEP_LINK_KIND (back_link) == REG_DEP_TRUE)
1811 {
1812 /* Found a DEF-USE dependence (insn1, load_insn). */
1813 dep_link_t fore_link;
1814
1815 FOR_EACH_DEP_LINK (fore_link, INSN_FORW_DEPS (insn1))
1816 {
1817 rtx insn2 = DEP_LINK_CON (fore_link);
1818
1819 if (DEP_LINK_KIND (fore_link) == REG_DEP_TRUE)
1820 {
1821 /* Found a DEF-USE dependence (insn1, insn2). */
1822 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1823 /* insn2 not guaranteed to be a 1 base reg load. */
1824 continue;
1825
1826 if (INSN_BB (insn2) == bb_trg)
1827 /* insn2 is the similar load, in the target block. */
1828 return 1;
1829
1830 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
1831 /* insn2 is a similar load, in a split-block. */
1832 return 1;
1833 }
1834 }
1835 }
1836 }
1837
1838 /* Couldn't find a similar load. */
1839 return 0;
1840 } /* is_pfree */
1841
1842 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
1843 a load moved speculatively, or if load_insn is protected by
1844 a compare on load_insn's address). */
1845
1846 static int
1847 is_prisky (rtx load_insn, int bb_src, int bb_trg)
1848 {
1849 if (FED_BY_SPEC_LOAD (load_insn))
1850 return 1;
1851
1852 if (deps_list_empty_p (INSN_BACK_DEPS (load_insn)))
1853 /* Dependence may 'hide' out of the region. */
1854 return 1;
1855
1856 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
1857 return 1;
1858
1859 return 0;
1860 }
1861
1862 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
1863 Return 1 if insn is exception-free (and the motion is valid)
1864 and 0 otherwise. */
1865
1866 static int
1867 is_exception_free (rtx insn, int bb_src, int bb_trg)
1868 {
1869 int insn_class = haifa_classify_insn (insn);
1870
1871 /* Handle non-load insns. */
1872 switch (insn_class)
1873 {
1874 case TRAP_FREE:
1875 return 1;
1876 case TRAP_RISKY:
1877 return 0;
1878 default:;
1879 }
1880
1881 /* Handle loads. */
1882 if (!flag_schedule_speculative_load)
1883 return 0;
1884 IS_LOAD_INSN (insn) = 1;
1885 switch (insn_class)
1886 {
1887 case IFREE:
1888 return (1);
1889 case IRISKY:
1890 return 0;
1891 case PFREE_CANDIDATE:
1892 if (is_pfree (insn, bb_src, bb_trg))
1893 return 1;
1894 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
1895 case PRISKY_CANDIDATE:
1896 if (!flag_schedule_speculative_load_dangerous
1897 || is_prisky (insn, bb_src, bb_trg))
1898 return 0;
1899 break;
1900 default:;
1901 }
1902
1903 return flag_schedule_speculative_load_dangerous;
1904 }
1905 \f
1906 /* The number of insns from the current block scheduled so far. */
1907 static int sched_target_n_insns;
1908 /* The number of insns from the current block to be scheduled in total. */
1909 static int target_n_insns;
1910 /* The number of insns from the entire region scheduled so far. */
1911 static int sched_n_insns;
1912
1913 /* Implementations of the sched_info functions for region scheduling. */
1914 static void init_ready_list (void);
1915 static int can_schedule_ready_p (rtx);
1916 static void begin_schedule_ready (rtx, rtx);
1917 static ds_t new_ready (rtx, ds_t);
1918 static int schedule_more_p (void);
1919 static const char *rgn_print_insn (rtx, int);
1920 static int rgn_rank (rtx, rtx);
1921 static int contributes_to_priority (rtx, rtx);
1922 static void compute_jump_reg_dependencies (rtx, regset, regset, regset);
1923
1924 /* Functions for speculative scheduling. */
1925 static void add_remove_insn (rtx, int);
1926 static void extend_regions (void);
1927 static void add_block1 (basic_block, basic_block);
1928 static void fix_recovery_cfg (int, int, int);
1929 static basic_block advance_target_bb (basic_block, rtx);
1930
1931 static void debug_rgn_dependencies (int);
1932
1933 /* Return nonzero if there are more insns that should be scheduled. */
1934
1935 static int
1936 schedule_more_p (void)
1937 {
1938 return sched_target_n_insns < target_n_insns;
1939 }
1940
1941 /* Add all insns that are initially ready to the ready list READY. Called
1942 once before scheduling a set of insns. */
1943
1944 static void
1945 init_ready_list (void)
1946 {
1947 rtx prev_head = current_sched_info->prev_head;
1948 rtx next_tail = current_sched_info->next_tail;
1949 int bb_src;
1950 rtx insn;
1951
1952 target_n_insns = 0;
1953 sched_target_n_insns = 0;
1954 sched_n_insns = 0;
1955
1956 /* Print debugging information. */
1957 if (sched_verbose >= 5)
1958 debug_rgn_dependencies (target_bb);
1959
1960 /* Prepare current target block info. */
1961 if (current_nr_blocks > 1)
1962 {
1963 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1964
1965 bblst_last = 0;
1966 /* bblst_table holds split blocks and update blocks for each block after
1967 the current one in the region. split blocks and update blocks are
1968 the TO blocks of region edges, so there can be at most rgn_nr_edges
1969 of them. */
1970 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1971 bblst_table = XNEWVEC (basic_block, bblst_size);
1972
1973 edgelst_last = 0;
1974 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1975
1976 compute_trg_info (target_bb);
1977 }
1978
1979 /* Initialize ready list with all 'ready' insns in target block.
1980 Count number of insns in the target block being scheduled. */
1981 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
1982 {
1983 try_ready (insn);
1984 target_n_insns++;
1985
1986 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
1987 }
1988
1989 /* Add to ready list all 'ready' insns in valid source blocks.
1990 For speculative insns, check-live, exception-free, and
1991 issue-delay. */
1992 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
1993 if (IS_VALID (bb_src))
1994 {
1995 rtx src_head;
1996 rtx src_next_tail;
1997 rtx tail, head;
1998
1999 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2000 &head, &tail);
2001 src_next_tail = NEXT_INSN (tail);
2002 src_head = head;
2003
2004 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2005 if (INSN_P (insn))
2006 try_ready (insn);
2007 }
2008 }
2009
2010 /* Called after taking INSN from the ready list. Returns nonzero if this
2011 insn can be scheduled, nonzero if we should silently discard it. */
2012
2013 static int
2014 can_schedule_ready_p (rtx insn)
2015 {
2016 /* An interblock motion? */
2017 if (INSN_BB (insn) != target_bb
2018 && IS_SPECULATIVE_INSN (insn)
2019 && !check_live (insn, INSN_BB (insn)))
2020 return 0;
2021 else
2022 return 1;
2023 }
2024
2025 /* Updates counter and other information. Split from can_schedule_ready_p ()
2026 because when we schedule insn speculatively then insn passed to
2027 can_schedule_ready_p () differs from the one passed to
2028 begin_schedule_ready (). */
2029 static void
2030 begin_schedule_ready (rtx insn, rtx last ATTRIBUTE_UNUSED)
2031 {
2032 /* An interblock motion? */
2033 if (INSN_BB (insn) != target_bb)
2034 {
2035 if (IS_SPECULATIVE_INSN (insn))
2036 {
2037 gcc_assert (check_live (insn, INSN_BB (insn)));
2038
2039 update_live (insn, INSN_BB (insn));
2040
2041 /* For speculative load, mark insns fed by it. */
2042 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2043 set_spec_fed (insn);
2044
2045 nr_spec++;
2046 }
2047 nr_inter++;
2048 }
2049 else
2050 {
2051 /* In block motion. */
2052 sched_target_n_insns++;
2053 }
2054 sched_n_insns++;
2055 }
2056
2057 /* Called after INSN has all its hard dependencies resolved and the speculation
2058 of type TS is enough to overcome them all.
2059 Return nonzero if it should be moved to the ready list or the queue, or zero
2060 if we should silently discard it. */
2061 static ds_t
2062 new_ready (rtx next, ds_t ts)
2063 {
2064 if (INSN_BB (next) != target_bb)
2065 {
2066 int not_ex_free = 0;
2067
2068 /* For speculative insns, before inserting to ready/queue,
2069 check live, exception-free, and issue-delay. */
2070 if (!IS_VALID (INSN_BB (next))
2071 || CANT_MOVE (next)
2072 || (IS_SPECULATIVE_INSN (next)
2073 && ((recog_memoized (next) >= 0
2074 && min_insn_conflict_delay (curr_state, next, next)
2075 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2076 || IS_SPECULATION_CHECK_P (next)
2077 || !check_live (next, INSN_BB (next))
2078 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2079 target_bb)))))
2080 {
2081 if (not_ex_free
2082 /* We are here because is_exception_free () == false.
2083 But we possibly can handle that with control speculation. */
2084 && current_sched_info->flags & DO_SPECULATION)
2085 /* Here we got new control-speculative instruction. */
2086 ts = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2087 else
2088 ts = (ts & ~SPECULATIVE) | HARD_DEP;
2089 }
2090 }
2091
2092 return ts;
2093 }
2094
2095 /* Return a string that contains the insn uid and optionally anything else
2096 necessary to identify this insn in an output. It's valid to use a
2097 static buffer for this. The ALIGNED parameter should cause the string
2098 to be formatted so that multiple output lines will line up nicely. */
2099
2100 static const char *
2101 rgn_print_insn (rtx insn, int aligned)
2102 {
2103 static char tmp[80];
2104
2105 if (aligned)
2106 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2107 else
2108 {
2109 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2110 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2111 else
2112 sprintf (tmp, "%d", INSN_UID (insn));
2113 }
2114 return tmp;
2115 }
2116
2117 /* Compare priority of two insns. Return a positive number if the second
2118 insn is to be preferred for scheduling, and a negative one if the first
2119 is to be preferred. Zero if they are equally good. */
2120
2121 static int
2122 rgn_rank (rtx insn1, rtx insn2)
2123 {
2124 /* Some comparison make sense in interblock scheduling only. */
2125 if (INSN_BB (insn1) != INSN_BB (insn2))
2126 {
2127 int spec_val, prob_val;
2128
2129 /* Prefer an inblock motion on an interblock motion. */
2130 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2131 return 1;
2132 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2133 return -1;
2134
2135 /* Prefer a useful motion on a speculative one. */
2136 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2137 if (spec_val)
2138 return spec_val;
2139
2140 /* Prefer a more probable (speculative) insn. */
2141 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2142 if (prob_val)
2143 return prob_val;
2144 }
2145 return 0;
2146 }
2147
2148 /* NEXT is an instruction that depends on INSN (a backward dependence);
2149 return nonzero if we should include this dependence in priority
2150 calculations. */
2151
2152 static int
2153 contributes_to_priority (rtx next, rtx insn)
2154 {
2155 /* NEXT and INSN reside in one ebb. */
2156 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2157 }
2158
2159 /* INSN is a JUMP_INSN, COND_SET is the set of registers that are
2160 conditionally set before INSN. Store the set of registers that
2161 must be considered as used by this jump in USED and that of
2162 registers that must be considered as set in SET. */
2163
2164 static void
2165 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2166 regset cond_exec ATTRIBUTE_UNUSED,
2167 regset used ATTRIBUTE_UNUSED,
2168 regset set ATTRIBUTE_UNUSED)
2169 {
2170 /* Nothing to do here, since we postprocess jumps in
2171 add_branch_dependences. */
2172 }
2173
2174 /* Used in schedule_insns to initialize current_sched_info for scheduling
2175 regions (or single basic blocks). */
2176
2177 static struct sched_info region_sched_info =
2178 {
2179 init_ready_list,
2180 can_schedule_ready_p,
2181 schedule_more_p,
2182 new_ready,
2183 rgn_rank,
2184 rgn_print_insn,
2185 contributes_to_priority,
2186 compute_jump_reg_dependencies,
2187
2188 NULL, NULL,
2189 NULL, NULL,
2190 0, 0, 0,
2191
2192 add_remove_insn,
2193 begin_schedule_ready,
2194 add_block1,
2195 advance_target_bb,
2196 fix_recovery_cfg,
2197 SCHED_RGN
2198 };
2199
2200 /* Determine if PAT sets a CLASS_LIKELY_SPILLED_P register. */
2201
2202 static bool
2203 sets_likely_spilled (rtx pat)
2204 {
2205 bool ret = false;
2206 note_stores (pat, sets_likely_spilled_1, &ret);
2207 return ret;
2208 }
2209
2210 static void
2211 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2212 {
2213 bool *ret = (bool *) data;
2214
2215 if (GET_CODE (pat) == SET
2216 && REG_P (x)
2217 && REGNO (x) < FIRST_PSEUDO_REGISTER
2218 && CLASS_LIKELY_SPILLED_P (REGNO_REG_CLASS (REGNO (x))))
2219 *ret = true;
2220 }
2221
2222 /* Add dependences so that branches are scheduled to run last in their
2223 block. */
2224
2225 static void
2226 add_branch_dependences (rtx head, rtx tail)
2227 {
2228 rtx insn, last;
2229
2230 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2231 that can throw exceptions, force them to remain in order at the end of
2232 the block by adding dependencies and giving the last a high priority.
2233 There may be notes present, and prev_head may also be a note.
2234
2235 Branches must obviously remain at the end. Calls should remain at the
2236 end since moving them results in worse register allocation. Uses remain
2237 at the end to ensure proper register allocation.
2238
2239 cc0 setters remain at the end because they can't be moved away from
2240 their cc0 user.
2241
2242 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2243
2244 Insns setting CLASS_LIKELY_SPILLED_P registers (usually return values)
2245 are not moved before reload because we can wind up with register
2246 allocation failures. */
2247
2248 insn = tail;
2249 last = 0;
2250 while (CALL_P (insn)
2251 || JUMP_P (insn)
2252 || (NONJUMP_INSN_P (insn)
2253 && (GET_CODE (PATTERN (insn)) == USE
2254 || GET_CODE (PATTERN (insn)) == CLOBBER
2255 || can_throw_internal (insn)
2256 #ifdef HAVE_cc0
2257 || sets_cc0_p (PATTERN (insn))
2258 #endif
2259 || (!reload_completed
2260 && sets_likely_spilled (PATTERN (insn)))))
2261 || NOTE_P (insn))
2262 {
2263 if (!NOTE_P (insn))
2264 {
2265 if (last != 0
2266 && (find_link_by_pro_in_deps_list (INSN_BACK_DEPS (last), insn)
2267 == NULL))
2268 {
2269 if (! sched_insns_conditions_mutex_p (last, insn))
2270 add_dependence (last, insn, REG_DEP_ANTI);
2271 INSN_REF_COUNT (insn)++;
2272 }
2273
2274 CANT_MOVE (insn) = 1;
2275
2276 last = insn;
2277 }
2278
2279 /* Don't overrun the bounds of the basic block. */
2280 if (insn == head)
2281 break;
2282
2283 insn = PREV_INSN (insn);
2284 }
2285
2286 /* Make sure these insns are scheduled last in their block. */
2287 insn = last;
2288 if (insn != 0)
2289 while (insn != head)
2290 {
2291 insn = prev_nonnote_insn (insn);
2292
2293 if (INSN_REF_COUNT (insn) != 0)
2294 continue;
2295
2296 if (! sched_insns_conditions_mutex_p (last, insn))
2297 add_dependence (last, insn, REG_DEP_ANTI);
2298 INSN_REF_COUNT (insn) = 1;
2299 }
2300
2301 #ifdef HAVE_conditional_execution
2302 /* Finally, if the block ends in a jump, and we are doing intra-block
2303 scheduling, make sure that the branch depends on any COND_EXEC insns
2304 inside the block to avoid moving the COND_EXECs past the branch insn.
2305
2306 We only have to do this after reload, because (1) before reload there
2307 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2308 scheduler after reload.
2309
2310 FIXME: We could in some cases move COND_EXEC insns past the branch if
2311 this scheduler would be a little smarter. Consider this code:
2312
2313 T = [addr]
2314 C ? addr += 4
2315 !C ? X += 12
2316 C ? T += 1
2317 C ? jump foo
2318
2319 On a target with a one cycle stall on a memory access the optimal
2320 sequence would be:
2321
2322 T = [addr]
2323 C ? addr += 4
2324 C ? T += 1
2325 C ? jump foo
2326 !C ? X += 12
2327
2328 We don't want to put the 'X += 12' before the branch because it just
2329 wastes a cycle of execution time when the branch is taken.
2330
2331 Note that in the example "!C" will always be true. That is another
2332 possible improvement for handling COND_EXECs in this scheduler: it
2333 could remove always-true predicates. */
2334
2335 if (!reload_completed || ! JUMP_P (tail))
2336 return;
2337
2338 insn = tail;
2339 while (insn != head)
2340 {
2341 insn = PREV_INSN (insn);
2342
2343 /* Note that we want to add this dependency even when
2344 sched_insns_conditions_mutex_p returns true. The whole point
2345 is that we _want_ this dependency, even if these insns really
2346 are independent. */
2347 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2348 add_dependence (tail, insn, REG_DEP_ANTI);
2349 }
2350 #endif
2351 }
2352
2353 /* Data structures for the computation of data dependences in a regions. We
2354 keep one `deps' structure for every basic block. Before analyzing the
2355 data dependences for a bb, its variables are initialized as a function of
2356 the variables of its predecessors. When the analysis for a bb completes,
2357 we save the contents to the corresponding bb_deps[bb] variable. */
2358
2359 static struct deps *bb_deps;
2360
2361 /* Duplicate the INSN_LIST elements of COPY and prepend them to OLD. */
2362
2363 static rtx
2364 concat_INSN_LIST (rtx copy, rtx old)
2365 {
2366 rtx new = old;
2367 for (; copy ; copy = XEXP (copy, 1))
2368 new = alloc_INSN_LIST (XEXP (copy, 0), new);
2369 return new;
2370 }
2371
2372 static void
2373 concat_insn_mem_list (rtx copy_insns, rtx copy_mems, rtx *old_insns_p,
2374 rtx *old_mems_p)
2375 {
2376 rtx new_insns = *old_insns_p;
2377 rtx new_mems = *old_mems_p;
2378
2379 while (copy_insns)
2380 {
2381 new_insns = alloc_INSN_LIST (XEXP (copy_insns, 0), new_insns);
2382 new_mems = alloc_EXPR_LIST (VOIDmode, XEXP (copy_mems, 0), new_mems);
2383 copy_insns = XEXP (copy_insns, 1);
2384 copy_mems = XEXP (copy_mems, 1);
2385 }
2386
2387 *old_insns_p = new_insns;
2388 *old_mems_p = new_mems;
2389 }
2390
2391 /* After computing the dependencies for block BB, propagate the dependencies
2392 found in TMP_DEPS to the successors of the block. */
2393 static void
2394 propagate_deps (int bb, struct deps *pred_deps)
2395 {
2396 basic_block block = BASIC_BLOCK (BB_TO_BLOCK (bb));
2397 edge_iterator ei;
2398 edge e;
2399
2400 /* bb's structures are inherited by its successors. */
2401 FOR_EACH_EDGE (e, ei, block->succs)
2402 {
2403 struct deps *succ_deps;
2404 unsigned reg;
2405 reg_set_iterator rsi;
2406
2407 /* Only bbs "below" bb, in the same region, are interesting. */
2408 if (e->dest == EXIT_BLOCK_PTR
2409 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2410 || BLOCK_TO_BB (e->dest->index) <= bb)
2411 continue;
2412
2413 succ_deps = bb_deps + BLOCK_TO_BB (e->dest->index);
2414
2415 /* The reg_last lists are inherited by successor. */
2416 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2417 {
2418 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2419 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2420
2421 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2422 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2423 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2424 succ_rl->clobbers);
2425 succ_rl->uses_length += pred_rl->uses_length;
2426 succ_rl->clobbers_length += pred_rl->clobbers_length;
2427 }
2428 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2429
2430 /* Mem read/write lists are inherited by successor. */
2431 concat_insn_mem_list (pred_deps->pending_read_insns,
2432 pred_deps->pending_read_mems,
2433 &succ_deps->pending_read_insns,
2434 &succ_deps->pending_read_mems);
2435 concat_insn_mem_list (pred_deps->pending_write_insns,
2436 pred_deps->pending_write_mems,
2437 &succ_deps->pending_write_insns,
2438 &succ_deps->pending_write_mems);
2439
2440 succ_deps->last_pending_memory_flush
2441 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2442 succ_deps->last_pending_memory_flush);
2443
2444 succ_deps->pending_read_list_length
2445 += pred_deps->pending_read_list_length;
2446 succ_deps->pending_write_list_length
2447 += pred_deps->pending_write_list_length;
2448 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2449
2450 /* last_function_call is inherited by successor. */
2451 succ_deps->last_function_call
2452 = concat_INSN_LIST (pred_deps->last_function_call,
2453 succ_deps->last_function_call);
2454
2455 /* sched_before_next_call is inherited by successor. */
2456 succ_deps->sched_before_next_call
2457 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2458 succ_deps->sched_before_next_call);
2459 }
2460
2461 /* These lists should point to the right place, for correct
2462 freeing later. */
2463 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2464 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2465 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2466 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2467
2468 /* Can't allow these to be freed twice. */
2469 pred_deps->pending_read_insns = 0;
2470 pred_deps->pending_read_mems = 0;
2471 pred_deps->pending_write_insns = 0;
2472 pred_deps->pending_write_mems = 0;
2473 }
2474
2475 /* Compute backward dependences inside bb. In a multiple blocks region:
2476 (1) a bb is analyzed after its predecessors, and (2) the lists in
2477 effect at the end of bb (after analyzing for bb) are inherited by
2478 bb's successors.
2479
2480 Specifically for reg-reg data dependences, the block insns are
2481 scanned by sched_analyze () top-to-bottom. Two lists are
2482 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2483 and reg_last[].uses for register USEs.
2484
2485 When analysis is completed for bb, we update for its successors:
2486 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2487 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2488
2489 The mechanism for computing mem-mem data dependence is very
2490 similar, and the result is interblock dependences in the region. */
2491
2492 static void
2493 compute_block_backward_dependences (int bb)
2494 {
2495 rtx head, tail;
2496 struct deps tmp_deps;
2497
2498 tmp_deps = bb_deps[bb];
2499
2500 /* Do the analysis for this block. */
2501 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2502 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2503 sched_analyze (&tmp_deps, head, tail);
2504 add_branch_dependences (head, tail);
2505
2506 if (current_nr_blocks > 1)
2507 propagate_deps (bb, &tmp_deps);
2508
2509 /* Free up the INSN_LISTs. */
2510 free_deps (&tmp_deps);
2511 }
2512
2513 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2514 them to the unused_*_list variables, so that they can be reused. */
2515
2516 static void
2517 free_pending_lists (void)
2518 {
2519 int bb;
2520
2521 for (bb = 0; bb < current_nr_blocks; bb++)
2522 {
2523 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2524 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2525 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2526 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2527 }
2528 }
2529 \f
2530
2531 /* Print dependences for debugging starting from FROM_BB.
2532 Callable from debugger. */
2533 void
2534 debug_rgn_dependencies (int from_bb)
2535 {
2536 int bb;
2537
2538 fprintf (sched_dump,
2539 ";; --------------- forward dependences: ------------ \n");
2540
2541 for (bb = from_bb; bb < current_nr_blocks; bb++)
2542 {
2543 rtx head, tail;
2544
2545 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2546 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2547 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2548 BB_TO_BLOCK (bb), bb);
2549
2550 debug_dependencies (head, tail);
2551 }
2552 }
2553
2554 /* Print dependencies information for instructions between HEAD and TAIL.
2555 ??? This function would probably fit best in haifa-sched.c. */
2556 void debug_dependencies (rtx head, rtx tail)
2557 {
2558 rtx insn;
2559 rtx next_tail = NEXT_INSN (tail);
2560
2561 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2562 "insn", "code", "bb", "dep", "prio", "cost",
2563 "reservation");
2564 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2565 "----", "----", "--", "---", "----", "----",
2566 "-----------");
2567
2568 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2569 {
2570 dep_link_t link;
2571
2572 if (! INSN_P (insn))
2573 {
2574 int n;
2575 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2576 if (NOTE_P (insn))
2577 {
2578 n = NOTE_KIND (insn);
2579 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2580 }
2581 else
2582 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2583 continue;
2584 }
2585
2586 fprintf (sched_dump,
2587 ";; %s%5d%6d%6d%6d%6d%6d ",
2588 (SCHED_GROUP_P (insn) ? "+" : " "),
2589 INSN_UID (insn),
2590 INSN_CODE (insn),
2591 BLOCK_NUM (insn),
2592 INSN_DEP_COUNT (insn),
2593 INSN_PRIORITY (insn),
2594 insn_cost (insn));
2595
2596 if (recog_memoized (insn) < 0)
2597 fprintf (sched_dump, "nothing");
2598 else
2599 print_reservation (sched_dump, insn);
2600
2601 fprintf (sched_dump, "\t: ");
2602 FOR_EACH_DEP_LINK (link, INSN_FORW_DEPS (insn))
2603 fprintf (sched_dump, "%d ", INSN_UID (DEP_LINK_CON (link)));
2604 fprintf (sched_dump, "\n");
2605 }
2606
2607 fprintf (sched_dump, "\n");
2608 }
2609 \f
2610 /* Returns true if all the basic blocks of the current region have
2611 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2612 static bool
2613 sched_is_disabled_for_current_region_p (void)
2614 {
2615 int bb;
2616
2617 for (bb = 0; bb < current_nr_blocks; bb++)
2618 if (!(BASIC_BLOCK (BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2619 return false;
2620
2621 return true;
2622 }
2623
2624 /* Schedule a region. A region is either an inner loop, a loop-free
2625 subroutine, or a single basic block. Each bb in the region is
2626 scheduled after its flow predecessors. */
2627
2628 static void
2629 schedule_region (int rgn)
2630 {
2631 basic_block block;
2632 edge_iterator ei;
2633 edge e;
2634 int bb;
2635 int sched_rgn_n_insns = 0;
2636
2637 rgn_n_insns = 0;
2638 /* Set variables for the current region. */
2639 current_nr_blocks = RGN_NR_BLOCKS (rgn);
2640 current_blocks = RGN_BLOCKS (rgn);
2641
2642 /* See comments in add_block1, for what reasons we allocate +1 element. */
2643 ebb_head = xrealloc (ebb_head, (current_nr_blocks + 1) * sizeof (*ebb_head));
2644 for (bb = 0; bb <= current_nr_blocks; bb++)
2645 ebb_head[bb] = current_blocks + bb;
2646
2647 /* Don't schedule region that is marked by
2648 NOTE_DISABLE_SCHED_OF_BLOCK. */
2649 if (sched_is_disabled_for_current_region_p ())
2650 return;
2651
2652 if (!RGN_DONT_CALC_DEPS (rgn))
2653 {
2654 init_deps_global ();
2655
2656 /* Initializations for region data dependence analysis. */
2657 bb_deps = XNEWVEC (struct deps, current_nr_blocks);
2658 for (bb = 0; bb < current_nr_blocks; bb++)
2659 init_deps (bb_deps + bb);
2660
2661 /* Compute backward dependencies. */
2662 for (bb = 0; bb < current_nr_blocks; bb++)
2663 compute_block_backward_dependences (bb);
2664
2665 /* Compute forward dependencies. */
2666 for (bb = current_nr_blocks - 1; bb >= 0; bb--)
2667 {
2668 rtx head, tail;
2669
2670 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2671 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2672
2673 compute_forward_dependences (head, tail);
2674
2675 if (targetm.sched.dependencies_evaluation_hook)
2676 targetm.sched.dependencies_evaluation_hook (head, tail);
2677 }
2678
2679 free_pending_lists ();
2680
2681 finish_deps_global ();
2682
2683 free (bb_deps);
2684 }
2685 else
2686 /* This is a recovery block. It is always a single block region. */
2687 gcc_assert (current_nr_blocks == 1);
2688
2689 /* Set priorities. */
2690 current_sched_info->sched_max_insns_priority = 0;
2691 for (bb = 0; bb < current_nr_blocks; bb++)
2692 {
2693 rtx head, tail;
2694
2695 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2696 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2697
2698 rgn_n_insns += set_priorities (head, tail);
2699 }
2700 current_sched_info->sched_max_insns_priority++;
2701
2702 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
2703 if (current_nr_blocks > 1)
2704 {
2705 prob = XNEWVEC (int, current_nr_blocks);
2706
2707 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
2708 sbitmap_vector_zero (dom, current_nr_blocks);
2709
2710 /* Use ->aux to implement EDGE_TO_BIT mapping. */
2711 rgn_nr_edges = 0;
2712 FOR_EACH_BB (block)
2713 {
2714 if (CONTAINING_RGN (block->index) != rgn)
2715 continue;
2716 FOR_EACH_EDGE (e, ei, block->succs)
2717 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
2718 }
2719
2720 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
2721 rgn_nr_edges = 0;
2722 FOR_EACH_BB (block)
2723 {
2724 if (CONTAINING_RGN (block->index) != rgn)
2725 continue;
2726 FOR_EACH_EDGE (e, ei, block->succs)
2727 rgn_edges[rgn_nr_edges++] = e;
2728 }
2729
2730 /* Split edges. */
2731 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2732 sbitmap_vector_zero (pot_split, current_nr_blocks);
2733 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
2734 sbitmap_vector_zero (ancestor_edges, current_nr_blocks);
2735
2736 /* Compute probabilities, dominators, split_edges. */
2737 for (bb = 0; bb < current_nr_blocks; bb++)
2738 compute_dom_prob_ps (bb);
2739
2740 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
2741 /* We don't need them anymore. But we want to avoid duplication of
2742 aux fields in the newly created edges. */
2743 FOR_EACH_BB (block)
2744 {
2745 if (CONTAINING_RGN (block->index) != rgn)
2746 continue;
2747 FOR_EACH_EDGE (e, ei, block->succs)
2748 e->aux = NULL;
2749 }
2750 }
2751
2752 /* Now we can schedule all blocks. */
2753 for (bb = 0; bb < current_nr_blocks; bb++)
2754 {
2755 basic_block first_bb, last_bb, curr_bb;
2756 rtx head, tail;
2757
2758 first_bb = EBB_FIRST_BB (bb);
2759 last_bb = EBB_LAST_BB (bb);
2760
2761 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
2762
2763 if (no_real_insns_p (head, tail))
2764 {
2765 gcc_assert (first_bb == last_bb);
2766 continue;
2767 }
2768
2769 current_sched_info->prev_head = PREV_INSN (head);
2770 current_sched_info->next_tail = NEXT_INSN (tail);
2771
2772
2773 /* rm_other_notes only removes notes which are _inside_ the
2774 block---that is, it won't remove notes before the first real insn
2775 or after the last real insn of the block. So if the first insn
2776 has a REG_SAVE_NOTE which would otherwise be emitted before the
2777 insn, it is redundant with the note before the start of the
2778 block, and so we have to take it out. */
2779 if (INSN_P (head))
2780 {
2781 rtx note;
2782
2783 for (note = REG_NOTES (head); note; note = XEXP (note, 1))
2784 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE)
2785 remove_note (head, note);
2786 }
2787 else
2788 /* This means that first block in ebb is empty.
2789 It looks to me as an impossible thing. There at least should be
2790 a recovery check, that caused the splitting. */
2791 gcc_unreachable ();
2792
2793 /* Remove remaining note insns from the block, save them in
2794 note_list. These notes are restored at the end of
2795 schedule_block (). */
2796 rm_other_notes (head, tail);
2797
2798 unlink_bb_notes (first_bb, last_bb);
2799
2800 target_bb = bb;
2801
2802 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
2803 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
2804
2805 curr_bb = first_bb;
2806 if (dbg_cnt (sched_block))
2807 {
2808 schedule_block (&curr_bb, rgn_n_insns);
2809 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
2810 sched_rgn_n_insns += sched_n_insns;
2811 }
2812 else
2813 {
2814 sched_rgn_n_insns += rgn_n_insns;
2815 }
2816
2817 /* Clean up. */
2818 if (current_nr_blocks > 1)
2819 {
2820 free (candidate_table);
2821 free (bblst_table);
2822 free (edgelst_table);
2823 }
2824 }
2825
2826 /* Sanity check: verify that all region insns were scheduled. */
2827 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
2828
2829
2830 /* Done with this region. */
2831
2832 if (current_nr_blocks > 1)
2833 {
2834 free (prob);
2835 sbitmap_vector_free (dom);
2836 sbitmap_vector_free (pot_split);
2837 sbitmap_vector_free (ancestor_edges);
2838 free (rgn_edges);
2839 }
2840 }
2841
2842 /* Initialize data structures for region scheduling. */
2843
2844 static void
2845 init_regions (void)
2846 {
2847 nr_regions = 0;
2848 rgn_table = 0;
2849 rgn_bb_table = 0;
2850 block_to_bb = 0;
2851 containing_rgn = 0;
2852 extend_regions ();
2853
2854 /* Compute regions for scheduling. */
2855 if (reload_completed
2856 || n_basic_blocks == NUM_FIXED_BLOCKS + 1
2857 || !flag_schedule_interblock
2858 || is_cfg_nonregular ())
2859 {
2860 find_single_block_region ();
2861 }
2862 else
2863 {
2864 /* Compute the dominators and post dominators. */
2865 calculate_dominance_info (CDI_DOMINATORS);
2866
2867 /* Find regions. */
2868 find_rgns ();
2869
2870 if (sched_verbose >= 3)
2871 debug_regions ();
2872
2873 /* For now. This will move as more and more of haifa is converted
2874 to using the cfg code. */
2875 free_dominance_info (CDI_DOMINATORS);
2876 }
2877 RGN_BLOCKS (nr_regions) = RGN_BLOCKS (nr_regions - 1) +
2878 RGN_NR_BLOCKS (nr_regions - 1);
2879 }
2880
2881 /* The one entry point in this file. */
2882
2883 void
2884 schedule_insns (void)
2885 {
2886 int rgn;
2887
2888 /* Taking care of this degenerate case makes the rest of
2889 this code simpler. */
2890 if (n_basic_blocks == NUM_FIXED_BLOCKS)
2891 return;
2892
2893 nr_inter = 0;
2894 nr_spec = 0;
2895
2896 /* We need current_sched_info in init_dependency_caches, which is
2897 invoked via sched_init. */
2898 current_sched_info = &region_sched_info;
2899
2900 df_set_flags (DF_LR_RUN_DCE);
2901 df_note_add_problem ();
2902 df_analyze ();
2903 regstat_compute_calls_crossed ();
2904
2905 sched_init ();
2906
2907 bitmap_initialize (&not_in_df, 0);
2908 bitmap_clear (&not_in_df);
2909
2910 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
2911 / 100);
2912
2913 init_regions ();
2914
2915 /* EBB_HEAD is a region-scope structure. But we realloc it for
2916 each region to save time/memory/something else. */
2917 ebb_head = 0;
2918
2919 /* Schedule every region in the subroutine. */
2920 for (rgn = 0; rgn < nr_regions; rgn++)
2921 if (dbg_cnt (sched_region))
2922 schedule_region (rgn);
2923
2924 free(ebb_head);
2925 /* Reposition the prologue and epilogue notes in case we moved the
2926 prologue/epilogue insns. */
2927 if (reload_completed)
2928 reposition_prologue_and_epilogue_notes ();
2929
2930 if (sched_verbose)
2931 {
2932 if (reload_completed == 0 && flag_schedule_interblock)
2933 {
2934 fprintf (sched_dump,
2935 "\n;; Procedure interblock/speculative motions == %d/%d \n",
2936 nr_inter, nr_spec);
2937 }
2938 else
2939 gcc_assert (nr_inter <= 0);
2940 fprintf (sched_dump, "\n\n");
2941 }
2942
2943 /* Clean up. */
2944 free (rgn_table);
2945 free (rgn_bb_table);
2946 free (block_to_bb);
2947 free (containing_rgn);
2948
2949 regstat_free_calls_crossed ();
2950
2951 bitmap_clear (&not_in_df);
2952
2953 sched_finish ();
2954 }
2955
2956 /* INSN has been added to/removed from current region. */
2957 static void
2958 add_remove_insn (rtx insn, int remove_p)
2959 {
2960 if (!remove_p)
2961 rgn_n_insns++;
2962 else
2963 rgn_n_insns--;
2964
2965 if (INSN_BB (insn) == target_bb)
2966 {
2967 if (!remove_p)
2968 target_n_insns++;
2969 else
2970 target_n_insns--;
2971 }
2972 }
2973
2974 /* Extend internal data structures. */
2975 static void
2976 extend_regions (void)
2977 {
2978 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks);
2979 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table, n_basic_blocks);
2980 block_to_bb = XRESIZEVEC (int, block_to_bb, last_basic_block);
2981 containing_rgn = XRESIZEVEC (int, containing_rgn, last_basic_block);
2982 }
2983
2984 /* BB was added to ebb after AFTER. */
2985 static void
2986 add_block1 (basic_block bb, basic_block after)
2987 {
2988 extend_regions ();
2989
2990 bitmap_set_bit (&not_in_df, bb->index);
2991
2992 if (after == 0 || after == EXIT_BLOCK_PTR)
2993 {
2994 int i;
2995
2996 i = RGN_BLOCKS (nr_regions);
2997 /* I - first free position in rgn_bb_table. */
2998
2999 rgn_bb_table[i] = bb->index;
3000 RGN_NR_BLOCKS (nr_regions) = 1;
3001 RGN_DONT_CALC_DEPS (nr_regions) = after == EXIT_BLOCK_PTR;
3002 RGN_HAS_REAL_EBB (nr_regions) = 0;
3003 CONTAINING_RGN (bb->index) = nr_regions;
3004 BLOCK_TO_BB (bb->index) = 0;
3005
3006 nr_regions++;
3007
3008 RGN_BLOCKS (nr_regions) = i + 1;
3009 }
3010 else
3011 {
3012 int i, pos;
3013
3014 /* We need to fix rgn_table, block_to_bb, containing_rgn
3015 and ebb_head. */
3016
3017 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3018
3019 /* We extend ebb_head to one more position to
3020 easily find the last position of the last ebb in
3021 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3022 is _always_ valid for access. */
3023
3024 i = BLOCK_TO_BB (after->index) + 1;
3025 pos = ebb_head[i] - 1;
3026 /* Now POS is the index of the last block in the region. */
3027
3028 /* Find index of basic block AFTER. */
3029 for (; rgn_bb_table[pos] != after->index; pos--);
3030
3031 pos++;
3032 gcc_assert (pos > ebb_head[i - 1]);
3033
3034 /* i - ebb right after "AFTER". */
3035 /* ebb_head[i] - VALID. */
3036
3037 /* Source position: ebb_head[i]
3038 Destination position: ebb_head[i] + 1
3039 Last position:
3040 RGN_BLOCKS (nr_regions) - 1
3041 Number of elements to copy: (last_position) - (source_position) + 1
3042 */
3043
3044 memmove (rgn_bb_table + pos + 1,
3045 rgn_bb_table + pos,
3046 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3047 * sizeof (*rgn_bb_table));
3048
3049 rgn_bb_table[pos] = bb->index;
3050
3051 for (; i <= current_nr_blocks; i++)
3052 ebb_head [i]++;
3053
3054 i = CONTAINING_RGN (after->index);
3055 CONTAINING_RGN (bb->index) = i;
3056
3057 RGN_HAS_REAL_EBB (i) = 1;
3058
3059 for (++i; i <= nr_regions; i++)
3060 RGN_BLOCKS (i)++;
3061 }
3062 }
3063
3064 /* Fix internal data after interblock movement of jump instruction.
3065 For parameter meaning please refer to
3066 sched-int.h: struct sched_info: fix_recovery_cfg. */
3067 static void
3068 fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3069 {
3070 int old_pos, new_pos, i;
3071
3072 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3073
3074 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3075 rgn_bb_table[old_pos] != check_bb_nexti;
3076 old_pos--);
3077 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3078
3079 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3080 rgn_bb_table[new_pos] != bbi;
3081 new_pos--);
3082 new_pos++;
3083 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3084
3085 gcc_assert (new_pos < old_pos);
3086
3087 memmove (rgn_bb_table + new_pos + 1,
3088 rgn_bb_table + new_pos,
3089 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3090
3091 rgn_bb_table[new_pos] = check_bb_nexti;
3092
3093 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3094 ebb_head[i]++;
3095 }
3096
3097 /* Return next block in ebb chain. For parameter meaning please refer to
3098 sched-int.h: struct sched_info: advance_target_bb. */
3099 static basic_block
3100 advance_target_bb (basic_block bb, rtx insn)
3101 {
3102 if (insn)
3103 return 0;
3104
3105 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3106 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3107 return bb->next_bb;
3108 }
3109
3110 #endif
3111 \f
3112 static bool
3113 gate_handle_sched (void)
3114 {
3115 #ifdef INSN_SCHEDULING
3116 return flag_schedule_insns && dbg_cnt (sched_func);
3117 #else
3118 return 0;
3119 #endif
3120 }
3121
3122 /* Run instruction scheduler. */
3123 static unsigned int
3124 rest_of_handle_sched (void)
3125 {
3126 #ifdef INSN_SCHEDULING
3127 schedule_insns ();
3128 #endif
3129 return 0;
3130 }
3131
3132 static bool
3133 gate_handle_sched2 (void)
3134 {
3135 #ifdef INSN_SCHEDULING
3136 return optimize > 0 && flag_schedule_insns_after_reload
3137 && dbg_cnt (sched2_func);
3138 #else
3139 return 0;
3140 #endif
3141 }
3142
3143 /* Run second scheduling pass after reload. */
3144 static unsigned int
3145 rest_of_handle_sched2 (void)
3146 {
3147 #ifdef INSN_SCHEDULING
3148 /* Do control and data sched analysis again,
3149 and write some more of the results to dump file. */
3150 if (flag_sched2_use_superblocks || flag_sched2_use_traces)
3151 schedule_ebbs ();
3152 else
3153 schedule_insns ();
3154 #endif
3155 return 0;
3156 }
3157
3158 struct tree_opt_pass pass_sched =
3159 {
3160 "sched1", /* name */
3161 gate_handle_sched, /* gate */
3162 rest_of_handle_sched, /* execute */
3163 NULL, /* sub */
3164 NULL, /* next */
3165 0, /* static_pass_number */
3166 TV_SCHED, /* tv_id */
3167 0, /* properties_required */
3168 0, /* properties_provided */
3169 0, /* properties_destroyed */
3170 0, /* todo_flags_start */
3171 TODO_df_finish |
3172 TODO_dump_func |
3173 TODO_verify_flow |
3174 TODO_ggc_collect, /* todo_flags_finish */
3175 'S' /* letter */
3176 };
3177
3178 struct tree_opt_pass pass_sched2 =
3179 {
3180 "sched2", /* name */
3181 gate_handle_sched2, /* gate */
3182 rest_of_handle_sched2, /* execute */
3183 NULL, /* sub */
3184 NULL, /* next */
3185 0, /* static_pass_number */
3186 TV_SCHED2, /* tv_id */
3187 0, /* properties_required */
3188 0, /* properties_provided */
3189 0, /* properties_destroyed */
3190 0, /* todo_flags_start */
3191 TODO_df_finish |
3192 TODO_dump_func |
3193 TODO_verify_flow |
3194 TODO_ggc_collect, /* todo_flags_finish */
3195 'R' /* letter */
3196 };
3197