[ARM] Add ACLE 2.0 predefined marco __ARM_FEATURE_IDIV
[gcc.git] / gcc / sched-rgn.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
4 and currently maintained by, Jim Wilson (wilson@cygnus.com)
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This pass implements list scheduling within basic blocks. It is
23 run twice: (1) after flow analysis, but before register allocation,
24 and (2) after register allocation.
25
26 The first run performs interblock scheduling, moving insns between
27 different blocks in the same "region", and the second runs only
28 basic block scheduling.
29
30 Interblock motions performed are useful motions and speculative
31 motions, including speculative loads. Motions requiring code
32 duplication are not supported. The identification of motion type
33 and the check for validity of speculative motions requires
34 construction and analysis of the function's control flow graph.
35
36 The main entry point for this pass is schedule_insns(), called for
37 each function. The work of the scheduler is organized in three
38 levels: (1) function level: insns are subject to splitting,
39 control-flow-graph is constructed, regions are computed (after
40 reload, each region is of one block), (2) region level: control
41 flow graph attributes required for interblock scheduling are
42 computed (dominators, reachability, etc.), data dependences and
43 priorities are computed, and (3) block level: insns in the block
44 are actually scheduled. */
45 \f
46 #include "config.h"
47 #include "system.h"
48 #include "coretypes.h"
49 #include "tm.h"
50 #include "diagnostic-core.h"
51 #include "rtl.h"
52 #include "tm_p.h"
53 #include "hard-reg-set.h"
54 #include "regs.h"
55 #include "hashtab.h"
56 #include "hash-set.h"
57 #include "vec.h"
58 #include "machmode.h"
59 #include "input.h"
60 #include "function.h"
61 #include "profile.h"
62 #include "flags.h"
63 #include "insn-config.h"
64 #include "insn-attr.h"
65 #include "except.h"
66 #include "recog.h"
67 #include "params.h"
68 #include "sched-int.h"
69 #include "sel-sched.h"
70 #include "target.h"
71 #include "tree-pass.h"
72 #include "dbgcnt.h"
73
74 #ifdef INSN_SCHEDULING
75
76 /* Some accessor macros for h_i_d members only used within this file. */
77 #define FED_BY_SPEC_LOAD(INSN) (HID (INSN)->fed_by_spec_load)
78 #define IS_LOAD_INSN(INSN) (HID (insn)->is_load_insn)
79
80 /* nr_inter/spec counts interblock/speculative motion for the function. */
81 static int nr_inter, nr_spec;
82
83 static int is_cfg_nonregular (void);
84
85 /* Number of regions in the procedure. */
86 int nr_regions = 0;
87
88 /* Same as above before adding any new regions. */
89 static int nr_regions_initial = 0;
90
91 /* Table of region descriptions. */
92 region *rgn_table = NULL;
93
94 /* Array of lists of regions' blocks. */
95 int *rgn_bb_table = NULL;
96
97 /* Topological order of blocks in the region (if b2 is reachable from
98 b1, block_to_bb[b2] > block_to_bb[b1]). Note: A basic block is
99 always referred to by either block or b, while its topological
100 order name (in the region) is referred to by bb. */
101 int *block_to_bb = NULL;
102
103 /* The number of the region containing a block. */
104 int *containing_rgn = NULL;
105
106 /* ebb_head [i] - is index in rgn_bb_table of the head basic block of i'th ebb.
107 Currently we can get a ebb only through splitting of currently
108 scheduling block, therefore, we don't need ebb_head array for every region,
109 hence, its sufficient to hold it for current one only. */
110 int *ebb_head = NULL;
111
112 /* The minimum probability of reaching a source block so that it will be
113 considered for speculative scheduling. */
114 static int min_spec_prob;
115
116 static void find_single_block_region (bool);
117 static void find_rgns (void);
118 static bool too_large (int, int *, int *);
119
120 /* Blocks of the current region being scheduled. */
121 int current_nr_blocks;
122 int current_blocks;
123
124 /* A speculative motion requires checking live information on the path
125 from 'source' to 'target'. The split blocks are those to be checked.
126 After a speculative motion, live information should be modified in
127 the 'update' blocks.
128
129 Lists of split and update blocks for each candidate of the current
130 target are in array bblst_table. */
131 static basic_block *bblst_table;
132 static int bblst_size, bblst_last;
133
134 /* Arrays that hold the DFA state at the end of a basic block, to re-use
135 as the initial state at the start of successor blocks. The BB_STATE
136 array holds the actual DFA state, and BB_STATE_ARRAY[I] is a pointer
137 into BB_STATE for basic block I. FIXME: This should be a vec. */
138 static char *bb_state_array = NULL;
139 static state_t *bb_state = NULL;
140
141 /* Target info declarations.
142
143 The block currently being scheduled is referred to as the "target" block,
144 while other blocks in the region from which insns can be moved to the
145 target are called "source" blocks. The candidate structure holds info
146 about such sources: are they valid? Speculative? Etc. */
147 typedef struct
148 {
149 basic_block *first_member;
150 int nr_members;
151 }
152 bblst;
153
154 typedef struct
155 {
156 char is_valid;
157 char is_speculative;
158 int src_prob;
159 bblst split_bbs;
160 bblst update_bbs;
161 }
162 candidate;
163
164 static candidate *candidate_table;
165 #define IS_VALID(src) (candidate_table[src].is_valid)
166 #define IS_SPECULATIVE(src) (candidate_table[src].is_speculative)
167 #define IS_SPECULATIVE_INSN(INSN) \
168 (IS_SPECULATIVE (BLOCK_TO_BB (BLOCK_NUM (INSN))))
169 #define SRC_PROB(src) ( candidate_table[src].src_prob )
170
171 /* The bb being currently scheduled. */
172 int target_bb;
173
174 /* List of edges. */
175 typedef struct
176 {
177 edge *first_member;
178 int nr_members;
179 }
180 edgelst;
181
182 static edge *edgelst_table;
183 static int edgelst_last;
184
185 static void extract_edgelst (sbitmap, edgelst *);
186
187 /* Target info functions. */
188 static void split_edges (int, int, edgelst *);
189 static void compute_trg_info (int);
190 void debug_candidate (int);
191 void debug_candidates (int);
192
193 /* Dominators array: dom[i] contains the sbitmap of dominators of
194 bb i in the region. */
195 static sbitmap *dom;
196
197 /* bb 0 is the only region entry. */
198 #define IS_RGN_ENTRY(bb) (!bb)
199
200 /* Is bb_src dominated by bb_trg. */
201 #define IS_DOMINATED(bb_src, bb_trg) \
202 ( bitmap_bit_p (dom[bb_src], bb_trg) )
203
204 /* Probability: Prob[i] is an int in [0, REG_BR_PROB_BASE] which is
205 the probability of bb i relative to the region entry. */
206 static int *prob;
207
208 /* Bit-set of edges, where bit i stands for edge i. */
209 typedef sbitmap edgeset;
210
211 /* Number of edges in the region. */
212 static int rgn_nr_edges;
213
214 /* Array of size rgn_nr_edges. */
215 static edge *rgn_edges;
216
217 /* Mapping from each edge in the graph to its number in the rgn. */
218 #define EDGE_TO_BIT(edge) ((int)(size_t)(edge)->aux)
219 #define SET_EDGE_TO_BIT(edge,nr) ((edge)->aux = (void *)(size_t)(nr))
220
221 /* The split edges of a source bb is different for each target
222 bb. In order to compute this efficiently, the 'potential-split edges'
223 are computed for each bb prior to scheduling a region. This is actually
224 the split edges of each bb relative to the region entry.
225
226 pot_split[bb] is the set of potential split edges of bb. */
227 static edgeset *pot_split;
228
229 /* For every bb, a set of its ancestor edges. */
230 static edgeset *ancestor_edges;
231
232 #define INSN_PROBABILITY(INSN) (SRC_PROB (BLOCK_TO_BB (BLOCK_NUM (INSN))))
233
234 /* Speculative scheduling functions. */
235 static int check_live_1 (int, rtx);
236 static void update_live_1 (int, rtx);
237 static int is_pfree (rtx, int, int);
238 static int find_conditional_protection (rtx, int);
239 static int is_conditionally_protected (rtx, int, int);
240 static int is_prisky (rtx, int, int);
241 static int is_exception_free (rtx, int, int);
242
243 static bool sets_likely_spilled (rtx);
244 static void sets_likely_spilled_1 (rtx, const_rtx, void *);
245 static void add_branch_dependences (rtx_insn *, rtx_insn *);
246 static void compute_block_dependences (int);
247
248 static void schedule_region (int);
249 static void concat_insn_mem_list (rtx_insn_list *, rtx_expr_list *,
250 rtx_insn_list **, rtx_expr_list **);
251 static void propagate_deps (int, struct deps_desc *);
252 static void free_pending_lists (void);
253
254 /* Functions for construction of the control flow graph. */
255
256 /* Return 1 if control flow graph should not be constructed, 0 otherwise.
257
258 We decide not to build the control flow graph if there is possibly more
259 than one entry to the function, if computed branches exist, if we
260 have nonlocal gotos, or if we have an unreachable loop. */
261
262 static int
263 is_cfg_nonregular (void)
264 {
265 basic_block b;
266 rtx_insn *insn;
267
268 /* If we have a label that could be the target of a nonlocal goto, then
269 the cfg is not well structured. */
270 if (nonlocal_goto_handler_labels)
271 return 1;
272
273 /* If we have any forced labels, then the cfg is not well structured. */
274 if (forced_labels)
275 return 1;
276
277 /* If we have exception handlers, then we consider the cfg not well
278 structured. ?!? We should be able to handle this now that we
279 compute an accurate cfg for EH. */
280 if (current_function_has_exception_handlers ())
281 return 1;
282
283 /* If we have insns which refer to labels as non-jumped-to operands,
284 then we consider the cfg not well structured. */
285 FOR_EACH_BB_FN (b, cfun)
286 FOR_BB_INSNS (b, insn)
287 {
288 rtx note, set, dest;
289 rtx_insn *next;
290
291 /* If this function has a computed jump, then we consider the cfg
292 not well structured. */
293 if (JUMP_P (insn) && computed_jump_p (insn))
294 return 1;
295
296 if (!INSN_P (insn))
297 continue;
298
299 note = find_reg_note (insn, REG_LABEL_OPERAND, NULL_RTX);
300 if (note == NULL_RTX)
301 continue;
302
303 /* For that label not to be seen as a referred-to label, this
304 must be a single-set which is feeding a jump *only*. This
305 could be a conditional jump with the label split off for
306 machine-specific reasons or a casesi/tablejump. */
307 next = next_nonnote_insn (insn);
308 if (next == NULL_RTX
309 || !JUMP_P (next)
310 || (JUMP_LABEL (next) != XEXP (note, 0)
311 && find_reg_note (next, REG_LABEL_TARGET,
312 XEXP (note, 0)) == NULL_RTX)
313 || BLOCK_FOR_INSN (insn) != BLOCK_FOR_INSN (next))
314 return 1;
315
316 set = single_set (insn);
317 if (set == NULL_RTX)
318 return 1;
319
320 dest = SET_DEST (set);
321 if (!REG_P (dest) || !dead_or_set_p (next, dest))
322 return 1;
323 }
324
325 /* Unreachable loops with more than one basic block are detected
326 during the DFS traversal in find_rgns.
327
328 Unreachable loops with a single block are detected here. This
329 test is redundant with the one in find_rgns, but it's much
330 cheaper to go ahead and catch the trivial case here. */
331 FOR_EACH_BB_FN (b, cfun)
332 {
333 if (EDGE_COUNT (b->preds) == 0
334 || (single_pred_p (b)
335 && single_pred (b) == b))
336 return 1;
337 }
338
339 /* All the tests passed. Consider the cfg well structured. */
340 return 0;
341 }
342
343 /* Extract list of edges from a bitmap containing EDGE_TO_BIT bits. */
344
345 static void
346 extract_edgelst (sbitmap set, edgelst *el)
347 {
348 unsigned int i = 0;
349 sbitmap_iterator sbi;
350
351 /* edgelst table space is reused in each call to extract_edgelst. */
352 edgelst_last = 0;
353
354 el->first_member = &edgelst_table[edgelst_last];
355 el->nr_members = 0;
356
357 /* Iterate over each word in the bitset. */
358 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, sbi)
359 {
360 edgelst_table[edgelst_last++] = rgn_edges[i];
361 el->nr_members++;
362 }
363 }
364
365 /* Functions for the construction of regions. */
366
367 /* Print the regions, for debugging purposes. Callable from debugger. */
368
369 DEBUG_FUNCTION void
370 debug_regions (void)
371 {
372 int rgn, bb;
373
374 fprintf (sched_dump, "\n;; ------------ REGIONS ----------\n\n");
375 for (rgn = 0; rgn < nr_regions; rgn++)
376 {
377 fprintf (sched_dump, ";;\trgn %d nr_blocks %d:\n", rgn,
378 rgn_table[rgn].rgn_nr_blocks);
379 fprintf (sched_dump, ";;\tbb/block: ");
380
381 /* We don't have ebb_head initialized yet, so we can't use
382 BB_TO_BLOCK (). */
383 current_blocks = RGN_BLOCKS (rgn);
384
385 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
386 fprintf (sched_dump, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
387
388 fprintf (sched_dump, "\n\n");
389 }
390 }
391
392 /* Print the region's basic blocks. */
393
394 DEBUG_FUNCTION void
395 debug_region (int rgn)
396 {
397 int bb;
398
399 fprintf (stderr, "\n;; ------------ REGION %d ----------\n\n", rgn);
400 fprintf (stderr, ";;\trgn %d nr_blocks %d:\n", rgn,
401 rgn_table[rgn].rgn_nr_blocks);
402 fprintf (stderr, ";;\tbb/block: ");
403
404 /* We don't have ebb_head initialized yet, so we can't use
405 BB_TO_BLOCK (). */
406 current_blocks = RGN_BLOCKS (rgn);
407
408 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
409 fprintf (stderr, " %d/%d ", bb, rgn_bb_table[current_blocks + bb]);
410
411 fprintf (stderr, "\n\n");
412
413 for (bb = 0; bb < rgn_table[rgn].rgn_nr_blocks; bb++)
414 {
415 dump_bb (stderr,
416 BASIC_BLOCK_FOR_FN (cfun, rgn_bb_table[current_blocks + bb]),
417 0, TDF_SLIM | TDF_BLOCKS);
418 fprintf (stderr, "\n");
419 }
420
421 fprintf (stderr, "\n");
422
423 }
424
425 /* True when a bb with index BB_INDEX contained in region RGN. */
426 static bool
427 bb_in_region_p (int bb_index, int rgn)
428 {
429 int i;
430
431 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
432 if (rgn_bb_table[current_blocks + i] == bb_index)
433 return true;
434
435 return false;
436 }
437
438 /* Dump region RGN to file F using dot syntax. */
439 void
440 dump_region_dot (FILE *f, int rgn)
441 {
442 int i;
443
444 fprintf (f, "digraph Region_%d {\n", rgn);
445
446 /* We don't have ebb_head initialized yet, so we can't use
447 BB_TO_BLOCK (). */
448 current_blocks = RGN_BLOCKS (rgn);
449
450 for (i = 0; i < rgn_table[rgn].rgn_nr_blocks; i++)
451 {
452 edge e;
453 edge_iterator ei;
454 int src_bb_num = rgn_bb_table[current_blocks + i];
455 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, src_bb_num);
456
457 FOR_EACH_EDGE (e, ei, bb->succs)
458 if (bb_in_region_p (e->dest->index, rgn))
459 fprintf (f, "\t%d -> %d\n", src_bb_num, e->dest->index);
460 }
461 fprintf (f, "}\n");
462 }
463
464 /* The same, but first open a file specified by FNAME. */
465 void
466 dump_region_dot_file (const char *fname, int rgn)
467 {
468 FILE *f = fopen (fname, "wt");
469 dump_region_dot (f, rgn);
470 fclose (f);
471 }
472
473 /* Build a single block region for each basic block in the function.
474 This allows for using the same code for interblock and basic block
475 scheduling. */
476
477 static void
478 find_single_block_region (bool ebbs_p)
479 {
480 basic_block bb, ebb_start;
481 int i = 0;
482
483 nr_regions = 0;
484
485 if (ebbs_p) {
486 int probability_cutoff;
487 if (profile_info && flag_branch_probabilities)
488 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY_FEEDBACK);
489 else
490 probability_cutoff = PARAM_VALUE (TRACER_MIN_BRANCH_PROBABILITY);
491 probability_cutoff = REG_BR_PROB_BASE / 100 * probability_cutoff;
492
493 FOR_EACH_BB_FN (ebb_start, cfun)
494 {
495 RGN_NR_BLOCKS (nr_regions) = 0;
496 RGN_BLOCKS (nr_regions) = i;
497 RGN_DONT_CALC_DEPS (nr_regions) = 0;
498 RGN_HAS_REAL_EBB (nr_regions) = 0;
499
500 for (bb = ebb_start; ; bb = bb->next_bb)
501 {
502 edge e;
503
504 rgn_bb_table[i] = bb->index;
505 RGN_NR_BLOCKS (nr_regions)++;
506 CONTAINING_RGN (bb->index) = nr_regions;
507 BLOCK_TO_BB (bb->index) = i - RGN_BLOCKS (nr_regions);
508 i++;
509
510 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
511 || LABEL_P (BB_HEAD (bb->next_bb)))
512 break;
513
514 e = find_fallthru_edge (bb->succs);
515 if (! e)
516 break;
517 if (e->probability <= probability_cutoff)
518 break;
519 }
520
521 ebb_start = bb;
522 nr_regions++;
523 }
524 }
525 else
526 FOR_EACH_BB_FN (bb, cfun)
527 {
528 rgn_bb_table[nr_regions] = bb->index;
529 RGN_NR_BLOCKS (nr_regions) = 1;
530 RGN_BLOCKS (nr_regions) = nr_regions;
531 RGN_DONT_CALC_DEPS (nr_regions) = 0;
532 RGN_HAS_REAL_EBB (nr_regions) = 0;
533
534 CONTAINING_RGN (bb->index) = nr_regions;
535 BLOCK_TO_BB (bb->index) = 0;
536 nr_regions++;
537 }
538 }
539
540 /* Estimate number of the insns in the BB. */
541 static int
542 rgn_estimate_number_of_insns (basic_block bb)
543 {
544 int count;
545
546 count = INSN_LUID (BB_END (bb)) - INSN_LUID (BB_HEAD (bb));
547
548 if (MAY_HAVE_DEBUG_INSNS)
549 {
550 rtx_insn *insn;
551
552 FOR_BB_INSNS (bb, insn)
553 if (DEBUG_INSN_P (insn))
554 count--;
555 }
556
557 return count;
558 }
559
560 /* Update number of blocks and the estimate for number of insns
561 in the region. Return true if the region is "too large" for interblock
562 scheduling (compile time considerations). */
563
564 static bool
565 too_large (int block, int *num_bbs, int *num_insns)
566 {
567 (*num_bbs)++;
568 (*num_insns) += (common_sched_info->estimate_number_of_insns
569 (BASIC_BLOCK_FOR_FN (cfun, block)));
570
571 return ((*num_bbs > PARAM_VALUE (PARAM_MAX_SCHED_REGION_BLOCKS))
572 || (*num_insns > PARAM_VALUE (PARAM_MAX_SCHED_REGION_INSNS)));
573 }
574
575 /* Update_loop_relations(blk, hdr): Check if the loop headed by max_hdr[blk]
576 is still an inner loop. Put in max_hdr[blk] the header of the most inner
577 loop containing blk. */
578 #define UPDATE_LOOP_RELATIONS(blk, hdr) \
579 { \
580 if (max_hdr[blk] == -1) \
581 max_hdr[blk] = hdr; \
582 else if (dfs_nr[max_hdr[blk]] > dfs_nr[hdr]) \
583 bitmap_clear_bit (inner, hdr); \
584 else if (dfs_nr[max_hdr[blk]] < dfs_nr[hdr]) \
585 { \
586 bitmap_clear_bit (inner,max_hdr[blk]); \
587 max_hdr[blk] = hdr; \
588 } \
589 }
590
591 /* Find regions for interblock scheduling.
592
593 A region for scheduling can be:
594
595 * A loop-free procedure, or
596
597 * A reducible inner loop, or
598
599 * A basic block not contained in any other region.
600
601 ?!? In theory we could build other regions based on extended basic
602 blocks or reverse extended basic blocks. Is it worth the trouble?
603
604 Loop blocks that form a region are put into the region's block list
605 in topological order.
606
607 This procedure stores its results into the following global (ick) variables
608
609 * rgn_nr
610 * rgn_table
611 * rgn_bb_table
612 * block_to_bb
613 * containing region
614
615 We use dominator relationships to avoid making regions out of non-reducible
616 loops.
617
618 This procedure needs to be converted to work on pred/succ lists instead
619 of edge tables. That would simplify it somewhat. */
620
621 static void
622 haifa_find_rgns (void)
623 {
624 int *max_hdr, *dfs_nr, *degree;
625 char no_loops = 1;
626 int node, child, loop_head, i, head, tail;
627 int count = 0, sp, idx = 0;
628 edge_iterator current_edge;
629 edge_iterator *stack;
630 int num_bbs, num_insns, unreachable;
631 int too_large_failure;
632 basic_block bb;
633
634 /* Note if a block is a natural loop header. */
635 sbitmap header;
636
637 /* Note if a block is a natural inner loop header. */
638 sbitmap inner;
639
640 /* Note if a block is in the block queue. */
641 sbitmap in_queue;
642
643 /* Note if a block is in the block queue. */
644 sbitmap in_stack;
645
646 /* Perform a DFS traversal of the cfg. Identify loop headers, inner loops
647 and a mapping from block to its loop header (if the block is contained
648 in a loop, else -1).
649
650 Store results in HEADER, INNER, and MAX_HDR respectively, these will
651 be used as inputs to the second traversal.
652
653 STACK, SP and DFS_NR are only used during the first traversal. */
654
655 /* Allocate and initialize variables for the first traversal. */
656 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
657 dfs_nr = XCNEWVEC (int, last_basic_block_for_fn (cfun));
658 stack = XNEWVEC (edge_iterator, n_edges_for_fn (cfun));
659
660 inner = sbitmap_alloc (last_basic_block_for_fn (cfun));
661 bitmap_ones (inner);
662
663 header = sbitmap_alloc (last_basic_block_for_fn (cfun));
664 bitmap_clear (header);
665
666 in_queue = sbitmap_alloc (last_basic_block_for_fn (cfun));
667 bitmap_clear (in_queue);
668
669 in_stack = sbitmap_alloc (last_basic_block_for_fn (cfun));
670 bitmap_clear (in_stack);
671
672 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
673 max_hdr[i] = -1;
674
675 #define EDGE_PASSED(E) (ei_end_p ((E)) || ei_edge ((E))->aux)
676 #define SET_EDGE_PASSED(E) (ei_edge ((E))->aux = ei_edge ((E)))
677
678 /* DFS traversal to find inner loops in the cfg. */
679
680 current_edge = ei_start (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->succs);
681 sp = -1;
682
683 while (1)
684 {
685 if (EDGE_PASSED (current_edge))
686 {
687 /* We have reached a leaf node or a node that was already
688 processed. Pop edges off the stack until we find
689 an edge that has not yet been processed. */
690 while (sp >= 0 && EDGE_PASSED (current_edge))
691 {
692 /* Pop entry off the stack. */
693 current_edge = stack[sp--];
694 node = ei_edge (current_edge)->src->index;
695 gcc_assert (node != ENTRY_BLOCK);
696 child = ei_edge (current_edge)->dest->index;
697 gcc_assert (child != EXIT_BLOCK);
698 bitmap_clear_bit (in_stack, child);
699 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
700 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
701 ei_next (&current_edge);
702 }
703
704 /* See if have finished the DFS tree traversal. */
705 if (sp < 0 && EDGE_PASSED (current_edge))
706 break;
707
708 /* Nope, continue the traversal with the popped node. */
709 continue;
710 }
711
712 /* Process a node. */
713 node = ei_edge (current_edge)->src->index;
714 gcc_assert (node != ENTRY_BLOCK);
715 bitmap_set_bit (in_stack, node);
716 dfs_nr[node] = ++count;
717
718 /* We don't traverse to the exit block. */
719 child = ei_edge (current_edge)->dest->index;
720 if (child == EXIT_BLOCK)
721 {
722 SET_EDGE_PASSED (current_edge);
723 ei_next (&current_edge);
724 continue;
725 }
726
727 /* If the successor is in the stack, then we've found a loop.
728 Mark the loop, if it is not a natural loop, then it will
729 be rejected during the second traversal. */
730 if (bitmap_bit_p (in_stack, child))
731 {
732 no_loops = 0;
733 bitmap_set_bit (header, child);
734 UPDATE_LOOP_RELATIONS (node, child);
735 SET_EDGE_PASSED (current_edge);
736 ei_next (&current_edge);
737 continue;
738 }
739
740 /* If the child was already visited, then there is no need to visit
741 it again. Just update the loop relationships and restart
742 with a new edge. */
743 if (dfs_nr[child])
744 {
745 if (max_hdr[child] >= 0 && bitmap_bit_p (in_stack, max_hdr[child]))
746 UPDATE_LOOP_RELATIONS (node, max_hdr[child]);
747 SET_EDGE_PASSED (current_edge);
748 ei_next (&current_edge);
749 continue;
750 }
751
752 /* Push an entry on the stack and continue DFS traversal. */
753 stack[++sp] = current_edge;
754 SET_EDGE_PASSED (current_edge);
755 current_edge = ei_start (ei_edge (current_edge)->dest->succs);
756 }
757
758 /* Reset ->aux field used by EDGE_PASSED. */
759 FOR_ALL_BB_FN (bb, cfun)
760 {
761 edge_iterator ei;
762 edge e;
763 FOR_EACH_EDGE (e, ei, bb->succs)
764 e->aux = NULL;
765 }
766
767
768 /* Another check for unreachable blocks. The earlier test in
769 is_cfg_nonregular only finds unreachable blocks that do not
770 form a loop.
771
772 The DFS traversal will mark every block that is reachable from
773 the entry node by placing a nonzero value in dfs_nr. Thus if
774 dfs_nr is zero for any block, then it must be unreachable. */
775 unreachable = 0;
776 FOR_EACH_BB_FN (bb, cfun)
777 if (dfs_nr[bb->index] == 0)
778 {
779 unreachable = 1;
780 break;
781 }
782
783 /* Gross. To avoid wasting memory, the second pass uses the dfs_nr array
784 to hold degree counts. */
785 degree = dfs_nr;
786
787 FOR_EACH_BB_FN (bb, cfun)
788 degree[bb->index] = EDGE_COUNT (bb->preds);
789
790 /* Do not perform region scheduling if there are any unreachable
791 blocks. */
792 if (!unreachable)
793 {
794 int *queue, *degree1 = NULL;
795 /* We use EXTENDED_RGN_HEADER as an addition to HEADER and put
796 there basic blocks, which are forced to be region heads.
797 This is done to try to assemble few smaller regions
798 from a too_large region. */
799 sbitmap extended_rgn_header = NULL;
800 bool extend_regions_p;
801
802 if (no_loops)
803 bitmap_set_bit (header, 0);
804
805 /* Second traversal:find reducible inner loops and topologically sort
806 block of each region. */
807
808 queue = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
809
810 extend_regions_p = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS) > 0;
811 if (extend_regions_p)
812 {
813 degree1 = XNEWVEC (int, last_basic_block_for_fn (cfun));
814 extended_rgn_header =
815 sbitmap_alloc (last_basic_block_for_fn (cfun));
816 bitmap_clear (extended_rgn_header);
817 }
818
819 /* Find blocks which are inner loop headers. We still have non-reducible
820 loops to consider at this point. */
821 FOR_EACH_BB_FN (bb, cfun)
822 {
823 if (bitmap_bit_p (header, bb->index) && bitmap_bit_p (inner, bb->index))
824 {
825 edge e;
826 edge_iterator ei;
827 basic_block jbb;
828
829 /* Now check that the loop is reducible. We do this separate
830 from finding inner loops so that we do not find a reducible
831 loop which contains an inner non-reducible loop.
832
833 A simple way to find reducible/natural loops is to verify
834 that each block in the loop is dominated by the loop
835 header.
836
837 If there exists a block that is not dominated by the loop
838 header, then the block is reachable from outside the loop
839 and thus the loop is not a natural loop. */
840 FOR_EACH_BB_FN (jbb, cfun)
841 {
842 /* First identify blocks in the loop, except for the loop
843 entry block. */
844 if (bb->index == max_hdr[jbb->index] && bb != jbb)
845 {
846 /* Now verify that the block is dominated by the loop
847 header. */
848 if (!dominated_by_p (CDI_DOMINATORS, jbb, bb))
849 break;
850 }
851 }
852
853 /* If we exited the loop early, then I is the header of
854 a non-reducible loop and we should quit processing it
855 now. */
856 if (jbb != EXIT_BLOCK_PTR_FOR_FN (cfun))
857 continue;
858
859 /* I is a header of an inner loop, or block 0 in a subroutine
860 with no loops at all. */
861 head = tail = -1;
862 too_large_failure = 0;
863 loop_head = max_hdr[bb->index];
864
865 if (extend_regions_p)
866 /* We save degree in case when we meet a too_large region
867 and cancel it. We need a correct degree later when
868 calling extend_rgns. */
869 memcpy (degree1, degree,
870 last_basic_block_for_fn (cfun) * sizeof (int));
871
872 /* Decrease degree of all I's successors for topological
873 ordering. */
874 FOR_EACH_EDGE (e, ei, bb->succs)
875 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
876 --degree[e->dest->index];
877
878 /* Estimate # insns, and count # blocks in the region. */
879 num_bbs = 1;
880 num_insns = common_sched_info->estimate_number_of_insns (bb);
881
882 /* Find all loop latches (blocks with back edges to the loop
883 header) or all the leaf blocks in the cfg has no loops.
884
885 Place those blocks into the queue. */
886 if (no_loops)
887 {
888 FOR_EACH_BB_FN (jbb, cfun)
889 /* Leaf nodes have only a single successor which must
890 be EXIT_BLOCK. */
891 if (single_succ_p (jbb)
892 && single_succ (jbb) == EXIT_BLOCK_PTR_FOR_FN (cfun))
893 {
894 queue[++tail] = jbb->index;
895 bitmap_set_bit (in_queue, jbb->index);
896
897 if (too_large (jbb->index, &num_bbs, &num_insns))
898 {
899 too_large_failure = 1;
900 break;
901 }
902 }
903 }
904 else
905 {
906 edge e;
907
908 FOR_EACH_EDGE (e, ei, bb->preds)
909 {
910 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
911 continue;
912
913 node = e->src->index;
914
915 if (max_hdr[node] == loop_head && node != bb->index)
916 {
917 /* This is a loop latch. */
918 queue[++tail] = node;
919 bitmap_set_bit (in_queue, node);
920
921 if (too_large (node, &num_bbs, &num_insns))
922 {
923 too_large_failure = 1;
924 break;
925 }
926 }
927 }
928 }
929
930 /* Now add all the blocks in the loop to the queue.
931
932 We know the loop is a natural loop; however the algorithm
933 above will not always mark certain blocks as being in the
934 loop. Consider:
935 node children
936 a b,c
937 b c
938 c a,d
939 d b
940
941 The algorithm in the DFS traversal may not mark B & D as part
942 of the loop (i.e. they will not have max_hdr set to A).
943
944 We know they can not be loop latches (else they would have
945 had max_hdr set since they'd have a backedge to a dominator
946 block). So we don't need them on the initial queue.
947
948 We know they are part of the loop because they are dominated
949 by the loop header and can be reached by a backwards walk of
950 the edges starting with nodes on the initial queue.
951
952 It is safe and desirable to include those nodes in the
953 loop/scheduling region. To do so we would need to decrease
954 the degree of a node if it is the target of a backedge
955 within the loop itself as the node is placed in the queue.
956
957 We do not do this because I'm not sure that the actual
958 scheduling code will properly handle this case. ?!? */
959
960 while (head < tail && !too_large_failure)
961 {
962 edge e;
963 child = queue[++head];
964
965 FOR_EACH_EDGE (e, ei,
966 BASIC_BLOCK_FOR_FN (cfun, child)->preds)
967 {
968 node = e->src->index;
969
970 /* See discussion above about nodes not marked as in
971 this loop during the initial DFS traversal. */
972 if (e->src == ENTRY_BLOCK_PTR_FOR_FN (cfun)
973 || max_hdr[node] != loop_head)
974 {
975 tail = -1;
976 break;
977 }
978 else if (!bitmap_bit_p (in_queue, node) && node != bb->index)
979 {
980 queue[++tail] = node;
981 bitmap_set_bit (in_queue, node);
982
983 if (too_large (node, &num_bbs, &num_insns))
984 {
985 too_large_failure = 1;
986 break;
987 }
988 }
989 }
990 }
991
992 if (tail >= 0 && !too_large_failure)
993 {
994 /* Place the loop header into list of region blocks. */
995 degree[bb->index] = -1;
996 rgn_bb_table[idx] = bb->index;
997 RGN_NR_BLOCKS (nr_regions) = num_bbs;
998 RGN_BLOCKS (nr_regions) = idx++;
999 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1000 RGN_HAS_REAL_EBB (nr_regions) = 0;
1001 CONTAINING_RGN (bb->index) = nr_regions;
1002 BLOCK_TO_BB (bb->index) = count = 0;
1003
1004 /* Remove blocks from queue[] when their in degree
1005 becomes zero. Repeat until no blocks are left on the
1006 list. This produces a topological list of blocks in
1007 the region. */
1008 while (tail >= 0)
1009 {
1010 if (head < 0)
1011 head = tail;
1012 child = queue[head];
1013 if (degree[child] == 0)
1014 {
1015 edge e;
1016
1017 degree[child] = -1;
1018 rgn_bb_table[idx++] = child;
1019 BLOCK_TO_BB (child) = ++count;
1020 CONTAINING_RGN (child) = nr_regions;
1021 queue[head] = queue[tail--];
1022
1023 FOR_EACH_EDGE (e, ei,
1024 BASIC_BLOCK_FOR_FN (cfun,
1025 child)->succs)
1026 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1027 --degree[e->dest->index];
1028 }
1029 else
1030 --head;
1031 }
1032 ++nr_regions;
1033 }
1034 else if (extend_regions_p)
1035 {
1036 /* Restore DEGREE. */
1037 int *t = degree;
1038
1039 degree = degree1;
1040 degree1 = t;
1041
1042 /* And force successors of BB to be region heads.
1043 This may provide several smaller regions instead
1044 of one too_large region. */
1045 FOR_EACH_EDGE (e, ei, bb->succs)
1046 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1047 bitmap_set_bit (extended_rgn_header, e->dest->index);
1048 }
1049 }
1050 }
1051 free (queue);
1052
1053 if (extend_regions_p)
1054 {
1055 free (degree1);
1056
1057 bitmap_ior (header, header, extended_rgn_header);
1058 sbitmap_free (extended_rgn_header);
1059
1060 extend_rgns (degree, &idx, header, max_hdr);
1061 }
1062 }
1063
1064 /* Any block that did not end up in a region is placed into a region
1065 by itself. */
1066 FOR_EACH_BB_FN (bb, cfun)
1067 if (degree[bb->index] >= 0)
1068 {
1069 rgn_bb_table[idx] = bb->index;
1070 RGN_NR_BLOCKS (nr_regions) = 1;
1071 RGN_BLOCKS (nr_regions) = idx++;
1072 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1073 RGN_HAS_REAL_EBB (nr_regions) = 0;
1074 CONTAINING_RGN (bb->index) = nr_regions++;
1075 BLOCK_TO_BB (bb->index) = 0;
1076 }
1077
1078 free (max_hdr);
1079 free (degree);
1080 free (stack);
1081 sbitmap_free (header);
1082 sbitmap_free (inner);
1083 sbitmap_free (in_queue);
1084 sbitmap_free (in_stack);
1085 }
1086
1087
1088 /* Wrapper function.
1089 If FLAG_SEL_SCHED_PIPELINING is set, then use custom function to form
1090 regions. Otherwise just call find_rgns_haifa. */
1091 static void
1092 find_rgns (void)
1093 {
1094 if (sel_sched_p () && flag_sel_sched_pipelining)
1095 sel_find_rgns ();
1096 else
1097 haifa_find_rgns ();
1098 }
1099
1100 static int gather_region_statistics (int **);
1101 static void print_region_statistics (int *, int, int *, int);
1102
1103 /* Calculate the histogram that shows the number of regions having the
1104 given number of basic blocks, and store it in the RSP array. Return
1105 the size of this array. */
1106 static int
1107 gather_region_statistics (int **rsp)
1108 {
1109 int i, *a = 0, a_sz = 0;
1110
1111 /* a[i] is the number of regions that have (i + 1) basic blocks. */
1112 for (i = 0; i < nr_regions; i++)
1113 {
1114 int nr_blocks = RGN_NR_BLOCKS (i);
1115
1116 gcc_assert (nr_blocks >= 1);
1117
1118 if (nr_blocks > a_sz)
1119 {
1120 a = XRESIZEVEC (int, a, nr_blocks);
1121 do
1122 a[a_sz++] = 0;
1123 while (a_sz != nr_blocks);
1124 }
1125
1126 a[nr_blocks - 1]++;
1127 }
1128
1129 *rsp = a;
1130 return a_sz;
1131 }
1132
1133 /* Print regions statistics. S1 and S2 denote the data before and after
1134 calling extend_rgns, respectively. */
1135 static void
1136 print_region_statistics (int *s1, int s1_sz, int *s2, int s2_sz)
1137 {
1138 int i;
1139
1140 /* We iterate until s2_sz because extend_rgns does not decrease
1141 the maximal region size. */
1142 for (i = 1; i < s2_sz; i++)
1143 {
1144 int n1, n2;
1145
1146 n2 = s2[i];
1147
1148 if (n2 == 0)
1149 continue;
1150
1151 if (i >= s1_sz)
1152 n1 = 0;
1153 else
1154 n1 = s1[i];
1155
1156 fprintf (sched_dump, ";; Region extension statistics: size %d: " \
1157 "was %d + %d more\n", i + 1, n1, n2 - n1);
1158 }
1159 }
1160
1161 /* Extend regions.
1162 DEGREE - Array of incoming edge count, considering only
1163 the edges, that don't have their sources in formed regions yet.
1164 IDXP - pointer to the next available index in rgn_bb_table.
1165 HEADER - set of all region heads.
1166 LOOP_HDR - mapping from block to the containing loop
1167 (two blocks can reside within one region if they have
1168 the same loop header). */
1169 void
1170 extend_rgns (int *degree, int *idxp, sbitmap header, int *loop_hdr)
1171 {
1172 int *order, i, rescan = 0, idx = *idxp, iter = 0, max_iter, *max_hdr;
1173 int nblocks = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
1174
1175 max_iter = PARAM_VALUE (PARAM_MAX_SCHED_EXTEND_REGIONS_ITERS);
1176
1177 max_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
1178
1179 order = XNEWVEC (int, last_basic_block_for_fn (cfun));
1180 post_order_compute (order, false, false);
1181
1182 for (i = nblocks - 1; i >= 0; i--)
1183 {
1184 int bbn = order[i];
1185 if (degree[bbn] >= 0)
1186 {
1187 max_hdr[bbn] = bbn;
1188 rescan = 1;
1189 }
1190 else
1191 /* This block already was processed in find_rgns. */
1192 max_hdr[bbn] = -1;
1193 }
1194
1195 /* The idea is to topologically walk through CFG in top-down order.
1196 During the traversal, if all the predecessors of a node are
1197 marked to be in the same region (they all have the same max_hdr),
1198 then current node is also marked to be a part of that region.
1199 Otherwise the node starts its own region.
1200 CFG should be traversed until no further changes are made. On each
1201 iteration the set of the region heads is extended (the set of those
1202 blocks that have max_hdr[bbi] == bbi). This set is upper bounded by the
1203 set of all basic blocks, thus the algorithm is guaranteed to
1204 terminate. */
1205
1206 while (rescan && iter < max_iter)
1207 {
1208 rescan = 0;
1209
1210 for (i = nblocks - 1; i >= 0; i--)
1211 {
1212 edge e;
1213 edge_iterator ei;
1214 int bbn = order[i];
1215
1216 if (max_hdr[bbn] != -1 && !bitmap_bit_p (header, bbn))
1217 {
1218 int hdr = -1;
1219
1220 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->preds)
1221 {
1222 int predn = e->src->index;
1223
1224 if (predn != ENTRY_BLOCK
1225 /* If pred wasn't processed in find_rgns. */
1226 && max_hdr[predn] != -1
1227 /* And pred and bb reside in the same loop.
1228 (Or out of any loop). */
1229 && loop_hdr[bbn] == loop_hdr[predn])
1230 {
1231 if (hdr == -1)
1232 /* Then bb extends the containing region of pred. */
1233 hdr = max_hdr[predn];
1234 else if (hdr != max_hdr[predn])
1235 /* Too bad, there are at least two predecessors
1236 that reside in different regions. Thus, BB should
1237 begin its own region. */
1238 {
1239 hdr = bbn;
1240 break;
1241 }
1242 }
1243 else
1244 /* BB starts its own region. */
1245 {
1246 hdr = bbn;
1247 break;
1248 }
1249 }
1250
1251 if (hdr == bbn)
1252 {
1253 /* If BB start its own region,
1254 update set of headers with BB. */
1255 bitmap_set_bit (header, bbn);
1256 rescan = 1;
1257 }
1258 else
1259 gcc_assert (hdr != -1);
1260
1261 max_hdr[bbn] = hdr;
1262 }
1263 }
1264
1265 iter++;
1266 }
1267
1268 /* Statistics were gathered on the SPEC2000 package of tests with
1269 mainline weekly snapshot gcc-4.1-20051015 on ia64.
1270
1271 Statistics for SPECint:
1272 1 iteration : 1751 cases (38.7%)
1273 2 iterations: 2770 cases (61.3%)
1274 Blocks wrapped in regions by find_rgns without extension: 18295 blocks
1275 Blocks wrapped in regions by 2 iterations in extend_rgns: 23821 blocks
1276 (We don't count single block regions here).
1277
1278 Statistics for SPECfp:
1279 1 iteration : 621 cases (35.9%)
1280 2 iterations: 1110 cases (64.1%)
1281 Blocks wrapped in regions by find_rgns without extension: 6476 blocks
1282 Blocks wrapped in regions by 2 iterations in extend_rgns: 11155 blocks
1283 (We don't count single block regions here).
1284
1285 By default we do at most 2 iterations.
1286 This can be overridden with max-sched-extend-regions-iters parameter:
1287 0 - disable region extension,
1288 N > 0 - do at most N iterations. */
1289
1290 if (sched_verbose && iter != 0)
1291 fprintf (sched_dump, ";; Region extension iterations: %d%s\n", iter,
1292 rescan ? "... failed" : "");
1293
1294 if (!rescan && iter != 0)
1295 {
1296 int *s1 = NULL, s1_sz = 0;
1297
1298 /* Save the old statistics for later printout. */
1299 if (sched_verbose >= 6)
1300 s1_sz = gather_region_statistics (&s1);
1301
1302 /* We have succeeded. Now assemble the regions. */
1303 for (i = nblocks - 1; i >= 0; i--)
1304 {
1305 int bbn = order[i];
1306
1307 if (max_hdr[bbn] == bbn)
1308 /* BBN is a region head. */
1309 {
1310 edge e;
1311 edge_iterator ei;
1312 int num_bbs = 0, j, num_insns = 0, large;
1313
1314 large = too_large (bbn, &num_bbs, &num_insns);
1315
1316 degree[bbn] = -1;
1317 rgn_bb_table[idx] = bbn;
1318 RGN_BLOCKS (nr_regions) = idx++;
1319 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1320 RGN_HAS_REAL_EBB (nr_regions) = 0;
1321 CONTAINING_RGN (bbn) = nr_regions;
1322 BLOCK_TO_BB (bbn) = 0;
1323
1324 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, bbn)->succs)
1325 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1326 degree[e->dest->index]--;
1327
1328 if (!large)
1329 /* Here we check whether the region is too_large. */
1330 for (j = i - 1; j >= 0; j--)
1331 {
1332 int succn = order[j];
1333 if (max_hdr[succn] == bbn)
1334 {
1335 if ((large = too_large (succn, &num_bbs, &num_insns)))
1336 break;
1337 }
1338 }
1339
1340 if (large)
1341 /* If the region is too_large, then wrap every block of
1342 the region into single block region.
1343 Here we wrap region head only. Other blocks are
1344 processed in the below cycle. */
1345 {
1346 RGN_NR_BLOCKS (nr_regions) = 1;
1347 nr_regions++;
1348 }
1349
1350 num_bbs = 1;
1351
1352 for (j = i - 1; j >= 0; j--)
1353 {
1354 int succn = order[j];
1355
1356 if (max_hdr[succn] == bbn)
1357 /* This cycle iterates over all basic blocks, that
1358 are supposed to be in the region with head BBN,
1359 and wraps them into that region (or in single
1360 block region). */
1361 {
1362 gcc_assert (degree[succn] == 0);
1363
1364 degree[succn] = -1;
1365 rgn_bb_table[idx] = succn;
1366 BLOCK_TO_BB (succn) = large ? 0 : num_bbs++;
1367 CONTAINING_RGN (succn) = nr_regions;
1368
1369 if (large)
1370 /* Wrap SUCCN into single block region. */
1371 {
1372 RGN_BLOCKS (nr_regions) = idx;
1373 RGN_NR_BLOCKS (nr_regions) = 1;
1374 RGN_DONT_CALC_DEPS (nr_regions) = 0;
1375 RGN_HAS_REAL_EBB (nr_regions) = 0;
1376 nr_regions++;
1377 }
1378
1379 idx++;
1380
1381 FOR_EACH_EDGE (e, ei,
1382 BASIC_BLOCK_FOR_FN (cfun, succn)->succs)
1383 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1384 degree[e->dest->index]--;
1385 }
1386 }
1387
1388 if (!large)
1389 {
1390 RGN_NR_BLOCKS (nr_regions) = num_bbs;
1391 nr_regions++;
1392 }
1393 }
1394 }
1395
1396 if (sched_verbose >= 6)
1397 {
1398 int *s2, s2_sz;
1399
1400 /* Get the new statistics and print the comparison with the
1401 one before calling this function. */
1402 s2_sz = gather_region_statistics (&s2);
1403 print_region_statistics (s1, s1_sz, s2, s2_sz);
1404 free (s1);
1405 free (s2);
1406 }
1407 }
1408
1409 free (order);
1410 free (max_hdr);
1411
1412 *idxp = idx;
1413 }
1414
1415 /* Functions for regions scheduling information. */
1416
1417 /* Compute dominators, probability, and potential-split-edges of bb.
1418 Assume that these values were already computed for bb's predecessors. */
1419
1420 static void
1421 compute_dom_prob_ps (int bb)
1422 {
1423 edge_iterator in_ei;
1424 edge in_edge;
1425
1426 /* We shouldn't have any real ebbs yet. */
1427 gcc_assert (ebb_head [bb] == bb + current_blocks);
1428
1429 if (IS_RGN_ENTRY (bb))
1430 {
1431 bitmap_set_bit (dom[bb], 0);
1432 prob[bb] = REG_BR_PROB_BASE;
1433 return;
1434 }
1435
1436 prob[bb] = 0;
1437
1438 /* Initialize dom[bb] to '111..1'. */
1439 bitmap_ones (dom[bb]);
1440
1441 FOR_EACH_EDGE (in_edge, in_ei,
1442 BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb))->preds)
1443 {
1444 int pred_bb;
1445 edge out_edge;
1446 edge_iterator out_ei;
1447
1448 if (in_edge->src == ENTRY_BLOCK_PTR_FOR_FN (cfun))
1449 continue;
1450
1451 pred_bb = BLOCK_TO_BB (in_edge->src->index);
1452 bitmap_and (dom[bb], dom[bb], dom[pred_bb]);
1453 bitmap_ior (ancestor_edges[bb],
1454 ancestor_edges[bb], ancestor_edges[pred_bb]);
1455
1456 bitmap_set_bit (ancestor_edges[bb], EDGE_TO_BIT (in_edge));
1457
1458 bitmap_ior (pot_split[bb], pot_split[bb], pot_split[pred_bb]);
1459
1460 FOR_EACH_EDGE (out_edge, out_ei, in_edge->src->succs)
1461 bitmap_set_bit (pot_split[bb], EDGE_TO_BIT (out_edge));
1462
1463 prob[bb] += combine_probabilities (prob[pred_bb], in_edge->probability);
1464 // The rounding divide in combine_probabilities can result in an extra
1465 // probability increment propagating along 50-50 edges. Eventually when
1466 // the edges re-merge, the accumulated probability can go slightly above
1467 // REG_BR_PROB_BASE.
1468 if (prob[bb] > REG_BR_PROB_BASE)
1469 prob[bb] = REG_BR_PROB_BASE;
1470 }
1471
1472 bitmap_set_bit (dom[bb], bb);
1473 bitmap_and_compl (pot_split[bb], pot_split[bb], ancestor_edges[bb]);
1474
1475 if (sched_verbose >= 2)
1476 fprintf (sched_dump, ";; bb_prob(%d, %d) = %3d\n", bb, BB_TO_BLOCK (bb),
1477 (100 * prob[bb]) / REG_BR_PROB_BASE);
1478 }
1479
1480 /* Functions for target info. */
1481
1482 /* Compute in BL the list of split-edges of bb_src relatively to bb_trg.
1483 Note that bb_trg dominates bb_src. */
1484
1485 static void
1486 split_edges (int bb_src, int bb_trg, edgelst *bl)
1487 {
1488 sbitmap src = sbitmap_alloc (SBITMAP_SIZE (pot_split[bb_src]));
1489 bitmap_copy (src, pot_split[bb_src]);
1490
1491 bitmap_and_compl (src, src, pot_split[bb_trg]);
1492 extract_edgelst (src, bl);
1493 sbitmap_free (src);
1494 }
1495
1496 /* Find the valid candidate-source-blocks for the target block TRG, compute
1497 their probability, and check if they are speculative or not.
1498 For speculative sources, compute their update-blocks and split-blocks. */
1499
1500 static void
1501 compute_trg_info (int trg)
1502 {
1503 candidate *sp;
1504 edgelst el = { NULL, 0 };
1505 int i, j, k, update_idx;
1506 basic_block block;
1507 sbitmap visited;
1508 edge_iterator ei;
1509 edge e;
1510
1511 candidate_table = XNEWVEC (candidate, current_nr_blocks);
1512
1513 bblst_last = 0;
1514 /* bblst_table holds split blocks and update blocks for each block after
1515 the current one in the region. split blocks and update blocks are
1516 the TO blocks of region edges, so there can be at most rgn_nr_edges
1517 of them. */
1518 bblst_size = (current_nr_blocks - target_bb) * rgn_nr_edges;
1519 bblst_table = XNEWVEC (basic_block, bblst_size);
1520
1521 edgelst_last = 0;
1522 edgelst_table = XNEWVEC (edge, rgn_nr_edges);
1523
1524 /* Define some of the fields for the target bb as well. */
1525 sp = candidate_table + trg;
1526 sp->is_valid = 1;
1527 sp->is_speculative = 0;
1528 sp->src_prob = REG_BR_PROB_BASE;
1529
1530 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
1531
1532 for (i = trg + 1; i < current_nr_blocks; i++)
1533 {
1534 sp = candidate_table + i;
1535
1536 sp->is_valid = IS_DOMINATED (i, trg);
1537 if (sp->is_valid)
1538 {
1539 int tf = prob[trg], cf = prob[i];
1540
1541 /* In CFGs with low probability edges TF can possibly be zero. */
1542 sp->src_prob = (tf ? GCOV_COMPUTE_SCALE (cf, tf) : 0);
1543 sp->is_valid = (sp->src_prob >= min_spec_prob);
1544 }
1545
1546 if (sp->is_valid)
1547 {
1548 split_edges (i, trg, &el);
1549 sp->is_speculative = (el.nr_members) ? 1 : 0;
1550 if (sp->is_speculative && !flag_schedule_speculative)
1551 sp->is_valid = 0;
1552 }
1553
1554 if (sp->is_valid)
1555 {
1556 /* Compute split blocks and store them in bblst_table.
1557 The TO block of every split edge is a split block. */
1558 sp->split_bbs.first_member = &bblst_table[bblst_last];
1559 sp->split_bbs.nr_members = el.nr_members;
1560 for (j = 0; j < el.nr_members; bblst_last++, j++)
1561 bblst_table[bblst_last] = el.first_member[j]->dest;
1562 sp->update_bbs.first_member = &bblst_table[bblst_last];
1563
1564 /* Compute update blocks and store them in bblst_table.
1565 For every split edge, look at the FROM block, and check
1566 all out edges. For each out edge that is not a split edge,
1567 add the TO block to the update block list. This list can end
1568 up with a lot of duplicates. We need to weed them out to avoid
1569 overrunning the end of the bblst_table. */
1570
1571 update_idx = 0;
1572 bitmap_clear (visited);
1573 for (j = 0; j < el.nr_members; j++)
1574 {
1575 block = el.first_member[j]->src;
1576 FOR_EACH_EDGE (e, ei, block->succs)
1577 {
1578 if (!bitmap_bit_p (visited, e->dest->index))
1579 {
1580 for (k = 0; k < el.nr_members; k++)
1581 if (e == el.first_member[k])
1582 break;
1583
1584 if (k >= el.nr_members)
1585 {
1586 bblst_table[bblst_last++] = e->dest;
1587 bitmap_set_bit (visited, e->dest->index);
1588 update_idx++;
1589 }
1590 }
1591 }
1592 }
1593 sp->update_bbs.nr_members = update_idx;
1594
1595 /* Make sure we didn't overrun the end of bblst_table. */
1596 gcc_assert (bblst_last <= bblst_size);
1597 }
1598 else
1599 {
1600 sp->split_bbs.nr_members = sp->update_bbs.nr_members = 0;
1601
1602 sp->is_speculative = 0;
1603 sp->src_prob = 0;
1604 }
1605 }
1606
1607 sbitmap_free (visited);
1608 }
1609
1610 /* Free the computed target info. */
1611 static void
1612 free_trg_info (void)
1613 {
1614 free (candidate_table);
1615 free (bblst_table);
1616 free (edgelst_table);
1617 }
1618
1619 /* Print candidates info, for debugging purposes. Callable from debugger. */
1620
1621 DEBUG_FUNCTION void
1622 debug_candidate (int i)
1623 {
1624 if (!candidate_table[i].is_valid)
1625 return;
1626
1627 if (candidate_table[i].is_speculative)
1628 {
1629 int j;
1630 fprintf (sched_dump, "src b %d bb %d speculative \n", BB_TO_BLOCK (i), i);
1631
1632 fprintf (sched_dump, "split path: ");
1633 for (j = 0; j < candidate_table[i].split_bbs.nr_members; j++)
1634 {
1635 int b = candidate_table[i].split_bbs.first_member[j]->index;
1636
1637 fprintf (sched_dump, " %d ", b);
1638 }
1639 fprintf (sched_dump, "\n");
1640
1641 fprintf (sched_dump, "update path: ");
1642 for (j = 0; j < candidate_table[i].update_bbs.nr_members; j++)
1643 {
1644 int b = candidate_table[i].update_bbs.first_member[j]->index;
1645
1646 fprintf (sched_dump, " %d ", b);
1647 }
1648 fprintf (sched_dump, "\n");
1649 }
1650 else
1651 {
1652 fprintf (sched_dump, " src %d equivalent\n", BB_TO_BLOCK (i));
1653 }
1654 }
1655
1656 /* Print candidates info, for debugging purposes. Callable from debugger. */
1657
1658 DEBUG_FUNCTION void
1659 debug_candidates (int trg)
1660 {
1661 int i;
1662
1663 fprintf (sched_dump, "----------- candidate table: target: b=%d bb=%d ---\n",
1664 BB_TO_BLOCK (trg), trg);
1665 for (i = trg + 1; i < current_nr_blocks; i++)
1666 debug_candidate (i);
1667 }
1668
1669 /* Functions for speculative scheduling. */
1670
1671 static bitmap_head not_in_df;
1672
1673 /* Return 0 if x is a set of a register alive in the beginning of one
1674 of the split-blocks of src, otherwise return 1. */
1675
1676 static int
1677 check_live_1 (int src, rtx x)
1678 {
1679 int i;
1680 int regno;
1681 rtx reg = SET_DEST (x);
1682
1683 if (reg == 0)
1684 return 1;
1685
1686 while (GET_CODE (reg) == SUBREG
1687 || GET_CODE (reg) == ZERO_EXTRACT
1688 || GET_CODE (reg) == STRICT_LOW_PART)
1689 reg = XEXP (reg, 0);
1690
1691 if (GET_CODE (reg) == PARALLEL)
1692 {
1693 int i;
1694
1695 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1696 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1697 if (check_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0)))
1698 return 1;
1699
1700 return 0;
1701 }
1702
1703 if (!REG_P (reg))
1704 return 1;
1705
1706 regno = REGNO (reg);
1707
1708 if (regno < FIRST_PSEUDO_REGISTER && global_regs[regno])
1709 {
1710 /* Global registers are assumed live. */
1711 return 0;
1712 }
1713 else
1714 {
1715 if (regno < FIRST_PSEUDO_REGISTER)
1716 {
1717 /* Check for hard registers. */
1718 int j = hard_regno_nregs[regno][GET_MODE (reg)];
1719 while (--j >= 0)
1720 {
1721 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1722 {
1723 basic_block b = candidate_table[src].split_bbs.first_member[i];
1724 int t = bitmap_bit_p (&not_in_df, b->index);
1725
1726 /* We can have split blocks, that were recently generated.
1727 Such blocks are always outside current region. */
1728 gcc_assert (!t || (CONTAINING_RGN (b->index)
1729 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1730
1731 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno + j))
1732 return 0;
1733 }
1734 }
1735 }
1736 else
1737 {
1738 /* Check for pseudo registers. */
1739 for (i = 0; i < candidate_table[src].split_bbs.nr_members; i++)
1740 {
1741 basic_block b = candidate_table[src].split_bbs.first_member[i];
1742 int t = bitmap_bit_p (&not_in_df, b->index);
1743
1744 gcc_assert (!t || (CONTAINING_RGN (b->index)
1745 != CONTAINING_RGN (BB_TO_BLOCK (src))));
1746
1747 if (t || REGNO_REG_SET_P (df_get_live_in (b), regno))
1748 return 0;
1749 }
1750 }
1751 }
1752
1753 return 1;
1754 }
1755
1756 /* If x is a set of a register R, mark that R is alive in the beginning
1757 of every update-block of src. */
1758
1759 static void
1760 update_live_1 (int src, rtx x)
1761 {
1762 int i;
1763 int regno;
1764 rtx reg = SET_DEST (x);
1765
1766 if (reg == 0)
1767 return;
1768
1769 while (GET_CODE (reg) == SUBREG
1770 || GET_CODE (reg) == ZERO_EXTRACT
1771 || GET_CODE (reg) == STRICT_LOW_PART)
1772 reg = XEXP (reg, 0);
1773
1774 if (GET_CODE (reg) == PARALLEL)
1775 {
1776 int i;
1777
1778 for (i = XVECLEN (reg, 0) - 1; i >= 0; i--)
1779 if (XEXP (XVECEXP (reg, 0, i), 0) != 0)
1780 update_live_1 (src, XEXP (XVECEXP (reg, 0, i), 0));
1781
1782 return;
1783 }
1784
1785 if (!REG_P (reg))
1786 return;
1787
1788 /* Global registers are always live, so the code below does not apply
1789 to them. */
1790
1791 regno = REGNO (reg);
1792
1793 if (! HARD_REGISTER_NUM_P (regno)
1794 || !global_regs[regno])
1795 {
1796 for (i = 0; i < candidate_table[src].update_bbs.nr_members; i++)
1797 {
1798 basic_block b = candidate_table[src].update_bbs.first_member[i];
1799
1800 if (HARD_REGISTER_NUM_P (regno))
1801 bitmap_set_range (df_get_live_in (b), regno,
1802 hard_regno_nregs[regno][GET_MODE (reg)]);
1803 else
1804 bitmap_set_bit (df_get_live_in (b), regno);
1805 }
1806 }
1807 }
1808
1809 /* Return 1 if insn can be speculatively moved from block src to trg,
1810 otherwise return 0. Called before first insertion of insn to
1811 ready-list or before the scheduling. */
1812
1813 static int
1814 check_live (rtx_insn *insn, int src)
1815 {
1816 /* Find the registers set by instruction. */
1817 if (GET_CODE (PATTERN (insn)) == SET
1818 || GET_CODE (PATTERN (insn)) == CLOBBER)
1819 return check_live_1 (src, PATTERN (insn));
1820 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1821 {
1822 int j;
1823 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1824 if ((GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1825 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1826 && !check_live_1 (src, XVECEXP (PATTERN (insn), 0, j)))
1827 return 0;
1828
1829 return 1;
1830 }
1831
1832 return 1;
1833 }
1834
1835 /* Update the live registers info after insn was moved speculatively from
1836 block src to trg. */
1837
1838 static void
1839 update_live (rtx insn, int src)
1840 {
1841 /* Find the registers set by instruction. */
1842 if (GET_CODE (PATTERN (insn)) == SET
1843 || GET_CODE (PATTERN (insn)) == CLOBBER)
1844 update_live_1 (src, PATTERN (insn));
1845 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
1846 {
1847 int j;
1848 for (j = XVECLEN (PATTERN (insn), 0) - 1; j >= 0; j--)
1849 if (GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == SET
1850 || GET_CODE (XVECEXP (PATTERN (insn), 0, j)) == CLOBBER)
1851 update_live_1 (src, XVECEXP (PATTERN (insn), 0, j));
1852 }
1853 }
1854
1855 /* Nonzero if block bb_to is equal to, or reachable from block bb_from. */
1856 #define IS_REACHABLE(bb_from, bb_to) \
1857 (bb_from == bb_to \
1858 || IS_RGN_ENTRY (bb_from) \
1859 || (bitmap_bit_p (ancestor_edges[bb_to], \
1860 EDGE_TO_BIT (single_pred_edge (BASIC_BLOCK_FOR_FN (cfun, \
1861 BB_TO_BLOCK (bb_from)))))))
1862
1863 /* Turns on the fed_by_spec_load flag for insns fed by load_insn. */
1864
1865 static void
1866 set_spec_fed (rtx load_insn)
1867 {
1868 sd_iterator_def sd_it;
1869 dep_t dep;
1870
1871 FOR_EACH_DEP (load_insn, SD_LIST_FORW, sd_it, dep)
1872 if (DEP_TYPE (dep) == REG_DEP_TRUE)
1873 FED_BY_SPEC_LOAD (DEP_CON (dep)) = 1;
1874 }
1875
1876 /* On the path from the insn to load_insn_bb, find a conditional
1877 branch depending on insn, that guards the speculative load. */
1878
1879 static int
1880 find_conditional_protection (rtx insn, int load_insn_bb)
1881 {
1882 sd_iterator_def sd_it;
1883 dep_t dep;
1884
1885 /* Iterate through DEF-USE forward dependences. */
1886 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
1887 {
1888 rtx_insn *next = DEP_CON (dep);
1889
1890 if ((CONTAINING_RGN (BLOCK_NUM (next)) ==
1891 CONTAINING_RGN (BB_TO_BLOCK (load_insn_bb)))
1892 && IS_REACHABLE (INSN_BB (next), load_insn_bb)
1893 && load_insn_bb != INSN_BB (next)
1894 && DEP_TYPE (dep) == REG_DEP_TRUE
1895 && (JUMP_P (next)
1896 || find_conditional_protection (next, load_insn_bb)))
1897 return 1;
1898 }
1899 return 0;
1900 } /* find_conditional_protection */
1901
1902 /* Returns 1 if the same insn1 that participates in the computation
1903 of load_insn's address is feeding a conditional branch that is
1904 guarding on load_insn. This is true if we find two DEF-USE
1905 chains:
1906 insn1 -> ... -> conditional-branch
1907 insn1 -> ... -> load_insn,
1908 and if a flow path exists:
1909 insn1 -> ... -> conditional-branch -> ... -> load_insn,
1910 and if insn1 is on the path
1911 region-entry -> ... -> bb_trg -> ... load_insn.
1912
1913 Locate insn1 by climbing on INSN_BACK_DEPS from load_insn.
1914 Locate the branch by following INSN_FORW_DEPS from insn1. */
1915
1916 static int
1917 is_conditionally_protected (rtx load_insn, int bb_src, int bb_trg)
1918 {
1919 sd_iterator_def sd_it;
1920 dep_t dep;
1921
1922 FOR_EACH_DEP (load_insn, SD_LIST_BACK, sd_it, dep)
1923 {
1924 rtx_insn *insn1 = DEP_PRO (dep);
1925
1926 /* Must be a DEF-USE dependence upon non-branch. */
1927 if (DEP_TYPE (dep) != REG_DEP_TRUE
1928 || JUMP_P (insn1))
1929 continue;
1930
1931 /* Must exist a path: region-entry -> ... -> bb_trg -> ... load_insn. */
1932 if (INSN_BB (insn1) == bb_src
1933 || (CONTAINING_RGN (BLOCK_NUM (insn1))
1934 != CONTAINING_RGN (BB_TO_BLOCK (bb_src)))
1935 || (!IS_REACHABLE (bb_trg, INSN_BB (insn1))
1936 && !IS_REACHABLE (INSN_BB (insn1), bb_trg)))
1937 continue;
1938
1939 /* Now search for the conditional-branch. */
1940 if (find_conditional_protection (insn1, bb_src))
1941 return 1;
1942
1943 /* Recursive step: search another insn1, "above" current insn1. */
1944 return is_conditionally_protected (insn1, bb_src, bb_trg);
1945 }
1946
1947 /* The chain does not exist. */
1948 return 0;
1949 } /* is_conditionally_protected */
1950
1951 /* Returns 1 if a clue for "similar load" 'insn2' is found, and hence
1952 load_insn can move speculatively from bb_src to bb_trg. All the
1953 following must hold:
1954
1955 (1) both loads have 1 base register (PFREE_CANDIDATEs).
1956 (2) load_insn and load1 have a def-use dependence upon
1957 the same insn 'insn1'.
1958 (3) either load2 is in bb_trg, or:
1959 - there's only one split-block, and
1960 - load1 is on the escape path, and
1961
1962 From all these we can conclude that the two loads access memory
1963 addresses that differ at most by a constant, and hence if moving
1964 load_insn would cause an exception, it would have been caused by
1965 load2 anyhow. */
1966
1967 static int
1968 is_pfree (rtx load_insn, int bb_src, int bb_trg)
1969 {
1970 sd_iterator_def back_sd_it;
1971 dep_t back_dep;
1972 candidate *candp = candidate_table + bb_src;
1973
1974 if (candp->split_bbs.nr_members != 1)
1975 /* Must have exactly one escape block. */
1976 return 0;
1977
1978 FOR_EACH_DEP (load_insn, SD_LIST_BACK, back_sd_it, back_dep)
1979 {
1980 rtx_insn *insn1 = DEP_PRO (back_dep);
1981
1982 if (DEP_TYPE (back_dep) == REG_DEP_TRUE)
1983 /* Found a DEF-USE dependence (insn1, load_insn). */
1984 {
1985 sd_iterator_def fore_sd_it;
1986 dep_t fore_dep;
1987
1988 FOR_EACH_DEP (insn1, SD_LIST_FORW, fore_sd_it, fore_dep)
1989 {
1990 rtx_insn *insn2 = DEP_CON (fore_dep);
1991
1992 if (DEP_TYPE (fore_dep) == REG_DEP_TRUE)
1993 {
1994 /* Found a DEF-USE dependence (insn1, insn2). */
1995 if (haifa_classify_insn (insn2) != PFREE_CANDIDATE)
1996 /* insn2 not guaranteed to be a 1 base reg load. */
1997 continue;
1998
1999 if (INSN_BB (insn2) == bb_trg)
2000 /* insn2 is the similar load, in the target block. */
2001 return 1;
2002
2003 if (*(candp->split_bbs.first_member) == BLOCK_FOR_INSN (insn2))
2004 /* insn2 is a similar load, in a split-block. */
2005 return 1;
2006 }
2007 }
2008 }
2009 }
2010
2011 /* Couldn't find a similar load. */
2012 return 0;
2013 } /* is_pfree */
2014
2015 /* Return 1 if load_insn is prisky (i.e. if load_insn is fed by
2016 a load moved speculatively, or if load_insn is protected by
2017 a compare on load_insn's address). */
2018
2019 static int
2020 is_prisky (rtx load_insn, int bb_src, int bb_trg)
2021 {
2022 if (FED_BY_SPEC_LOAD (load_insn))
2023 return 1;
2024
2025 if (sd_lists_empty_p (load_insn, SD_LIST_BACK))
2026 /* Dependence may 'hide' out of the region. */
2027 return 1;
2028
2029 if (is_conditionally_protected (load_insn, bb_src, bb_trg))
2030 return 1;
2031
2032 return 0;
2033 }
2034
2035 /* Insn is a candidate to be moved speculatively from bb_src to bb_trg.
2036 Return 1 if insn is exception-free (and the motion is valid)
2037 and 0 otherwise. */
2038
2039 static int
2040 is_exception_free (rtx insn, int bb_src, int bb_trg)
2041 {
2042 int insn_class = haifa_classify_insn (insn);
2043
2044 /* Handle non-load insns. */
2045 switch (insn_class)
2046 {
2047 case TRAP_FREE:
2048 return 1;
2049 case TRAP_RISKY:
2050 return 0;
2051 default:;
2052 }
2053
2054 /* Handle loads. */
2055 if (!flag_schedule_speculative_load)
2056 return 0;
2057 IS_LOAD_INSN (insn) = 1;
2058 switch (insn_class)
2059 {
2060 case IFREE:
2061 return (1);
2062 case IRISKY:
2063 return 0;
2064 case PFREE_CANDIDATE:
2065 if (is_pfree (insn, bb_src, bb_trg))
2066 return 1;
2067 /* Don't 'break' here: PFREE-candidate is also PRISKY-candidate. */
2068 case PRISKY_CANDIDATE:
2069 if (!flag_schedule_speculative_load_dangerous
2070 || is_prisky (insn, bb_src, bb_trg))
2071 return 0;
2072 break;
2073 default:;
2074 }
2075
2076 return flag_schedule_speculative_load_dangerous;
2077 }
2078 \f
2079 /* The number of insns from the current block scheduled so far. */
2080 static int sched_target_n_insns;
2081 /* The number of insns from the current block to be scheduled in total. */
2082 static int target_n_insns;
2083 /* The number of insns from the entire region scheduled so far. */
2084 static int sched_n_insns;
2085
2086 /* Implementations of the sched_info functions for region scheduling. */
2087 static void init_ready_list (void);
2088 static int can_schedule_ready_p (rtx_insn *);
2089 static void begin_schedule_ready (rtx_insn *);
2090 static ds_t new_ready (rtx_insn *, ds_t);
2091 static int schedule_more_p (void);
2092 static const char *rgn_print_insn (const rtx_insn *, int);
2093 static int rgn_rank (rtx_insn *, rtx_insn *);
2094 static void compute_jump_reg_dependencies (rtx, regset);
2095
2096 /* Functions for speculative scheduling. */
2097 static void rgn_add_remove_insn (rtx_insn *, int);
2098 static void rgn_add_block (basic_block, basic_block);
2099 static void rgn_fix_recovery_cfg (int, int, int);
2100 static basic_block advance_target_bb (basic_block, rtx_insn *);
2101
2102 /* Return nonzero if there are more insns that should be scheduled. */
2103
2104 static int
2105 schedule_more_p (void)
2106 {
2107 return sched_target_n_insns < target_n_insns;
2108 }
2109
2110 /* Add all insns that are initially ready to the ready list READY. Called
2111 once before scheduling a set of insns. */
2112
2113 static void
2114 init_ready_list (void)
2115 {
2116 rtx_insn *prev_head = current_sched_info->prev_head;
2117 rtx_insn *next_tail = current_sched_info->next_tail;
2118 int bb_src;
2119 rtx_insn *insn;
2120
2121 target_n_insns = 0;
2122 sched_target_n_insns = 0;
2123 sched_n_insns = 0;
2124
2125 /* Print debugging information. */
2126 if (sched_verbose >= 5)
2127 debug_rgn_dependencies (target_bb);
2128
2129 /* Prepare current target block info. */
2130 if (current_nr_blocks > 1)
2131 compute_trg_info (target_bb);
2132
2133 /* Initialize ready list with all 'ready' insns in target block.
2134 Count number of insns in the target block being scheduled. */
2135 for (insn = NEXT_INSN (prev_head); insn != next_tail; insn = NEXT_INSN (insn))
2136 {
2137 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2138 TODO_SPEC (insn) = HARD_DEP;
2139 try_ready (insn);
2140 target_n_insns++;
2141
2142 gcc_assert (!(TODO_SPEC (insn) & BEGIN_CONTROL));
2143 }
2144
2145 /* Add to ready list all 'ready' insns in valid source blocks.
2146 For speculative insns, check-live, exception-free, and
2147 issue-delay. */
2148 for (bb_src = target_bb + 1; bb_src < current_nr_blocks; bb_src++)
2149 if (IS_VALID (bb_src))
2150 {
2151 rtx_insn *src_head;
2152 rtx_insn *src_next_tail;
2153 rtx_insn *tail, *head;
2154
2155 get_ebb_head_tail (EBB_FIRST_BB (bb_src), EBB_LAST_BB (bb_src),
2156 &head, &tail);
2157 src_next_tail = NEXT_INSN (tail);
2158 src_head = head;
2159
2160 for (insn = src_head; insn != src_next_tail; insn = NEXT_INSN (insn))
2161 if (INSN_P (insn))
2162 {
2163 gcc_assert (TODO_SPEC (insn) == HARD_DEP || TODO_SPEC (insn) == DEP_POSTPONED);
2164 TODO_SPEC (insn) = HARD_DEP;
2165 try_ready (insn);
2166 }
2167 }
2168 }
2169
2170 /* Called after taking INSN from the ready list. Returns nonzero if this
2171 insn can be scheduled, nonzero if we should silently discard it. */
2172
2173 static int
2174 can_schedule_ready_p (rtx_insn *insn)
2175 {
2176 /* An interblock motion? */
2177 if (INSN_BB (insn) != target_bb
2178 && IS_SPECULATIVE_INSN (insn)
2179 && !check_live (insn, INSN_BB (insn)))
2180 return 0;
2181 else
2182 return 1;
2183 }
2184
2185 /* Updates counter and other information. Split from can_schedule_ready_p ()
2186 because when we schedule insn speculatively then insn passed to
2187 can_schedule_ready_p () differs from the one passed to
2188 begin_schedule_ready (). */
2189 static void
2190 begin_schedule_ready (rtx_insn *insn)
2191 {
2192 /* An interblock motion? */
2193 if (INSN_BB (insn) != target_bb)
2194 {
2195 if (IS_SPECULATIVE_INSN (insn))
2196 {
2197 gcc_assert (check_live (insn, INSN_BB (insn)));
2198
2199 update_live (insn, INSN_BB (insn));
2200
2201 /* For speculative load, mark insns fed by it. */
2202 if (IS_LOAD_INSN (insn) || FED_BY_SPEC_LOAD (insn))
2203 set_spec_fed (insn);
2204
2205 nr_spec++;
2206 }
2207 nr_inter++;
2208 }
2209 else
2210 {
2211 /* In block motion. */
2212 sched_target_n_insns++;
2213 }
2214 sched_n_insns++;
2215 }
2216
2217 /* Called after INSN has all its hard dependencies resolved and the speculation
2218 of type TS is enough to overcome them all.
2219 Return nonzero if it should be moved to the ready list or the queue, or zero
2220 if we should silently discard it. */
2221 static ds_t
2222 new_ready (rtx_insn *next, ds_t ts)
2223 {
2224 if (INSN_BB (next) != target_bb)
2225 {
2226 int not_ex_free = 0;
2227
2228 /* For speculative insns, before inserting to ready/queue,
2229 check live, exception-free, and issue-delay. */
2230 if (!IS_VALID (INSN_BB (next))
2231 || CANT_MOVE (next)
2232 || (IS_SPECULATIVE_INSN (next)
2233 && ((recog_memoized (next) >= 0
2234 && min_insn_conflict_delay (curr_state, next, next)
2235 > PARAM_VALUE (PARAM_MAX_SCHED_INSN_CONFLICT_DELAY))
2236 || IS_SPECULATION_CHECK_P (next)
2237 || !check_live (next, INSN_BB (next))
2238 || (not_ex_free = !is_exception_free (next, INSN_BB (next),
2239 target_bb)))))
2240 {
2241 if (not_ex_free
2242 /* We are here because is_exception_free () == false.
2243 But we possibly can handle that with control speculation. */
2244 && sched_deps_info->generate_spec_deps
2245 && spec_info->mask & BEGIN_CONTROL)
2246 {
2247 ds_t new_ds;
2248
2249 /* Add control speculation to NEXT's dependency type. */
2250 new_ds = set_dep_weak (ts, BEGIN_CONTROL, MAX_DEP_WEAK);
2251
2252 /* Check if NEXT can be speculated with new dependency type. */
2253 if (sched_insn_is_legitimate_for_speculation_p (next, new_ds))
2254 /* Here we got new control-speculative instruction. */
2255 ts = new_ds;
2256 else
2257 /* NEXT isn't ready yet. */
2258 ts = DEP_POSTPONED;
2259 }
2260 else
2261 /* NEXT isn't ready yet. */
2262 ts = DEP_POSTPONED;
2263 }
2264 }
2265
2266 return ts;
2267 }
2268
2269 /* Return a string that contains the insn uid and optionally anything else
2270 necessary to identify this insn in an output. It's valid to use a
2271 static buffer for this. The ALIGNED parameter should cause the string
2272 to be formatted so that multiple output lines will line up nicely. */
2273
2274 static const char *
2275 rgn_print_insn (const rtx_insn *insn, int aligned)
2276 {
2277 static char tmp[80];
2278
2279 if (aligned)
2280 sprintf (tmp, "b%3d: i%4d", INSN_BB (insn), INSN_UID (insn));
2281 else
2282 {
2283 if (current_nr_blocks > 1 && INSN_BB (insn) != target_bb)
2284 sprintf (tmp, "%d/b%d", INSN_UID (insn), INSN_BB (insn));
2285 else
2286 sprintf (tmp, "%d", INSN_UID (insn));
2287 }
2288 return tmp;
2289 }
2290
2291 /* Compare priority of two insns. Return a positive number if the second
2292 insn is to be preferred for scheduling, and a negative one if the first
2293 is to be preferred. Zero if they are equally good. */
2294
2295 static int
2296 rgn_rank (rtx_insn *insn1, rtx_insn *insn2)
2297 {
2298 /* Some comparison make sense in interblock scheduling only. */
2299 if (INSN_BB (insn1) != INSN_BB (insn2))
2300 {
2301 int spec_val, prob_val;
2302
2303 /* Prefer an inblock motion on an interblock motion. */
2304 if ((INSN_BB (insn2) == target_bb) && (INSN_BB (insn1) != target_bb))
2305 return 1;
2306 if ((INSN_BB (insn1) == target_bb) && (INSN_BB (insn2) != target_bb))
2307 return -1;
2308
2309 /* Prefer a useful motion on a speculative one. */
2310 spec_val = IS_SPECULATIVE_INSN (insn1) - IS_SPECULATIVE_INSN (insn2);
2311 if (spec_val)
2312 return spec_val;
2313
2314 /* Prefer a more probable (speculative) insn. */
2315 prob_val = INSN_PROBABILITY (insn2) - INSN_PROBABILITY (insn1);
2316 if (prob_val)
2317 return prob_val;
2318 }
2319 return 0;
2320 }
2321
2322 /* NEXT is an instruction that depends on INSN (a backward dependence);
2323 return nonzero if we should include this dependence in priority
2324 calculations. */
2325
2326 int
2327 contributes_to_priority (rtx_insn *next, rtx_insn *insn)
2328 {
2329 /* NEXT and INSN reside in one ebb. */
2330 return BLOCK_TO_BB (BLOCK_NUM (next)) == BLOCK_TO_BB (BLOCK_NUM (insn));
2331 }
2332
2333 /* INSN is a JUMP_INSN. Store the set of registers that must be
2334 considered as used by this jump in USED. */
2335
2336 static void
2337 compute_jump_reg_dependencies (rtx insn ATTRIBUTE_UNUSED,
2338 regset used ATTRIBUTE_UNUSED)
2339 {
2340 /* Nothing to do here, since we postprocess jumps in
2341 add_branch_dependences. */
2342 }
2343
2344 /* This variable holds common_sched_info hooks and data relevant to
2345 the interblock scheduler. */
2346 static struct common_sched_info_def rgn_common_sched_info;
2347
2348
2349 /* This holds data for the dependence analysis relevant to
2350 the interblock scheduler. */
2351 static struct sched_deps_info_def rgn_sched_deps_info;
2352
2353 /* This holds constant data used for initializing the above structure
2354 for the Haifa scheduler. */
2355 static const struct sched_deps_info_def rgn_const_sched_deps_info =
2356 {
2357 compute_jump_reg_dependencies,
2358 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2359 0, 0, 0
2360 };
2361
2362 /* Same as above, but for the selective scheduler. */
2363 static const struct sched_deps_info_def rgn_const_sel_sched_deps_info =
2364 {
2365 compute_jump_reg_dependencies,
2366 NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL,
2367 0, 0, 0
2368 };
2369
2370 /* Return true if scheduling INSN will trigger finish of scheduling
2371 current block. */
2372 static bool
2373 rgn_insn_finishes_block_p (rtx_insn *insn)
2374 {
2375 if (INSN_BB (insn) == target_bb
2376 && sched_target_n_insns + 1 == target_n_insns)
2377 /* INSN is the last not-scheduled instruction in the current block. */
2378 return true;
2379
2380 return false;
2381 }
2382
2383 /* Used in schedule_insns to initialize current_sched_info for scheduling
2384 regions (or single basic blocks). */
2385
2386 static const struct haifa_sched_info rgn_const_sched_info =
2387 {
2388 init_ready_list,
2389 can_schedule_ready_p,
2390 schedule_more_p,
2391 new_ready,
2392 rgn_rank,
2393 rgn_print_insn,
2394 contributes_to_priority,
2395 rgn_insn_finishes_block_p,
2396
2397 NULL, NULL,
2398 NULL, NULL,
2399 0, 0,
2400
2401 rgn_add_remove_insn,
2402 begin_schedule_ready,
2403 NULL,
2404 advance_target_bb,
2405 NULL, NULL,
2406 SCHED_RGN
2407 };
2408
2409 /* This variable holds the data and hooks needed to the Haifa scheduler backend
2410 for the interblock scheduler frontend. */
2411 static struct haifa_sched_info rgn_sched_info;
2412
2413 /* Returns maximum priority that an insn was assigned to. */
2414
2415 int
2416 get_rgn_sched_max_insns_priority (void)
2417 {
2418 return rgn_sched_info.sched_max_insns_priority;
2419 }
2420
2421 /* Determine if PAT sets a TARGET_CLASS_LIKELY_SPILLED_P register. */
2422
2423 static bool
2424 sets_likely_spilled (rtx pat)
2425 {
2426 bool ret = false;
2427 note_stores (pat, sets_likely_spilled_1, &ret);
2428 return ret;
2429 }
2430
2431 static void
2432 sets_likely_spilled_1 (rtx x, const_rtx pat, void *data)
2433 {
2434 bool *ret = (bool *) data;
2435
2436 if (GET_CODE (pat) == SET
2437 && REG_P (x)
2438 && HARD_REGISTER_P (x)
2439 && targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (x))))
2440 *ret = true;
2441 }
2442
2443 /* A bitmap to note insns that participate in any dependency. Used in
2444 add_branch_dependences. */
2445 static sbitmap insn_referenced;
2446
2447 /* Add dependences so that branches are scheduled to run last in their
2448 block. */
2449 static void
2450 add_branch_dependences (rtx_insn *head, rtx_insn *tail)
2451 {
2452 rtx_insn *insn, *last;
2453
2454 /* For all branches, calls, uses, clobbers, cc0 setters, and instructions
2455 that can throw exceptions, force them to remain in order at the end of
2456 the block by adding dependencies and giving the last a high priority.
2457 There may be notes present, and prev_head may also be a note.
2458
2459 Branches must obviously remain at the end. Calls should remain at the
2460 end since moving them results in worse register allocation. Uses remain
2461 at the end to ensure proper register allocation.
2462
2463 cc0 setters remain at the end because they can't be moved away from
2464 their cc0 user.
2465
2466 Predecessors of SCHED_GROUP_P instructions at the end remain at the end.
2467
2468 COND_EXEC insns cannot be moved past a branch (see e.g. PR17808).
2469
2470 Insns setting TARGET_CLASS_LIKELY_SPILLED_P registers (usually return
2471 values) are not moved before reload because we can wind up with register
2472 allocation failures. */
2473
2474 while (tail != head && DEBUG_INSN_P (tail))
2475 tail = PREV_INSN (tail);
2476
2477 insn = tail;
2478 last = 0;
2479 while (CALL_P (insn)
2480 || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
2481 || (NONJUMP_INSN_P (insn)
2482 && (GET_CODE (PATTERN (insn)) == USE
2483 || GET_CODE (PATTERN (insn)) == CLOBBER
2484 || can_throw_internal (insn)
2485 #ifdef HAVE_cc0
2486 || sets_cc0_p (PATTERN (insn))
2487 #endif
2488 || (!reload_completed
2489 && sets_likely_spilled (PATTERN (insn)))))
2490 || NOTE_P (insn)
2491 || (last != 0 && SCHED_GROUP_P (last)))
2492 {
2493 if (!NOTE_P (insn))
2494 {
2495 if (last != 0
2496 && sd_find_dep_between (insn, last, false) == NULL)
2497 {
2498 if (! sched_insns_conditions_mutex_p (last, insn))
2499 add_dependence (last, insn, REG_DEP_ANTI);
2500 bitmap_set_bit (insn_referenced, INSN_LUID (insn));
2501 }
2502
2503 CANT_MOVE (insn) = 1;
2504
2505 last = insn;
2506 }
2507
2508 /* Don't overrun the bounds of the basic block. */
2509 if (insn == head)
2510 break;
2511
2512 do
2513 insn = PREV_INSN (insn);
2514 while (insn != head && DEBUG_INSN_P (insn));
2515 }
2516
2517 /* Make sure these insns are scheduled last in their block. */
2518 insn = last;
2519 if (insn != 0)
2520 while (insn != head)
2521 {
2522 insn = prev_nonnote_insn (insn);
2523
2524 if (bitmap_bit_p (insn_referenced, INSN_LUID (insn))
2525 || DEBUG_INSN_P (insn))
2526 continue;
2527
2528 if (! sched_insns_conditions_mutex_p (last, insn))
2529 add_dependence (last, insn, REG_DEP_ANTI);
2530 }
2531
2532 if (!targetm.have_conditional_execution ())
2533 return;
2534
2535 /* Finally, if the block ends in a jump, and we are doing intra-block
2536 scheduling, make sure that the branch depends on any COND_EXEC insns
2537 inside the block to avoid moving the COND_EXECs past the branch insn.
2538
2539 We only have to do this after reload, because (1) before reload there
2540 are no COND_EXEC insns, and (2) the region scheduler is an intra-block
2541 scheduler after reload.
2542
2543 FIXME: We could in some cases move COND_EXEC insns past the branch if
2544 this scheduler would be a little smarter. Consider this code:
2545
2546 T = [addr]
2547 C ? addr += 4
2548 !C ? X += 12
2549 C ? T += 1
2550 C ? jump foo
2551
2552 On a target with a one cycle stall on a memory access the optimal
2553 sequence would be:
2554
2555 T = [addr]
2556 C ? addr += 4
2557 C ? T += 1
2558 C ? jump foo
2559 !C ? X += 12
2560
2561 We don't want to put the 'X += 12' before the branch because it just
2562 wastes a cycle of execution time when the branch is taken.
2563
2564 Note that in the example "!C" will always be true. That is another
2565 possible improvement for handling COND_EXECs in this scheduler: it
2566 could remove always-true predicates. */
2567
2568 if (!reload_completed || ! (JUMP_P (tail) || JUMP_TABLE_DATA_P (tail)))
2569 return;
2570
2571 insn = tail;
2572 while (insn != head)
2573 {
2574 insn = PREV_INSN (insn);
2575
2576 /* Note that we want to add this dependency even when
2577 sched_insns_conditions_mutex_p returns true. The whole point
2578 is that we _want_ this dependency, even if these insns really
2579 are independent. */
2580 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == COND_EXEC)
2581 add_dependence (tail, insn, REG_DEP_ANTI);
2582 }
2583 }
2584
2585 /* Data structures for the computation of data dependences in a regions. We
2586 keep one `deps' structure for every basic block. Before analyzing the
2587 data dependences for a bb, its variables are initialized as a function of
2588 the variables of its predecessors. When the analysis for a bb completes,
2589 we save the contents to the corresponding bb_deps[bb] variable. */
2590
2591 static struct deps_desc *bb_deps;
2592
2593 static void
2594 concat_insn_mem_list (rtx_insn_list *copy_insns,
2595 rtx_expr_list *copy_mems,
2596 rtx_insn_list **old_insns_p,
2597 rtx_expr_list **old_mems_p)
2598 {
2599 rtx_insn_list *new_insns = *old_insns_p;
2600 rtx_expr_list *new_mems = *old_mems_p;
2601
2602 while (copy_insns)
2603 {
2604 new_insns = alloc_INSN_LIST (copy_insns->insn (), new_insns);
2605 new_mems = alloc_EXPR_LIST (VOIDmode, copy_mems->element (), new_mems);
2606 copy_insns = copy_insns->next ();
2607 copy_mems = copy_mems->next ();
2608 }
2609
2610 *old_insns_p = new_insns;
2611 *old_mems_p = new_mems;
2612 }
2613
2614 /* Join PRED_DEPS to the SUCC_DEPS. */
2615 void
2616 deps_join (struct deps_desc *succ_deps, struct deps_desc *pred_deps)
2617 {
2618 unsigned reg;
2619 reg_set_iterator rsi;
2620
2621 /* The reg_last lists are inherited by successor. */
2622 EXECUTE_IF_SET_IN_REG_SET (&pred_deps->reg_last_in_use, 0, reg, rsi)
2623 {
2624 struct deps_reg *pred_rl = &pred_deps->reg_last[reg];
2625 struct deps_reg *succ_rl = &succ_deps->reg_last[reg];
2626
2627 succ_rl->uses = concat_INSN_LIST (pred_rl->uses, succ_rl->uses);
2628 succ_rl->sets = concat_INSN_LIST (pred_rl->sets, succ_rl->sets);
2629 succ_rl->implicit_sets
2630 = concat_INSN_LIST (pred_rl->implicit_sets, succ_rl->implicit_sets);
2631 succ_rl->clobbers = concat_INSN_LIST (pred_rl->clobbers,
2632 succ_rl->clobbers);
2633 succ_rl->uses_length += pred_rl->uses_length;
2634 succ_rl->clobbers_length += pred_rl->clobbers_length;
2635 }
2636 IOR_REG_SET (&succ_deps->reg_last_in_use, &pred_deps->reg_last_in_use);
2637
2638 /* Mem read/write lists are inherited by successor. */
2639 concat_insn_mem_list (pred_deps->pending_read_insns,
2640 pred_deps->pending_read_mems,
2641 &succ_deps->pending_read_insns,
2642 &succ_deps->pending_read_mems);
2643 concat_insn_mem_list (pred_deps->pending_write_insns,
2644 pred_deps->pending_write_mems,
2645 &succ_deps->pending_write_insns,
2646 &succ_deps->pending_write_mems);
2647
2648 succ_deps->pending_jump_insns
2649 = concat_INSN_LIST (pred_deps->pending_jump_insns,
2650 succ_deps->pending_jump_insns);
2651 succ_deps->last_pending_memory_flush
2652 = concat_INSN_LIST (pred_deps->last_pending_memory_flush,
2653 succ_deps->last_pending_memory_flush);
2654
2655 succ_deps->pending_read_list_length += pred_deps->pending_read_list_length;
2656 succ_deps->pending_write_list_length += pred_deps->pending_write_list_length;
2657 succ_deps->pending_flush_length += pred_deps->pending_flush_length;
2658
2659 /* last_function_call is inherited by successor. */
2660 succ_deps->last_function_call
2661 = concat_INSN_LIST (pred_deps->last_function_call,
2662 succ_deps->last_function_call);
2663
2664 /* last_function_call_may_noreturn is inherited by successor. */
2665 succ_deps->last_function_call_may_noreturn
2666 = concat_INSN_LIST (pred_deps->last_function_call_may_noreturn,
2667 succ_deps->last_function_call_may_noreturn);
2668
2669 /* sched_before_next_call is inherited by successor. */
2670 succ_deps->sched_before_next_call
2671 = concat_INSN_LIST (pred_deps->sched_before_next_call,
2672 succ_deps->sched_before_next_call);
2673 }
2674
2675 /* After computing the dependencies for block BB, propagate the dependencies
2676 found in TMP_DEPS to the successors of the block. */
2677 static void
2678 propagate_deps (int bb, struct deps_desc *pred_deps)
2679 {
2680 basic_block block = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (bb));
2681 edge_iterator ei;
2682 edge e;
2683
2684 /* bb's structures are inherited by its successors. */
2685 FOR_EACH_EDGE (e, ei, block->succs)
2686 {
2687 /* Only bbs "below" bb, in the same region, are interesting. */
2688 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun)
2689 || CONTAINING_RGN (block->index) != CONTAINING_RGN (e->dest->index)
2690 || BLOCK_TO_BB (e->dest->index) <= bb)
2691 continue;
2692
2693 deps_join (bb_deps + BLOCK_TO_BB (e->dest->index), pred_deps);
2694 }
2695
2696 /* These lists should point to the right place, for correct
2697 freeing later. */
2698 bb_deps[bb].pending_read_insns = pred_deps->pending_read_insns;
2699 bb_deps[bb].pending_read_mems = pred_deps->pending_read_mems;
2700 bb_deps[bb].pending_write_insns = pred_deps->pending_write_insns;
2701 bb_deps[bb].pending_write_mems = pred_deps->pending_write_mems;
2702 bb_deps[bb].pending_jump_insns = pred_deps->pending_jump_insns;
2703
2704 /* Can't allow these to be freed twice. */
2705 pred_deps->pending_read_insns = 0;
2706 pred_deps->pending_read_mems = 0;
2707 pred_deps->pending_write_insns = 0;
2708 pred_deps->pending_write_mems = 0;
2709 pred_deps->pending_jump_insns = 0;
2710 }
2711
2712 /* Compute dependences inside bb. In a multiple blocks region:
2713 (1) a bb is analyzed after its predecessors, and (2) the lists in
2714 effect at the end of bb (after analyzing for bb) are inherited by
2715 bb's successors.
2716
2717 Specifically for reg-reg data dependences, the block insns are
2718 scanned by sched_analyze () top-to-bottom. Three lists are
2719 maintained by sched_analyze (): reg_last[].sets for register DEFs,
2720 reg_last[].implicit_sets for implicit hard register DEFs, and
2721 reg_last[].uses for register USEs.
2722
2723 When analysis is completed for bb, we update for its successors:
2724 ; - DEFS[succ] = Union (DEFS [succ], DEFS [bb])
2725 ; - IMPLICIT_DEFS[succ] = Union (IMPLICIT_DEFS [succ], IMPLICIT_DEFS [bb])
2726 ; - USES[succ] = Union (USES [succ], DEFS [bb])
2727
2728 The mechanism for computing mem-mem data dependence is very
2729 similar, and the result is interblock dependences in the region. */
2730
2731 static void
2732 compute_block_dependences (int bb)
2733 {
2734 rtx_insn *head, *tail;
2735 struct deps_desc tmp_deps;
2736
2737 tmp_deps = bb_deps[bb];
2738
2739 /* Do the analysis for this block. */
2740 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2741 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2742
2743 sched_analyze (&tmp_deps, head, tail);
2744
2745 /* Selective scheduling handles control dependencies by itself. */
2746 if (!sel_sched_p ())
2747 add_branch_dependences (head, tail);
2748
2749 if (current_nr_blocks > 1)
2750 propagate_deps (bb, &tmp_deps);
2751
2752 /* Free up the INSN_LISTs. */
2753 free_deps (&tmp_deps);
2754
2755 if (targetm.sched.dependencies_evaluation_hook)
2756 targetm.sched.dependencies_evaluation_hook (head, tail);
2757 }
2758
2759 /* Free dependencies of instructions inside BB. */
2760 static void
2761 free_block_dependencies (int bb)
2762 {
2763 rtx_insn *head;
2764 rtx_insn *tail;
2765
2766 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2767
2768 if (no_real_insns_p (head, tail))
2769 return;
2770
2771 sched_free_deps (head, tail, true);
2772 }
2773
2774 /* Remove all INSN_LISTs and EXPR_LISTs from the pending lists and add
2775 them to the unused_*_list variables, so that they can be reused. */
2776
2777 static void
2778 free_pending_lists (void)
2779 {
2780 int bb;
2781
2782 for (bb = 0; bb < current_nr_blocks; bb++)
2783 {
2784 free_INSN_LIST_list (&bb_deps[bb].pending_read_insns);
2785 free_INSN_LIST_list (&bb_deps[bb].pending_write_insns);
2786 free_EXPR_LIST_list (&bb_deps[bb].pending_read_mems);
2787 free_EXPR_LIST_list (&bb_deps[bb].pending_write_mems);
2788 free_INSN_LIST_list (&bb_deps[bb].pending_jump_insns);
2789 }
2790 }
2791 \f
2792 /* Print dependences for debugging starting from FROM_BB.
2793 Callable from debugger. */
2794 /* Print dependences for debugging starting from FROM_BB.
2795 Callable from debugger. */
2796 DEBUG_FUNCTION void
2797 debug_rgn_dependencies (int from_bb)
2798 {
2799 int bb;
2800
2801 fprintf (sched_dump,
2802 ";; --------------- forward dependences: ------------ \n");
2803
2804 for (bb = from_bb; bb < current_nr_blocks; bb++)
2805 {
2806 rtx_insn *head, *tail;
2807
2808 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2809 fprintf (sched_dump, "\n;; --- Region Dependences --- b %d bb %d \n",
2810 BB_TO_BLOCK (bb), bb);
2811
2812 debug_dependencies (head, tail);
2813 }
2814 }
2815
2816 /* Print dependencies information for instructions between HEAD and TAIL.
2817 ??? This function would probably fit best in haifa-sched.c. */
2818 void debug_dependencies (rtx_insn *head, rtx_insn *tail)
2819 {
2820 rtx_insn *insn;
2821 rtx_insn *next_tail = NEXT_INSN (tail);
2822
2823 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2824 "insn", "code", "bb", "dep", "prio", "cost",
2825 "reservation");
2826 fprintf (sched_dump, ";; %7s%6s%6s%6s%6s%6s%14s\n",
2827 "----", "----", "--", "---", "----", "----",
2828 "-----------");
2829
2830 for (insn = head; insn != next_tail; insn = NEXT_INSN (insn))
2831 {
2832 if (! INSN_P (insn))
2833 {
2834 int n;
2835 fprintf (sched_dump, ";; %6d ", INSN_UID (insn));
2836 if (NOTE_P (insn))
2837 {
2838 n = NOTE_KIND (insn);
2839 fprintf (sched_dump, "%s\n", GET_NOTE_INSN_NAME (n));
2840 }
2841 else
2842 fprintf (sched_dump, " {%s}\n", GET_RTX_NAME (GET_CODE (insn)));
2843 continue;
2844 }
2845
2846 fprintf (sched_dump,
2847 ";; %s%5d%6d%6d%6d%6d%6d ",
2848 (SCHED_GROUP_P (insn) ? "+" : " "),
2849 INSN_UID (insn),
2850 INSN_CODE (insn),
2851 BLOCK_NUM (insn),
2852 sched_emulate_haifa_p ? -1 : sd_lists_size (insn, SD_LIST_BACK),
2853 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2854 : INSN_PRIORITY (insn))
2855 : INSN_PRIORITY (insn)),
2856 (sel_sched_p () ? (sched_emulate_haifa_p ? -1
2857 : insn_cost (insn))
2858 : insn_cost (insn)));
2859
2860 if (recog_memoized (insn) < 0)
2861 fprintf (sched_dump, "nothing");
2862 else
2863 print_reservation (sched_dump, insn);
2864
2865 fprintf (sched_dump, "\t: ");
2866 {
2867 sd_iterator_def sd_it;
2868 dep_t dep;
2869
2870 FOR_EACH_DEP (insn, SD_LIST_FORW, sd_it, dep)
2871 fprintf (sched_dump, "%d%s%s ", INSN_UID (DEP_CON (dep)),
2872 DEP_NONREG (dep) ? "n" : "",
2873 DEP_MULTIPLE (dep) ? "m" : "");
2874 }
2875 fprintf (sched_dump, "\n");
2876 }
2877
2878 fprintf (sched_dump, "\n");
2879 }
2880 \f
2881 /* Returns true if all the basic blocks of the current region have
2882 NOTE_DISABLE_SCHED_OF_BLOCK which means not to schedule that region. */
2883 bool
2884 sched_is_disabled_for_current_region_p (void)
2885 {
2886 int bb;
2887
2888 for (bb = 0; bb < current_nr_blocks; bb++)
2889 if (!(BASIC_BLOCK_FOR_FN (cfun,
2890 BB_TO_BLOCK (bb))->flags & BB_DISABLE_SCHEDULE))
2891 return false;
2892
2893 return true;
2894 }
2895
2896 /* Free all region dependencies saved in INSN_BACK_DEPS and
2897 INSN_RESOLVED_BACK_DEPS. The Haifa scheduler does this on the fly
2898 when scheduling, so this function is supposed to be called from
2899 the selective scheduling only. */
2900 void
2901 free_rgn_deps (void)
2902 {
2903 int bb;
2904
2905 for (bb = 0; bb < current_nr_blocks; bb++)
2906 {
2907 rtx_insn *head, *tail;
2908
2909 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2910 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2911
2912 sched_free_deps (head, tail, false);
2913 }
2914 }
2915
2916 static int rgn_n_insns;
2917
2918 /* Compute insn priority for a current region. */
2919 void
2920 compute_priorities (void)
2921 {
2922 int bb;
2923
2924 current_sched_info->sched_max_insns_priority = 0;
2925 for (bb = 0; bb < current_nr_blocks; bb++)
2926 {
2927 rtx_insn *head, *tail;
2928
2929 gcc_assert (EBB_FIRST_BB (bb) == EBB_LAST_BB (bb));
2930 get_ebb_head_tail (EBB_FIRST_BB (bb), EBB_LAST_BB (bb), &head, &tail);
2931
2932 if (no_real_insns_p (head, tail))
2933 continue;
2934
2935 rgn_n_insns += set_priorities (head, tail);
2936 }
2937 current_sched_info->sched_max_insns_priority++;
2938 }
2939
2940 /* (Re-)initialize the arrays of DFA states at the end of each basic block.
2941
2942 SAVED_LAST_BASIC_BLOCK is the previous length of the arrays. It must be
2943 zero for the first call to this function, to allocate the arrays for the
2944 first time.
2945
2946 This function is called once during initialization of the scheduler, and
2947 called again to resize the arrays if new basic blocks have been created,
2948 for example for speculation recovery code. */
2949
2950 static void
2951 realloc_bb_state_array (int saved_last_basic_block)
2952 {
2953 char *old_bb_state_array = bb_state_array;
2954 size_t lbb = (size_t) last_basic_block_for_fn (cfun);
2955 size_t slbb = (size_t) saved_last_basic_block;
2956
2957 /* Nothing to do if nothing changed since the last time this was called. */
2958 if (saved_last_basic_block == last_basic_block_for_fn (cfun))
2959 return;
2960
2961 /* The selective scheduler doesn't use the state arrays. */
2962 if (sel_sched_p ())
2963 {
2964 gcc_assert (bb_state_array == NULL && bb_state == NULL);
2965 return;
2966 }
2967
2968 gcc_checking_assert (saved_last_basic_block == 0
2969 || (bb_state_array != NULL && bb_state != NULL));
2970
2971 bb_state_array = XRESIZEVEC (char, bb_state_array, lbb * dfa_state_size);
2972 bb_state = XRESIZEVEC (state_t, bb_state, lbb);
2973
2974 /* If BB_STATE_ARRAY has moved, fixup all the state pointers array.
2975 Otherwise only fixup the newly allocated ones. For the state
2976 array itself, only initialize the new entries. */
2977 bool bb_state_array_moved = (bb_state_array != old_bb_state_array);
2978 for (size_t i = bb_state_array_moved ? 0 : slbb; i < lbb; i++)
2979 bb_state[i] = (state_t) (bb_state_array + i * dfa_state_size);
2980 for (size_t i = slbb; i < lbb; i++)
2981 state_reset (bb_state[i]);
2982 }
2983
2984 /* Free the arrays of DFA states at the end of each basic block. */
2985
2986 static void
2987 free_bb_state_array (void)
2988 {
2989 free (bb_state_array);
2990 free (bb_state);
2991 bb_state_array = NULL;
2992 bb_state = NULL;
2993 }
2994
2995 /* Schedule a region. A region is either an inner loop, a loop-free
2996 subroutine, or a single basic block. Each bb in the region is
2997 scheduled after its flow predecessors. */
2998
2999 static void
3000 schedule_region (int rgn)
3001 {
3002 int bb;
3003 int sched_rgn_n_insns = 0;
3004
3005 rgn_n_insns = 0;
3006
3007 /* Do not support register pressure sensitive scheduling for the new regions
3008 as we don't update the liveness info for them. */
3009 if (sched_pressure != SCHED_PRESSURE_NONE
3010 && rgn >= nr_regions_initial)
3011 {
3012 free_global_sched_pressure_data ();
3013 sched_pressure = SCHED_PRESSURE_NONE;
3014 }
3015
3016 rgn_setup_region (rgn);
3017
3018 /* Don't schedule region that is marked by
3019 NOTE_DISABLE_SCHED_OF_BLOCK. */
3020 if (sched_is_disabled_for_current_region_p ())
3021 return;
3022
3023 sched_rgn_compute_dependencies (rgn);
3024
3025 sched_rgn_local_init (rgn);
3026
3027 /* Set priorities. */
3028 compute_priorities ();
3029
3030 sched_extend_ready_list (rgn_n_insns);
3031
3032 if (sched_pressure == SCHED_PRESSURE_WEIGHTED)
3033 {
3034 sched_init_region_reg_pressure_info ();
3035 for (bb = 0; bb < current_nr_blocks; bb++)
3036 {
3037 basic_block first_bb, last_bb;
3038 rtx_insn *head, *tail;
3039
3040 first_bb = EBB_FIRST_BB (bb);
3041 last_bb = EBB_LAST_BB (bb);
3042
3043 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3044
3045 if (no_real_insns_p (head, tail))
3046 {
3047 gcc_assert (first_bb == last_bb);
3048 continue;
3049 }
3050 sched_setup_bb_reg_pressure_info (first_bb, PREV_INSN (head));
3051 }
3052 }
3053
3054 /* Now we can schedule all blocks. */
3055 for (bb = 0; bb < current_nr_blocks; bb++)
3056 {
3057 basic_block first_bb, last_bb, curr_bb;
3058 rtx_insn *head, *tail;
3059
3060 first_bb = EBB_FIRST_BB (bb);
3061 last_bb = EBB_LAST_BB (bb);
3062
3063 get_ebb_head_tail (first_bb, last_bb, &head, &tail);
3064
3065 if (no_real_insns_p (head, tail))
3066 {
3067 gcc_assert (first_bb == last_bb);
3068 continue;
3069 }
3070
3071 current_sched_info->prev_head = PREV_INSN (head);
3072 current_sched_info->next_tail = NEXT_INSN (tail);
3073
3074 remove_notes (head, tail);
3075
3076 unlink_bb_notes (first_bb, last_bb);
3077
3078 target_bb = bb;
3079
3080 gcc_assert (flag_schedule_interblock || current_nr_blocks == 1);
3081 current_sched_info->queue_must_finish_empty = current_nr_blocks == 1;
3082
3083 curr_bb = first_bb;
3084 if (dbg_cnt (sched_block))
3085 {
3086 edge f;
3087 int saved_last_basic_block = last_basic_block_for_fn (cfun);
3088
3089 schedule_block (&curr_bb, bb_state[first_bb->index]);
3090 gcc_assert (EBB_FIRST_BB (bb) == first_bb);
3091 sched_rgn_n_insns += sched_n_insns;
3092 realloc_bb_state_array (saved_last_basic_block);
3093 f = find_fallthru_edge (last_bb->succs);
3094 if (f && f->probability * 100 / REG_BR_PROB_BASE >=
3095 PARAM_VALUE (PARAM_SCHED_STATE_EDGE_PROB_CUTOFF))
3096 {
3097 memcpy (bb_state[f->dest->index], curr_state,
3098 dfa_state_size);
3099 if (sched_verbose >= 5)
3100 fprintf (sched_dump, "saving state for edge %d->%d\n",
3101 f->src->index, f->dest->index);
3102 }
3103 }
3104 else
3105 {
3106 sched_rgn_n_insns += rgn_n_insns;
3107 }
3108
3109 /* Clean up. */
3110 if (current_nr_blocks > 1)
3111 free_trg_info ();
3112 }
3113
3114 /* Sanity check: verify that all region insns were scheduled. */
3115 gcc_assert (sched_rgn_n_insns == rgn_n_insns);
3116
3117 sched_finish_ready_list ();
3118
3119 /* Done with this region. */
3120 sched_rgn_local_finish ();
3121
3122 /* Free dependencies. */
3123 for (bb = 0; bb < current_nr_blocks; ++bb)
3124 free_block_dependencies (bb);
3125
3126 gcc_assert (haifa_recovery_bb_ever_added_p
3127 || deps_pools_are_empty_p ());
3128 }
3129
3130 /* Initialize data structures for region scheduling. */
3131
3132 void
3133 sched_rgn_init (bool single_blocks_p)
3134 {
3135 min_spec_prob = ((PARAM_VALUE (PARAM_MIN_SPEC_PROB) * REG_BR_PROB_BASE)
3136 / 100);
3137
3138 nr_inter = 0;
3139 nr_spec = 0;
3140
3141 extend_regions ();
3142
3143 CONTAINING_RGN (ENTRY_BLOCK) = -1;
3144 CONTAINING_RGN (EXIT_BLOCK) = -1;
3145
3146 realloc_bb_state_array (0);
3147
3148 /* Compute regions for scheduling. */
3149 if (single_blocks_p
3150 || n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS + 1
3151 || !flag_schedule_interblock
3152 || is_cfg_nonregular ())
3153 {
3154 find_single_block_region (sel_sched_p ());
3155 }
3156 else
3157 {
3158 /* Compute the dominators and post dominators. */
3159 if (!sel_sched_p ())
3160 calculate_dominance_info (CDI_DOMINATORS);
3161
3162 /* Find regions. */
3163 find_rgns ();
3164
3165 if (sched_verbose >= 3)
3166 debug_regions ();
3167
3168 /* For now. This will move as more and more of haifa is converted
3169 to using the cfg code. */
3170 if (!sel_sched_p ())
3171 free_dominance_info (CDI_DOMINATORS);
3172 }
3173
3174 gcc_assert (0 < nr_regions && nr_regions <= n_basic_blocks_for_fn (cfun));
3175
3176 RGN_BLOCKS (nr_regions) = (RGN_BLOCKS (nr_regions - 1) +
3177 RGN_NR_BLOCKS (nr_regions - 1));
3178 nr_regions_initial = nr_regions;
3179 }
3180
3181 /* Free data structures for region scheduling. */
3182 void
3183 sched_rgn_finish (void)
3184 {
3185 free_bb_state_array ();
3186
3187 /* Reposition the prologue and epilogue notes in case we moved the
3188 prologue/epilogue insns. */
3189 if (reload_completed)
3190 reposition_prologue_and_epilogue_notes ();
3191
3192 if (sched_verbose)
3193 {
3194 if (reload_completed == 0
3195 && flag_schedule_interblock)
3196 {
3197 fprintf (sched_dump,
3198 "\n;; Procedure interblock/speculative motions == %d/%d \n",
3199 nr_inter, nr_spec);
3200 }
3201 else
3202 gcc_assert (nr_inter <= 0);
3203 fprintf (sched_dump, "\n\n");
3204 }
3205
3206 nr_regions = 0;
3207
3208 free (rgn_table);
3209 rgn_table = NULL;
3210
3211 free (rgn_bb_table);
3212 rgn_bb_table = NULL;
3213
3214 free (block_to_bb);
3215 block_to_bb = NULL;
3216
3217 free (containing_rgn);
3218 containing_rgn = NULL;
3219
3220 free (ebb_head);
3221 ebb_head = NULL;
3222 }
3223
3224 /* Setup global variables like CURRENT_BLOCKS and CURRENT_NR_BLOCK to
3225 point to the region RGN. */
3226 void
3227 rgn_setup_region (int rgn)
3228 {
3229 int bb;
3230
3231 /* Set variables for the current region. */
3232 current_nr_blocks = RGN_NR_BLOCKS (rgn);
3233 current_blocks = RGN_BLOCKS (rgn);
3234
3235 /* EBB_HEAD is a region-scope structure. But we realloc it for
3236 each region to save time/memory/something else.
3237 See comments in add_block1, for what reasons we allocate +1 element. */
3238 ebb_head = XRESIZEVEC (int, ebb_head, current_nr_blocks + 1);
3239 for (bb = 0; bb <= current_nr_blocks; bb++)
3240 ebb_head[bb] = current_blocks + bb;
3241 }
3242
3243 /* Compute instruction dependencies in region RGN. */
3244 void
3245 sched_rgn_compute_dependencies (int rgn)
3246 {
3247 if (!RGN_DONT_CALC_DEPS (rgn))
3248 {
3249 int bb;
3250
3251 if (sel_sched_p ())
3252 sched_emulate_haifa_p = 1;
3253
3254 init_deps_global ();
3255
3256 /* Initializations for region data dependence analysis. */
3257 bb_deps = XNEWVEC (struct deps_desc, current_nr_blocks);
3258 for (bb = 0; bb < current_nr_blocks; bb++)
3259 init_deps (bb_deps + bb, false);
3260
3261 /* Initialize bitmap used in add_branch_dependences. */
3262 insn_referenced = sbitmap_alloc (sched_max_luid);
3263 bitmap_clear (insn_referenced);
3264
3265 /* Compute backward dependencies. */
3266 for (bb = 0; bb < current_nr_blocks; bb++)
3267 compute_block_dependences (bb);
3268
3269 sbitmap_free (insn_referenced);
3270 free_pending_lists ();
3271 finish_deps_global ();
3272 free (bb_deps);
3273
3274 /* We don't want to recalculate this twice. */
3275 RGN_DONT_CALC_DEPS (rgn) = 1;
3276
3277 if (sel_sched_p ())
3278 sched_emulate_haifa_p = 0;
3279 }
3280 else
3281 /* (This is a recovery block. It is always a single block region.)
3282 OR (We use selective scheduling.) */
3283 gcc_assert (current_nr_blocks == 1 || sel_sched_p ());
3284 }
3285
3286 /* Init region data structures. Returns true if this region should
3287 not be scheduled. */
3288 void
3289 sched_rgn_local_init (int rgn)
3290 {
3291 int bb;
3292
3293 /* Compute interblock info: probabilities, split-edges, dominators, etc. */
3294 if (current_nr_blocks > 1)
3295 {
3296 basic_block block;
3297 edge e;
3298 edge_iterator ei;
3299
3300 prob = XNEWVEC (int, current_nr_blocks);
3301
3302 dom = sbitmap_vector_alloc (current_nr_blocks, current_nr_blocks);
3303 bitmap_vector_clear (dom, current_nr_blocks);
3304
3305 /* Use ->aux to implement EDGE_TO_BIT mapping. */
3306 rgn_nr_edges = 0;
3307 FOR_EACH_BB_FN (block, cfun)
3308 {
3309 if (CONTAINING_RGN (block->index) != rgn)
3310 continue;
3311 FOR_EACH_EDGE (e, ei, block->succs)
3312 SET_EDGE_TO_BIT (e, rgn_nr_edges++);
3313 }
3314
3315 rgn_edges = XNEWVEC (edge, rgn_nr_edges);
3316 rgn_nr_edges = 0;
3317 FOR_EACH_BB_FN (block, cfun)
3318 {
3319 if (CONTAINING_RGN (block->index) != rgn)
3320 continue;
3321 FOR_EACH_EDGE (e, ei, block->succs)
3322 rgn_edges[rgn_nr_edges++] = e;
3323 }
3324
3325 /* Split edges. */
3326 pot_split = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3327 bitmap_vector_clear (pot_split, current_nr_blocks);
3328 ancestor_edges = sbitmap_vector_alloc (current_nr_blocks, rgn_nr_edges);
3329 bitmap_vector_clear (ancestor_edges, current_nr_blocks);
3330
3331 /* Compute probabilities, dominators, split_edges. */
3332 for (bb = 0; bb < current_nr_blocks; bb++)
3333 compute_dom_prob_ps (bb);
3334
3335 /* Cleanup ->aux used for EDGE_TO_BIT mapping. */
3336 /* We don't need them anymore. But we want to avoid duplication of
3337 aux fields in the newly created edges. */
3338 FOR_EACH_BB_FN (block, cfun)
3339 {
3340 if (CONTAINING_RGN (block->index) != rgn)
3341 continue;
3342 FOR_EACH_EDGE (e, ei, block->succs)
3343 e->aux = NULL;
3344 }
3345 }
3346 }
3347
3348 /* Free data computed for the finished region. */
3349 void
3350 sched_rgn_local_free (void)
3351 {
3352 free (prob);
3353 sbitmap_vector_free (dom);
3354 sbitmap_vector_free (pot_split);
3355 sbitmap_vector_free (ancestor_edges);
3356 free (rgn_edges);
3357 }
3358
3359 /* Free data computed for the finished region. */
3360 void
3361 sched_rgn_local_finish (void)
3362 {
3363 if (current_nr_blocks > 1 && !sel_sched_p ())
3364 {
3365 sched_rgn_local_free ();
3366 }
3367 }
3368
3369 /* Setup scheduler infos. */
3370 void
3371 rgn_setup_common_sched_info (void)
3372 {
3373 memcpy (&rgn_common_sched_info, &haifa_common_sched_info,
3374 sizeof (rgn_common_sched_info));
3375
3376 rgn_common_sched_info.fix_recovery_cfg = rgn_fix_recovery_cfg;
3377 rgn_common_sched_info.add_block = rgn_add_block;
3378 rgn_common_sched_info.estimate_number_of_insns
3379 = rgn_estimate_number_of_insns;
3380 rgn_common_sched_info.sched_pass_id = SCHED_RGN_PASS;
3381
3382 common_sched_info = &rgn_common_sched_info;
3383 }
3384
3385 /* Setup all *_sched_info structures (for the Haifa frontend
3386 and for the dependence analysis) in the interblock scheduler. */
3387 void
3388 rgn_setup_sched_infos (void)
3389 {
3390 if (!sel_sched_p ())
3391 memcpy (&rgn_sched_deps_info, &rgn_const_sched_deps_info,
3392 sizeof (rgn_sched_deps_info));
3393 else
3394 memcpy (&rgn_sched_deps_info, &rgn_const_sel_sched_deps_info,
3395 sizeof (rgn_sched_deps_info));
3396
3397 sched_deps_info = &rgn_sched_deps_info;
3398
3399 memcpy (&rgn_sched_info, &rgn_const_sched_info, sizeof (rgn_sched_info));
3400 current_sched_info = &rgn_sched_info;
3401 }
3402
3403 /* The one entry point in this file. */
3404 void
3405 schedule_insns (void)
3406 {
3407 int rgn;
3408
3409 /* Taking care of this degenerate case makes the rest of
3410 this code simpler. */
3411 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
3412 return;
3413
3414 rgn_setup_common_sched_info ();
3415 rgn_setup_sched_infos ();
3416
3417 haifa_sched_init ();
3418 sched_rgn_init (reload_completed);
3419
3420 bitmap_initialize (&not_in_df, 0);
3421 bitmap_clear (&not_in_df);
3422
3423 /* Schedule every region in the subroutine. */
3424 for (rgn = 0; rgn < nr_regions; rgn++)
3425 if (dbg_cnt (sched_region))
3426 schedule_region (rgn);
3427
3428 /* Clean up. */
3429 sched_rgn_finish ();
3430 bitmap_clear (&not_in_df);
3431
3432 haifa_sched_finish ();
3433 }
3434
3435 /* INSN has been added to/removed from current region. */
3436 static void
3437 rgn_add_remove_insn (rtx_insn *insn, int remove_p)
3438 {
3439 if (!remove_p)
3440 rgn_n_insns++;
3441 else
3442 rgn_n_insns--;
3443
3444 if (INSN_BB (insn) == target_bb)
3445 {
3446 if (!remove_p)
3447 target_n_insns++;
3448 else
3449 target_n_insns--;
3450 }
3451 }
3452
3453 /* Extend internal data structures. */
3454 void
3455 extend_regions (void)
3456 {
3457 rgn_table = XRESIZEVEC (region, rgn_table, n_basic_blocks_for_fn (cfun));
3458 rgn_bb_table = XRESIZEVEC (int, rgn_bb_table,
3459 n_basic_blocks_for_fn (cfun));
3460 block_to_bb = XRESIZEVEC (int, block_to_bb,
3461 last_basic_block_for_fn (cfun));
3462 containing_rgn = XRESIZEVEC (int, containing_rgn,
3463 last_basic_block_for_fn (cfun));
3464 }
3465
3466 void
3467 rgn_make_new_region_out_of_new_block (basic_block bb)
3468 {
3469 int i;
3470
3471 i = RGN_BLOCKS (nr_regions);
3472 /* I - first free position in rgn_bb_table. */
3473
3474 rgn_bb_table[i] = bb->index;
3475 RGN_NR_BLOCKS (nr_regions) = 1;
3476 RGN_HAS_REAL_EBB (nr_regions) = 0;
3477 RGN_DONT_CALC_DEPS (nr_regions) = 0;
3478 CONTAINING_RGN (bb->index) = nr_regions;
3479 BLOCK_TO_BB (bb->index) = 0;
3480
3481 nr_regions++;
3482
3483 RGN_BLOCKS (nr_regions) = i + 1;
3484 }
3485
3486 /* BB was added to ebb after AFTER. */
3487 static void
3488 rgn_add_block (basic_block bb, basic_block after)
3489 {
3490 extend_regions ();
3491 bitmap_set_bit (&not_in_df, bb->index);
3492
3493 if (after == 0 || after == EXIT_BLOCK_PTR_FOR_FN (cfun))
3494 {
3495 rgn_make_new_region_out_of_new_block (bb);
3496 RGN_DONT_CALC_DEPS (nr_regions - 1) = (after
3497 == EXIT_BLOCK_PTR_FOR_FN (cfun));
3498 }
3499 else
3500 {
3501 int i, pos;
3502
3503 /* We need to fix rgn_table, block_to_bb, containing_rgn
3504 and ebb_head. */
3505
3506 BLOCK_TO_BB (bb->index) = BLOCK_TO_BB (after->index);
3507
3508 /* We extend ebb_head to one more position to
3509 easily find the last position of the last ebb in
3510 the current region. Thus, ebb_head[BLOCK_TO_BB (after) + 1]
3511 is _always_ valid for access. */
3512
3513 i = BLOCK_TO_BB (after->index) + 1;
3514 pos = ebb_head[i] - 1;
3515 /* Now POS is the index of the last block in the region. */
3516
3517 /* Find index of basic block AFTER. */
3518 for (; rgn_bb_table[pos] != after->index; pos--)
3519 ;
3520
3521 pos++;
3522 gcc_assert (pos > ebb_head[i - 1]);
3523
3524 /* i - ebb right after "AFTER". */
3525 /* ebb_head[i] - VALID. */
3526
3527 /* Source position: ebb_head[i]
3528 Destination position: ebb_head[i] + 1
3529 Last position:
3530 RGN_BLOCKS (nr_regions) - 1
3531 Number of elements to copy: (last_position) - (source_position) + 1
3532 */
3533
3534 memmove (rgn_bb_table + pos + 1,
3535 rgn_bb_table + pos,
3536 ((RGN_BLOCKS (nr_regions) - 1) - (pos) + 1)
3537 * sizeof (*rgn_bb_table));
3538
3539 rgn_bb_table[pos] = bb->index;
3540
3541 for (; i <= current_nr_blocks; i++)
3542 ebb_head [i]++;
3543
3544 i = CONTAINING_RGN (after->index);
3545 CONTAINING_RGN (bb->index) = i;
3546
3547 RGN_HAS_REAL_EBB (i) = 1;
3548
3549 for (++i; i <= nr_regions; i++)
3550 RGN_BLOCKS (i)++;
3551 }
3552 }
3553
3554 /* Fix internal data after interblock movement of jump instruction.
3555 For parameter meaning please refer to
3556 sched-int.h: struct sched_info: fix_recovery_cfg. */
3557 static void
3558 rgn_fix_recovery_cfg (int bbi, int check_bbi, int check_bb_nexti)
3559 {
3560 int old_pos, new_pos, i;
3561
3562 BLOCK_TO_BB (check_bb_nexti) = BLOCK_TO_BB (bbi);
3563
3564 for (old_pos = ebb_head[BLOCK_TO_BB (check_bbi) + 1] - 1;
3565 rgn_bb_table[old_pos] != check_bb_nexti;
3566 old_pos--)
3567 ;
3568 gcc_assert (old_pos > ebb_head[BLOCK_TO_BB (check_bbi)]);
3569
3570 for (new_pos = ebb_head[BLOCK_TO_BB (bbi) + 1] - 1;
3571 rgn_bb_table[new_pos] != bbi;
3572 new_pos--)
3573 ;
3574 new_pos++;
3575 gcc_assert (new_pos > ebb_head[BLOCK_TO_BB (bbi)]);
3576
3577 gcc_assert (new_pos < old_pos);
3578
3579 memmove (rgn_bb_table + new_pos + 1,
3580 rgn_bb_table + new_pos,
3581 (old_pos - new_pos) * sizeof (*rgn_bb_table));
3582
3583 rgn_bb_table[new_pos] = check_bb_nexti;
3584
3585 for (i = BLOCK_TO_BB (bbi) + 1; i <= BLOCK_TO_BB (check_bbi); i++)
3586 ebb_head[i]++;
3587 }
3588
3589 /* Return next block in ebb chain. For parameter meaning please refer to
3590 sched-int.h: struct sched_info: advance_target_bb. */
3591 static basic_block
3592 advance_target_bb (basic_block bb, rtx_insn *insn)
3593 {
3594 if (insn)
3595 return 0;
3596
3597 gcc_assert (BLOCK_TO_BB (bb->index) == target_bb
3598 && BLOCK_TO_BB (bb->next_bb->index) == target_bb);
3599 return bb->next_bb;
3600 }
3601
3602 #endif
3603 \f
3604 /* Run instruction scheduler. */
3605 static unsigned int
3606 rest_of_handle_live_range_shrinkage (void)
3607 {
3608 #ifdef INSN_SCHEDULING
3609 int saved;
3610
3611 initialize_live_range_shrinkage ();
3612 saved = flag_schedule_interblock;
3613 flag_schedule_interblock = false;
3614 schedule_insns ();
3615 flag_schedule_interblock = saved;
3616 finish_live_range_shrinkage ();
3617 #endif
3618 return 0;
3619 }
3620
3621 /* Run instruction scheduler. */
3622 static unsigned int
3623 rest_of_handle_sched (void)
3624 {
3625 #ifdef INSN_SCHEDULING
3626 if (flag_selective_scheduling
3627 && ! maybe_skip_selective_scheduling ())
3628 run_selective_scheduling ();
3629 else
3630 schedule_insns ();
3631 #endif
3632 return 0;
3633 }
3634
3635 /* Run second scheduling pass after reload. */
3636 static unsigned int
3637 rest_of_handle_sched2 (void)
3638 {
3639 #ifdef INSN_SCHEDULING
3640 if (flag_selective_scheduling2
3641 && ! maybe_skip_selective_scheduling ())
3642 run_selective_scheduling ();
3643 else
3644 {
3645 /* Do control and data sched analysis again,
3646 and write some more of the results to dump file. */
3647 if (flag_sched2_use_superblocks)
3648 schedule_ebbs ();
3649 else
3650 schedule_insns ();
3651 }
3652 #endif
3653 return 0;
3654 }
3655
3656 namespace {
3657
3658 const pass_data pass_data_live_range_shrinkage =
3659 {
3660 RTL_PASS, /* type */
3661 "lr_shrinkage", /* name */
3662 OPTGROUP_NONE, /* optinfo_flags */
3663 TV_LIVE_RANGE_SHRINKAGE, /* tv_id */
3664 0, /* properties_required */
3665 0, /* properties_provided */
3666 0, /* properties_destroyed */
3667 0, /* todo_flags_start */
3668 TODO_df_finish, /* todo_flags_finish */
3669 };
3670
3671 class pass_live_range_shrinkage : public rtl_opt_pass
3672 {
3673 public:
3674 pass_live_range_shrinkage(gcc::context *ctxt)
3675 : rtl_opt_pass(pass_data_live_range_shrinkage, ctxt)
3676 {}
3677
3678 /* opt_pass methods: */
3679 virtual bool gate (function *)
3680 {
3681 #ifdef INSN_SCHEDULING
3682 return flag_live_range_shrinkage;
3683 #else
3684 return 0;
3685 #endif
3686 }
3687
3688 virtual unsigned int execute (function *)
3689 {
3690 return rest_of_handle_live_range_shrinkage ();
3691 }
3692
3693 }; // class pass_live_range_shrinkage
3694
3695 } // anon namespace
3696
3697 rtl_opt_pass *
3698 make_pass_live_range_shrinkage (gcc::context *ctxt)
3699 {
3700 return new pass_live_range_shrinkage (ctxt);
3701 }
3702
3703 namespace {
3704
3705 const pass_data pass_data_sched =
3706 {
3707 RTL_PASS, /* type */
3708 "sched1", /* name */
3709 OPTGROUP_NONE, /* optinfo_flags */
3710 TV_SCHED, /* tv_id */
3711 0, /* properties_required */
3712 0, /* properties_provided */
3713 0, /* properties_destroyed */
3714 0, /* todo_flags_start */
3715 TODO_df_finish, /* todo_flags_finish */
3716 };
3717
3718 class pass_sched : public rtl_opt_pass
3719 {
3720 public:
3721 pass_sched (gcc::context *ctxt)
3722 : rtl_opt_pass (pass_data_sched, ctxt)
3723 {}
3724
3725 /* opt_pass methods: */
3726 virtual bool gate (function *);
3727 virtual unsigned int execute (function *) { return rest_of_handle_sched (); }
3728
3729 }; // class pass_sched
3730
3731 bool
3732 pass_sched::gate (function *)
3733 {
3734 #ifdef INSN_SCHEDULING
3735 return optimize > 0 && flag_schedule_insns && dbg_cnt (sched_func);
3736 #else
3737 return 0;
3738 #endif
3739 }
3740
3741 } // anon namespace
3742
3743 rtl_opt_pass *
3744 make_pass_sched (gcc::context *ctxt)
3745 {
3746 return new pass_sched (ctxt);
3747 }
3748
3749 namespace {
3750
3751 const pass_data pass_data_sched2 =
3752 {
3753 RTL_PASS, /* type */
3754 "sched2", /* name */
3755 OPTGROUP_NONE, /* optinfo_flags */
3756 TV_SCHED2, /* tv_id */
3757 0, /* properties_required */
3758 0, /* properties_provided */
3759 0, /* properties_destroyed */
3760 0, /* todo_flags_start */
3761 TODO_df_finish, /* todo_flags_finish */
3762 };
3763
3764 class pass_sched2 : public rtl_opt_pass
3765 {
3766 public:
3767 pass_sched2 (gcc::context *ctxt)
3768 : rtl_opt_pass (pass_data_sched2, ctxt)
3769 {}
3770
3771 /* opt_pass methods: */
3772 virtual bool gate (function *);
3773 virtual unsigned int execute (function *)
3774 {
3775 return rest_of_handle_sched2 ();
3776 }
3777
3778 }; // class pass_sched2
3779
3780 bool
3781 pass_sched2::gate (function *)
3782 {
3783 #ifdef INSN_SCHEDULING
3784 return optimize > 0 && flag_schedule_insns_after_reload
3785 && !targetm.delay_sched2 && dbg_cnt (sched2_func);
3786 #else
3787 return 0;
3788 #endif
3789 }
3790
3791 } // anon namespace
3792
3793 rtl_opt_pass *
3794 make_pass_sched2 (gcc::context *ctxt)
3795 {
3796 return new pass_sched2 (ctxt);
3797 }