re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / sched-vis.c
1 /* Instruction scheduling pass.
2 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2002, 2003, 2004, 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
4 Contributed by Michael Tiemann (tiemann@cygnus.com) Enhanced by,
5 and currently maintained by, Jim Wilson (wilson@cygnus.com)
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22 \f
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "rtl.h"
28 #include "obstack.h"
29 #include "hard-reg-set.h"
30 #include "basic-block.h"
31 #include "real.h"
32 #include "insn-attr.h"
33 #include "sched-int.h"
34 #include "tree-pass.h"
35
36 static char *safe_concat (char *, char *, const char *);
37
38 #define BUF_LEN 2048
39
40 static char *
41 safe_concat (char *buf, char *cur, const char *str)
42 {
43 char *end = buf + BUF_LEN - 2; /* Leave room for null. */
44 int c;
45
46 if (cur > end)
47 {
48 *end = '\0';
49 return end;
50 }
51
52 while (cur < end && (c = *str++) != '\0')
53 *cur++ = c;
54
55 *cur = '\0';
56 return cur;
57 }
58
59 /* This recognizes rtx, I classified as expressions. These are always
60 represent some action on values or results of other expression, that
61 may be stored in objects representing values. */
62
63 static void
64 print_exp (char *buf, const_rtx x, int verbose)
65 {
66 char tmp[BUF_LEN];
67 const char *st[4];
68 char *cur = buf;
69 const char *fun = (char *) 0;
70 const char *sep;
71 rtx op[4];
72 int i;
73
74 for (i = 0; i < 4; i++)
75 {
76 st[i] = (char *) 0;
77 op[i] = NULL_RTX;
78 }
79
80 switch (GET_CODE (x))
81 {
82 case PLUS:
83 op[0] = XEXP (x, 0);
84 if (CONST_INT_P (XEXP (x, 1))
85 && INTVAL (XEXP (x, 1)) < 0)
86 {
87 st[1] = "-";
88 op[1] = GEN_INT (-INTVAL (XEXP (x, 1)));
89 }
90 else
91 {
92 st[1] = "+";
93 op[1] = XEXP (x, 1);
94 }
95 break;
96 case LO_SUM:
97 op[0] = XEXP (x, 0);
98 st[1] = "+low(";
99 op[1] = XEXP (x, 1);
100 st[2] = ")";
101 break;
102 case MINUS:
103 op[0] = XEXP (x, 0);
104 st[1] = "-";
105 op[1] = XEXP (x, 1);
106 break;
107 case COMPARE:
108 fun = "cmp";
109 op[0] = XEXP (x, 0);
110 op[1] = XEXP (x, 1);
111 break;
112 case NEG:
113 st[0] = "-";
114 op[0] = XEXP (x, 0);
115 break;
116 case MULT:
117 op[0] = XEXP (x, 0);
118 st[1] = "*";
119 op[1] = XEXP (x, 1);
120 break;
121 case DIV:
122 op[0] = XEXP (x, 0);
123 st[1] = "/";
124 op[1] = XEXP (x, 1);
125 break;
126 case UDIV:
127 fun = "udiv";
128 op[0] = XEXP (x, 0);
129 op[1] = XEXP (x, 1);
130 break;
131 case MOD:
132 op[0] = XEXP (x, 0);
133 st[1] = "%";
134 op[1] = XEXP (x, 1);
135 break;
136 case UMOD:
137 fun = "umod";
138 op[0] = XEXP (x, 0);
139 op[1] = XEXP (x, 1);
140 break;
141 case SMIN:
142 fun = "smin";
143 op[0] = XEXP (x, 0);
144 op[1] = XEXP (x, 1);
145 break;
146 case SMAX:
147 fun = "smax";
148 op[0] = XEXP (x, 0);
149 op[1] = XEXP (x, 1);
150 break;
151 case UMIN:
152 fun = "umin";
153 op[0] = XEXP (x, 0);
154 op[1] = XEXP (x, 1);
155 break;
156 case UMAX:
157 fun = "umax";
158 op[0] = XEXP (x, 0);
159 op[1] = XEXP (x, 1);
160 break;
161 case NOT:
162 st[0] = "!";
163 op[0] = XEXP (x, 0);
164 break;
165 case AND:
166 op[0] = XEXP (x, 0);
167 st[1] = "&";
168 op[1] = XEXP (x, 1);
169 break;
170 case IOR:
171 op[0] = XEXP (x, 0);
172 st[1] = "|";
173 op[1] = XEXP (x, 1);
174 break;
175 case XOR:
176 op[0] = XEXP (x, 0);
177 st[1] = "^";
178 op[1] = XEXP (x, 1);
179 break;
180 case ASHIFT:
181 op[0] = XEXP (x, 0);
182 st[1] = "<<";
183 op[1] = XEXP (x, 1);
184 break;
185 case LSHIFTRT:
186 op[0] = XEXP (x, 0);
187 st[1] = " 0>>";
188 op[1] = XEXP (x, 1);
189 break;
190 case ASHIFTRT:
191 op[0] = XEXP (x, 0);
192 st[1] = ">>";
193 op[1] = XEXP (x, 1);
194 break;
195 case ROTATE:
196 op[0] = XEXP (x, 0);
197 st[1] = "<-<";
198 op[1] = XEXP (x, 1);
199 break;
200 case ROTATERT:
201 op[0] = XEXP (x, 0);
202 st[1] = ">->";
203 op[1] = XEXP (x, 1);
204 break;
205 case ABS:
206 fun = "abs";
207 op[0] = XEXP (x, 0);
208 break;
209 case SQRT:
210 fun = "sqrt";
211 op[0] = XEXP (x, 0);
212 break;
213 case FFS:
214 fun = "ffs";
215 op[0] = XEXP (x, 0);
216 break;
217 case EQ:
218 op[0] = XEXP (x, 0);
219 st[1] = "==";
220 op[1] = XEXP (x, 1);
221 break;
222 case NE:
223 op[0] = XEXP (x, 0);
224 st[1] = "!=";
225 op[1] = XEXP (x, 1);
226 break;
227 case GT:
228 op[0] = XEXP (x, 0);
229 st[1] = ">";
230 op[1] = XEXP (x, 1);
231 break;
232 case GTU:
233 fun = "gtu";
234 op[0] = XEXP (x, 0);
235 op[1] = XEXP (x, 1);
236 break;
237 case LT:
238 op[0] = XEXP (x, 0);
239 st[1] = "<";
240 op[1] = XEXP (x, 1);
241 break;
242 case LTU:
243 fun = "ltu";
244 op[0] = XEXP (x, 0);
245 op[1] = XEXP (x, 1);
246 break;
247 case GE:
248 op[0] = XEXP (x, 0);
249 st[1] = ">=";
250 op[1] = XEXP (x, 1);
251 break;
252 case GEU:
253 fun = "geu";
254 op[0] = XEXP (x, 0);
255 op[1] = XEXP (x, 1);
256 break;
257 case LE:
258 op[0] = XEXP (x, 0);
259 st[1] = "<=";
260 op[1] = XEXP (x, 1);
261 break;
262 case LEU:
263 fun = "leu";
264 op[0] = XEXP (x, 0);
265 op[1] = XEXP (x, 1);
266 break;
267 case SIGN_EXTRACT:
268 fun = (verbose) ? "sign_extract" : "sxt";
269 op[0] = XEXP (x, 0);
270 op[1] = XEXP (x, 1);
271 op[2] = XEXP (x, 2);
272 break;
273 case ZERO_EXTRACT:
274 fun = (verbose) ? "zero_extract" : "zxt";
275 op[0] = XEXP (x, 0);
276 op[1] = XEXP (x, 1);
277 op[2] = XEXP (x, 2);
278 break;
279 case SIGN_EXTEND:
280 fun = (verbose) ? "sign_extend" : "sxn";
281 op[0] = XEXP (x, 0);
282 break;
283 case ZERO_EXTEND:
284 fun = (verbose) ? "zero_extend" : "zxn";
285 op[0] = XEXP (x, 0);
286 break;
287 case FLOAT_EXTEND:
288 fun = (verbose) ? "float_extend" : "fxn";
289 op[0] = XEXP (x, 0);
290 break;
291 case TRUNCATE:
292 fun = (verbose) ? "trunc" : "trn";
293 op[0] = XEXP (x, 0);
294 break;
295 case FLOAT_TRUNCATE:
296 fun = (verbose) ? "float_trunc" : "ftr";
297 op[0] = XEXP (x, 0);
298 break;
299 case FLOAT:
300 fun = (verbose) ? "float" : "flt";
301 op[0] = XEXP (x, 0);
302 break;
303 case UNSIGNED_FLOAT:
304 fun = (verbose) ? "uns_float" : "ufl";
305 op[0] = XEXP (x, 0);
306 break;
307 case FIX:
308 fun = "fix";
309 op[0] = XEXP (x, 0);
310 break;
311 case UNSIGNED_FIX:
312 fun = (verbose) ? "uns_fix" : "ufx";
313 op[0] = XEXP (x, 0);
314 break;
315 case PRE_DEC:
316 st[0] = "--";
317 op[0] = XEXP (x, 0);
318 break;
319 case PRE_INC:
320 st[0] = "++";
321 op[0] = XEXP (x, 0);
322 break;
323 case POST_DEC:
324 op[0] = XEXP (x, 0);
325 st[1] = "--";
326 break;
327 case POST_INC:
328 op[0] = XEXP (x, 0);
329 st[1] = "++";
330 break;
331 case PRE_MODIFY:
332 st[0] = "pre ";
333 op[0] = XEXP (XEXP (x, 1), 0);
334 st[1] = "+=";
335 op[1] = XEXP (XEXP (x, 1), 1);
336 break;
337 case POST_MODIFY:
338 st[0] = "post ";
339 op[0] = XEXP (XEXP (x, 1), 0);
340 st[1] = "+=";
341 op[1] = XEXP (XEXP (x, 1), 1);
342 break;
343 case CALL:
344 st[0] = "call ";
345 op[0] = XEXP (x, 0);
346 if (verbose)
347 {
348 st[1] = " argc:";
349 op[1] = XEXP (x, 1);
350 }
351 break;
352 case IF_THEN_ELSE:
353 st[0] = "{(";
354 op[0] = XEXP (x, 0);
355 st[1] = ")?";
356 op[1] = XEXP (x, 1);
357 st[2] = ":";
358 op[2] = XEXP (x, 2);
359 st[3] = "}";
360 break;
361 case TRAP_IF:
362 fun = "trap_if";
363 op[0] = TRAP_CONDITION (x);
364 break;
365 case PREFETCH:
366 fun = "prefetch";
367 op[0] = XEXP (x, 0);
368 op[1] = XEXP (x, 1);
369 op[2] = XEXP (x, 2);
370 break;
371 case UNSPEC:
372 case UNSPEC_VOLATILE:
373 {
374 cur = safe_concat (buf, cur, "unspec");
375 if (GET_CODE (x) == UNSPEC_VOLATILE)
376 cur = safe_concat (buf, cur, "/v");
377 cur = safe_concat (buf, cur, "[");
378 sep = "";
379 for (i = 0; i < XVECLEN (x, 0); i++)
380 {
381 print_pattern (tmp, XVECEXP (x, 0, i), verbose);
382 cur = safe_concat (buf, cur, sep);
383 cur = safe_concat (buf, cur, tmp);
384 sep = ",";
385 }
386 cur = safe_concat (buf, cur, "] ");
387 sprintf (tmp, "%d", XINT (x, 1));
388 cur = safe_concat (buf, cur, tmp);
389 }
390 break;
391 default:
392 /* If (verbose) debug_rtx (x); */
393 st[0] = GET_RTX_NAME (GET_CODE (x));
394 break;
395 }
396
397 /* Print this as a function? */
398 if (fun)
399 {
400 cur = safe_concat (buf, cur, fun);
401 cur = safe_concat (buf, cur, "(");
402 }
403
404 for (i = 0; i < 4; i++)
405 {
406 if (st[i])
407 cur = safe_concat (buf, cur, st[i]);
408
409 if (op[i])
410 {
411 if (fun && i != 0)
412 cur = safe_concat (buf, cur, ",");
413
414 print_value (tmp, op[i], verbose);
415 cur = safe_concat (buf, cur, tmp);
416 }
417 }
418
419 if (fun)
420 cur = safe_concat (buf, cur, ")");
421 } /* print_exp */
422
423 /* Prints rtxes, I customarily classified as values. They're constants,
424 registers, labels, symbols and memory accesses. */
425
426 void
427 print_value (char *buf, const_rtx x, int verbose)
428 {
429 char t[BUF_LEN];
430 char *cur = buf;
431
432 switch (GET_CODE (x))
433 {
434 case CONST_INT:
435 sprintf (t, HOST_WIDE_INT_PRINT_HEX,
436 (unsigned HOST_WIDE_INT) INTVAL (x));
437 cur = safe_concat (buf, cur, t);
438 break;
439 case CONST_DOUBLE:
440 if (FLOAT_MODE_P (GET_MODE (x)))
441 real_to_decimal (t, CONST_DOUBLE_REAL_VALUE (x), sizeof (t), 0, 1);
442 else
443 sprintf (t,
444 "<" HOST_WIDE_INT_PRINT_HEX "," HOST_WIDE_INT_PRINT_HEX ">",
445 (unsigned HOST_WIDE_INT) CONST_DOUBLE_LOW (x),
446 (unsigned HOST_WIDE_INT) CONST_DOUBLE_HIGH (x));
447 cur = safe_concat (buf, cur, t);
448 break;
449 case CONST_FIXED:
450 fixed_to_decimal (t, CONST_FIXED_VALUE (x), sizeof (t));
451 cur = safe_concat (buf, cur, t);
452 break;
453 case CONST_STRING:
454 cur = safe_concat (buf, cur, "\"");
455 cur = safe_concat (buf, cur, XSTR (x, 0));
456 cur = safe_concat (buf, cur, "\"");
457 break;
458 case SYMBOL_REF:
459 cur = safe_concat (buf, cur, "`");
460 cur = safe_concat (buf, cur, XSTR (x, 0));
461 cur = safe_concat (buf, cur, "'");
462 break;
463 case LABEL_REF:
464 sprintf (t, "L%d", INSN_UID (XEXP (x, 0)));
465 cur = safe_concat (buf, cur, t);
466 break;
467 case CONST:
468 print_value (t, XEXP (x, 0), verbose);
469 cur = safe_concat (buf, cur, "const(");
470 cur = safe_concat (buf, cur, t);
471 cur = safe_concat (buf, cur, ")");
472 break;
473 case HIGH:
474 print_value (t, XEXP (x, 0), verbose);
475 cur = safe_concat (buf, cur, "high(");
476 cur = safe_concat (buf, cur, t);
477 cur = safe_concat (buf, cur, ")");
478 break;
479 case REG:
480 if (REGNO (x) < FIRST_PSEUDO_REGISTER)
481 {
482 int c = reg_names[REGNO (x)][0];
483 if (ISDIGIT (c))
484 cur = safe_concat (buf, cur, "%");
485
486 cur = safe_concat (buf, cur, reg_names[REGNO (x)]);
487 }
488 else
489 {
490 sprintf (t, "r%d", REGNO (x));
491 cur = safe_concat (buf, cur, t);
492 }
493 if (verbose
494 #ifdef INSN_SCHEDULING
495 && !current_sched_info
496 #endif
497 )
498 {
499 sprintf (t, ":%s", GET_MODE_NAME (GET_MODE (x)));
500 cur = safe_concat (buf, cur, t);
501 }
502 break;
503 case SUBREG:
504 print_value (t, SUBREG_REG (x), verbose);
505 cur = safe_concat (buf, cur, t);
506 sprintf (t, "#%d", SUBREG_BYTE (x));
507 cur = safe_concat (buf, cur, t);
508 break;
509 case SCRATCH:
510 cur = safe_concat (buf, cur, "scratch");
511 break;
512 case CC0:
513 cur = safe_concat (buf, cur, "cc0");
514 break;
515 case PC:
516 cur = safe_concat (buf, cur, "pc");
517 break;
518 case MEM:
519 print_value (t, XEXP (x, 0), verbose);
520 cur = safe_concat (buf, cur, "[");
521 cur = safe_concat (buf, cur, t);
522 cur = safe_concat (buf, cur, "]");
523 break;
524 case DEBUG_EXPR:
525 sprintf (t, "D#%i", DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x)));
526 cur = safe_concat (buf, cur, t);
527 break;
528 default:
529 print_exp (t, x, verbose);
530 cur = safe_concat (buf, cur, t);
531 break;
532 }
533 } /* print_value */
534
535 /* The next step in insn detalization, its pattern recognition. */
536
537 void
538 print_pattern (char *buf, const_rtx x, int verbose)
539 {
540 char t1[BUF_LEN], t2[BUF_LEN], t3[BUF_LEN];
541
542 switch (GET_CODE (x))
543 {
544 case SET:
545 print_value (t1, SET_DEST (x), verbose);
546 print_value (t2, SET_SRC (x), verbose);
547 sprintf (buf, "%s=%s", t1, t2);
548 break;
549 case RETURN:
550 sprintf (buf, "return");
551 break;
552 case CALL:
553 print_exp (buf, x, verbose);
554 break;
555 case CLOBBER:
556 print_value (t1, XEXP (x, 0), verbose);
557 sprintf (buf, "clobber %s", t1);
558 break;
559 case USE:
560 print_value (t1, XEXP (x, 0), verbose);
561 sprintf (buf, "use %s", t1);
562 break;
563 case VAR_LOCATION:
564 print_value (t1, PAT_VAR_LOCATION_LOC (x), verbose);
565 sprintf (buf, "loc %s", t1);
566 break;
567 case COND_EXEC:
568 if (GET_CODE (COND_EXEC_TEST (x)) == NE
569 && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
570 print_value (t1, XEXP (COND_EXEC_TEST (x), 0), verbose);
571 else if (GET_CODE (COND_EXEC_TEST (x)) == EQ
572 && XEXP (COND_EXEC_TEST (x), 1) == const0_rtx)
573 {
574 t1[0] = '!';
575 print_value (t1 + 1, XEXP (COND_EXEC_TEST (x), 0), verbose);
576 }
577 else
578 print_value (t1, COND_EXEC_TEST (x), verbose);
579 print_pattern (t2, COND_EXEC_CODE (x), verbose);
580 sprintf (buf, "(%s) %s", t1, t2);
581 break;
582 case PARALLEL:
583 {
584 int i;
585
586 sprintf (t1, "{");
587 for (i = 0; i < XVECLEN (x, 0); i++)
588 {
589 print_pattern (t2, XVECEXP (x, 0, i), verbose);
590 sprintf (t3, "%s%s;", t1, t2);
591 strcpy (t1, t3);
592 }
593 sprintf (buf, "%s}", t1);
594 }
595 break;
596 case SEQUENCE:
597 /* Should never see SEQUENCE codes until after reorg. */
598 gcc_unreachable ();
599 case ASM_INPUT:
600 sprintf (buf, "asm {%s}", XSTR (x, 0));
601 break;
602 case ADDR_VEC:
603 break;
604 case ADDR_DIFF_VEC:
605 print_value (buf, XEXP (x, 0), verbose);
606 break;
607 case TRAP_IF:
608 print_value (t1, TRAP_CONDITION (x), verbose);
609 sprintf (buf, "trap_if %s", t1);
610 break;
611 case UNSPEC:
612 {
613 int i;
614
615 sprintf (t1, "unspec{");
616 for (i = 0; i < XVECLEN (x, 0); i++)
617 {
618 print_pattern (t2, XVECEXP (x, 0, i), verbose);
619 sprintf (t3, "%s%s;", t1, t2);
620 strcpy (t1, t3);
621 }
622 sprintf (buf, "%s}", t1);
623 }
624 break;
625 case UNSPEC_VOLATILE:
626 {
627 int i;
628
629 sprintf (t1, "unspec/v{");
630 for (i = 0; i < XVECLEN (x, 0); i++)
631 {
632 print_pattern (t2, XVECEXP (x, 0, i), verbose);
633 sprintf (t3, "%s%s;", t1, t2);
634 strcpy (t1, t3);
635 }
636 sprintf (buf, "%s}", t1);
637 }
638 break;
639 default:
640 print_value (buf, x, verbose);
641 }
642 } /* print_pattern */
643
644 /* This is the main function in rtl visualization mechanism. It
645 accepts an rtx and tries to recognize it as an insn, then prints it
646 properly in human readable form, resembling assembler mnemonics.
647 For every insn it prints its UID and BB the insn belongs too.
648 (Probably the last "option" should be extended somehow, since it
649 depends now on sched.c inner variables ...) */
650
651 void
652 print_insn (char *buf, const_rtx x, int verbose)
653 {
654 char t[BUF_LEN];
655 const_rtx insn = x;
656
657 switch (GET_CODE (x))
658 {
659 case INSN:
660 print_pattern (t, PATTERN (x), verbose);
661 #ifdef INSN_SCHEDULING
662 if (verbose && current_sched_info)
663 sprintf (buf, "%s: %s", (*current_sched_info->print_insn) (x, 1),
664 t);
665 else
666 #endif
667 sprintf (buf, " %4d %s", INSN_UID (x), t);
668 break;
669
670 case DEBUG_INSN:
671 {
672 const char *name = "?";
673
674 if (DECL_P (INSN_VAR_LOCATION_DECL (insn)))
675 {
676 tree id = DECL_NAME (INSN_VAR_LOCATION_DECL (insn));
677 char idbuf[32];
678 if (id)
679 name = IDENTIFIER_POINTER (id);
680 else if (TREE_CODE (INSN_VAR_LOCATION_DECL (insn))
681 == DEBUG_EXPR_DECL)
682 {
683 sprintf (idbuf, "D#%i",
684 DEBUG_TEMP_UID (INSN_VAR_LOCATION_DECL (insn)));
685 name = idbuf;
686 }
687 else
688 {
689 sprintf (idbuf, "D.%i",
690 DECL_UID (INSN_VAR_LOCATION_DECL (insn)));
691 name = idbuf;
692 }
693 }
694 if (VAR_LOC_UNKNOWN_P (INSN_VAR_LOCATION_LOC (insn)))
695 sprintf (buf, " %4d: debug %s optimized away", INSN_UID (insn), name);
696 else
697 {
698 print_pattern (t, INSN_VAR_LOCATION_LOC (insn), verbose);
699 sprintf (buf, " %4d: debug %s => %s", INSN_UID (insn), name, t);
700 }
701 }
702 break;
703
704 case JUMP_INSN:
705 print_pattern (t, PATTERN (x), verbose);
706 #ifdef INSN_SCHEDULING
707 if (verbose && current_sched_info)
708 sprintf (buf, "%s: jump %s", (*current_sched_info->print_insn) (x, 1),
709 t);
710 else
711 #endif
712 sprintf (buf, " %4d %s", INSN_UID (x), t);
713 break;
714 case CALL_INSN:
715 x = PATTERN (insn);
716 if (GET_CODE (x) == PARALLEL)
717 {
718 x = XVECEXP (x, 0, 0);
719 print_pattern (t, x, verbose);
720 }
721 else
722 strcpy (t, "call <...>");
723 #ifdef INSN_SCHEDULING
724 if (verbose && current_sched_info)
725 sprintf (buf, "%s: %s", (*current_sched_info->print_insn) (insn, 1), t);
726 else
727 #endif
728 sprintf (buf, " %4d %s", INSN_UID (insn), t);
729 break;
730 case CODE_LABEL:
731 sprintf (buf, "L%d:", INSN_UID (x));
732 break;
733 case BARRIER:
734 sprintf (buf, "i%4d: barrier", INSN_UID (x));
735 break;
736 case NOTE:
737 sprintf (buf, " %4d %s", INSN_UID (x),
738 GET_NOTE_INSN_NAME (NOTE_KIND (x)));
739 break;
740 default:
741 sprintf (buf, "i%4d <What %s?>", INSN_UID (x),
742 GET_RTX_NAME (GET_CODE (x)));
743 }
744 } /* print_insn */
745
746 /* Emit a slim dump of X (an insn) to the file F, including any register
747 note attached to the instruction. */
748 void
749 dump_insn_slim (FILE *f, rtx x)
750 {
751 char t[BUF_LEN + 32];
752 rtx note;
753
754 print_insn (t, x, 1);
755 fputs (t, f);
756 putc ('\n', f);
757 if (INSN_P (x) && REG_NOTES (x))
758 for (note = REG_NOTES (x); note; note = XEXP (note, 1))
759 {
760 print_value (t, XEXP (note, 0), 1);
761 fprintf (f, " %s: %s\n",
762 GET_REG_NOTE_NAME (REG_NOTE_KIND (note)), t);
763 }
764 }
765
766 /* Emit a slim dump of X (an insn) to stderr. */
767 void
768 debug_insn_slim (rtx x)
769 {
770 dump_insn_slim (stderr, x);
771 }
772
773 /* Provide a slim dump the instruction chain starting at FIRST to F, honoring
774 the dump flags given in FLAGS. Currently, TDF_BLOCKS and TDF_DETAILS
775 include more information on the basic blocks. */
776 void
777 print_rtl_slim_with_bb (FILE *f, rtx first, int flags)
778 {
779 print_rtl_slim (f, first, NULL, -1, flags);
780 }
781
782 /* Same as above, but stop at LAST or when COUNT == 0.
783 If COUNT < 0 it will stop only at LAST or NULL rtx. */
784 void
785 print_rtl_slim (FILE *f, rtx first, rtx last, int count, int flags)
786 {
787 basic_block current_bb = NULL;
788 rtx insn, tail;
789
790 tail = last ? NEXT_INSN (last) : NULL_RTX;
791 for (insn = first;
792 (insn != NULL) && (insn != tail) && (count != 0);
793 insn = NEXT_INSN (insn))
794 {
795 if ((flags & TDF_BLOCKS)
796 && (INSN_P (insn) || NOTE_P (insn))
797 && BLOCK_FOR_INSN (insn)
798 && !current_bb)
799 {
800 current_bb = BLOCK_FOR_INSN (insn);
801 dump_bb_info (current_bb, true, false, flags, ";; ", f);
802 }
803
804 dump_insn_slim (f, insn);
805
806 if ((flags & TDF_BLOCKS)
807 && current_bb
808 && insn == BB_END (current_bb))
809 {
810 dump_bb_info (current_bb, false, true, flags, ";; ", f);
811 current_bb = NULL;
812 }
813 if (count > 0)
814 count--;
815 }
816 }
817
818 void
819 debug_bb_slim (struct basic_block_def *bb)
820 {
821 print_rtl_slim (stderr, BB_HEAD (bb), BB_END (bb), -1, 32);
822 }
823
824 void
825 debug_bb_n_slim (int n)
826 {
827 struct basic_block_def *bb = BASIC_BLOCK (n);
828 debug_bb_slim (bb);
829 }
830