Daily bump.
[gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2018 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "memmodel.h"
29 #include "tm_p.h"
30 #include "cfgrtl.h"
31 #include "cfganal.h"
32 #include "cfgbuild.h"
33 #include "insn-config.h"
34 #include "insn-attr.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "sched-int.h"
39 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
40
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 /* We don't have to use it except for sel_print_insn. */
46 #include "sel-sched-dump.h"
47
48 /* A vector holding bb info for whole scheduling pass. */
49 vec<sel_global_bb_info_def> sel_global_bb_info;
50
51 /* A vector holding bb info. */
52 vec<sel_region_bb_info_def> sel_region_bb_info;
53
54 /* A pool for allocating all lists. */
55 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
56
57 /* This contains information about successors for compute_av_set. */
58 struct succs_info current_succs;
59
60 /* Data structure to describe interaction with the generic scheduler utils. */
61 static struct common_sched_info_def sel_common_sched_info;
62
63 /* The loop nest being pipelined. */
64 struct loop *current_loop_nest;
65
66 /* LOOP_NESTS is a vector containing the corresponding loop nest for
67 each region. */
68 static vec<loop_p> loop_nests;
69
70 /* Saves blocks already in loop regions, indexed by bb->index. */
71 static sbitmap bbs_in_loop_rgns = NULL;
72
73 /* CFG hooks that are saved before changing create_basic_block hook. */
74 static struct cfg_hooks orig_cfg_hooks;
75 \f
76
77 /* Array containing reverse topological index of function basic blocks,
78 indexed by BB->INDEX. */
79 static int *rev_top_order_index = NULL;
80
81 /* Length of the above array. */
82 static int rev_top_order_index_len = -1;
83
84 /* A regset pool structure. */
85 static struct
86 {
87 /* The stack to which regsets are returned. */
88 regset *v;
89
90 /* Its pointer. */
91 int n;
92
93 /* Its size. */
94 int s;
95
96 /* In VV we save all generated regsets so that, when destructing the
97 pool, we can compare it with V and check that every regset was returned
98 back to pool. */
99 regset *vv;
100
101 /* The pointer of VV stack. */
102 int nn;
103
104 /* Its size. */
105 int ss;
106
107 /* The difference between allocated and returned regsets. */
108 int diff;
109 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
110
111 /* This represents the nop pool. */
112 static struct
113 {
114 /* The vector which holds previously emitted nops. */
115 insn_t *v;
116
117 /* Its pointer. */
118 int n;
119
120 /* Its size. */
121 int s;
122 } nop_pool = { NULL, 0, 0 };
123
124 /* The pool for basic block notes. */
125 static vec<rtx_note *> bb_note_pool;
126
127 /* A NOP pattern used to emit placeholder insns. */
128 rtx nop_pattern = NULL_RTX;
129 /* A special instruction that resides in EXIT_BLOCK.
130 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
131 rtx_insn *exit_insn = NULL;
132
133 /* TRUE if while scheduling current region, which is loop, its preheader
134 was removed. */
135 bool preheader_removed = false;
136 \f
137
138 /* Forward static declarations. */
139 static void fence_clear (fence_t);
140
141 static void deps_init_id (idata_t, insn_t, bool);
142 static void init_id_from_df (idata_t, insn_t, bool);
143 static expr_t set_insn_init (expr_t, vinsn_t, int);
144
145 static void cfg_preds (basic_block, insn_t **, int *);
146 static void prepare_insn_expr (insn_t, int);
147 static void free_history_vect (vec<expr_history_def> &);
148
149 static void move_bb_info (basic_block, basic_block);
150 static void remove_empty_bb (basic_block, bool);
151 static void sel_merge_blocks (basic_block, basic_block);
152 static void sel_remove_loop_preheader (void);
153 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
154
155 static bool insn_is_the_only_one_in_bb_p (insn_t);
156 static void create_initial_data_sets (basic_block);
157
158 static void free_av_set (basic_block);
159 static void invalidate_av_set (basic_block);
160 static void extend_insn_data (void);
161 static void sel_init_new_insn (insn_t, int, int = -1);
162 static void finish_insns (void);
163 \f
164 /* Various list functions. */
165
166 /* Copy an instruction list L. */
167 ilist_t
168 ilist_copy (ilist_t l)
169 {
170 ilist_t head = NULL, *tailp = &head;
171
172 while (l)
173 {
174 ilist_add (tailp, ILIST_INSN (l));
175 tailp = &ILIST_NEXT (*tailp);
176 l = ILIST_NEXT (l);
177 }
178
179 return head;
180 }
181
182 /* Invert an instruction list L. */
183 ilist_t
184 ilist_invert (ilist_t l)
185 {
186 ilist_t res = NULL;
187
188 while (l)
189 {
190 ilist_add (&res, ILIST_INSN (l));
191 l = ILIST_NEXT (l);
192 }
193
194 return res;
195 }
196
197 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
198 void
199 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
200 {
201 bnd_t bnd;
202
203 _list_add (lp);
204 bnd = BLIST_BND (*lp);
205
206 BND_TO (bnd) = to;
207 BND_PTR (bnd) = ptr;
208 BND_AV (bnd) = NULL;
209 BND_AV1 (bnd) = NULL;
210 BND_DC (bnd) = dc;
211 }
212
213 /* Remove the list note pointed to by LP. */
214 void
215 blist_remove (blist_t *lp)
216 {
217 bnd_t b = BLIST_BND (*lp);
218
219 av_set_clear (&BND_AV (b));
220 av_set_clear (&BND_AV1 (b));
221 ilist_clear (&BND_PTR (b));
222
223 _list_remove (lp);
224 }
225
226 /* Init a fence tail L. */
227 void
228 flist_tail_init (flist_tail_t l)
229 {
230 FLIST_TAIL_HEAD (l) = NULL;
231 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
232 }
233
234 /* Try to find fence corresponding to INSN in L. */
235 fence_t
236 flist_lookup (flist_t l, insn_t insn)
237 {
238 while (l)
239 {
240 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
241 return FLIST_FENCE (l);
242
243 l = FLIST_NEXT (l);
244 }
245
246 return NULL;
247 }
248
249 /* Init the fields of F before running fill_insns. */
250 static void
251 init_fence_for_scheduling (fence_t f)
252 {
253 FENCE_BNDS (f) = NULL;
254 FENCE_PROCESSED_P (f) = false;
255 FENCE_SCHEDULED_P (f) = false;
256 }
257
258 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
259 static void
260 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
261 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
262 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
263 int cycle, int cycle_issued_insns, int issue_more,
264 bool starts_cycle_p, bool after_stall_p)
265 {
266 fence_t f;
267
268 _list_add (lp);
269 f = FLIST_FENCE (*lp);
270
271 FENCE_INSN (f) = insn;
272
273 gcc_assert (state != NULL);
274 FENCE_STATE (f) = state;
275
276 FENCE_CYCLE (f) = cycle;
277 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
278 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
279 FENCE_AFTER_STALL_P (f) = after_stall_p;
280
281 gcc_assert (dc != NULL);
282 FENCE_DC (f) = dc;
283
284 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
285 FENCE_TC (f) = tc;
286
287 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
288 FENCE_ISSUE_MORE (f) = issue_more;
289 FENCE_EXECUTING_INSNS (f) = executing_insns;
290 FENCE_READY_TICKS (f) = ready_ticks;
291 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
292 FENCE_SCHED_NEXT (f) = sched_next;
293
294 init_fence_for_scheduling (f);
295 }
296
297 /* Remove the head node of the list pointed to by LP. */
298 static void
299 flist_remove (flist_t *lp)
300 {
301 if (FENCE_INSN (FLIST_FENCE (*lp)))
302 fence_clear (FLIST_FENCE (*lp));
303 _list_remove (lp);
304 }
305
306 /* Clear the fence list pointed to by LP. */
307 void
308 flist_clear (flist_t *lp)
309 {
310 while (*lp)
311 flist_remove (lp);
312 }
313
314 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
315 void
316 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
317 {
318 def_t d;
319
320 _list_add (dl);
321 d = DEF_LIST_DEF (*dl);
322
323 d->orig_insn = original_insn;
324 d->crosses_call = crosses_call;
325 }
326 \f
327
328 /* Functions to work with target contexts. */
329
330 /* Bulk target context. It is convenient for debugging purposes to ensure
331 that there are no uninitialized (null) target contexts. */
332 static tc_t bulk_tc = (tc_t) 1;
333
334 /* Target hooks wrappers. In the future we can provide some default
335 implementations for them. */
336
337 /* Allocate a store for the target context. */
338 static tc_t
339 alloc_target_context (void)
340 {
341 return (targetm.sched.alloc_sched_context
342 ? targetm.sched.alloc_sched_context () : bulk_tc);
343 }
344
345 /* Init target context TC.
346 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
347 Overwise, copy current backend context to TC. */
348 static void
349 init_target_context (tc_t tc, bool clean_p)
350 {
351 if (targetm.sched.init_sched_context)
352 targetm.sched.init_sched_context (tc, clean_p);
353 }
354
355 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
356 int init_target_context (). */
357 tc_t
358 create_target_context (bool clean_p)
359 {
360 tc_t tc = alloc_target_context ();
361
362 init_target_context (tc, clean_p);
363 return tc;
364 }
365
366 /* Copy TC to the current backend context. */
367 void
368 set_target_context (tc_t tc)
369 {
370 if (targetm.sched.set_sched_context)
371 targetm.sched.set_sched_context (tc);
372 }
373
374 /* TC is about to be destroyed. Free any internal data. */
375 static void
376 clear_target_context (tc_t tc)
377 {
378 if (targetm.sched.clear_sched_context)
379 targetm.sched.clear_sched_context (tc);
380 }
381
382 /* Clear and free it. */
383 static void
384 delete_target_context (tc_t tc)
385 {
386 clear_target_context (tc);
387
388 if (targetm.sched.free_sched_context)
389 targetm.sched.free_sched_context (tc);
390 }
391
392 /* Make a copy of FROM in TO.
393 NB: May be this should be a hook. */
394 static void
395 copy_target_context (tc_t to, tc_t from)
396 {
397 tc_t tmp = create_target_context (false);
398
399 set_target_context (from);
400 init_target_context (to, false);
401
402 set_target_context (tmp);
403 delete_target_context (tmp);
404 }
405
406 /* Create a copy of TC. */
407 static tc_t
408 create_copy_of_target_context (tc_t tc)
409 {
410 tc_t copy = alloc_target_context ();
411
412 copy_target_context (copy, tc);
413
414 return copy;
415 }
416
417 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
418 is the same as in init_target_context (). */
419 void
420 reset_target_context (tc_t tc, bool clean_p)
421 {
422 clear_target_context (tc);
423 init_target_context (tc, clean_p);
424 }
425 \f
426 /* Functions to work with dependence contexts.
427 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
428 context. It accumulates information about processed insns to decide if
429 current insn is dependent on the processed ones. */
430
431 /* Make a copy of FROM in TO. */
432 static void
433 copy_deps_context (deps_t to, deps_t from)
434 {
435 init_deps (to, false);
436 deps_join (to, from);
437 }
438
439 /* Allocate store for dep context. */
440 static deps_t
441 alloc_deps_context (void)
442 {
443 return XNEW (struct deps_desc);
444 }
445
446 /* Allocate and initialize dep context. */
447 static deps_t
448 create_deps_context (void)
449 {
450 deps_t dc = alloc_deps_context ();
451
452 init_deps (dc, false);
453 return dc;
454 }
455
456 /* Create a copy of FROM. */
457 static deps_t
458 create_copy_of_deps_context (deps_t from)
459 {
460 deps_t to = alloc_deps_context ();
461
462 copy_deps_context (to, from);
463 return to;
464 }
465
466 /* Clean up internal data of DC. */
467 static void
468 clear_deps_context (deps_t dc)
469 {
470 free_deps (dc);
471 }
472
473 /* Clear and free DC. */
474 static void
475 delete_deps_context (deps_t dc)
476 {
477 clear_deps_context (dc);
478 free (dc);
479 }
480
481 /* Clear and init DC. */
482 static void
483 reset_deps_context (deps_t dc)
484 {
485 clear_deps_context (dc);
486 init_deps (dc, false);
487 }
488
489 /* This structure describes the dependence analysis hooks for advancing
490 dependence context. */
491 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
492 {
493 NULL,
494
495 NULL, /* start_insn */
496 NULL, /* finish_insn */
497 NULL, /* start_lhs */
498 NULL, /* finish_lhs */
499 NULL, /* start_rhs */
500 NULL, /* finish_rhs */
501 haifa_note_reg_set,
502 haifa_note_reg_clobber,
503 haifa_note_reg_use,
504 NULL, /* note_mem_dep */
505 NULL, /* note_dep */
506
507 0, 0, 0
508 };
509
510 /* Process INSN and add its impact on DC. */
511 void
512 advance_deps_context (deps_t dc, insn_t insn)
513 {
514 sched_deps_info = &advance_deps_context_sched_deps_info;
515 deps_analyze_insn (dc, insn);
516 }
517 \f
518
519 /* Functions to work with DFA states. */
520
521 /* Allocate store for a DFA state. */
522 static state_t
523 state_alloc (void)
524 {
525 return xmalloc (dfa_state_size);
526 }
527
528 /* Allocate and initialize DFA state. */
529 static state_t
530 state_create (void)
531 {
532 state_t state = state_alloc ();
533
534 state_reset (state);
535 advance_state (state);
536 return state;
537 }
538
539 /* Free DFA state. */
540 static void
541 state_free (state_t state)
542 {
543 free (state);
544 }
545
546 /* Make a copy of FROM in TO. */
547 static void
548 state_copy (state_t to, state_t from)
549 {
550 memcpy (to, from, dfa_state_size);
551 }
552
553 /* Create a copy of FROM. */
554 static state_t
555 state_create_copy (state_t from)
556 {
557 state_t to = state_alloc ();
558
559 state_copy (to, from);
560 return to;
561 }
562 \f
563
564 /* Functions to work with fences. */
565
566 /* Clear the fence. */
567 static void
568 fence_clear (fence_t f)
569 {
570 state_t s = FENCE_STATE (f);
571 deps_t dc = FENCE_DC (f);
572 void *tc = FENCE_TC (f);
573
574 ilist_clear (&FENCE_BNDS (f));
575
576 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
577 || (s == NULL && dc == NULL && tc == NULL));
578
579 free (s);
580
581 if (dc != NULL)
582 delete_deps_context (dc);
583
584 if (tc != NULL)
585 delete_target_context (tc);
586 vec_free (FENCE_EXECUTING_INSNS (f));
587 free (FENCE_READY_TICKS (f));
588 FENCE_READY_TICKS (f) = NULL;
589 }
590
591 /* Init a list of fences with successors of OLD_FENCE. */
592 void
593 init_fences (insn_t old_fence)
594 {
595 insn_t succ;
596 succ_iterator si;
597 bool first = true;
598 int ready_ticks_size = get_max_uid () + 1;
599
600 FOR_EACH_SUCC_1 (succ, si, old_fence,
601 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
602 {
603
604 if (first)
605 first = false;
606 else
607 gcc_assert (flag_sel_sched_pipelining_outer_loops);
608
609 flist_add (&fences, succ,
610 state_create (),
611 create_deps_context () /* dc */,
612 create_target_context (true) /* tc */,
613 NULL /* last_scheduled_insn */,
614 NULL, /* executing_insns */
615 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
616 ready_ticks_size,
617 NULL /* sched_next */,
618 1 /* cycle */, 0 /* cycle_issued_insns */,
619 issue_rate, /* issue_more */
620 1 /* starts_cycle_p */, 0 /* after_stall_p */);
621 }
622 }
623
624 /* Merges two fences (filling fields of fence F with resulting values) by
625 following rules: 1) state, target context and last scheduled insn are
626 propagated from fallthrough edge if it is available;
627 2) deps context and cycle is propagated from more probable edge;
628 3) all other fields are set to corresponding constant values.
629
630 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
631 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
632 and AFTER_STALL_P are the corresponding fields of the second fence. */
633 static void
634 merge_fences (fence_t f, insn_t insn,
635 state_t state, deps_t dc, void *tc,
636 rtx_insn *last_scheduled_insn,
637 vec<rtx_insn *, va_gc> *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
640 {
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 FENCE_ISSUE_MORE (f) = issue_rate;
670 vec_free (executing_insns);
671 free (ready_ticks);
672 if (FENCE_EXECUTING_INSNS (f))
673 FENCE_EXECUTING_INSNS (f)->block_remove (0,
674 FENCE_EXECUTING_INSNS (f)->length ());
675 if (FENCE_READY_TICKS (f))
676 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
677 }
678 else
679 {
680 edge edge_old = NULL, edge_new = NULL;
681 edge candidate;
682 succ_iterator si;
683 insn_t succ;
684
685 /* Find fallthrough edge. */
686 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
687 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
688
689 if (!candidate
690 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
691 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
692 {
693 /* No fallthrough edge leading to basic block of INSN. */
694 state_reset (FENCE_STATE (f));
695 state_free (state);
696
697 reset_target_context (FENCE_TC (f), true);
698 delete_target_context (tc);
699
700 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
701 FENCE_ISSUE_MORE (f) = issue_rate;
702 }
703 else
704 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
705 {
706 /* Would be weird if same insn is successor of several fallthrough
707 edges. */
708 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
709 != BLOCK_FOR_INSN (last_scheduled_insn_old));
710
711 state_free (FENCE_STATE (f));
712 FENCE_STATE (f) = state;
713
714 delete_target_context (FENCE_TC (f));
715 FENCE_TC (f) = tc;
716
717 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
718 FENCE_ISSUE_MORE (f) = issue_more;
719 }
720 else
721 {
722 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
723 state_free (state);
724 delete_target_context (tc);
725
726 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
727 != BLOCK_FOR_INSN (last_scheduled_insn));
728 }
729
730 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
731 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
732 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
733 {
734 if (succ == insn)
735 {
736 /* No same successor allowed from several edges. */
737 gcc_assert (!edge_old);
738 edge_old = si.e1;
739 }
740 }
741 /* Find edge of second predecessor (last_scheduled_insn->insn). */
742 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
743 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
744 {
745 if (succ == insn)
746 {
747 /* No same successor allowed from several edges. */
748 gcc_assert (!edge_new);
749 edge_new = si.e1;
750 }
751 }
752
753 /* Check if we can choose most probable predecessor. */
754 if (edge_old == NULL || edge_new == NULL)
755 {
756 reset_deps_context (FENCE_DC (f));
757 delete_deps_context (dc);
758 vec_free (executing_insns);
759 free (ready_ticks);
760
761 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
762 if (FENCE_EXECUTING_INSNS (f))
763 FENCE_EXECUTING_INSNS (f)->block_remove (0,
764 FENCE_EXECUTING_INSNS (f)->length ());
765 if (FENCE_READY_TICKS (f))
766 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
767 }
768 else
769 if (edge_new->probability > edge_old->probability)
770 {
771 delete_deps_context (FENCE_DC (f));
772 FENCE_DC (f) = dc;
773 vec_free (FENCE_EXECUTING_INSNS (f));
774 FENCE_EXECUTING_INSNS (f) = executing_insns;
775 free (FENCE_READY_TICKS (f));
776 FENCE_READY_TICKS (f) = ready_ticks;
777 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
778 FENCE_CYCLE (f) = cycle;
779 }
780 else
781 {
782 /* Leave DC and CYCLE untouched. */
783 delete_deps_context (dc);
784 vec_free (executing_insns);
785 free (ready_ticks);
786 }
787 }
788
789 /* Fill remaining invariant fields. */
790 if (after_stall_p)
791 FENCE_AFTER_STALL_P (f) = 1;
792
793 FENCE_ISSUED_INSNS (f) = 0;
794 FENCE_STARTS_CYCLE_P (f) = 1;
795 FENCE_SCHED_NEXT (f) = NULL;
796 }
797
798 /* Add a new fence to NEW_FENCES list, initializing it from all
799 other parameters. */
800 static void
801 add_to_fences (flist_tail_t new_fences, insn_t insn,
802 state_t state, deps_t dc, void *tc,
803 rtx_insn *last_scheduled_insn,
804 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
805 int ready_ticks_size, rtx_insn *sched_next, int cycle,
806 int cycle_issued_insns, int issue_rate,
807 bool starts_cycle_p, bool after_stall_p)
808 {
809 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
810
811 if (! f)
812 {
813 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
814 last_scheduled_insn, executing_insns, ready_ticks,
815 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
816 issue_rate, starts_cycle_p, after_stall_p);
817
818 FLIST_TAIL_TAILP (new_fences)
819 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
820 }
821 else
822 {
823 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
824 executing_insns, ready_ticks, ready_ticks_size,
825 sched_next, cycle, issue_rate, after_stall_p);
826 }
827 }
828
829 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
830 void
831 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
832 {
833 fence_t f, old;
834 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
835
836 old = FLIST_FENCE (old_fences);
837 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
838 FENCE_INSN (FLIST_FENCE (old_fences)));
839 if (f)
840 {
841 merge_fences (f, old->insn, old->state, old->dc, old->tc,
842 old->last_scheduled_insn, old->executing_insns,
843 old->ready_ticks, old->ready_ticks_size,
844 old->sched_next, old->cycle, old->issue_more,
845 old->after_stall_p);
846 }
847 else
848 {
849 _list_add (tailp);
850 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
851 *FLIST_FENCE (*tailp) = *old;
852 init_fence_for_scheduling (FLIST_FENCE (*tailp));
853 }
854 FENCE_INSN (old) = NULL;
855 }
856
857 /* Add a new fence to NEW_FENCES list and initialize most of its data
858 as a clean one. */
859 void
860 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
861 {
862 int ready_ticks_size = get_max_uid () + 1;
863
864 add_to_fences (new_fences,
865 succ, state_create (), create_deps_context (),
866 create_target_context (true),
867 NULL, NULL,
868 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
869 NULL, FENCE_CYCLE (fence) + 1,
870 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
871 }
872
873 /* Add a new fence to NEW_FENCES list and initialize all of its data
874 from FENCE and SUCC. */
875 void
876 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
877 {
878 int * new_ready_ticks
879 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
880
881 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
882 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
883 add_to_fences (new_fences,
884 succ, state_create_copy (FENCE_STATE (fence)),
885 create_copy_of_deps_context (FENCE_DC (fence)),
886 create_copy_of_target_context (FENCE_TC (fence)),
887 FENCE_LAST_SCHEDULED_INSN (fence),
888 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
889 new_ready_ticks,
890 FENCE_READY_TICKS_SIZE (fence),
891 FENCE_SCHED_NEXT (fence),
892 FENCE_CYCLE (fence),
893 FENCE_ISSUED_INSNS (fence),
894 FENCE_ISSUE_MORE (fence),
895 FENCE_STARTS_CYCLE_P (fence),
896 FENCE_AFTER_STALL_P (fence));
897 }
898 \f
899
900 /* Functions to work with regset and nop pools. */
901
902 /* Returns the new regset from pool. It might have some of the bits set
903 from the previous usage. */
904 regset
905 get_regset_from_pool (void)
906 {
907 regset rs;
908
909 if (regset_pool.n != 0)
910 rs = regset_pool.v[--regset_pool.n];
911 else
912 /* We need to create the regset. */
913 {
914 rs = ALLOC_REG_SET (&reg_obstack);
915
916 if (regset_pool.nn == regset_pool.ss)
917 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
918 (regset_pool.ss = 2 * regset_pool.ss + 1));
919 regset_pool.vv[regset_pool.nn++] = rs;
920 }
921
922 regset_pool.diff++;
923
924 return rs;
925 }
926
927 /* Same as above, but returns the empty regset. */
928 regset
929 get_clear_regset_from_pool (void)
930 {
931 regset rs = get_regset_from_pool ();
932
933 CLEAR_REG_SET (rs);
934 return rs;
935 }
936
937 /* Return regset RS to the pool for future use. */
938 void
939 return_regset_to_pool (regset rs)
940 {
941 gcc_assert (rs);
942 regset_pool.diff--;
943
944 if (regset_pool.n == regset_pool.s)
945 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946 (regset_pool.s = 2 * regset_pool.s + 1));
947 regset_pool.v[regset_pool.n++] = rs;
948 }
949
950 /* This is used as a qsort callback for sorting regset pool stacks.
951 X and XX are addresses of two regsets. They are never equal. */
952 static int
953 cmp_v_in_regset_pool (const void *x, const void *xx)
954 {
955 uintptr_t r1 = (uintptr_t) *((const regset *) x);
956 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
957 if (r1 > r2)
958 return 1;
959 else if (r1 < r2)
960 return -1;
961 gcc_unreachable ();
962 }
963
964 /* Free the regset pool possibly checking for memory leaks. */
965 void
966 free_regset_pool (void)
967 {
968 if (flag_checking)
969 {
970 regset *v = regset_pool.v;
971 int i = 0;
972 int n = regset_pool.n;
973
974 regset *vv = regset_pool.vv;
975 int ii = 0;
976 int nn = regset_pool.nn;
977
978 int diff = 0;
979
980 gcc_assert (n <= nn);
981
982 /* Sort both vectors so it will be possible to compare them. */
983 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
984 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
985
986 while (ii < nn)
987 {
988 if (v[i] == vv[ii])
989 i++;
990 else
991 /* VV[II] was lost. */
992 diff++;
993
994 ii++;
995 }
996
997 gcc_assert (diff == regset_pool.diff);
998 }
999
1000 /* If not true - we have a memory leak. */
1001 gcc_assert (regset_pool.diff == 0);
1002
1003 while (regset_pool.n)
1004 {
1005 --regset_pool.n;
1006 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1007 }
1008
1009 free (regset_pool.v);
1010 regset_pool.v = NULL;
1011 regset_pool.s = 0;
1012
1013 free (regset_pool.vv);
1014 regset_pool.vv = NULL;
1015 regset_pool.nn = 0;
1016 regset_pool.ss = 0;
1017
1018 regset_pool.diff = 0;
1019 }
1020 \f
1021
1022 /* Functions to work with nop pools. NOP insns are used as temporary
1023 placeholders of the insns being scheduled to allow correct update of
1024 the data sets. When update is finished, NOPs are deleted. */
1025
1026 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1027 nops sel-sched generates. */
1028 static vinsn_t nop_vinsn = NULL;
1029
1030 /* Emit a nop before INSN, taking it from pool. */
1031 insn_t
1032 get_nop_from_pool (insn_t insn)
1033 {
1034 rtx nop_pat;
1035 insn_t nop;
1036 bool old_p = nop_pool.n != 0;
1037 int flags;
1038
1039 if (old_p)
1040 nop_pat = nop_pool.v[--nop_pool.n];
1041 else
1042 nop_pat = nop_pattern;
1043
1044 nop = emit_insn_before (nop_pat, insn);
1045
1046 if (old_p)
1047 flags = INSN_INIT_TODO_SSID;
1048 else
1049 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1050
1051 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1052 sel_init_new_insn (nop, flags);
1053
1054 return nop;
1055 }
1056
1057 /* Remove NOP from the instruction stream and return it to the pool. */
1058 void
1059 return_nop_to_pool (insn_t nop, bool full_tidying)
1060 {
1061 gcc_assert (INSN_IN_STREAM_P (nop));
1062 sel_remove_insn (nop, false, full_tidying);
1063
1064 /* We'll recycle this nop. */
1065 nop->set_undeleted ();
1066
1067 if (nop_pool.n == nop_pool.s)
1068 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1069 (nop_pool.s = 2 * nop_pool.s + 1));
1070 nop_pool.v[nop_pool.n++] = nop;
1071 }
1072
1073 /* Free the nop pool. */
1074 void
1075 free_nop_pool (void)
1076 {
1077 nop_pool.n = 0;
1078 nop_pool.s = 0;
1079 free (nop_pool.v);
1080 nop_pool.v = NULL;
1081 }
1082 \f
1083
1084 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1085 The callback is given two rtxes XX and YY and writes the new rtxes
1086 to NX and NY in case some needs to be skipped. */
1087 static int
1088 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1089 {
1090 const_rtx x = *xx;
1091 const_rtx y = *yy;
1092
1093 if (GET_CODE (x) == UNSPEC
1094 && (targetm.sched.skip_rtx_p == NULL
1095 || targetm.sched.skip_rtx_p (x)))
1096 {
1097 *nx = XVECEXP (x, 0, 0);
1098 *ny = CONST_CAST_RTX (y);
1099 return 1;
1100 }
1101
1102 if (GET_CODE (y) == UNSPEC
1103 && (targetm.sched.skip_rtx_p == NULL
1104 || targetm.sched.skip_rtx_p (y)))
1105 {
1106 *nx = CONST_CAST_RTX (x);
1107 *ny = XVECEXP (y, 0, 0);
1108 return 1;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1115 to support ia64 speculation. When changes are needed, new rtx X and new mode
1116 NMODE are written, and the callback returns true. */
1117 static int
1118 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1119 rtx *nx, machine_mode* nmode)
1120 {
1121 if (GET_CODE (x) == UNSPEC
1122 && targetm.sched.skip_rtx_p
1123 && targetm.sched.skip_rtx_p (x))
1124 {
1125 *nx = XVECEXP (x, 0 ,0);
1126 *nmode = VOIDmode;
1127 return 1;
1128 }
1129
1130 return 0;
1131 }
1132
1133 /* Returns LHS and RHS are ok to be scheduled separately. */
1134 static bool
1135 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1136 {
1137 if (lhs == NULL || rhs == NULL)
1138 return false;
1139
1140 /* Do not schedule constants as rhs: no point to use reg, if const
1141 can be used. Moreover, scheduling const as rhs may lead to mode
1142 mismatch cause consts don't have modes but they could be merged
1143 from branches where the same const used in different modes. */
1144 if (CONSTANT_P (rhs))
1145 return false;
1146
1147 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1148 if (COMPARISON_P (rhs))
1149 return false;
1150
1151 /* Do not allow single REG to be an rhs. */
1152 if (REG_P (rhs))
1153 return false;
1154
1155 /* See comment at find_used_regs_1 (*1) for explanation of this
1156 restriction. */
1157 /* FIXME: remove this later. */
1158 if (MEM_P (lhs))
1159 return false;
1160
1161 /* This will filter all tricky things like ZERO_EXTRACT etc.
1162 For now we don't handle it. */
1163 if (!REG_P (lhs) && !MEM_P (lhs))
1164 return false;
1165
1166 return true;
1167 }
1168
1169 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1170 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1171 used e.g. for insns from recovery blocks. */
1172 static void
1173 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1174 {
1175 hash_rtx_callback_function hrcf;
1176 int insn_class;
1177
1178 VINSN_INSN_RTX (vi) = insn;
1179 VINSN_COUNT (vi) = 0;
1180 vi->cost = -1;
1181
1182 if (INSN_NOP_P (insn))
1183 return;
1184
1185 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1186 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1187 else
1188 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1189
1190 /* Hash vinsn depending on whether it is separable or not. */
1191 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1192 if (VINSN_SEPARABLE_P (vi))
1193 {
1194 rtx rhs = VINSN_RHS (vi);
1195
1196 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1197 NULL, NULL, false, hrcf);
1198 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1199 VOIDmode, NULL, NULL,
1200 false, hrcf);
1201 }
1202 else
1203 {
1204 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1205 NULL, NULL, false, hrcf);
1206 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1207 }
1208
1209 insn_class = haifa_classify_insn (insn);
1210 if (insn_class >= 2
1211 && (!targetm.sched.get_insn_spec_ds
1212 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1213 == 0)))
1214 VINSN_MAY_TRAP_P (vi) = true;
1215 else
1216 VINSN_MAY_TRAP_P (vi) = false;
1217 }
1218
1219 /* Indicate that VI has become the part of an rtx object. */
1220 void
1221 vinsn_attach (vinsn_t vi)
1222 {
1223 /* Assert that VI is not pending for deletion. */
1224 gcc_assert (VINSN_INSN_RTX (vi));
1225
1226 VINSN_COUNT (vi)++;
1227 }
1228
1229 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1230 VINSN_TYPE (VI). */
1231 static vinsn_t
1232 vinsn_create (insn_t insn, bool force_unique_p)
1233 {
1234 vinsn_t vi = XCNEW (struct vinsn_def);
1235
1236 vinsn_init (vi, insn, force_unique_p);
1237 return vi;
1238 }
1239
1240 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1241 the copy. */
1242 vinsn_t
1243 vinsn_copy (vinsn_t vi, bool reattach_p)
1244 {
1245 rtx_insn *copy;
1246 bool unique = VINSN_UNIQUE_P (vi);
1247 vinsn_t new_vi;
1248
1249 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1250 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1251 if (reattach_p)
1252 {
1253 vinsn_detach (vi);
1254 vinsn_attach (new_vi);
1255 }
1256
1257 return new_vi;
1258 }
1259
1260 /* Delete the VI vinsn and free its data. */
1261 static void
1262 vinsn_delete (vinsn_t vi)
1263 {
1264 gcc_assert (VINSN_COUNT (vi) == 0);
1265
1266 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1267 {
1268 return_regset_to_pool (VINSN_REG_SETS (vi));
1269 return_regset_to_pool (VINSN_REG_USES (vi));
1270 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1271 }
1272
1273 free (vi);
1274 }
1275
1276 /* Indicate that VI is no longer a part of some rtx object.
1277 Remove VI if it is no longer needed. */
1278 void
1279 vinsn_detach (vinsn_t vi)
1280 {
1281 gcc_assert (VINSN_COUNT (vi) > 0);
1282
1283 if (--VINSN_COUNT (vi) == 0)
1284 vinsn_delete (vi);
1285 }
1286
1287 /* Returns TRUE if VI is a branch. */
1288 bool
1289 vinsn_cond_branch_p (vinsn_t vi)
1290 {
1291 insn_t insn;
1292
1293 if (!VINSN_UNIQUE_P (vi))
1294 return false;
1295
1296 insn = VINSN_INSN_RTX (vi);
1297 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1298 return false;
1299
1300 return control_flow_insn_p (insn);
1301 }
1302
1303 /* Return latency of INSN. */
1304 static int
1305 sel_insn_rtx_cost (rtx_insn *insn)
1306 {
1307 int cost;
1308
1309 /* A USE insn, or something else we don't need to
1310 understand. We can't pass these directly to
1311 result_ready_cost or insn_default_latency because it will
1312 trigger a fatal error for unrecognizable insns. */
1313 if (recog_memoized (insn) < 0)
1314 cost = 0;
1315 else
1316 {
1317 cost = insn_default_latency (insn);
1318
1319 if (cost < 0)
1320 cost = 0;
1321 }
1322
1323 return cost;
1324 }
1325
1326 /* Return the cost of the VI.
1327 !!! FIXME: Unify with haifa-sched.c: insn_sched_cost (). */
1328 int
1329 sel_vinsn_cost (vinsn_t vi)
1330 {
1331 int cost = vi->cost;
1332
1333 if (cost < 0)
1334 {
1335 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1336 vi->cost = cost;
1337 }
1338
1339 return cost;
1340 }
1341 \f
1342
1343 /* Functions for insn emitting. */
1344
1345 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1346 EXPR and SEQNO. */
1347 insn_t
1348 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1349 {
1350 insn_t new_insn;
1351
1352 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1353
1354 new_insn = emit_insn_after (pattern, after);
1355 set_insn_init (expr, NULL, seqno);
1356 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1357
1358 return new_insn;
1359 }
1360
1361 /* Force newly generated vinsns to be unique. */
1362 static bool init_insn_force_unique_p = false;
1363
1364 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1365 initialize its data from EXPR and SEQNO. */
1366 insn_t
1367 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1368 insn_t after)
1369 {
1370 insn_t insn;
1371
1372 gcc_assert (!init_insn_force_unique_p);
1373
1374 init_insn_force_unique_p = true;
1375 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1376 CANT_MOVE (insn) = 1;
1377 init_insn_force_unique_p = false;
1378
1379 return insn;
1380 }
1381
1382 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1383 take it as a new vinsn instead of EXPR's vinsn.
1384 We simplify insns later, after scheduling region in
1385 simplify_changed_insns. */
1386 insn_t
1387 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1388 insn_t after)
1389 {
1390 expr_t emit_expr;
1391 insn_t insn;
1392 int flags;
1393
1394 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1395 seqno);
1396 insn = EXPR_INSN_RTX (emit_expr);
1397
1398 /* The insn may come from the transformation cache, which may hold already
1399 deleted insns, so mark it as not deleted. */
1400 insn->set_undeleted ();
1401
1402 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1403
1404 flags = INSN_INIT_TODO_SSID;
1405 if (INSN_LUID (insn) == 0)
1406 flags |= INSN_INIT_TODO_LUID;
1407 sel_init_new_insn (insn, flags);
1408
1409 return insn;
1410 }
1411
1412 /* Move insn from EXPR after AFTER. */
1413 insn_t
1414 sel_move_insn (expr_t expr, int seqno, insn_t after)
1415 {
1416 insn_t insn = EXPR_INSN_RTX (expr);
1417 basic_block bb = BLOCK_FOR_INSN (after);
1418 insn_t next = NEXT_INSN (after);
1419
1420 /* Assert that in move_op we disconnected this insn properly. */
1421 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1422 SET_PREV_INSN (insn) = after;
1423 SET_NEXT_INSN (insn) = next;
1424
1425 SET_NEXT_INSN (after) = insn;
1426 SET_PREV_INSN (next) = insn;
1427
1428 /* Update links from insn to bb and vice versa. */
1429 df_insn_change_bb (insn, bb);
1430 if (BB_END (bb) == after)
1431 BB_END (bb) = insn;
1432
1433 prepare_insn_expr (insn, seqno);
1434 return insn;
1435 }
1436
1437 \f
1438 /* Functions to work with right-hand sides. */
1439
1440 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1441 VECT and return true when found. Use NEW_VINSN for comparison only when
1442 COMPARE_VINSNS is true. Write to INDP the index on which
1443 the search has stopped, such that inserting the new element at INDP will
1444 retain VECT's sort order. */
1445 static bool
1446 find_in_history_vect_1 (vec<expr_history_def> vect,
1447 unsigned uid, vinsn_t new_vinsn,
1448 bool compare_vinsns, int *indp)
1449 {
1450 expr_history_def *arr;
1451 int i, j, len = vect.length ();
1452
1453 if (len == 0)
1454 {
1455 *indp = 0;
1456 return false;
1457 }
1458
1459 arr = vect.address ();
1460 i = 0, j = len - 1;
1461
1462 while (i <= j)
1463 {
1464 unsigned auid = arr[i].uid;
1465 vinsn_t avinsn = arr[i].new_expr_vinsn;
1466
1467 if (auid == uid
1468 /* When undoing transformation on a bookkeeping copy, the new vinsn
1469 may not be exactly equal to the one that is saved in the vector.
1470 This is because the insn whose copy we're checking was possibly
1471 substituted itself. */
1472 && (! compare_vinsns
1473 || vinsn_equal_p (avinsn, new_vinsn)))
1474 {
1475 *indp = i;
1476 return true;
1477 }
1478 else if (auid > uid)
1479 break;
1480 i++;
1481 }
1482
1483 *indp = i;
1484 return false;
1485 }
1486
1487 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1488 the position found or -1, if no such value is in vector.
1489 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1490 int
1491 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1492 vinsn_t new_vinsn, bool originators_p)
1493 {
1494 int ind;
1495
1496 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1497 false, &ind))
1498 return ind;
1499
1500 if (INSN_ORIGINATORS (insn) && originators_p)
1501 {
1502 unsigned uid;
1503 bitmap_iterator bi;
1504
1505 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1506 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1507 return ind;
1508 }
1509
1510 return -1;
1511 }
1512
1513 /* Insert new element in a sorted history vector pointed to by PVECT,
1514 if it is not there already. The element is searched using
1515 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1516 the history of a transformation. */
1517 void
1518 insert_in_history_vect (vec<expr_history_def> *pvect,
1519 unsigned uid, enum local_trans_type type,
1520 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1521 ds_t spec_ds)
1522 {
1523 vec<expr_history_def> vect = *pvect;
1524 expr_history_def temp;
1525 bool res;
1526 int ind;
1527
1528 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1529
1530 if (res)
1531 {
1532 expr_history_def *phist = &vect[ind];
1533
1534 /* It is possible that speculation types of expressions that were
1535 propagated through different paths will be different here. In this
1536 case, merge the status to get the correct check later. */
1537 if (phist->spec_ds != spec_ds)
1538 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1539 return;
1540 }
1541
1542 temp.uid = uid;
1543 temp.old_expr_vinsn = old_expr_vinsn;
1544 temp.new_expr_vinsn = new_expr_vinsn;
1545 temp.spec_ds = spec_ds;
1546 temp.type = type;
1547
1548 vinsn_attach (old_expr_vinsn);
1549 vinsn_attach (new_expr_vinsn);
1550 vect.safe_insert (ind, temp);
1551 *pvect = vect;
1552 }
1553
1554 /* Free history vector PVECT. */
1555 static void
1556 free_history_vect (vec<expr_history_def> &pvect)
1557 {
1558 unsigned i;
1559 expr_history_def *phist;
1560
1561 if (! pvect.exists ())
1562 return;
1563
1564 for (i = 0; pvect.iterate (i, &phist); i++)
1565 {
1566 vinsn_detach (phist->old_expr_vinsn);
1567 vinsn_detach (phist->new_expr_vinsn);
1568 }
1569
1570 pvect.release ();
1571 }
1572
1573 /* Merge vector FROM to PVECT. */
1574 static void
1575 merge_history_vect (vec<expr_history_def> *pvect,
1576 vec<expr_history_def> from)
1577 {
1578 expr_history_def *phist;
1579 int i;
1580
1581 /* We keep this vector sorted. */
1582 for (i = 0; from.iterate (i, &phist); i++)
1583 insert_in_history_vect (pvect, phist->uid, phist->type,
1584 phist->old_expr_vinsn, phist->new_expr_vinsn,
1585 phist->spec_ds);
1586 }
1587
1588 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1589 bool
1590 vinsn_equal_p (vinsn_t x, vinsn_t y)
1591 {
1592 rtx_equal_p_callback_function repcf;
1593
1594 if (x == y)
1595 return true;
1596
1597 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1598 return false;
1599
1600 if (VINSN_HASH (x) != VINSN_HASH (y))
1601 return false;
1602
1603 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1604 if (VINSN_SEPARABLE_P (x))
1605 {
1606 /* Compare RHSes of VINSNs. */
1607 gcc_assert (VINSN_RHS (x));
1608 gcc_assert (VINSN_RHS (y));
1609
1610 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1611 }
1612
1613 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1614 }
1615 \f
1616
1617 /* Functions for working with expressions. */
1618
1619 /* Initialize EXPR. */
1620 static void
1621 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1622 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1623 ds_t spec_to_check_ds, int orig_sched_cycle,
1624 vec<expr_history_def> history,
1625 signed char target_available,
1626 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1627 bool cant_move)
1628 {
1629 vinsn_attach (vi);
1630
1631 EXPR_VINSN (expr) = vi;
1632 EXPR_SPEC (expr) = spec;
1633 EXPR_USEFULNESS (expr) = use;
1634 EXPR_PRIORITY (expr) = priority;
1635 EXPR_PRIORITY_ADJ (expr) = 0;
1636 EXPR_SCHED_TIMES (expr) = sched_times;
1637 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1638 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1639 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1640 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1641
1642 if (history.exists ())
1643 EXPR_HISTORY_OF_CHANGES (expr) = history;
1644 else
1645 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1646
1647 EXPR_TARGET_AVAILABLE (expr) = target_available;
1648 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1649 EXPR_WAS_RENAMED (expr) = was_renamed;
1650 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1651 EXPR_CANT_MOVE (expr) = cant_move;
1652 }
1653
1654 /* Make a copy of the expr FROM into the expr TO. */
1655 void
1656 copy_expr (expr_t to, expr_t from)
1657 {
1658 vec<expr_history_def> temp = vNULL;
1659
1660 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1661 {
1662 unsigned i;
1663 expr_history_def *phist;
1664
1665 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1666 for (i = 0;
1667 temp.iterate (i, &phist);
1668 i++)
1669 {
1670 vinsn_attach (phist->old_expr_vinsn);
1671 vinsn_attach (phist->new_expr_vinsn);
1672 }
1673 }
1674
1675 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1676 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1677 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1678 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1679 EXPR_ORIG_SCHED_CYCLE (from), temp,
1680 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1681 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1682 EXPR_CANT_MOVE (from));
1683 }
1684
1685 /* Same, but the final expr will not ever be in av sets, so don't copy
1686 "uninteresting" data such as bitmap cache. */
1687 void
1688 copy_expr_onside (expr_t to, expr_t from)
1689 {
1690 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1691 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1692 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1693 vNULL,
1694 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1695 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1696 EXPR_CANT_MOVE (from));
1697 }
1698
1699 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1700 initializing new insns. */
1701 static void
1702 prepare_insn_expr (insn_t insn, int seqno)
1703 {
1704 expr_t expr = INSN_EXPR (insn);
1705 ds_t ds;
1706
1707 INSN_SEQNO (insn) = seqno;
1708 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1709 EXPR_SPEC (expr) = 0;
1710 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1711 EXPR_WAS_SUBSTITUTED (expr) = 0;
1712 EXPR_WAS_RENAMED (expr) = 0;
1713 EXPR_TARGET_AVAILABLE (expr) = 1;
1714 INSN_LIVE_VALID_P (insn) = false;
1715
1716 /* ??? If this expression is speculative, make its dependence
1717 as weak as possible. We can filter this expression later
1718 in process_spec_exprs, because we do not distinguish
1719 between the status we got during compute_av_set and the
1720 existing status. To be fixed. */
1721 ds = EXPR_SPEC_DONE_DS (expr);
1722 if (ds)
1723 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1724
1725 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1726 }
1727
1728 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1729 is non-null when expressions are merged from different successors at
1730 a split point. */
1731 static void
1732 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1733 {
1734 if (EXPR_TARGET_AVAILABLE (to) < 0
1735 || EXPR_TARGET_AVAILABLE (from) < 0)
1736 EXPR_TARGET_AVAILABLE (to) = -1;
1737 else
1738 {
1739 /* We try to detect the case when one of the expressions
1740 can only be reached through another one. In this case,
1741 we can do better. */
1742 if (split_point == NULL)
1743 {
1744 int toind, fromind;
1745
1746 toind = EXPR_ORIG_BB_INDEX (to);
1747 fromind = EXPR_ORIG_BB_INDEX (from);
1748
1749 if (toind && toind == fromind)
1750 /* Do nothing -- everything is done in
1751 merge_with_other_exprs. */
1752 ;
1753 else
1754 EXPR_TARGET_AVAILABLE (to) = -1;
1755 }
1756 else if (EXPR_TARGET_AVAILABLE (from) == 0
1757 && EXPR_LHS (from)
1758 && REG_P (EXPR_LHS (from))
1759 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1760 EXPR_TARGET_AVAILABLE (to) = -1;
1761 else
1762 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1763 }
1764 }
1765
1766 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1767 is non-null when expressions are merged from different successors at
1768 a split point. */
1769 static void
1770 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1771 {
1772 ds_t old_to_ds, old_from_ds;
1773
1774 old_to_ds = EXPR_SPEC_DONE_DS (to);
1775 old_from_ds = EXPR_SPEC_DONE_DS (from);
1776
1777 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1778 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1779 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1780
1781 /* When merging e.g. control & data speculative exprs, or a control
1782 speculative with a control&data speculative one, we really have
1783 to change vinsn too. Also, when speculative status is changed,
1784 we also need to record this as a transformation in expr's history. */
1785 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1786 {
1787 old_to_ds = ds_get_speculation_types (old_to_ds);
1788 old_from_ds = ds_get_speculation_types (old_from_ds);
1789
1790 if (old_to_ds != old_from_ds)
1791 {
1792 ds_t record_ds;
1793
1794 /* When both expressions are speculative, we need to change
1795 the vinsn first. */
1796 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1797 {
1798 int res;
1799
1800 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1801 gcc_assert (res >= 0);
1802 }
1803
1804 if (split_point != NULL)
1805 {
1806 /* Record the change with proper status. */
1807 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1808 record_ds &= ~(old_to_ds & SPECULATIVE);
1809 record_ds &= ~(old_from_ds & SPECULATIVE);
1810
1811 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1812 INSN_UID (split_point), TRANS_SPECULATION,
1813 EXPR_VINSN (from), EXPR_VINSN (to),
1814 record_ds);
1815 }
1816 }
1817 }
1818 }
1819
1820
1821 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1822 this is done along different paths. */
1823 void
1824 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1825 {
1826 /* Choose the maximum of the specs of merged exprs. This is required
1827 for correctness of bookkeeping. */
1828 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1829 EXPR_SPEC (to) = EXPR_SPEC (from);
1830
1831 if (split_point)
1832 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1833 else
1834 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1835 EXPR_USEFULNESS (from));
1836
1837 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1838 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1839
1840 /* We merge sched-times half-way to the larger value to avoid the endless
1841 pipelining of unneeded insns. The average seems to be good compromise
1842 between pipelining opportunities and avoiding extra work. */
1843 if (EXPR_SCHED_TIMES (to) != EXPR_SCHED_TIMES (from))
1844 EXPR_SCHED_TIMES (to) = ((EXPR_SCHED_TIMES (from) + EXPR_SCHED_TIMES (to)
1845 + 1) / 2);
1846
1847 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1848 EXPR_ORIG_BB_INDEX (to) = 0;
1849
1850 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1851 EXPR_ORIG_SCHED_CYCLE (from));
1852
1853 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1854 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1855 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1856
1857 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1858 EXPR_HISTORY_OF_CHANGES (from));
1859 update_target_availability (to, from, split_point);
1860 update_speculative_bits (to, from, split_point);
1861 }
1862
1863 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1864 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1865 are merged from different successors at a split point. */
1866 void
1867 merge_expr (expr_t to, expr_t from, insn_t split_point)
1868 {
1869 vinsn_t to_vi = EXPR_VINSN (to);
1870 vinsn_t from_vi = EXPR_VINSN (from);
1871
1872 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1873
1874 /* Make sure that speculative pattern is propagated into exprs that
1875 have non-speculative one. This will provide us with consistent
1876 speculative bits and speculative patterns inside expr. */
1877 if (EXPR_SPEC_DONE_DS (to) == 0
1878 && (EXPR_SPEC_DONE_DS (from) != 0
1879 /* Do likewise for volatile insns, so that we always retain
1880 the may_trap_p bit on the resulting expression. However,
1881 avoid propagating the trapping bit into the instructions
1882 already speculated. This would result in replacing the
1883 speculative pattern with the non-speculative one and breaking
1884 the speculation support. */
1885 || (!VINSN_MAY_TRAP_P (EXPR_VINSN (to))
1886 && VINSN_MAY_TRAP_P (EXPR_VINSN (from)))))
1887 change_vinsn_in_expr (to, EXPR_VINSN (from));
1888
1889 merge_expr_data (to, from, split_point);
1890 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1891 }
1892
1893 /* Clear the information of this EXPR. */
1894 void
1895 clear_expr (expr_t expr)
1896 {
1897
1898 vinsn_detach (EXPR_VINSN (expr));
1899 EXPR_VINSN (expr) = NULL;
1900
1901 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1902 }
1903
1904 /* For a given LV_SET, mark EXPR having unavailable target register. */
1905 static void
1906 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1907 {
1908 if (EXPR_SEPARABLE_P (expr))
1909 {
1910 if (REG_P (EXPR_LHS (expr))
1911 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1912 {
1913 /* If it's an insn like r1 = use (r1, ...), and it exists in
1914 different forms in each of the av_sets being merged, we can't say
1915 whether original destination register is available or not.
1916 However, this still works if destination register is not used
1917 in the original expression: if the branch at which LV_SET we're
1918 looking here is not actually 'other branch' in sense that same
1919 expression is available through it (but it can't be determined
1920 at computation stage because of transformations on one of the
1921 branches), it still won't affect the availability.
1922 Liveness of a register somewhere on a code motion path means
1923 it's either read somewhere on a codemotion path, live on
1924 'other' branch, live at the point immediately following
1925 the original operation, or is read by the original operation.
1926 The latter case is filtered out in the condition below.
1927 It still doesn't cover the case when register is defined and used
1928 somewhere within the code motion path, and in this case we could
1929 miss a unifying code motion along both branches using a renamed
1930 register, but it won't affect a code correctness since upon
1931 an actual code motion a bookkeeping code would be generated. */
1932 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1933 EXPR_LHS (expr)))
1934 EXPR_TARGET_AVAILABLE (expr) = -1;
1935 else
1936 EXPR_TARGET_AVAILABLE (expr) = false;
1937 }
1938 }
1939 else
1940 {
1941 unsigned regno;
1942 reg_set_iterator rsi;
1943
1944 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1945 0, regno, rsi)
1946 if (bitmap_bit_p (lv_set, regno))
1947 {
1948 EXPR_TARGET_AVAILABLE (expr) = false;
1949 break;
1950 }
1951
1952 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1953 0, regno, rsi)
1954 if (bitmap_bit_p (lv_set, regno))
1955 {
1956 EXPR_TARGET_AVAILABLE (expr) = false;
1957 break;
1958 }
1959 }
1960 }
1961
1962 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1963 or dependence status have changed, 2 when also the target register
1964 became unavailable, 0 if nothing had to be changed. */
1965 int
1966 speculate_expr (expr_t expr, ds_t ds)
1967 {
1968 int res;
1969 rtx_insn *orig_insn_rtx;
1970 rtx spec_pat;
1971 ds_t target_ds, current_ds;
1972
1973 /* Obtain the status we need to put on EXPR. */
1974 target_ds = (ds & SPECULATIVE);
1975 current_ds = EXPR_SPEC_DONE_DS (expr);
1976 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1977
1978 orig_insn_rtx = EXPR_INSN_RTX (expr);
1979
1980 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1981
1982 switch (res)
1983 {
1984 case 0:
1985 EXPR_SPEC_DONE_DS (expr) = ds;
1986 return current_ds != ds ? 1 : 0;
1987
1988 case 1:
1989 {
1990 rtx_insn *spec_insn_rtx =
1991 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1992 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1993
1994 change_vinsn_in_expr (expr, spec_vinsn);
1995 EXPR_SPEC_DONE_DS (expr) = ds;
1996 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1997
1998 /* Do not allow clobbering the address register of speculative
1999 insns. */
2000 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2001 expr_dest_reg (expr)))
2002 {
2003 EXPR_TARGET_AVAILABLE (expr) = false;
2004 return 2;
2005 }
2006
2007 return 1;
2008 }
2009
2010 case -1:
2011 return -1;
2012
2013 default:
2014 gcc_unreachable ();
2015 return -1;
2016 }
2017 }
2018
2019 /* Return a destination register, if any, of EXPR. */
2020 rtx
2021 expr_dest_reg (expr_t expr)
2022 {
2023 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2024
2025 if (dest != NULL_RTX && REG_P (dest))
2026 return dest;
2027
2028 return NULL_RTX;
2029 }
2030
2031 /* Returns the REGNO of the R's destination. */
2032 unsigned
2033 expr_dest_regno (expr_t expr)
2034 {
2035 rtx dest = expr_dest_reg (expr);
2036
2037 gcc_assert (dest != NULL_RTX);
2038 return REGNO (dest);
2039 }
2040
2041 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2042 AV_SET having unavailable target register. */
2043 void
2044 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2045 {
2046 expr_t expr;
2047 av_set_iterator avi;
2048
2049 FOR_EACH_EXPR (expr, avi, join_set)
2050 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2051 set_unavailable_target_for_expr (expr, lv_set);
2052 }
2053 \f
2054
2055 /* Returns true if REG (at least partially) is present in REGS. */
2056 bool
2057 register_unavailable_p (regset regs, rtx reg)
2058 {
2059 unsigned regno, end_regno;
2060
2061 regno = REGNO (reg);
2062 if (bitmap_bit_p (regs, regno))
2063 return true;
2064
2065 end_regno = END_REGNO (reg);
2066
2067 while (++regno < end_regno)
2068 if (bitmap_bit_p (regs, regno))
2069 return true;
2070
2071 return false;
2072 }
2073
2074 /* Av set functions. */
2075
2076 /* Add a new element to av set SETP.
2077 Return the element added. */
2078 static av_set_t
2079 av_set_add_element (av_set_t *setp)
2080 {
2081 /* Insert at the beginning of the list. */
2082 _list_add (setp);
2083 return *setp;
2084 }
2085
2086 /* Add EXPR to SETP. */
2087 void
2088 av_set_add (av_set_t *setp, expr_t expr)
2089 {
2090 av_set_t elem;
2091
2092 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2093 elem = av_set_add_element (setp);
2094 copy_expr (_AV_SET_EXPR (elem), expr);
2095 }
2096
2097 /* Same, but do not copy EXPR. */
2098 static void
2099 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2100 {
2101 av_set_t elem;
2102
2103 elem = av_set_add_element (setp);
2104 *_AV_SET_EXPR (elem) = *expr;
2105 }
2106
2107 /* Remove expr pointed to by IP from the av_set. */
2108 void
2109 av_set_iter_remove (av_set_iterator *ip)
2110 {
2111 clear_expr (_AV_SET_EXPR (*ip->lp));
2112 _list_iter_remove (ip);
2113 }
2114
2115 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2116 sense of vinsn_equal_p function. Return NULL if no such expr is
2117 in SET was found. */
2118 expr_t
2119 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2120 {
2121 expr_t expr;
2122 av_set_iterator i;
2123
2124 FOR_EACH_EXPR (expr, i, set)
2125 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2126 return expr;
2127 return NULL;
2128 }
2129
2130 /* Same, but also remove the EXPR found. */
2131 static expr_t
2132 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2133 {
2134 expr_t expr;
2135 av_set_iterator i;
2136
2137 FOR_EACH_EXPR_1 (expr, i, setp)
2138 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2139 {
2140 _list_iter_remove_nofree (&i);
2141 return expr;
2142 }
2143 return NULL;
2144 }
2145
2146 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2147 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2148 Returns NULL if no such expr is in SET was found. */
2149 static expr_t
2150 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2151 {
2152 expr_t cur_expr;
2153 av_set_iterator i;
2154
2155 FOR_EACH_EXPR (cur_expr, i, set)
2156 {
2157 if (cur_expr == expr)
2158 continue;
2159 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2160 return cur_expr;
2161 }
2162
2163 return NULL;
2164 }
2165
2166 /* If other expression is already in AVP, remove one of them. */
2167 expr_t
2168 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2169 {
2170 expr_t expr2;
2171
2172 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2173 if (expr2 != NULL)
2174 {
2175 /* Reset target availability on merge, since taking it only from one
2176 of the exprs would be controversial for different code. */
2177 EXPR_TARGET_AVAILABLE (expr2) = -1;
2178 EXPR_USEFULNESS (expr2) = 0;
2179
2180 merge_expr (expr2, expr, NULL);
2181
2182 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2183 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2184
2185 av_set_iter_remove (ip);
2186 return expr2;
2187 }
2188
2189 return expr;
2190 }
2191
2192 /* Return true if there is an expr that correlates to VI in SET. */
2193 bool
2194 av_set_is_in_p (av_set_t set, vinsn_t vi)
2195 {
2196 return av_set_lookup (set, vi) != NULL;
2197 }
2198
2199 /* Return a copy of SET. */
2200 av_set_t
2201 av_set_copy (av_set_t set)
2202 {
2203 expr_t expr;
2204 av_set_iterator i;
2205 av_set_t res = NULL;
2206
2207 FOR_EACH_EXPR (expr, i, set)
2208 av_set_add (&res, expr);
2209
2210 return res;
2211 }
2212
2213 /* Join two av sets that do not have common elements by attaching second set
2214 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2215 _AV_SET_NEXT of first set's last element). */
2216 static void
2217 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2218 {
2219 gcc_assert (*to_tailp == NULL);
2220 *to_tailp = *fromp;
2221 *fromp = NULL;
2222 }
2223
2224 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2225 pointed to by FROMP afterwards. */
2226 void
2227 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2228 {
2229 expr_t expr1;
2230 av_set_iterator i;
2231
2232 /* Delete from TOP all exprs, that present in FROMP. */
2233 FOR_EACH_EXPR_1 (expr1, i, top)
2234 {
2235 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2236
2237 if (expr2)
2238 {
2239 merge_expr (expr2, expr1, insn);
2240 av_set_iter_remove (&i);
2241 }
2242 }
2243
2244 join_distinct_sets (i.lp, fromp);
2245 }
2246
2247 /* Same as above, but also update availability of target register in
2248 TOP judging by TO_LV_SET and FROM_LV_SET. */
2249 void
2250 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2251 regset from_lv_set, insn_t insn)
2252 {
2253 expr_t expr1;
2254 av_set_iterator i;
2255 av_set_t *to_tailp, in_both_set = NULL;
2256
2257 /* Delete from TOP all expres, that present in FROMP. */
2258 FOR_EACH_EXPR_1 (expr1, i, top)
2259 {
2260 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2261
2262 if (expr2)
2263 {
2264 /* It may be that the expressions have different destination
2265 registers, in which case we need to check liveness here. */
2266 if (EXPR_SEPARABLE_P (expr1))
2267 {
2268 int regno1 = (REG_P (EXPR_LHS (expr1))
2269 ? (int) expr_dest_regno (expr1) : -1);
2270 int regno2 = (REG_P (EXPR_LHS (expr2))
2271 ? (int) expr_dest_regno (expr2) : -1);
2272
2273 /* ??? We don't have a way to check restrictions for
2274 *other* register on the current path, we did it only
2275 for the current target register. Give up. */
2276 if (regno1 != regno2)
2277 EXPR_TARGET_AVAILABLE (expr2) = -1;
2278 }
2279 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2280 EXPR_TARGET_AVAILABLE (expr2) = -1;
2281
2282 merge_expr (expr2, expr1, insn);
2283 av_set_add_nocopy (&in_both_set, expr2);
2284 av_set_iter_remove (&i);
2285 }
2286 else
2287 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2288 FROM_LV_SET. */
2289 set_unavailable_target_for_expr (expr1, from_lv_set);
2290 }
2291 to_tailp = i.lp;
2292
2293 /* These expressions are not present in TOP. Check liveness
2294 restrictions on TO_LV_SET. */
2295 FOR_EACH_EXPR (expr1, i, *fromp)
2296 set_unavailable_target_for_expr (expr1, to_lv_set);
2297
2298 join_distinct_sets (i.lp, &in_both_set);
2299 join_distinct_sets (to_tailp, fromp);
2300 }
2301
2302 /* Clear av_set pointed to by SETP. */
2303 void
2304 av_set_clear (av_set_t *setp)
2305 {
2306 expr_t expr;
2307 av_set_iterator i;
2308
2309 FOR_EACH_EXPR_1 (expr, i, setp)
2310 av_set_iter_remove (&i);
2311
2312 gcc_assert (*setp == NULL);
2313 }
2314
2315 /* Leave only one non-speculative element in the SETP. */
2316 void
2317 av_set_leave_one_nonspec (av_set_t *setp)
2318 {
2319 expr_t expr;
2320 av_set_iterator i;
2321 bool has_one_nonspec = false;
2322
2323 /* Keep all speculative exprs, and leave one non-speculative
2324 (the first one). */
2325 FOR_EACH_EXPR_1 (expr, i, setp)
2326 {
2327 if (!EXPR_SPEC_DONE_DS (expr))
2328 {
2329 if (has_one_nonspec)
2330 av_set_iter_remove (&i);
2331 else
2332 has_one_nonspec = true;
2333 }
2334 }
2335 }
2336
2337 /* Return the N'th element of the SET. */
2338 expr_t
2339 av_set_element (av_set_t set, int n)
2340 {
2341 expr_t expr;
2342 av_set_iterator i;
2343
2344 FOR_EACH_EXPR (expr, i, set)
2345 if (n-- == 0)
2346 return expr;
2347
2348 gcc_unreachable ();
2349 return NULL;
2350 }
2351
2352 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2353 void
2354 av_set_substract_cond_branches (av_set_t *avp)
2355 {
2356 av_set_iterator i;
2357 expr_t expr;
2358
2359 FOR_EACH_EXPR_1 (expr, i, avp)
2360 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2361 av_set_iter_remove (&i);
2362 }
2363
2364 /* Multiplies usefulness attribute of each member of av-set *AVP by
2365 value PROB / ALL_PROB. */
2366 void
2367 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2368 {
2369 av_set_iterator i;
2370 expr_t expr;
2371
2372 FOR_EACH_EXPR (expr, i, av)
2373 EXPR_USEFULNESS (expr) = (all_prob
2374 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2375 : 0);
2376 }
2377
2378 /* Leave in AVP only those expressions, which are present in AV,
2379 and return it, merging history expressions. */
2380 void
2381 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2382 {
2383 av_set_iterator i;
2384 expr_t expr, expr2;
2385
2386 FOR_EACH_EXPR_1 (expr, i, avp)
2387 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2388 av_set_iter_remove (&i);
2389 else
2390 /* When updating av sets in bookkeeping blocks, we can add more insns
2391 there which will be transformed but the upper av sets will not
2392 reflect those transformations. We then fail to undo those
2393 when searching for such insns. So merge the history saved
2394 in the av set of the block we are processing. */
2395 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2396 EXPR_HISTORY_OF_CHANGES (expr2));
2397 }
2398
2399 \f
2400
2401 /* Dependence hooks to initialize insn data. */
2402
2403 /* This is used in hooks callable from dependence analysis when initializing
2404 instruction's data. */
2405 static struct
2406 {
2407 /* Where the dependence was found (lhs/rhs). */
2408 deps_where_t where;
2409
2410 /* The actual data object to initialize. */
2411 idata_t id;
2412
2413 /* True when the insn should not be made clonable. */
2414 bool force_unique_p;
2415
2416 /* True when insn should be treated as of type USE, i.e. never renamed. */
2417 bool force_use_p;
2418 } deps_init_id_data;
2419
2420
2421 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2422 clonable. */
2423 static void
2424 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2425 {
2426 int type;
2427
2428 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2429 That clonable insns which can be separated into lhs and rhs have type SET.
2430 Other clonable insns have type USE. */
2431 type = GET_CODE (insn);
2432
2433 /* Only regular insns could be cloned. */
2434 if (type == INSN && !force_unique_p)
2435 type = SET;
2436 else if (type == JUMP_INSN && simplejump_p (insn))
2437 type = PC;
2438 else if (type == DEBUG_INSN)
2439 type = !force_unique_p ? USE : INSN;
2440
2441 IDATA_TYPE (id) = type;
2442 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2443 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2444 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2445 }
2446
2447 /* Start initializing insn data. */
2448 static void
2449 deps_init_id_start_insn (insn_t insn)
2450 {
2451 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2452
2453 setup_id_for_insn (deps_init_id_data.id, insn,
2454 deps_init_id_data.force_unique_p);
2455 deps_init_id_data.where = DEPS_IN_INSN;
2456 }
2457
2458 /* Start initializing lhs data. */
2459 static void
2460 deps_init_id_start_lhs (rtx lhs)
2461 {
2462 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2463 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2464
2465 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2466 {
2467 IDATA_LHS (deps_init_id_data.id) = lhs;
2468 deps_init_id_data.where = DEPS_IN_LHS;
2469 }
2470 }
2471
2472 /* Finish initializing lhs data. */
2473 static void
2474 deps_init_id_finish_lhs (void)
2475 {
2476 deps_init_id_data.where = DEPS_IN_INSN;
2477 }
2478
2479 /* Note a set of REGNO. */
2480 static void
2481 deps_init_id_note_reg_set (int regno)
2482 {
2483 haifa_note_reg_set (regno);
2484
2485 if (deps_init_id_data.where == DEPS_IN_RHS)
2486 deps_init_id_data.force_use_p = true;
2487
2488 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2489 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2490
2491 #ifdef STACK_REGS
2492 /* Make instructions that set stack registers to be ineligible for
2493 renaming to avoid issues with find_used_regs. */
2494 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2495 deps_init_id_data.force_use_p = true;
2496 #endif
2497 }
2498
2499 /* Note a clobber of REGNO. */
2500 static void
2501 deps_init_id_note_reg_clobber (int regno)
2502 {
2503 haifa_note_reg_clobber (regno);
2504
2505 if (deps_init_id_data.where == DEPS_IN_RHS)
2506 deps_init_id_data.force_use_p = true;
2507
2508 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2509 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2510 }
2511
2512 /* Note a use of REGNO. */
2513 static void
2514 deps_init_id_note_reg_use (int regno)
2515 {
2516 haifa_note_reg_use (regno);
2517
2518 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2519 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2520 }
2521
2522 /* Start initializing rhs data. */
2523 static void
2524 deps_init_id_start_rhs (rtx rhs)
2525 {
2526 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2527
2528 /* And there was no sel_deps_reset_to_insn (). */
2529 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2530 {
2531 IDATA_RHS (deps_init_id_data.id) = rhs;
2532 deps_init_id_data.where = DEPS_IN_RHS;
2533 }
2534 }
2535
2536 /* Finish initializing rhs data. */
2537 static void
2538 deps_init_id_finish_rhs (void)
2539 {
2540 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2541 || deps_init_id_data.where == DEPS_IN_INSN);
2542 deps_init_id_data.where = DEPS_IN_INSN;
2543 }
2544
2545 /* Finish initializing insn data. */
2546 static void
2547 deps_init_id_finish_insn (void)
2548 {
2549 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2550
2551 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2552 {
2553 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2554 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2555
2556 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2557 || deps_init_id_data.force_use_p)
2558 {
2559 /* This should be a USE, as we don't want to schedule its RHS
2560 separately. However, we still want to have them recorded
2561 for the purposes of substitution. That's why we don't
2562 simply call downgrade_to_use () here. */
2563 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2564 gcc_assert (!lhs == !rhs);
2565
2566 IDATA_TYPE (deps_init_id_data.id) = USE;
2567 }
2568 }
2569
2570 deps_init_id_data.where = DEPS_IN_NOWHERE;
2571 }
2572
2573 /* This is dependence info used for initializing insn's data. */
2574 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2575
2576 /* This initializes most of the static part of the above structure. */
2577 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2578 {
2579 NULL,
2580
2581 deps_init_id_start_insn,
2582 deps_init_id_finish_insn,
2583 deps_init_id_start_lhs,
2584 deps_init_id_finish_lhs,
2585 deps_init_id_start_rhs,
2586 deps_init_id_finish_rhs,
2587 deps_init_id_note_reg_set,
2588 deps_init_id_note_reg_clobber,
2589 deps_init_id_note_reg_use,
2590 NULL, /* note_mem_dep */
2591 NULL, /* note_dep */
2592
2593 0, /* use_cselib */
2594 0, /* use_deps_list */
2595 0 /* generate_spec_deps */
2596 };
2597
2598 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2599 we don't actually need information about lhs and rhs. */
2600 static void
2601 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2602 {
2603 rtx pat = PATTERN (insn);
2604
2605 if (NONJUMP_INSN_P (insn)
2606 && GET_CODE (pat) == SET
2607 && !force_unique_p)
2608 {
2609 IDATA_RHS (id) = SET_SRC (pat);
2610 IDATA_LHS (id) = SET_DEST (pat);
2611 }
2612 else
2613 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2614 }
2615
2616 /* Possibly downgrade INSN to USE. */
2617 static void
2618 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2619 {
2620 bool must_be_use = false;
2621 df_ref def;
2622 rtx lhs = IDATA_LHS (id);
2623 rtx rhs = IDATA_RHS (id);
2624
2625 /* We downgrade only SETs. */
2626 if (IDATA_TYPE (id) != SET)
2627 return;
2628
2629 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2630 {
2631 IDATA_TYPE (id) = USE;
2632 return;
2633 }
2634
2635 FOR_EACH_INSN_DEF (def, insn)
2636 {
2637 if (DF_REF_INSN (def)
2638 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2639 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2640 {
2641 must_be_use = true;
2642 break;
2643 }
2644
2645 #ifdef STACK_REGS
2646 /* Make instructions that set stack registers to be ineligible for
2647 renaming to avoid issues with find_used_regs. */
2648 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2649 {
2650 must_be_use = true;
2651 break;
2652 }
2653 #endif
2654 }
2655
2656 if (must_be_use)
2657 IDATA_TYPE (id) = USE;
2658 }
2659
2660 /* Setup implicit register clobbers calculated by sched-deps for INSN
2661 before reload and save them in ID. */
2662 static void
2663 setup_id_implicit_regs (idata_t id, insn_t insn)
2664 {
2665 if (reload_completed)
2666 return;
2667
2668 HARD_REG_SET temp;
2669 unsigned regno;
2670 hard_reg_set_iterator hrsi;
2671
2672 get_implicit_reg_pending_clobbers (&temp, insn);
2673 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2674 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2675 }
2676
2677 /* Setup register sets describing INSN in ID. */
2678 static void
2679 setup_id_reg_sets (idata_t id, insn_t insn)
2680 {
2681 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2682 df_ref def, use;
2683 regset tmp = get_clear_regset_from_pool ();
2684
2685 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2686 {
2687 unsigned int regno = DF_REF_REGNO (def);
2688
2689 /* Post modifies are treated like clobbers by sched-deps.c. */
2690 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2691 | DF_REF_PRE_POST_MODIFY)))
2692 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2693 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2694 {
2695 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2696
2697 #ifdef STACK_REGS
2698 /* For stack registers, treat writes to them as writes
2699 to the first one to be consistent with sched-deps.c. */
2700 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2701 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2702 #endif
2703 }
2704 /* Mark special refs that generate read/write def pair. */
2705 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2706 || regno == STACK_POINTER_REGNUM)
2707 bitmap_set_bit (tmp, regno);
2708 }
2709
2710 FOR_EACH_INSN_INFO_USE (use, insn_info)
2711 {
2712 unsigned int regno = DF_REF_REGNO (use);
2713
2714 /* When these refs are met for the first time, skip them, as
2715 these uses are just counterparts of some defs. */
2716 if (bitmap_bit_p (tmp, regno))
2717 bitmap_clear_bit (tmp, regno);
2718 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2719 {
2720 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2721
2722 #ifdef STACK_REGS
2723 /* For stack registers, treat reads from them as reads from
2724 the first one to be consistent with sched-deps.c. */
2725 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2726 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2727 #endif
2728 }
2729 }
2730
2731 /* Also get implicit reg clobbers from sched-deps. */
2732 setup_id_implicit_regs (id, insn);
2733
2734 return_regset_to_pool (tmp);
2735 }
2736
2737 /* Initialize instruction data for INSN in ID using DF's data. */
2738 static void
2739 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2740 {
2741 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2742
2743 setup_id_for_insn (id, insn, force_unique_p);
2744 setup_id_lhs_rhs (id, insn, force_unique_p);
2745
2746 if (INSN_NOP_P (insn))
2747 return;
2748
2749 maybe_downgrade_id_to_use (id, insn);
2750 setup_id_reg_sets (id, insn);
2751 }
2752
2753 /* Initialize instruction data for INSN in ID. */
2754 static void
2755 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2756 {
2757 struct deps_desc _dc, *dc = &_dc;
2758
2759 deps_init_id_data.where = DEPS_IN_NOWHERE;
2760 deps_init_id_data.id = id;
2761 deps_init_id_data.force_unique_p = force_unique_p;
2762 deps_init_id_data.force_use_p = false;
2763
2764 init_deps (dc, false);
2765 memcpy (&deps_init_id_sched_deps_info,
2766 &const_deps_init_id_sched_deps_info,
2767 sizeof (deps_init_id_sched_deps_info));
2768 if (spec_info != NULL)
2769 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2770 sched_deps_info = &deps_init_id_sched_deps_info;
2771
2772 deps_analyze_insn (dc, insn);
2773 /* Implicit reg clobbers received from sched-deps separately. */
2774 setup_id_implicit_regs (id, insn);
2775
2776 free_deps (dc);
2777 deps_init_id_data.id = NULL;
2778 }
2779
2780 \f
2781 struct sched_scan_info_def
2782 {
2783 /* This hook notifies scheduler frontend to extend its internal per basic
2784 block data structures. This hook should be called once before a series of
2785 calls to bb_init (). */
2786 void (*extend_bb) (void);
2787
2788 /* This hook makes scheduler frontend to initialize its internal data
2789 structures for the passed basic block. */
2790 void (*init_bb) (basic_block);
2791
2792 /* This hook notifies scheduler frontend to extend its internal per insn data
2793 structures. This hook should be called once before a series of calls to
2794 insn_init (). */
2795 void (*extend_insn) (void);
2796
2797 /* This hook makes scheduler frontend to initialize its internal data
2798 structures for the passed insn. */
2799 void (*init_insn) (insn_t);
2800 };
2801
2802 /* A driver function to add a set of basic blocks (BBS) to the
2803 scheduling region. */
2804 static void
2805 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2806 {
2807 unsigned i;
2808 basic_block bb;
2809
2810 if (ssi->extend_bb)
2811 ssi->extend_bb ();
2812
2813 if (ssi->init_bb)
2814 FOR_EACH_VEC_ELT (bbs, i, bb)
2815 ssi->init_bb (bb);
2816
2817 if (ssi->extend_insn)
2818 ssi->extend_insn ();
2819
2820 if (ssi->init_insn)
2821 FOR_EACH_VEC_ELT (bbs, i, bb)
2822 {
2823 rtx_insn *insn;
2824
2825 FOR_BB_INSNS (bb, insn)
2826 ssi->init_insn (insn);
2827 }
2828 }
2829
2830 /* Implement hooks for collecting fundamental insn properties like if insn is
2831 an ASM or is within a SCHED_GROUP. */
2832
2833 /* True when a "one-time init" data for INSN was already inited. */
2834 static bool
2835 first_time_insn_init (insn_t insn)
2836 {
2837 return INSN_LIVE (insn) == NULL;
2838 }
2839
2840 /* Hash an entry in a transformed_insns hashtable. */
2841 static hashval_t
2842 hash_transformed_insns (const void *p)
2843 {
2844 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2845 }
2846
2847 /* Compare the entries in a transformed_insns hashtable. */
2848 static int
2849 eq_transformed_insns (const void *p, const void *q)
2850 {
2851 rtx_insn *i1 =
2852 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2853 rtx_insn *i2 =
2854 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2855
2856 if (INSN_UID (i1) == INSN_UID (i2))
2857 return 1;
2858 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2859 }
2860
2861 /* Free an entry in a transformed_insns hashtable. */
2862 static void
2863 free_transformed_insns (void *p)
2864 {
2865 struct transformed_insns *pti = (struct transformed_insns *) p;
2866
2867 vinsn_detach (pti->vinsn_old);
2868 vinsn_detach (pti->vinsn_new);
2869 free (pti);
2870 }
2871
2872 /* Init the s_i_d data for INSN which should be inited just once, when
2873 we first see the insn. */
2874 static void
2875 init_first_time_insn_data (insn_t insn)
2876 {
2877 /* This should not be set if this is the first time we init data for
2878 insn. */
2879 gcc_assert (first_time_insn_init (insn));
2880
2881 /* These are needed for nops too. */
2882 INSN_LIVE (insn) = get_regset_from_pool ();
2883 INSN_LIVE_VALID_P (insn) = false;
2884
2885 if (!INSN_NOP_P (insn))
2886 {
2887 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2888 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2889 INSN_TRANSFORMED_INSNS (insn)
2890 = htab_create (16, hash_transformed_insns,
2891 eq_transformed_insns, free_transformed_insns);
2892 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2893 }
2894 }
2895
2896 /* Free almost all above data for INSN that is scheduled already.
2897 Used for extra-large basic blocks. */
2898 void
2899 free_data_for_scheduled_insn (insn_t insn)
2900 {
2901 gcc_assert (! first_time_insn_init (insn));
2902
2903 if (! INSN_ANALYZED_DEPS (insn))
2904 return;
2905
2906 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2907 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2908 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2909
2910 /* This is allocated only for bookkeeping insns. */
2911 if (INSN_ORIGINATORS (insn))
2912 BITMAP_FREE (INSN_ORIGINATORS (insn));
2913 free_deps (&INSN_DEPS_CONTEXT (insn));
2914
2915 INSN_ANALYZED_DEPS (insn) = NULL;
2916
2917 /* Clear the readonly flag so we would ICE when trying to recalculate
2918 the deps context (as we believe that it should not happen). */
2919 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2920 }
2921
2922 /* Free the same data as above for INSN. */
2923 static void
2924 free_first_time_insn_data (insn_t insn)
2925 {
2926 gcc_assert (! first_time_insn_init (insn));
2927
2928 free_data_for_scheduled_insn (insn);
2929 return_regset_to_pool (INSN_LIVE (insn));
2930 INSN_LIVE (insn) = NULL;
2931 INSN_LIVE_VALID_P (insn) = false;
2932 }
2933
2934 /* Initialize region-scope data structures for basic blocks. */
2935 static void
2936 init_global_and_expr_for_bb (basic_block bb)
2937 {
2938 if (sel_bb_empty_p (bb))
2939 return;
2940
2941 invalidate_av_set (bb);
2942 }
2943
2944 /* Data for global dependency analysis (to initialize CANT_MOVE and
2945 SCHED_GROUP_P). */
2946 static struct
2947 {
2948 /* Previous insn. */
2949 insn_t prev_insn;
2950 } init_global_data;
2951
2952 /* Determine if INSN is in the sched_group, is an asm or should not be
2953 cloned. After that initialize its expr. */
2954 static void
2955 init_global_and_expr_for_insn (insn_t insn)
2956 {
2957 if (LABEL_P (insn))
2958 return;
2959
2960 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2961 {
2962 init_global_data.prev_insn = NULL;
2963 return;
2964 }
2965
2966 gcc_assert (INSN_P (insn));
2967
2968 if (SCHED_GROUP_P (insn))
2969 /* Setup a sched_group. */
2970 {
2971 insn_t prev_insn = init_global_data.prev_insn;
2972
2973 if (prev_insn)
2974 INSN_SCHED_NEXT (prev_insn) = insn;
2975
2976 init_global_data.prev_insn = insn;
2977 }
2978 else
2979 init_global_data.prev_insn = NULL;
2980
2981 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2982 || asm_noperands (PATTERN (insn)) >= 0)
2983 /* Mark INSN as an asm. */
2984 INSN_ASM_P (insn) = true;
2985
2986 {
2987 bool force_unique_p;
2988 ds_t spec_done_ds;
2989
2990 /* Certain instructions cannot be cloned, and frame related insns and
2991 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2992 their block. */
2993 if (prologue_epilogue_contains (insn))
2994 {
2995 if (RTX_FRAME_RELATED_P (insn))
2996 CANT_MOVE (insn) = 1;
2997 else
2998 {
2999 rtx note;
3000 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
3001 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
3002 && ((enum insn_note) INTVAL (XEXP (note, 0))
3003 == NOTE_INSN_EPILOGUE_BEG))
3004 {
3005 CANT_MOVE (insn) = 1;
3006 break;
3007 }
3008 }
3009 force_unique_p = true;
3010 }
3011 else
3012 if (CANT_MOVE (insn)
3013 || INSN_ASM_P (insn)
3014 || SCHED_GROUP_P (insn)
3015 || CALL_P (insn)
3016 /* Exception handling insns are always unique. */
3017 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3018 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3019 || control_flow_insn_p (insn)
3020 || volatile_insn_p (PATTERN (insn))
3021 || (targetm.cannot_copy_insn_p
3022 && targetm.cannot_copy_insn_p (insn)))
3023 force_unique_p = true;
3024 else
3025 force_unique_p = false;
3026
3027 if (targetm.sched.get_insn_spec_ds)
3028 {
3029 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3030 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3031 }
3032 else
3033 spec_done_ds = 0;
3034
3035 /* Initialize INSN's expr. */
3036 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3037 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3038 spec_done_ds, 0, 0, vNULL, true,
3039 false, false, false, CANT_MOVE (insn));
3040 }
3041
3042 init_first_time_insn_data (insn);
3043 }
3044
3045 /* Scan the region and initialize instruction data for basic blocks BBS. */
3046 void
3047 sel_init_global_and_expr (bb_vec_t bbs)
3048 {
3049 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3050 const struct sched_scan_info_def ssi =
3051 {
3052 NULL, /* extend_bb */
3053 init_global_and_expr_for_bb, /* init_bb */
3054 extend_insn_data, /* extend_insn */
3055 init_global_and_expr_for_insn /* init_insn */
3056 };
3057
3058 sched_scan (&ssi, bbs);
3059 }
3060
3061 /* Finalize region-scope data structures for basic blocks. */
3062 static void
3063 finish_global_and_expr_for_bb (basic_block bb)
3064 {
3065 av_set_clear (&BB_AV_SET (bb));
3066 BB_AV_LEVEL (bb) = 0;
3067 }
3068
3069 /* Finalize INSN's data. */
3070 static void
3071 finish_global_and_expr_insn (insn_t insn)
3072 {
3073 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3074 return;
3075
3076 gcc_assert (INSN_P (insn));
3077
3078 if (INSN_LUID (insn) > 0)
3079 {
3080 free_first_time_insn_data (insn);
3081 INSN_WS_LEVEL (insn) = 0;
3082 CANT_MOVE (insn) = 0;
3083
3084 /* We can no longer assert this, as vinsns of this insn could be
3085 easily live in other insn's caches. This should be changed to
3086 a counter-like approach among all vinsns. */
3087 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3088 clear_expr (INSN_EXPR (insn));
3089 }
3090 }
3091
3092 /* Finalize per instruction data for the whole region. */
3093 void
3094 sel_finish_global_and_expr (void)
3095 {
3096 {
3097 bb_vec_t bbs;
3098 int i;
3099
3100 bbs.create (current_nr_blocks);
3101
3102 for (i = 0; i < current_nr_blocks; i++)
3103 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3104
3105 /* Clear AV_SETs and INSN_EXPRs. */
3106 {
3107 const struct sched_scan_info_def ssi =
3108 {
3109 NULL, /* extend_bb */
3110 finish_global_and_expr_for_bb, /* init_bb */
3111 NULL, /* extend_insn */
3112 finish_global_and_expr_insn /* init_insn */
3113 };
3114
3115 sched_scan (&ssi, bbs);
3116 }
3117
3118 bbs.release ();
3119 }
3120
3121 finish_insns ();
3122 }
3123 \f
3124
3125 /* In the below hooks, we merely calculate whether or not a dependence
3126 exists, and in what part of insn. However, we will need more data
3127 when we'll start caching dependence requests. */
3128
3129 /* Container to hold information for dependency analysis. */
3130 static struct
3131 {
3132 deps_t dc;
3133
3134 /* A variable to track which part of rtx we are scanning in
3135 sched-deps.c: sched_analyze_insn (). */
3136 deps_where_t where;
3137
3138 /* Current producer. */
3139 insn_t pro;
3140
3141 /* Current consumer. */
3142 vinsn_t con;
3143
3144 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3145 X is from { INSN, LHS, RHS }. */
3146 ds_t has_dep_p[DEPS_IN_NOWHERE];
3147 } has_dependence_data;
3148
3149 /* Start analyzing dependencies of INSN. */
3150 static void
3151 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3152 {
3153 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3154
3155 has_dependence_data.where = DEPS_IN_INSN;
3156 }
3157
3158 /* Finish analyzing dependencies of an insn. */
3159 static void
3160 has_dependence_finish_insn (void)
3161 {
3162 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3163
3164 has_dependence_data.where = DEPS_IN_NOWHERE;
3165 }
3166
3167 /* Start analyzing dependencies of LHS. */
3168 static void
3169 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3170 {
3171 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3172
3173 if (VINSN_LHS (has_dependence_data.con) != NULL)
3174 has_dependence_data.where = DEPS_IN_LHS;
3175 }
3176
3177 /* Finish analyzing dependencies of an lhs. */
3178 static void
3179 has_dependence_finish_lhs (void)
3180 {
3181 has_dependence_data.where = DEPS_IN_INSN;
3182 }
3183
3184 /* Start analyzing dependencies of RHS. */
3185 static void
3186 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3187 {
3188 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3189
3190 if (VINSN_RHS (has_dependence_data.con) != NULL)
3191 has_dependence_data.where = DEPS_IN_RHS;
3192 }
3193
3194 /* Start analyzing dependencies of an rhs. */
3195 static void
3196 has_dependence_finish_rhs (void)
3197 {
3198 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3199 || has_dependence_data.where == DEPS_IN_INSN);
3200
3201 has_dependence_data.where = DEPS_IN_INSN;
3202 }
3203
3204 /* Note a set of REGNO. */
3205 static void
3206 has_dependence_note_reg_set (int regno)
3207 {
3208 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3209
3210 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3211 VINSN_INSN_RTX
3212 (has_dependence_data.con)))
3213 {
3214 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3215
3216 if (reg_last->sets != NULL
3217 || reg_last->clobbers != NULL)
3218 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3219
3220 if (reg_last->uses || reg_last->implicit_sets)
3221 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3222 }
3223 }
3224
3225 /* Note a clobber of REGNO. */
3226 static void
3227 has_dependence_note_reg_clobber (int regno)
3228 {
3229 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3230
3231 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3232 VINSN_INSN_RTX
3233 (has_dependence_data.con)))
3234 {
3235 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3236
3237 if (reg_last->sets)
3238 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3239
3240 if (reg_last->uses || reg_last->implicit_sets)
3241 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3242 }
3243 }
3244
3245 /* Note a use of REGNO. */
3246 static void
3247 has_dependence_note_reg_use (int regno)
3248 {
3249 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3250
3251 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3252 VINSN_INSN_RTX
3253 (has_dependence_data.con)))
3254 {
3255 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3256
3257 if (reg_last->sets)
3258 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3259
3260 if (reg_last->clobbers || reg_last->implicit_sets)
3261 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3262
3263 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3264 is actually a check insn. We need to do this for any register
3265 read-read dependency with the check unless we track properly
3266 all registers written by BE_IN_SPEC-speculated insns, as
3267 we don't have explicit dependence lists. See PR 53975. */
3268 if (reg_last->uses)
3269 {
3270 ds_t pro_spec_checked_ds;
3271
3272 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3273 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3274
3275 if (pro_spec_checked_ds != 0)
3276 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3277 NULL_RTX, NULL_RTX);
3278 }
3279 }
3280 }
3281
3282 /* Note a memory dependence. */
3283 static void
3284 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3285 rtx pending_mem ATTRIBUTE_UNUSED,
3286 insn_t pending_insn ATTRIBUTE_UNUSED,
3287 ds_t ds ATTRIBUTE_UNUSED)
3288 {
3289 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3290 VINSN_INSN_RTX (has_dependence_data.con)))
3291 {
3292 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3293
3294 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3295 }
3296 }
3297
3298 /* Note a dependence. */
3299 static void
3300 has_dependence_note_dep (insn_t pro, ds_t ds ATTRIBUTE_UNUSED)
3301 {
3302 insn_t real_pro = has_dependence_data.pro;
3303 insn_t real_con = VINSN_INSN_RTX (has_dependence_data.con);
3304
3305 /* We do not allow for debug insns to move through others unless they
3306 are at the start of bb. This movement may create bookkeeping copies
3307 that later would not be able to move up, violating the invariant
3308 that a bookkeeping copy should be movable as the original insn.
3309 Detect that here and allow that movement if we allowed it before
3310 in the first place. */
3311 if (DEBUG_INSN_P (real_con) && !DEBUG_INSN_P (real_pro)
3312 && INSN_UID (NEXT_INSN (pro)) == INSN_UID (real_con))
3313 return;
3314
3315 if (!sched_insns_conditions_mutex_p (real_pro, real_con))
3316 {
3317 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3318
3319 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3320 }
3321 }
3322
3323 /* Mark the insn as having a hard dependence that prevents speculation. */
3324 void
3325 sel_mark_hard_insn (rtx insn)
3326 {
3327 int i;
3328
3329 /* Only work when we're in has_dependence_p mode.
3330 ??? This is a hack, this should actually be a hook. */
3331 if (!has_dependence_data.dc || !has_dependence_data.pro)
3332 return;
3333
3334 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3335 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3336
3337 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3338 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3339 }
3340
3341 /* This structure holds the hooks for the dependency analysis used when
3342 actually processing dependencies in the scheduler. */
3343 static struct sched_deps_info_def has_dependence_sched_deps_info;
3344
3345 /* This initializes most of the fields of the above structure. */
3346 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3347 {
3348 NULL,
3349
3350 has_dependence_start_insn,
3351 has_dependence_finish_insn,
3352 has_dependence_start_lhs,
3353 has_dependence_finish_lhs,
3354 has_dependence_start_rhs,
3355 has_dependence_finish_rhs,
3356 has_dependence_note_reg_set,
3357 has_dependence_note_reg_clobber,
3358 has_dependence_note_reg_use,
3359 has_dependence_note_mem_dep,
3360 has_dependence_note_dep,
3361
3362 0, /* use_cselib */
3363 0, /* use_deps_list */
3364 0 /* generate_spec_deps */
3365 };
3366
3367 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3368 static void
3369 setup_has_dependence_sched_deps_info (void)
3370 {
3371 memcpy (&has_dependence_sched_deps_info,
3372 &const_has_dependence_sched_deps_info,
3373 sizeof (has_dependence_sched_deps_info));
3374
3375 if (spec_info != NULL)
3376 has_dependence_sched_deps_info.generate_spec_deps = 1;
3377
3378 sched_deps_info = &has_dependence_sched_deps_info;
3379 }
3380
3381 /* Remove all dependences found and recorded in has_dependence_data array. */
3382 void
3383 sel_clear_has_dependence (void)
3384 {
3385 int i;
3386
3387 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3388 has_dependence_data.has_dep_p[i] = 0;
3389 }
3390
3391 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3392 to the dependence information array in HAS_DEP_PP. */
3393 ds_t
3394 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3395 {
3396 int i;
3397 ds_t ds;
3398 struct deps_desc *dc;
3399
3400 if (INSN_SIMPLEJUMP_P (pred))
3401 /* Unconditional jump is just a transfer of control flow.
3402 Ignore it. */
3403 return false;
3404
3405 dc = &INSN_DEPS_CONTEXT (pred);
3406
3407 /* We init this field lazily. */
3408 if (dc->reg_last == NULL)
3409 init_deps_reg_last (dc);
3410
3411 if (!dc->readonly)
3412 {
3413 has_dependence_data.pro = NULL;
3414 /* Initialize empty dep context with information about PRED. */
3415 advance_deps_context (dc, pred);
3416 dc->readonly = 1;
3417 }
3418
3419 has_dependence_data.where = DEPS_IN_NOWHERE;
3420 has_dependence_data.pro = pred;
3421 has_dependence_data.con = EXPR_VINSN (expr);
3422 has_dependence_data.dc = dc;
3423
3424 sel_clear_has_dependence ();
3425
3426 /* Now catch all dependencies that would be generated between PRED and
3427 INSN. */
3428 setup_has_dependence_sched_deps_info ();
3429 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3430 has_dependence_data.dc = NULL;
3431
3432 /* When a barrier was found, set DEPS_IN_INSN bits. */
3433 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3434 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3435 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3436 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3437
3438 /* Do not allow stores to memory to move through checks. Currently
3439 we don't move this to sched-deps.c as the check doesn't have
3440 obvious places to which this dependence can be attached.
3441 FIMXE: this should go to a hook. */
3442 if (EXPR_LHS (expr)
3443 && MEM_P (EXPR_LHS (expr))
3444 && sel_insn_is_speculation_check (pred))
3445 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3446
3447 *has_dep_pp = has_dependence_data.has_dep_p;
3448 ds = 0;
3449 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3450 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3451 NULL_RTX, NULL_RTX);
3452
3453 return ds;
3454 }
3455 \f
3456
3457 /* Dependence hooks implementation that checks dependence latency constraints
3458 on the insns being scheduled. The entry point for these routines is
3459 tick_check_p predicate. */
3460
3461 static struct
3462 {
3463 /* An expr we are currently checking. */
3464 expr_t expr;
3465
3466 /* A minimal cycle for its scheduling. */
3467 int cycle;
3468
3469 /* Whether we have seen a true dependence while checking. */
3470 bool seen_true_dep_p;
3471 } tick_check_data;
3472
3473 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3474 on PRO with status DS and weight DW. */
3475 static void
3476 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3477 {
3478 expr_t con_expr = tick_check_data.expr;
3479 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3480
3481 if (con_insn != pro_insn)
3482 {
3483 enum reg_note dt;
3484 int tick;
3485
3486 if (/* PROducer was removed from above due to pipelining. */
3487 !INSN_IN_STREAM_P (pro_insn)
3488 /* Or PROducer was originally on the next iteration regarding the
3489 CONsumer. */
3490 || (INSN_SCHED_TIMES (pro_insn)
3491 - EXPR_SCHED_TIMES (con_expr)) > 1)
3492 /* Don't count this dependence. */
3493 return;
3494
3495 dt = ds_to_dt (ds);
3496 if (dt == REG_DEP_TRUE)
3497 tick_check_data.seen_true_dep_p = true;
3498
3499 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3500
3501 {
3502 dep_def _dep, *dep = &_dep;
3503
3504 init_dep (dep, pro_insn, con_insn, dt);
3505
3506 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3507 }
3508
3509 /* When there are several kinds of dependencies between pro and con,
3510 only REG_DEP_TRUE should be taken into account. */
3511 if (tick > tick_check_data.cycle
3512 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3513 tick_check_data.cycle = tick;
3514 }
3515 }
3516
3517 /* An implementation of note_dep hook. */
3518 static void
3519 tick_check_note_dep (insn_t pro, ds_t ds)
3520 {
3521 tick_check_dep_with_dw (pro, ds, 0);
3522 }
3523
3524 /* An implementation of note_mem_dep hook. */
3525 static void
3526 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3527 {
3528 dw_t dw;
3529
3530 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3531 ? estimate_dep_weak (mem1, mem2)
3532 : 0);
3533
3534 tick_check_dep_with_dw (pro, ds, dw);
3535 }
3536
3537 /* This structure contains hooks for dependence analysis used when determining
3538 whether an insn is ready for scheduling. */
3539 static struct sched_deps_info_def tick_check_sched_deps_info =
3540 {
3541 NULL,
3542
3543 NULL,
3544 NULL,
3545 NULL,
3546 NULL,
3547 NULL,
3548 NULL,
3549 haifa_note_reg_set,
3550 haifa_note_reg_clobber,
3551 haifa_note_reg_use,
3552 tick_check_note_mem_dep,
3553 tick_check_note_dep,
3554
3555 0, 0, 0
3556 };
3557
3558 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3559 scheduled. Return 0 if all data from producers in DC is ready. */
3560 int
3561 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3562 {
3563 int cycles_left;
3564 /* Initialize variables. */
3565 tick_check_data.expr = expr;
3566 tick_check_data.cycle = 0;
3567 tick_check_data.seen_true_dep_p = false;
3568 sched_deps_info = &tick_check_sched_deps_info;
3569
3570 gcc_assert (!dc->readonly);
3571 dc->readonly = 1;
3572 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3573 dc->readonly = 0;
3574
3575 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3576
3577 return cycles_left >= 0 ? cycles_left : 0;
3578 }
3579 \f
3580
3581 /* Functions to work with insns. */
3582
3583 /* Returns true if LHS of INSN is the same as DEST of an insn
3584 being moved. */
3585 bool
3586 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3587 {
3588 rtx lhs = INSN_LHS (insn);
3589
3590 if (lhs == NULL || dest == NULL)
3591 return false;
3592
3593 return rtx_equal_p (lhs, dest);
3594 }
3595
3596 /* Return s_i_d entry of INSN. Callable from debugger. */
3597 sel_insn_data_def
3598 insn_sid (insn_t insn)
3599 {
3600 return *SID (insn);
3601 }
3602
3603 /* True when INSN is a speculative check. We can tell this by looking
3604 at the data structures of the selective scheduler, not by examining
3605 the pattern. */
3606 bool
3607 sel_insn_is_speculation_check (rtx insn)
3608 {
3609 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3610 }
3611
3612 /* Extracts machine mode MODE and destination location DST_LOC
3613 for given INSN. */
3614 void
3615 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3616 {
3617 rtx pat = PATTERN (insn);
3618
3619 gcc_assert (dst_loc);
3620 gcc_assert (GET_CODE (pat) == SET);
3621
3622 *dst_loc = SET_DEST (pat);
3623
3624 gcc_assert (*dst_loc);
3625 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3626
3627 if (mode)
3628 *mode = GET_MODE (*dst_loc);
3629 }
3630
3631 /* Returns true when moving through JUMP will result in bookkeeping
3632 creation. */
3633 bool
3634 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3635 {
3636 insn_t succ;
3637 succ_iterator si;
3638
3639 FOR_EACH_SUCC (succ, si, jump)
3640 if (sel_num_cfg_preds_gt_1 (succ))
3641 return true;
3642
3643 return false;
3644 }
3645
3646 /* Return 'true' if INSN is the only one in its basic block. */
3647 static bool
3648 insn_is_the_only_one_in_bb_p (insn_t insn)
3649 {
3650 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3651 }
3652
3653 /* Check that the region we're scheduling still has at most one
3654 backedge. */
3655 static void
3656 verify_backedges (void)
3657 {
3658 if (pipelining_p)
3659 {
3660 int i, n = 0;
3661 edge e;
3662 edge_iterator ei;
3663
3664 for (i = 0; i < current_nr_blocks; i++)
3665 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3666 if (in_current_region_p (e->dest)
3667 && BLOCK_TO_BB (e->dest->index) < i)
3668 n++;
3669
3670 gcc_assert (n <= 1);
3671 }
3672 }
3673 \f
3674
3675 /* Functions to work with control flow. */
3676
3677 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3678 are sorted in topological order (it might have been invalidated by
3679 redirecting an edge). */
3680 static void
3681 sel_recompute_toporder (void)
3682 {
3683 int i, n, rgn;
3684 int *postorder, n_blocks;
3685
3686 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3687 n_blocks = post_order_compute (postorder, false, false);
3688
3689 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3690 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3691 if (CONTAINING_RGN (postorder[i]) == rgn)
3692 {
3693 BLOCK_TO_BB (postorder[i]) = n;
3694 BB_TO_BLOCK (n) = postorder[i];
3695 n++;
3696 }
3697
3698 /* Assert that we updated info for all blocks. We may miss some blocks if
3699 this function is called when redirecting an edge made a block
3700 unreachable, but that block is not deleted yet. */
3701 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3702 }
3703
3704 /* Tidy the possibly empty block BB. */
3705 static bool
3706 maybe_tidy_empty_bb (basic_block bb)
3707 {
3708 basic_block succ_bb, pred_bb, note_bb;
3709 vec<basic_block> dom_bbs;
3710 edge e;
3711 edge_iterator ei;
3712 bool rescan_p;
3713
3714 /* Keep empty bb only if this block immediately precedes EXIT and
3715 has incoming non-fallthrough edge, or it has no predecessors or
3716 successors. Otherwise remove it. */
3717 if (!sel_bb_empty_p (bb)
3718 || (single_succ_p (bb)
3719 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3720 && (!single_pred_p (bb)
3721 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3722 || EDGE_COUNT (bb->preds) == 0
3723 || EDGE_COUNT (bb->succs) == 0)
3724 return false;
3725
3726 /* Do not attempt to redirect complex edges. */
3727 FOR_EACH_EDGE (e, ei, bb->preds)
3728 if (e->flags & EDGE_COMPLEX)
3729 return false;
3730 else if (e->flags & EDGE_FALLTHRU)
3731 {
3732 rtx note;
3733 /* If prev bb ends with asm goto, see if any of the
3734 ASM_OPERANDS_LABELs don't point to the fallthru
3735 label. Do not attempt to redirect it in that case. */
3736 if (JUMP_P (BB_END (e->src))
3737 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3738 {
3739 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3740
3741 for (i = 0; i < n; ++i)
3742 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3743 return false;
3744 }
3745 }
3746
3747 free_data_sets (bb);
3748
3749 /* Do not delete BB if it has more than one successor.
3750 That can occur when we moving a jump. */
3751 if (!single_succ_p (bb))
3752 {
3753 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3754 sel_merge_blocks (bb->prev_bb, bb);
3755 return true;
3756 }
3757
3758 succ_bb = single_succ (bb);
3759 rescan_p = true;
3760 pred_bb = NULL;
3761 dom_bbs.create (0);
3762
3763 /* Save a pred/succ from the current region to attach the notes to. */
3764 note_bb = NULL;
3765 FOR_EACH_EDGE (e, ei, bb->preds)
3766 if (in_current_region_p (e->src))
3767 {
3768 note_bb = e->src;
3769 break;
3770 }
3771 if (note_bb == NULL)
3772 note_bb = succ_bb;
3773
3774 /* Redirect all non-fallthru edges to the next bb. */
3775 while (rescan_p)
3776 {
3777 rescan_p = false;
3778
3779 FOR_EACH_EDGE (e, ei, bb->preds)
3780 {
3781 pred_bb = e->src;
3782
3783 if (!(e->flags & EDGE_FALLTHRU))
3784 {
3785 /* We can not invalidate computed topological order by moving
3786 the edge destination block (E->SUCC) along a fallthru edge.
3787
3788 We will update dominators here only when we'll get
3789 an unreachable block when redirecting, otherwise
3790 sel_redirect_edge_and_branch will take care of it. */
3791 if (e->dest != bb
3792 && single_pred_p (e->dest))
3793 dom_bbs.safe_push (e->dest);
3794 sel_redirect_edge_and_branch (e, succ_bb);
3795 rescan_p = true;
3796 break;
3797 }
3798 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3799 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3800 still have to adjust it. */
3801 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3802 {
3803 /* If possible, try to remove the unneeded conditional jump. */
3804 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3805 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3806 {
3807 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3808 tidy_fallthru_edge (e);
3809 }
3810 else
3811 sel_redirect_edge_and_branch (e, succ_bb);
3812 rescan_p = true;
3813 break;
3814 }
3815 }
3816 }
3817
3818 if (can_merge_blocks_p (bb->prev_bb, bb))
3819 sel_merge_blocks (bb->prev_bb, bb);
3820 else
3821 {
3822 /* This is a block without fallthru predecessor. Just delete it. */
3823 gcc_assert (note_bb);
3824 move_bb_info (note_bb, bb);
3825 remove_empty_bb (bb, true);
3826 }
3827
3828 if (!dom_bbs.is_empty ())
3829 {
3830 dom_bbs.safe_push (succ_bb);
3831 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3832 dom_bbs.release ();
3833 }
3834
3835 return true;
3836 }
3837
3838 /* Tidy the control flow after we have removed original insn from
3839 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3840 is true, also try to optimize control flow on non-empty blocks. */
3841 bool
3842 tidy_control_flow (basic_block xbb, bool full_tidying)
3843 {
3844 bool changed = true;
3845 insn_t first, last;
3846
3847 /* First check whether XBB is empty. */
3848 changed = maybe_tidy_empty_bb (xbb);
3849 if (changed || !full_tidying)
3850 return changed;
3851
3852 /* Check if there is a unnecessary jump after insn left. */
3853 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3854 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3855 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3856 {
3857 /* We used to call sel_remove_insn here that can trigger tidy_control_flow
3858 before we fix up the fallthru edge. Correct that ordering by
3859 explicitly doing the latter before the former. */
3860 clear_expr (INSN_EXPR (BB_END (xbb)));
3861 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3862 if (tidy_control_flow (xbb, false))
3863 return true;
3864 }
3865
3866 first = sel_bb_head (xbb);
3867 last = sel_bb_end (xbb);
3868 if (MAY_HAVE_DEBUG_INSNS)
3869 {
3870 if (first != last && DEBUG_INSN_P (first))
3871 do
3872 first = NEXT_INSN (first);
3873 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3874
3875 if (first != last && DEBUG_INSN_P (last))
3876 do
3877 last = PREV_INSN (last);
3878 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3879 }
3880 /* Check if there is an unnecessary jump in previous basic block leading
3881 to next basic block left after removing INSN from stream.
3882 If it is so, remove that jump and redirect edge to current
3883 basic block (where there was INSN before deletion). This way
3884 when NOP will be deleted several instructions later with its
3885 basic block we will not get a jump to next instruction, which
3886 can be harmful. */
3887 if (first == last
3888 && !sel_bb_empty_p (xbb)
3889 && INSN_NOP_P (last)
3890 /* Flow goes fallthru from current block to the next. */
3891 && EDGE_COUNT (xbb->succs) == 1
3892 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3893 /* When successor is an EXIT block, it may not be the next block. */
3894 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3895 /* And unconditional jump in previous basic block leads to
3896 next basic block of XBB and this jump can be safely removed. */
3897 && in_current_region_p (xbb->prev_bb)
3898 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3899 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3900 /* Also this jump is not at the scheduling boundary. */
3901 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3902 {
3903 bool recompute_toporder_p;
3904 /* Clear data structures of jump - jump itself will be removed
3905 by sel_redirect_edge_and_branch. */
3906 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3907 recompute_toporder_p
3908 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3909
3910 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3911
3912 /* We could have skipped some debug insns which did not get removed with the block,
3913 and the seqnos could become incorrect. Fix them up here. */
3914 if (MAY_HAVE_DEBUG_INSNS && (sel_bb_head (xbb) != first || sel_bb_end (xbb) != last))
3915 {
3916 if (!sel_bb_empty_p (xbb->prev_bb))
3917 {
3918 int prev_seqno = INSN_SEQNO (sel_bb_end (xbb->prev_bb));
3919 if (prev_seqno > INSN_SEQNO (sel_bb_head (xbb)))
3920 for (insn_t insn = sel_bb_head (xbb); insn != first; insn = NEXT_INSN (insn))
3921 INSN_SEQNO (insn) = prev_seqno + 1;
3922 }
3923 }
3924
3925 /* It can turn out that after removing unused jump, basic block
3926 that contained that jump, becomes empty too. In such case
3927 remove it too. */
3928 if (sel_bb_empty_p (xbb->prev_bb))
3929 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3930 if (recompute_toporder_p)
3931 sel_recompute_toporder ();
3932 }
3933
3934 /* TODO: use separate flag for CFG checking. */
3935 if (flag_checking)
3936 {
3937 verify_backedges ();
3938 verify_dominators (CDI_DOMINATORS);
3939 }
3940
3941 return changed;
3942 }
3943
3944 /* Purge meaningless empty blocks in the middle of a region. */
3945 void
3946 purge_empty_blocks (void)
3947 {
3948 int i;
3949
3950 /* Do not attempt to delete the first basic block in the region. */
3951 for (i = 1; i < current_nr_blocks; )
3952 {
3953 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3954
3955 if (maybe_tidy_empty_bb (b))
3956 continue;
3957
3958 i++;
3959 }
3960 }
3961
3962 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3963 do not delete insn's data, because it will be later re-emitted.
3964 Return true if we have removed some blocks afterwards. */
3965 bool
3966 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3967 {
3968 basic_block bb = BLOCK_FOR_INSN (insn);
3969
3970 gcc_assert (INSN_IN_STREAM_P (insn));
3971
3972 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3973 {
3974 expr_t expr;
3975 av_set_iterator i;
3976
3977 /* When we remove a debug insn that is head of a BB, it remains
3978 in the AV_SET of the block, but it shouldn't. */
3979 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3980 if (EXPR_INSN_RTX (expr) == insn)
3981 {
3982 av_set_iter_remove (&i);
3983 break;
3984 }
3985 }
3986
3987 if (only_disconnect)
3988 remove_insn (insn);
3989 else
3990 {
3991 delete_insn (insn);
3992 clear_expr (INSN_EXPR (insn));
3993 }
3994
3995 /* It is necessary to NULL these fields in case we are going to re-insert
3996 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3997 case, but also for NOPs that we will return to the nop pool. */
3998 SET_PREV_INSN (insn) = NULL_RTX;
3999 SET_NEXT_INSN (insn) = NULL_RTX;
4000 set_block_for_insn (insn, NULL);
4001
4002 return tidy_control_flow (bb, full_tidying);
4003 }
4004
4005 /* Estimate number of the insns in BB. */
4006 static int
4007 sel_estimate_number_of_insns (basic_block bb)
4008 {
4009 int res = 0;
4010 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
4011
4012 for (; insn != next_tail; insn = NEXT_INSN (insn))
4013 if (NONDEBUG_INSN_P (insn))
4014 res++;
4015
4016 return res;
4017 }
4018
4019 /* We don't need separate luids for notes or labels. */
4020 static int
4021 sel_luid_for_non_insn (rtx x)
4022 {
4023 gcc_assert (NOTE_P (x) || LABEL_P (x));
4024
4025 return -1;
4026 }
4027
4028 /* Find the proper seqno for inserting at INSN by successors.
4029 Return -1 if no successors with positive seqno exist. */
4030 static int
4031 get_seqno_by_succs (rtx_insn *insn)
4032 {
4033 basic_block bb = BLOCK_FOR_INSN (insn);
4034 rtx_insn *tmp = insn, *end = BB_END (bb);
4035 int seqno;
4036 insn_t succ = NULL;
4037 succ_iterator si;
4038
4039 while (tmp != end)
4040 {
4041 tmp = NEXT_INSN (tmp);
4042 if (INSN_P (tmp))
4043 return INSN_SEQNO (tmp);
4044 }
4045
4046 seqno = INT_MAX;
4047
4048 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4049 if (INSN_SEQNO (succ) > 0)
4050 seqno = MIN (seqno, INSN_SEQNO (succ));
4051
4052 if (seqno == INT_MAX)
4053 return -1;
4054
4055 return seqno;
4056 }
4057
4058 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4059 seqno in corner cases. */
4060 static int
4061 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4062 {
4063 int seqno;
4064
4065 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4066
4067 if (!sel_bb_head_p (insn))
4068 seqno = INSN_SEQNO (PREV_INSN (insn));
4069 else
4070 {
4071 basic_block bb = BLOCK_FOR_INSN (insn);
4072
4073 if (single_pred_p (bb)
4074 && !in_current_region_p (single_pred (bb)))
4075 {
4076 /* We can have preds outside a region when splitting edges
4077 for pipelining of an outer loop. Use succ instead.
4078 There should be only one of them. */
4079 insn_t succ = NULL;
4080 succ_iterator si;
4081 bool first = true;
4082
4083 gcc_assert (flag_sel_sched_pipelining_outer_loops
4084 && current_loop_nest);
4085 FOR_EACH_SUCC_1 (succ, si, insn,
4086 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4087 {
4088 gcc_assert (first);
4089 first = false;
4090 }
4091
4092 gcc_assert (succ != NULL);
4093 seqno = INSN_SEQNO (succ);
4094 }
4095 else
4096 {
4097 insn_t *preds;
4098 int n;
4099
4100 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4101
4102 gcc_assert (n > 0);
4103 /* For one predecessor, use simple method. */
4104 if (n == 1)
4105 seqno = INSN_SEQNO (preds[0]);
4106 else
4107 seqno = get_seqno_by_preds (insn);
4108
4109 free (preds);
4110 }
4111 }
4112
4113 /* We were unable to find a good seqno among preds. */
4114 if (seqno < 0)
4115 seqno = get_seqno_by_succs (insn);
4116
4117 if (seqno < 0)
4118 {
4119 /* The only case where this could be here legally is that the only
4120 unscheduled insn was a conditional jump that got removed and turned
4121 into this unconditional one. Initialize from the old seqno
4122 of that jump passed down to here. */
4123 seqno = old_seqno;
4124 }
4125
4126 gcc_assert (seqno >= 0);
4127 return seqno;
4128 }
4129
4130 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4131 with positive seqno exist. */
4132 int
4133 get_seqno_by_preds (rtx_insn *insn)
4134 {
4135 basic_block bb = BLOCK_FOR_INSN (insn);
4136 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4137 insn_t *preds;
4138 int n, i, seqno;
4139
4140 /* Loop backwards from INSN to HEAD including both. */
4141 while (1)
4142 {
4143 if (INSN_P (tmp))
4144 return INSN_SEQNO (tmp);
4145 if (tmp == head)
4146 break;
4147 tmp = PREV_INSN (tmp);
4148 }
4149
4150 cfg_preds (bb, &preds, &n);
4151 for (i = 0, seqno = -1; i < n; i++)
4152 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4153
4154 return seqno;
4155 }
4156
4157 \f
4158
4159 /* Extend pass-scope data structures for basic blocks. */
4160 void
4161 sel_extend_global_bb_info (void)
4162 {
4163 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4164 }
4165
4166 /* Extend region-scope data structures for basic blocks. */
4167 static void
4168 extend_region_bb_info (void)
4169 {
4170 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4171 }
4172
4173 /* Extend all data structures to fit for all basic blocks. */
4174 static void
4175 extend_bb_info (void)
4176 {
4177 sel_extend_global_bb_info ();
4178 extend_region_bb_info ();
4179 }
4180
4181 /* Finalize pass-scope data structures for basic blocks. */
4182 void
4183 sel_finish_global_bb_info (void)
4184 {
4185 sel_global_bb_info.release ();
4186 }
4187
4188 /* Finalize region-scope data structures for basic blocks. */
4189 static void
4190 finish_region_bb_info (void)
4191 {
4192 sel_region_bb_info.release ();
4193 }
4194 \f
4195
4196 /* Data for each insn in current region. */
4197 vec<sel_insn_data_def> s_i_d;
4198
4199 /* Extend data structures for insns from current region. */
4200 static void
4201 extend_insn_data (void)
4202 {
4203 int reserve;
4204
4205 sched_extend_target ();
4206 sched_deps_init (false);
4207
4208 /* Extend data structures for insns from current region. */
4209 reserve = (sched_max_luid + 1 - s_i_d.length ());
4210 if (reserve > 0 && ! s_i_d.space (reserve))
4211 {
4212 int size;
4213
4214 if (sched_max_luid / 2 > 1024)
4215 size = sched_max_luid + 1024;
4216 else
4217 size = 3 * sched_max_luid / 2;
4218
4219
4220 s_i_d.safe_grow_cleared (size);
4221 }
4222 }
4223
4224 /* Finalize data structures for insns from current region. */
4225 static void
4226 finish_insns (void)
4227 {
4228 unsigned i;
4229
4230 /* Clear here all dependence contexts that may have left from insns that were
4231 removed during the scheduling. */
4232 for (i = 0; i < s_i_d.length (); i++)
4233 {
4234 sel_insn_data_def *sid_entry = &s_i_d[i];
4235
4236 if (sid_entry->live)
4237 return_regset_to_pool (sid_entry->live);
4238 if (sid_entry->analyzed_deps)
4239 {
4240 BITMAP_FREE (sid_entry->analyzed_deps);
4241 BITMAP_FREE (sid_entry->found_deps);
4242 htab_delete (sid_entry->transformed_insns);
4243 free_deps (&sid_entry->deps_context);
4244 }
4245 if (EXPR_VINSN (&sid_entry->expr))
4246 {
4247 clear_expr (&sid_entry->expr);
4248
4249 /* Also, clear CANT_MOVE bit here, because we really don't want it
4250 to be passed to the next region. */
4251 CANT_MOVE_BY_LUID (i) = 0;
4252 }
4253 }
4254
4255 s_i_d.release ();
4256 }
4257
4258 /* A proxy to pass initialization data to init_insn (). */
4259 static sel_insn_data_def _insn_init_ssid;
4260 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4261
4262 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4263 static bool insn_init_create_new_vinsn_p;
4264
4265 /* Set all necessary data for initialization of the new insn[s]. */
4266 static expr_t
4267 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4268 {
4269 expr_t x = &insn_init_ssid->expr;
4270
4271 copy_expr_onside (x, expr);
4272 if (vi != NULL)
4273 {
4274 insn_init_create_new_vinsn_p = false;
4275 change_vinsn_in_expr (x, vi);
4276 }
4277 else
4278 insn_init_create_new_vinsn_p = true;
4279
4280 insn_init_ssid->seqno = seqno;
4281 return x;
4282 }
4283
4284 /* Init data for INSN. */
4285 static void
4286 init_insn_data (insn_t insn)
4287 {
4288 expr_t expr;
4289 sel_insn_data_t ssid = insn_init_ssid;
4290
4291 /* The fields mentioned below are special and hence are not being
4292 propagated to the new insns. */
4293 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4294 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4295 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4296
4297 expr = INSN_EXPR (insn);
4298 copy_expr (expr, &ssid->expr);
4299 prepare_insn_expr (insn, ssid->seqno);
4300
4301 if (insn_init_create_new_vinsn_p)
4302 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4303
4304 if (first_time_insn_init (insn))
4305 init_first_time_insn_data (insn);
4306 }
4307
4308 /* This is used to initialize spurious jumps generated by
4309 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4310 in corner cases within get_seqno_for_a_jump. */
4311 static void
4312 init_simplejump_data (insn_t insn, int old_seqno)
4313 {
4314 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4315 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4316 vNULL, true, false, false,
4317 false, true);
4318 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4319 init_first_time_insn_data (insn);
4320 }
4321
4322 /* Perform deferred initialization of insns. This is used to process
4323 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4324 for initializing simplejumps in init_simplejump_data. */
4325 static void
4326 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4327 {
4328 /* We create data structures for bb when the first insn is emitted in it. */
4329 if (INSN_P (insn)
4330 && INSN_IN_STREAM_P (insn)
4331 && insn_is_the_only_one_in_bb_p (insn))
4332 {
4333 extend_bb_info ();
4334 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4335 }
4336
4337 if (flags & INSN_INIT_TODO_LUID)
4338 {
4339 sched_extend_luids ();
4340 sched_init_insn_luid (insn);
4341 }
4342
4343 if (flags & INSN_INIT_TODO_SSID)
4344 {
4345 extend_insn_data ();
4346 init_insn_data (insn);
4347 clear_expr (&insn_init_ssid->expr);
4348 }
4349
4350 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4351 {
4352 extend_insn_data ();
4353 init_simplejump_data (insn, old_seqno);
4354 }
4355
4356 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4357 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4358 }
4359 \f
4360
4361 /* Functions to init/finish work with lv sets. */
4362
4363 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4364 static void
4365 init_lv_set (basic_block bb)
4366 {
4367 gcc_assert (!BB_LV_SET_VALID_P (bb));
4368
4369 BB_LV_SET (bb) = get_regset_from_pool ();
4370 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4371 BB_LV_SET_VALID_P (bb) = true;
4372 }
4373
4374 /* Copy liveness information to BB from FROM_BB. */
4375 static void
4376 copy_lv_set_from (basic_block bb, basic_block from_bb)
4377 {
4378 gcc_assert (!BB_LV_SET_VALID_P (bb));
4379
4380 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4381 BB_LV_SET_VALID_P (bb) = true;
4382 }
4383
4384 /* Initialize lv set of all bb headers. */
4385 void
4386 init_lv_sets (void)
4387 {
4388 basic_block bb;
4389
4390 /* Initialize of LV sets. */
4391 FOR_EACH_BB_FN (bb, cfun)
4392 init_lv_set (bb);
4393
4394 /* Don't forget EXIT_BLOCK. */
4395 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4396 }
4397
4398 /* Release lv set of HEAD. */
4399 static void
4400 free_lv_set (basic_block bb)
4401 {
4402 gcc_assert (BB_LV_SET (bb) != NULL);
4403
4404 return_regset_to_pool (BB_LV_SET (bb));
4405 BB_LV_SET (bb) = NULL;
4406 BB_LV_SET_VALID_P (bb) = false;
4407 }
4408
4409 /* Finalize lv sets of all bb headers. */
4410 void
4411 free_lv_sets (void)
4412 {
4413 basic_block bb;
4414
4415 /* Don't forget EXIT_BLOCK. */
4416 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4417
4418 /* Free LV sets. */
4419 FOR_EACH_BB_FN (bb, cfun)
4420 if (BB_LV_SET (bb))
4421 free_lv_set (bb);
4422 }
4423
4424 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4425 compute_av() processes BB. This function is called when creating new basic
4426 blocks, as well as for blocks (either new or existing) where new jumps are
4427 created when the control flow is being updated. */
4428 static void
4429 invalidate_av_set (basic_block bb)
4430 {
4431 BB_AV_LEVEL (bb) = -1;
4432 }
4433
4434 /* Create initial data sets for BB (they will be invalid). */
4435 static void
4436 create_initial_data_sets (basic_block bb)
4437 {
4438 if (BB_LV_SET (bb))
4439 BB_LV_SET_VALID_P (bb) = false;
4440 else
4441 BB_LV_SET (bb) = get_regset_from_pool ();
4442 invalidate_av_set (bb);
4443 }
4444
4445 /* Free av set of BB. */
4446 static void
4447 free_av_set (basic_block bb)
4448 {
4449 av_set_clear (&BB_AV_SET (bb));
4450 BB_AV_LEVEL (bb) = 0;
4451 }
4452
4453 /* Free data sets of BB. */
4454 void
4455 free_data_sets (basic_block bb)
4456 {
4457 free_lv_set (bb);
4458 free_av_set (bb);
4459 }
4460
4461 /* Exchange data sets of TO and FROM. */
4462 void
4463 exchange_data_sets (basic_block to, basic_block from)
4464 {
4465 /* Exchange lv sets of TO and FROM. */
4466 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4467 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4468
4469 /* Exchange av sets of TO and FROM. */
4470 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4471 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4472 }
4473
4474 /* Copy data sets of FROM to TO. */
4475 void
4476 copy_data_sets (basic_block to, basic_block from)
4477 {
4478 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4479 gcc_assert (BB_AV_SET (to) == NULL);
4480
4481 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4482 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4483
4484 if (BB_AV_SET_VALID_P (from))
4485 {
4486 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4487 }
4488 if (BB_LV_SET_VALID_P (from))
4489 {
4490 gcc_assert (BB_LV_SET (to) != NULL);
4491 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4492 }
4493 }
4494
4495 /* Return an av set for INSN, if any. */
4496 av_set_t
4497 get_av_set (insn_t insn)
4498 {
4499 av_set_t av_set;
4500
4501 gcc_assert (AV_SET_VALID_P (insn));
4502
4503 if (sel_bb_head_p (insn))
4504 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4505 else
4506 av_set = NULL;
4507
4508 return av_set;
4509 }
4510
4511 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4512 int
4513 get_av_level (insn_t insn)
4514 {
4515 int av_level;
4516
4517 gcc_assert (INSN_P (insn));
4518
4519 if (sel_bb_head_p (insn))
4520 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4521 else
4522 av_level = INSN_WS_LEVEL (insn);
4523
4524 return av_level;
4525 }
4526
4527 \f
4528
4529 /* Variables to work with control-flow graph. */
4530
4531 /* The basic block that already has been processed by the sched_data_update (),
4532 but hasn't been in sel_add_bb () yet. */
4533 static vec<basic_block> last_added_blocks;
4534
4535 /* A pool for allocating successor infos. */
4536 static struct
4537 {
4538 /* A stack for saving succs_info structures. */
4539 struct succs_info *stack;
4540
4541 /* Its size. */
4542 int size;
4543
4544 /* Top of the stack. */
4545 int top;
4546
4547 /* Maximal value of the top. */
4548 int max_top;
4549 } succs_info_pool;
4550
4551 /* Functions to work with control-flow graph. */
4552
4553 /* Return basic block note of BB. */
4554 rtx_insn *
4555 sel_bb_head (basic_block bb)
4556 {
4557 rtx_insn *head;
4558
4559 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4560 {
4561 gcc_assert (exit_insn != NULL_RTX);
4562 head = exit_insn;
4563 }
4564 else
4565 {
4566 rtx_note *note = bb_note (bb);
4567 head = next_nonnote_insn (note);
4568
4569 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4570 head = NULL;
4571 }
4572
4573 return head;
4574 }
4575
4576 /* Return true if INSN is a basic block header. */
4577 bool
4578 sel_bb_head_p (insn_t insn)
4579 {
4580 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4581 }
4582
4583 /* Return last insn of BB. */
4584 rtx_insn *
4585 sel_bb_end (basic_block bb)
4586 {
4587 if (sel_bb_empty_p (bb))
4588 return NULL;
4589
4590 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4591
4592 return BB_END (bb);
4593 }
4594
4595 /* Return true if INSN is the last insn in its basic block. */
4596 bool
4597 sel_bb_end_p (insn_t insn)
4598 {
4599 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4600 }
4601
4602 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4603 bool
4604 sel_bb_empty_p (basic_block bb)
4605 {
4606 return sel_bb_head (bb) == NULL;
4607 }
4608
4609 /* True when BB belongs to the current scheduling region. */
4610 bool
4611 in_current_region_p (basic_block bb)
4612 {
4613 if (bb->index < NUM_FIXED_BLOCKS)
4614 return false;
4615
4616 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4617 }
4618
4619 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4620 basic_block
4621 fallthru_bb_of_jump (const rtx_insn *jump)
4622 {
4623 if (!JUMP_P (jump))
4624 return NULL;
4625
4626 if (!any_condjump_p (jump))
4627 return NULL;
4628
4629 /* A basic block that ends with a conditional jump may still have one successor
4630 (and be followed by a barrier), we are not interested. */
4631 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4632 return NULL;
4633
4634 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4635 }
4636
4637 /* Remove all notes from BB. */
4638 static void
4639 init_bb (basic_block bb)
4640 {
4641 remove_notes (bb_note (bb), BB_END (bb));
4642 BB_NOTE_LIST (bb) = note_list;
4643 }
4644
4645 void
4646 sel_init_bbs (bb_vec_t bbs)
4647 {
4648 const struct sched_scan_info_def ssi =
4649 {
4650 extend_bb_info, /* extend_bb */
4651 init_bb, /* init_bb */
4652 NULL, /* extend_insn */
4653 NULL /* init_insn */
4654 };
4655
4656 sched_scan (&ssi, bbs);
4657 }
4658
4659 /* Restore notes for the whole region. */
4660 static void
4661 sel_restore_notes (void)
4662 {
4663 int bb;
4664 insn_t insn;
4665
4666 for (bb = 0; bb < current_nr_blocks; bb++)
4667 {
4668 basic_block first, last;
4669
4670 first = EBB_FIRST_BB (bb);
4671 last = EBB_LAST_BB (bb)->next_bb;
4672
4673 do
4674 {
4675 note_list = BB_NOTE_LIST (first);
4676 restore_other_notes (NULL, first);
4677 BB_NOTE_LIST (first) = NULL;
4678
4679 FOR_BB_INSNS (first, insn)
4680 if (NONDEBUG_INSN_P (insn))
4681 reemit_notes (insn);
4682
4683 first = first->next_bb;
4684 }
4685 while (first != last);
4686 }
4687 }
4688
4689 /* Free per-bb data structures. */
4690 void
4691 sel_finish_bbs (void)
4692 {
4693 sel_restore_notes ();
4694
4695 /* Remove current loop preheader from this loop. */
4696 if (current_loop_nest)
4697 sel_remove_loop_preheader ();
4698
4699 finish_region_bb_info ();
4700 }
4701
4702 /* Return true if INSN has a single successor of type FLAGS. */
4703 bool
4704 sel_insn_has_single_succ_p (insn_t insn, int flags)
4705 {
4706 insn_t succ;
4707 succ_iterator si;
4708 bool first_p = true;
4709
4710 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4711 {
4712 if (first_p)
4713 first_p = false;
4714 else
4715 return false;
4716 }
4717
4718 return true;
4719 }
4720
4721 /* Allocate successor's info. */
4722 static struct succs_info *
4723 alloc_succs_info (void)
4724 {
4725 if (succs_info_pool.top == succs_info_pool.max_top)
4726 {
4727 int i;
4728
4729 if (++succs_info_pool.max_top >= succs_info_pool.size)
4730 gcc_unreachable ();
4731
4732 i = ++succs_info_pool.top;
4733 succs_info_pool.stack[i].succs_ok.create (10);
4734 succs_info_pool.stack[i].succs_other.create (10);
4735 succs_info_pool.stack[i].probs_ok.create (10);
4736 }
4737 else
4738 succs_info_pool.top++;
4739
4740 return &succs_info_pool.stack[succs_info_pool.top];
4741 }
4742
4743 /* Free successor's info. */
4744 void
4745 free_succs_info (struct succs_info * sinfo)
4746 {
4747 gcc_assert (succs_info_pool.top >= 0
4748 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4749 succs_info_pool.top--;
4750
4751 /* Clear stale info. */
4752 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4753 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4754 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4755 sinfo->all_prob = 0;
4756 sinfo->succs_ok_n = 0;
4757 sinfo->all_succs_n = 0;
4758 }
4759
4760 /* Compute successor info for INSN. FLAGS are the flags passed
4761 to the FOR_EACH_SUCC_1 iterator. */
4762 struct succs_info *
4763 compute_succs_info (insn_t insn, short flags)
4764 {
4765 succ_iterator si;
4766 insn_t succ;
4767 struct succs_info *sinfo = alloc_succs_info ();
4768
4769 /* Traverse *all* successors and decide what to do with each. */
4770 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4771 {
4772 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4773 perform code motion through inner loops. */
4774 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4775
4776 if (current_flags & flags)
4777 {
4778 sinfo->succs_ok.safe_push (succ);
4779 sinfo->probs_ok.safe_push (
4780 /* FIXME: Improve calculation when skipping
4781 inner loop to exits. */
4782 si.bb_end
4783 ? (si.e1->probability.initialized_p ()
4784 ? si.e1->probability.to_reg_br_prob_base ()
4785 : 0)
4786 : REG_BR_PROB_BASE);
4787 sinfo->succs_ok_n++;
4788 }
4789 else
4790 sinfo->succs_other.safe_push (succ);
4791
4792 /* Compute all_prob. */
4793 if (!si.bb_end)
4794 sinfo->all_prob = REG_BR_PROB_BASE;
4795 else if (si.e1->probability.initialized_p ())
4796 sinfo->all_prob += si.e1->probability.to_reg_br_prob_base ();
4797
4798 sinfo->all_succs_n++;
4799 }
4800
4801 return sinfo;
4802 }
4803
4804 /* Return the predecessors of BB in PREDS and their number in N.
4805 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4806 static void
4807 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4808 {
4809 edge e;
4810 edge_iterator ei;
4811
4812 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4813
4814 FOR_EACH_EDGE (e, ei, bb->preds)
4815 {
4816 basic_block pred_bb = e->src;
4817 insn_t bb_end = BB_END (pred_bb);
4818
4819 if (!in_current_region_p (pred_bb))
4820 {
4821 gcc_assert (flag_sel_sched_pipelining_outer_loops
4822 && current_loop_nest);
4823 continue;
4824 }
4825
4826 if (sel_bb_empty_p (pred_bb))
4827 cfg_preds_1 (pred_bb, preds, n, size);
4828 else
4829 {
4830 if (*n == *size)
4831 *preds = XRESIZEVEC (insn_t, *preds,
4832 (*size = 2 * *size + 1));
4833 (*preds)[(*n)++] = bb_end;
4834 }
4835 }
4836
4837 gcc_assert (*n != 0
4838 || (flag_sel_sched_pipelining_outer_loops
4839 && current_loop_nest));
4840 }
4841
4842 /* Find all predecessors of BB and record them in PREDS and their number
4843 in N. Empty blocks are skipped, and only normal (forward in-region)
4844 edges are processed. */
4845 static void
4846 cfg_preds (basic_block bb, insn_t **preds, int *n)
4847 {
4848 int size = 0;
4849
4850 *preds = NULL;
4851 *n = 0;
4852 cfg_preds_1 (bb, preds, n, &size);
4853 }
4854
4855 /* Returns true if we are moving INSN through join point. */
4856 bool
4857 sel_num_cfg_preds_gt_1 (insn_t insn)
4858 {
4859 basic_block bb;
4860
4861 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4862 return false;
4863
4864 bb = BLOCK_FOR_INSN (insn);
4865
4866 while (1)
4867 {
4868 if (EDGE_COUNT (bb->preds) > 1)
4869 return true;
4870
4871 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4872 bb = EDGE_PRED (bb, 0)->src;
4873
4874 if (!sel_bb_empty_p (bb))
4875 break;
4876 }
4877
4878 return false;
4879 }
4880
4881 /* Returns true when BB should be the end of an ebb. Adapted from the
4882 code in sched-ebb.c. */
4883 bool
4884 bb_ends_ebb_p (basic_block bb)
4885 {
4886 basic_block next_bb = bb_next_bb (bb);
4887 edge e;
4888
4889 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4890 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4891 || (LABEL_P (BB_HEAD (next_bb))
4892 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4893 Work around that. */
4894 && !single_pred_p (next_bb)))
4895 return true;
4896
4897 if (!in_current_region_p (next_bb))
4898 return true;
4899
4900 e = find_fallthru_edge (bb->succs);
4901 if (e)
4902 {
4903 gcc_assert (e->dest == next_bb);
4904
4905 return false;
4906 }
4907
4908 return true;
4909 }
4910
4911 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4912 successor of INSN. */
4913 bool
4914 in_same_ebb_p (insn_t insn, insn_t succ)
4915 {
4916 basic_block ptr = BLOCK_FOR_INSN (insn);
4917
4918 for (;;)
4919 {
4920 if (ptr == BLOCK_FOR_INSN (succ))
4921 return true;
4922
4923 if (bb_ends_ebb_p (ptr))
4924 return false;
4925
4926 ptr = bb_next_bb (ptr);
4927 }
4928
4929 gcc_unreachable ();
4930 return false;
4931 }
4932
4933 /* Recomputes the reverse topological order for the function and
4934 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4935 modified appropriately. */
4936 static void
4937 recompute_rev_top_order (void)
4938 {
4939 int *postorder;
4940 int n_blocks, i;
4941
4942 if (!rev_top_order_index
4943 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4944 {
4945 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4946 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4947 rev_top_order_index_len);
4948 }
4949
4950 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4951
4952 n_blocks = post_order_compute (postorder, true, false);
4953 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4954
4955 /* Build reverse function: for each basic block with BB->INDEX == K
4956 rev_top_order_index[K] is it's reverse topological sort number. */
4957 for (i = 0; i < n_blocks; i++)
4958 {
4959 gcc_assert (postorder[i] < rev_top_order_index_len);
4960 rev_top_order_index[postorder[i]] = i;
4961 }
4962
4963 free (postorder);
4964 }
4965
4966 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4967 void
4968 clear_outdated_rtx_info (basic_block bb)
4969 {
4970 rtx_insn *insn;
4971
4972 FOR_BB_INSNS (bb, insn)
4973 if (INSN_P (insn))
4974 {
4975 SCHED_GROUP_P (insn) = 0;
4976 INSN_AFTER_STALL_P (insn) = 0;
4977 INSN_SCHED_TIMES (insn) = 0;
4978 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4979
4980 /* We cannot use the changed caches, as previously we could ignore
4981 the LHS dependence due to enabled renaming and transform
4982 the expression, and currently we'll be unable to do this. */
4983 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4984 }
4985 }
4986
4987 /* Add BB_NOTE to the pool of available basic block notes. */
4988 static void
4989 return_bb_to_pool (basic_block bb)
4990 {
4991 rtx_note *note = bb_note (bb);
4992
4993 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4994 && bb->aux == NULL);
4995
4996 /* It turns out that current cfg infrastructure does not support
4997 reuse of basic blocks. Don't bother for now. */
4998 /*bb_note_pool.safe_push (note);*/
4999 }
5000
5001 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
5002 static rtx_note *
5003 get_bb_note_from_pool (void)
5004 {
5005 if (bb_note_pool.is_empty ())
5006 return NULL;
5007 else
5008 {
5009 rtx_note *note = bb_note_pool.pop ();
5010
5011 SET_PREV_INSN (note) = NULL_RTX;
5012 SET_NEXT_INSN (note) = NULL_RTX;
5013
5014 return note;
5015 }
5016 }
5017
5018 /* Free bb_note_pool. */
5019 void
5020 free_bb_note_pool (void)
5021 {
5022 bb_note_pool.release ();
5023 }
5024
5025 /* Setup scheduler pool and successor structure. */
5026 void
5027 alloc_sched_pools (void)
5028 {
5029 int succs_size;
5030
5031 succs_size = MAX_WS + 1;
5032 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
5033 succs_info_pool.size = succs_size;
5034 succs_info_pool.top = -1;
5035 succs_info_pool.max_top = -1;
5036 }
5037
5038 /* Free the pools. */
5039 void
5040 free_sched_pools (void)
5041 {
5042 int i;
5043
5044 sched_lists_pool.release ();
5045 gcc_assert (succs_info_pool.top == -1);
5046 for (i = 0; i <= succs_info_pool.max_top; i++)
5047 {
5048 succs_info_pool.stack[i].succs_ok.release ();
5049 succs_info_pool.stack[i].succs_other.release ();
5050 succs_info_pool.stack[i].probs_ok.release ();
5051 }
5052 free (succs_info_pool.stack);
5053 }
5054 \f
5055
5056 /* Returns a position in RGN where BB can be inserted retaining
5057 topological order. */
5058 static int
5059 find_place_to_insert_bb (basic_block bb, int rgn)
5060 {
5061 bool has_preds_outside_rgn = false;
5062 edge e;
5063 edge_iterator ei;
5064
5065 /* Find whether we have preds outside the region. */
5066 FOR_EACH_EDGE (e, ei, bb->preds)
5067 if (!in_current_region_p (e->src))
5068 {
5069 has_preds_outside_rgn = true;
5070 break;
5071 }
5072
5073 /* Recompute the top order -- needed when we have > 1 pred
5074 and in case we don't have preds outside. */
5075 if (flag_sel_sched_pipelining_outer_loops
5076 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5077 {
5078 int i, bbi = bb->index, cur_bbi;
5079
5080 recompute_rev_top_order ();
5081 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5082 {
5083 cur_bbi = BB_TO_BLOCK (i);
5084 if (rev_top_order_index[bbi]
5085 < rev_top_order_index[cur_bbi])
5086 break;
5087 }
5088
5089 /* We skipped the right block, so we increase i. We accommodate
5090 it for increasing by step later, so we decrease i. */
5091 return (i + 1) - 1;
5092 }
5093 else if (has_preds_outside_rgn)
5094 {
5095 /* This is the case when we generate an extra empty block
5096 to serve as region head during pipelining. */
5097 e = EDGE_SUCC (bb, 0);
5098 gcc_assert (EDGE_COUNT (bb->succs) == 1
5099 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5100 && (BLOCK_TO_BB (e->dest->index) == 0));
5101 return -1;
5102 }
5103
5104 /* We don't have preds outside the region. We should have
5105 the only pred, because the multiple preds case comes from
5106 the pipelining of outer loops, and that is handled above.
5107 Just take the bbi of this single pred. */
5108 if (EDGE_COUNT (bb->succs) > 0)
5109 {
5110 int pred_bbi;
5111
5112 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5113
5114 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5115 return BLOCK_TO_BB (pred_bbi);
5116 }
5117 else
5118 /* BB has no successors. It is safe to put it in the end. */
5119 return current_nr_blocks - 1;
5120 }
5121
5122 /* Deletes an empty basic block freeing its data. */
5123 static void
5124 delete_and_free_basic_block (basic_block bb)
5125 {
5126 gcc_assert (sel_bb_empty_p (bb));
5127
5128 if (BB_LV_SET (bb))
5129 free_lv_set (bb);
5130
5131 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5132
5133 /* Can't assert av_set properties because we use sel_aremove_bb
5134 when removing loop preheader from the region. At the point of
5135 removing the preheader we already have deallocated sel_region_bb_info. */
5136 gcc_assert (BB_LV_SET (bb) == NULL
5137 && !BB_LV_SET_VALID_P (bb)
5138 && BB_AV_LEVEL (bb) == 0
5139 && BB_AV_SET (bb) == NULL);
5140
5141 delete_basic_block (bb);
5142 }
5143
5144 /* Add BB to the current region and update the region data. */
5145 static void
5146 add_block_to_current_region (basic_block bb)
5147 {
5148 int i, pos, bbi = -2, rgn;
5149
5150 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5151 bbi = find_place_to_insert_bb (bb, rgn);
5152 bbi += 1;
5153 pos = RGN_BLOCKS (rgn) + bbi;
5154
5155 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5156 && ebb_head[bbi] == pos);
5157
5158 /* Make a place for the new block. */
5159 extend_regions ();
5160
5161 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5162 BLOCK_TO_BB (rgn_bb_table[i])++;
5163
5164 memmove (rgn_bb_table + pos + 1,
5165 rgn_bb_table + pos,
5166 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5167
5168 /* Initialize data for BB. */
5169 rgn_bb_table[pos] = bb->index;
5170 BLOCK_TO_BB (bb->index) = bbi;
5171 CONTAINING_RGN (bb->index) = rgn;
5172
5173 RGN_NR_BLOCKS (rgn)++;
5174
5175 for (i = rgn + 1; i <= nr_regions; i++)
5176 RGN_BLOCKS (i)++;
5177 }
5178
5179 /* Remove BB from the current region and update the region data. */
5180 static void
5181 remove_bb_from_region (basic_block bb)
5182 {
5183 int i, pos, bbi = -2, rgn;
5184
5185 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5186 bbi = BLOCK_TO_BB (bb->index);
5187 pos = RGN_BLOCKS (rgn) + bbi;
5188
5189 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5190 && ebb_head[bbi] == pos);
5191
5192 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5193 BLOCK_TO_BB (rgn_bb_table[i])--;
5194
5195 memmove (rgn_bb_table + pos,
5196 rgn_bb_table + pos + 1,
5197 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5198
5199 RGN_NR_BLOCKS (rgn)--;
5200 for (i = rgn + 1; i <= nr_regions; i++)
5201 RGN_BLOCKS (i)--;
5202 }
5203
5204 /* Add BB to the current region and update all data. If BB is NULL, add all
5205 blocks from last_added_blocks vector. */
5206 static void
5207 sel_add_bb (basic_block bb)
5208 {
5209 /* Extend luids so that new notes will receive zero luids. */
5210 sched_extend_luids ();
5211 sched_init_bbs ();
5212 sel_init_bbs (last_added_blocks);
5213
5214 /* When bb is passed explicitly, the vector should contain
5215 the only element that equals to bb; otherwise, the vector
5216 should not be NULL. */
5217 gcc_assert (last_added_blocks.exists ());
5218
5219 if (bb != NULL)
5220 {
5221 gcc_assert (last_added_blocks.length () == 1
5222 && last_added_blocks[0] == bb);
5223 add_block_to_current_region (bb);
5224
5225 /* We associate creating/deleting data sets with the first insn
5226 appearing / disappearing in the bb. */
5227 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5228 create_initial_data_sets (bb);
5229
5230 last_added_blocks.release ();
5231 }
5232 else
5233 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5234 {
5235 int i;
5236 basic_block temp_bb = NULL;
5237
5238 for (i = 0;
5239 last_added_blocks.iterate (i, &bb); i++)
5240 {
5241 add_block_to_current_region (bb);
5242 temp_bb = bb;
5243 }
5244
5245 /* We need to fetch at least one bb so we know the region
5246 to update. */
5247 gcc_assert (temp_bb != NULL);
5248 bb = temp_bb;
5249
5250 last_added_blocks.release ();
5251 }
5252
5253 rgn_setup_region (CONTAINING_RGN (bb->index));
5254 }
5255
5256 /* Remove BB from the current region and update all data.
5257 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5258 static void
5259 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5260 {
5261 unsigned idx = bb->index;
5262
5263 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5264
5265 remove_bb_from_region (bb);
5266 return_bb_to_pool (bb);
5267 bitmap_clear_bit (blocks_to_reschedule, idx);
5268
5269 if (remove_from_cfg_p)
5270 {
5271 basic_block succ = single_succ (bb);
5272 delete_and_free_basic_block (bb);
5273 set_immediate_dominator (CDI_DOMINATORS, succ,
5274 recompute_dominator (CDI_DOMINATORS, succ));
5275 }
5276
5277 rgn_setup_region (CONTAINING_RGN (idx));
5278 }
5279
5280 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5281 static void
5282 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5283 {
5284 if (in_current_region_p (merge_bb))
5285 concat_note_lists (BB_NOTE_LIST (empty_bb),
5286 &BB_NOTE_LIST (merge_bb));
5287 BB_NOTE_LIST (empty_bb) = NULL;
5288
5289 }
5290
5291 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5292 region, but keep it in CFG. */
5293 static void
5294 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5295 {
5296 /* The block should contain just a note or a label.
5297 We try to check whether it is unused below. */
5298 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5299 || LABEL_P (BB_HEAD (empty_bb)));
5300
5301 /* If basic block has predecessors or successors, redirect them. */
5302 if (remove_from_cfg_p
5303 && (EDGE_COUNT (empty_bb->preds) > 0
5304 || EDGE_COUNT (empty_bb->succs) > 0))
5305 {
5306 basic_block pred;
5307 basic_block succ;
5308
5309 /* We need to init PRED and SUCC before redirecting edges. */
5310 if (EDGE_COUNT (empty_bb->preds) > 0)
5311 {
5312 edge e;
5313
5314 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5315
5316 e = EDGE_PRED (empty_bb, 0);
5317 gcc_assert (e->src == empty_bb->prev_bb
5318 && (e->flags & EDGE_FALLTHRU));
5319
5320 pred = empty_bb->prev_bb;
5321 }
5322 else
5323 pred = NULL;
5324
5325 if (EDGE_COUNT (empty_bb->succs) > 0)
5326 {
5327 /* We do not check fallthruness here as above, because
5328 after removing a jump the edge may actually be not fallthru. */
5329 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5330 succ = EDGE_SUCC (empty_bb, 0)->dest;
5331 }
5332 else
5333 succ = NULL;
5334
5335 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5336 {
5337 edge e = EDGE_PRED (empty_bb, 0);
5338
5339 if (e->flags & EDGE_FALLTHRU)
5340 redirect_edge_succ_nodup (e, succ);
5341 else
5342 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5343 }
5344
5345 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5346 {
5347 edge e = EDGE_SUCC (empty_bb, 0);
5348
5349 if (find_edge (pred, e->dest) == NULL)
5350 redirect_edge_pred (e, pred);
5351 }
5352 }
5353
5354 /* Finish removing. */
5355 sel_remove_bb (empty_bb, remove_from_cfg_p);
5356 }
5357
5358 /* An implementation of create_basic_block hook, which additionally updates
5359 per-bb data structures. */
5360 static basic_block
5361 sel_create_basic_block (void *headp, void *endp, basic_block after)
5362 {
5363 basic_block new_bb;
5364 rtx_note *new_bb_note;
5365
5366 gcc_assert (flag_sel_sched_pipelining_outer_loops
5367 || !last_added_blocks.exists ());
5368
5369 new_bb_note = get_bb_note_from_pool ();
5370
5371 if (new_bb_note == NULL_RTX)
5372 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5373 else
5374 {
5375 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5376 (rtx_insn *) endp,
5377 new_bb_note, after);
5378 new_bb->aux = NULL;
5379 }
5380
5381 last_added_blocks.safe_push (new_bb);
5382
5383 return new_bb;
5384 }
5385
5386 /* Implement sched_init_only_bb (). */
5387 static void
5388 sel_init_only_bb (basic_block bb, basic_block after)
5389 {
5390 gcc_assert (after == NULL);
5391
5392 extend_regions ();
5393 rgn_make_new_region_out_of_new_block (bb);
5394 }
5395
5396 /* Update the latch when we've splitted or merged it from FROM block to TO.
5397 This should be checked for all outer loops, too. */
5398 static void
5399 change_loops_latches (basic_block from, basic_block to)
5400 {
5401 gcc_assert (from != to);
5402
5403 if (current_loop_nest)
5404 {
5405 struct loop *loop;
5406
5407 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5408 if (considered_for_pipelining_p (loop) && loop->latch == from)
5409 {
5410 gcc_assert (loop == current_loop_nest);
5411 loop->latch = to;
5412 gcc_assert (loop_latch_edge (loop));
5413 }
5414 }
5415 }
5416
5417 /* Splits BB on two basic blocks, adding it to the region and extending
5418 per-bb data structures. Returns the newly created bb. */
5419 static basic_block
5420 sel_split_block (basic_block bb, rtx after)
5421 {
5422 basic_block new_bb;
5423 insn_t insn;
5424
5425 new_bb = sched_split_block_1 (bb, after);
5426 sel_add_bb (new_bb);
5427
5428 /* This should be called after sel_add_bb, because this uses
5429 CONTAINING_RGN for the new block, which is not yet initialized.
5430 FIXME: this function may be a no-op now. */
5431 change_loops_latches (bb, new_bb);
5432
5433 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5434 FOR_BB_INSNS (new_bb, insn)
5435 if (INSN_P (insn))
5436 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5437
5438 if (sel_bb_empty_p (bb))
5439 {
5440 gcc_assert (!sel_bb_empty_p (new_bb));
5441
5442 /* NEW_BB has data sets that need to be updated and BB holds
5443 data sets that should be removed. Exchange these data sets
5444 so that we won't lose BB's valid data sets. */
5445 exchange_data_sets (new_bb, bb);
5446 free_data_sets (bb);
5447 }
5448
5449 if (!sel_bb_empty_p (new_bb)
5450 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5451 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5452
5453 return new_bb;
5454 }
5455
5456 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5457 Otherwise returns NULL. */
5458 static rtx_insn *
5459 check_for_new_jump (basic_block bb, int prev_max_uid)
5460 {
5461 rtx_insn *end;
5462
5463 end = sel_bb_end (bb);
5464 if (end && INSN_UID (end) >= prev_max_uid)
5465 return end;
5466 return NULL;
5467 }
5468
5469 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5470 New means having UID at least equal to PREV_MAX_UID. */
5471 static rtx_insn *
5472 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5473 {
5474 rtx_insn *jump;
5475
5476 /* Return immediately if no new insns were emitted. */
5477 if (get_max_uid () == prev_max_uid)
5478 return NULL;
5479
5480 /* Now check both blocks for new jumps. It will ever be only one. */
5481 if ((jump = check_for_new_jump (from, prev_max_uid)))
5482 return jump;
5483
5484 if (jump_bb != NULL
5485 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5486 return jump;
5487 return NULL;
5488 }
5489
5490 /* Splits E and adds the newly created basic block to the current region.
5491 Returns this basic block. */
5492 basic_block
5493 sel_split_edge (edge e)
5494 {
5495 basic_block new_bb, src, other_bb = NULL;
5496 int prev_max_uid;
5497 rtx_insn *jump;
5498
5499 src = e->src;
5500 prev_max_uid = get_max_uid ();
5501 new_bb = split_edge (e);
5502
5503 if (flag_sel_sched_pipelining_outer_loops
5504 && current_loop_nest)
5505 {
5506 int i;
5507 basic_block bb;
5508
5509 /* Some of the basic blocks might not have been added to the loop.
5510 Add them here, until this is fixed in force_fallthru. */
5511 for (i = 0;
5512 last_added_blocks.iterate (i, &bb); i++)
5513 if (!bb->loop_father)
5514 {
5515 add_bb_to_loop (bb, e->dest->loop_father);
5516
5517 gcc_assert (!other_bb && (new_bb->index != bb->index));
5518 other_bb = bb;
5519 }
5520 }
5521
5522 /* Add all last_added_blocks to the region. */
5523 sel_add_bb (NULL);
5524
5525 jump = find_new_jump (src, new_bb, prev_max_uid);
5526 if (jump)
5527 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5528
5529 /* Put the correct lv set on this block. */
5530 if (other_bb && !sel_bb_empty_p (other_bb))
5531 compute_live (sel_bb_head (other_bb));
5532
5533 return new_bb;
5534 }
5535
5536 /* Implement sched_create_empty_bb (). */
5537 static basic_block
5538 sel_create_empty_bb (basic_block after)
5539 {
5540 basic_block new_bb;
5541
5542 new_bb = sched_create_empty_bb_1 (after);
5543
5544 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5545 later. */
5546 gcc_assert (last_added_blocks.length () == 1
5547 && last_added_blocks[0] == new_bb);
5548
5549 last_added_blocks.release ();
5550 return new_bb;
5551 }
5552
5553 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5554 will be splitted to insert a check. */
5555 basic_block
5556 sel_create_recovery_block (insn_t orig_insn)
5557 {
5558 basic_block first_bb, second_bb, recovery_block;
5559 basic_block before_recovery = NULL;
5560 rtx_insn *jump;
5561
5562 first_bb = BLOCK_FOR_INSN (orig_insn);
5563 if (sel_bb_end_p (orig_insn))
5564 {
5565 /* Avoid introducing an empty block while splitting. */
5566 gcc_assert (single_succ_p (first_bb));
5567 second_bb = single_succ (first_bb);
5568 }
5569 else
5570 second_bb = sched_split_block (first_bb, orig_insn);
5571
5572 recovery_block = sched_create_recovery_block (&before_recovery);
5573 if (before_recovery)
5574 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5575
5576 gcc_assert (sel_bb_empty_p (recovery_block));
5577 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5578 if (current_loops != NULL)
5579 add_bb_to_loop (recovery_block, first_bb->loop_father);
5580
5581 sel_add_bb (recovery_block);
5582
5583 jump = BB_END (recovery_block);
5584 gcc_assert (sel_bb_head (recovery_block) == jump);
5585 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5586
5587 return recovery_block;
5588 }
5589
5590 /* Merge basic block B into basic block A. */
5591 static void
5592 sel_merge_blocks (basic_block a, basic_block b)
5593 {
5594 gcc_assert (sel_bb_empty_p (b)
5595 && EDGE_COUNT (b->preds) == 1
5596 && EDGE_PRED (b, 0)->src == b->prev_bb);
5597
5598 move_bb_info (b->prev_bb, b);
5599 remove_empty_bb (b, false);
5600 merge_blocks (a, b);
5601 change_loops_latches (b, a);
5602 }
5603
5604 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5605 data structures for possibly created bb and insns. */
5606 void
5607 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5608 {
5609 basic_block jump_bb, src, orig_dest = e->dest;
5610 int prev_max_uid;
5611 rtx_insn *jump;
5612 int old_seqno = -1;
5613
5614 /* This function is now used only for bookkeeping code creation, where
5615 we'll never get the single pred of orig_dest block and thus will not
5616 hit unreachable blocks when updating dominator info. */
5617 gcc_assert (!sel_bb_empty_p (e->src)
5618 && !single_pred_p (orig_dest));
5619 src = e->src;
5620 prev_max_uid = get_max_uid ();
5621 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5622 when the conditional jump being redirected may become unconditional. */
5623 if (any_condjump_p (BB_END (src))
5624 && INSN_SEQNO (BB_END (src)) >= 0)
5625 old_seqno = INSN_SEQNO (BB_END (src));
5626
5627 jump_bb = redirect_edge_and_branch_force (e, to);
5628 if (jump_bb != NULL)
5629 sel_add_bb (jump_bb);
5630
5631 /* This function could not be used to spoil the loop structure by now,
5632 thus we don't care to update anything. But check it to be sure. */
5633 if (current_loop_nest
5634 && pipelining_p)
5635 gcc_assert (loop_latch_edge (current_loop_nest));
5636
5637 jump = find_new_jump (src, jump_bb, prev_max_uid);
5638 if (jump)
5639 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5640 old_seqno);
5641 set_immediate_dominator (CDI_DOMINATORS, to,
5642 recompute_dominator (CDI_DOMINATORS, to));
5643 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5644 recompute_dominator (CDI_DOMINATORS, orig_dest));
5645 }
5646
5647 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5648 redirected edge are in reverse topological order. */
5649 bool
5650 sel_redirect_edge_and_branch (edge e, basic_block to)
5651 {
5652 bool latch_edge_p;
5653 basic_block src, orig_dest = e->dest;
5654 int prev_max_uid;
5655 rtx_insn *jump;
5656 edge redirected;
5657 bool recompute_toporder_p = false;
5658 bool maybe_unreachable = single_pred_p (orig_dest);
5659 int old_seqno = -1;
5660
5661 latch_edge_p = (pipelining_p
5662 && current_loop_nest
5663 && e == loop_latch_edge (current_loop_nest));
5664
5665 src = e->src;
5666 prev_max_uid = get_max_uid ();
5667
5668 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5669 when the conditional jump being redirected may become unconditional. */
5670 if (any_condjump_p (BB_END (src))
5671 && INSN_SEQNO (BB_END (src)) >= 0)
5672 old_seqno = INSN_SEQNO (BB_END (src));
5673
5674 redirected = redirect_edge_and_branch (e, to);
5675
5676 gcc_assert (redirected && !last_added_blocks.exists ());
5677
5678 /* When we've redirected a latch edge, update the header. */
5679 if (latch_edge_p)
5680 {
5681 current_loop_nest->header = to;
5682 gcc_assert (loop_latch_edge (current_loop_nest));
5683 }
5684
5685 /* In rare situations, the topological relation between the blocks connected
5686 by the redirected edge can change (see PR42245 for an example). Update
5687 block_to_bb/bb_to_block. */
5688 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5689 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5690 recompute_toporder_p = true;
5691
5692 jump = find_new_jump (src, NULL, prev_max_uid);
5693 if (jump)
5694 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5695
5696 /* Only update dominator info when we don't have unreachable blocks.
5697 Otherwise we'll update in maybe_tidy_empty_bb. */
5698 if (!maybe_unreachable)
5699 {
5700 set_immediate_dominator (CDI_DOMINATORS, to,
5701 recompute_dominator (CDI_DOMINATORS, to));
5702 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5703 recompute_dominator (CDI_DOMINATORS, orig_dest));
5704 }
5705 return recompute_toporder_p;
5706 }
5707
5708 /* This variable holds the cfg hooks used by the selective scheduler. */
5709 static struct cfg_hooks sel_cfg_hooks;
5710
5711 /* Register sel-sched cfg hooks. */
5712 void
5713 sel_register_cfg_hooks (void)
5714 {
5715 sched_split_block = sel_split_block;
5716
5717 orig_cfg_hooks = get_cfg_hooks ();
5718 sel_cfg_hooks = orig_cfg_hooks;
5719
5720 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5721
5722 set_cfg_hooks (sel_cfg_hooks);
5723
5724 sched_init_only_bb = sel_init_only_bb;
5725 sched_split_block = sel_split_block;
5726 sched_create_empty_bb = sel_create_empty_bb;
5727 }
5728
5729 /* Unregister sel-sched cfg hooks. */
5730 void
5731 sel_unregister_cfg_hooks (void)
5732 {
5733 sched_create_empty_bb = NULL;
5734 sched_split_block = NULL;
5735 sched_init_only_bb = NULL;
5736
5737 set_cfg_hooks (orig_cfg_hooks);
5738 }
5739 \f
5740
5741 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5742 LABEL is where this jump should be directed. */
5743 rtx_insn *
5744 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5745 {
5746 rtx_insn *insn_rtx;
5747
5748 gcc_assert (!INSN_P (pattern));
5749
5750 start_sequence ();
5751
5752 if (label == NULL_RTX)
5753 insn_rtx = emit_insn (pattern);
5754 else if (DEBUG_INSN_P (label))
5755 insn_rtx = emit_debug_insn (pattern);
5756 else
5757 {
5758 insn_rtx = emit_jump_insn (pattern);
5759 JUMP_LABEL (insn_rtx) = label;
5760 ++LABEL_NUSES (label);
5761 }
5762
5763 end_sequence ();
5764
5765 sched_extend_luids ();
5766 sched_extend_target ();
5767 sched_deps_init (false);
5768
5769 /* Initialize INSN_CODE now. */
5770 recog_memoized (insn_rtx);
5771 return insn_rtx;
5772 }
5773
5774 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5775 must not be clonable. */
5776 vinsn_t
5777 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5778 {
5779 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5780
5781 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5782 return vinsn_create (insn_rtx, force_unique_p);
5783 }
5784
5785 /* Create a copy of INSN_RTX. */
5786 rtx_insn *
5787 create_copy_of_insn_rtx (rtx insn_rtx)
5788 {
5789 rtx_insn *res;
5790 rtx link;
5791
5792 if (DEBUG_INSN_P (insn_rtx))
5793 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5794 insn_rtx);
5795
5796 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5797
5798 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5799 NULL_RTX);
5800
5801 /* Locate the end of existing REG_NOTES in NEW_RTX. */
5802 rtx *ptail = &REG_NOTES (res);
5803 while (*ptail != NULL_RTX)
5804 ptail = &XEXP (*ptail, 1);
5805
5806 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5807 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5808 there too, but are supposed to be sticky, so we copy them. */
5809 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5810 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5811 && REG_NOTE_KIND (link) != REG_EQUAL
5812 && REG_NOTE_KIND (link) != REG_EQUIV)
5813 {
5814 *ptail = duplicate_reg_note (link);
5815 ptail = &XEXP (*ptail, 1);
5816 }
5817
5818 return res;
5819 }
5820
5821 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5822 void
5823 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5824 {
5825 vinsn_detach (EXPR_VINSN (expr));
5826
5827 EXPR_VINSN (expr) = new_vinsn;
5828 vinsn_attach (new_vinsn);
5829 }
5830
5831 /* Helpers for global init. */
5832 /* This structure is used to be able to call existing bundling mechanism
5833 and calculate insn priorities. */
5834 static struct haifa_sched_info sched_sel_haifa_sched_info =
5835 {
5836 NULL, /* init_ready_list */
5837 NULL, /* can_schedule_ready_p */
5838 NULL, /* schedule_more_p */
5839 NULL, /* new_ready */
5840 NULL, /* rgn_rank */
5841 sel_print_insn, /* rgn_print_insn */
5842 contributes_to_priority,
5843 NULL, /* insn_finishes_block_p */
5844
5845 NULL, NULL,
5846 NULL, NULL,
5847 0, 0,
5848
5849 NULL, /* add_remove_insn */
5850 NULL, /* begin_schedule_ready */
5851 NULL, /* begin_move_insn */
5852 NULL, /* advance_target_bb */
5853
5854 NULL,
5855 NULL,
5856
5857 SEL_SCHED | NEW_BBS
5858 };
5859
5860 /* Setup special insns used in the scheduler. */
5861 void
5862 setup_nop_and_exit_insns (void)
5863 {
5864 gcc_assert (nop_pattern == NULL_RTX
5865 && exit_insn == NULL_RTX);
5866
5867 nop_pattern = constm1_rtx;
5868
5869 start_sequence ();
5870 emit_insn (nop_pattern);
5871 exit_insn = get_insns ();
5872 end_sequence ();
5873 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5874 }
5875
5876 /* Free special insns used in the scheduler. */
5877 void
5878 free_nop_and_exit_insns (void)
5879 {
5880 exit_insn = NULL;
5881 nop_pattern = NULL_RTX;
5882 }
5883
5884 /* Setup a special vinsn used in new insns initialization. */
5885 void
5886 setup_nop_vinsn (void)
5887 {
5888 nop_vinsn = vinsn_create (exit_insn, false);
5889 vinsn_attach (nop_vinsn);
5890 }
5891
5892 /* Free a special vinsn used in new insns initialization. */
5893 void
5894 free_nop_vinsn (void)
5895 {
5896 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5897 vinsn_detach (nop_vinsn);
5898 nop_vinsn = NULL;
5899 }
5900
5901 /* Call a set_sched_flags hook. */
5902 void
5903 sel_set_sched_flags (void)
5904 {
5905 /* ??? This means that set_sched_flags were called, and we decided to
5906 support speculation. However, set_sched_flags also modifies flags
5907 on current_sched_info, doing this only at global init. And we
5908 sometimes change c_s_i later. So put the correct flags again. */
5909 if (spec_info && targetm.sched.set_sched_flags)
5910 targetm.sched.set_sched_flags (spec_info);
5911 }
5912
5913 /* Setup pointers to global sched info structures. */
5914 void
5915 sel_setup_sched_infos (void)
5916 {
5917 rgn_setup_common_sched_info ();
5918
5919 memcpy (&sel_common_sched_info, common_sched_info,
5920 sizeof (sel_common_sched_info));
5921
5922 sel_common_sched_info.fix_recovery_cfg = NULL;
5923 sel_common_sched_info.add_block = NULL;
5924 sel_common_sched_info.estimate_number_of_insns
5925 = sel_estimate_number_of_insns;
5926 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5927 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5928
5929 common_sched_info = &sel_common_sched_info;
5930
5931 current_sched_info = &sched_sel_haifa_sched_info;
5932 current_sched_info->sched_max_insns_priority =
5933 get_rgn_sched_max_insns_priority ();
5934
5935 sel_set_sched_flags ();
5936 }
5937 \f
5938
5939 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5940 *BB_ORD_INDEX after that is increased. */
5941 static void
5942 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5943 {
5944 RGN_NR_BLOCKS (rgn) += 1;
5945 RGN_DONT_CALC_DEPS (rgn) = 0;
5946 RGN_HAS_REAL_EBB (rgn) = 0;
5947 CONTAINING_RGN (bb->index) = rgn;
5948 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5949 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5950 (*bb_ord_index)++;
5951
5952 /* FIXME: it is true only when not scheduling ebbs. */
5953 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5954 }
5955
5956 /* Functions to support pipelining of outer loops. */
5957
5958 /* Creates a new empty region and returns it's number. */
5959 static int
5960 sel_create_new_region (void)
5961 {
5962 int new_rgn_number = nr_regions;
5963
5964 RGN_NR_BLOCKS (new_rgn_number) = 0;
5965
5966 /* FIXME: This will work only when EBBs are not created. */
5967 if (new_rgn_number != 0)
5968 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5969 RGN_NR_BLOCKS (new_rgn_number - 1);
5970 else
5971 RGN_BLOCKS (new_rgn_number) = 0;
5972
5973 /* Set the blocks of the next region so the other functions may
5974 calculate the number of blocks in the region. */
5975 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5976 RGN_NR_BLOCKS (new_rgn_number);
5977
5978 nr_regions++;
5979
5980 return new_rgn_number;
5981 }
5982
5983 /* If X has a smaller topological sort number than Y, returns -1;
5984 if greater, returns 1. */
5985 static int
5986 bb_top_order_comparator (const void *x, const void *y)
5987 {
5988 basic_block bb1 = *(const basic_block *) x;
5989 basic_block bb2 = *(const basic_block *) y;
5990
5991 gcc_assert (bb1 == bb2
5992 || rev_top_order_index[bb1->index]
5993 != rev_top_order_index[bb2->index]);
5994
5995 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5996 bbs with greater number should go earlier. */
5997 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5998 return -1;
5999 else
6000 return 1;
6001 }
6002
6003 /* Create a region for LOOP and return its number. If we don't want
6004 to pipeline LOOP, return -1. */
6005 static int
6006 make_region_from_loop (struct loop *loop)
6007 {
6008 unsigned int i;
6009 int new_rgn_number = -1;
6010 struct loop *inner;
6011
6012 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6013 int bb_ord_index = 0;
6014 basic_block *loop_blocks;
6015 basic_block preheader_block;
6016
6017 if (loop->num_nodes
6018 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
6019 return -1;
6020
6021 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
6022 for (inner = loop->inner; inner; inner = inner->inner)
6023 if (flow_bb_inside_loop_p (inner, loop->latch))
6024 return -1;
6025
6026 loop->ninsns = num_loop_insns (loop);
6027 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
6028 return -1;
6029
6030 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
6031
6032 for (i = 0; i < loop->num_nodes; i++)
6033 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
6034 {
6035 free (loop_blocks);
6036 return -1;
6037 }
6038
6039 preheader_block = loop_preheader_edge (loop)->src;
6040 gcc_assert (preheader_block);
6041 gcc_assert (loop_blocks[0] == loop->header);
6042
6043 new_rgn_number = sel_create_new_region ();
6044
6045 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
6046 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
6047
6048 for (i = 0; i < loop->num_nodes; i++)
6049 {
6050 /* Add only those blocks that haven't been scheduled in the inner loop.
6051 The exception is the basic blocks with bookkeeping code - they should
6052 be added to the region (and they actually don't belong to the loop
6053 body, but to the region containing that loop body). */
6054
6055 gcc_assert (new_rgn_number >= 0);
6056
6057 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6058 {
6059 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6060 new_rgn_number);
6061 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6062 }
6063 }
6064
6065 free (loop_blocks);
6066 MARK_LOOP_FOR_PIPELINING (loop);
6067
6068 return new_rgn_number;
6069 }
6070
6071 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6072 void
6073 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6074 {
6075 unsigned int i;
6076 int new_rgn_number = -1;
6077 basic_block bb;
6078
6079 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6080 int bb_ord_index = 0;
6081
6082 new_rgn_number = sel_create_new_region ();
6083
6084 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6085 {
6086 gcc_assert (new_rgn_number >= 0);
6087
6088 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6089 }
6090
6091 vec_free (loop_blocks);
6092 }
6093
6094
6095 /* Create region(s) from loop nest LOOP, such that inner loops will be
6096 pipelined before outer loops. Returns true when a region for LOOP
6097 is created. */
6098 static bool
6099 make_regions_from_loop_nest (struct loop *loop)
6100 {
6101 struct loop *cur_loop;
6102 int rgn_number;
6103
6104 /* Traverse all inner nodes of the loop. */
6105 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6106 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6107 return false;
6108
6109 /* At this moment all regular inner loops should have been pipelined.
6110 Try to create a region from this loop. */
6111 rgn_number = make_region_from_loop (loop);
6112
6113 if (rgn_number < 0)
6114 return false;
6115
6116 loop_nests.safe_push (loop);
6117 return true;
6118 }
6119
6120 /* Initalize data structures needed. */
6121 void
6122 sel_init_pipelining (void)
6123 {
6124 /* Collect loop information to be used in outer loops pipelining. */
6125 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6126 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6127 | LOOPS_HAVE_RECORDED_EXITS
6128 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6129 current_loop_nest = NULL;
6130
6131 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6132 bitmap_clear (bbs_in_loop_rgns);
6133
6134 recompute_rev_top_order ();
6135 }
6136
6137 /* Returns a struct loop for region RGN. */
6138 loop_p
6139 get_loop_nest_for_rgn (unsigned int rgn)
6140 {
6141 /* Regions created with extend_rgns don't have corresponding loop nests,
6142 because they don't represent loops. */
6143 if (rgn < loop_nests.length ())
6144 return loop_nests[rgn];
6145 else
6146 return NULL;
6147 }
6148
6149 /* True when LOOP was included into pipelining regions. */
6150 bool
6151 considered_for_pipelining_p (struct loop *loop)
6152 {
6153 if (loop_depth (loop) == 0)
6154 return false;
6155
6156 /* Now, the loop could be too large or irreducible. Check whether its
6157 region is in LOOP_NESTS.
6158 We determine the region number of LOOP as the region number of its
6159 latch. We can't use header here, because this header could be
6160 just removed preheader and it will give us the wrong region number.
6161 Latch can't be used because it could be in the inner loop too. */
6162 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6163 {
6164 int rgn = CONTAINING_RGN (loop->latch->index);
6165
6166 gcc_assert ((unsigned) rgn < loop_nests.length ());
6167 return true;
6168 }
6169
6170 return false;
6171 }
6172
6173 /* Makes regions from the rest of the blocks, after loops are chosen
6174 for pipelining. */
6175 static void
6176 make_regions_from_the_rest (void)
6177 {
6178 int cur_rgn_blocks;
6179 int *loop_hdr;
6180 int i;
6181
6182 basic_block bb;
6183 edge e;
6184 edge_iterator ei;
6185 int *degree;
6186
6187 /* Index in rgn_bb_table where to start allocating new regions. */
6188 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6189
6190 /* Make regions from all the rest basic blocks - those that don't belong to
6191 any loop or belong to irreducible loops. Prepare the data structures
6192 for extend_rgns. */
6193
6194 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6195 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6196 loop. */
6197 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6198 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6199
6200
6201 /* For each basic block that belongs to some loop assign the number
6202 of innermost loop it belongs to. */
6203 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6204 loop_hdr[i] = -1;
6205
6206 FOR_EACH_BB_FN (bb, cfun)
6207 {
6208 if (bb->loop_father && bb->loop_father->num != 0
6209 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6210 loop_hdr[bb->index] = bb->loop_father->num;
6211 }
6212
6213 /* For each basic block degree is calculated as the number of incoming
6214 edges, that are going out of bbs that are not yet scheduled.
6215 The basic blocks that are scheduled have degree value of zero. */
6216 FOR_EACH_BB_FN (bb, cfun)
6217 {
6218 degree[bb->index] = 0;
6219
6220 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6221 {
6222 FOR_EACH_EDGE (e, ei, bb->preds)
6223 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6224 degree[bb->index]++;
6225 }
6226 else
6227 degree[bb->index] = -1;
6228 }
6229
6230 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6231
6232 /* Any block that did not end up in a region is placed into a region
6233 by itself. */
6234 FOR_EACH_BB_FN (bb, cfun)
6235 if (degree[bb->index] >= 0)
6236 {
6237 rgn_bb_table[cur_rgn_blocks] = bb->index;
6238 RGN_NR_BLOCKS (nr_regions) = 1;
6239 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6240 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6241 RGN_HAS_REAL_EBB (nr_regions) = 0;
6242 CONTAINING_RGN (bb->index) = nr_regions++;
6243 BLOCK_TO_BB (bb->index) = 0;
6244 }
6245
6246 free (degree);
6247 free (loop_hdr);
6248 }
6249
6250 /* Free data structures used in pipelining of loops. */
6251 void sel_finish_pipelining (void)
6252 {
6253 struct loop *loop;
6254
6255 /* Release aux fields so we don't free them later by mistake. */
6256 FOR_EACH_LOOP (loop, 0)
6257 loop->aux = NULL;
6258
6259 loop_optimizer_finalize ();
6260
6261 loop_nests.release ();
6262
6263 free (rev_top_order_index);
6264 rev_top_order_index = NULL;
6265 }
6266
6267 /* This function replaces the find_rgns when
6268 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6269 void
6270 sel_find_rgns (void)
6271 {
6272 sel_init_pipelining ();
6273 extend_regions ();
6274
6275 if (current_loops)
6276 {
6277 loop_p loop;
6278
6279 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6280 ? LI_FROM_INNERMOST
6281 : LI_ONLY_INNERMOST))
6282 make_regions_from_loop_nest (loop);
6283 }
6284
6285 /* Make regions from all the rest basic blocks and schedule them.
6286 These blocks include blocks that don't belong to any loop or belong
6287 to irreducible loops. */
6288 make_regions_from_the_rest ();
6289
6290 /* We don't need bbs_in_loop_rgns anymore. */
6291 sbitmap_free (bbs_in_loop_rgns);
6292 bbs_in_loop_rgns = NULL;
6293 }
6294
6295 /* Add the preheader blocks from previous loop to current region taking
6296 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6297 This function is only used with -fsel-sched-pipelining-outer-loops. */
6298 void
6299 sel_add_loop_preheaders (bb_vec_t *bbs)
6300 {
6301 int i;
6302 basic_block bb;
6303 vec<basic_block> *preheader_blocks
6304 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6305
6306 if (!preheader_blocks)
6307 return;
6308
6309 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6310 {
6311 bbs->safe_push (bb);
6312 last_added_blocks.safe_push (bb);
6313 sel_add_bb (bb);
6314 }
6315
6316 vec_free (preheader_blocks);
6317 }
6318
6319 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6320 Please note that the function should also work when pipelining_p is
6321 false, because it is used when deciding whether we should or should
6322 not reschedule pipelined code. */
6323 bool
6324 sel_is_loop_preheader_p (basic_block bb)
6325 {
6326 if (current_loop_nest)
6327 {
6328 struct loop *outer;
6329
6330 if (preheader_removed)
6331 return false;
6332
6333 /* Preheader is the first block in the region. */
6334 if (BLOCK_TO_BB (bb->index) == 0)
6335 return true;
6336
6337 /* We used to find a preheader with the topological information.
6338 Check that the above code is equivalent to what we did before. */
6339
6340 if (in_current_region_p (current_loop_nest->header))
6341 gcc_assert (!(BLOCK_TO_BB (bb->index)
6342 < BLOCK_TO_BB (current_loop_nest->header->index)));
6343
6344 /* Support the situation when the latch block of outer loop
6345 could be from here. */
6346 for (outer = loop_outer (current_loop_nest);
6347 outer;
6348 outer = loop_outer (outer))
6349 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6350 gcc_unreachable ();
6351 }
6352
6353 return false;
6354 }
6355
6356 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6357 can be removed, making the corresponding edge fallthrough (assuming that
6358 all basic blocks between JUMP_BB and DEST_BB are empty). */
6359 static bool
6360 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6361 {
6362 if (!onlyjump_p (BB_END (jump_bb))
6363 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6364 return false;
6365
6366 /* Several outgoing edges, abnormal edge or destination of jump is
6367 not DEST_BB. */
6368 if (EDGE_COUNT (jump_bb->succs) != 1
6369 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6370 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6371 return false;
6372
6373 /* If not anything of the upper. */
6374 return true;
6375 }
6376
6377 /* Removes the loop preheader from the current region and saves it in
6378 PREHEADER_BLOCKS of the father loop, so they will be added later to
6379 region that represents an outer loop. */
6380 static void
6381 sel_remove_loop_preheader (void)
6382 {
6383 int i, old_len;
6384 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6385 basic_block bb;
6386 bool all_empty_p = true;
6387 vec<basic_block> *preheader_blocks
6388 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6389
6390 vec_check_alloc (preheader_blocks, 0);
6391
6392 gcc_assert (current_loop_nest);
6393 old_len = preheader_blocks->length ();
6394
6395 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6396 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6397 {
6398 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6399
6400 /* If the basic block belongs to region, but doesn't belong to
6401 corresponding loop, then it should be a preheader. */
6402 if (sel_is_loop_preheader_p (bb))
6403 {
6404 preheader_blocks->safe_push (bb);
6405 if (BB_END (bb) != bb_note (bb))
6406 all_empty_p = false;
6407 }
6408 }
6409
6410 /* Remove these blocks only after iterating over the whole region. */
6411 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6412 {
6413 bb = (*preheader_blocks)[i];
6414 sel_remove_bb (bb, false);
6415 }
6416
6417 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6418 {
6419 if (!all_empty_p)
6420 /* Immediately create new region from preheader. */
6421 make_region_from_loop_preheader (preheader_blocks);
6422 else
6423 {
6424 /* If all preheader blocks are empty - dont create new empty region.
6425 Instead, remove them completely. */
6426 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6427 {
6428 edge e;
6429 edge_iterator ei;
6430 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6431
6432 /* Redirect all incoming edges to next basic block. */
6433 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6434 {
6435 if (! (e->flags & EDGE_FALLTHRU))
6436 redirect_edge_and_branch (e, bb->next_bb);
6437 else
6438 redirect_edge_succ (e, bb->next_bb);
6439 }
6440 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6441 delete_and_free_basic_block (bb);
6442
6443 /* Check if after deleting preheader there is a nonconditional
6444 jump in PREV_BB that leads to the next basic block NEXT_BB.
6445 If it is so - delete this jump and clear data sets of its
6446 basic block if it becomes empty. */
6447 if (next_bb->prev_bb == prev_bb
6448 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6449 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6450 {
6451 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6452 if (BB_END (prev_bb) == bb_note (prev_bb))
6453 free_data_sets (prev_bb);
6454 }
6455
6456 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6457 recompute_dominator (CDI_DOMINATORS,
6458 next_bb));
6459 }
6460 }
6461 vec_free (preheader_blocks);
6462 }
6463 else
6464 /* Store preheader within the father's loop structure. */
6465 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6466 preheader_blocks);
6467 }
6468
6469 #endif