config.gcc: Handle --enable-fdpic.
[gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "cfghooks.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "df.h"
28 #include "diagnostic-core.h"
29 #include "tm_p.h"
30 #include "regs.h"
31 #include "cfgrtl.h"
32 #include "cfganal.h"
33 #include "cfgbuild.h"
34 #include "flags.h"
35 #include "insn-config.h"
36 #include "insn-attr.h"
37 #include "except.h"
38 #include "recog.h"
39 #include "params.h"
40 #include "target.h"
41 #include "sched-int.h"
42 #include "langhooks.h"
43 #include "rtlhooks-def.h"
44 #include "emit-rtl.h" /* FIXME: Can go away once crtl is moved to rtl.h. */
45
46 #ifdef INSN_SCHEDULING
47 #include "regset.h"
48 #include "cfgloop.h"
49 #include "sel-sched-ir.h"
50 /* We don't have to use it except for sel_print_insn. */
51 #include "sel-sched-dump.h"
52
53 /* A vector holding bb info for whole scheduling pass. */
54 vec<sel_global_bb_info_def>
55 sel_global_bb_info = vNULL;
56
57 /* A vector holding bb info. */
58 vec<sel_region_bb_info_def>
59 sel_region_bb_info = vNULL;
60
61 /* A pool for allocating all lists. */
62 object_allocator<_list_node> sched_lists_pool ("sel-sched-lists");
63
64 /* This contains information about successors for compute_av_set. */
65 struct succs_info current_succs;
66
67 /* Data structure to describe interaction with the generic scheduler utils. */
68 static struct common_sched_info_def sel_common_sched_info;
69
70 /* The loop nest being pipelined. */
71 struct loop *current_loop_nest;
72
73 /* LOOP_NESTS is a vector containing the corresponding loop nest for
74 each region. */
75 static vec<loop_p> loop_nests = vNULL;
76
77 /* Saves blocks already in loop regions, indexed by bb->index. */
78 static sbitmap bbs_in_loop_rgns = NULL;
79
80 /* CFG hooks that are saved before changing create_basic_block hook. */
81 static struct cfg_hooks orig_cfg_hooks;
82 \f
83
84 /* Array containing reverse topological index of function basic blocks,
85 indexed by BB->INDEX. */
86 static int *rev_top_order_index = NULL;
87
88 /* Length of the above array. */
89 static int rev_top_order_index_len = -1;
90
91 /* A regset pool structure. */
92 static struct
93 {
94 /* The stack to which regsets are returned. */
95 regset *v;
96
97 /* Its pointer. */
98 int n;
99
100 /* Its size. */
101 int s;
102
103 /* In VV we save all generated regsets so that, when destructing the
104 pool, we can compare it with V and check that every regset was returned
105 back to pool. */
106 regset *vv;
107
108 /* The pointer of VV stack. */
109 int nn;
110
111 /* Its size. */
112 int ss;
113
114 /* The difference between allocated and returned regsets. */
115 int diff;
116 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
117
118 /* This represents the nop pool. */
119 static struct
120 {
121 /* The vector which holds previously emitted nops. */
122 insn_t *v;
123
124 /* Its pointer. */
125 int n;
126
127 /* Its size. */
128 int s;
129 } nop_pool = { NULL, 0, 0 };
130
131 /* The pool for basic block notes. */
132 static vec<rtx_note *> bb_note_pool;
133
134 /* A NOP pattern used to emit placeholder insns. */
135 rtx nop_pattern = NULL_RTX;
136 /* A special instruction that resides in EXIT_BLOCK.
137 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
138 rtx_insn *exit_insn = NULL;
139
140 /* TRUE if while scheduling current region, which is loop, its preheader
141 was removed. */
142 bool preheader_removed = false;
143 \f
144
145 /* Forward static declarations. */
146 static void fence_clear (fence_t);
147
148 static void deps_init_id (idata_t, insn_t, bool);
149 static void init_id_from_df (idata_t, insn_t, bool);
150 static expr_t set_insn_init (expr_t, vinsn_t, int);
151
152 static void cfg_preds (basic_block, insn_t **, int *);
153 static void prepare_insn_expr (insn_t, int);
154 static void free_history_vect (vec<expr_history_def> &);
155
156 static void move_bb_info (basic_block, basic_block);
157 static void remove_empty_bb (basic_block, bool);
158 static void sel_merge_blocks (basic_block, basic_block);
159 static void sel_remove_loop_preheader (void);
160 static bool bb_has_removable_jump_to_p (basic_block, basic_block);
161
162 static bool insn_is_the_only_one_in_bb_p (insn_t);
163 static void create_initial_data_sets (basic_block);
164
165 static void free_av_set (basic_block);
166 static void invalidate_av_set (basic_block);
167 static void extend_insn_data (void);
168 static void sel_init_new_insn (insn_t, int, int = -1);
169 static void finish_insns (void);
170 \f
171 /* Various list functions. */
172
173 /* Copy an instruction list L. */
174 ilist_t
175 ilist_copy (ilist_t l)
176 {
177 ilist_t head = NULL, *tailp = &head;
178
179 while (l)
180 {
181 ilist_add (tailp, ILIST_INSN (l));
182 tailp = &ILIST_NEXT (*tailp);
183 l = ILIST_NEXT (l);
184 }
185
186 return head;
187 }
188
189 /* Invert an instruction list L. */
190 ilist_t
191 ilist_invert (ilist_t l)
192 {
193 ilist_t res = NULL;
194
195 while (l)
196 {
197 ilist_add (&res, ILIST_INSN (l));
198 l = ILIST_NEXT (l);
199 }
200
201 return res;
202 }
203
204 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
205 void
206 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
207 {
208 bnd_t bnd;
209
210 _list_add (lp);
211 bnd = BLIST_BND (*lp);
212
213 BND_TO (bnd) = to;
214 BND_PTR (bnd) = ptr;
215 BND_AV (bnd) = NULL;
216 BND_AV1 (bnd) = NULL;
217 BND_DC (bnd) = dc;
218 }
219
220 /* Remove the list note pointed to by LP. */
221 void
222 blist_remove (blist_t *lp)
223 {
224 bnd_t b = BLIST_BND (*lp);
225
226 av_set_clear (&BND_AV (b));
227 av_set_clear (&BND_AV1 (b));
228 ilist_clear (&BND_PTR (b));
229
230 _list_remove (lp);
231 }
232
233 /* Init a fence tail L. */
234 void
235 flist_tail_init (flist_tail_t l)
236 {
237 FLIST_TAIL_HEAD (l) = NULL;
238 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
239 }
240
241 /* Try to find fence corresponding to INSN in L. */
242 fence_t
243 flist_lookup (flist_t l, insn_t insn)
244 {
245 while (l)
246 {
247 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
248 return FLIST_FENCE (l);
249
250 l = FLIST_NEXT (l);
251 }
252
253 return NULL;
254 }
255
256 /* Init the fields of F before running fill_insns. */
257 static void
258 init_fence_for_scheduling (fence_t f)
259 {
260 FENCE_BNDS (f) = NULL;
261 FENCE_PROCESSED_P (f) = false;
262 FENCE_SCHEDULED_P (f) = false;
263 }
264
265 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
266 static void
267 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
268 insn_t last_scheduled_insn, vec<rtx_insn *, va_gc> *executing_insns,
269 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
270 int cycle, int cycle_issued_insns, int issue_more,
271 bool starts_cycle_p, bool after_stall_p)
272 {
273 fence_t f;
274
275 _list_add (lp);
276 f = FLIST_FENCE (*lp);
277
278 FENCE_INSN (f) = insn;
279
280 gcc_assert (state != NULL);
281 FENCE_STATE (f) = state;
282
283 FENCE_CYCLE (f) = cycle;
284 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
285 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
286 FENCE_AFTER_STALL_P (f) = after_stall_p;
287
288 gcc_assert (dc != NULL);
289 FENCE_DC (f) = dc;
290
291 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
292 FENCE_TC (f) = tc;
293
294 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
295 FENCE_ISSUE_MORE (f) = issue_more;
296 FENCE_EXECUTING_INSNS (f) = executing_insns;
297 FENCE_READY_TICKS (f) = ready_ticks;
298 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
299 FENCE_SCHED_NEXT (f) = sched_next;
300
301 init_fence_for_scheduling (f);
302 }
303
304 /* Remove the head node of the list pointed to by LP. */
305 static void
306 flist_remove (flist_t *lp)
307 {
308 if (FENCE_INSN (FLIST_FENCE (*lp)))
309 fence_clear (FLIST_FENCE (*lp));
310 _list_remove (lp);
311 }
312
313 /* Clear the fence list pointed to by LP. */
314 void
315 flist_clear (flist_t *lp)
316 {
317 while (*lp)
318 flist_remove (lp);
319 }
320
321 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
322 void
323 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
324 {
325 def_t d;
326
327 _list_add (dl);
328 d = DEF_LIST_DEF (*dl);
329
330 d->orig_insn = original_insn;
331 d->crosses_call = crosses_call;
332 }
333 \f
334
335 /* Functions to work with target contexts. */
336
337 /* Bulk target context. It is convenient for debugging purposes to ensure
338 that there are no uninitialized (null) target contexts. */
339 static tc_t bulk_tc = (tc_t) 1;
340
341 /* Target hooks wrappers. In the future we can provide some default
342 implementations for them. */
343
344 /* Allocate a store for the target context. */
345 static tc_t
346 alloc_target_context (void)
347 {
348 return (targetm.sched.alloc_sched_context
349 ? targetm.sched.alloc_sched_context () : bulk_tc);
350 }
351
352 /* Init target context TC.
353 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
354 Overwise, copy current backend context to TC. */
355 static void
356 init_target_context (tc_t tc, bool clean_p)
357 {
358 if (targetm.sched.init_sched_context)
359 targetm.sched.init_sched_context (tc, clean_p);
360 }
361
362 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
363 int init_target_context (). */
364 tc_t
365 create_target_context (bool clean_p)
366 {
367 tc_t tc = alloc_target_context ();
368
369 init_target_context (tc, clean_p);
370 return tc;
371 }
372
373 /* Copy TC to the current backend context. */
374 void
375 set_target_context (tc_t tc)
376 {
377 if (targetm.sched.set_sched_context)
378 targetm.sched.set_sched_context (tc);
379 }
380
381 /* TC is about to be destroyed. Free any internal data. */
382 static void
383 clear_target_context (tc_t tc)
384 {
385 if (targetm.sched.clear_sched_context)
386 targetm.sched.clear_sched_context (tc);
387 }
388
389 /* Clear and free it. */
390 static void
391 delete_target_context (tc_t tc)
392 {
393 clear_target_context (tc);
394
395 if (targetm.sched.free_sched_context)
396 targetm.sched.free_sched_context (tc);
397 }
398
399 /* Make a copy of FROM in TO.
400 NB: May be this should be a hook. */
401 static void
402 copy_target_context (tc_t to, tc_t from)
403 {
404 tc_t tmp = create_target_context (false);
405
406 set_target_context (from);
407 init_target_context (to, false);
408
409 set_target_context (tmp);
410 delete_target_context (tmp);
411 }
412
413 /* Create a copy of TC. */
414 static tc_t
415 create_copy_of_target_context (tc_t tc)
416 {
417 tc_t copy = alloc_target_context ();
418
419 copy_target_context (copy, tc);
420
421 return copy;
422 }
423
424 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
425 is the same as in init_target_context (). */
426 void
427 reset_target_context (tc_t tc, bool clean_p)
428 {
429 clear_target_context (tc);
430 init_target_context (tc, clean_p);
431 }
432 \f
433 /* Functions to work with dependence contexts.
434 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
435 context. It accumulates information about processed insns to decide if
436 current insn is dependent on the processed ones. */
437
438 /* Make a copy of FROM in TO. */
439 static void
440 copy_deps_context (deps_t to, deps_t from)
441 {
442 init_deps (to, false);
443 deps_join (to, from);
444 }
445
446 /* Allocate store for dep context. */
447 static deps_t
448 alloc_deps_context (void)
449 {
450 return XNEW (struct deps_desc);
451 }
452
453 /* Allocate and initialize dep context. */
454 static deps_t
455 create_deps_context (void)
456 {
457 deps_t dc = alloc_deps_context ();
458
459 init_deps (dc, false);
460 return dc;
461 }
462
463 /* Create a copy of FROM. */
464 static deps_t
465 create_copy_of_deps_context (deps_t from)
466 {
467 deps_t to = alloc_deps_context ();
468
469 copy_deps_context (to, from);
470 return to;
471 }
472
473 /* Clean up internal data of DC. */
474 static void
475 clear_deps_context (deps_t dc)
476 {
477 free_deps (dc);
478 }
479
480 /* Clear and free DC. */
481 static void
482 delete_deps_context (deps_t dc)
483 {
484 clear_deps_context (dc);
485 free (dc);
486 }
487
488 /* Clear and init DC. */
489 static void
490 reset_deps_context (deps_t dc)
491 {
492 clear_deps_context (dc);
493 init_deps (dc, false);
494 }
495
496 /* This structure describes the dependence analysis hooks for advancing
497 dependence context. */
498 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
499 {
500 NULL,
501
502 NULL, /* start_insn */
503 NULL, /* finish_insn */
504 NULL, /* start_lhs */
505 NULL, /* finish_lhs */
506 NULL, /* start_rhs */
507 NULL, /* finish_rhs */
508 haifa_note_reg_set,
509 haifa_note_reg_clobber,
510 haifa_note_reg_use,
511 NULL, /* note_mem_dep */
512 NULL, /* note_dep */
513
514 0, 0, 0
515 };
516
517 /* Process INSN and add its impact on DC. */
518 void
519 advance_deps_context (deps_t dc, insn_t insn)
520 {
521 sched_deps_info = &advance_deps_context_sched_deps_info;
522 deps_analyze_insn (dc, insn);
523 }
524 \f
525
526 /* Functions to work with DFA states. */
527
528 /* Allocate store for a DFA state. */
529 static state_t
530 state_alloc (void)
531 {
532 return xmalloc (dfa_state_size);
533 }
534
535 /* Allocate and initialize DFA state. */
536 static state_t
537 state_create (void)
538 {
539 state_t state = state_alloc ();
540
541 state_reset (state);
542 advance_state (state);
543 return state;
544 }
545
546 /* Free DFA state. */
547 static void
548 state_free (state_t state)
549 {
550 free (state);
551 }
552
553 /* Make a copy of FROM in TO. */
554 static void
555 state_copy (state_t to, state_t from)
556 {
557 memcpy (to, from, dfa_state_size);
558 }
559
560 /* Create a copy of FROM. */
561 static state_t
562 state_create_copy (state_t from)
563 {
564 state_t to = state_alloc ();
565
566 state_copy (to, from);
567 return to;
568 }
569 \f
570
571 /* Functions to work with fences. */
572
573 /* Clear the fence. */
574 static void
575 fence_clear (fence_t f)
576 {
577 state_t s = FENCE_STATE (f);
578 deps_t dc = FENCE_DC (f);
579 void *tc = FENCE_TC (f);
580
581 ilist_clear (&FENCE_BNDS (f));
582
583 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
584 || (s == NULL && dc == NULL && tc == NULL));
585
586 free (s);
587
588 if (dc != NULL)
589 delete_deps_context (dc);
590
591 if (tc != NULL)
592 delete_target_context (tc);
593 vec_free (FENCE_EXECUTING_INSNS (f));
594 free (FENCE_READY_TICKS (f));
595 FENCE_READY_TICKS (f) = NULL;
596 }
597
598 /* Init a list of fences with successors of OLD_FENCE. */
599 void
600 init_fences (insn_t old_fence)
601 {
602 insn_t succ;
603 succ_iterator si;
604 bool first = true;
605 int ready_ticks_size = get_max_uid () + 1;
606
607 FOR_EACH_SUCC_1 (succ, si, old_fence,
608 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
609 {
610
611 if (first)
612 first = false;
613 else
614 gcc_assert (flag_sel_sched_pipelining_outer_loops);
615
616 flist_add (&fences, succ,
617 state_create (),
618 create_deps_context () /* dc */,
619 create_target_context (true) /* tc */,
620 NULL /* last_scheduled_insn */,
621 NULL, /* executing_insns */
622 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
623 ready_ticks_size,
624 NULL /* sched_next */,
625 1 /* cycle */, 0 /* cycle_issued_insns */,
626 issue_rate, /* issue_more */
627 1 /* starts_cycle_p */, 0 /* after_stall_p */);
628 }
629 }
630
631 /* Merges two fences (filling fields of fence F with resulting values) by
632 following rules: 1) state, target context and last scheduled insn are
633 propagated from fallthrough edge if it is available;
634 2) deps context and cycle is propagated from more probable edge;
635 3) all other fields are set to corresponding constant values.
636
637 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
638 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
639 and AFTER_STALL_P are the corresponding fields of the second fence. */
640 static void
641 merge_fences (fence_t f, insn_t insn,
642 state_t state, deps_t dc, void *tc,
643 rtx_insn *last_scheduled_insn,
644 vec<rtx_insn *, va_gc> *executing_insns,
645 int *ready_ticks, int ready_ticks_size,
646 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
647 {
648 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
649
650 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
651 && !sched_next && !FENCE_SCHED_NEXT (f));
652
653 /* Check if we can decide which path fences came.
654 If we can't (or don't want to) - reset all. */
655 if (last_scheduled_insn == NULL
656 || last_scheduled_insn_old == NULL
657 /* This is a case when INSN is reachable on several paths from
658 one insn (this can happen when pipelining of outer loops is on and
659 there are two edges: one going around of inner loop and the other -
660 right through it; in such case just reset everything). */
661 || last_scheduled_insn == last_scheduled_insn_old)
662 {
663 state_reset (FENCE_STATE (f));
664 state_free (state);
665
666 reset_deps_context (FENCE_DC (f));
667 delete_deps_context (dc);
668
669 reset_target_context (FENCE_TC (f), true);
670 delete_target_context (tc);
671
672 if (cycle > FENCE_CYCLE (f))
673 FENCE_CYCLE (f) = cycle;
674
675 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
676 FENCE_ISSUE_MORE (f) = issue_rate;
677 vec_free (executing_insns);
678 free (ready_ticks);
679 if (FENCE_EXECUTING_INSNS (f))
680 FENCE_EXECUTING_INSNS (f)->block_remove (0,
681 FENCE_EXECUTING_INSNS (f)->length ());
682 if (FENCE_READY_TICKS (f))
683 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
684 }
685 else
686 {
687 edge edge_old = NULL, edge_new = NULL;
688 edge candidate;
689 succ_iterator si;
690 insn_t succ;
691
692 /* Find fallthrough edge. */
693 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
694 candidate = find_fallthru_edge_from (BLOCK_FOR_INSN (insn)->prev_bb);
695
696 if (!candidate
697 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
698 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
699 {
700 /* No fallthrough edge leading to basic block of INSN. */
701 state_reset (FENCE_STATE (f));
702 state_free (state);
703
704 reset_target_context (FENCE_TC (f), true);
705 delete_target_context (tc);
706
707 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
708 FENCE_ISSUE_MORE (f) = issue_rate;
709 }
710 else
711 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
712 {
713 /* Would be weird if same insn is successor of several fallthrough
714 edges. */
715 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
716 != BLOCK_FOR_INSN (last_scheduled_insn_old));
717
718 state_free (FENCE_STATE (f));
719 FENCE_STATE (f) = state;
720
721 delete_target_context (FENCE_TC (f));
722 FENCE_TC (f) = tc;
723
724 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
725 FENCE_ISSUE_MORE (f) = issue_more;
726 }
727 else
728 {
729 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
730 state_free (state);
731 delete_target_context (tc);
732
733 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
734 != BLOCK_FOR_INSN (last_scheduled_insn));
735 }
736
737 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
738 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
739 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
740 {
741 if (succ == insn)
742 {
743 /* No same successor allowed from several edges. */
744 gcc_assert (!edge_old);
745 edge_old = si.e1;
746 }
747 }
748 /* Find edge of second predecessor (last_scheduled_insn->insn). */
749 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
750 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
751 {
752 if (succ == insn)
753 {
754 /* No same successor allowed from several edges. */
755 gcc_assert (!edge_new);
756 edge_new = si.e1;
757 }
758 }
759
760 /* Check if we can choose most probable predecessor. */
761 if (edge_old == NULL || edge_new == NULL)
762 {
763 reset_deps_context (FENCE_DC (f));
764 delete_deps_context (dc);
765 vec_free (executing_insns);
766 free (ready_ticks);
767
768 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
769 if (FENCE_EXECUTING_INSNS (f))
770 FENCE_EXECUTING_INSNS (f)->block_remove (0,
771 FENCE_EXECUTING_INSNS (f)->length ());
772 if (FENCE_READY_TICKS (f))
773 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
774 }
775 else
776 if (edge_new->probability > edge_old->probability)
777 {
778 delete_deps_context (FENCE_DC (f));
779 FENCE_DC (f) = dc;
780 vec_free (FENCE_EXECUTING_INSNS (f));
781 FENCE_EXECUTING_INSNS (f) = executing_insns;
782 free (FENCE_READY_TICKS (f));
783 FENCE_READY_TICKS (f) = ready_ticks;
784 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
785 FENCE_CYCLE (f) = cycle;
786 }
787 else
788 {
789 /* Leave DC and CYCLE untouched. */
790 delete_deps_context (dc);
791 vec_free (executing_insns);
792 free (ready_ticks);
793 }
794 }
795
796 /* Fill remaining invariant fields. */
797 if (after_stall_p)
798 FENCE_AFTER_STALL_P (f) = 1;
799
800 FENCE_ISSUED_INSNS (f) = 0;
801 FENCE_STARTS_CYCLE_P (f) = 1;
802 FENCE_SCHED_NEXT (f) = NULL;
803 }
804
805 /* Add a new fence to NEW_FENCES list, initializing it from all
806 other parameters. */
807 static void
808 add_to_fences (flist_tail_t new_fences, insn_t insn,
809 state_t state, deps_t dc, void *tc,
810 rtx_insn *last_scheduled_insn,
811 vec<rtx_insn *, va_gc> *executing_insns, int *ready_ticks,
812 int ready_ticks_size, rtx_insn *sched_next, int cycle,
813 int cycle_issued_insns, int issue_rate,
814 bool starts_cycle_p, bool after_stall_p)
815 {
816 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
817
818 if (! f)
819 {
820 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
821 last_scheduled_insn, executing_insns, ready_ticks,
822 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
823 issue_rate, starts_cycle_p, after_stall_p);
824
825 FLIST_TAIL_TAILP (new_fences)
826 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
827 }
828 else
829 {
830 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
831 executing_insns, ready_ticks, ready_ticks_size,
832 sched_next, cycle, issue_rate, after_stall_p);
833 }
834 }
835
836 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
837 void
838 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
839 {
840 fence_t f, old;
841 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
842
843 old = FLIST_FENCE (old_fences);
844 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
845 FENCE_INSN (FLIST_FENCE (old_fences)));
846 if (f)
847 {
848 merge_fences (f, old->insn, old->state, old->dc, old->tc,
849 old->last_scheduled_insn, old->executing_insns,
850 old->ready_ticks, old->ready_ticks_size,
851 old->sched_next, old->cycle, old->issue_more,
852 old->after_stall_p);
853 }
854 else
855 {
856 _list_add (tailp);
857 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
858 *FLIST_FENCE (*tailp) = *old;
859 init_fence_for_scheduling (FLIST_FENCE (*tailp));
860 }
861 FENCE_INSN (old) = NULL;
862 }
863
864 /* Add a new fence to NEW_FENCES list and initialize most of its data
865 as a clean one. */
866 void
867 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
868 {
869 int ready_ticks_size = get_max_uid () + 1;
870
871 add_to_fences (new_fences,
872 succ, state_create (), create_deps_context (),
873 create_target_context (true),
874 NULL, NULL,
875 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
876 NULL, FENCE_CYCLE (fence) + 1,
877 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
878 }
879
880 /* Add a new fence to NEW_FENCES list and initialize all of its data
881 from FENCE and SUCC. */
882 void
883 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
884 {
885 int * new_ready_ticks
886 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
887
888 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
889 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
890 add_to_fences (new_fences,
891 succ, state_create_copy (FENCE_STATE (fence)),
892 create_copy_of_deps_context (FENCE_DC (fence)),
893 create_copy_of_target_context (FENCE_TC (fence)),
894 FENCE_LAST_SCHEDULED_INSN (fence),
895 vec_safe_copy (FENCE_EXECUTING_INSNS (fence)),
896 new_ready_ticks,
897 FENCE_READY_TICKS_SIZE (fence),
898 FENCE_SCHED_NEXT (fence),
899 FENCE_CYCLE (fence),
900 FENCE_ISSUED_INSNS (fence),
901 FENCE_ISSUE_MORE (fence),
902 FENCE_STARTS_CYCLE_P (fence),
903 FENCE_AFTER_STALL_P (fence));
904 }
905 \f
906
907 /* Functions to work with regset and nop pools. */
908
909 /* Returns the new regset from pool. It might have some of the bits set
910 from the previous usage. */
911 regset
912 get_regset_from_pool (void)
913 {
914 regset rs;
915
916 if (regset_pool.n != 0)
917 rs = regset_pool.v[--regset_pool.n];
918 else
919 /* We need to create the regset. */
920 {
921 rs = ALLOC_REG_SET (&reg_obstack);
922
923 if (regset_pool.nn == regset_pool.ss)
924 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
925 (regset_pool.ss = 2 * regset_pool.ss + 1));
926 regset_pool.vv[regset_pool.nn++] = rs;
927 }
928
929 regset_pool.diff++;
930
931 return rs;
932 }
933
934 /* Same as above, but returns the empty regset. */
935 regset
936 get_clear_regset_from_pool (void)
937 {
938 regset rs = get_regset_from_pool ();
939
940 CLEAR_REG_SET (rs);
941 return rs;
942 }
943
944 /* Return regset RS to the pool for future use. */
945 void
946 return_regset_to_pool (regset rs)
947 {
948 gcc_assert (rs);
949 regset_pool.diff--;
950
951 if (regset_pool.n == regset_pool.s)
952 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
953 (regset_pool.s = 2 * regset_pool.s + 1));
954 regset_pool.v[regset_pool.n++] = rs;
955 }
956
957 #ifdef ENABLE_CHECKING
958 /* This is used as a qsort callback for sorting regset pool stacks.
959 X and XX are addresses of two regsets. They are never equal. */
960 static int
961 cmp_v_in_regset_pool (const void *x, const void *xx)
962 {
963 uintptr_t r1 = (uintptr_t) *((const regset *) x);
964 uintptr_t r2 = (uintptr_t) *((const regset *) xx);
965 if (r1 > r2)
966 return 1;
967 else if (r1 < r2)
968 return -1;
969 gcc_unreachable ();
970 }
971 #endif
972
973 /* Free the regset pool possibly checking for memory leaks. */
974 void
975 free_regset_pool (void)
976 {
977 #ifdef ENABLE_CHECKING
978 {
979 regset *v = regset_pool.v;
980 int i = 0;
981 int n = regset_pool.n;
982
983 regset *vv = regset_pool.vv;
984 int ii = 0;
985 int nn = regset_pool.nn;
986
987 int diff = 0;
988
989 gcc_assert (n <= nn);
990
991 /* Sort both vectors so it will be possible to compare them. */
992 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
993 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
994
995 while (ii < nn)
996 {
997 if (v[i] == vv[ii])
998 i++;
999 else
1000 /* VV[II] was lost. */
1001 diff++;
1002
1003 ii++;
1004 }
1005
1006 gcc_assert (diff == regset_pool.diff);
1007 }
1008 #endif
1009
1010 /* If not true - we have a memory leak. */
1011 gcc_assert (regset_pool.diff == 0);
1012
1013 while (regset_pool.n)
1014 {
1015 --regset_pool.n;
1016 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1017 }
1018
1019 free (regset_pool.v);
1020 regset_pool.v = NULL;
1021 regset_pool.s = 0;
1022
1023 free (regset_pool.vv);
1024 regset_pool.vv = NULL;
1025 regset_pool.nn = 0;
1026 regset_pool.ss = 0;
1027
1028 regset_pool.diff = 0;
1029 }
1030 \f
1031
1032 /* Functions to work with nop pools. NOP insns are used as temporary
1033 placeholders of the insns being scheduled to allow correct update of
1034 the data sets. When update is finished, NOPs are deleted. */
1035
1036 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1037 nops sel-sched generates. */
1038 static vinsn_t nop_vinsn = NULL;
1039
1040 /* Emit a nop before INSN, taking it from pool. */
1041 insn_t
1042 get_nop_from_pool (insn_t insn)
1043 {
1044 rtx nop_pat;
1045 insn_t nop;
1046 bool old_p = nop_pool.n != 0;
1047 int flags;
1048
1049 if (old_p)
1050 nop_pat = nop_pool.v[--nop_pool.n];
1051 else
1052 nop_pat = nop_pattern;
1053
1054 nop = emit_insn_before (nop_pat, insn);
1055
1056 if (old_p)
1057 flags = INSN_INIT_TODO_SSID;
1058 else
1059 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1060
1061 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1062 sel_init_new_insn (nop, flags);
1063
1064 return nop;
1065 }
1066
1067 /* Remove NOP from the instruction stream and return it to the pool. */
1068 void
1069 return_nop_to_pool (insn_t nop, bool full_tidying)
1070 {
1071 gcc_assert (INSN_IN_STREAM_P (nop));
1072 sel_remove_insn (nop, false, full_tidying);
1073
1074 /* We'll recycle this nop. */
1075 nop->set_undeleted ();
1076
1077 if (nop_pool.n == nop_pool.s)
1078 nop_pool.v = XRESIZEVEC (rtx_insn *, nop_pool.v,
1079 (nop_pool.s = 2 * nop_pool.s + 1));
1080 nop_pool.v[nop_pool.n++] = nop;
1081 }
1082
1083 /* Free the nop pool. */
1084 void
1085 free_nop_pool (void)
1086 {
1087 nop_pool.n = 0;
1088 nop_pool.s = 0;
1089 free (nop_pool.v);
1090 nop_pool.v = NULL;
1091 }
1092 \f
1093
1094 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1095 The callback is given two rtxes XX and YY and writes the new rtxes
1096 to NX and NY in case some needs to be skipped. */
1097 static int
1098 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1099 {
1100 const_rtx x = *xx;
1101 const_rtx y = *yy;
1102
1103 if (GET_CODE (x) == UNSPEC
1104 && (targetm.sched.skip_rtx_p == NULL
1105 || targetm.sched.skip_rtx_p (x)))
1106 {
1107 *nx = XVECEXP (x, 0, 0);
1108 *ny = CONST_CAST_RTX (y);
1109 return 1;
1110 }
1111
1112 if (GET_CODE (y) == UNSPEC
1113 && (targetm.sched.skip_rtx_p == NULL
1114 || targetm.sched.skip_rtx_p (y)))
1115 {
1116 *nx = CONST_CAST_RTX (x);
1117 *ny = XVECEXP (y, 0, 0);
1118 return 1;
1119 }
1120
1121 return 0;
1122 }
1123
1124 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1125 to support ia64 speculation. When changes are needed, new rtx X and new mode
1126 NMODE are written, and the callback returns true. */
1127 static int
1128 hash_with_unspec_callback (const_rtx x, machine_mode mode ATTRIBUTE_UNUSED,
1129 rtx *nx, machine_mode* nmode)
1130 {
1131 if (GET_CODE (x) == UNSPEC
1132 && targetm.sched.skip_rtx_p
1133 && targetm.sched.skip_rtx_p (x))
1134 {
1135 *nx = XVECEXP (x, 0 ,0);
1136 *nmode = VOIDmode;
1137 return 1;
1138 }
1139
1140 return 0;
1141 }
1142
1143 /* Returns LHS and RHS are ok to be scheduled separately. */
1144 static bool
1145 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1146 {
1147 if (lhs == NULL || rhs == NULL)
1148 return false;
1149
1150 /* Do not schedule constants as rhs: no point to use reg, if const
1151 can be used. Moreover, scheduling const as rhs may lead to mode
1152 mismatch cause consts don't have modes but they could be merged
1153 from branches where the same const used in different modes. */
1154 if (CONSTANT_P (rhs))
1155 return false;
1156
1157 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1158 if (COMPARISON_P (rhs))
1159 return false;
1160
1161 /* Do not allow single REG to be an rhs. */
1162 if (REG_P (rhs))
1163 return false;
1164
1165 /* See comment at find_used_regs_1 (*1) for explanation of this
1166 restriction. */
1167 /* FIXME: remove this later. */
1168 if (MEM_P (lhs))
1169 return false;
1170
1171 /* This will filter all tricky things like ZERO_EXTRACT etc.
1172 For now we don't handle it. */
1173 if (!REG_P (lhs) && !MEM_P (lhs))
1174 return false;
1175
1176 return true;
1177 }
1178
1179 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1180 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1181 used e.g. for insns from recovery blocks. */
1182 static void
1183 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1184 {
1185 hash_rtx_callback_function hrcf;
1186 int insn_class;
1187
1188 VINSN_INSN_RTX (vi) = insn;
1189 VINSN_COUNT (vi) = 0;
1190 vi->cost = -1;
1191
1192 if (INSN_NOP_P (insn))
1193 return;
1194
1195 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1196 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1197 else
1198 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1199
1200 /* Hash vinsn depending on whether it is separable or not. */
1201 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1202 if (VINSN_SEPARABLE_P (vi))
1203 {
1204 rtx rhs = VINSN_RHS (vi);
1205
1206 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1207 NULL, NULL, false, hrcf);
1208 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1209 VOIDmode, NULL, NULL,
1210 false, hrcf);
1211 }
1212 else
1213 {
1214 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1215 NULL, NULL, false, hrcf);
1216 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1217 }
1218
1219 insn_class = haifa_classify_insn (insn);
1220 if (insn_class >= 2
1221 && (!targetm.sched.get_insn_spec_ds
1222 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1223 == 0)))
1224 VINSN_MAY_TRAP_P (vi) = true;
1225 else
1226 VINSN_MAY_TRAP_P (vi) = false;
1227 }
1228
1229 /* Indicate that VI has become the part of an rtx object. */
1230 void
1231 vinsn_attach (vinsn_t vi)
1232 {
1233 /* Assert that VI is not pending for deletion. */
1234 gcc_assert (VINSN_INSN_RTX (vi));
1235
1236 VINSN_COUNT (vi)++;
1237 }
1238
1239 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1240 VINSN_TYPE (VI). */
1241 static vinsn_t
1242 vinsn_create (insn_t insn, bool force_unique_p)
1243 {
1244 vinsn_t vi = XCNEW (struct vinsn_def);
1245
1246 vinsn_init (vi, insn, force_unique_p);
1247 return vi;
1248 }
1249
1250 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1251 the copy. */
1252 vinsn_t
1253 vinsn_copy (vinsn_t vi, bool reattach_p)
1254 {
1255 rtx_insn *copy;
1256 bool unique = VINSN_UNIQUE_P (vi);
1257 vinsn_t new_vi;
1258
1259 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1260 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1261 if (reattach_p)
1262 {
1263 vinsn_detach (vi);
1264 vinsn_attach (new_vi);
1265 }
1266
1267 return new_vi;
1268 }
1269
1270 /* Delete the VI vinsn and free its data. */
1271 static void
1272 vinsn_delete (vinsn_t vi)
1273 {
1274 gcc_assert (VINSN_COUNT (vi) == 0);
1275
1276 if (!INSN_NOP_P (VINSN_INSN_RTX (vi)))
1277 {
1278 return_regset_to_pool (VINSN_REG_SETS (vi));
1279 return_regset_to_pool (VINSN_REG_USES (vi));
1280 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1281 }
1282
1283 free (vi);
1284 }
1285
1286 /* Indicate that VI is no longer a part of some rtx object.
1287 Remove VI if it is no longer needed. */
1288 void
1289 vinsn_detach (vinsn_t vi)
1290 {
1291 gcc_assert (VINSN_COUNT (vi) > 0);
1292
1293 if (--VINSN_COUNT (vi) == 0)
1294 vinsn_delete (vi);
1295 }
1296
1297 /* Returns TRUE if VI is a branch. */
1298 bool
1299 vinsn_cond_branch_p (vinsn_t vi)
1300 {
1301 insn_t insn;
1302
1303 if (!VINSN_UNIQUE_P (vi))
1304 return false;
1305
1306 insn = VINSN_INSN_RTX (vi);
1307 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1308 return false;
1309
1310 return control_flow_insn_p (insn);
1311 }
1312
1313 /* Return latency of INSN. */
1314 static int
1315 sel_insn_rtx_cost (rtx_insn *insn)
1316 {
1317 int cost;
1318
1319 /* A USE insn, or something else we don't need to
1320 understand. We can't pass these directly to
1321 result_ready_cost or insn_default_latency because it will
1322 trigger a fatal error for unrecognizable insns. */
1323 if (recog_memoized (insn) < 0)
1324 cost = 0;
1325 else
1326 {
1327 cost = insn_default_latency (insn);
1328
1329 if (cost < 0)
1330 cost = 0;
1331 }
1332
1333 return cost;
1334 }
1335
1336 /* Return the cost of the VI.
1337 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1338 int
1339 sel_vinsn_cost (vinsn_t vi)
1340 {
1341 int cost = vi->cost;
1342
1343 if (cost < 0)
1344 {
1345 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1346 vi->cost = cost;
1347 }
1348
1349 return cost;
1350 }
1351 \f
1352
1353 /* Functions for insn emitting. */
1354
1355 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1356 EXPR and SEQNO. */
1357 insn_t
1358 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1359 {
1360 insn_t new_insn;
1361
1362 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1363
1364 new_insn = emit_insn_after (pattern, after);
1365 set_insn_init (expr, NULL, seqno);
1366 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1367
1368 return new_insn;
1369 }
1370
1371 /* Force newly generated vinsns to be unique. */
1372 static bool init_insn_force_unique_p = false;
1373
1374 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1375 initialize its data from EXPR and SEQNO. */
1376 insn_t
1377 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1378 insn_t after)
1379 {
1380 insn_t insn;
1381
1382 gcc_assert (!init_insn_force_unique_p);
1383
1384 init_insn_force_unique_p = true;
1385 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1386 CANT_MOVE (insn) = 1;
1387 init_insn_force_unique_p = false;
1388
1389 return insn;
1390 }
1391
1392 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1393 take it as a new vinsn instead of EXPR's vinsn.
1394 We simplify insns later, after scheduling region in
1395 simplify_changed_insns. */
1396 insn_t
1397 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1398 insn_t after)
1399 {
1400 expr_t emit_expr;
1401 insn_t insn;
1402 int flags;
1403
1404 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1405 seqno);
1406 insn = EXPR_INSN_RTX (emit_expr);
1407
1408 /* The insn may come from the transformation cache, which may hold already
1409 deleted insns, so mark it as not deleted. */
1410 insn->set_undeleted ();
1411
1412 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1413
1414 flags = INSN_INIT_TODO_SSID;
1415 if (INSN_LUID (insn) == 0)
1416 flags |= INSN_INIT_TODO_LUID;
1417 sel_init_new_insn (insn, flags);
1418
1419 return insn;
1420 }
1421
1422 /* Move insn from EXPR after AFTER. */
1423 insn_t
1424 sel_move_insn (expr_t expr, int seqno, insn_t after)
1425 {
1426 insn_t insn = EXPR_INSN_RTX (expr);
1427 basic_block bb = BLOCK_FOR_INSN (after);
1428 insn_t next = NEXT_INSN (after);
1429
1430 /* Assert that in move_op we disconnected this insn properly. */
1431 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1432 SET_PREV_INSN (insn) = after;
1433 SET_NEXT_INSN (insn) = next;
1434
1435 SET_NEXT_INSN (after) = insn;
1436 SET_PREV_INSN (next) = insn;
1437
1438 /* Update links from insn to bb and vice versa. */
1439 df_insn_change_bb (insn, bb);
1440 if (BB_END (bb) == after)
1441 BB_END (bb) = insn;
1442
1443 prepare_insn_expr (insn, seqno);
1444 return insn;
1445 }
1446
1447 \f
1448 /* Functions to work with right-hand sides. */
1449
1450 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1451 VECT and return true when found. Use NEW_VINSN for comparison only when
1452 COMPARE_VINSNS is true. Write to INDP the index on which
1453 the search has stopped, such that inserting the new element at INDP will
1454 retain VECT's sort order. */
1455 static bool
1456 find_in_history_vect_1 (vec<expr_history_def> vect,
1457 unsigned uid, vinsn_t new_vinsn,
1458 bool compare_vinsns, int *indp)
1459 {
1460 expr_history_def *arr;
1461 int i, j, len = vect.length ();
1462
1463 if (len == 0)
1464 {
1465 *indp = 0;
1466 return false;
1467 }
1468
1469 arr = vect.address ();
1470 i = 0, j = len - 1;
1471
1472 while (i <= j)
1473 {
1474 unsigned auid = arr[i].uid;
1475 vinsn_t avinsn = arr[i].new_expr_vinsn;
1476
1477 if (auid == uid
1478 /* When undoing transformation on a bookkeeping copy, the new vinsn
1479 may not be exactly equal to the one that is saved in the vector.
1480 This is because the insn whose copy we're checking was possibly
1481 substituted itself. */
1482 && (! compare_vinsns
1483 || vinsn_equal_p (avinsn, new_vinsn)))
1484 {
1485 *indp = i;
1486 return true;
1487 }
1488 else if (auid > uid)
1489 break;
1490 i++;
1491 }
1492
1493 *indp = i;
1494 return false;
1495 }
1496
1497 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1498 the position found or -1, if no such value is in vector.
1499 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1500 int
1501 find_in_history_vect (vec<expr_history_def> vect, rtx insn,
1502 vinsn_t new_vinsn, bool originators_p)
1503 {
1504 int ind;
1505
1506 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1507 false, &ind))
1508 return ind;
1509
1510 if (INSN_ORIGINATORS (insn) && originators_p)
1511 {
1512 unsigned uid;
1513 bitmap_iterator bi;
1514
1515 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1516 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1517 return ind;
1518 }
1519
1520 return -1;
1521 }
1522
1523 /* Insert new element in a sorted history vector pointed to by PVECT,
1524 if it is not there already. The element is searched using
1525 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1526 the history of a transformation. */
1527 void
1528 insert_in_history_vect (vec<expr_history_def> *pvect,
1529 unsigned uid, enum local_trans_type type,
1530 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1531 ds_t spec_ds)
1532 {
1533 vec<expr_history_def> vect = *pvect;
1534 expr_history_def temp;
1535 bool res;
1536 int ind;
1537
1538 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1539
1540 if (res)
1541 {
1542 expr_history_def *phist = &vect[ind];
1543
1544 /* It is possible that speculation types of expressions that were
1545 propagated through different paths will be different here. In this
1546 case, merge the status to get the correct check later. */
1547 if (phist->spec_ds != spec_ds)
1548 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1549 return;
1550 }
1551
1552 temp.uid = uid;
1553 temp.old_expr_vinsn = old_expr_vinsn;
1554 temp.new_expr_vinsn = new_expr_vinsn;
1555 temp.spec_ds = spec_ds;
1556 temp.type = type;
1557
1558 vinsn_attach (old_expr_vinsn);
1559 vinsn_attach (new_expr_vinsn);
1560 vect.safe_insert (ind, temp);
1561 *pvect = vect;
1562 }
1563
1564 /* Free history vector PVECT. */
1565 static void
1566 free_history_vect (vec<expr_history_def> &pvect)
1567 {
1568 unsigned i;
1569 expr_history_def *phist;
1570
1571 if (! pvect.exists ())
1572 return;
1573
1574 for (i = 0; pvect.iterate (i, &phist); i++)
1575 {
1576 vinsn_detach (phist->old_expr_vinsn);
1577 vinsn_detach (phist->new_expr_vinsn);
1578 }
1579
1580 pvect.release ();
1581 }
1582
1583 /* Merge vector FROM to PVECT. */
1584 static void
1585 merge_history_vect (vec<expr_history_def> *pvect,
1586 vec<expr_history_def> from)
1587 {
1588 expr_history_def *phist;
1589 int i;
1590
1591 /* We keep this vector sorted. */
1592 for (i = 0; from.iterate (i, &phist); i++)
1593 insert_in_history_vect (pvect, phist->uid, phist->type,
1594 phist->old_expr_vinsn, phist->new_expr_vinsn,
1595 phist->spec_ds);
1596 }
1597
1598 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1599 bool
1600 vinsn_equal_p (vinsn_t x, vinsn_t y)
1601 {
1602 rtx_equal_p_callback_function repcf;
1603
1604 if (x == y)
1605 return true;
1606
1607 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1608 return false;
1609
1610 if (VINSN_HASH (x) != VINSN_HASH (y))
1611 return false;
1612
1613 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1614 if (VINSN_SEPARABLE_P (x))
1615 {
1616 /* Compare RHSes of VINSNs. */
1617 gcc_assert (VINSN_RHS (x));
1618 gcc_assert (VINSN_RHS (y));
1619
1620 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1621 }
1622
1623 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1624 }
1625 \f
1626
1627 /* Functions for working with expressions. */
1628
1629 /* Initialize EXPR. */
1630 static void
1631 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1632 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1633 ds_t spec_to_check_ds, int orig_sched_cycle,
1634 vec<expr_history_def> history,
1635 signed char target_available,
1636 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1637 bool cant_move)
1638 {
1639 vinsn_attach (vi);
1640
1641 EXPR_VINSN (expr) = vi;
1642 EXPR_SPEC (expr) = spec;
1643 EXPR_USEFULNESS (expr) = use;
1644 EXPR_PRIORITY (expr) = priority;
1645 EXPR_PRIORITY_ADJ (expr) = 0;
1646 EXPR_SCHED_TIMES (expr) = sched_times;
1647 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1648 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1649 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1650 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1651
1652 if (history.exists ())
1653 EXPR_HISTORY_OF_CHANGES (expr) = history;
1654 else
1655 EXPR_HISTORY_OF_CHANGES (expr).create (0);
1656
1657 EXPR_TARGET_AVAILABLE (expr) = target_available;
1658 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1659 EXPR_WAS_RENAMED (expr) = was_renamed;
1660 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1661 EXPR_CANT_MOVE (expr) = cant_move;
1662 }
1663
1664 /* Make a copy of the expr FROM into the expr TO. */
1665 void
1666 copy_expr (expr_t to, expr_t from)
1667 {
1668 vec<expr_history_def> temp = vNULL;
1669
1670 if (EXPR_HISTORY_OF_CHANGES (from).exists ())
1671 {
1672 unsigned i;
1673 expr_history_def *phist;
1674
1675 temp = EXPR_HISTORY_OF_CHANGES (from).copy ();
1676 for (i = 0;
1677 temp.iterate (i, &phist);
1678 i++)
1679 {
1680 vinsn_attach (phist->old_expr_vinsn);
1681 vinsn_attach (phist->new_expr_vinsn);
1682 }
1683 }
1684
1685 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1686 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1687 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1688 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1689 EXPR_ORIG_SCHED_CYCLE (from), temp,
1690 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1691 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1692 EXPR_CANT_MOVE (from));
1693 }
1694
1695 /* Same, but the final expr will not ever be in av sets, so don't copy
1696 "uninteresting" data such as bitmap cache. */
1697 void
1698 copy_expr_onside (expr_t to, expr_t from)
1699 {
1700 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1701 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1702 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0,
1703 vNULL,
1704 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1705 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1706 EXPR_CANT_MOVE (from));
1707 }
1708
1709 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1710 initializing new insns. */
1711 static void
1712 prepare_insn_expr (insn_t insn, int seqno)
1713 {
1714 expr_t expr = INSN_EXPR (insn);
1715 ds_t ds;
1716
1717 INSN_SEQNO (insn) = seqno;
1718 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1719 EXPR_SPEC (expr) = 0;
1720 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1721 EXPR_WAS_SUBSTITUTED (expr) = 0;
1722 EXPR_WAS_RENAMED (expr) = 0;
1723 EXPR_TARGET_AVAILABLE (expr) = 1;
1724 INSN_LIVE_VALID_P (insn) = false;
1725
1726 /* ??? If this expression is speculative, make its dependence
1727 as weak as possible. We can filter this expression later
1728 in process_spec_exprs, because we do not distinguish
1729 between the status we got during compute_av_set and the
1730 existing status. To be fixed. */
1731 ds = EXPR_SPEC_DONE_DS (expr);
1732 if (ds)
1733 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1734
1735 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1736 }
1737
1738 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1739 is non-null when expressions are merged from different successors at
1740 a split point. */
1741 static void
1742 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1743 {
1744 if (EXPR_TARGET_AVAILABLE (to) < 0
1745 || EXPR_TARGET_AVAILABLE (from) < 0)
1746 EXPR_TARGET_AVAILABLE (to) = -1;
1747 else
1748 {
1749 /* We try to detect the case when one of the expressions
1750 can only be reached through another one. In this case,
1751 we can do better. */
1752 if (split_point == NULL)
1753 {
1754 int toind, fromind;
1755
1756 toind = EXPR_ORIG_BB_INDEX (to);
1757 fromind = EXPR_ORIG_BB_INDEX (from);
1758
1759 if (toind && toind == fromind)
1760 /* Do nothing -- everything is done in
1761 merge_with_other_exprs. */
1762 ;
1763 else
1764 EXPR_TARGET_AVAILABLE (to) = -1;
1765 }
1766 else if (EXPR_TARGET_AVAILABLE (from) == 0
1767 && EXPR_LHS (from)
1768 && REG_P (EXPR_LHS (from))
1769 && REGNO (EXPR_LHS (to)) != REGNO (EXPR_LHS (from)))
1770 EXPR_TARGET_AVAILABLE (to) = -1;
1771 else
1772 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1773 }
1774 }
1775
1776 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1777 is non-null when expressions are merged from different successors at
1778 a split point. */
1779 static void
1780 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1781 {
1782 ds_t old_to_ds, old_from_ds;
1783
1784 old_to_ds = EXPR_SPEC_DONE_DS (to);
1785 old_from_ds = EXPR_SPEC_DONE_DS (from);
1786
1787 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1788 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1789 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1790
1791 /* When merging e.g. control & data speculative exprs, or a control
1792 speculative with a control&data speculative one, we really have
1793 to change vinsn too. Also, when speculative status is changed,
1794 we also need to record this as a transformation in expr's history. */
1795 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1796 {
1797 old_to_ds = ds_get_speculation_types (old_to_ds);
1798 old_from_ds = ds_get_speculation_types (old_from_ds);
1799
1800 if (old_to_ds != old_from_ds)
1801 {
1802 ds_t record_ds;
1803
1804 /* When both expressions are speculative, we need to change
1805 the vinsn first. */
1806 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1807 {
1808 int res;
1809
1810 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1811 gcc_assert (res >= 0);
1812 }
1813
1814 if (split_point != NULL)
1815 {
1816 /* Record the change with proper status. */
1817 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1818 record_ds &= ~(old_to_ds & SPECULATIVE);
1819 record_ds &= ~(old_from_ds & SPECULATIVE);
1820
1821 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1822 INSN_UID (split_point), TRANS_SPECULATION,
1823 EXPR_VINSN (from), EXPR_VINSN (to),
1824 record_ds);
1825 }
1826 }
1827 }
1828 }
1829
1830
1831 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1832 this is done along different paths. */
1833 void
1834 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1835 {
1836 /* Choose the maximum of the specs of merged exprs. This is required
1837 for correctness of bookkeeping. */
1838 if (EXPR_SPEC (to) < EXPR_SPEC (from))
1839 EXPR_SPEC (to) = EXPR_SPEC (from);
1840
1841 if (split_point)
1842 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1843 else
1844 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1845 EXPR_USEFULNESS (from));
1846
1847 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1848 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1849
1850 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1851 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1852
1853 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1854 EXPR_ORIG_BB_INDEX (to) = 0;
1855
1856 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1857 EXPR_ORIG_SCHED_CYCLE (from));
1858
1859 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1860 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1861 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1862
1863 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1864 EXPR_HISTORY_OF_CHANGES (from));
1865 update_target_availability (to, from, split_point);
1866 update_speculative_bits (to, from, split_point);
1867 }
1868
1869 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1870 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1871 are merged from different successors at a split point. */
1872 void
1873 merge_expr (expr_t to, expr_t from, insn_t split_point)
1874 {
1875 vinsn_t to_vi = EXPR_VINSN (to);
1876 vinsn_t from_vi = EXPR_VINSN (from);
1877
1878 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1879
1880 /* Make sure that speculative pattern is propagated into exprs that
1881 have non-speculative one. This will provide us with consistent
1882 speculative bits and speculative patterns inside expr. */
1883 if ((EXPR_SPEC_DONE_DS (from) != 0
1884 && EXPR_SPEC_DONE_DS (to) == 0)
1885 /* Do likewise for volatile insns, so that we always retain
1886 the may_trap_p bit on the resulting expression. */
1887 || (VINSN_MAY_TRAP_P (EXPR_VINSN (from))
1888 && !VINSN_MAY_TRAP_P (EXPR_VINSN (to))))
1889 change_vinsn_in_expr (to, EXPR_VINSN (from));
1890
1891 merge_expr_data (to, from, split_point);
1892 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1893 }
1894
1895 /* Clear the information of this EXPR. */
1896 void
1897 clear_expr (expr_t expr)
1898 {
1899
1900 vinsn_detach (EXPR_VINSN (expr));
1901 EXPR_VINSN (expr) = NULL;
1902
1903 free_history_vect (EXPR_HISTORY_OF_CHANGES (expr));
1904 }
1905
1906 /* For a given LV_SET, mark EXPR having unavailable target register. */
1907 static void
1908 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1909 {
1910 if (EXPR_SEPARABLE_P (expr))
1911 {
1912 if (REG_P (EXPR_LHS (expr))
1913 && register_unavailable_p (lv_set, EXPR_LHS (expr)))
1914 {
1915 /* If it's an insn like r1 = use (r1, ...), and it exists in
1916 different forms in each of the av_sets being merged, we can't say
1917 whether original destination register is available or not.
1918 However, this still works if destination register is not used
1919 in the original expression: if the branch at which LV_SET we're
1920 looking here is not actually 'other branch' in sense that same
1921 expression is available through it (but it can't be determined
1922 at computation stage because of transformations on one of the
1923 branches), it still won't affect the availability.
1924 Liveness of a register somewhere on a code motion path means
1925 it's either read somewhere on a codemotion path, live on
1926 'other' branch, live at the point immediately following
1927 the original operation, or is read by the original operation.
1928 The latter case is filtered out in the condition below.
1929 It still doesn't cover the case when register is defined and used
1930 somewhere within the code motion path, and in this case we could
1931 miss a unifying code motion along both branches using a renamed
1932 register, but it won't affect a code correctness since upon
1933 an actual code motion a bookkeeping code would be generated. */
1934 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1935 EXPR_LHS (expr)))
1936 EXPR_TARGET_AVAILABLE (expr) = -1;
1937 else
1938 EXPR_TARGET_AVAILABLE (expr) = false;
1939 }
1940 }
1941 else
1942 {
1943 unsigned regno;
1944 reg_set_iterator rsi;
1945
1946 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1947 0, regno, rsi)
1948 if (bitmap_bit_p (lv_set, regno))
1949 {
1950 EXPR_TARGET_AVAILABLE (expr) = false;
1951 break;
1952 }
1953
1954 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1955 0, regno, rsi)
1956 if (bitmap_bit_p (lv_set, regno))
1957 {
1958 EXPR_TARGET_AVAILABLE (expr) = false;
1959 break;
1960 }
1961 }
1962 }
1963
1964 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1965 or dependence status have changed, 2 when also the target register
1966 became unavailable, 0 if nothing had to be changed. */
1967 int
1968 speculate_expr (expr_t expr, ds_t ds)
1969 {
1970 int res;
1971 rtx_insn *orig_insn_rtx;
1972 rtx spec_pat;
1973 ds_t target_ds, current_ds;
1974
1975 /* Obtain the status we need to put on EXPR. */
1976 target_ds = (ds & SPECULATIVE);
1977 current_ds = EXPR_SPEC_DONE_DS (expr);
1978 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1979
1980 orig_insn_rtx = EXPR_INSN_RTX (expr);
1981
1982 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1983
1984 switch (res)
1985 {
1986 case 0:
1987 EXPR_SPEC_DONE_DS (expr) = ds;
1988 return current_ds != ds ? 1 : 0;
1989
1990 case 1:
1991 {
1992 rtx_insn *spec_insn_rtx =
1993 create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1994 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1995
1996 change_vinsn_in_expr (expr, spec_vinsn);
1997 EXPR_SPEC_DONE_DS (expr) = ds;
1998 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1999
2000 /* Do not allow clobbering the address register of speculative
2001 insns. */
2002 if (register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
2003 expr_dest_reg (expr)))
2004 {
2005 EXPR_TARGET_AVAILABLE (expr) = false;
2006 return 2;
2007 }
2008
2009 return 1;
2010 }
2011
2012 case -1:
2013 return -1;
2014
2015 default:
2016 gcc_unreachable ();
2017 return -1;
2018 }
2019 }
2020
2021 /* Return a destination register, if any, of EXPR. */
2022 rtx
2023 expr_dest_reg (expr_t expr)
2024 {
2025 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
2026
2027 if (dest != NULL_RTX && REG_P (dest))
2028 return dest;
2029
2030 return NULL_RTX;
2031 }
2032
2033 /* Returns the REGNO of the R's destination. */
2034 unsigned
2035 expr_dest_regno (expr_t expr)
2036 {
2037 rtx dest = expr_dest_reg (expr);
2038
2039 gcc_assert (dest != NULL_RTX);
2040 return REGNO (dest);
2041 }
2042
2043 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2044 AV_SET having unavailable target register. */
2045 void
2046 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2047 {
2048 expr_t expr;
2049 av_set_iterator avi;
2050
2051 FOR_EACH_EXPR (expr, avi, join_set)
2052 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2053 set_unavailable_target_for_expr (expr, lv_set);
2054 }
2055 \f
2056
2057 /* Returns true if REG (at least partially) is present in REGS. */
2058 bool
2059 register_unavailable_p (regset regs, rtx reg)
2060 {
2061 unsigned regno, end_regno;
2062
2063 regno = REGNO (reg);
2064 if (bitmap_bit_p (regs, regno))
2065 return true;
2066
2067 end_regno = END_REGNO (reg);
2068
2069 while (++regno < end_regno)
2070 if (bitmap_bit_p (regs, regno))
2071 return true;
2072
2073 return false;
2074 }
2075
2076 /* Av set functions. */
2077
2078 /* Add a new element to av set SETP.
2079 Return the element added. */
2080 static av_set_t
2081 av_set_add_element (av_set_t *setp)
2082 {
2083 /* Insert at the beginning of the list. */
2084 _list_add (setp);
2085 return *setp;
2086 }
2087
2088 /* Add EXPR to SETP. */
2089 void
2090 av_set_add (av_set_t *setp, expr_t expr)
2091 {
2092 av_set_t elem;
2093
2094 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2095 elem = av_set_add_element (setp);
2096 copy_expr (_AV_SET_EXPR (elem), expr);
2097 }
2098
2099 /* Same, but do not copy EXPR. */
2100 static void
2101 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2102 {
2103 av_set_t elem;
2104
2105 elem = av_set_add_element (setp);
2106 *_AV_SET_EXPR (elem) = *expr;
2107 }
2108
2109 /* Remove expr pointed to by IP from the av_set. */
2110 void
2111 av_set_iter_remove (av_set_iterator *ip)
2112 {
2113 clear_expr (_AV_SET_EXPR (*ip->lp));
2114 _list_iter_remove (ip);
2115 }
2116
2117 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2118 sense of vinsn_equal_p function. Return NULL if no such expr is
2119 in SET was found. */
2120 expr_t
2121 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2122 {
2123 expr_t expr;
2124 av_set_iterator i;
2125
2126 FOR_EACH_EXPR (expr, i, set)
2127 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2128 return expr;
2129 return NULL;
2130 }
2131
2132 /* Same, but also remove the EXPR found. */
2133 static expr_t
2134 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2135 {
2136 expr_t expr;
2137 av_set_iterator i;
2138
2139 FOR_EACH_EXPR_1 (expr, i, setp)
2140 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2141 {
2142 _list_iter_remove_nofree (&i);
2143 return expr;
2144 }
2145 return NULL;
2146 }
2147
2148 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2149 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2150 Returns NULL if no such expr is in SET was found. */
2151 static expr_t
2152 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2153 {
2154 expr_t cur_expr;
2155 av_set_iterator i;
2156
2157 FOR_EACH_EXPR (cur_expr, i, set)
2158 {
2159 if (cur_expr == expr)
2160 continue;
2161 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2162 return cur_expr;
2163 }
2164
2165 return NULL;
2166 }
2167
2168 /* If other expression is already in AVP, remove one of them. */
2169 expr_t
2170 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2171 {
2172 expr_t expr2;
2173
2174 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2175 if (expr2 != NULL)
2176 {
2177 /* Reset target availability on merge, since taking it only from one
2178 of the exprs would be controversial for different code. */
2179 EXPR_TARGET_AVAILABLE (expr2) = -1;
2180 EXPR_USEFULNESS (expr2) = 0;
2181
2182 merge_expr (expr2, expr, NULL);
2183
2184 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2185 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2186
2187 av_set_iter_remove (ip);
2188 return expr2;
2189 }
2190
2191 return expr;
2192 }
2193
2194 /* Return true if there is an expr that correlates to VI in SET. */
2195 bool
2196 av_set_is_in_p (av_set_t set, vinsn_t vi)
2197 {
2198 return av_set_lookup (set, vi) != NULL;
2199 }
2200
2201 /* Return a copy of SET. */
2202 av_set_t
2203 av_set_copy (av_set_t set)
2204 {
2205 expr_t expr;
2206 av_set_iterator i;
2207 av_set_t res = NULL;
2208
2209 FOR_EACH_EXPR (expr, i, set)
2210 av_set_add (&res, expr);
2211
2212 return res;
2213 }
2214
2215 /* Join two av sets that do not have common elements by attaching second set
2216 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2217 _AV_SET_NEXT of first set's last element). */
2218 static void
2219 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2220 {
2221 gcc_assert (*to_tailp == NULL);
2222 *to_tailp = *fromp;
2223 *fromp = NULL;
2224 }
2225
2226 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2227 pointed to by FROMP afterwards. */
2228 void
2229 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2230 {
2231 expr_t expr1;
2232 av_set_iterator i;
2233
2234 /* Delete from TOP all exprs, that present in FROMP. */
2235 FOR_EACH_EXPR_1 (expr1, i, top)
2236 {
2237 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2238
2239 if (expr2)
2240 {
2241 merge_expr (expr2, expr1, insn);
2242 av_set_iter_remove (&i);
2243 }
2244 }
2245
2246 join_distinct_sets (i.lp, fromp);
2247 }
2248
2249 /* Same as above, but also update availability of target register in
2250 TOP judging by TO_LV_SET and FROM_LV_SET. */
2251 void
2252 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2253 regset from_lv_set, insn_t insn)
2254 {
2255 expr_t expr1;
2256 av_set_iterator i;
2257 av_set_t *to_tailp, in_both_set = NULL;
2258
2259 /* Delete from TOP all expres, that present in FROMP. */
2260 FOR_EACH_EXPR_1 (expr1, i, top)
2261 {
2262 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2263
2264 if (expr2)
2265 {
2266 /* It may be that the expressions have different destination
2267 registers, in which case we need to check liveness here. */
2268 if (EXPR_SEPARABLE_P (expr1))
2269 {
2270 int regno1 = (REG_P (EXPR_LHS (expr1))
2271 ? (int) expr_dest_regno (expr1) : -1);
2272 int regno2 = (REG_P (EXPR_LHS (expr2))
2273 ? (int) expr_dest_regno (expr2) : -1);
2274
2275 /* ??? We don't have a way to check restrictions for
2276 *other* register on the current path, we did it only
2277 for the current target register. Give up. */
2278 if (regno1 != regno2)
2279 EXPR_TARGET_AVAILABLE (expr2) = -1;
2280 }
2281 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2282 EXPR_TARGET_AVAILABLE (expr2) = -1;
2283
2284 merge_expr (expr2, expr1, insn);
2285 av_set_add_nocopy (&in_both_set, expr2);
2286 av_set_iter_remove (&i);
2287 }
2288 else
2289 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2290 FROM_LV_SET. */
2291 set_unavailable_target_for_expr (expr1, from_lv_set);
2292 }
2293 to_tailp = i.lp;
2294
2295 /* These expressions are not present in TOP. Check liveness
2296 restrictions on TO_LV_SET. */
2297 FOR_EACH_EXPR (expr1, i, *fromp)
2298 set_unavailable_target_for_expr (expr1, to_lv_set);
2299
2300 join_distinct_sets (i.lp, &in_both_set);
2301 join_distinct_sets (to_tailp, fromp);
2302 }
2303
2304 /* Clear av_set pointed to by SETP. */
2305 void
2306 av_set_clear (av_set_t *setp)
2307 {
2308 expr_t expr;
2309 av_set_iterator i;
2310
2311 FOR_EACH_EXPR_1 (expr, i, setp)
2312 av_set_iter_remove (&i);
2313
2314 gcc_assert (*setp == NULL);
2315 }
2316
2317 /* Leave only one non-speculative element in the SETP. */
2318 void
2319 av_set_leave_one_nonspec (av_set_t *setp)
2320 {
2321 expr_t expr;
2322 av_set_iterator i;
2323 bool has_one_nonspec = false;
2324
2325 /* Keep all speculative exprs, and leave one non-speculative
2326 (the first one). */
2327 FOR_EACH_EXPR_1 (expr, i, setp)
2328 {
2329 if (!EXPR_SPEC_DONE_DS (expr))
2330 {
2331 if (has_one_nonspec)
2332 av_set_iter_remove (&i);
2333 else
2334 has_one_nonspec = true;
2335 }
2336 }
2337 }
2338
2339 /* Return the N'th element of the SET. */
2340 expr_t
2341 av_set_element (av_set_t set, int n)
2342 {
2343 expr_t expr;
2344 av_set_iterator i;
2345
2346 FOR_EACH_EXPR (expr, i, set)
2347 if (n-- == 0)
2348 return expr;
2349
2350 gcc_unreachable ();
2351 return NULL;
2352 }
2353
2354 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2355 void
2356 av_set_substract_cond_branches (av_set_t *avp)
2357 {
2358 av_set_iterator i;
2359 expr_t expr;
2360
2361 FOR_EACH_EXPR_1 (expr, i, avp)
2362 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2363 av_set_iter_remove (&i);
2364 }
2365
2366 /* Multiplies usefulness attribute of each member of av-set *AVP by
2367 value PROB / ALL_PROB. */
2368 void
2369 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2370 {
2371 av_set_iterator i;
2372 expr_t expr;
2373
2374 FOR_EACH_EXPR (expr, i, av)
2375 EXPR_USEFULNESS (expr) = (all_prob
2376 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2377 : 0);
2378 }
2379
2380 /* Leave in AVP only those expressions, which are present in AV,
2381 and return it, merging history expressions. */
2382 void
2383 av_set_code_motion_filter (av_set_t *avp, av_set_t av)
2384 {
2385 av_set_iterator i;
2386 expr_t expr, expr2;
2387
2388 FOR_EACH_EXPR_1 (expr, i, avp)
2389 if ((expr2 = av_set_lookup (av, EXPR_VINSN (expr))) == NULL)
2390 av_set_iter_remove (&i);
2391 else
2392 /* When updating av sets in bookkeeping blocks, we can add more insns
2393 there which will be transformed but the upper av sets will not
2394 reflect those transformations. We then fail to undo those
2395 when searching for such insns. So merge the history saved
2396 in the av set of the block we are processing. */
2397 merge_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2398 EXPR_HISTORY_OF_CHANGES (expr2));
2399 }
2400
2401 \f
2402
2403 /* Dependence hooks to initialize insn data. */
2404
2405 /* This is used in hooks callable from dependence analysis when initializing
2406 instruction's data. */
2407 static struct
2408 {
2409 /* Where the dependence was found (lhs/rhs). */
2410 deps_where_t where;
2411
2412 /* The actual data object to initialize. */
2413 idata_t id;
2414
2415 /* True when the insn should not be made clonable. */
2416 bool force_unique_p;
2417
2418 /* True when insn should be treated as of type USE, i.e. never renamed. */
2419 bool force_use_p;
2420 } deps_init_id_data;
2421
2422
2423 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2424 clonable. */
2425 static void
2426 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2427 {
2428 int type;
2429
2430 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2431 That clonable insns which can be separated into lhs and rhs have type SET.
2432 Other clonable insns have type USE. */
2433 type = GET_CODE (insn);
2434
2435 /* Only regular insns could be cloned. */
2436 if (type == INSN && !force_unique_p)
2437 type = SET;
2438 else if (type == JUMP_INSN && simplejump_p (insn))
2439 type = PC;
2440 else if (type == DEBUG_INSN)
2441 type = !force_unique_p ? USE : INSN;
2442
2443 IDATA_TYPE (id) = type;
2444 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2445 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2446 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2447 }
2448
2449 /* Start initializing insn data. */
2450 static void
2451 deps_init_id_start_insn (insn_t insn)
2452 {
2453 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2454
2455 setup_id_for_insn (deps_init_id_data.id, insn,
2456 deps_init_id_data.force_unique_p);
2457 deps_init_id_data.where = DEPS_IN_INSN;
2458 }
2459
2460 /* Start initializing lhs data. */
2461 static void
2462 deps_init_id_start_lhs (rtx lhs)
2463 {
2464 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2465 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2466
2467 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2468 {
2469 IDATA_LHS (deps_init_id_data.id) = lhs;
2470 deps_init_id_data.where = DEPS_IN_LHS;
2471 }
2472 }
2473
2474 /* Finish initializing lhs data. */
2475 static void
2476 deps_init_id_finish_lhs (void)
2477 {
2478 deps_init_id_data.where = DEPS_IN_INSN;
2479 }
2480
2481 /* Note a set of REGNO. */
2482 static void
2483 deps_init_id_note_reg_set (int regno)
2484 {
2485 haifa_note_reg_set (regno);
2486
2487 if (deps_init_id_data.where == DEPS_IN_RHS)
2488 deps_init_id_data.force_use_p = true;
2489
2490 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2491 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2492
2493 #ifdef STACK_REGS
2494 /* Make instructions that set stack registers to be ineligible for
2495 renaming to avoid issues with find_used_regs. */
2496 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2497 deps_init_id_data.force_use_p = true;
2498 #endif
2499 }
2500
2501 /* Note a clobber of REGNO. */
2502 static void
2503 deps_init_id_note_reg_clobber (int regno)
2504 {
2505 haifa_note_reg_clobber (regno);
2506
2507 if (deps_init_id_data.where == DEPS_IN_RHS)
2508 deps_init_id_data.force_use_p = true;
2509
2510 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2511 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2512 }
2513
2514 /* Note a use of REGNO. */
2515 static void
2516 deps_init_id_note_reg_use (int regno)
2517 {
2518 haifa_note_reg_use (regno);
2519
2520 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2521 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2522 }
2523
2524 /* Start initializing rhs data. */
2525 static void
2526 deps_init_id_start_rhs (rtx rhs)
2527 {
2528 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2529
2530 /* And there was no sel_deps_reset_to_insn (). */
2531 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2532 {
2533 IDATA_RHS (deps_init_id_data.id) = rhs;
2534 deps_init_id_data.where = DEPS_IN_RHS;
2535 }
2536 }
2537
2538 /* Finish initializing rhs data. */
2539 static void
2540 deps_init_id_finish_rhs (void)
2541 {
2542 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2543 || deps_init_id_data.where == DEPS_IN_INSN);
2544 deps_init_id_data.where = DEPS_IN_INSN;
2545 }
2546
2547 /* Finish initializing insn data. */
2548 static void
2549 deps_init_id_finish_insn (void)
2550 {
2551 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2552
2553 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2554 {
2555 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2556 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2557
2558 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2559 || deps_init_id_data.force_use_p)
2560 {
2561 /* This should be a USE, as we don't want to schedule its RHS
2562 separately. However, we still want to have them recorded
2563 for the purposes of substitution. That's why we don't
2564 simply call downgrade_to_use () here. */
2565 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2566 gcc_assert (!lhs == !rhs);
2567
2568 IDATA_TYPE (deps_init_id_data.id) = USE;
2569 }
2570 }
2571
2572 deps_init_id_data.where = DEPS_IN_NOWHERE;
2573 }
2574
2575 /* This is dependence info used for initializing insn's data. */
2576 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2577
2578 /* This initializes most of the static part of the above structure. */
2579 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2580 {
2581 NULL,
2582
2583 deps_init_id_start_insn,
2584 deps_init_id_finish_insn,
2585 deps_init_id_start_lhs,
2586 deps_init_id_finish_lhs,
2587 deps_init_id_start_rhs,
2588 deps_init_id_finish_rhs,
2589 deps_init_id_note_reg_set,
2590 deps_init_id_note_reg_clobber,
2591 deps_init_id_note_reg_use,
2592 NULL, /* note_mem_dep */
2593 NULL, /* note_dep */
2594
2595 0, /* use_cselib */
2596 0, /* use_deps_list */
2597 0 /* generate_spec_deps */
2598 };
2599
2600 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2601 we don't actually need information about lhs and rhs. */
2602 static void
2603 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2604 {
2605 rtx pat = PATTERN (insn);
2606
2607 if (NONJUMP_INSN_P (insn)
2608 && GET_CODE (pat) == SET
2609 && !force_unique_p)
2610 {
2611 IDATA_RHS (id) = SET_SRC (pat);
2612 IDATA_LHS (id) = SET_DEST (pat);
2613 }
2614 else
2615 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2616 }
2617
2618 /* Possibly downgrade INSN to USE. */
2619 static void
2620 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2621 {
2622 bool must_be_use = false;
2623 df_ref def;
2624 rtx lhs = IDATA_LHS (id);
2625 rtx rhs = IDATA_RHS (id);
2626
2627 /* We downgrade only SETs. */
2628 if (IDATA_TYPE (id) != SET)
2629 return;
2630
2631 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2632 {
2633 IDATA_TYPE (id) = USE;
2634 return;
2635 }
2636
2637 FOR_EACH_INSN_DEF (def, insn)
2638 {
2639 if (DF_REF_INSN (def)
2640 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2641 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2642 {
2643 must_be_use = true;
2644 break;
2645 }
2646
2647 #ifdef STACK_REGS
2648 /* Make instructions that set stack registers to be ineligible for
2649 renaming to avoid issues with find_used_regs. */
2650 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2651 {
2652 must_be_use = true;
2653 break;
2654 }
2655 #endif
2656 }
2657
2658 if (must_be_use)
2659 IDATA_TYPE (id) = USE;
2660 }
2661
2662 /* Setup register sets describing INSN in ID. */
2663 static void
2664 setup_id_reg_sets (idata_t id, insn_t insn)
2665 {
2666 struct df_insn_info *insn_info = DF_INSN_INFO_GET (insn);
2667 df_ref def, use;
2668 regset tmp = get_clear_regset_from_pool ();
2669
2670 FOR_EACH_INSN_INFO_DEF (def, insn_info)
2671 {
2672 unsigned int regno = DF_REF_REGNO (def);
2673
2674 /* Post modifies are treated like clobbers by sched-deps.c. */
2675 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2676 | DF_REF_PRE_POST_MODIFY)))
2677 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2678 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2679 {
2680 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2681
2682 #ifdef STACK_REGS
2683 /* For stack registers, treat writes to them as writes
2684 to the first one to be consistent with sched-deps.c. */
2685 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2686 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2687 #endif
2688 }
2689 /* Mark special refs that generate read/write def pair. */
2690 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2691 || regno == STACK_POINTER_REGNUM)
2692 bitmap_set_bit (tmp, regno);
2693 }
2694
2695 FOR_EACH_INSN_INFO_USE (use, insn_info)
2696 {
2697 unsigned int regno = DF_REF_REGNO (use);
2698
2699 /* When these refs are met for the first time, skip them, as
2700 these uses are just counterparts of some defs. */
2701 if (bitmap_bit_p (tmp, regno))
2702 bitmap_clear_bit (tmp, regno);
2703 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2704 {
2705 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2706
2707 #ifdef STACK_REGS
2708 /* For stack registers, treat reads from them as reads from
2709 the first one to be consistent with sched-deps.c. */
2710 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2711 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2712 #endif
2713 }
2714 }
2715
2716 return_regset_to_pool (tmp);
2717 }
2718
2719 /* Initialize instruction data for INSN in ID using DF's data. */
2720 static void
2721 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2722 {
2723 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2724
2725 setup_id_for_insn (id, insn, force_unique_p);
2726 setup_id_lhs_rhs (id, insn, force_unique_p);
2727
2728 if (INSN_NOP_P (insn))
2729 return;
2730
2731 maybe_downgrade_id_to_use (id, insn);
2732 setup_id_reg_sets (id, insn);
2733 }
2734
2735 /* Initialize instruction data for INSN in ID. */
2736 static void
2737 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2738 {
2739 struct deps_desc _dc, *dc = &_dc;
2740
2741 deps_init_id_data.where = DEPS_IN_NOWHERE;
2742 deps_init_id_data.id = id;
2743 deps_init_id_data.force_unique_p = force_unique_p;
2744 deps_init_id_data.force_use_p = false;
2745
2746 init_deps (dc, false);
2747
2748 memcpy (&deps_init_id_sched_deps_info,
2749 &const_deps_init_id_sched_deps_info,
2750 sizeof (deps_init_id_sched_deps_info));
2751
2752 if (spec_info != NULL)
2753 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2754
2755 sched_deps_info = &deps_init_id_sched_deps_info;
2756
2757 deps_analyze_insn (dc, insn);
2758
2759 free_deps (dc);
2760
2761 deps_init_id_data.id = NULL;
2762 }
2763
2764 \f
2765 struct sched_scan_info_def
2766 {
2767 /* This hook notifies scheduler frontend to extend its internal per basic
2768 block data structures. This hook should be called once before a series of
2769 calls to bb_init (). */
2770 void (*extend_bb) (void);
2771
2772 /* This hook makes scheduler frontend to initialize its internal data
2773 structures for the passed basic block. */
2774 void (*init_bb) (basic_block);
2775
2776 /* This hook notifies scheduler frontend to extend its internal per insn data
2777 structures. This hook should be called once before a series of calls to
2778 insn_init (). */
2779 void (*extend_insn) (void);
2780
2781 /* This hook makes scheduler frontend to initialize its internal data
2782 structures for the passed insn. */
2783 void (*init_insn) (insn_t);
2784 };
2785
2786 /* A driver function to add a set of basic blocks (BBS) to the
2787 scheduling region. */
2788 static void
2789 sched_scan (const struct sched_scan_info_def *ssi, bb_vec_t bbs)
2790 {
2791 unsigned i;
2792 basic_block bb;
2793
2794 if (ssi->extend_bb)
2795 ssi->extend_bb ();
2796
2797 if (ssi->init_bb)
2798 FOR_EACH_VEC_ELT (bbs, i, bb)
2799 ssi->init_bb (bb);
2800
2801 if (ssi->extend_insn)
2802 ssi->extend_insn ();
2803
2804 if (ssi->init_insn)
2805 FOR_EACH_VEC_ELT (bbs, i, bb)
2806 {
2807 rtx_insn *insn;
2808
2809 FOR_BB_INSNS (bb, insn)
2810 ssi->init_insn (insn);
2811 }
2812 }
2813
2814 /* Implement hooks for collecting fundamental insn properties like if insn is
2815 an ASM or is within a SCHED_GROUP. */
2816
2817 /* True when a "one-time init" data for INSN was already inited. */
2818 static bool
2819 first_time_insn_init (insn_t insn)
2820 {
2821 return INSN_LIVE (insn) == NULL;
2822 }
2823
2824 /* Hash an entry in a transformed_insns hashtable. */
2825 static hashval_t
2826 hash_transformed_insns (const void *p)
2827 {
2828 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2829 }
2830
2831 /* Compare the entries in a transformed_insns hashtable. */
2832 static int
2833 eq_transformed_insns (const void *p, const void *q)
2834 {
2835 rtx_insn *i1 =
2836 VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2837 rtx_insn *i2 =
2838 VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2839
2840 if (INSN_UID (i1) == INSN_UID (i2))
2841 return 1;
2842 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2843 }
2844
2845 /* Free an entry in a transformed_insns hashtable. */
2846 static void
2847 free_transformed_insns (void *p)
2848 {
2849 struct transformed_insns *pti = (struct transformed_insns *) p;
2850
2851 vinsn_detach (pti->vinsn_old);
2852 vinsn_detach (pti->vinsn_new);
2853 free (pti);
2854 }
2855
2856 /* Init the s_i_d data for INSN which should be inited just once, when
2857 we first see the insn. */
2858 static void
2859 init_first_time_insn_data (insn_t insn)
2860 {
2861 /* This should not be set if this is the first time we init data for
2862 insn. */
2863 gcc_assert (first_time_insn_init (insn));
2864
2865 /* These are needed for nops too. */
2866 INSN_LIVE (insn) = get_regset_from_pool ();
2867 INSN_LIVE_VALID_P (insn) = false;
2868
2869 if (!INSN_NOP_P (insn))
2870 {
2871 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2872 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2873 INSN_TRANSFORMED_INSNS (insn)
2874 = htab_create (16, hash_transformed_insns,
2875 eq_transformed_insns, free_transformed_insns);
2876 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2877 }
2878 }
2879
2880 /* Free almost all above data for INSN that is scheduled already.
2881 Used for extra-large basic blocks. */
2882 void
2883 free_data_for_scheduled_insn (insn_t insn)
2884 {
2885 gcc_assert (! first_time_insn_init (insn));
2886
2887 if (! INSN_ANALYZED_DEPS (insn))
2888 return;
2889
2890 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2891 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2892 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2893
2894 /* This is allocated only for bookkeeping insns. */
2895 if (INSN_ORIGINATORS (insn))
2896 BITMAP_FREE (INSN_ORIGINATORS (insn));
2897 free_deps (&INSN_DEPS_CONTEXT (insn));
2898
2899 INSN_ANALYZED_DEPS (insn) = NULL;
2900
2901 /* Clear the readonly flag so we would ICE when trying to recalculate
2902 the deps context (as we believe that it should not happen). */
2903 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2904 }
2905
2906 /* Free the same data as above for INSN. */
2907 static void
2908 free_first_time_insn_data (insn_t insn)
2909 {
2910 gcc_assert (! first_time_insn_init (insn));
2911
2912 free_data_for_scheduled_insn (insn);
2913 return_regset_to_pool (INSN_LIVE (insn));
2914 INSN_LIVE (insn) = NULL;
2915 INSN_LIVE_VALID_P (insn) = false;
2916 }
2917
2918 /* Initialize region-scope data structures for basic blocks. */
2919 static void
2920 init_global_and_expr_for_bb (basic_block bb)
2921 {
2922 if (sel_bb_empty_p (bb))
2923 return;
2924
2925 invalidate_av_set (bb);
2926 }
2927
2928 /* Data for global dependency analysis (to initialize CANT_MOVE and
2929 SCHED_GROUP_P). */
2930 static struct
2931 {
2932 /* Previous insn. */
2933 insn_t prev_insn;
2934 } init_global_data;
2935
2936 /* Determine if INSN is in the sched_group, is an asm or should not be
2937 cloned. After that initialize its expr. */
2938 static void
2939 init_global_and_expr_for_insn (insn_t insn)
2940 {
2941 if (LABEL_P (insn))
2942 return;
2943
2944 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2945 {
2946 init_global_data.prev_insn = NULL;
2947 return;
2948 }
2949
2950 gcc_assert (INSN_P (insn));
2951
2952 if (SCHED_GROUP_P (insn))
2953 /* Setup a sched_group. */
2954 {
2955 insn_t prev_insn = init_global_data.prev_insn;
2956
2957 if (prev_insn)
2958 INSN_SCHED_NEXT (prev_insn) = insn;
2959
2960 init_global_data.prev_insn = insn;
2961 }
2962 else
2963 init_global_data.prev_insn = NULL;
2964
2965 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2966 || asm_noperands (PATTERN (insn)) >= 0)
2967 /* Mark INSN as an asm. */
2968 INSN_ASM_P (insn) = true;
2969
2970 {
2971 bool force_unique_p;
2972 ds_t spec_done_ds;
2973
2974 /* Certain instructions cannot be cloned, and frame related insns and
2975 the insn adjacent to NOTE_INSN_EPILOGUE_BEG cannot be moved out of
2976 their block. */
2977 if (prologue_epilogue_contains (insn))
2978 {
2979 if (RTX_FRAME_RELATED_P (insn))
2980 CANT_MOVE (insn) = 1;
2981 else
2982 {
2983 rtx note;
2984 for (note = REG_NOTES (insn); note; note = XEXP (note, 1))
2985 if (REG_NOTE_KIND (note) == REG_SAVE_NOTE
2986 && ((enum insn_note) INTVAL (XEXP (note, 0))
2987 == NOTE_INSN_EPILOGUE_BEG))
2988 {
2989 CANT_MOVE (insn) = 1;
2990 break;
2991 }
2992 }
2993 force_unique_p = true;
2994 }
2995 else
2996 if (CANT_MOVE (insn)
2997 || INSN_ASM_P (insn)
2998 || SCHED_GROUP_P (insn)
2999 || CALL_P (insn)
3000 /* Exception handling insns are always unique. */
3001 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
3002 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
3003 || control_flow_insn_p (insn)
3004 || volatile_insn_p (PATTERN (insn))
3005 || (targetm.cannot_copy_insn_p
3006 && targetm.cannot_copy_insn_p (insn)))
3007 force_unique_p = true;
3008 else
3009 force_unique_p = false;
3010
3011 if (targetm.sched.get_insn_spec_ds)
3012 {
3013 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
3014 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
3015 }
3016 else
3017 spec_done_ds = 0;
3018
3019 /* Initialize INSN's expr. */
3020 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
3021 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
3022 spec_done_ds, 0, 0, vNULL, true,
3023 false, false, false, CANT_MOVE (insn));
3024 }
3025
3026 init_first_time_insn_data (insn);
3027 }
3028
3029 /* Scan the region and initialize instruction data for basic blocks BBS. */
3030 void
3031 sel_init_global_and_expr (bb_vec_t bbs)
3032 {
3033 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
3034 const struct sched_scan_info_def ssi =
3035 {
3036 NULL, /* extend_bb */
3037 init_global_and_expr_for_bb, /* init_bb */
3038 extend_insn_data, /* extend_insn */
3039 init_global_and_expr_for_insn /* init_insn */
3040 };
3041
3042 sched_scan (&ssi, bbs);
3043 }
3044
3045 /* Finalize region-scope data structures for basic blocks. */
3046 static void
3047 finish_global_and_expr_for_bb (basic_block bb)
3048 {
3049 av_set_clear (&BB_AV_SET (bb));
3050 BB_AV_LEVEL (bb) = 0;
3051 }
3052
3053 /* Finalize INSN's data. */
3054 static void
3055 finish_global_and_expr_insn (insn_t insn)
3056 {
3057 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
3058 return;
3059
3060 gcc_assert (INSN_P (insn));
3061
3062 if (INSN_LUID (insn) > 0)
3063 {
3064 free_first_time_insn_data (insn);
3065 INSN_WS_LEVEL (insn) = 0;
3066 CANT_MOVE (insn) = 0;
3067
3068 /* We can no longer assert this, as vinsns of this insn could be
3069 easily live in other insn's caches. This should be changed to
3070 a counter-like approach among all vinsns. */
3071 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
3072 clear_expr (INSN_EXPR (insn));
3073 }
3074 }
3075
3076 /* Finalize per instruction data for the whole region. */
3077 void
3078 sel_finish_global_and_expr (void)
3079 {
3080 {
3081 bb_vec_t bbs;
3082 int i;
3083
3084 bbs.create (current_nr_blocks);
3085
3086 for (i = 0; i < current_nr_blocks; i++)
3087 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
3088
3089 /* Clear AV_SETs and INSN_EXPRs. */
3090 {
3091 const struct sched_scan_info_def ssi =
3092 {
3093 NULL, /* extend_bb */
3094 finish_global_and_expr_for_bb, /* init_bb */
3095 NULL, /* extend_insn */
3096 finish_global_and_expr_insn /* init_insn */
3097 };
3098
3099 sched_scan (&ssi, bbs);
3100 }
3101
3102 bbs.release ();
3103 }
3104
3105 finish_insns ();
3106 }
3107 \f
3108
3109 /* In the below hooks, we merely calculate whether or not a dependence
3110 exists, and in what part of insn. However, we will need more data
3111 when we'll start caching dependence requests. */
3112
3113 /* Container to hold information for dependency analysis. */
3114 static struct
3115 {
3116 deps_t dc;
3117
3118 /* A variable to track which part of rtx we are scanning in
3119 sched-deps.c: sched_analyze_insn (). */
3120 deps_where_t where;
3121
3122 /* Current producer. */
3123 insn_t pro;
3124
3125 /* Current consumer. */
3126 vinsn_t con;
3127
3128 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
3129 X is from { INSN, LHS, RHS }. */
3130 ds_t has_dep_p[DEPS_IN_NOWHERE];
3131 } has_dependence_data;
3132
3133 /* Start analyzing dependencies of INSN. */
3134 static void
3135 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3136 {
3137 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3138
3139 has_dependence_data.where = DEPS_IN_INSN;
3140 }
3141
3142 /* Finish analyzing dependencies of an insn. */
3143 static void
3144 has_dependence_finish_insn (void)
3145 {
3146 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3147
3148 has_dependence_data.where = DEPS_IN_NOWHERE;
3149 }
3150
3151 /* Start analyzing dependencies of LHS. */
3152 static void
3153 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3154 {
3155 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3156
3157 if (VINSN_LHS (has_dependence_data.con) != NULL)
3158 has_dependence_data.where = DEPS_IN_LHS;
3159 }
3160
3161 /* Finish analyzing dependencies of an lhs. */
3162 static void
3163 has_dependence_finish_lhs (void)
3164 {
3165 has_dependence_data.where = DEPS_IN_INSN;
3166 }
3167
3168 /* Start analyzing dependencies of RHS. */
3169 static void
3170 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3171 {
3172 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3173
3174 if (VINSN_RHS (has_dependence_data.con) != NULL)
3175 has_dependence_data.where = DEPS_IN_RHS;
3176 }
3177
3178 /* Start analyzing dependencies of an rhs. */
3179 static void
3180 has_dependence_finish_rhs (void)
3181 {
3182 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3183 || has_dependence_data.where == DEPS_IN_INSN);
3184
3185 has_dependence_data.where = DEPS_IN_INSN;
3186 }
3187
3188 /* Note a set of REGNO. */
3189 static void
3190 has_dependence_note_reg_set (int regno)
3191 {
3192 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3193
3194 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3195 VINSN_INSN_RTX
3196 (has_dependence_data.con)))
3197 {
3198 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3199
3200 if (reg_last->sets != NULL
3201 || reg_last->clobbers != NULL)
3202 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3203
3204 if (reg_last->uses || reg_last->implicit_sets)
3205 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3206 }
3207 }
3208
3209 /* Note a clobber of REGNO. */
3210 static void
3211 has_dependence_note_reg_clobber (int regno)
3212 {
3213 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3214
3215 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3216 VINSN_INSN_RTX
3217 (has_dependence_data.con)))
3218 {
3219 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3220
3221 if (reg_last->sets)
3222 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3223
3224 if (reg_last->uses || reg_last->implicit_sets)
3225 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3226 }
3227 }
3228
3229 /* Note a use of REGNO. */
3230 static void
3231 has_dependence_note_reg_use (int regno)
3232 {
3233 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3234
3235 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3236 VINSN_INSN_RTX
3237 (has_dependence_data.con)))
3238 {
3239 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3240
3241 if (reg_last->sets)
3242 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3243
3244 if (reg_last->clobbers || reg_last->implicit_sets)
3245 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3246
3247 /* Merge BE_IN_SPEC bits into *DSP when the dependency producer
3248 is actually a check insn. We need to do this for any register
3249 read-read dependency with the check unless we track properly
3250 all registers written by BE_IN_SPEC-speculated insns, as
3251 we don't have explicit dependence lists. See PR 53975. */
3252 if (reg_last->uses)
3253 {
3254 ds_t pro_spec_checked_ds;
3255
3256 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3257 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3258
3259 if (pro_spec_checked_ds != 0)
3260 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3261 NULL_RTX, NULL_RTX);
3262 }
3263 }
3264 }
3265
3266 /* Note a memory dependence. */
3267 static void
3268 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3269 rtx pending_mem ATTRIBUTE_UNUSED,
3270 insn_t pending_insn ATTRIBUTE_UNUSED,
3271 ds_t ds ATTRIBUTE_UNUSED)
3272 {
3273 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3274 VINSN_INSN_RTX (has_dependence_data.con)))
3275 {
3276 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3277
3278 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3279 }
3280 }
3281
3282 /* Note a dependence. */
3283 static void
3284 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3285 ds_t ds ATTRIBUTE_UNUSED)
3286 {
3287 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3288 VINSN_INSN_RTX (has_dependence_data.con)))
3289 {
3290 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3291
3292 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3293 }
3294 }
3295
3296 /* Mark the insn as having a hard dependence that prevents speculation. */
3297 void
3298 sel_mark_hard_insn (rtx insn)
3299 {
3300 int i;
3301
3302 /* Only work when we're in has_dependence_p mode.
3303 ??? This is a hack, this should actually be a hook. */
3304 if (!has_dependence_data.dc || !has_dependence_data.pro)
3305 return;
3306
3307 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3308 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3309
3310 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3311 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3312 }
3313
3314 /* This structure holds the hooks for the dependency analysis used when
3315 actually processing dependencies in the scheduler. */
3316 static struct sched_deps_info_def has_dependence_sched_deps_info;
3317
3318 /* This initializes most of the fields of the above structure. */
3319 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3320 {
3321 NULL,
3322
3323 has_dependence_start_insn,
3324 has_dependence_finish_insn,
3325 has_dependence_start_lhs,
3326 has_dependence_finish_lhs,
3327 has_dependence_start_rhs,
3328 has_dependence_finish_rhs,
3329 has_dependence_note_reg_set,
3330 has_dependence_note_reg_clobber,
3331 has_dependence_note_reg_use,
3332 has_dependence_note_mem_dep,
3333 has_dependence_note_dep,
3334
3335 0, /* use_cselib */
3336 0, /* use_deps_list */
3337 0 /* generate_spec_deps */
3338 };
3339
3340 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3341 static void
3342 setup_has_dependence_sched_deps_info (void)
3343 {
3344 memcpy (&has_dependence_sched_deps_info,
3345 &const_has_dependence_sched_deps_info,
3346 sizeof (has_dependence_sched_deps_info));
3347
3348 if (spec_info != NULL)
3349 has_dependence_sched_deps_info.generate_spec_deps = 1;
3350
3351 sched_deps_info = &has_dependence_sched_deps_info;
3352 }
3353
3354 /* Remove all dependences found and recorded in has_dependence_data array. */
3355 void
3356 sel_clear_has_dependence (void)
3357 {
3358 int i;
3359
3360 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3361 has_dependence_data.has_dep_p[i] = 0;
3362 }
3363
3364 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3365 to the dependence information array in HAS_DEP_PP. */
3366 ds_t
3367 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3368 {
3369 int i;
3370 ds_t ds;
3371 struct deps_desc *dc;
3372
3373 if (INSN_SIMPLEJUMP_P (pred))
3374 /* Unconditional jump is just a transfer of control flow.
3375 Ignore it. */
3376 return false;
3377
3378 dc = &INSN_DEPS_CONTEXT (pred);
3379
3380 /* We init this field lazily. */
3381 if (dc->reg_last == NULL)
3382 init_deps_reg_last (dc);
3383
3384 if (!dc->readonly)
3385 {
3386 has_dependence_data.pro = NULL;
3387 /* Initialize empty dep context with information about PRED. */
3388 advance_deps_context (dc, pred);
3389 dc->readonly = 1;
3390 }
3391
3392 has_dependence_data.where = DEPS_IN_NOWHERE;
3393 has_dependence_data.pro = pred;
3394 has_dependence_data.con = EXPR_VINSN (expr);
3395 has_dependence_data.dc = dc;
3396
3397 sel_clear_has_dependence ();
3398
3399 /* Now catch all dependencies that would be generated between PRED and
3400 INSN. */
3401 setup_has_dependence_sched_deps_info ();
3402 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3403 has_dependence_data.dc = NULL;
3404
3405 /* When a barrier was found, set DEPS_IN_INSN bits. */
3406 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3407 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3408 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3409 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3410
3411 /* Do not allow stores to memory to move through checks. Currently
3412 we don't move this to sched-deps.c as the check doesn't have
3413 obvious places to which this dependence can be attached.
3414 FIMXE: this should go to a hook. */
3415 if (EXPR_LHS (expr)
3416 && MEM_P (EXPR_LHS (expr))
3417 && sel_insn_is_speculation_check (pred))
3418 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3419
3420 *has_dep_pp = has_dependence_data.has_dep_p;
3421 ds = 0;
3422 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3423 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3424 NULL_RTX, NULL_RTX);
3425
3426 return ds;
3427 }
3428 \f
3429
3430 /* Dependence hooks implementation that checks dependence latency constraints
3431 on the insns being scheduled. The entry point for these routines is
3432 tick_check_p predicate. */
3433
3434 static struct
3435 {
3436 /* An expr we are currently checking. */
3437 expr_t expr;
3438
3439 /* A minimal cycle for its scheduling. */
3440 int cycle;
3441
3442 /* Whether we have seen a true dependence while checking. */
3443 bool seen_true_dep_p;
3444 } tick_check_data;
3445
3446 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3447 on PRO with status DS and weight DW. */
3448 static void
3449 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3450 {
3451 expr_t con_expr = tick_check_data.expr;
3452 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3453
3454 if (con_insn != pro_insn)
3455 {
3456 enum reg_note dt;
3457 int tick;
3458
3459 if (/* PROducer was removed from above due to pipelining. */
3460 !INSN_IN_STREAM_P (pro_insn)
3461 /* Or PROducer was originally on the next iteration regarding the
3462 CONsumer. */
3463 || (INSN_SCHED_TIMES (pro_insn)
3464 - EXPR_SCHED_TIMES (con_expr)) > 1)
3465 /* Don't count this dependence. */
3466 return;
3467
3468 dt = ds_to_dt (ds);
3469 if (dt == REG_DEP_TRUE)
3470 tick_check_data.seen_true_dep_p = true;
3471
3472 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3473
3474 {
3475 dep_def _dep, *dep = &_dep;
3476
3477 init_dep (dep, pro_insn, con_insn, dt);
3478
3479 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3480 }
3481
3482 /* When there are several kinds of dependencies between pro and con,
3483 only REG_DEP_TRUE should be taken into account. */
3484 if (tick > tick_check_data.cycle
3485 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3486 tick_check_data.cycle = tick;
3487 }
3488 }
3489
3490 /* An implementation of note_dep hook. */
3491 static void
3492 tick_check_note_dep (insn_t pro, ds_t ds)
3493 {
3494 tick_check_dep_with_dw (pro, ds, 0);
3495 }
3496
3497 /* An implementation of note_mem_dep hook. */
3498 static void
3499 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3500 {
3501 dw_t dw;
3502
3503 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3504 ? estimate_dep_weak (mem1, mem2)
3505 : 0);
3506
3507 tick_check_dep_with_dw (pro, ds, dw);
3508 }
3509
3510 /* This structure contains hooks for dependence analysis used when determining
3511 whether an insn is ready for scheduling. */
3512 static struct sched_deps_info_def tick_check_sched_deps_info =
3513 {
3514 NULL,
3515
3516 NULL,
3517 NULL,
3518 NULL,
3519 NULL,
3520 NULL,
3521 NULL,
3522 haifa_note_reg_set,
3523 haifa_note_reg_clobber,
3524 haifa_note_reg_use,
3525 tick_check_note_mem_dep,
3526 tick_check_note_dep,
3527
3528 0, 0, 0
3529 };
3530
3531 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3532 scheduled. Return 0 if all data from producers in DC is ready. */
3533 int
3534 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3535 {
3536 int cycles_left;
3537 /* Initialize variables. */
3538 tick_check_data.expr = expr;
3539 tick_check_data.cycle = 0;
3540 tick_check_data.seen_true_dep_p = false;
3541 sched_deps_info = &tick_check_sched_deps_info;
3542
3543 gcc_assert (!dc->readonly);
3544 dc->readonly = 1;
3545 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3546 dc->readonly = 0;
3547
3548 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3549
3550 return cycles_left >= 0 ? cycles_left : 0;
3551 }
3552 \f
3553
3554 /* Functions to work with insns. */
3555
3556 /* Returns true if LHS of INSN is the same as DEST of an insn
3557 being moved. */
3558 bool
3559 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3560 {
3561 rtx lhs = INSN_LHS (insn);
3562
3563 if (lhs == NULL || dest == NULL)
3564 return false;
3565
3566 return rtx_equal_p (lhs, dest);
3567 }
3568
3569 /* Return s_i_d entry of INSN. Callable from debugger. */
3570 sel_insn_data_def
3571 insn_sid (insn_t insn)
3572 {
3573 return *SID (insn);
3574 }
3575
3576 /* True when INSN is a speculative check. We can tell this by looking
3577 at the data structures of the selective scheduler, not by examining
3578 the pattern. */
3579 bool
3580 sel_insn_is_speculation_check (rtx insn)
3581 {
3582 return s_i_d.exists () && !! INSN_SPEC_CHECKED_DS (insn);
3583 }
3584
3585 /* Extracts machine mode MODE and destination location DST_LOC
3586 for given INSN. */
3587 void
3588 get_dest_and_mode (rtx insn, rtx *dst_loc, machine_mode *mode)
3589 {
3590 rtx pat = PATTERN (insn);
3591
3592 gcc_assert (dst_loc);
3593 gcc_assert (GET_CODE (pat) == SET);
3594
3595 *dst_loc = SET_DEST (pat);
3596
3597 gcc_assert (*dst_loc);
3598 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3599
3600 if (mode)
3601 *mode = GET_MODE (*dst_loc);
3602 }
3603
3604 /* Returns true when moving through JUMP will result in bookkeeping
3605 creation. */
3606 bool
3607 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3608 {
3609 insn_t succ;
3610 succ_iterator si;
3611
3612 FOR_EACH_SUCC (succ, si, jump)
3613 if (sel_num_cfg_preds_gt_1 (succ))
3614 return true;
3615
3616 return false;
3617 }
3618
3619 /* Return 'true' if INSN is the only one in its basic block. */
3620 static bool
3621 insn_is_the_only_one_in_bb_p (insn_t insn)
3622 {
3623 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3624 }
3625
3626 #ifdef ENABLE_CHECKING
3627 /* Check that the region we're scheduling still has at most one
3628 backedge. */
3629 static void
3630 verify_backedges (void)
3631 {
3632 if (pipelining_p)
3633 {
3634 int i, n = 0;
3635 edge e;
3636 edge_iterator ei;
3637
3638 for (i = 0; i < current_nr_blocks; i++)
3639 FOR_EACH_EDGE (e, ei, BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))->succs)
3640 if (in_current_region_p (e->dest)
3641 && BLOCK_TO_BB (e->dest->index) < i)
3642 n++;
3643
3644 gcc_assert (n <= 1);
3645 }
3646 }
3647 #endif
3648 \f
3649
3650 /* Functions to work with control flow. */
3651
3652 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3653 are sorted in topological order (it might have been invalidated by
3654 redirecting an edge). */
3655 static void
3656 sel_recompute_toporder (void)
3657 {
3658 int i, n, rgn;
3659 int *postorder, n_blocks;
3660
3661 postorder = XALLOCAVEC (int, n_basic_blocks_for_fn (cfun));
3662 n_blocks = post_order_compute (postorder, false, false);
3663
3664 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3665 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3666 if (CONTAINING_RGN (postorder[i]) == rgn)
3667 {
3668 BLOCK_TO_BB (postorder[i]) = n;
3669 BB_TO_BLOCK (n) = postorder[i];
3670 n++;
3671 }
3672
3673 /* Assert that we updated info for all blocks. We may miss some blocks if
3674 this function is called when redirecting an edge made a block
3675 unreachable, but that block is not deleted yet. */
3676 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3677 }
3678
3679 /* Tidy the possibly empty block BB. */
3680 static bool
3681 maybe_tidy_empty_bb (basic_block bb)
3682 {
3683 basic_block succ_bb, pred_bb, note_bb;
3684 vec<basic_block> dom_bbs;
3685 edge e;
3686 edge_iterator ei;
3687 bool rescan_p;
3688
3689 /* Keep empty bb only if this block immediately precedes EXIT and
3690 has incoming non-fallthrough edge, or it has no predecessors or
3691 successors. Otherwise remove it. */
3692 if (!sel_bb_empty_p (bb)
3693 || (single_succ_p (bb)
3694 && single_succ (bb) == EXIT_BLOCK_PTR_FOR_FN (cfun)
3695 && (!single_pred_p (bb)
3696 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3697 || EDGE_COUNT (bb->preds) == 0
3698 || EDGE_COUNT (bb->succs) == 0)
3699 return false;
3700
3701 /* Do not attempt to redirect complex edges. */
3702 FOR_EACH_EDGE (e, ei, bb->preds)
3703 if (e->flags & EDGE_COMPLEX)
3704 return false;
3705 else if (e->flags & EDGE_FALLTHRU)
3706 {
3707 rtx note;
3708 /* If prev bb ends with asm goto, see if any of the
3709 ASM_OPERANDS_LABELs don't point to the fallthru
3710 label. Do not attempt to redirect it in that case. */
3711 if (JUMP_P (BB_END (e->src))
3712 && (note = extract_asm_operands (PATTERN (BB_END (e->src)))))
3713 {
3714 int i, n = ASM_OPERANDS_LABEL_LENGTH (note);
3715
3716 for (i = 0; i < n; ++i)
3717 if (XEXP (ASM_OPERANDS_LABEL (note, i), 0) == BB_HEAD (bb))
3718 return false;
3719 }
3720 }
3721
3722 free_data_sets (bb);
3723
3724 /* Do not delete BB if it has more than one successor.
3725 That can occur when we moving a jump. */
3726 if (!single_succ_p (bb))
3727 {
3728 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3729 sel_merge_blocks (bb->prev_bb, bb);
3730 return true;
3731 }
3732
3733 succ_bb = single_succ (bb);
3734 rescan_p = true;
3735 pred_bb = NULL;
3736 dom_bbs.create (0);
3737
3738 /* Save a pred/succ from the current region to attach the notes to. */
3739 note_bb = NULL;
3740 FOR_EACH_EDGE (e, ei, bb->preds)
3741 if (in_current_region_p (e->src))
3742 {
3743 note_bb = e->src;
3744 break;
3745 }
3746 if (note_bb == NULL)
3747 note_bb = succ_bb;
3748
3749 /* Redirect all non-fallthru edges to the next bb. */
3750 while (rescan_p)
3751 {
3752 rescan_p = false;
3753
3754 FOR_EACH_EDGE (e, ei, bb->preds)
3755 {
3756 pred_bb = e->src;
3757
3758 if (!(e->flags & EDGE_FALLTHRU))
3759 {
3760 /* We can not invalidate computed topological order by moving
3761 the edge destination block (E->SUCC) along a fallthru edge.
3762
3763 We will update dominators here only when we'll get
3764 an unreachable block when redirecting, otherwise
3765 sel_redirect_edge_and_branch will take care of it. */
3766 if (e->dest != bb
3767 && single_pred_p (e->dest))
3768 dom_bbs.safe_push (e->dest);
3769 sel_redirect_edge_and_branch (e, succ_bb);
3770 rescan_p = true;
3771 break;
3772 }
3773 /* If the edge is fallthru, but PRED_BB ends in a conditional jump
3774 to BB (so there is no non-fallthru edge from PRED_BB to BB), we
3775 still have to adjust it. */
3776 else if (single_succ_p (pred_bb) && any_condjump_p (BB_END (pred_bb)))
3777 {
3778 /* If possible, try to remove the unneeded conditional jump. */
3779 if (INSN_SCHED_TIMES (BB_END (pred_bb)) == 0
3780 && !IN_CURRENT_FENCE_P (BB_END (pred_bb)))
3781 {
3782 if (!sel_remove_insn (BB_END (pred_bb), false, false))
3783 tidy_fallthru_edge (e);
3784 }
3785 else
3786 sel_redirect_edge_and_branch (e, succ_bb);
3787 rescan_p = true;
3788 break;
3789 }
3790 }
3791 }
3792
3793 if (can_merge_blocks_p (bb->prev_bb, bb))
3794 sel_merge_blocks (bb->prev_bb, bb);
3795 else
3796 {
3797 /* This is a block without fallthru predecessor. Just delete it. */
3798 gcc_assert (note_bb);
3799 move_bb_info (note_bb, bb);
3800 remove_empty_bb (bb, true);
3801 }
3802
3803 if (!dom_bbs.is_empty ())
3804 {
3805 dom_bbs.safe_push (succ_bb);
3806 iterate_fix_dominators (CDI_DOMINATORS, dom_bbs, false);
3807 dom_bbs.release ();
3808 }
3809
3810 return true;
3811 }
3812
3813 /* Tidy the control flow after we have removed original insn from
3814 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3815 is true, also try to optimize control flow on non-empty blocks. */
3816 bool
3817 tidy_control_flow (basic_block xbb, bool full_tidying)
3818 {
3819 bool changed = true;
3820 insn_t first, last;
3821
3822 /* First check whether XBB is empty. */
3823 changed = maybe_tidy_empty_bb (xbb);
3824 if (changed || !full_tidying)
3825 return changed;
3826
3827 /* Check if there is a unnecessary jump after insn left. */
3828 if (bb_has_removable_jump_to_p (xbb, xbb->next_bb)
3829 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3830 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3831 {
3832 if (sel_remove_insn (BB_END (xbb), false, false))
3833 return true;
3834 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3835 }
3836
3837 first = sel_bb_head (xbb);
3838 last = sel_bb_end (xbb);
3839 if (MAY_HAVE_DEBUG_INSNS)
3840 {
3841 if (first != last && DEBUG_INSN_P (first))
3842 do
3843 first = NEXT_INSN (first);
3844 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3845
3846 if (first != last && DEBUG_INSN_P (last))
3847 do
3848 last = PREV_INSN (last);
3849 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3850 }
3851 /* Check if there is an unnecessary jump in previous basic block leading
3852 to next basic block left after removing INSN from stream.
3853 If it is so, remove that jump and redirect edge to current
3854 basic block (where there was INSN before deletion). This way
3855 when NOP will be deleted several instructions later with its
3856 basic block we will not get a jump to next instruction, which
3857 can be harmful. */
3858 if (first == last
3859 && !sel_bb_empty_p (xbb)
3860 && INSN_NOP_P (last)
3861 /* Flow goes fallthru from current block to the next. */
3862 && EDGE_COUNT (xbb->succs) == 1
3863 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3864 /* When successor is an EXIT block, it may not be the next block. */
3865 && single_succ (xbb) != EXIT_BLOCK_PTR_FOR_FN (cfun)
3866 /* And unconditional jump in previous basic block leads to
3867 next basic block of XBB and this jump can be safely removed. */
3868 && in_current_region_p (xbb->prev_bb)
3869 && bb_has_removable_jump_to_p (xbb->prev_bb, xbb->next_bb)
3870 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3871 /* Also this jump is not at the scheduling boundary. */
3872 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3873 {
3874 bool recompute_toporder_p;
3875 /* Clear data structures of jump - jump itself will be removed
3876 by sel_redirect_edge_and_branch. */
3877 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3878 recompute_toporder_p
3879 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3880
3881 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3882
3883 /* It can turn out that after removing unused jump, basic block
3884 that contained that jump, becomes empty too. In such case
3885 remove it too. */
3886 if (sel_bb_empty_p (xbb->prev_bb))
3887 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3888 if (recompute_toporder_p)
3889 sel_recompute_toporder ();
3890 }
3891
3892 #ifdef ENABLE_CHECKING
3893 verify_backedges ();
3894 verify_dominators (CDI_DOMINATORS);
3895 #endif
3896
3897 return changed;
3898 }
3899
3900 /* Purge meaningless empty blocks in the middle of a region. */
3901 void
3902 purge_empty_blocks (void)
3903 {
3904 int i;
3905
3906 /* Do not attempt to delete the first basic block in the region. */
3907 for (i = 1; i < current_nr_blocks; )
3908 {
3909 basic_block b = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
3910
3911 if (maybe_tidy_empty_bb (b))
3912 continue;
3913
3914 i++;
3915 }
3916 }
3917
3918 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3919 do not delete insn's data, because it will be later re-emitted.
3920 Return true if we have removed some blocks afterwards. */
3921 bool
3922 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3923 {
3924 basic_block bb = BLOCK_FOR_INSN (insn);
3925
3926 gcc_assert (INSN_IN_STREAM_P (insn));
3927
3928 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3929 {
3930 expr_t expr;
3931 av_set_iterator i;
3932
3933 /* When we remove a debug insn that is head of a BB, it remains
3934 in the AV_SET of the block, but it shouldn't. */
3935 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3936 if (EXPR_INSN_RTX (expr) == insn)
3937 {
3938 av_set_iter_remove (&i);
3939 break;
3940 }
3941 }
3942
3943 if (only_disconnect)
3944 remove_insn (insn);
3945 else
3946 {
3947 delete_insn (insn);
3948 clear_expr (INSN_EXPR (insn));
3949 }
3950
3951 /* It is necessary to NULL these fields in case we are going to re-insert
3952 INSN into the insns stream, as will usually happen in the ONLY_DISCONNECT
3953 case, but also for NOPs that we will return to the nop pool. */
3954 SET_PREV_INSN (insn) = NULL_RTX;
3955 SET_NEXT_INSN (insn) = NULL_RTX;
3956 set_block_for_insn (insn, NULL);
3957
3958 return tidy_control_flow (bb, full_tidying);
3959 }
3960
3961 /* Estimate number of the insns in BB. */
3962 static int
3963 sel_estimate_number_of_insns (basic_block bb)
3964 {
3965 int res = 0;
3966 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3967
3968 for (; insn != next_tail; insn = NEXT_INSN (insn))
3969 if (NONDEBUG_INSN_P (insn))
3970 res++;
3971
3972 return res;
3973 }
3974
3975 /* We don't need separate luids for notes or labels. */
3976 static int
3977 sel_luid_for_non_insn (rtx x)
3978 {
3979 gcc_assert (NOTE_P (x) || LABEL_P (x));
3980
3981 return -1;
3982 }
3983
3984 /* Find the proper seqno for inserting at INSN by successors.
3985 Return -1 if no successors with positive seqno exist. */
3986 static int
3987 get_seqno_by_succs (rtx_insn *insn)
3988 {
3989 basic_block bb = BLOCK_FOR_INSN (insn);
3990 rtx_insn *tmp = insn, *end = BB_END (bb);
3991 int seqno;
3992 insn_t succ = NULL;
3993 succ_iterator si;
3994
3995 while (tmp != end)
3996 {
3997 tmp = NEXT_INSN (tmp);
3998 if (INSN_P (tmp))
3999 return INSN_SEQNO (tmp);
4000 }
4001
4002 seqno = INT_MAX;
4003
4004 FOR_EACH_SUCC_1 (succ, si, end, SUCCS_NORMAL)
4005 if (INSN_SEQNO (succ) > 0)
4006 seqno = MIN (seqno, INSN_SEQNO (succ));
4007
4008 if (seqno == INT_MAX)
4009 return -1;
4010
4011 return seqno;
4012 }
4013
4014 /* Compute seqno for INSN by its preds or succs. Use OLD_SEQNO to compute
4015 seqno in corner cases. */
4016 static int
4017 get_seqno_for_a_jump (insn_t insn, int old_seqno)
4018 {
4019 int seqno;
4020
4021 gcc_assert (INSN_SIMPLEJUMP_P (insn));
4022
4023 if (!sel_bb_head_p (insn))
4024 seqno = INSN_SEQNO (PREV_INSN (insn));
4025 else
4026 {
4027 basic_block bb = BLOCK_FOR_INSN (insn);
4028
4029 if (single_pred_p (bb)
4030 && !in_current_region_p (single_pred (bb)))
4031 {
4032 /* We can have preds outside a region when splitting edges
4033 for pipelining of an outer loop. Use succ instead.
4034 There should be only one of them. */
4035 insn_t succ = NULL;
4036 succ_iterator si;
4037 bool first = true;
4038
4039 gcc_assert (flag_sel_sched_pipelining_outer_loops
4040 && current_loop_nest);
4041 FOR_EACH_SUCC_1 (succ, si, insn,
4042 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
4043 {
4044 gcc_assert (first);
4045 first = false;
4046 }
4047
4048 gcc_assert (succ != NULL);
4049 seqno = INSN_SEQNO (succ);
4050 }
4051 else
4052 {
4053 insn_t *preds;
4054 int n;
4055
4056 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
4057
4058 gcc_assert (n > 0);
4059 /* For one predecessor, use simple method. */
4060 if (n == 1)
4061 seqno = INSN_SEQNO (preds[0]);
4062 else
4063 seqno = get_seqno_by_preds (insn);
4064
4065 free (preds);
4066 }
4067 }
4068
4069 /* We were unable to find a good seqno among preds. */
4070 if (seqno < 0)
4071 seqno = get_seqno_by_succs (insn);
4072
4073 if (seqno < 0)
4074 {
4075 /* The only case where this could be here legally is that the only
4076 unscheduled insn was a conditional jump that got removed and turned
4077 into this unconditional one. Initialize from the old seqno
4078 of that jump passed down to here. */
4079 seqno = old_seqno;
4080 }
4081
4082 gcc_assert (seqno >= 0);
4083 return seqno;
4084 }
4085
4086 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
4087 with positive seqno exist. */
4088 int
4089 get_seqno_by_preds (rtx_insn *insn)
4090 {
4091 basic_block bb = BLOCK_FOR_INSN (insn);
4092 rtx_insn *tmp = insn, *head = BB_HEAD (bb);
4093 insn_t *preds;
4094 int n, i, seqno;
4095
4096 while (tmp != head)
4097 {
4098 tmp = PREV_INSN (tmp);
4099 if (INSN_P (tmp))
4100 return INSN_SEQNO (tmp);
4101 }
4102
4103 cfg_preds (bb, &preds, &n);
4104 for (i = 0, seqno = -1; i < n; i++)
4105 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
4106
4107 return seqno;
4108 }
4109
4110 \f
4111
4112 /* Extend pass-scope data structures for basic blocks. */
4113 void
4114 sel_extend_global_bb_info (void)
4115 {
4116 sel_global_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4117 }
4118
4119 /* Extend region-scope data structures for basic blocks. */
4120 static void
4121 extend_region_bb_info (void)
4122 {
4123 sel_region_bb_info.safe_grow_cleared (last_basic_block_for_fn (cfun));
4124 }
4125
4126 /* Extend all data structures to fit for all basic blocks. */
4127 static void
4128 extend_bb_info (void)
4129 {
4130 sel_extend_global_bb_info ();
4131 extend_region_bb_info ();
4132 }
4133
4134 /* Finalize pass-scope data structures for basic blocks. */
4135 void
4136 sel_finish_global_bb_info (void)
4137 {
4138 sel_global_bb_info.release ();
4139 }
4140
4141 /* Finalize region-scope data structures for basic blocks. */
4142 static void
4143 finish_region_bb_info (void)
4144 {
4145 sel_region_bb_info.release ();
4146 }
4147 \f
4148
4149 /* Data for each insn in current region. */
4150 vec<sel_insn_data_def> s_i_d = vNULL;
4151
4152 /* Extend data structures for insns from current region. */
4153 static void
4154 extend_insn_data (void)
4155 {
4156 int reserve;
4157
4158 sched_extend_target ();
4159 sched_deps_init (false);
4160
4161 /* Extend data structures for insns from current region. */
4162 reserve = (sched_max_luid + 1 - s_i_d.length ());
4163 if (reserve > 0 && ! s_i_d.space (reserve))
4164 {
4165 int size;
4166
4167 if (sched_max_luid / 2 > 1024)
4168 size = sched_max_luid + 1024;
4169 else
4170 size = 3 * sched_max_luid / 2;
4171
4172
4173 s_i_d.safe_grow_cleared (size);
4174 }
4175 }
4176
4177 /* Finalize data structures for insns from current region. */
4178 static void
4179 finish_insns (void)
4180 {
4181 unsigned i;
4182
4183 /* Clear here all dependence contexts that may have left from insns that were
4184 removed during the scheduling. */
4185 for (i = 0; i < s_i_d.length (); i++)
4186 {
4187 sel_insn_data_def *sid_entry = &s_i_d[i];
4188
4189 if (sid_entry->live)
4190 return_regset_to_pool (sid_entry->live);
4191 if (sid_entry->analyzed_deps)
4192 {
4193 BITMAP_FREE (sid_entry->analyzed_deps);
4194 BITMAP_FREE (sid_entry->found_deps);
4195 htab_delete (sid_entry->transformed_insns);
4196 free_deps (&sid_entry->deps_context);
4197 }
4198 if (EXPR_VINSN (&sid_entry->expr))
4199 {
4200 clear_expr (&sid_entry->expr);
4201
4202 /* Also, clear CANT_MOVE bit here, because we really don't want it
4203 to be passed to the next region. */
4204 CANT_MOVE_BY_LUID (i) = 0;
4205 }
4206 }
4207
4208 s_i_d.release ();
4209 }
4210
4211 /* A proxy to pass initialization data to init_insn (). */
4212 static sel_insn_data_def _insn_init_ssid;
4213 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
4214
4215 /* If true create a new vinsn. Otherwise use the one from EXPR. */
4216 static bool insn_init_create_new_vinsn_p;
4217
4218 /* Set all necessary data for initialization of the new insn[s]. */
4219 static expr_t
4220 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
4221 {
4222 expr_t x = &insn_init_ssid->expr;
4223
4224 copy_expr_onside (x, expr);
4225 if (vi != NULL)
4226 {
4227 insn_init_create_new_vinsn_p = false;
4228 change_vinsn_in_expr (x, vi);
4229 }
4230 else
4231 insn_init_create_new_vinsn_p = true;
4232
4233 insn_init_ssid->seqno = seqno;
4234 return x;
4235 }
4236
4237 /* Init data for INSN. */
4238 static void
4239 init_insn_data (insn_t insn)
4240 {
4241 expr_t expr;
4242 sel_insn_data_t ssid = insn_init_ssid;
4243
4244 /* The fields mentioned below are special and hence are not being
4245 propagated to the new insns. */
4246 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4247 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4248 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4249
4250 expr = INSN_EXPR (insn);
4251 copy_expr (expr, &ssid->expr);
4252 prepare_insn_expr (insn, ssid->seqno);
4253
4254 if (insn_init_create_new_vinsn_p)
4255 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4256
4257 if (first_time_insn_init (insn))
4258 init_first_time_insn_data (insn);
4259 }
4260
4261 /* This is used to initialize spurious jumps generated by
4262 sel_redirect_edge (). OLD_SEQNO is used for initializing seqnos
4263 in corner cases within get_seqno_for_a_jump. */
4264 static void
4265 init_simplejump_data (insn_t insn, int old_seqno)
4266 {
4267 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4268 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0,
4269 vNULL, true, false, false,
4270 false, true);
4271 INSN_SEQNO (insn) = get_seqno_for_a_jump (insn, old_seqno);
4272 init_first_time_insn_data (insn);
4273 }
4274
4275 /* Perform deferred initialization of insns. This is used to process
4276 a new jump that may be created by redirect_edge. OLD_SEQNO is used
4277 for initializing simplejumps in init_simplejump_data. */
4278 static void
4279 sel_init_new_insn (insn_t insn, int flags, int old_seqno)
4280 {
4281 /* We create data structures for bb when the first insn is emitted in it. */
4282 if (INSN_P (insn)
4283 && INSN_IN_STREAM_P (insn)
4284 && insn_is_the_only_one_in_bb_p (insn))
4285 {
4286 extend_bb_info ();
4287 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4288 }
4289
4290 if (flags & INSN_INIT_TODO_LUID)
4291 {
4292 sched_extend_luids ();
4293 sched_init_insn_luid (insn);
4294 }
4295
4296 if (flags & INSN_INIT_TODO_SSID)
4297 {
4298 extend_insn_data ();
4299 init_insn_data (insn);
4300 clear_expr (&insn_init_ssid->expr);
4301 }
4302
4303 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4304 {
4305 extend_insn_data ();
4306 init_simplejump_data (insn, old_seqno);
4307 }
4308
4309 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4310 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4311 }
4312 \f
4313
4314 /* Functions to init/finish work with lv sets. */
4315
4316 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4317 static void
4318 init_lv_set (basic_block bb)
4319 {
4320 gcc_assert (!BB_LV_SET_VALID_P (bb));
4321
4322 BB_LV_SET (bb) = get_regset_from_pool ();
4323 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4324 BB_LV_SET_VALID_P (bb) = true;
4325 }
4326
4327 /* Copy liveness information to BB from FROM_BB. */
4328 static void
4329 copy_lv_set_from (basic_block bb, basic_block from_bb)
4330 {
4331 gcc_assert (!BB_LV_SET_VALID_P (bb));
4332
4333 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4334 BB_LV_SET_VALID_P (bb) = true;
4335 }
4336
4337 /* Initialize lv set of all bb headers. */
4338 void
4339 init_lv_sets (void)
4340 {
4341 basic_block bb;
4342
4343 /* Initialize of LV sets. */
4344 FOR_EACH_BB_FN (bb, cfun)
4345 init_lv_set (bb);
4346
4347 /* Don't forget EXIT_BLOCK. */
4348 init_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4349 }
4350
4351 /* Release lv set of HEAD. */
4352 static void
4353 free_lv_set (basic_block bb)
4354 {
4355 gcc_assert (BB_LV_SET (bb) != NULL);
4356
4357 return_regset_to_pool (BB_LV_SET (bb));
4358 BB_LV_SET (bb) = NULL;
4359 BB_LV_SET_VALID_P (bb) = false;
4360 }
4361
4362 /* Finalize lv sets of all bb headers. */
4363 void
4364 free_lv_sets (void)
4365 {
4366 basic_block bb;
4367
4368 /* Don't forget EXIT_BLOCK. */
4369 free_lv_set (EXIT_BLOCK_PTR_FOR_FN (cfun));
4370
4371 /* Free LV sets. */
4372 FOR_EACH_BB_FN (bb, cfun)
4373 if (BB_LV_SET (bb))
4374 free_lv_set (bb);
4375 }
4376
4377 /* Mark AV_SET for BB as invalid, so this set will be updated the next time
4378 compute_av() processes BB. This function is called when creating new basic
4379 blocks, as well as for blocks (either new or existing) where new jumps are
4380 created when the control flow is being updated. */
4381 static void
4382 invalidate_av_set (basic_block bb)
4383 {
4384 BB_AV_LEVEL (bb) = -1;
4385 }
4386
4387 /* Create initial data sets for BB (they will be invalid). */
4388 static void
4389 create_initial_data_sets (basic_block bb)
4390 {
4391 if (BB_LV_SET (bb))
4392 BB_LV_SET_VALID_P (bb) = false;
4393 else
4394 BB_LV_SET (bb) = get_regset_from_pool ();
4395 invalidate_av_set (bb);
4396 }
4397
4398 /* Free av set of BB. */
4399 static void
4400 free_av_set (basic_block bb)
4401 {
4402 av_set_clear (&BB_AV_SET (bb));
4403 BB_AV_LEVEL (bb) = 0;
4404 }
4405
4406 /* Free data sets of BB. */
4407 void
4408 free_data_sets (basic_block bb)
4409 {
4410 free_lv_set (bb);
4411 free_av_set (bb);
4412 }
4413
4414 /* Exchange data sets of TO and FROM. */
4415 void
4416 exchange_data_sets (basic_block to, basic_block from)
4417 {
4418 /* Exchange lv sets of TO and FROM. */
4419 std::swap (BB_LV_SET (from), BB_LV_SET (to));
4420 std::swap (BB_LV_SET_VALID_P (from), BB_LV_SET_VALID_P (to));
4421
4422 /* Exchange av sets of TO and FROM. */
4423 std::swap (BB_AV_SET (from), BB_AV_SET (to));
4424 std::swap (BB_AV_LEVEL (from), BB_AV_LEVEL (to));
4425 }
4426
4427 /* Copy data sets of FROM to TO. */
4428 void
4429 copy_data_sets (basic_block to, basic_block from)
4430 {
4431 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4432 gcc_assert (BB_AV_SET (to) == NULL);
4433
4434 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4435 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4436
4437 if (BB_AV_SET_VALID_P (from))
4438 {
4439 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4440 }
4441 if (BB_LV_SET_VALID_P (from))
4442 {
4443 gcc_assert (BB_LV_SET (to) != NULL);
4444 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4445 }
4446 }
4447
4448 /* Return an av set for INSN, if any. */
4449 av_set_t
4450 get_av_set (insn_t insn)
4451 {
4452 av_set_t av_set;
4453
4454 gcc_assert (AV_SET_VALID_P (insn));
4455
4456 if (sel_bb_head_p (insn))
4457 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4458 else
4459 av_set = NULL;
4460
4461 return av_set;
4462 }
4463
4464 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4465 int
4466 get_av_level (insn_t insn)
4467 {
4468 int av_level;
4469
4470 gcc_assert (INSN_P (insn));
4471
4472 if (sel_bb_head_p (insn))
4473 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4474 else
4475 av_level = INSN_WS_LEVEL (insn);
4476
4477 return av_level;
4478 }
4479
4480 \f
4481
4482 /* Variables to work with control-flow graph. */
4483
4484 /* The basic block that already has been processed by the sched_data_update (),
4485 but hasn't been in sel_add_bb () yet. */
4486 static vec<basic_block>
4487 last_added_blocks = vNULL;
4488
4489 /* A pool for allocating successor infos. */
4490 static struct
4491 {
4492 /* A stack for saving succs_info structures. */
4493 struct succs_info *stack;
4494
4495 /* Its size. */
4496 int size;
4497
4498 /* Top of the stack. */
4499 int top;
4500
4501 /* Maximal value of the top. */
4502 int max_top;
4503 } succs_info_pool;
4504
4505 /* Functions to work with control-flow graph. */
4506
4507 /* Return basic block note of BB. */
4508 rtx_insn *
4509 sel_bb_head (basic_block bb)
4510 {
4511 rtx_insn *head;
4512
4513 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
4514 {
4515 gcc_assert (exit_insn != NULL_RTX);
4516 head = exit_insn;
4517 }
4518 else
4519 {
4520 rtx_note *note = bb_note (bb);
4521 head = next_nonnote_insn (note);
4522
4523 if (head && (BARRIER_P (head) || BLOCK_FOR_INSN (head) != bb))
4524 head = NULL;
4525 }
4526
4527 return head;
4528 }
4529
4530 /* Return true if INSN is a basic block header. */
4531 bool
4532 sel_bb_head_p (insn_t insn)
4533 {
4534 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4535 }
4536
4537 /* Return last insn of BB. */
4538 rtx_insn *
4539 sel_bb_end (basic_block bb)
4540 {
4541 if (sel_bb_empty_p (bb))
4542 return NULL;
4543
4544 gcc_assert (bb != EXIT_BLOCK_PTR_FOR_FN (cfun));
4545
4546 return BB_END (bb);
4547 }
4548
4549 /* Return true if INSN is the last insn in its basic block. */
4550 bool
4551 sel_bb_end_p (insn_t insn)
4552 {
4553 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4554 }
4555
4556 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4557 bool
4558 sel_bb_empty_p (basic_block bb)
4559 {
4560 return sel_bb_head (bb) == NULL;
4561 }
4562
4563 /* True when BB belongs to the current scheduling region. */
4564 bool
4565 in_current_region_p (basic_block bb)
4566 {
4567 if (bb->index < NUM_FIXED_BLOCKS)
4568 return false;
4569
4570 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4571 }
4572
4573 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4574 basic_block
4575 fallthru_bb_of_jump (const rtx_insn *jump)
4576 {
4577 if (!JUMP_P (jump))
4578 return NULL;
4579
4580 if (!any_condjump_p (jump))
4581 return NULL;
4582
4583 /* A basic block that ends with a conditional jump may still have one successor
4584 (and be followed by a barrier), we are not interested. */
4585 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4586 return NULL;
4587
4588 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4589 }
4590
4591 /* Remove all notes from BB. */
4592 static void
4593 init_bb (basic_block bb)
4594 {
4595 remove_notes (bb_note (bb), BB_END (bb));
4596 BB_NOTE_LIST (bb) = note_list;
4597 }
4598
4599 void
4600 sel_init_bbs (bb_vec_t bbs)
4601 {
4602 const struct sched_scan_info_def ssi =
4603 {
4604 extend_bb_info, /* extend_bb */
4605 init_bb, /* init_bb */
4606 NULL, /* extend_insn */
4607 NULL /* init_insn */
4608 };
4609
4610 sched_scan (&ssi, bbs);
4611 }
4612
4613 /* Restore notes for the whole region. */
4614 static void
4615 sel_restore_notes (void)
4616 {
4617 int bb;
4618 insn_t insn;
4619
4620 for (bb = 0; bb < current_nr_blocks; bb++)
4621 {
4622 basic_block first, last;
4623
4624 first = EBB_FIRST_BB (bb);
4625 last = EBB_LAST_BB (bb)->next_bb;
4626
4627 do
4628 {
4629 note_list = BB_NOTE_LIST (first);
4630 restore_other_notes (NULL, first);
4631 BB_NOTE_LIST (first) = NULL;
4632
4633 FOR_BB_INSNS (first, insn)
4634 if (NONDEBUG_INSN_P (insn))
4635 reemit_notes (insn);
4636
4637 first = first->next_bb;
4638 }
4639 while (first != last);
4640 }
4641 }
4642
4643 /* Free per-bb data structures. */
4644 void
4645 sel_finish_bbs (void)
4646 {
4647 sel_restore_notes ();
4648
4649 /* Remove current loop preheader from this loop. */
4650 if (current_loop_nest)
4651 sel_remove_loop_preheader ();
4652
4653 finish_region_bb_info ();
4654 }
4655
4656 /* Return true if INSN has a single successor of type FLAGS. */
4657 bool
4658 sel_insn_has_single_succ_p (insn_t insn, int flags)
4659 {
4660 insn_t succ;
4661 succ_iterator si;
4662 bool first_p = true;
4663
4664 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4665 {
4666 if (first_p)
4667 first_p = false;
4668 else
4669 return false;
4670 }
4671
4672 return true;
4673 }
4674
4675 /* Allocate successor's info. */
4676 static struct succs_info *
4677 alloc_succs_info (void)
4678 {
4679 if (succs_info_pool.top == succs_info_pool.max_top)
4680 {
4681 int i;
4682
4683 if (++succs_info_pool.max_top >= succs_info_pool.size)
4684 gcc_unreachable ();
4685
4686 i = ++succs_info_pool.top;
4687 succs_info_pool.stack[i].succs_ok.create (10);
4688 succs_info_pool.stack[i].succs_other.create (10);
4689 succs_info_pool.stack[i].probs_ok.create (10);
4690 }
4691 else
4692 succs_info_pool.top++;
4693
4694 return &succs_info_pool.stack[succs_info_pool.top];
4695 }
4696
4697 /* Free successor's info. */
4698 void
4699 free_succs_info (struct succs_info * sinfo)
4700 {
4701 gcc_assert (succs_info_pool.top >= 0
4702 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4703 succs_info_pool.top--;
4704
4705 /* Clear stale info. */
4706 sinfo->succs_ok.block_remove (0, sinfo->succs_ok.length ());
4707 sinfo->succs_other.block_remove (0, sinfo->succs_other.length ());
4708 sinfo->probs_ok.block_remove (0, sinfo->probs_ok.length ());
4709 sinfo->all_prob = 0;
4710 sinfo->succs_ok_n = 0;
4711 sinfo->all_succs_n = 0;
4712 }
4713
4714 /* Compute successor info for INSN. FLAGS are the flags passed
4715 to the FOR_EACH_SUCC_1 iterator. */
4716 struct succs_info *
4717 compute_succs_info (insn_t insn, short flags)
4718 {
4719 succ_iterator si;
4720 insn_t succ;
4721 struct succs_info *sinfo = alloc_succs_info ();
4722
4723 /* Traverse *all* successors and decide what to do with each. */
4724 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4725 {
4726 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4727 perform code motion through inner loops. */
4728 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4729
4730 if (current_flags & flags)
4731 {
4732 sinfo->succs_ok.safe_push (succ);
4733 sinfo->probs_ok.safe_push (
4734 /* FIXME: Improve calculation when skipping
4735 inner loop to exits. */
4736 si.bb_end ? si.e1->probability : REG_BR_PROB_BASE);
4737 sinfo->succs_ok_n++;
4738 }
4739 else
4740 sinfo->succs_other.safe_push (succ);
4741
4742 /* Compute all_prob. */
4743 if (!si.bb_end)
4744 sinfo->all_prob = REG_BR_PROB_BASE;
4745 else
4746 sinfo->all_prob += si.e1->probability;
4747
4748 sinfo->all_succs_n++;
4749 }
4750
4751 return sinfo;
4752 }
4753
4754 /* Return the predecessors of BB in PREDS and their number in N.
4755 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4756 static void
4757 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4758 {
4759 edge e;
4760 edge_iterator ei;
4761
4762 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4763
4764 FOR_EACH_EDGE (e, ei, bb->preds)
4765 {
4766 basic_block pred_bb = e->src;
4767 insn_t bb_end = BB_END (pred_bb);
4768
4769 if (!in_current_region_p (pred_bb))
4770 {
4771 gcc_assert (flag_sel_sched_pipelining_outer_loops
4772 && current_loop_nest);
4773 continue;
4774 }
4775
4776 if (sel_bb_empty_p (pred_bb))
4777 cfg_preds_1 (pred_bb, preds, n, size);
4778 else
4779 {
4780 if (*n == *size)
4781 *preds = XRESIZEVEC (insn_t, *preds,
4782 (*size = 2 * *size + 1));
4783 (*preds)[(*n)++] = bb_end;
4784 }
4785 }
4786
4787 gcc_assert (*n != 0
4788 || (flag_sel_sched_pipelining_outer_loops
4789 && current_loop_nest));
4790 }
4791
4792 /* Find all predecessors of BB and record them in PREDS and their number
4793 in N. Empty blocks are skipped, and only normal (forward in-region)
4794 edges are processed. */
4795 static void
4796 cfg_preds (basic_block bb, insn_t **preds, int *n)
4797 {
4798 int size = 0;
4799
4800 *preds = NULL;
4801 *n = 0;
4802 cfg_preds_1 (bb, preds, n, &size);
4803 }
4804
4805 /* Returns true if we are moving INSN through join point. */
4806 bool
4807 sel_num_cfg_preds_gt_1 (insn_t insn)
4808 {
4809 basic_block bb;
4810
4811 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4812 return false;
4813
4814 bb = BLOCK_FOR_INSN (insn);
4815
4816 while (1)
4817 {
4818 if (EDGE_COUNT (bb->preds) > 1)
4819 return true;
4820
4821 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4822 bb = EDGE_PRED (bb, 0)->src;
4823
4824 if (!sel_bb_empty_p (bb))
4825 break;
4826 }
4827
4828 return false;
4829 }
4830
4831 /* Returns true when BB should be the end of an ebb. Adapted from the
4832 code in sched-ebb.c. */
4833 bool
4834 bb_ends_ebb_p (basic_block bb)
4835 {
4836 basic_block next_bb = bb_next_bb (bb);
4837 edge e;
4838
4839 if (next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
4840 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4841 || (LABEL_P (BB_HEAD (next_bb))
4842 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4843 Work around that. */
4844 && !single_pred_p (next_bb)))
4845 return true;
4846
4847 if (!in_current_region_p (next_bb))
4848 return true;
4849
4850 e = find_fallthru_edge (bb->succs);
4851 if (e)
4852 {
4853 gcc_assert (e->dest == next_bb);
4854
4855 return false;
4856 }
4857
4858 return true;
4859 }
4860
4861 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4862 successor of INSN. */
4863 bool
4864 in_same_ebb_p (insn_t insn, insn_t succ)
4865 {
4866 basic_block ptr = BLOCK_FOR_INSN (insn);
4867
4868 for (;;)
4869 {
4870 if (ptr == BLOCK_FOR_INSN (succ))
4871 return true;
4872
4873 if (bb_ends_ebb_p (ptr))
4874 return false;
4875
4876 ptr = bb_next_bb (ptr);
4877 }
4878
4879 gcc_unreachable ();
4880 return false;
4881 }
4882
4883 /* Recomputes the reverse topological order for the function and
4884 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4885 modified appropriately. */
4886 static void
4887 recompute_rev_top_order (void)
4888 {
4889 int *postorder;
4890 int n_blocks, i;
4891
4892 if (!rev_top_order_index
4893 || rev_top_order_index_len < last_basic_block_for_fn (cfun))
4894 {
4895 rev_top_order_index_len = last_basic_block_for_fn (cfun);
4896 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4897 rev_top_order_index_len);
4898 }
4899
4900 postorder = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
4901
4902 n_blocks = post_order_compute (postorder, true, false);
4903 gcc_assert (n_basic_blocks_for_fn (cfun) == n_blocks);
4904
4905 /* Build reverse function: for each basic block with BB->INDEX == K
4906 rev_top_order_index[K] is it's reverse topological sort number. */
4907 for (i = 0; i < n_blocks; i++)
4908 {
4909 gcc_assert (postorder[i] < rev_top_order_index_len);
4910 rev_top_order_index[postorder[i]] = i;
4911 }
4912
4913 free (postorder);
4914 }
4915
4916 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4917 void
4918 clear_outdated_rtx_info (basic_block bb)
4919 {
4920 rtx_insn *insn;
4921
4922 FOR_BB_INSNS (bb, insn)
4923 if (INSN_P (insn))
4924 {
4925 SCHED_GROUP_P (insn) = 0;
4926 INSN_AFTER_STALL_P (insn) = 0;
4927 INSN_SCHED_TIMES (insn) = 0;
4928 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4929
4930 /* We cannot use the changed caches, as previously we could ignore
4931 the LHS dependence due to enabled renaming and transform
4932 the expression, and currently we'll be unable to do this. */
4933 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4934 }
4935 }
4936
4937 /* Add BB_NOTE to the pool of available basic block notes. */
4938 static void
4939 return_bb_to_pool (basic_block bb)
4940 {
4941 rtx_note *note = bb_note (bb);
4942
4943 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4944 && bb->aux == NULL);
4945
4946 /* It turns out that current cfg infrastructure does not support
4947 reuse of basic blocks. Don't bother for now. */
4948 /*bb_note_pool.safe_push (note);*/
4949 }
4950
4951 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4952 static rtx_note *
4953 get_bb_note_from_pool (void)
4954 {
4955 if (bb_note_pool.is_empty ())
4956 return NULL;
4957 else
4958 {
4959 rtx_note *note = bb_note_pool.pop ();
4960
4961 SET_PREV_INSN (note) = NULL_RTX;
4962 SET_NEXT_INSN (note) = NULL_RTX;
4963
4964 return note;
4965 }
4966 }
4967
4968 /* Free bb_note_pool. */
4969 void
4970 free_bb_note_pool (void)
4971 {
4972 bb_note_pool.release ();
4973 }
4974
4975 /* Setup scheduler pool and successor structure. */
4976 void
4977 alloc_sched_pools (void)
4978 {
4979 int succs_size;
4980
4981 succs_size = MAX_WS + 1;
4982 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4983 succs_info_pool.size = succs_size;
4984 succs_info_pool.top = -1;
4985 succs_info_pool.max_top = -1;
4986 }
4987
4988 /* Free the pools. */
4989 void
4990 free_sched_pools (void)
4991 {
4992 int i;
4993
4994 sched_lists_pool.release ();
4995 gcc_assert (succs_info_pool.top == -1);
4996 for (i = 0; i <= succs_info_pool.max_top; i++)
4997 {
4998 succs_info_pool.stack[i].succs_ok.release ();
4999 succs_info_pool.stack[i].succs_other.release ();
5000 succs_info_pool.stack[i].probs_ok.release ();
5001 }
5002 free (succs_info_pool.stack);
5003 }
5004 \f
5005
5006 /* Returns a position in RGN where BB can be inserted retaining
5007 topological order. */
5008 static int
5009 find_place_to_insert_bb (basic_block bb, int rgn)
5010 {
5011 bool has_preds_outside_rgn = false;
5012 edge e;
5013 edge_iterator ei;
5014
5015 /* Find whether we have preds outside the region. */
5016 FOR_EACH_EDGE (e, ei, bb->preds)
5017 if (!in_current_region_p (e->src))
5018 {
5019 has_preds_outside_rgn = true;
5020 break;
5021 }
5022
5023 /* Recompute the top order -- needed when we have > 1 pred
5024 and in case we don't have preds outside. */
5025 if (flag_sel_sched_pipelining_outer_loops
5026 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
5027 {
5028 int i, bbi = bb->index, cur_bbi;
5029
5030 recompute_rev_top_order ();
5031 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
5032 {
5033 cur_bbi = BB_TO_BLOCK (i);
5034 if (rev_top_order_index[bbi]
5035 < rev_top_order_index[cur_bbi])
5036 break;
5037 }
5038
5039 /* We skipped the right block, so we increase i. We accommodate
5040 it for increasing by step later, so we decrease i. */
5041 return (i + 1) - 1;
5042 }
5043 else if (has_preds_outside_rgn)
5044 {
5045 /* This is the case when we generate an extra empty block
5046 to serve as region head during pipelining. */
5047 e = EDGE_SUCC (bb, 0);
5048 gcc_assert (EDGE_COUNT (bb->succs) == 1
5049 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
5050 && (BLOCK_TO_BB (e->dest->index) == 0));
5051 return -1;
5052 }
5053
5054 /* We don't have preds outside the region. We should have
5055 the only pred, because the multiple preds case comes from
5056 the pipelining of outer loops, and that is handled above.
5057 Just take the bbi of this single pred. */
5058 if (EDGE_COUNT (bb->succs) > 0)
5059 {
5060 int pred_bbi;
5061
5062 gcc_assert (EDGE_COUNT (bb->preds) == 1);
5063
5064 pred_bbi = EDGE_PRED (bb, 0)->src->index;
5065 return BLOCK_TO_BB (pred_bbi);
5066 }
5067 else
5068 /* BB has no successors. It is safe to put it in the end. */
5069 return current_nr_blocks - 1;
5070 }
5071
5072 /* Deletes an empty basic block freeing its data. */
5073 static void
5074 delete_and_free_basic_block (basic_block bb)
5075 {
5076 gcc_assert (sel_bb_empty_p (bb));
5077
5078 if (BB_LV_SET (bb))
5079 free_lv_set (bb);
5080
5081 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5082
5083 /* Can't assert av_set properties because we use sel_aremove_bb
5084 when removing loop preheader from the region. At the point of
5085 removing the preheader we already have deallocated sel_region_bb_info. */
5086 gcc_assert (BB_LV_SET (bb) == NULL
5087 && !BB_LV_SET_VALID_P (bb)
5088 && BB_AV_LEVEL (bb) == 0
5089 && BB_AV_SET (bb) == NULL);
5090
5091 delete_basic_block (bb);
5092 }
5093
5094 /* Add BB to the current region and update the region data. */
5095 static void
5096 add_block_to_current_region (basic_block bb)
5097 {
5098 int i, pos, bbi = -2, rgn;
5099
5100 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5101 bbi = find_place_to_insert_bb (bb, rgn);
5102 bbi += 1;
5103 pos = RGN_BLOCKS (rgn) + bbi;
5104
5105 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5106 && ebb_head[bbi] == pos);
5107
5108 /* Make a place for the new block. */
5109 extend_regions ();
5110
5111 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5112 BLOCK_TO_BB (rgn_bb_table[i])++;
5113
5114 memmove (rgn_bb_table + pos + 1,
5115 rgn_bb_table + pos,
5116 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5117
5118 /* Initialize data for BB. */
5119 rgn_bb_table[pos] = bb->index;
5120 BLOCK_TO_BB (bb->index) = bbi;
5121 CONTAINING_RGN (bb->index) = rgn;
5122
5123 RGN_NR_BLOCKS (rgn)++;
5124
5125 for (i = rgn + 1; i <= nr_regions; i++)
5126 RGN_BLOCKS (i)++;
5127 }
5128
5129 /* Remove BB from the current region and update the region data. */
5130 static void
5131 remove_bb_from_region (basic_block bb)
5132 {
5133 int i, pos, bbi = -2, rgn;
5134
5135 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
5136 bbi = BLOCK_TO_BB (bb->index);
5137 pos = RGN_BLOCKS (rgn) + bbi;
5138
5139 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
5140 && ebb_head[bbi] == pos);
5141
5142 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
5143 BLOCK_TO_BB (rgn_bb_table[i])--;
5144
5145 memmove (rgn_bb_table + pos,
5146 rgn_bb_table + pos + 1,
5147 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
5148
5149 RGN_NR_BLOCKS (rgn)--;
5150 for (i = rgn + 1; i <= nr_regions; i++)
5151 RGN_BLOCKS (i)--;
5152 }
5153
5154 /* Add BB to the current region and update all data. If BB is NULL, add all
5155 blocks from last_added_blocks vector. */
5156 static void
5157 sel_add_bb (basic_block bb)
5158 {
5159 /* Extend luids so that new notes will receive zero luids. */
5160 sched_extend_luids ();
5161 sched_init_bbs ();
5162 sel_init_bbs (last_added_blocks);
5163
5164 /* When bb is passed explicitly, the vector should contain
5165 the only element that equals to bb; otherwise, the vector
5166 should not be NULL. */
5167 gcc_assert (last_added_blocks.exists ());
5168
5169 if (bb != NULL)
5170 {
5171 gcc_assert (last_added_blocks.length () == 1
5172 && last_added_blocks[0] == bb);
5173 add_block_to_current_region (bb);
5174
5175 /* We associate creating/deleting data sets with the first insn
5176 appearing / disappearing in the bb. */
5177 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
5178 create_initial_data_sets (bb);
5179
5180 last_added_blocks.release ();
5181 }
5182 else
5183 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
5184 {
5185 int i;
5186 basic_block temp_bb = NULL;
5187
5188 for (i = 0;
5189 last_added_blocks.iterate (i, &bb); i++)
5190 {
5191 add_block_to_current_region (bb);
5192 temp_bb = bb;
5193 }
5194
5195 /* We need to fetch at least one bb so we know the region
5196 to update. */
5197 gcc_assert (temp_bb != NULL);
5198 bb = temp_bb;
5199
5200 last_added_blocks.release ();
5201 }
5202
5203 rgn_setup_region (CONTAINING_RGN (bb->index));
5204 }
5205
5206 /* Remove BB from the current region and update all data.
5207 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5208 static void
5209 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5210 {
5211 unsigned idx = bb->index;
5212
5213 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5214
5215 remove_bb_from_region (bb);
5216 return_bb_to_pool (bb);
5217 bitmap_clear_bit (blocks_to_reschedule, idx);
5218
5219 if (remove_from_cfg_p)
5220 {
5221 basic_block succ = single_succ (bb);
5222 delete_and_free_basic_block (bb);
5223 set_immediate_dominator (CDI_DOMINATORS, succ,
5224 recompute_dominator (CDI_DOMINATORS, succ));
5225 }
5226
5227 rgn_setup_region (CONTAINING_RGN (idx));
5228 }
5229
5230 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5231 static void
5232 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5233 {
5234 if (in_current_region_p (merge_bb))
5235 concat_note_lists (BB_NOTE_LIST (empty_bb),
5236 &BB_NOTE_LIST (merge_bb));
5237 BB_NOTE_LIST (empty_bb) = NULL;
5238
5239 }
5240
5241 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5242 region, but keep it in CFG. */
5243 static void
5244 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5245 {
5246 /* The block should contain just a note or a label.
5247 We try to check whether it is unused below. */
5248 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5249 || LABEL_P (BB_HEAD (empty_bb)));
5250
5251 /* If basic block has predecessors or successors, redirect them. */
5252 if (remove_from_cfg_p
5253 && (EDGE_COUNT (empty_bb->preds) > 0
5254 || EDGE_COUNT (empty_bb->succs) > 0))
5255 {
5256 basic_block pred;
5257 basic_block succ;
5258
5259 /* We need to init PRED and SUCC before redirecting edges. */
5260 if (EDGE_COUNT (empty_bb->preds) > 0)
5261 {
5262 edge e;
5263
5264 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5265
5266 e = EDGE_PRED (empty_bb, 0);
5267 gcc_assert (e->src == empty_bb->prev_bb
5268 && (e->flags & EDGE_FALLTHRU));
5269
5270 pred = empty_bb->prev_bb;
5271 }
5272 else
5273 pred = NULL;
5274
5275 if (EDGE_COUNT (empty_bb->succs) > 0)
5276 {
5277 /* We do not check fallthruness here as above, because
5278 after removing a jump the edge may actually be not fallthru. */
5279 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5280 succ = EDGE_SUCC (empty_bb, 0)->dest;
5281 }
5282 else
5283 succ = NULL;
5284
5285 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5286 {
5287 edge e = EDGE_PRED (empty_bb, 0);
5288
5289 if (e->flags & EDGE_FALLTHRU)
5290 redirect_edge_succ_nodup (e, succ);
5291 else
5292 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5293 }
5294
5295 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5296 {
5297 edge e = EDGE_SUCC (empty_bb, 0);
5298
5299 if (find_edge (pred, e->dest) == NULL)
5300 redirect_edge_pred (e, pred);
5301 }
5302 }
5303
5304 /* Finish removing. */
5305 sel_remove_bb (empty_bb, remove_from_cfg_p);
5306 }
5307
5308 /* An implementation of create_basic_block hook, which additionally updates
5309 per-bb data structures. */
5310 static basic_block
5311 sel_create_basic_block (void *headp, void *endp, basic_block after)
5312 {
5313 basic_block new_bb;
5314 rtx_note *new_bb_note;
5315
5316 gcc_assert (flag_sel_sched_pipelining_outer_loops
5317 || !last_added_blocks.exists ());
5318
5319 new_bb_note = get_bb_note_from_pool ();
5320
5321 if (new_bb_note == NULL_RTX)
5322 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5323 else
5324 {
5325 new_bb = create_basic_block_structure ((rtx_insn *) headp,
5326 (rtx_insn *) endp,
5327 new_bb_note, after);
5328 new_bb->aux = NULL;
5329 }
5330
5331 last_added_blocks.safe_push (new_bb);
5332
5333 return new_bb;
5334 }
5335
5336 /* Implement sched_init_only_bb (). */
5337 static void
5338 sel_init_only_bb (basic_block bb, basic_block after)
5339 {
5340 gcc_assert (after == NULL);
5341
5342 extend_regions ();
5343 rgn_make_new_region_out_of_new_block (bb);
5344 }
5345
5346 /* Update the latch when we've splitted or merged it from FROM block to TO.
5347 This should be checked for all outer loops, too. */
5348 static void
5349 change_loops_latches (basic_block from, basic_block to)
5350 {
5351 gcc_assert (from != to);
5352
5353 if (current_loop_nest)
5354 {
5355 struct loop *loop;
5356
5357 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5358 if (considered_for_pipelining_p (loop) && loop->latch == from)
5359 {
5360 gcc_assert (loop == current_loop_nest);
5361 loop->latch = to;
5362 gcc_assert (loop_latch_edge (loop));
5363 }
5364 }
5365 }
5366
5367 /* Splits BB on two basic blocks, adding it to the region and extending
5368 per-bb data structures. Returns the newly created bb. */
5369 static basic_block
5370 sel_split_block (basic_block bb, rtx after)
5371 {
5372 basic_block new_bb;
5373 insn_t insn;
5374
5375 new_bb = sched_split_block_1 (bb, after);
5376 sel_add_bb (new_bb);
5377
5378 /* This should be called after sel_add_bb, because this uses
5379 CONTAINING_RGN for the new block, which is not yet initialized.
5380 FIXME: this function may be a no-op now. */
5381 change_loops_latches (bb, new_bb);
5382
5383 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5384 FOR_BB_INSNS (new_bb, insn)
5385 if (INSN_P (insn))
5386 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5387
5388 if (sel_bb_empty_p (bb))
5389 {
5390 gcc_assert (!sel_bb_empty_p (new_bb));
5391
5392 /* NEW_BB has data sets that need to be updated and BB holds
5393 data sets that should be removed. Exchange these data sets
5394 so that we won't lose BB's valid data sets. */
5395 exchange_data_sets (new_bb, bb);
5396 free_data_sets (bb);
5397 }
5398
5399 if (!sel_bb_empty_p (new_bb)
5400 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5401 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5402
5403 return new_bb;
5404 }
5405
5406 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5407 Otherwise returns NULL. */
5408 static rtx_insn *
5409 check_for_new_jump (basic_block bb, int prev_max_uid)
5410 {
5411 rtx_insn *end;
5412
5413 end = sel_bb_end (bb);
5414 if (end && INSN_UID (end) >= prev_max_uid)
5415 return end;
5416 return NULL;
5417 }
5418
5419 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5420 New means having UID at least equal to PREV_MAX_UID. */
5421 static rtx_insn *
5422 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5423 {
5424 rtx_insn *jump;
5425
5426 /* Return immediately if no new insns were emitted. */
5427 if (get_max_uid () == prev_max_uid)
5428 return NULL;
5429
5430 /* Now check both blocks for new jumps. It will ever be only one. */
5431 if ((jump = check_for_new_jump (from, prev_max_uid)))
5432 return jump;
5433
5434 if (jump_bb != NULL
5435 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5436 return jump;
5437 return NULL;
5438 }
5439
5440 /* Splits E and adds the newly created basic block to the current region.
5441 Returns this basic block. */
5442 basic_block
5443 sel_split_edge (edge e)
5444 {
5445 basic_block new_bb, src, other_bb = NULL;
5446 int prev_max_uid;
5447 rtx_insn *jump;
5448
5449 src = e->src;
5450 prev_max_uid = get_max_uid ();
5451 new_bb = split_edge (e);
5452
5453 if (flag_sel_sched_pipelining_outer_loops
5454 && current_loop_nest)
5455 {
5456 int i;
5457 basic_block bb;
5458
5459 /* Some of the basic blocks might not have been added to the loop.
5460 Add them here, until this is fixed in force_fallthru. */
5461 for (i = 0;
5462 last_added_blocks.iterate (i, &bb); i++)
5463 if (!bb->loop_father)
5464 {
5465 add_bb_to_loop (bb, e->dest->loop_father);
5466
5467 gcc_assert (!other_bb && (new_bb->index != bb->index));
5468 other_bb = bb;
5469 }
5470 }
5471
5472 /* Add all last_added_blocks to the region. */
5473 sel_add_bb (NULL);
5474
5475 jump = find_new_jump (src, new_bb, prev_max_uid);
5476 if (jump)
5477 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5478
5479 /* Put the correct lv set on this block. */
5480 if (other_bb && !sel_bb_empty_p (other_bb))
5481 compute_live (sel_bb_head (other_bb));
5482
5483 return new_bb;
5484 }
5485
5486 /* Implement sched_create_empty_bb (). */
5487 static basic_block
5488 sel_create_empty_bb (basic_block after)
5489 {
5490 basic_block new_bb;
5491
5492 new_bb = sched_create_empty_bb_1 (after);
5493
5494 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5495 later. */
5496 gcc_assert (last_added_blocks.length () == 1
5497 && last_added_blocks[0] == new_bb);
5498
5499 last_added_blocks.release ();
5500 return new_bb;
5501 }
5502
5503 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5504 will be splitted to insert a check. */
5505 basic_block
5506 sel_create_recovery_block (insn_t orig_insn)
5507 {
5508 basic_block first_bb, second_bb, recovery_block;
5509 basic_block before_recovery = NULL;
5510 rtx_insn *jump;
5511
5512 first_bb = BLOCK_FOR_INSN (orig_insn);
5513 if (sel_bb_end_p (orig_insn))
5514 {
5515 /* Avoid introducing an empty block while splitting. */
5516 gcc_assert (single_succ_p (first_bb));
5517 second_bb = single_succ (first_bb);
5518 }
5519 else
5520 second_bb = sched_split_block (first_bb, orig_insn);
5521
5522 recovery_block = sched_create_recovery_block (&before_recovery);
5523 if (before_recovery)
5524 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR_FOR_FN (cfun));
5525
5526 gcc_assert (sel_bb_empty_p (recovery_block));
5527 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5528 if (current_loops != NULL)
5529 add_bb_to_loop (recovery_block, first_bb->loop_father);
5530
5531 sel_add_bb (recovery_block);
5532
5533 jump = BB_END (recovery_block);
5534 gcc_assert (sel_bb_head (recovery_block) == jump);
5535 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5536
5537 return recovery_block;
5538 }
5539
5540 /* Merge basic block B into basic block A. */
5541 static void
5542 sel_merge_blocks (basic_block a, basic_block b)
5543 {
5544 gcc_assert (sel_bb_empty_p (b)
5545 && EDGE_COUNT (b->preds) == 1
5546 && EDGE_PRED (b, 0)->src == b->prev_bb);
5547
5548 move_bb_info (b->prev_bb, b);
5549 remove_empty_bb (b, false);
5550 merge_blocks (a, b);
5551 change_loops_latches (b, a);
5552 }
5553
5554 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5555 data structures for possibly created bb and insns. */
5556 void
5557 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5558 {
5559 basic_block jump_bb, src, orig_dest = e->dest;
5560 int prev_max_uid;
5561 rtx_insn *jump;
5562 int old_seqno = -1;
5563
5564 /* This function is now used only for bookkeeping code creation, where
5565 we'll never get the single pred of orig_dest block and thus will not
5566 hit unreachable blocks when updating dominator info. */
5567 gcc_assert (!sel_bb_empty_p (e->src)
5568 && !single_pred_p (orig_dest));
5569 src = e->src;
5570 prev_max_uid = get_max_uid ();
5571 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5572 when the conditional jump being redirected may become unconditional. */
5573 if (any_condjump_p (BB_END (src))
5574 && INSN_SEQNO (BB_END (src)) >= 0)
5575 old_seqno = INSN_SEQNO (BB_END (src));
5576
5577 jump_bb = redirect_edge_and_branch_force (e, to);
5578 if (jump_bb != NULL)
5579 sel_add_bb (jump_bb);
5580
5581 /* This function could not be used to spoil the loop structure by now,
5582 thus we don't care to update anything. But check it to be sure. */
5583 if (current_loop_nest
5584 && pipelining_p)
5585 gcc_assert (loop_latch_edge (current_loop_nest));
5586
5587 jump = find_new_jump (src, jump_bb, prev_max_uid);
5588 if (jump)
5589 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP,
5590 old_seqno);
5591 set_immediate_dominator (CDI_DOMINATORS, to,
5592 recompute_dominator (CDI_DOMINATORS, to));
5593 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5594 recompute_dominator (CDI_DOMINATORS, orig_dest));
5595 }
5596
5597 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5598 redirected edge are in reverse topological order. */
5599 bool
5600 sel_redirect_edge_and_branch (edge e, basic_block to)
5601 {
5602 bool latch_edge_p;
5603 basic_block src, orig_dest = e->dest;
5604 int prev_max_uid;
5605 rtx_insn *jump;
5606 edge redirected;
5607 bool recompute_toporder_p = false;
5608 bool maybe_unreachable = single_pred_p (orig_dest);
5609 int old_seqno = -1;
5610
5611 latch_edge_p = (pipelining_p
5612 && current_loop_nest
5613 && e == loop_latch_edge (current_loop_nest));
5614
5615 src = e->src;
5616 prev_max_uid = get_max_uid ();
5617
5618 /* Compute and pass old_seqno down to sel_init_new_insn only for the case
5619 when the conditional jump being redirected may become unconditional. */
5620 if (any_condjump_p (BB_END (src))
5621 && INSN_SEQNO (BB_END (src)) >= 0)
5622 old_seqno = INSN_SEQNO (BB_END (src));
5623
5624 redirected = redirect_edge_and_branch (e, to);
5625
5626 gcc_assert (redirected && !last_added_blocks.exists ());
5627
5628 /* When we've redirected a latch edge, update the header. */
5629 if (latch_edge_p)
5630 {
5631 current_loop_nest->header = to;
5632 gcc_assert (loop_latch_edge (current_loop_nest));
5633 }
5634
5635 /* In rare situations, the topological relation between the blocks connected
5636 by the redirected edge can change (see PR42245 for an example). Update
5637 block_to_bb/bb_to_block. */
5638 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5639 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5640 recompute_toporder_p = true;
5641
5642 jump = find_new_jump (src, NULL, prev_max_uid);
5643 if (jump)
5644 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP, old_seqno);
5645
5646 /* Only update dominator info when we don't have unreachable blocks.
5647 Otherwise we'll update in maybe_tidy_empty_bb. */
5648 if (!maybe_unreachable)
5649 {
5650 set_immediate_dominator (CDI_DOMINATORS, to,
5651 recompute_dominator (CDI_DOMINATORS, to));
5652 set_immediate_dominator (CDI_DOMINATORS, orig_dest,
5653 recompute_dominator (CDI_DOMINATORS, orig_dest));
5654 }
5655 return recompute_toporder_p;
5656 }
5657
5658 /* This variable holds the cfg hooks used by the selective scheduler. */
5659 static struct cfg_hooks sel_cfg_hooks;
5660
5661 /* Register sel-sched cfg hooks. */
5662 void
5663 sel_register_cfg_hooks (void)
5664 {
5665 sched_split_block = sel_split_block;
5666
5667 orig_cfg_hooks = get_cfg_hooks ();
5668 sel_cfg_hooks = orig_cfg_hooks;
5669
5670 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5671
5672 set_cfg_hooks (sel_cfg_hooks);
5673
5674 sched_init_only_bb = sel_init_only_bb;
5675 sched_split_block = sel_split_block;
5676 sched_create_empty_bb = sel_create_empty_bb;
5677 }
5678
5679 /* Unregister sel-sched cfg hooks. */
5680 void
5681 sel_unregister_cfg_hooks (void)
5682 {
5683 sched_create_empty_bb = NULL;
5684 sched_split_block = NULL;
5685 sched_init_only_bb = NULL;
5686
5687 set_cfg_hooks (orig_cfg_hooks);
5688 }
5689 \f
5690
5691 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5692 LABEL is where this jump should be directed. */
5693 rtx_insn *
5694 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5695 {
5696 rtx_insn *insn_rtx;
5697
5698 gcc_assert (!INSN_P (pattern));
5699
5700 start_sequence ();
5701
5702 if (label == NULL_RTX)
5703 insn_rtx = emit_insn (pattern);
5704 else if (DEBUG_INSN_P (label))
5705 insn_rtx = emit_debug_insn (pattern);
5706 else
5707 {
5708 insn_rtx = emit_jump_insn (pattern);
5709 JUMP_LABEL (insn_rtx) = label;
5710 ++LABEL_NUSES (label);
5711 }
5712
5713 end_sequence ();
5714
5715 sched_extend_luids ();
5716 sched_extend_target ();
5717 sched_deps_init (false);
5718
5719 /* Initialize INSN_CODE now. */
5720 recog_memoized (insn_rtx);
5721 return insn_rtx;
5722 }
5723
5724 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5725 must not be clonable. */
5726 vinsn_t
5727 create_vinsn_from_insn_rtx (rtx_insn *insn_rtx, bool force_unique_p)
5728 {
5729 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5730
5731 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5732 return vinsn_create (insn_rtx, force_unique_p);
5733 }
5734
5735 /* Create a copy of INSN_RTX. */
5736 rtx_insn *
5737 create_copy_of_insn_rtx (rtx insn_rtx)
5738 {
5739 rtx_insn *res;
5740 rtx link;
5741
5742 if (DEBUG_INSN_P (insn_rtx))
5743 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5744 insn_rtx);
5745
5746 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5747
5748 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5749 NULL_RTX);
5750
5751 /* Copy all REG_NOTES except REG_EQUAL/REG_EQUIV and REG_LABEL_OPERAND
5752 since mark_jump_label will make them. REG_LABEL_TARGETs are created
5753 there too, but are supposed to be sticky, so we copy them. */
5754 for (link = REG_NOTES (insn_rtx); link; link = XEXP (link, 1))
5755 if (REG_NOTE_KIND (link) != REG_LABEL_OPERAND
5756 && REG_NOTE_KIND (link) != REG_EQUAL
5757 && REG_NOTE_KIND (link) != REG_EQUIV)
5758 {
5759 if (GET_CODE (link) == EXPR_LIST)
5760 add_reg_note (res, REG_NOTE_KIND (link),
5761 copy_insn_1 (XEXP (link, 0)));
5762 else
5763 add_reg_note (res, REG_NOTE_KIND (link), XEXP (link, 0));
5764 }
5765
5766 return res;
5767 }
5768
5769 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5770 void
5771 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5772 {
5773 vinsn_detach (EXPR_VINSN (expr));
5774
5775 EXPR_VINSN (expr) = new_vinsn;
5776 vinsn_attach (new_vinsn);
5777 }
5778
5779 /* Helpers for global init. */
5780 /* This structure is used to be able to call existing bundling mechanism
5781 and calculate insn priorities. */
5782 static struct haifa_sched_info sched_sel_haifa_sched_info =
5783 {
5784 NULL, /* init_ready_list */
5785 NULL, /* can_schedule_ready_p */
5786 NULL, /* schedule_more_p */
5787 NULL, /* new_ready */
5788 NULL, /* rgn_rank */
5789 sel_print_insn, /* rgn_print_insn */
5790 contributes_to_priority,
5791 NULL, /* insn_finishes_block_p */
5792
5793 NULL, NULL,
5794 NULL, NULL,
5795 0, 0,
5796
5797 NULL, /* add_remove_insn */
5798 NULL, /* begin_schedule_ready */
5799 NULL, /* begin_move_insn */
5800 NULL, /* advance_target_bb */
5801
5802 NULL,
5803 NULL,
5804
5805 SEL_SCHED | NEW_BBS
5806 };
5807
5808 /* Setup special insns used in the scheduler. */
5809 void
5810 setup_nop_and_exit_insns (void)
5811 {
5812 gcc_assert (nop_pattern == NULL_RTX
5813 && exit_insn == NULL_RTX);
5814
5815 nop_pattern = constm1_rtx;
5816
5817 start_sequence ();
5818 emit_insn (nop_pattern);
5819 exit_insn = get_insns ();
5820 end_sequence ();
5821 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR_FOR_FN (cfun));
5822 }
5823
5824 /* Free special insns used in the scheduler. */
5825 void
5826 free_nop_and_exit_insns (void)
5827 {
5828 exit_insn = NULL;
5829 nop_pattern = NULL_RTX;
5830 }
5831
5832 /* Setup a special vinsn used in new insns initialization. */
5833 void
5834 setup_nop_vinsn (void)
5835 {
5836 nop_vinsn = vinsn_create (exit_insn, false);
5837 vinsn_attach (nop_vinsn);
5838 }
5839
5840 /* Free a special vinsn used in new insns initialization. */
5841 void
5842 free_nop_vinsn (void)
5843 {
5844 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5845 vinsn_detach (nop_vinsn);
5846 nop_vinsn = NULL;
5847 }
5848
5849 /* Call a set_sched_flags hook. */
5850 void
5851 sel_set_sched_flags (void)
5852 {
5853 /* ??? This means that set_sched_flags were called, and we decided to
5854 support speculation. However, set_sched_flags also modifies flags
5855 on current_sched_info, doing this only at global init. And we
5856 sometimes change c_s_i later. So put the correct flags again. */
5857 if (spec_info && targetm.sched.set_sched_flags)
5858 targetm.sched.set_sched_flags (spec_info);
5859 }
5860
5861 /* Setup pointers to global sched info structures. */
5862 void
5863 sel_setup_sched_infos (void)
5864 {
5865 rgn_setup_common_sched_info ();
5866
5867 memcpy (&sel_common_sched_info, common_sched_info,
5868 sizeof (sel_common_sched_info));
5869
5870 sel_common_sched_info.fix_recovery_cfg = NULL;
5871 sel_common_sched_info.add_block = NULL;
5872 sel_common_sched_info.estimate_number_of_insns
5873 = sel_estimate_number_of_insns;
5874 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5875 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5876
5877 common_sched_info = &sel_common_sched_info;
5878
5879 current_sched_info = &sched_sel_haifa_sched_info;
5880 current_sched_info->sched_max_insns_priority =
5881 get_rgn_sched_max_insns_priority ();
5882
5883 sel_set_sched_flags ();
5884 }
5885 \f
5886
5887 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5888 *BB_ORD_INDEX after that is increased. */
5889 static void
5890 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5891 {
5892 RGN_NR_BLOCKS (rgn) += 1;
5893 RGN_DONT_CALC_DEPS (rgn) = 0;
5894 RGN_HAS_REAL_EBB (rgn) = 0;
5895 CONTAINING_RGN (bb->index) = rgn;
5896 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5897 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5898 (*bb_ord_index)++;
5899
5900 /* FIXME: it is true only when not scheduling ebbs. */
5901 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5902 }
5903
5904 /* Functions to support pipelining of outer loops. */
5905
5906 /* Creates a new empty region and returns it's number. */
5907 static int
5908 sel_create_new_region (void)
5909 {
5910 int new_rgn_number = nr_regions;
5911
5912 RGN_NR_BLOCKS (new_rgn_number) = 0;
5913
5914 /* FIXME: This will work only when EBBs are not created. */
5915 if (new_rgn_number != 0)
5916 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5917 RGN_NR_BLOCKS (new_rgn_number - 1);
5918 else
5919 RGN_BLOCKS (new_rgn_number) = 0;
5920
5921 /* Set the blocks of the next region so the other functions may
5922 calculate the number of blocks in the region. */
5923 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5924 RGN_NR_BLOCKS (new_rgn_number);
5925
5926 nr_regions++;
5927
5928 return new_rgn_number;
5929 }
5930
5931 /* If X has a smaller topological sort number than Y, returns -1;
5932 if greater, returns 1. */
5933 static int
5934 bb_top_order_comparator (const void *x, const void *y)
5935 {
5936 basic_block bb1 = *(const basic_block *) x;
5937 basic_block bb2 = *(const basic_block *) y;
5938
5939 gcc_assert (bb1 == bb2
5940 || rev_top_order_index[bb1->index]
5941 != rev_top_order_index[bb2->index]);
5942
5943 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5944 bbs with greater number should go earlier. */
5945 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5946 return -1;
5947 else
5948 return 1;
5949 }
5950
5951 /* Create a region for LOOP and return its number. If we don't want
5952 to pipeline LOOP, return -1. */
5953 static int
5954 make_region_from_loop (struct loop *loop)
5955 {
5956 unsigned int i;
5957 int new_rgn_number = -1;
5958 struct loop *inner;
5959
5960 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5961 int bb_ord_index = 0;
5962 basic_block *loop_blocks;
5963 basic_block preheader_block;
5964
5965 if (loop->num_nodes
5966 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5967 return -1;
5968
5969 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5970 for (inner = loop->inner; inner; inner = inner->inner)
5971 if (flow_bb_inside_loop_p (inner, loop->latch))
5972 return -1;
5973
5974 loop->ninsns = num_loop_insns (loop);
5975 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5976 return -1;
5977
5978 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5979
5980 for (i = 0; i < loop->num_nodes; i++)
5981 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5982 {
5983 free (loop_blocks);
5984 return -1;
5985 }
5986
5987 preheader_block = loop_preheader_edge (loop)->src;
5988 gcc_assert (preheader_block);
5989 gcc_assert (loop_blocks[0] == loop->header);
5990
5991 new_rgn_number = sel_create_new_region ();
5992
5993 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5994 bitmap_set_bit (bbs_in_loop_rgns, preheader_block->index);
5995
5996 for (i = 0; i < loop->num_nodes; i++)
5997 {
5998 /* Add only those blocks that haven't been scheduled in the inner loop.
5999 The exception is the basic blocks with bookkeeping code - they should
6000 be added to the region (and they actually don't belong to the loop
6001 body, but to the region containing that loop body). */
6002
6003 gcc_assert (new_rgn_number >= 0);
6004
6005 if (! bitmap_bit_p (bbs_in_loop_rgns, loop_blocks[i]->index))
6006 {
6007 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
6008 new_rgn_number);
6009 bitmap_set_bit (bbs_in_loop_rgns, loop_blocks[i]->index);
6010 }
6011 }
6012
6013 free (loop_blocks);
6014 MARK_LOOP_FOR_PIPELINING (loop);
6015
6016 return new_rgn_number;
6017 }
6018
6019 /* Create a new region from preheader blocks LOOP_BLOCKS. */
6020 void
6021 make_region_from_loop_preheader (vec<basic_block> *&loop_blocks)
6022 {
6023 unsigned int i;
6024 int new_rgn_number = -1;
6025 basic_block bb;
6026
6027 /* Basic block index, to be assigned to BLOCK_TO_BB. */
6028 int bb_ord_index = 0;
6029
6030 new_rgn_number = sel_create_new_region ();
6031
6032 FOR_EACH_VEC_ELT (*loop_blocks, i, bb)
6033 {
6034 gcc_assert (new_rgn_number >= 0);
6035
6036 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
6037 }
6038
6039 vec_free (loop_blocks);
6040 }
6041
6042
6043 /* Create region(s) from loop nest LOOP, such that inner loops will be
6044 pipelined before outer loops. Returns true when a region for LOOP
6045 is created. */
6046 static bool
6047 make_regions_from_loop_nest (struct loop *loop)
6048 {
6049 struct loop *cur_loop;
6050 int rgn_number;
6051
6052 /* Traverse all inner nodes of the loop. */
6053 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
6054 if (! bitmap_bit_p (bbs_in_loop_rgns, cur_loop->header->index))
6055 return false;
6056
6057 /* At this moment all regular inner loops should have been pipelined.
6058 Try to create a region from this loop. */
6059 rgn_number = make_region_from_loop (loop);
6060
6061 if (rgn_number < 0)
6062 return false;
6063
6064 loop_nests.safe_push (loop);
6065 return true;
6066 }
6067
6068 /* Initalize data structures needed. */
6069 void
6070 sel_init_pipelining (void)
6071 {
6072 /* Collect loop information to be used in outer loops pipelining. */
6073 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
6074 | LOOPS_HAVE_FALLTHRU_PREHEADERS
6075 | LOOPS_HAVE_RECORDED_EXITS
6076 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
6077 current_loop_nest = NULL;
6078
6079 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block_for_fn (cfun));
6080 bitmap_clear (bbs_in_loop_rgns);
6081
6082 recompute_rev_top_order ();
6083 }
6084
6085 /* Returns a struct loop for region RGN. */
6086 loop_p
6087 get_loop_nest_for_rgn (unsigned int rgn)
6088 {
6089 /* Regions created with extend_rgns don't have corresponding loop nests,
6090 because they don't represent loops. */
6091 if (rgn < loop_nests.length ())
6092 return loop_nests[rgn];
6093 else
6094 return NULL;
6095 }
6096
6097 /* True when LOOP was included into pipelining regions. */
6098 bool
6099 considered_for_pipelining_p (struct loop *loop)
6100 {
6101 if (loop_depth (loop) == 0)
6102 return false;
6103
6104 /* Now, the loop could be too large or irreducible. Check whether its
6105 region is in LOOP_NESTS.
6106 We determine the region number of LOOP as the region number of its
6107 latch. We can't use header here, because this header could be
6108 just removed preheader and it will give us the wrong region number.
6109 Latch can't be used because it could be in the inner loop too. */
6110 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
6111 {
6112 int rgn = CONTAINING_RGN (loop->latch->index);
6113
6114 gcc_assert ((unsigned) rgn < loop_nests.length ());
6115 return true;
6116 }
6117
6118 return false;
6119 }
6120
6121 /* Makes regions from the rest of the blocks, after loops are chosen
6122 for pipelining. */
6123 static void
6124 make_regions_from_the_rest (void)
6125 {
6126 int cur_rgn_blocks;
6127 int *loop_hdr;
6128 int i;
6129
6130 basic_block bb;
6131 edge e;
6132 edge_iterator ei;
6133 int *degree;
6134
6135 /* Index in rgn_bb_table where to start allocating new regions. */
6136 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
6137
6138 /* Make regions from all the rest basic blocks - those that don't belong to
6139 any loop or belong to irreducible loops. Prepare the data structures
6140 for extend_rgns. */
6141
6142 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
6143 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
6144 loop. */
6145 loop_hdr = XNEWVEC (int, last_basic_block_for_fn (cfun));
6146 degree = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6147
6148
6149 /* For each basic block that belongs to some loop assign the number
6150 of innermost loop it belongs to. */
6151 for (i = 0; i < last_basic_block_for_fn (cfun); i++)
6152 loop_hdr[i] = -1;
6153
6154 FOR_EACH_BB_FN (bb, cfun)
6155 {
6156 if (bb->loop_father && bb->loop_father->num != 0
6157 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
6158 loop_hdr[bb->index] = bb->loop_father->num;
6159 }
6160
6161 /* For each basic block degree is calculated as the number of incoming
6162 edges, that are going out of bbs that are not yet scheduled.
6163 The basic blocks that are scheduled have degree value of zero. */
6164 FOR_EACH_BB_FN (bb, cfun)
6165 {
6166 degree[bb->index] = 0;
6167
6168 if (!bitmap_bit_p (bbs_in_loop_rgns, bb->index))
6169 {
6170 FOR_EACH_EDGE (e, ei, bb->preds)
6171 if (!bitmap_bit_p (bbs_in_loop_rgns, e->src->index))
6172 degree[bb->index]++;
6173 }
6174 else
6175 degree[bb->index] = -1;
6176 }
6177
6178 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
6179
6180 /* Any block that did not end up in a region is placed into a region
6181 by itself. */
6182 FOR_EACH_BB_FN (bb, cfun)
6183 if (degree[bb->index] >= 0)
6184 {
6185 rgn_bb_table[cur_rgn_blocks] = bb->index;
6186 RGN_NR_BLOCKS (nr_regions) = 1;
6187 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
6188 RGN_DONT_CALC_DEPS (nr_regions) = 0;
6189 RGN_HAS_REAL_EBB (nr_regions) = 0;
6190 CONTAINING_RGN (bb->index) = nr_regions++;
6191 BLOCK_TO_BB (bb->index) = 0;
6192 }
6193
6194 free (degree);
6195 free (loop_hdr);
6196 }
6197
6198 /* Free data structures used in pipelining of loops. */
6199 void sel_finish_pipelining (void)
6200 {
6201 struct loop *loop;
6202
6203 /* Release aux fields so we don't free them later by mistake. */
6204 FOR_EACH_LOOP (loop, 0)
6205 loop->aux = NULL;
6206
6207 loop_optimizer_finalize ();
6208
6209 loop_nests.release ();
6210
6211 free (rev_top_order_index);
6212 rev_top_order_index = NULL;
6213 }
6214
6215 /* This function replaces the find_rgns when
6216 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6217 void
6218 sel_find_rgns (void)
6219 {
6220 sel_init_pipelining ();
6221 extend_regions ();
6222
6223 if (current_loops)
6224 {
6225 loop_p loop;
6226
6227 FOR_EACH_LOOP (loop, (flag_sel_sched_pipelining_outer_loops
6228 ? LI_FROM_INNERMOST
6229 : LI_ONLY_INNERMOST))
6230 make_regions_from_loop_nest (loop);
6231 }
6232
6233 /* Make regions from all the rest basic blocks and schedule them.
6234 These blocks include blocks that don't belong to any loop or belong
6235 to irreducible loops. */
6236 make_regions_from_the_rest ();
6237
6238 /* We don't need bbs_in_loop_rgns anymore. */
6239 sbitmap_free (bbs_in_loop_rgns);
6240 bbs_in_loop_rgns = NULL;
6241 }
6242
6243 /* Add the preheader blocks from previous loop to current region taking
6244 it from LOOP_PREHEADER_BLOCKS (current_loop_nest) and record them in *BBS.
6245 This function is only used with -fsel-sched-pipelining-outer-loops. */
6246 void
6247 sel_add_loop_preheaders (bb_vec_t *bbs)
6248 {
6249 int i;
6250 basic_block bb;
6251 vec<basic_block> *preheader_blocks
6252 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6253
6254 if (!preheader_blocks)
6255 return;
6256
6257 for (i = 0; preheader_blocks->iterate (i, &bb); i++)
6258 {
6259 bbs->safe_push (bb);
6260 last_added_blocks.safe_push (bb);
6261 sel_add_bb (bb);
6262 }
6263
6264 vec_free (preheader_blocks);
6265 }
6266
6267 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6268 Please note that the function should also work when pipelining_p is
6269 false, because it is used when deciding whether we should or should
6270 not reschedule pipelined code. */
6271 bool
6272 sel_is_loop_preheader_p (basic_block bb)
6273 {
6274 if (current_loop_nest)
6275 {
6276 struct loop *outer;
6277
6278 if (preheader_removed)
6279 return false;
6280
6281 /* Preheader is the first block in the region. */
6282 if (BLOCK_TO_BB (bb->index) == 0)
6283 return true;
6284
6285 /* We used to find a preheader with the topological information.
6286 Check that the above code is equivalent to what we did before. */
6287
6288 if (in_current_region_p (current_loop_nest->header))
6289 gcc_assert (!(BLOCK_TO_BB (bb->index)
6290 < BLOCK_TO_BB (current_loop_nest->header->index)));
6291
6292 /* Support the situation when the latch block of outer loop
6293 could be from here. */
6294 for (outer = loop_outer (current_loop_nest);
6295 outer;
6296 outer = loop_outer (outer))
6297 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6298 gcc_unreachable ();
6299 }
6300
6301 return false;
6302 }
6303
6304 /* Check whether JUMP_BB ends with a jump insn that leads only to DEST_BB and
6305 can be removed, making the corresponding edge fallthrough (assuming that
6306 all basic blocks between JUMP_BB and DEST_BB are empty). */
6307 static bool
6308 bb_has_removable_jump_to_p (basic_block jump_bb, basic_block dest_bb)
6309 {
6310 if (!onlyjump_p (BB_END (jump_bb))
6311 || tablejump_p (BB_END (jump_bb), NULL, NULL))
6312 return false;
6313
6314 /* Several outgoing edges, abnormal edge or destination of jump is
6315 not DEST_BB. */
6316 if (EDGE_COUNT (jump_bb->succs) != 1
6317 || EDGE_SUCC (jump_bb, 0)->flags & (EDGE_ABNORMAL | EDGE_CROSSING)
6318 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6319 return false;
6320
6321 /* If not anything of the upper. */
6322 return true;
6323 }
6324
6325 /* Removes the loop preheader from the current region and saves it in
6326 PREHEADER_BLOCKS of the father loop, so they will be added later to
6327 region that represents an outer loop. */
6328 static void
6329 sel_remove_loop_preheader (void)
6330 {
6331 int i, old_len;
6332 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6333 basic_block bb;
6334 bool all_empty_p = true;
6335 vec<basic_block> *preheader_blocks
6336 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6337
6338 vec_check_alloc (preheader_blocks, 0);
6339
6340 gcc_assert (current_loop_nest);
6341 old_len = preheader_blocks->length ();
6342
6343 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6344 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6345 {
6346 bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6347
6348 /* If the basic block belongs to region, but doesn't belong to
6349 corresponding loop, then it should be a preheader. */
6350 if (sel_is_loop_preheader_p (bb))
6351 {
6352 preheader_blocks->safe_push (bb);
6353 if (BB_END (bb) != bb_note (bb))
6354 all_empty_p = false;
6355 }
6356 }
6357
6358 /* Remove these blocks only after iterating over the whole region. */
6359 for (i = preheader_blocks->length () - 1; i >= old_len; i--)
6360 {
6361 bb = (*preheader_blocks)[i];
6362 sel_remove_bb (bb, false);
6363 }
6364
6365 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6366 {
6367 if (!all_empty_p)
6368 /* Immediately create new region from preheader. */
6369 make_region_from_loop_preheader (preheader_blocks);
6370 else
6371 {
6372 /* If all preheader blocks are empty - dont create new empty region.
6373 Instead, remove them completely. */
6374 FOR_EACH_VEC_ELT (*preheader_blocks, i, bb)
6375 {
6376 edge e;
6377 edge_iterator ei;
6378 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6379
6380 /* Redirect all incoming edges to next basic block. */
6381 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6382 {
6383 if (! (e->flags & EDGE_FALLTHRU))
6384 redirect_edge_and_branch (e, bb->next_bb);
6385 else
6386 redirect_edge_succ (e, bb->next_bb);
6387 }
6388 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6389 delete_and_free_basic_block (bb);
6390
6391 /* Check if after deleting preheader there is a nonconditional
6392 jump in PREV_BB that leads to the next basic block NEXT_BB.
6393 If it is so - delete this jump and clear data sets of its
6394 basic block if it becomes empty. */
6395 if (next_bb->prev_bb == prev_bb
6396 && prev_bb != ENTRY_BLOCK_PTR_FOR_FN (cfun)
6397 && bb_has_removable_jump_to_p (prev_bb, next_bb))
6398 {
6399 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6400 if (BB_END (prev_bb) == bb_note (prev_bb))
6401 free_data_sets (prev_bb);
6402 }
6403
6404 set_immediate_dominator (CDI_DOMINATORS, next_bb,
6405 recompute_dominator (CDI_DOMINATORS,
6406 next_bb));
6407 }
6408 }
6409 vec_free (preheader_blocks);
6410 }
6411 else
6412 /* Store preheader within the father's loop structure. */
6413 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6414 preheader_blocks);
6415 }
6416
6417 #endif