sched-ebb.c: Rename struct deps to struct deps_desc.
[gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
51
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
60
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
63
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
66
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
69
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
73
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
76
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
79 \f
80
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
84
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
87
88 /* A regset pool structure. */
89 static struct
90 {
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115 /* This represents the nop pool. */
116 static struct
117 {
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
127
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
130
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
136
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
140 \f
141
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
144
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
152
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_remove_loop_preheader (void);
156
157 static bool insn_is_the_only_one_in_bb_p (insn_t);
158 static void create_initial_data_sets (basic_block);
159
160 static void free_av_set (basic_block);
161 static void invalidate_av_set (basic_block);
162 static void extend_insn_data (void);
163 static void sel_init_new_insn (insn_t, int);
164 static void finish_insns (void);
165 \f
166 /* Various list functions. */
167
168 /* Copy an instruction list L. */
169 ilist_t
170 ilist_copy (ilist_t l)
171 {
172 ilist_t head = NULL, *tailp = &head;
173
174 while (l)
175 {
176 ilist_add (tailp, ILIST_INSN (l));
177 tailp = &ILIST_NEXT (*tailp);
178 l = ILIST_NEXT (l);
179 }
180
181 return head;
182 }
183
184 /* Invert an instruction list L. */
185 ilist_t
186 ilist_invert (ilist_t l)
187 {
188 ilist_t res = NULL;
189
190 while (l)
191 {
192 ilist_add (&res, ILIST_INSN (l));
193 l = ILIST_NEXT (l);
194 }
195
196 return res;
197 }
198
199 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
200 void
201 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
202 {
203 bnd_t bnd;
204
205 _list_add (lp);
206 bnd = BLIST_BND (*lp);
207
208 BND_TO (bnd) = to;
209 BND_PTR (bnd) = ptr;
210 BND_AV (bnd) = NULL;
211 BND_AV1 (bnd) = NULL;
212 BND_DC (bnd) = dc;
213 }
214
215 /* Remove the list note pointed to by LP. */
216 void
217 blist_remove (blist_t *lp)
218 {
219 bnd_t b = BLIST_BND (*lp);
220
221 av_set_clear (&BND_AV (b));
222 av_set_clear (&BND_AV1 (b));
223 ilist_clear (&BND_PTR (b));
224
225 _list_remove (lp);
226 }
227
228 /* Init a fence tail L. */
229 void
230 flist_tail_init (flist_tail_t l)
231 {
232 FLIST_TAIL_HEAD (l) = NULL;
233 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234 }
235
236 /* Try to find fence corresponding to INSN in L. */
237 fence_t
238 flist_lookup (flist_t l, insn_t insn)
239 {
240 while (l)
241 {
242 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
243 return FLIST_FENCE (l);
244
245 l = FLIST_NEXT (l);
246 }
247
248 return NULL;
249 }
250
251 /* Init the fields of F before running fill_insns. */
252 static void
253 init_fence_for_scheduling (fence_t f)
254 {
255 FENCE_BNDS (f) = NULL;
256 FENCE_PROCESSED_P (f) = false;
257 FENCE_SCHEDULED_P (f) = false;
258 }
259
260 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
261 static void
262 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
265 int cycle, int cycle_issued_insns, int issue_more,
266 bool starts_cycle_p, bool after_stall_p)
267 {
268 fence_t f;
269
270 _list_add (lp);
271 f = FLIST_FENCE (*lp);
272
273 FENCE_INSN (f) = insn;
274
275 gcc_assert (state != NULL);
276 FENCE_STATE (f) = state;
277
278 FENCE_CYCLE (f) = cycle;
279 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
280 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
281 FENCE_AFTER_STALL_P (f) = after_stall_p;
282
283 gcc_assert (dc != NULL);
284 FENCE_DC (f) = dc;
285
286 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
287 FENCE_TC (f) = tc;
288
289 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
290 FENCE_ISSUE_MORE (f) = issue_more;
291 FENCE_EXECUTING_INSNS (f) = executing_insns;
292 FENCE_READY_TICKS (f) = ready_ticks;
293 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
294 FENCE_SCHED_NEXT (f) = sched_next;
295
296 init_fence_for_scheduling (f);
297 }
298
299 /* Remove the head node of the list pointed to by LP. */
300 static void
301 flist_remove (flist_t *lp)
302 {
303 if (FENCE_INSN (FLIST_FENCE (*lp)))
304 fence_clear (FLIST_FENCE (*lp));
305 _list_remove (lp);
306 }
307
308 /* Clear the fence list pointed to by LP. */
309 void
310 flist_clear (flist_t *lp)
311 {
312 while (*lp)
313 flist_remove (lp);
314 }
315
316 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
317 void
318 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
319 {
320 def_t d;
321
322 _list_add (dl);
323 d = DEF_LIST_DEF (*dl);
324
325 d->orig_insn = original_insn;
326 d->crosses_call = crosses_call;
327 }
328 \f
329
330 /* Functions to work with target contexts. */
331
332 /* Bulk target context. It is convenient for debugging purposes to ensure
333 that there are no uninitialized (null) target contexts. */
334 static tc_t bulk_tc = (tc_t) 1;
335
336 /* Target hooks wrappers. In the future we can provide some default
337 implementations for them. */
338
339 /* Allocate a store for the target context. */
340 static tc_t
341 alloc_target_context (void)
342 {
343 return (targetm.sched.alloc_sched_context
344 ? targetm.sched.alloc_sched_context () : bulk_tc);
345 }
346
347 /* Init target context TC.
348 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
349 Overwise, copy current backend context to TC. */
350 static void
351 init_target_context (tc_t tc, bool clean_p)
352 {
353 if (targetm.sched.init_sched_context)
354 targetm.sched.init_sched_context (tc, clean_p);
355 }
356
357 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
358 int init_target_context (). */
359 tc_t
360 create_target_context (bool clean_p)
361 {
362 tc_t tc = alloc_target_context ();
363
364 init_target_context (tc, clean_p);
365 return tc;
366 }
367
368 /* Copy TC to the current backend context. */
369 void
370 set_target_context (tc_t tc)
371 {
372 if (targetm.sched.set_sched_context)
373 targetm.sched.set_sched_context (tc);
374 }
375
376 /* TC is about to be destroyed. Free any internal data. */
377 static void
378 clear_target_context (tc_t tc)
379 {
380 if (targetm.sched.clear_sched_context)
381 targetm.sched.clear_sched_context (tc);
382 }
383
384 /* Clear and free it. */
385 static void
386 delete_target_context (tc_t tc)
387 {
388 clear_target_context (tc);
389
390 if (targetm.sched.free_sched_context)
391 targetm.sched.free_sched_context (tc);
392 }
393
394 /* Make a copy of FROM in TO.
395 NB: May be this should be a hook. */
396 static void
397 copy_target_context (tc_t to, tc_t from)
398 {
399 tc_t tmp = create_target_context (false);
400
401 set_target_context (from);
402 init_target_context (to, false);
403
404 set_target_context (tmp);
405 delete_target_context (tmp);
406 }
407
408 /* Create a copy of TC. */
409 static tc_t
410 create_copy_of_target_context (tc_t tc)
411 {
412 tc_t copy = alloc_target_context ();
413
414 copy_target_context (copy, tc);
415
416 return copy;
417 }
418
419 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
420 is the same as in init_target_context (). */
421 void
422 reset_target_context (tc_t tc, bool clean_p)
423 {
424 clear_target_context (tc);
425 init_target_context (tc, clean_p);
426 }
427 \f
428 /* Functions to work with dependence contexts.
429 Dc (aka deps context, aka deps_t, aka struct deps_desc *) is short for dependence
430 context. It accumulates information about processed insns to decide if
431 current insn is dependent on the processed ones. */
432
433 /* Make a copy of FROM in TO. */
434 static void
435 copy_deps_context (deps_t to, deps_t from)
436 {
437 init_deps (to, false);
438 deps_join (to, from);
439 }
440
441 /* Allocate store for dep context. */
442 static deps_t
443 alloc_deps_context (void)
444 {
445 return XNEW (struct deps_desc);
446 }
447
448 /* Allocate and initialize dep context. */
449 static deps_t
450 create_deps_context (void)
451 {
452 deps_t dc = alloc_deps_context ();
453
454 init_deps (dc, false);
455 return dc;
456 }
457
458 /* Create a copy of FROM. */
459 static deps_t
460 create_copy_of_deps_context (deps_t from)
461 {
462 deps_t to = alloc_deps_context ();
463
464 copy_deps_context (to, from);
465 return to;
466 }
467
468 /* Clean up internal data of DC. */
469 static void
470 clear_deps_context (deps_t dc)
471 {
472 free_deps (dc);
473 }
474
475 /* Clear and free DC. */
476 static void
477 delete_deps_context (deps_t dc)
478 {
479 clear_deps_context (dc);
480 free (dc);
481 }
482
483 /* Clear and init DC. */
484 static void
485 reset_deps_context (deps_t dc)
486 {
487 clear_deps_context (dc);
488 init_deps (dc, false);
489 }
490
491 /* This structure describes the dependence analysis hooks for advancing
492 dependence context. */
493 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
494 {
495 NULL,
496
497 NULL, /* start_insn */
498 NULL, /* finish_insn */
499 NULL, /* start_lhs */
500 NULL, /* finish_lhs */
501 NULL, /* start_rhs */
502 NULL, /* finish_rhs */
503 haifa_note_reg_set,
504 haifa_note_reg_clobber,
505 haifa_note_reg_use,
506 NULL, /* note_mem_dep */
507 NULL, /* note_dep */
508
509 0, 0, 0
510 };
511
512 /* Process INSN and add its impact on DC. */
513 void
514 advance_deps_context (deps_t dc, insn_t insn)
515 {
516 sched_deps_info = &advance_deps_context_sched_deps_info;
517 deps_analyze_insn (dc, insn);
518 }
519 \f
520
521 /* Functions to work with DFA states. */
522
523 /* Allocate store for a DFA state. */
524 static state_t
525 state_alloc (void)
526 {
527 return xmalloc (dfa_state_size);
528 }
529
530 /* Allocate and initialize DFA state. */
531 static state_t
532 state_create (void)
533 {
534 state_t state = state_alloc ();
535
536 state_reset (state);
537 advance_state (state);
538 return state;
539 }
540
541 /* Free DFA state. */
542 static void
543 state_free (state_t state)
544 {
545 free (state);
546 }
547
548 /* Make a copy of FROM in TO. */
549 static void
550 state_copy (state_t to, state_t from)
551 {
552 memcpy (to, from, dfa_state_size);
553 }
554
555 /* Create a copy of FROM. */
556 static state_t
557 state_create_copy (state_t from)
558 {
559 state_t to = state_alloc ();
560
561 state_copy (to, from);
562 return to;
563 }
564 \f
565
566 /* Functions to work with fences. */
567
568 /* Clear the fence. */
569 static void
570 fence_clear (fence_t f)
571 {
572 state_t s = FENCE_STATE (f);
573 deps_t dc = FENCE_DC (f);
574 void *tc = FENCE_TC (f);
575
576 ilist_clear (&FENCE_BNDS (f));
577
578 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
579 || (s == NULL && dc == NULL && tc == NULL));
580
581 if (s != NULL)
582 free (s);
583
584 if (dc != NULL)
585 delete_deps_context (dc);
586
587 if (tc != NULL)
588 delete_target_context (tc);
589 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
590 free (FENCE_READY_TICKS (f));
591 FENCE_READY_TICKS (f) = NULL;
592 }
593
594 /* Init a list of fences with successors of OLD_FENCE. */
595 void
596 init_fences (insn_t old_fence)
597 {
598 insn_t succ;
599 succ_iterator si;
600 bool first = true;
601 int ready_ticks_size = get_max_uid () + 1;
602
603 FOR_EACH_SUCC_1 (succ, si, old_fence,
604 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
605 {
606
607 if (first)
608 first = false;
609 else
610 gcc_assert (flag_sel_sched_pipelining_outer_loops);
611
612 flist_add (&fences, succ,
613 state_create (),
614 create_deps_context () /* dc */,
615 create_target_context (true) /* tc */,
616 NULL_RTX /* last_scheduled_insn */,
617 NULL, /* executing_insns */
618 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
619 ready_ticks_size,
620 NULL_RTX /* sched_next */,
621 1 /* cycle */, 0 /* cycle_issued_insns */,
622 issue_rate, /* issue_more */
623 1 /* starts_cycle_p */, 0 /* after_stall_p */);
624 }
625 }
626
627 /* Merges two fences (filling fields of fence F with resulting values) by
628 following rules: 1) state, target context and last scheduled insn are
629 propagated from fallthrough edge if it is available;
630 2) deps context and cycle is propagated from more probable edge;
631 3) all other fields are set to corresponding constant values.
632
633 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
634 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE, ISSUE_MORE
635 and AFTER_STALL_P are the corresponding fields of the second fence. */
636 static void
637 merge_fences (fence_t f, insn_t insn,
638 state_t state, deps_t dc, void *tc,
639 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
640 int *ready_ticks, int ready_ticks_size,
641 rtx sched_next, int cycle, int issue_more, bool after_stall_p)
642 {
643 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
644
645 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
646 && !sched_next && !FENCE_SCHED_NEXT (f));
647
648 /* Check if we can decide which path fences came.
649 If we can't (or don't want to) - reset all. */
650 if (last_scheduled_insn == NULL
651 || last_scheduled_insn_old == NULL
652 /* This is a case when INSN is reachable on several paths from
653 one insn (this can happen when pipelining of outer loops is on and
654 there are two edges: one going around of inner loop and the other -
655 right through it; in such case just reset everything). */
656 || last_scheduled_insn == last_scheduled_insn_old)
657 {
658 state_reset (FENCE_STATE (f));
659 state_free (state);
660
661 reset_deps_context (FENCE_DC (f));
662 delete_deps_context (dc);
663
664 reset_target_context (FENCE_TC (f), true);
665 delete_target_context (tc);
666
667 if (cycle > FENCE_CYCLE (f))
668 FENCE_CYCLE (f) = cycle;
669
670 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
671 FENCE_ISSUE_MORE (f) = issue_rate;
672 VEC_free (rtx, gc, executing_insns);
673 free (ready_ticks);
674 if (FENCE_EXECUTING_INSNS (f))
675 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
676 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
677 if (FENCE_READY_TICKS (f))
678 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
679 }
680 else
681 {
682 edge edge_old = NULL, edge_new = NULL;
683 edge candidate;
684 succ_iterator si;
685 insn_t succ;
686
687 /* Find fallthrough edge. */
688 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
689 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
690
691 if (!candidate
692 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
693 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
694 {
695 /* No fallthrough edge leading to basic block of INSN. */
696 state_reset (FENCE_STATE (f));
697 state_free (state);
698
699 reset_target_context (FENCE_TC (f), true);
700 delete_target_context (tc);
701
702 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
703 FENCE_ISSUE_MORE (f) = issue_rate;
704 }
705 else
706 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
707 {
708 /* Would be weird if same insn is successor of several fallthrough
709 edges. */
710 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
711 != BLOCK_FOR_INSN (last_scheduled_insn_old));
712
713 state_free (FENCE_STATE (f));
714 FENCE_STATE (f) = state;
715
716 delete_target_context (FENCE_TC (f));
717 FENCE_TC (f) = tc;
718
719 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
720 FENCE_ISSUE_MORE (f) = issue_more;
721 }
722 else
723 {
724 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
725 state_free (state);
726 delete_target_context (tc);
727
728 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
729 != BLOCK_FOR_INSN (last_scheduled_insn));
730 }
731
732 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
733 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
734 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
735 {
736 if (succ == insn)
737 {
738 /* No same successor allowed from several edges. */
739 gcc_assert (!edge_old);
740 edge_old = si.e1;
741 }
742 }
743 /* Find edge of second predecessor (last_scheduled_insn->insn). */
744 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
745 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
746 {
747 if (succ == insn)
748 {
749 /* No same successor allowed from several edges. */
750 gcc_assert (!edge_new);
751 edge_new = si.e1;
752 }
753 }
754
755 /* Check if we can choose most probable predecessor. */
756 if (edge_old == NULL || edge_new == NULL)
757 {
758 reset_deps_context (FENCE_DC (f));
759 delete_deps_context (dc);
760 VEC_free (rtx, gc, executing_insns);
761 free (ready_ticks);
762
763 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
764 if (FENCE_EXECUTING_INSNS (f))
765 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
766 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
767 if (FENCE_READY_TICKS (f))
768 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
769 }
770 else
771 if (edge_new->probability > edge_old->probability)
772 {
773 delete_deps_context (FENCE_DC (f));
774 FENCE_DC (f) = dc;
775 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
776 FENCE_EXECUTING_INSNS (f) = executing_insns;
777 free (FENCE_READY_TICKS (f));
778 FENCE_READY_TICKS (f) = ready_ticks;
779 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
780 FENCE_CYCLE (f) = cycle;
781 }
782 else
783 {
784 /* Leave DC and CYCLE untouched. */
785 delete_deps_context (dc);
786 VEC_free (rtx, gc, executing_insns);
787 free (ready_ticks);
788 }
789 }
790
791 /* Fill remaining invariant fields. */
792 if (after_stall_p)
793 FENCE_AFTER_STALL_P (f) = 1;
794
795 FENCE_ISSUED_INSNS (f) = 0;
796 FENCE_STARTS_CYCLE_P (f) = 1;
797 FENCE_SCHED_NEXT (f) = NULL;
798 }
799
800 /* Add a new fence to NEW_FENCES list, initializing it from all
801 other parameters. */
802 static void
803 add_to_fences (flist_tail_t new_fences, insn_t insn,
804 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
805 VEC(rtx, gc) *executing_insns, int *ready_ticks,
806 int ready_ticks_size, rtx sched_next, int cycle,
807 int cycle_issued_insns, int issue_rate,
808 bool starts_cycle_p, bool after_stall_p)
809 {
810 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
811
812 if (! f)
813 {
814 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
815 last_scheduled_insn, executing_insns, ready_ticks,
816 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
817 issue_rate, starts_cycle_p, after_stall_p);
818
819 FLIST_TAIL_TAILP (new_fences)
820 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
821 }
822 else
823 {
824 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
825 executing_insns, ready_ticks, ready_ticks_size,
826 sched_next, cycle, issue_rate, after_stall_p);
827 }
828 }
829
830 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
831 void
832 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
833 {
834 fence_t f, old;
835 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
836
837 old = FLIST_FENCE (old_fences);
838 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
839 FENCE_INSN (FLIST_FENCE (old_fences)));
840 if (f)
841 {
842 merge_fences (f, old->insn, old->state, old->dc, old->tc,
843 old->last_scheduled_insn, old->executing_insns,
844 old->ready_ticks, old->ready_ticks_size,
845 old->sched_next, old->cycle, old->issue_more,
846 old->after_stall_p);
847 }
848 else
849 {
850 _list_add (tailp);
851 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
852 *FLIST_FENCE (*tailp) = *old;
853 init_fence_for_scheduling (FLIST_FENCE (*tailp));
854 }
855 FENCE_INSN (old) = NULL;
856 }
857
858 /* Add a new fence to NEW_FENCES list and initialize most of its data
859 as a clean one. */
860 void
861 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
862 {
863 int ready_ticks_size = get_max_uid () + 1;
864
865 add_to_fences (new_fences,
866 succ, state_create (), create_deps_context (),
867 create_target_context (true),
868 NULL_RTX, NULL,
869 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
870 NULL_RTX, FENCE_CYCLE (fence) + 1,
871 0, issue_rate, 1, FENCE_AFTER_STALL_P (fence));
872 }
873
874 /* Add a new fence to NEW_FENCES list and initialize all of its data
875 from FENCE and SUCC. */
876 void
877 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
878 {
879 int * new_ready_ticks
880 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
881
882 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
883 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
884 add_to_fences (new_fences,
885 succ, state_create_copy (FENCE_STATE (fence)),
886 create_copy_of_deps_context (FENCE_DC (fence)),
887 create_copy_of_target_context (FENCE_TC (fence)),
888 FENCE_LAST_SCHEDULED_INSN (fence),
889 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
890 new_ready_ticks,
891 FENCE_READY_TICKS_SIZE (fence),
892 FENCE_SCHED_NEXT (fence),
893 FENCE_CYCLE (fence),
894 FENCE_ISSUED_INSNS (fence),
895 FENCE_ISSUE_MORE (fence),
896 FENCE_STARTS_CYCLE_P (fence),
897 FENCE_AFTER_STALL_P (fence));
898 }
899 \f
900
901 /* Functions to work with regset and nop pools. */
902
903 /* Returns the new regset from pool. It might have some of the bits set
904 from the previous usage. */
905 regset
906 get_regset_from_pool (void)
907 {
908 regset rs;
909
910 if (regset_pool.n != 0)
911 rs = regset_pool.v[--regset_pool.n];
912 else
913 /* We need to create the regset. */
914 {
915 rs = ALLOC_REG_SET (&reg_obstack);
916
917 if (regset_pool.nn == regset_pool.ss)
918 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
919 (regset_pool.ss = 2 * regset_pool.ss + 1));
920 regset_pool.vv[regset_pool.nn++] = rs;
921 }
922
923 regset_pool.diff++;
924
925 return rs;
926 }
927
928 /* Same as above, but returns the empty regset. */
929 regset
930 get_clear_regset_from_pool (void)
931 {
932 regset rs = get_regset_from_pool ();
933
934 CLEAR_REG_SET (rs);
935 return rs;
936 }
937
938 /* Return regset RS to the pool for future use. */
939 void
940 return_regset_to_pool (regset rs)
941 {
942 regset_pool.diff--;
943
944 if (regset_pool.n == regset_pool.s)
945 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
946 (regset_pool.s = 2 * regset_pool.s + 1));
947 regset_pool.v[regset_pool.n++] = rs;
948 }
949
950 #ifdef ENABLE_CHECKING
951 /* This is used as a qsort callback for sorting regset pool stacks.
952 X and XX are addresses of two regsets. They are never equal. */
953 static int
954 cmp_v_in_regset_pool (const void *x, const void *xx)
955 {
956 return *((const regset *) x) - *((const regset *) xx);
957 }
958 #endif
959
960 /* Free the regset pool possibly checking for memory leaks. */
961 void
962 free_regset_pool (void)
963 {
964 #ifdef ENABLE_CHECKING
965 {
966 regset *v = regset_pool.v;
967 int i = 0;
968 int n = regset_pool.n;
969
970 regset *vv = regset_pool.vv;
971 int ii = 0;
972 int nn = regset_pool.nn;
973
974 int diff = 0;
975
976 gcc_assert (n <= nn);
977
978 /* Sort both vectors so it will be possible to compare them. */
979 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
980 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
981
982 while (ii < nn)
983 {
984 if (v[i] == vv[ii])
985 i++;
986 else
987 /* VV[II] was lost. */
988 diff++;
989
990 ii++;
991 }
992
993 gcc_assert (diff == regset_pool.diff);
994 }
995 #endif
996
997 /* If not true - we have a memory leak. */
998 gcc_assert (regset_pool.diff == 0);
999
1000 while (regset_pool.n)
1001 {
1002 --regset_pool.n;
1003 FREE_REG_SET (regset_pool.v[regset_pool.n]);
1004 }
1005
1006 free (regset_pool.v);
1007 regset_pool.v = NULL;
1008 regset_pool.s = 0;
1009
1010 free (regset_pool.vv);
1011 regset_pool.vv = NULL;
1012 regset_pool.nn = 0;
1013 regset_pool.ss = 0;
1014
1015 regset_pool.diff = 0;
1016 }
1017 \f
1018
1019 /* Functions to work with nop pools. NOP insns are used as temporary
1020 placeholders of the insns being scheduled to allow correct update of
1021 the data sets. When update is finished, NOPs are deleted. */
1022
1023 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1024 nops sel-sched generates. */
1025 static vinsn_t nop_vinsn = NULL;
1026
1027 /* Emit a nop before INSN, taking it from pool. */
1028 insn_t
1029 get_nop_from_pool (insn_t insn)
1030 {
1031 insn_t nop;
1032 bool old_p = nop_pool.n != 0;
1033 int flags;
1034
1035 if (old_p)
1036 nop = nop_pool.v[--nop_pool.n];
1037 else
1038 nop = nop_pattern;
1039
1040 nop = emit_insn_before (nop, insn);
1041
1042 if (old_p)
1043 flags = INSN_INIT_TODO_SSID;
1044 else
1045 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1046
1047 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1048 sel_init_new_insn (nop, flags);
1049
1050 return nop;
1051 }
1052
1053 /* Remove NOP from the instruction stream and return it to the pool. */
1054 void
1055 return_nop_to_pool (insn_t nop, bool full_tidying)
1056 {
1057 gcc_assert (INSN_IN_STREAM_P (nop));
1058 sel_remove_insn (nop, false, full_tidying);
1059
1060 if (nop_pool.n == nop_pool.s)
1061 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1062 (nop_pool.s = 2 * nop_pool.s + 1));
1063 nop_pool.v[nop_pool.n++] = nop;
1064 }
1065
1066 /* Free the nop pool. */
1067 void
1068 free_nop_pool (void)
1069 {
1070 nop_pool.n = 0;
1071 nop_pool.s = 0;
1072 free (nop_pool.v);
1073 nop_pool.v = NULL;
1074 }
1075 \f
1076
1077 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1078 The callback is given two rtxes XX and YY and writes the new rtxes
1079 to NX and NY in case some needs to be skipped. */
1080 static int
1081 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1082 {
1083 const_rtx x = *xx;
1084 const_rtx y = *yy;
1085
1086 if (GET_CODE (x) == UNSPEC
1087 && (targetm.sched.skip_rtx_p == NULL
1088 || targetm.sched.skip_rtx_p (x)))
1089 {
1090 *nx = XVECEXP (x, 0, 0);
1091 *ny = CONST_CAST_RTX (y);
1092 return 1;
1093 }
1094
1095 if (GET_CODE (y) == UNSPEC
1096 && (targetm.sched.skip_rtx_p == NULL
1097 || targetm.sched.skip_rtx_p (y)))
1098 {
1099 *nx = CONST_CAST_RTX (x);
1100 *ny = XVECEXP (y, 0, 0);
1101 return 1;
1102 }
1103
1104 return 0;
1105 }
1106
1107 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1108 to support ia64 speculation. When changes are needed, new rtx X and new mode
1109 NMODE are written, and the callback returns true. */
1110 static int
1111 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1112 rtx *nx, enum machine_mode* nmode)
1113 {
1114 if (GET_CODE (x) == UNSPEC
1115 && targetm.sched.skip_rtx_p
1116 && targetm.sched.skip_rtx_p (x))
1117 {
1118 *nx = XVECEXP (x, 0 ,0);
1119 *nmode = VOIDmode;
1120 return 1;
1121 }
1122
1123 return 0;
1124 }
1125
1126 /* Returns LHS and RHS are ok to be scheduled separately. */
1127 static bool
1128 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1129 {
1130 if (lhs == NULL || rhs == NULL)
1131 return false;
1132
1133 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1134 to use reg, if const can be used. Moreover, scheduling const as rhs may
1135 lead to mode mismatch cause consts don't have modes but they could be
1136 merged from branches where the same const used in different modes. */
1137 if (CONSTANT_P (rhs))
1138 return false;
1139
1140 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1141 if (COMPARISON_P (rhs))
1142 return false;
1143
1144 /* Do not allow single REG to be an rhs. */
1145 if (REG_P (rhs))
1146 return false;
1147
1148 /* See comment at find_used_regs_1 (*1) for explanation of this
1149 restriction. */
1150 /* FIXME: remove this later. */
1151 if (MEM_P (lhs))
1152 return false;
1153
1154 /* This will filter all tricky things like ZERO_EXTRACT etc.
1155 For now we don't handle it. */
1156 if (!REG_P (lhs) && !MEM_P (lhs))
1157 return false;
1158
1159 return true;
1160 }
1161
1162 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1163 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1164 used e.g. for insns from recovery blocks. */
1165 static void
1166 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1167 {
1168 hash_rtx_callback_function hrcf;
1169 int insn_class;
1170
1171 VINSN_INSN_RTX (vi) = insn;
1172 VINSN_COUNT (vi) = 0;
1173 vi->cost = -1;
1174
1175 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1176 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1177 else
1178 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1179
1180 /* Hash vinsn depending on whether it is separable or not. */
1181 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1182 if (VINSN_SEPARABLE_P (vi))
1183 {
1184 rtx rhs = VINSN_RHS (vi);
1185
1186 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1187 NULL, NULL, false, hrcf);
1188 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1189 VOIDmode, NULL, NULL,
1190 false, hrcf);
1191 }
1192 else
1193 {
1194 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1195 NULL, NULL, false, hrcf);
1196 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1197 }
1198
1199 insn_class = haifa_classify_insn (insn);
1200 if (insn_class >= 2
1201 && (!targetm.sched.get_insn_spec_ds
1202 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1203 == 0)))
1204 VINSN_MAY_TRAP_P (vi) = true;
1205 else
1206 VINSN_MAY_TRAP_P (vi) = false;
1207 }
1208
1209 /* Indicate that VI has become the part of an rtx object. */
1210 void
1211 vinsn_attach (vinsn_t vi)
1212 {
1213 /* Assert that VI is not pending for deletion. */
1214 gcc_assert (VINSN_INSN_RTX (vi));
1215
1216 VINSN_COUNT (vi)++;
1217 }
1218
1219 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1220 VINSN_TYPE (VI). */
1221 static vinsn_t
1222 vinsn_create (insn_t insn, bool force_unique_p)
1223 {
1224 vinsn_t vi = XCNEW (struct vinsn_def);
1225
1226 vinsn_init (vi, insn, force_unique_p);
1227 return vi;
1228 }
1229
1230 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1231 the copy. */
1232 vinsn_t
1233 vinsn_copy (vinsn_t vi, bool reattach_p)
1234 {
1235 rtx copy;
1236 bool unique = VINSN_UNIQUE_P (vi);
1237 vinsn_t new_vi;
1238
1239 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1240 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1241 if (reattach_p)
1242 {
1243 vinsn_detach (vi);
1244 vinsn_attach (new_vi);
1245 }
1246
1247 return new_vi;
1248 }
1249
1250 /* Delete the VI vinsn and free its data. */
1251 static void
1252 vinsn_delete (vinsn_t vi)
1253 {
1254 gcc_assert (VINSN_COUNT (vi) == 0);
1255
1256 return_regset_to_pool (VINSN_REG_SETS (vi));
1257 return_regset_to_pool (VINSN_REG_USES (vi));
1258 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1259
1260 free (vi);
1261 }
1262
1263 /* Indicate that VI is no longer a part of some rtx object.
1264 Remove VI if it is no longer needed. */
1265 void
1266 vinsn_detach (vinsn_t vi)
1267 {
1268 gcc_assert (VINSN_COUNT (vi) > 0);
1269
1270 if (--VINSN_COUNT (vi) == 0)
1271 vinsn_delete (vi);
1272 }
1273
1274 /* Returns TRUE if VI is a branch. */
1275 bool
1276 vinsn_cond_branch_p (vinsn_t vi)
1277 {
1278 insn_t insn;
1279
1280 if (!VINSN_UNIQUE_P (vi))
1281 return false;
1282
1283 insn = VINSN_INSN_RTX (vi);
1284 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1285 return false;
1286
1287 return control_flow_insn_p (insn);
1288 }
1289
1290 /* Return latency of INSN. */
1291 static int
1292 sel_insn_rtx_cost (rtx insn)
1293 {
1294 int cost;
1295
1296 /* A USE insn, or something else we don't need to
1297 understand. We can't pass these directly to
1298 result_ready_cost or insn_default_latency because it will
1299 trigger a fatal error for unrecognizable insns. */
1300 if (recog_memoized (insn) < 0)
1301 cost = 0;
1302 else
1303 {
1304 cost = insn_default_latency (insn);
1305
1306 if (cost < 0)
1307 cost = 0;
1308 }
1309
1310 return cost;
1311 }
1312
1313 /* Return the cost of the VI.
1314 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1315 int
1316 sel_vinsn_cost (vinsn_t vi)
1317 {
1318 int cost = vi->cost;
1319
1320 if (cost < 0)
1321 {
1322 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1323 vi->cost = cost;
1324 }
1325
1326 return cost;
1327 }
1328 \f
1329
1330 /* Functions for insn emitting. */
1331
1332 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1333 EXPR and SEQNO. */
1334 insn_t
1335 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1336 {
1337 insn_t new_insn;
1338
1339 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1340
1341 new_insn = emit_insn_after (pattern, after);
1342 set_insn_init (expr, NULL, seqno);
1343 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1344
1345 return new_insn;
1346 }
1347
1348 /* Force newly generated vinsns to be unique. */
1349 static bool init_insn_force_unique_p = false;
1350
1351 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1352 initialize its data from EXPR and SEQNO. */
1353 insn_t
1354 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1355 insn_t after)
1356 {
1357 insn_t insn;
1358
1359 gcc_assert (!init_insn_force_unique_p);
1360
1361 init_insn_force_unique_p = true;
1362 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1363 CANT_MOVE (insn) = 1;
1364 init_insn_force_unique_p = false;
1365
1366 return insn;
1367 }
1368
1369 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1370 take it as a new vinsn instead of EXPR's vinsn.
1371 We simplify insns later, after scheduling region in
1372 simplify_changed_insns. */
1373 insn_t
1374 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1375 insn_t after)
1376 {
1377 expr_t emit_expr;
1378 insn_t insn;
1379 int flags;
1380
1381 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1382 seqno);
1383 insn = EXPR_INSN_RTX (emit_expr);
1384 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1385
1386 flags = INSN_INIT_TODO_SSID;
1387 if (INSN_LUID (insn) == 0)
1388 flags |= INSN_INIT_TODO_LUID;
1389 sel_init_new_insn (insn, flags);
1390
1391 return insn;
1392 }
1393
1394 /* Move insn from EXPR after AFTER. */
1395 insn_t
1396 sel_move_insn (expr_t expr, int seqno, insn_t after)
1397 {
1398 insn_t insn = EXPR_INSN_RTX (expr);
1399 basic_block bb = BLOCK_FOR_INSN (after);
1400 insn_t next = NEXT_INSN (after);
1401
1402 /* Assert that in move_op we disconnected this insn properly. */
1403 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1404 PREV_INSN (insn) = after;
1405 NEXT_INSN (insn) = next;
1406
1407 NEXT_INSN (after) = insn;
1408 PREV_INSN (next) = insn;
1409
1410 /* Update links from insn to bb and vice versa. */
1411 df_insn_change_bb (insn, bb);
1412 if (BB_END (bb) == after)
1413 BB_END (bb) = insn;
1414
1415 prepare_insn_expr (insn, seqno);
1416 return insn;
1417 }
1418
1419 \f
1420 /* Functions to work with right-hand sides. */
1421
1422 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1423 VECT and return true when found. Use NEW_VINSN for comparison only when
1424 COMPARE_VINSNS is true. Write to INDP the index on which
1425 the search has stopped, such that inserting the new element at INDP will
1426 retain VECT's sort order. */
1427 static bool
1428 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1429 unsigned uid, vinsn_t new_vinsn,
1430 bool compare_vinsns, int *indp)
1431 {
1432 expr_history_def *arr;
1433 int i, j, len = VEC_length (expr_history_def, vect);
1434
1435 if (len == 0)
1436 {
1437 *indp = 0;
1438 return false;
1439 }
1440
1441 arr = VEC_address (expr_history_def, vect);
1442 i = 0, j = len - 1;
1443
1444 while (i <= j)
1445 {
1446 unsigned auid = arr[i].uid;
1447 vinsn_t avinsn = arr[i].new_expr_vinsn;
1448
1449 if (auid == uid
1450 /* When undoing transformation on a bookkeeping copy, the new vinsn
1451 may not be exactly equal to the one that is saved in the vector.
1452 This is because the insn whose copy we're checking was possibly
1453 substituted itself. */
1454 && (! compare_vinsns
1455 || vinsn_equal_p (avinsn, new_vinsn)))
1456 {
1457 *indp = i;
1458 return true;
1459 }
1460 else if (auid > uid)
1461 break;
1462 i++;
1463 }
1464
1465 *indp = i;
1466 return false;
1467 }
1468
1469 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1470 the position found or -1, if no such value is in vector.
1471 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1472 int
1473 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1474 vinsn_t new_vinsn, bool originators_p)
1475 {
1476 int ind;
1477
1478 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1479 false, &ind))
1480 return ind;
1481
1482 if (INSN_ORIGINATORS (insn) && originators_p)
1483 {
1484 unsigned uid;
1485 bitmap_iterator bi;
1486
1487 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1488 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1489 return ind;
1490 }
1491
1492 return -1;
1493 }
1494
1495 /* Insert new element in a sorted history vector pointed to by PVECT,
1496 if it is not there already. The element is searched using
1497 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1498 the history of a transformation. */
1499 void
1500 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1501 unsigned uid, enum local_trans_type type,
1502 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1503 ds_t spec_ds)
1504 {
1505 VEC(expr_history_def, heap) *vect = *pvect;
1506 expr_history_def temp;
1507 bool res;
1508 int ind;
1509
1510 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1511
1512 if (res)
1513 {
1514 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1515
1516 /* It is possible that speculation types of expressions that were
1517 propagated through different paths will be different here. In this
1518 case, merge the status to get the correct check later. */
1519 if (phist->spec_ds != spec_ds)
1520 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1521 return;
1522 }
1523
1524 temp.uid = uid;
1525 temp.old_expr_vinsn = old_expr_vinsn;
1526 temp.new_expr_vinsn = new_expr_vinsn;
1527 temp.spec_ds = spec_ds;
1528 temp.type = type;
1529
1530 vinsn_attach (old_expr_vinsn);
1531 vinsn_attach (new_expr_vinsn);
1532 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1533 *pvect = vect;
1534 }
1535
1536 /* Free history vector PVECT. */
1537 static void
1538 free_history_vect (VEC (expr_history_def, heap) **pvect)
1539 {
1540 unsigned i;
1541 expr_history_def *phist;
1542
1543 if (! *pvect)
1544 return;
1545
1546 for (i = 0;
1547 VEC_iterate (expr_history_def, *pvect, i, phist);
1548 i++)
1549 {
1550 vinsn_detach (phist->old_expr_vinsn);
1551 vinsn_detach (phist->new_expr_vinsn);
1552 }
1553
1554 VEC_free (expr_history_def, heap, *pvect);
1555 *pvect = NULL;
1556 }
1557
1558
1559 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1560 bool
1561 vinsn_equal_p (vinsn_t x, vinsn_t y)
1562 {
1563 rtx_equal_p_callback_function repcf;
1564
1565 if (x == y)
1566 return true;
1567
1568 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1569 return false;
1570
1571 if (VINSN_HASH (x) != VINSN_HASH (y))
1572 return false;
1573
1574 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1575 if (VINSN_SEPARABLE_P (x))
1576 {
1577 /* Compare RHSes of VINSNs. */
1578 gcc_assert (VINSN_RHS (x));
1579 gcc_assert (VINSN_RHS (y));
1580
1581 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1582 }
1583
1584 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1585 }
1586 \f
1587
1588 /* Functions for working with expressions. */
1589
1590 /* Initialize EXPR. */
1591 static void
1592 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1593 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1594 ds_t spec_to_check_ds, int orig_sched_cycle,
1595 VEC(expr_history_def, heap) *history, bool target_available,
1596 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1597 bool cant_move)
1598 {
1599 vinsn_attach (vi);
1600
1601 EXPR_VINSN (expr) = vi;
1602 EXPR_SPEC (expr) = spec;
1603 EXPR_USEFULNESS (expr) = use;
1604 EXPR_PRIORITY (expr) = priority;
1605 EXPR_PRIORITY_ADJ (expr) = 0;
1606 EXPR_SCHED_TIMES (expr) = sched_times;
1607 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1608 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1609 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1610 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1611
1612 if (history)
1613 EXPR_HISTORY_OF_CHANGES (expr) = history;
1614 else
1615 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1616
1617 EXPR_TARGET_AVAILABLE (expr) = target_available;
1618 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1619 EXPR_WAS_RENAMED (expr) = was_renamed;
1620 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1621 EXPR_CANT_MOVE (expr) = cant_move;
1622 }
1623
1624 /* Make a copy of the expr FROM into the expr TO. */
1625 void
1626 copy_expr (expr_t to, expr_t from)
1627 {
1628 VEC(expr_history_def, heap) *temp = NULL;
1629
1630 if (EXPR_HISTORY_OF_CHANGES (from))
1631 {
1632 unsigned i;
1633 expr_history_def *phist;
1634
1635 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1636 for (i = 0;
1637 VEC_iterate (expr_history_def, temp, i, phist);
1638 i++)
1639 {
1640 vinsn_attach (phist->old_expr_vinsn);
1641 vinsn_attach (phist->new_expr_vinsn);
1642 }
1643 }
1644
1645 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1646 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1647 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1648 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1649 EXPR_ORIG_SCHED_CYCLE (from), temp,
1650 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1651 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1652 EXPR_CANT_MOVE (from));
1653 }
1654
1655 /* Same, but the final expr will not ever be in av sets, so don't copy
1656 "uninteresting" data such as bitmap cache. */
1657 void
1658 copy_expr_onside (expr_t to, expr_t from)
1659 {
1660 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1661 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1662 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1663 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1664 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1665 EXPR_CANT_MOVE (from));
1666 }
1667
1668 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1669 initializing new insns. */
1670 static void
1671 prepare_insn_expr (insn_t insn, int seqno)
1672 {
1673 expr_t expr = INSN_EXPR (insn);
1674 ds_t ds;
1675
1676 INSN_SEQNO (insn) = seqno;
1677 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1678 EXPR_SPEC (expr) = 0;
1679 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1680 EXPR_WAS_SUBSTITUTED (expr) = 0;
1681 EXPR_WAS_RENAMED (expr) = 0;
1682 EXPR_TARGET_AVAILABLE (expr) = 1;
1683 INSN_LIVE_VALID_P (insn) = false;
1684
1685 /* ??? If this expression is speculative, make its dependence
1686 as weak as possible. We can filter this expression later
1687 in process_spec_exprs, because we do not distinguish
1688 between the status we got during compute_av_set and the
1689 existing status. To be fixed. */
1690 ds = EXPR_SPEC_DONE_DS (expr);
1691 if (ds)
1692 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1693
1694 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1695 }
1696
1697 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1698 is non-null when expressions are merged from different successors at
1699 a split point. */
1700 static void
1701 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1702 {
1703 if (EXPR_TARGET_AVAILABLE (to) < 0
1704 || EXPR_TARGET_AVAILABLE (from) < 0)
1705 EXPR_TARGET_AVAILABLE (to) = -1;
1706 else
1707 {
1708 /* We try to detect the case when one of the expressions
1709 can only be reached through another one. In this case,
1710 we can do better. */
1711 if (split_point == NULL)
1712 {
1713 int toind, fromind;
1714
1715 toind = EXPR_ORIG_BB_INDEX (to);
1716 fromind = EXPR_ORIG_BB_INDEX (from);
1717
1718 if (toind && toind == fromind)
1719 /* Do nothing -- everything is done in
1720 merge_with_other_exprs. */
1721 ;
1722 else
1723 EXPR_TARGET_AVAILABLE (to) = -1;
1724 }
1725 else
1726 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1727 }
1728 }
1729
1730 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1731 is non-null when expressions are merged from different successors at
1732 a split point. */
1733 static void
1734 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1735 {
1736 ds_t old_to_ds, old_from_ds;
1737
1738 old_to_ds = EXPR_SPEC_DONE_DS (to);
1739 old_from_ds = EXPR_SPEC_DONE_DS (from);
1740
1741 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1742 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1743 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1744
1745 /* When merging e.g. control & data speculative exprs, or a control
1746 speculative with a control&data speculative one, we really have
1747 to change vinsn too. Also, when speculative status is changed,
1748 we also need to record this as a transformation in expr's history. */
1749 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1750 {
1751 old_to_ds = ds_get_speculation_types (old_to_ds);
1752 old_from_ds = ds_get_speculation_types (old_from_ds);
1753
1754 if (old_to_ds != old_from_ds)
1755 {
1756 ds_t record_ds;
1757
1758 /* When both expressions are speculative, we need to change
1759 the vinsn first. */
1760 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1761 {
1762 int res;
1763
1764 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1765 gcc_assert (res >= 0);
1766 }
1767
1768 if (split_point != NULL)
1769 {
1770 /* Record the change with proper status. */
1771 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1772 record_ds &= ~(old_to_ds & SPECULATIVE);
1773 record_ds &= ~(old_from_ds & SPECULATIVE);
1774
1775 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1776 INSN_UID (split_point), TRANS_SPECULATION,
1777 EXPR_VINSN (from), EXPR_VINSN (to),
1778 record_ds);
1779 }
1780 }
1781 }
1782 }
1783
1784
1785 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1786 this is done along different paths. */
1787 void
1788 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1789 {
1790 int i;
1791 expr_history_def *phist;
1792
1793 /* For now, we just set the spec of resulting expr to be minimum of the specs
1794 of merged exprs. */
1795 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1796 EXPR_SPEC (to) = EXPR_SPEC (from);
1797
1798 if (split_point)
1799 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1800 else
1801 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1802 EXPR_USEFULNESS (from));
1803
1804 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1805 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1806
1807 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1808 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1809
1810 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1811 EXPR_ORIG_BB_INDEX (to) = 0;
1812
1813 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1814 EXPR_ORIG_SCHED_CYCLE (from));
1815
1816 /* We keep this vector sorted. */
1817 for (i = 0;
1818 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1819 i, phist);
1820 i++)
1821 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1822 phist->uid, phist->type,
1823 phist->old_expr_vinsn, phist->new_expr_vinsn,
1824 phist->spec_ds);
1825
1826 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1827 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1828 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1829
1830 update_target_availability (to, from, split_point);
1831 update_speculative_bits (to, from, split_point);
1832 }
1833
1834 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1835 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1836 are merged from different successors at a split point. */
1837 void
1838 merge_expr (expr_t to, expr_t from, insn_t split_point)
1839 {
1840 vinsn_t to_vi = EXPR_VINSN (to);
1841 vinsn_t from_vi = EXPR_VINSN (from);
1842
1843 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1844
1845 /* Make sure that speculative pattern is propagated into exprs that
1846 have non-speculative one. This will provide us with consistent
1847 speculative bits and speculative patterns inside expr. */
1848 if (EXPR_SPEC_DONE_DS (to) == 0
1849 && EXPR_SPEC_DONE_DS (from) != 0)
1850 change_vinsn_in_expr (to, EXPR_VINSN (from));
1851
1852 merge_expr_data (to, from, split_point);
1853 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1854 }
1855
1856 /* Clear the information of this EXPR. */
1857 void
1858 clear_expr (expr_t expr)
1859 {
1860
1861 vinsn_detach (EXPR_VINSN (expr));
1862 EXPR_VINSN (expr) = NULL;
1863
1864 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1865 }
1866
1867 /* For a given LV_SET, mark EXPR having unavailable target register. */
1868 static void
1869 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1870 {
1871 if (EXPR_SEPARABLE_P (expr))
1872 {
1873 if (REG_P (EXPR_LHS (expr))
1874 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1875 {
1876 /* If it's an insn like r1 = use (r1, ...), and it exists in
1877 different forms in each of the av_sets being merged, we can't say
1878 whether original destination register is available or not.
1879 However, this still works if destination register is not used
1880 in the original expression: if the branch at which LV_SET we're
1881 looking here is not actually 'other branch' in sense that same
1882 expression is available through it (but it can't be determined
1883 at computation stage because of transformations on one of the
1884 branches), it still won't affect the availability.
1885 Liveness of a register somewhere on a code motion path means
1886 it's either read somewhere on a codemotion path, live on
1887 'other' branch, live at the point immediately following
1888 the original operation, or is read by the original operation.
1889 The latter case is filtered out in the condition below.
1890 It still doesn't cover the case when register is defined and used
1891 somewhere within the code motion path, and in this case we could
1892 miss a unifying code motion along both branches using a renamed
1893 register, but it won't affect a code correctness since upon
1894 an actual code motion a bookkeeping code would be generated. */
1895 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1896 REGNO (EXPR_LHS (expr))))
1897 EXPR_TARGET_AVAILABLE (expr) = -1;
1898 else
1899 EXPR_TARGET_AVAILABLE (expr) = false;
1900 }
1901 }
1902 else
1903 {
1904 unsigned regno;
1905 reg_set_iterator rsi;
1906
1907 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1908 0, regno, rsi)
1909 if (bitmap_bit_p (lv_set, regno))
1910 {
1911 EXPR_TARGET_AVAILABLE (expr) = false;
1912 break;
1913 }
1914
1915 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1916 0, regno, rsi)
1917 if (bitmap_bit_p (lv_set, regno))
1918 {
1919 EXPR_TARGET_AVAILABLE (expr) = false;
1920 break;
1921 }
1922 }
1923 }
1924
1925 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1926 or dependence status have changed, 2 when also the target register
1927 became unavailable, 0 if nothing had to be changed. */
1928 int
1929 speculate_expr (expr_t expr, ds_t ds)
1930 {
1931 int res;
1932 rtx orig_insn_rtx;
1933 rtx spec_pat;
1934 ds_t target_ds, current_ds;
1935
1936 /* Obtain the status we need to put on EXPR. */
1937 target_ds = (ds & SPECULATIVE);
1938 current_ds = EXPR_SPEC_DONE_DS (expr);
1939 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1940
1941 orig_insn_rtx = EXPR_INSN_RTX (expr);
1942
1943 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1944
1945 switch (res)
1946 {
1947 case 0:
1948 EXPR_SPEC_DONE_DS (expr) = ds;
1949 return current_ds != ds ? 1 : 0;
1950
1951 case 1:
1952 {
1953 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1954 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1955
1956 change_vinsn_in_expr (expr, spec_vinsn);
1957 EXPR_SPEC_DONE_DS (expr) = ds;
1958 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1959
1960 /* Do not allow clobbering the address register of speculative
1961 insns. */
1962 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1963 expr_dest_regno (expr)))
1964 {
1965 EXPR_TARGET_AVAILABLE (expr) = false;
1966 return 2;
1967 }
1968
1969 return 1;
1970 }
1971
1972 case -1:
1973 return -1;
1974
1975 default:
1976 gcc_unreachable ();
1977 return -1;
1978 }
1979 }
1980
1981 /* Return a destination register, if any, of EXPR. */
1982 rtx
1983 expr_dest_reg (expr_t expr)
1984 {
1985 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1986
1987 if (dest != NULL_RTX && REG_P (dest))
1988 return dest;
1989
1990 return NULL_RTX;
1991 }
1992
1993 /* Returns the REGNO of the R's destination. */
1994 unsigned
1995 expr_dest_regno (expr_t expr)
1996 {
1997 rtx dest = expr_dest_reg (expr);
1998
1999 gcc_assert (dest != NULL_RTX);
2000 return REGNO (dest);
2001 }
2002
2003 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
2004 AV_SET having unavailable target register. */
2005 void
2006 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2007 {
2008 expr_t expr;
2009 av_set_iterator avi;
2010
2011 FOR_EACH_EXPR (expr, avi, join_set)
2012 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2013 set_unavailable_target_for_expr (expr, lv_set);
2014 }
2015 \f
2016
2017 /* Av set functions. */
2018
2019 /* Add a new element to av set SETP.
2020 Return the element added. */
2021 static av_set_t
2022 av_set_add_element (av_set_t *setp)
2023 {
2024 /* Insert at the beginning of the list. */
2025 _list_add (setp);
2026 return *setp;
2027 }
2028
2029 /* Add EXPR to SETP. */
2030 void
2031 av_set_add (av_set_t *setp, expr_t expr)
2032 {
2033 av_set_t elem;
2034
2035 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2036 elem = av_set_add_element (setp);
2037 copy_expr (_AV_SET_EXPR (elem), expr);
2038 }
2039
2040 /* Same, but do not copy EXPR. */
2041 static void
2042 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2043 {
2044 av_set_t elem;
2045
2046 elem = av_set_add_element (setp);
2047 *_AV_SET_EXPR (elem) = *expr;
2048 }
2049
2050 /* Remove expr pointed to by IP from the av_set. */
2051 void
2052 av_set_iter_remove (av_set_iterator *ip)
2053 {
2054 clear_expr (_AV_SET_EXPR (*ip->lp));
2055 _list_iter_remove (ip);
2056 }
2057
2058 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2059 sense of vinsn_equal_p function. Return NULL if no such expr is
2060 in SET was found. */
2061 expr_t
2062 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2063 {
2064 expr_t expr;
2065 av_set_iterator i;
2066
2067 FOR_EACH_EXPR (expr, i, set)
2068 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2069 return expr;
2070 return NULL;
2071 }
2072
2073 /* Same, but also remove the EXPR found. */
2074 static expr_t
2075 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2076 {
2077 expr_t expr;
2078 av_set_iterator i;
2079
2080 FOR_EACH_EXPR_1 (expr, i, setp)
2081 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2082 {
2083 _list_iter_remove_nofree (&i);
2084 return expr;
2085 }
2086 return NULL;
2087 }
2088
2089 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2090 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2091 Returns NULL if no such expr is in SET was found. */
2092 static expr_t
2093 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2094 {
2095 expr_t cur_expr;
2096 av_set_iterator i;
2097
2098 FOR_EACH_EXPR (cur_expr, i, set)
2099 {
2100 if (cur_expr == expr)
2101 continue;
2102 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2103 return cur_expr;
2104 }
2105
2106 return NULL;
2107 }
2108
2109 /* If other expression is already in AVP, remove one of them. */
2110 expr_t
2111 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2112 {
2113 expr_t expr2;
2114
2115 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2116 if (expr2 != NULL)
2117 {
2118 /* Reset target availability on merge, since taking it only from one
2119 of the exprs would be controversial for different code. */
2120 EXPR_TARGET_AVAILABLE (expr2) = -1;
2121 EXPR_USEFULNESS (expr2) = 0;
2122
2123 merge_expr (expr2, expr, NULL);
2124
2125 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2126 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2127
2128 av_set_iter_remove (ip);
2129 return expr2;
2130 }
2131
2132 return expr;
2133 }
2134
2135 /* Return true if there is an expr that correlates to VI in SET. */
2136 bool
2137 av_set_is_in_p (av_set_t set, vinsn_t vi)
2138 {
2139 return av_set_lookup (set, vi) != NULL;
2140 }
2141
2142 /* Return a copy of SET. */
2143 av_set_t
2144 av_set_copy (av_set_t set)
2145 {
2146 expr_t expr;
2147 av_set_iterator i;
2148 av_set_t res = NULL;
2149
2150 FOR_EACH_EXPR (expr, i, set)
2151 av_set_add (&res, expr);
2152
2153 return res;
2154 }
2155
2156 /* Join two av sets that do not have common elements by attaching second set
2157 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2158 _AV_SET_NEXT of first set's last element). */
2159 static void
2160 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2161 {
2162 gcc_assert (*to_tailp == NULL);
2163 *to_tailp = *fromp;
2164 *fromp = NULL;
2165 }
2166
2167 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2168 pointed to by FROMP afterwards. */
2169 void
2170 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2171 {
2172 expr_t expr1;
2173 av_set_iterator i;
2174
2175 /* Delete from TOP all exprs, that present in FROMP. */
2176 FOR_EACH_EXPR_1 (expr1, i, top)
2177 {
2178 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2179
2180 if (expr2)
2181 {
2182 merge_expr (expr2, expr1, insn);
2183 av_set_iter_remove (&i);
2184 }
2185 }
2186
2187 join_distinct_sets (i.lp, fromp);
2188 }
2189
2190 /* Same as above, but also update availability of target register in
2191 TOP judging by TO_LV_SET and FROM_LV_SET. */
2192 void
2193 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2194 regset from_lv_set, insn_t insn)
2195 {
2196 expr_t expr1;
2197 av_set_iterator i;
2198 av_set_t *to_tailp, in_both_set = NULL;
2199
2200 /* Delete from TOP all expres, that present in FROMP. */
2201 FOR_EACH_EXPR_1 (expr1, i, top)
2202 {
2203 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2204
2205 if (expr2)
2206 {
2207 /* It may be that the expressions have different destination
2208 registers, in which case we need to check liveness here. */
2209 if (EXPR_SEPARABLE_P (expr1))
2210 {
2211 int regno1 = (REG_P (EXPR_LHS (expr1))
2212 ? (int) expr_dest_regno (expr1) : -1);
2213 int regno2 = (REG_P (EXPR_LHS (expr2))
2214 ? (int) expr_dest_regno (expr2) : -1);
2215
2216 /* ??? We don't have a way to check restrictions for
2217 *other* register on the current path, we did it only
2218 for the current target register. Give up. */
2219 if (regno1 != regno2)
2220 EXPR_TARGET_AVAILABLE (expr2) = -1;
2221 }
2222 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2223 EXPR_TARGET_AVAILABLE (expr2) = -1;
2224
2225 merge_expr (expr2, expr1, insn);
2226 av_set_add_nocopy (&in_both_set, expr2);
2227 av_set_iter_remove (&i);
2228 }
2229 else
2230 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2231 FROM_LV_SET. */
2232 set_unavailable_target_for_expr (expr1, from_lv_set);
2233 }
2234 to_tailp = i.lp;
2235
2236 /* These expressions are not present in TOP. Check liveness
2237 restrictions on TO_LV_SET. */
2238 FOR_EACH_EXPR (expr1, i, *fromp)
2239 set_unavailable_target_for_expr (expr1, to_lv_set);
2240
2241 join_distinct_sets (i.lp, &in_both_set);
2242 join_distinct_sets (to_tailp, fromp);
2243 }
2244
2245 /* Clear av_set pointed to by SETP. */
2246 void
2247 av_set_clear (av_set_t *setp)
2248 {
2249 expr_t expr;
2250 av_set_iterator i;
2251
2252 FOR_EACH_EXPR_1 (expr, i, setp)
2253 av_set_iter_remove (&i);
2254
2255 gcc_assert (*setp == NULL);
2256 }
2257
2258 /* Leave only one non-speculative element in the SETP. */
2259 void
2260 av_set_leave_one_nonspec (av_set_t *setp)
2261 {
2262 expr_t expr;
2263 av_set_iterator i;
2264 bool has_one_nonspec = false;
2265
2266 /* Keep all speculative exprs, and leave one non-speculative
2267 (the first one). */
2268 FOR_EACH_EXPR_1 (expr, i, setp)
2269 {
2270 if (!EXPR_SPEC_DONE_DS (expr))
2271 {
2272 if (has_one_nonspec)
2273 av_set_iter_remove (&i);
2274 else
2275 has_one_nonspec = true;
2276 }
2277 }
2278 }
2279
2280 /* Return the N'th element of the SET. */
2281 expr_t
2282 av_set_element (av_set_t set, int n)
2283 {
2284 expr_t expr;
2285 av_set_iterator i;
2286
2287 FOR_EACH_EXPR (expr, i, set)
2288 if (n-- == 0)
2289 return expr;
2290
2291 gcc_unreachable ();
2292 return NULL;
2293 }
2294
2295 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2296 void
2297 av_set_substract_cond_branches (av_set_t *avp)
2298 {
2299 av_set_iterator i;
2300 expr_t expr;
2301
2302 FOR_EACH_EXPR_1 (expr, i, avp)
2303 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2304 av_set_iter_remove (&i);
2305 }
2306
2307 /* Multiplies usefulness attribute of each member of av-set *AVP by
2308 value PROB / ALL_PROB. */
2309 void
2310 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2311 {
2312 av_set_iterator i;
2313 expr_t expr;
2314
2315 FOR_EACH_EXPR (expr, i, av)
2316 EXPR_USEFULNESS (expr) = (all_prob
2317 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2318 : 0);
2319 }
2320
2321 /* Leave in AVP only those expressions, which are present in AV,
2322 and return it. */
2323 void
2324 av_set_intersect (av_set_t *avp, av_set_t av)
2325 {
2326 av_set_iterator i;
2327 expr_t expr;
2328
2329 FOR_EACH_EXPR_1 (expr, i, avp)
2330 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2331 av_set_iter_remove (&i);
2332 }
2333
2334 \f
2335
2336 /* Dependence hooks to initialize insn data. */
2337
2338 /* This is used in hooks callable from dependence analysis when initializing
2339 instruction's data. */
2340 static struct
2341 {
2342 /* Where the dependence was found (lhs/rhs). */
2343 deps_where_t where;
2344
2345 /* The actual data object to initialize. */
2346 idata_t id;
2347
2348 /* True when the insn should not be made clonable. */
2349 bool force_unique_p;
2350
2351 /* True when insn should be treated as of type USE, i.e. never renamed. */
2352 bool force_use_p;
2353 } deps_init_id_data;
2354
2355
2356 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2357 clonable. */
2358 static void
2359 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2360 {
2361 int type;
2362
2363 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2364 That clonable insns which can be separated into lhs and rhs have type SET.
2365 Other clonable insns have type USE. */
2366 type = GET_CODE (insn);
2367
2368 /* Only regular insns could be cloned. */
2369 if (type == INSN && !force_unique_p)
2370 type = SET;
2371 else if (type == JUMP_INSN && simplejump_p (insn))
2372 type = PC;
2373 else if (type == DEBUG_INSN)
2374 type = !force_unique_p ? USE : INSN;
2375
2376 IDATA_TYPE (id) = type;
2377 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2378 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2379 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2380 }
2381
2382 /* Start initializing insn data. */
2383 static void
2384 deps_init_id_start_insn (insn_t insn)
2385 {
2386 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2387
2388 setup_id_for_insn (deps_init_id_data.id, insn,
2389 deps_init_id_data.force_unique_p);
2390 deps_init_id_data.where = DEPS_IN_INSN;
2391 }
2392
2393 /* Start initializing lhs data. */
2394 static void
2395 deps_init_id_start_lhs (rtx lhs)
2396 {
2397 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2398 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2399
2400 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2401 {
2402 IDATA_LHS (deps_init_id_data.id) = lhs;
2403 deps_init_id_data.where = DEPS_IN_LHS;
2404 }
2405 }
2406
2407 /* Finish initializing lhs data. */
2408 static void
2409 deps_init_id_finish_lhs (void)
2410 {
2411 deps_init_id_data.where = DEPS_IN_INSN;
2412 }
2413
2414 /* Note a set of REGNO. */
2415 static void
2416 deps_init_id_note_reg_set (int regno)
2417 {
2418 haifa_note_reg_set (regno);
2419
2420 if (deps_init_id_data.where == DEPS_IN_RHS)
2421 deps_init_id_data.force_use_p = true;
2422
2423 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2424 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2425
2426 #ifdef STACK_REGS
2427 /* Make instructions that set stack registers to be ineligible for
2428 renaming to avoid issues with find_used_regs. */
2429 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2430 deps_init_id_data.force_use_p = true;
2431 #endif
2432 }
2433
2434 /* Note a clobber of REGNO. */
2435 static void
2436 deps_init_id_note_reg_clobber (int regno)
2437 {
2438 haifa_note_reg_clobber (regno);
2439
2440 if (deps_init_id_data.where == DEPS_IN_RHS)
2441 deps_init_id_data.force_use_p = true;
2442
2443 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2444 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2445 }
2446
2447 /* Note a use of REGNO. */
2448 static void
2449 deps_init_id_note_reg_use (int regno)
2450 {
2451 haifa_note_reg_use (regno);
2452
2453 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2454 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2455 }
2456
2457 /* Start initializing rhs data. */
2458 static void
2459 deps_init_id_start_rhs (rtx rhs)
2460 {
2461 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2462
2463 /* And there was no sel_deps_reset_to_insn (). */
2464 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2465 {
2466 IDATA_RHS (deps_init_id_data.id) = rhs;
2467 deps_init_id_data.where = DEPS_IN_RHS;
2468 }
2469 }
2470
2471 /* Finish initializing rhs data. */
2472 static void
2473 deps_init_id_finish_rhs (void)
2474 {
2475 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2476 || deps_init_id_data.where == DEPS_IN_INSN);
2477 deps_init_id_data.where = DEPS_IN_INSN;
2478 }
2479
2480 /* Finish initializing insn data. */
2481 static void
2482 deps_init_id_finish_insn (void)
2483 {
2484 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2485
2486 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2487 {
2488 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2489 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2490
2491 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2492 || deps_init_id_data.force_use_p)
2493 {
2494 /* This should be a USE, as we don't want to schedule its RHS
2495 separately. However, we still want to have them recorded
2496 for the purposes of substitution. That's why we don't
2497 simply call downgrade_to_use () here. */
2498 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2499 gcc_assert (!lhs == !rhs);
2500
2501 IDATA_TYPE (deps_init_id_data.id) = USE;
2502 }
2503 }
2504
2505 deps_init_id_data.where = DEPS_IN_NOWHERE;
2506 }
2507
2508 /* This is dependence info used for initializing insn's data. */
2509 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2510
2511 /* This initializes most of the static part of the above structure. */
2512 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2513 {
2514 NULL,
2515
2516 deps_init_id_start_insn,
2517 deps_init_id_finish_insn,
2518 deps_init_id_start_lhs,
2519 deps_init_id_finish_lhs,
2520 deps_init_id_start_rhs,
2521 deps_init_id_finish_rhs,
2522 deps_init_id_note_reg_set,
2523 deps_init_id_note_reg_clobber,
2524 deps_init_id_note_reg_use,
2525 NULL, /* note_mem_dep */
2526 NULL, /* note_dep */
2527
2528 0, /* use_cselib */
2529 0, /* use_deps_list */
2530 0 /* generate_spec_deps */
2531 };
2532
2533 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2534 we don't actually need information about lhs and rhs. */
2535 static void
2536 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2537 {
2538 rtx pat = PATTERN (insn);
2539
2540 if (NONJUMP_INSN_P (insn)
2541 && GET_CODE (pat) == SET
2542 && !force_unique_p)
2543 {
2544 IDATA_RHS (id) = SET_SRC (pat);
2545 IDATA_LHS (id) = SET_DEST (pat);
2546 }
2547 else
2548 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2549 }
2550
2551 /* Possibly downgrade INSN to USE. */
2552 static void
2553 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2554 {
2555 bool must_be_use = false;
2556 unsigned uid = INSN_UID (insn);
2557 df_ref *rec;
2558 rtx lhs = IDATA_LHS (id);
2559 rtx rhs = IDATA_RHS (id);
2560
2561 /* We downgrade only SETs. */
2562 if (IDATA_TYPE (id) != SET)
2563 return;
2564
2565 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2566 {
2567 IDATA_TYPE (id) = USE;
2568 return;
2569 }
2570
2571 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2572 {
2573 df_ref def = *rec;
2574
2575 if (DF_REF_INSN (def)
2576 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2577 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2578 {
2579 must_be_use = true;
2580 break;
2581 }
2582
2583 #ifdef STACK_REGS
2584 /* Make instructions that set stack registers to be ineligible for
2585 renaming to avoid issues with find_used_regs. */
2586 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2587 {
2588 must_be_use = true;
2589 break;
2590 }
2591 #endif
2592 }
2593
2594 if (must_be_use)
2595 IDATA_TYPE (id) = USE;
2596 }
2597
2598 /* Setup register sets describing INSN in ID. */
2599 static void
2600 setup_id_reg_sets (idata_t id, insn_t insn)
2601 {
2602 unsigned uid = INSN_UID (insn);
2603 df_ref *rec;
2604 regset tmp = get_clear_regset_from_pool ();
2605
2606 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2607 {
2608 df_ref def = *rec;
2609 unsigned int regno = DF_REF_REGNO (def);
2610
2611 /* Post modifies are treated like clobbers by sched-deps.c. */
2612 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2613 | DF_REF_PRE_POST_MODIFY)))
2614 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2615 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2616 {
2617 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2618
2619 #ifdef STACK_REGS
2620 /* For stack registers, treat writes to them as writes
2621 to the first one to be consistent with sched-deps.c. */
2622 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2623 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2624 #endif
2625 }
2626 /* Mark special refs that generate read/write def pair. */
2627 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2628 || regno == STACK_POINTER_REGNUM)
2629 bitmap_set_bit (tmp, regno);
2630 }
2631
2632 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2633 {
2634 df_ref use = *rec;
2635 unsigned int regno = DF_REF_REGNO (use);
2636
2637 /* When these refs are met for the first time, skip them, as
2638 these uses are just counterparts of some defs. */
2639 if (bitmap_bit_p (tmp, regno))
2640 bitmap_clear_bit (tmp, regno);
2641 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2642 {
2643 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2644
2645 #ifdef STACK_REGS
2646 /* For stack registers, treat reads from them as reads from
2647 the first one to be consistent with sched-deps.c. */
2648 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2649 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2650 #endif
2651 }
2652 }
2653
2654 return_regset_to_pool (tmp);
2655 }
2656
2657 /* Initialize instruction data for INSN in ID using DF's data. */
2658 static void
2659 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2660 {
2661 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2662
2663 setup_id_for_insn (id, insn, force_unique_p);
2664 setup_id_lhs_rhs (id, insn, force_unique_p);
2665
2666 if (INSN_NOP_P (insn))
2667 return;
2668
2669 maybe_downgrade_id_to_use (id, insn);
2670 setup_id_reg_sets (id, insn);
2671 }
2672
2673 /* Initialize instruction data for INSN in ID. */
2674 static void
2675 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2676 {
2677 struct deps_desc _dc, *dc = &_dc;
2678
2679 deps_init_id_data.where = DEPS_IN_NOWHERE;
2680 deps_init_id_data.id = id;
2681 deps_init_id_data.force_unique_p = force_unique_p;
2682 deps_init_id_data.force_use_p = false;
2683
2684 init_deps (dc, false);
2685
2686 memcpy (&deps_init_id_sched_deps_info,
2687 &const_deps_init_id_sched_deps_info,
2688 sizeof (deps_init_id_sched_deps_info));
2689
2690 if (spec_info != NULL)
2691 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2692
2693 sched_deps_info = &deps_init_id_sched_deps_info;
2694
2695 deps_analyze_insn (dc, insn);
2696
2697 free_deps (dc);
2698
2699 deps_init_id_data.id = NULL;
2700 }
2701
2702 \f
2703
2704 /* Implement hooks for collecting fundamental insn properties like if insn is
2705 an ASM or is within a SCHED_GROUP. */
2706
2707 /* True when a "one-time init" data for INSN was already inited. */
2708 static bool
2709 first_time_insn_init (insn_t insn)
2710 {
2711 return INSN_LIVE (insn) == NULL;
2712 }
2713
2714 /* Hash an entry in a transformed_insns hashtable. */
2715 static hashval_t
2716 hash_transformed_insns (const void *p)
2717 {
2718 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 }
2720
2721 /* Compare the entries in a transformed_insns hashtable. */
2722 static int
2723 eq_transformed_insns (const void *p, const void *q)
2724 {
2725 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2726 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2727
2728 if (INSN_UID (i1) == INSN_UID (i2))
2729 return 1;
2730 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2731 }
2732
2733 /* Free an entry in a transformed_insns hashtable. */
2734 static void
2735 free_transformed_insns (void *p)
2736 {
2737 struct transformed_insns *pti = (struct transformed_insns *) p;
2738
2739 vinsn_detach (pti->vinsn_old);
2740 vinsn_detach (pti->vinsn_new);
2741 free (pti);
2742 }
2743
2744 /* Init the s_i_d data for INSN which should be inited just once, when
2745 we first see the insn. */
2746 static void
2747 init_first_time_insn_data (insn_t insn)
2748 {
2749 /* This should not be set if this is the first time we init data for
2750 insn. */
2751 gcc_assert (first_time_insn_init (insn));
2752
2753 /* These are needed for nops too. */
2754 INSN_LIVE (insn) = get_regset_from_pool ();
2755 INSN_LIVE_VALID_P (insn) = false;
2756
2757 if (!INSN_NOP_P (insn))
2758 {
2759 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2760 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2761 INSN_TRANSFORMED_INSNS (insn)
2762 = htab_create (16, hash_transformed_insns,
2763 eq_transformed_insns, free_transformed_insns);
2764 init_deps (&INSN_DEPS_CONTEXT (insn), true);
2765 }
2766 }
2767
2768 /* Free almost all above data for INSN that is scheduled already.
2769 Used for extra-large basic blocks. */
2770 void
2771 free_data_for_scheduled_insn (insn_t insn)
2772 {
2773 gcc_assert (! first_time_insn_init (insn));
2774
2775 if (! INSN_ANALYZED_DEPS (insn))
2776 return;
2777
2778 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2779 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2780 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2781
2782 /* This is allocated only for bookkeeping insns. */
2783 if (INSN_ORIGINATORS (insn))
2784 BITMAP_FREE (INSN_ORIGINATORS (insn));
2785 free_deps (&INSN_DEPS_CONTEXT (insn));
2786
2787 INSN_ANALYZED_DEPS (insn) = NULL;
2788
2789 /* Clear the readonly flag so we would ICE when trying to recalculate
2790 the deps context (as we believe that it should not happen). */
2791 (&INSN_DEPS_CONTEXT (insn))->readonly = 0;
2792 }
2793
2794 /* Free the same data as above for INSN. */
2795 static void
2796 free_first_time_insn_data (insn_t insn)
2797 {
2798 gcc_assert (! first_time_insn_init (insn));
2799
2800 free_data_for_scheduled_insn (insn);
2801 return_regset_to_pool (INSN_LIVE (insn));
2802 INSN_LIVE (insn) = NULL;
2803 INSN_LIVE_VALID_P (insn) = false;
2804 }
2805
2806 /* Initialize region-scope data structures for basic blocks. */
2807 static void
2808 init_global_and_expr_for_bb (basic_block bb)
2809 {
2810 if (sel_bb_empty_p (bb))
2811 return;
2812
2813 invalidate_av_set (bb);
2814 }
2815
2816 /* Data for global dependency analysis (to initialize CANT_MOVE and
2817 SCHED_GROUP_P). */
2818 static struct
2819 {
2820 /* Previous insn. */
2821 insn_t prev_insn;
2822 } init_global_data;
2823
2824 /* Determine if INSN is in the sched_group, is an asm or should not be
2825 cloned. After that initialize its expr. */
2826 static void
2827 init_global_and_expr_for_insn (insn_t insn)
2828 {
2829 if (LABEL_P (insn))
2830 return;
2831
2832 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2833 {
2834 init_global_data.prev_insn = NULL_RTX;
2835 return;
2836 }
2837
2838 gcc_assert (INSN_P (insn));
2839
2840 if (SCHED_GROUP_P (insn))
2841 /* Setup a sched_group. */
2842 {
2843 insn_t prev_insn = init_global_data.prev_insn;
2844
2845 if (prev_insn)
2846 INSN_SCHED_NEXT (prev_insn) = insn;
2847
2848 init_global_data.prev_insn = insn;
2849 }
2850 else
2851 init_global_data.prev_insn = NULL_RTX;
2852
2853 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2854 || asm_noperands (PATTERN (insn)) >= 0)
2855 /* Mark INSN as an asm. */
2856 INSN_ASM_P (insn) = true;
2857
2858 {
2859 bool force_unique_p;
2860 ds_t spec_done_ds;
2861
2862 /* Certain instructions cannot be cloned. */
2863 if (CANT_MOVE (insn)
2864 || INSN_ASM_P (insn)
2865 || SCHED_GROUP_P (insn)
2866 || prologue_epilogue_contains (insn)
2867 /* Exception handling insns are always unique. */
2868 || (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
2869 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2870 || control_flow_insn_p (insn))
2871 force_unique_p = true;
2872 else
2873 force_unique_p = false;
2874
2875 if (targetm.sched.get_insn_spec_ds)
2876 {
2877 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2878 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2879 }
2880 else
2881 spec_done_ds = 0;
2882
2883 /* Initialize INSN's expr. */
2884 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2885 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2886 spec_done_ds, 0, 0, NULL, true, false, false, false,
2887 CANT_MOVE (insn));
2888 }
2889
2890 init_first_time_insn_data (insn);
2891 }
2892
2893 /* Scan the region and initialize instruction data for basic blocks BBS. */
2894 void
2895 sel_init_global_and_expr (bb_vec_t bbs)
2896 {
2897 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2898 const struct sched_scan_info_def ssi =
2899 {
2900 NULL, /* extend_bb */
2901 init_global_and_expr_for_bb, /* init_bb */
2902 extend_insn_data, /* extend_insn */
2903 init_global_and_expr_for_insn /* init_insn */
2904 };
2905
2906 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2907 }
2908
2909 /* Finalize region-scope data structures for basic blocks. */
2910 static void
2911 finish_global_and_expr_for_bb (basic_block bb)
2912 {
2913 av_set_clear (&BB_AV_SET (bb));
2914 BB_AV_LEVEL (bb) = 0;
2915 }
2916
2917 /* Finalize INSN's data. */
2918 static void
2919 finish_global_and_expr_insn (insn_t insn)
2920 {
2921 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2922 return;
2923
2924 gcc_assert (INSN_P (insn));
2925
2926 if (INSN_LUID (insn) > 0)
2927 {
2928 free_first_time_insn_data (insn);
2929 INSN_WS_LEVEL (insn) = 0;
2930 CANT_MOVE (insn) = 0;
2931
2932 /* We can no longer assert this, as vinsns of this insn could be
2933 easily live in other insn's caches. This should be changed to
2934 a counter-like approach among all vinsns. */
2935 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2936 clear_expr (INSN_EXPR (insn));
2937 }
2938 }
2939
2940 /* Finalize per instruction data for the whole region. */
2941 void
2942 sel_finish_global_and_expr (void)
2943 {
2944 {
2945 bb_vec_t bbs;
2946 int i;
2947
2948 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2949
2950 for (i = 0; i < current_nr_blocks; i++)
2951 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2952
2953 /* Clear AV_SETs and INSN_EXPRs. */
2954 {
2955 const struct sched_scan_info_def ssi =
2956 {
2957 NULL, /* extend_bb */
2958 finish_global_and_expr_for_bb, /* init_bb */
2959 NULL, /* extend_insn */
2960 finish_global_and_expr_insn /* init_insn */
2961 };
2962
2963 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2964 }
2965
2966 VEC_free (basic_block, heap, bbs);
2967 }
2968
2969 finish_insns ();
2970 }
2971 \f
2972
2973 /* In the below hooks, we merely calculate whether or not a dependence
2974 exists, and in what part of insn. However, we will need more data
2975 when we'll start caching dependence requests. */
2976
2977 /* Container to hold information for dependency analysis. */
2978 static struct
2979 {
2980 deps_t dc;
2981
2982 /* A variable to track which part of rtx we are scanning in
2983 sched-deps.c: sched_analyze_insn (). */
2984 deps_where_t where;
2985
2986 /* Current producer. */
2987 insn_t pro;
2988
2989 /* Current consumer. */
2990 vinsn_t con;
2991
2992 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2993 X is from { INSN, LHS, RHS }. */
2994 ds_t has_dep_p[DEPS_IN_NOWHERE];
2995 } has_dependence_data;
2996
2997 /* Start analyzing dependencies of INSN. */
2998 static void
2999 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
3000 {
3001 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
3002
3003 has_dependence_data.where = DEPS_IN_INSN;
3004 }
3005
3006 /* Finish analyzing dependencies of an insn. */
3007 static void
3008 has_dependence_finish_insn (void)
3009 {
3010 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3011
3012 has_dependence_data.where = DEPS_IN_NOWHERE;
3013 }
3014
3015 /* Start analyzing dependencies of LHS. */
3016 static void
3017 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
3018 {
3019 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3020
3021 if (VINSN_LHS (has_dependence_data.con) != NULL)
3022 has_dependence_data.where = DEPS_IN_LHS;
3023 }
3024
3025 /* Finish analyzing dependencies of an lhs. */
3026 static void
3027 has_dependence_finish_lhs (void)
3028 {
3029 has_dependence_data.where = DEPS_IN_INSN;
3030 }
3031
3032 /* Start analyzing dependencies of RHS. */
3033 static void
3034 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3035 {
3036 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3037
3038 if (VINSN_RHS (has_dependence_data.con) != NULL)
3039 has_dependence_data.where = DEPS_IN_RHS;
3040 }
3041
3042 /* Start analyzing dependencies of an rhs. */
3043 static void
3044 has_dependence_finish_rhs (void)
3045 {
3046 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3047 || has_dependence_data.where == DEPS_IN_INSN);
3048
3049 has_dependence_data.where = DEPS_IN_INSN;
3050 }
3051
3052 /* Note a set of REGNO. */
3053 static void
3054 has_dependence_note_reg_set (int regno)
3055 {
3056 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3057
3058 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3059 VINSN_INSN_RTX
3060 (has_dependence_data.con)))
3061 {
3062 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3063
3064 if (reg_last->sets != NULL
3065 || reg_last->clobbers != NULL)
3066 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3067
3068 if (reg_last->uses)
3069 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3070 }
3071 }
3072
3073 /* Note a clobber of REGNO. */
3074 static void
3075 has_dependence_note_reg_clobber (int regno)
3076 {
3077 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3078
3079 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3080 VINSN_INSN_RTX
3081 (has_dependence_data.con)))
3082 {
3083 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3084
3085 if (reg_last->sets)
3086 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3087
3088 if (reg_last->uses)
3089 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3090 }
3091 }
3092
3093 /* Note a use of REGNO. */
3094 static void
3095 has_dependence_note_reg_use (int regno)
3096 {
3097 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3098
3099 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3100 VINSN_INSN_RTX
3101 (has_dependence_data.con)))
3102 {
3103 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3104
3105 if (reg_last->sets)
3106 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3107
3108 if (reg_last->clobbers)
3109 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3110
3111 /* Handle BE_IN_SPEC. */
3112 if (reg_last->uses)
3113 {
3114 ds_t pro_spec_checked_ds;
3115
3116 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3117 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3118
3119 if (pro_spec_checked_ds != 0)
3120 /* Merge BE_IN_SPEC bits into *DSP. */
3121 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3122 NULL_RTX, NULL_RTX);
3123 }
3124 }
3125 }
3126
3127 /* Note a memory dependence. */
3128 static void
3129 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3130 rtx pending_mem ATTRIBUTE_UNUSED,
3131 insn_t pending_insn ATTRIBUTE_UNUSED,
3132 ds_t ds ATTRIBUTE_UNUSED)
3133 {
3134 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3135 VINSN_INSN_RTX (has_dependence_data.con)))
3136 {
3137 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3138
3139 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3140 }
3141 }
3142
3143 /* Note a dependence. */
3144 static void
3145 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3146 ds_t ds ATTRIBUTE_UNUSED)
3147 {
3148 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3149 VINSN_INSN_RTX (has_dependence_data.con)))
3150 {
3151 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3152
3153 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3154 }
3155 }
3156
3157 /* Mark the insn as having a hard dependence that prevents speculation. */
3158 void
3159 sel_mark_hard_insn (rtx insn)
3160 {
3161 int i;
3162
3163 /* Only work when we're in has_dependence_p mode.
3164 ??? This is a hack, this should actually be a hook. */
3165 if (!has_dependence_data.dc || !has_dependence_data.pro)
3166 return;
3167
3168 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3169 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3170
3171 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3172 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3173 }
3174
3175 /* This structure holds the hooks for the dependency analysis used when
3176 actually processing dependencies in the scheduler. */
3177 static struct sched_deps_info_def has_dependence_sched_deps_info;
3178
3179 /* This initializes most of the fields of the above structure. */
3180 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3181 {
3182 NULL,
3183
3184 has_dependence_start_insn,
3185 has_dependence_finish_insn,
3186 has_dependence_start_lhs,
3187 has_dependence_finish_lhs,
3188 has_dependence_start_rhs,
3189 has_dependence_finish_rhs,
3190 has_dependence_note_reg_set,
3191 has_dependence_note_reg_clobber,
3192 has_dependence_note_reg_use,
3193 has_dependence_note_mem_dep,
3194 has_dependence_note_dep,
3195
3196 0, /* use_cselib */
3197 0, /* use_deps_list */
3198 0 /* generate_spec_deps */
3199 };
3200
3201 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3202 static void
3203 setup_has_dependence_sched_deps_info (void)
3204 {
3205 memcpy (&has_dependence_sched_deps_info,
3206 &const_has_dependence_sched_deps_info,
3207 sizeof (has_dependence_sched_deps_info));
3208
3209 if (spec_info != NULL)
3210 has_dependence_sched_deps_info.generate_spec_deps = 1;
3211
3212 sched_deps_info = &has_dependence_sched_deps_info;
3213 }
3214
3215 /* Remove all dependences found and recorded in has_dependence_data array. */
3216 void
3217 sel_clear_has_dependence (void)
3218 {
3219 int i;
3220
3221 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3222 has_dependence_data.has_dep_p[i] = 0;
3223 }
3224
3225 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3226 to the dependence information array in HAS_DEP_PP. */
3227 ds_t
3228 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3229 {
3230 int i;
3231 ds_t ds;
3232 struct deps_desc *dc;
3233
3234 if (INSN_SIMPLEJUMP_P (pred))
3235 /* Unconditional jump is just a transfer of control flow.
3236 Ignore it. */
3237 return false;
3238
3239 dc = &INSN_DEPS_CONTEXT (pred);
3240
3241 /* We init this field lazily. */
3242 if (dc->reg_last == NULL)
3243 init_deps_reg_last (dc);
3244
3245 if (!dc->readonly)
3246 {
3247 has_dependence_data.pro = NULL;
3248 /* Initialize empty dep context with information about PRED. */
3249 advance_deps_context (dc, pred);
3250 dc->readonly = 1;
3251 }
3252
3253 has_dependence_data.where = DEPS_IN_NOWHERE;
3254 has_dependence_data.pro = pred;
3255 has_dependence_data.con = EXPR_VINSN (expr);
3256 has_dependence_data.dc = dc;
3257
3258 sel_clear_has_dependence ();
3259
3260 /* Now catch all dependencies that would be generated between PRED and
3261 INSN. */
3262 setup_has_dependence_sched_deps_info ();
3263 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3264 has_dependence_data.dc = NULL;
3265
3266 /* When a barrier was found, set DEPS_IN_INSN bits. */
3267 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3268 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3269 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3270 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3271
3272 /* Do not allow stores to memory to move through checks. Currently
3273 we don't move this to sched-deps.c as the check doesn't have
3274 obvious places to which this dependence can be attached.
3275 FIMXE: this should go to a hook. */
3276 if (EXPR_LHS (expr)
3277 && MEM_P (EXPR_LHS (expr))
3278 && sel_insn_is_speculation_check (pred))
3279 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3280
3281 *has_dep_pp = has_dependence_data.has_dep_p;
3282 ds = 0;
3283 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3284 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3285 NULL_RTX, NULL_RTX);
3286
3287 return ds;
3288 }
3289 \f
3290
3291 /* Dependence hooks implementation that checks dependence latency constraints
3292 on the insns being scheduled. The entry point for these routines is
3293 tick_check_p predicate. */
3294
3295 static struct
3296 {
3297 /* An expr we are currently checking. */
3298 expr_t expr;
3299
3300 /* A minimal cycle for its scheduling. */
3301 int cycle;
3302
3303 /* Whether we have seen a true dependence while checking. */
3304 bool seen_true_dep_p;
3305 } tick_check_data;
3306
3307 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3308 on PRO with status DS and weight DW. */
3309 static void
3310 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3311 {
3312 expr_t con_expr = tick_check_data.expr;
3313 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3314
3315 if (con_insn != pro_insn)
3316 {
3317 enum reg_note dt;
3318 int tick;
3319
3320 if (/* PROducer was removed from above due to pipelining. */
3321 !INSN_IN_STREAM_P (pro_insn)
3322 /* Or PROducer was originally on the next iteration regarding the
3323 CONsumer. */
3324 || (INSN_SCHED_TIMES (pro_insn)
3325 - EXPR_SCHED_TIMES (con_expr)) > 1)
3326 /* Don't count this dependence. */
3327 return;
3328
3329 dt = ds_to_dt (ds);
3330 if (dt == REG_DEP_TRUE)
3331 tick_check_data.seen_true_dep_p = true;
3332
3333 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3334
3335 {
3336 dep_def _dep, *dep = &_dep;
3337
3338 init_dep (dep, pro_insn, con_insn, dt);
3339
3340 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3341 }
3342
3343 /* When there are several kinds of dependencies between pro and con,
3344 only REG_DEP_TRUE should be taken into account. */
3345 if (tick > tick_check_data.cycle
3346 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3347 tick_check_data.cycle = tick;
3348 }
3349 }
3350
3351 /* An implementation of note_dep hook. */
3352 static void
3353 tick_check_note_dep (insn_t pro, ds_t ds)
3354 {
3355 tick_check_dep_with_dw (pro, ds, 0);
3356 }
3357
3358 /* An implementation of note_mem_dep hook. */
3359 static void
3360 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3361 {
3362 dw_t dw;
3363
3364 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3365 ? estimate_dep_weak (mem1, mem2)
3366 : 0);
3367
3368 tick_check_dep_with_dw (pro, ds, dw);
3369 }
3370
3371 /* This structure contains hooks for dependence analysis used when determining
3372 whether an insn is ready for scheduling. */
3373 static struct sched_deps_info_def tick_check_sched_deps_info =
3374 {
3375 NULL,
3376
3377 NULL,
3378 NULL,
3379 NULL,
3380 NULL,
3381 NULL,
3382 NULL,
3383 haifa_note_reg_set,
3384 haifa_note_reg_clobber,
3385 haifa_note_reg_use,
3386 tick_check_note_mem_dep,
3387 tick_check_note_dep,
3388
3389 0, 0, 0
3390 };
3391
3392 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3393 scheduled. Return 0 if all data from producers in DC is ready. */
3394 int
3395 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3396 {
3397 int cycles_left;
3398 /* Initialize variables. */
3399 tick_check_data.expr = expr;
3400 tick_check_data.cycle = 0;
3401 tick_check_data.seen_true_dep_p = false;
3402 sched_deps_info = &tick_check_sched_deps_info;
3403
3404 gcc_assert (!dc->readonly);
3405 dc->readonly = 1;
3406 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3407 dc->readonly = 0;
3408
3409 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3410
3411 return cycles_left >= 0 ? cycles_left : 0;
3412 }
3413 \f
3414
3415 /* Functions to work with insns. */
3416
3417 /* Returns true if LHS of INSN is the same as DEST of an insn
3418 being moved. */
3419 bool
3420 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3421 {
3422 rtx lhs = INSN_LHS (insn);
3423
3424 if (lhs == NULL || dest == NULL)
3425 return false;
3426
3427 return rtx_equal_p (lhs, dest);
3428 }
3429
3430 /* Return s_i_d entry of INSN. Callable from debugger. */
3431 sel_insn_data_def
3432 insn_sid (insn_t insn)
3433 {
3434 return *SID (insn);
3435 }
3436
3437 /* True when INSN is a speculative check. We can tell this by looking
3438 at the data structures of the selective scheduler, not by examining
3439 the pattern. */
3440 bool
3441 sel_insn_is_speculation_check (rtx insn)
3442 {
3443 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3444 }
3445
3446 /* Extracts machine mode MODE and destination location DST_LOC
3447 for given INSN. */
3448 void
3449 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3450 {
3451 rtx pat = PATTERN (insn);
3452
3453 gcc_assert (dst_loc);
3454 gcc_assert (GET_CODE (pat) == SET);
3455
3456 *dst_loc = SET_DEST (pat);
3457
3458 gcc_assert (*dst_loc);
3459 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3460
3461 if (mode)
3462 *mode = GET_MODE (*dst_loc);
3463 }
3464
3465 /* Returns true when moving through JUMP will result in bookkeeping
3466 creation. */
3467 bool
3468 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3469 {
3470 insn_t succ;
3471 succ_iterator si;
3472
3473 FOR_EACH_SUCC (succ, si, jump)
3474 if (sel_num_cfg_preds_gt_1 (succ))
3475 return true;
3476
3477 return false;
3478 }
3479
3480 /* Return 'true' if INSN is the only one in its basic block. */
3481 static bool
3482 insn_is_the_only_one_in_bb_p (insn_t insn)
3483 {
3484 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3485 }
3486
3487 #ifdef ENABLE_CHECKING
3488 /* Check that the region we're scheduling still has at most one
3489 backedge. */
3490 static void
3491 verify_backedges (void)
3492 {
3493 if (pipelining_p)
3494 {
3495 int i, n = 0;
3496 edge e;
3497 edge_iterator ei;
3498
3499 for (i = 0; i < current_nr_blocks; i++)
3500 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3501 if (in_current_region_p (e->dest)
3502 && BLOCK_TO_BB (e->dest->index) < i)
3503 n++;
3504
3505 gcc_assert (n <= 1);
3506 }
3507 }
3508 #endif
3509 \f
3510
3511 /* Functions to work with control flow. */
3512
3513 /* Recompute BLOCK_TO_BB and BB_FOR_BLOCK for current region so that blocks
3514 are sorted in topological order (it might have been invalidated by
3515 redirecting an edge). */
3516 static void
3517 sel_recompute_toporder (void)
3518 {
3519 int i, n, rgn;
3520 int *postorder, n_blocks;
3521
3522 postorder = XALLOCAVEC (int, n_basic_blocks);
3523 n_blocks = post_order_compute (postorder, false, false);
3524
3525 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
3526 for (n = 0, i = n_blocks - 1; i >= 0; i--)
3527 if (CONTAINING_RGN (postorder[i]) == rgn)
3528 {
3529 BLOCK_TO_BB (postorder[i]) = n;
3530 BB_TO_BLOCK (n) = postorder[i];
3531 n++;
3532 }
3533
3534 /* Assert that we updated info for all blocks. We may miss some blocks if
3535 this function is called when redirecting an edge made a block
3536 unreachable, but that block is not deleted yet. */
3537 gcc_assert (n == RGN_NR_BLOCKS (rgn));
3538 }
3539
3540 /* Tidy the possibly empty block BB. */
3541 static bool
3542 maybe_tidy_empty_bb (basic_block bb, bool recompute_toporder_p)
3543 {
3544 basic_block succ_bb, pred_bb;
3545 edge e;
3546 edge_iterator ei;
3547 bool rescan_p;
3548
3549 /* Keep empty bb only if this block immediately precedes EXIT and
3550 has incoming non-fallthrough edge, or it has no predecessors or
3551 successors. Otherwise remove it. */
3552 if (!sel_bb_empty_p (bb)
3553 || (single_succ_p (bb)
3554 && single_succ (bb) == EXIT_BLOCK_PTR
3555 && (!single_pred_p (bb)
3556 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU)))
3557 || EDGE_COUNT (bb->preds) == 0
3558 || EDGE_COUNT (bb->succs) == 0)
3559 return false;
3560
3561 /* Do not attempt to redirect complex edges. */
3562 FOR_EACH_EDGE (e, ei, bb->preds)
3563 if (e->flags & EDGE_COMPLEX)
3564 return false;
3565
3566 free_data_sets (bb);
3567
3568 /* Do not delete BB if it has more than one successor.
3569 That can occur when we moving a jump. */
3570 if (!single_succ_p (bb))
3571 {
3572 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3573 sel_merge_blocks (bb->prev_bb, bb);
3574 return true;
3575 }
3576
3577 succ_bb = single_succ (bb);
3578 rescan_p = true;
3579 pred_bb = NULL;
3580
3581 /* Redirect all non-fallthru edges to the next bb. */
3582 while (rescan_p)
3583 {
3584 rescan_p = false;
3585
3586 FOR_EACH_EDGE (e, ei, bb->preds)
3587 {
3588 pred_bb = e->src;
3589
3590 if (!(e->flags & EDGE_FALLTHRU))
3591 {
3592 recompute_toporder_p |= sel_redirect_edge_and_branch (e, succ_bb);
3593 rescan_p = true;
3594 break;
3595 }
3596 }
3597 }
3598
3599 /* If it is possible - merge BB with its predecessor. */
3600 if (can_merge_blocks_p (bb->prev_bb, bb))
3601 sel_merge_blocks (bb->prev_bb, bb);
3602 else
3603 /* Otherwise this is a block without fallthru predecessor.
3604 Just delete it. */
3605 {
3606 gcc_assert (pred_bb != NULL);
3607
3608 if (in_current_region_p (pred_bb))
3609 move_bb_info (pred_bb, bb);
3610 remove_empty_bb (bb, true);
3611 }
3612
3613 if (recompute_toporder_p)
3614 sel_recompute_toporder ();
3615
3616 #ifdef ENABLE_CHECKING
3617 verify_backedges ();
3618 #endif
3619
3620 return true;
3621 }
3622
3623 /* Tidy the control flow after we have removed original insn from
3624 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3625 is true, also try to optimize control flow on non-empty blocks. */
3626 bool
3627 tidy_control_flow (basic_block xbb, bool full_tidying)
3628 {
3629 bool changed = true;
3630 insn_t first, last;
3631
3632 /* First check whether XBB is empty. */
3633 changed = maybe_tidy_empty_bb (xbb, false);
3634 if (changed || !full_tidying)
3635 return changed;
3636
3637 /* Check if there is a unnecessary jump after insn left. */
3638 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3639 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3640 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3641 {
3642 if (sel_remove_insn (BB_END (xbb), false, false))
3643 return true;
3644 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3645 }
3646
3647 first = sel_bb_head (xbb);
3648 last = sel_bb_end (xbb);
3649 if (MAY_HAVE_DEBUG_INSNS)
3650 {
3651 if (first != last && DEBUG_INSN_P (first))
3652 do
3653 first = NEXT_INSN (first);
3654 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3655
3656 if (first != last && DEBUG_INSN_P (last))
3657 do
3658 last = PREV_INSN (last);
3659 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3660 }
3661 /* Check if there is an unnecessary jump in previous basic block leading
3662 to next basic block left after removing INSN from stream.
3663 If it is so, remove that jump and redirect edge to current
3664 basic block (where there was INSN before deletion). This way
3665 when NOP will be deleted several instructions later with its
3666 basic block we will not get a jump to next instruction, which
3667 can be harmful. */
3668 if (first == last
3669 && !sel_bb_empty_p (xbb)
3670 && INSN_NOP_P (last)
3671 /* Flow goes fallthru from current block to the next. */
3672 && EDGE_COUNT (xbb->succs) == 1
3673 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3674 /* When successor is an EXIT block, it may not be the next block. */
3675 && single_succ (xbb) != EXIT_BLOCK_PTR
3676 /* And unconditional jump in previous basic block leads to
3677 next basic block of XBB and this jump can be safely removed. */
3678 && in_current_region_p (xbb->prev_bb)
3679 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3680 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3681 /* Also this jump is not at the scheduling boundary. */
3682 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3683 {
3684 bool recompute_toporder_p;
3685 /* Clear data structures of jump - jump itself will be removed
3686 by sel_redirect_edge_and_branch. */
3687 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3688 recompute_toporder_p
3689 = sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3690
3691 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3692
3693 /* It can turn out that after removing unused jump, basic block
3694 that contained that jump, becomes empty too. In such case
3695 remove it too. */
3696 if (sel_bb_empty_p (xbb->prev_bb))
3697 changed = maybe_tidy_empty_bb (xbb->prev_bb, recompute_toporder_p);
3698 else if (recompute_toporder_p)
3699 sel_recompute_toporder ();
3700 }
3701
3702 return changed;
3703 }
3704
3705 /* Purge meaningless empty blocks in the middle of a region. */
3706 void
3707 purge_empty_blocks (void)
3708 {
3709 /* Do not attempt to delete preheader. */
3710 int i = sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0))) ? 1 : 0;
3711
3712 while (i < current_nr_blocks)
3713 {
3714 basic_block b = BASIC_BLOCK (BB_TO_BLOCK (i));
3715
3716 if (maybe_tidy_empty_bb (b, false))
3717 continue;
3718
3719 i++;
3720 }
3721 }
3722
3723 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3724 do not delete insn's data, because it will be later re-emitted.
3725 Return true if we have removed some blocks afterwards. */
3726 bool
3727 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3728 {
3729 basic_block bb = BLOCK_FOR_INSN (insn);
3730
3731 gcc_assert (INSN_IN_STREAM_P (insn));
3732
3733 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3734 {
3735 expr_t expr;
3736 av_set_iterator i;
3737
3738 /* When we remove a debug insn that is head of a BB, it remains
3739 in the AV_SET of the block, but it shouldn't. */
3740 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3741 if (EXPR_INSN_RTX (expr) == insn)
3742 {
3743 av_set_iter_remove (&i);
3744 break;
3745 }
3746 }
3747
3748 if (only_disconnect)
3749 {
3750 insn_t prev = PREV_INSN (insn);
3751 insn_t next = NEXT_INSN (insn);
3752 basic_block bb = BLOCK_FOR_INSN (insn);
3753
3754 NEXT_INSN (prev) = next;
3755 PREV_INSN (next) = prev;
3756
3757 if (BB_HEAD (bb) == insn)
3758 {
3759 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3760 BB_HEAD (bb) = prev;
3761 }
3762 if (BB_END (bb) == insn)
3763 BB_END (bb) = prev;
3764 }
3765 else
3766 {
3767 remove_insn (insn);
3768 clear_expr (INSN_EXPR (insn));
3769 }
3770
3771 /* It is necessary to null this fields before calling add_insn (). */
3772 PREV_INSN (insn) = NULL_RTX;
3773 NEXT_INSN (insn) = NULL_RTX;
3774
3775 return tidy_control_flow (bb, full_tidying);
3776 }
3777
3778 /* Estimate number of the insns in BB. */
3779 static int
3780 sel_estimate_number_of_insns (basic_block bb)
3781 {
3782 int res = 0;
3783 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3784
3785 for (; insn != next_tail; insn = NEXT_INSN (insn))
3786 if (NONDEBUG_INSN_P (insn))
3787 res++;
3788
3789 return res;
3790 }
3791
3792 /* We don't need separate luids for notes or labels. */
3793 static int
3794 sel_luid_for_non_insn (rtx x)
3795 {
3796 gcc_assert (NOTE_P (x) || LABEL_P (x));
3797
3798 return -1;
3799 }
3800
3801 /* Return seqno of the only predecessor of INSN. */
3802 static int
3803 get_seqno_of_a_pred (insn_t insn)
3804 {
3805 int seqno;
3806
3807 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3808
3809 if (!sel_bb_head_p (insn))
3810 seqno = INSN_SEQNO (PREV_INSN (insn));
3811 else
3812 {
3813 basic_block bb = BLOCK_FOR_INSN (insn);
3814
3815 if (single_pred_p (bb)
3816 && !in_current_region_p (single_pred (bb)))
3817 {
3818 /* We can have preds outside a region when splitting edges
3819 for pipelining of an outer loop. Use succ instead.
3820 There should be only one of them. */
3821 insn_t succ = NULL;
3822 succ_iterator si;
3823 bool first = true;
3824
3825 gcc_assert (flag_sel_sched_pipelining_outer_loops
3826 && current_loop_nest);
3827 FOR_EACH_SUCC_1 (succ, si, insn,
3828 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3829 {
3830 gcc_assert (first);
3831 first = false;
3832 }
3833
3834 gcc_assert (succ != NULL);
3835 seqno = INSN_SEQNO (succ);
3836 }
3837 else
3838 {
3839 insn_t *preds;
3840 int n;
3841
3842 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3843 gcc_assert (n == 1);
3844
3845 seqno = INSN_SEQNO (preds[0]);
3846
3847 free (preds);
3848 }
3849 }
3850
3851 return seqno;
3852 }
3853
3854 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3855 with positive seqno exist. */
3856 int
3857 get_seqno_by_preds (rtx insn)
3858 {
3859 basic_block bb = BLOCK_FOR_INSN (insn);
3860 rtx tmp = insn, head = BB_HEAD (bb);
3861 insn_t *preds;
3862 int n, i, seqno;
3863
3864 while (tmp != head)
3865 if (INSN_P (tmp))
3866 return INSN_SEQNO (tmp);
3867 else
3868 tmp = PREV_INSN (tmp);
3869
3870 cfg_preds (bb, &preds, &n);
3871 for (i = 0, seqno = -1; i < n; i++)
3872 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3873
3874 return seqno;
3875 }
3876
3877 \f
3878
3879 /* Extend pass-scope data structures for basic blocks. */
3880 void
3881 sel_extend_global_bb_info (void)
3882 {
3883 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3884 last_basic_block);
3885 }
3886
3887 /* Extend region-scope data structures for basic blocks. */
3888 static void
3889 extend_region_bb_info (void)
3890 {
3891 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3892 last_basic_block);
3893 }
3894
3895 /* Extend all data structures to fit for all basic blocks. */
3896 static void
3897 extend_bb_info (void)
3898 {
3899 sel_extend_global_bb_info ();
3900 extend_region_bb_info ();
3901 }
3902
3903 /* Finalize pass-scope data structures for basic blocks. */
3904 void
3905 sel_finish_global_bb_info (void)
3906 {
3907 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3908 }
3909
3910 /* Finalize region-scope data structures for basic blocks. */
3911 static void
3912 finish_region_bb_info (void)
3913 {
3914 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3915 }
3916 \f
3917
3918 /* Data for each insn in current region. */
3919 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3920
3921 /* A vector for the insns we've emitted. */
3922 static insn_vec_t new_insns = NULL;
3923
3924 /* Extend data structures for insns from current region. */
3925 static void
3926 extend_insn_data (void)
3927 {
3928 int reserve;
3929
3930 sched_extend_target ();
3931 sched_deps_init (false);
3932
3933 /* Extend data structures for insns from current region. */
3934 reserve = (sched_max_luid + 1
3935 - VEC_length (sel_insn_data_def, s_i_d));
3936 if (reserve > 0
3937 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3938 {
3939 int size;
3940
3941 if (sched_max_luid / 2 > 1024)
3942 size = sched_max_luid + 1024;
3943 else
3944 size = 3 * sched_max_luid / 2;
3945
3946
3947 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d, size);
3948 }
3949 }
3950
3951 /* Finalize data structures for insns from current region. */
3952 static void
3953 finish_insns (void)
3954 {
3955 unsigned i;
3956
3957 /* Clear here all dependence contexts that may have left from insns that were
3958 removed during the scheduling. */
3959 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3960 {
3961 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3962
3963 if (sid_entry->live)
3964 return_regset_to_pool (sid_entry->live);
3965 if (sid_entry->analyzed_deps)
3966 {
3967 BITMAP_FREE (sid_entry->analyzed_deps);
3968 BITMAP_FREE (sid_entry->found_deps);
3969 htab_delete (sid_entry->transformed_insns);
3970 free_deps (&sid_entry->deps_context);
3971 }
3972 if (EXPR_VINSN (&sid_entry->expr))
3973 {
3974 clear_expr (&sid_entry->expr);
3975
3976 /* Also, clear CANT_MOVE bit here, because we really don't want it
3977 to be passed to the next region. */
3978 CANT_MOVE_BY_LUID (i) = 0;
3979 }
3980 }
3981
3982 VEC_free (sel_insn_data_def, heap, s_i_d);
3983 }
3984
3985 /* A proxy to pass initialization data to init_insn (). */
3986 static sel_insn_data_def _insn_init_ssid;
3987 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3988
3989 /* If true create a new vinsn. Otherwise use the one from EXPR. */
3990 static bool insn_init_create_new_vinsn_p;
3991
3992 /* Set all necessary data for initialization of the new insn[s]. */
3993 static expr_t
3994 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3995 {
3996 expr_t x = &insn_init_ssid->expr;
3997
3998 copy_expr_onside (x, expr);
3999 if (vi != NULL)
4000 {
4001 insn_init_create_new_vinsn_p = false;
4002 change_vinsn_in_expr (x, vi);
4003 }
4004 else
4005 insn_init_create_new_vinsn_p = true;
4006
4007 insn_init_ssid->seqno = seqno;
4008 return x;
4009 }
4010
4011 /* Init data for INSN. */
4012 static void
4013 init_insn_data (insn_t insn)
4014 {
4015 expr_t expr;
4016 sel_insn_data_t ssid = insn_init_ssid;
4017
4018 /* The fields mentioned below are special and hence are not being
4019 propagated to the new insns. */
4020 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
4021 && !ssid->after_stall_p && ssid->sched_cycle == 0);
4022 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
4023
4024 expr = INSN_EXPR (insn);
4025 copy_expr (expr, &ssid->expr);
4026 prepare_insn_expr (insn, ssid->seqno);
4027
4028 if (insn_init_create_new_vinsn_p)
4029 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
4030
4031 if (first_time_insn_init (insn))
4032 init_first_time_insn_data (insn);
4033 }
4034
4035 /* This is used to initialize spurious jumps generated by
4036 sel_redirect_edge (). */
4037 static void
4038 init_simplejump_data (insn_t insn)
4039 {
4040 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
4041 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
4042 false, true);
4043 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
4044 init_first_time_insn_data (insn);
4045 }
4046
4047 /* Perform deferred initialization of insns. This is used to process
4048 a new jump that may be created by redirect_edge. */
4049 void
4050 sel_init_new_insn (insn_t insn, int flags)
4051 {
4052 /* We create data structures for bb when the first insn is emitted in it. */
4053 if (INSN_P (insn)
4054 && INSN_IN_STREAM_P (insn)
4055 && insn_is_the_only_one_in_bb_p (insn))
4056 {
4057 extend_bb_info ();
4058 create_initial_data_sets (BLOCK_FOR_INSN (insn));
4059 }
4060
4061 if (flags & INSN_INIT_TODO_LUID)
4062 sched_init_luids (NULL, NULL, NULL, insn);
4063
4064 if (flags & INSN_INIT_TODO_SSID)
4065 {
4066 extend_insn_data ();
4067 init_insn_data (insn);
4068 clear_expr (&insn_init_ssid->expr);
4069 }
4070
4071 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
4072 {
4073 extend_insn_data ();
4074 init_simplejump_data (insn);
4075 }
4076
4077 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
4078 == CONTAINING_RGN (BB_TO_BLOCK (0)));
4079 }
4080 \f
4081
4082 /* Functions to init/finish work with lv sets. */
4083
4084 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
4085 static void
4086 init_lv_set (basic_block bb)
4087 {
4088 gcc_assert (!BB_LV_SET_VALID_P (bb));
4089
4090 BB_LV_SET (bb) = get_regset_from_pool ();
4091 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
4092 BB_LV_SET_VALID_P (bb) = true;
4093 }
4094
4095 /* Copy liveness information to BB from FROM_BB. */
4096 static void
4097 copy_lv_set_from (basic_block bb, basic_block from_bb)
4098 {
4099 gcc_assert (!BB_LV_SET_VALID_P (bb));
4100
4101 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4102 BB_LV_SET_VALID_P (bb) = true;
4103 }
4104
4105 /* Initialize lv set of all bb headers. */
4106 void
4107 init_lv_sets (void)
4108 {
4109 basic_block bb;
4110
4111 /* Initialize of LV sets. */
4112 FOR_EACH_BB (bb)
4113 init_lv_set (bb);
4114
4115 /* Don't forget EXIT_BLOCK. */
4116 init_lv_set (EXIT_BLOCK_PTR);
4117 }
4118
4119 /* Release lv set of HEAD. */
4120 static void
4121 free_lv_set (basic_block bb)
4122 {
4123 gcc_assert (BB_LV_SET (bb) != NULL);
4124
4125 return_regset_to_pool (BB_LV_SET (bb));
4126 BB_LV_SET (bb) = NULL;
4127 BB_LV_SET_VALID_P (bb) = false;
4128 }
4129
4130 /* Finalize lv sets of all bb headers. */
4131 void
4132 free_lv_sets (void)
4133 {
4134 basic_block bb;
4135
4136 /* Don't forget EXIT_BLOCK. */
4137 free_lv_set (EXIT_BLOCK_PTR);
4138
4139 /* Free LV sets. */
4140 FOR_EACH_BB (bb)
4141 if (BB_LV_SET (bb))
4142 free_lv_set (bb);
4143 }
4144
4145 /* Initialize an invalid AV_SET for BB.
4146 This set will be updated next time compute_av () process BB. */
4147 static void
4148 invalidate_av_set (basic_block bb)
4149 {
4150 gcc_assert (BB_AV_LEVEL (bb) <= 0
4151 && BB_AV_SET (bb) == NULL);
4152
4153 BB_AV_LEVEL (bb) = -1;
4154 }
4155
4156 /* Create initial data sets for BB (they will be invalid). */
4157 static void
4158 create_initial_data_sets (basic_block bb)
4159 {
4160 if (BB_LV_SET (bb))
4161 BB_LV_SET_VALID_P (bb) = false;
4162 else
4163 BB_LV_SET (bb) = get_regset_from_pool ();
4164 invalidate_av_set (bb);
4165 }
4166
4167 /* Free av set of BB. */
4168 static void
4169 free_av_set (basic_block bb)
4170 {
4171 av_set_clear (&BB_AV_SET (bb));
4172 BB_AV_LEVEL (bb) = 0;
4173 }
4174
4175 /* Free data sets of BB. */
4176 void
4177 free_data_sets (basic_block bb)
4178 {
4179 free_lv_set (bb);
4180 free_av_set (bb);
4181 }
4182
4183 /* Exchange lv sets of TO and FROM. */
4184 static void
4185 exchange_lv_sets (basic_block to, basic_block from)
4186 {
4187 {
4188 regset to_lv_set = BB_LV_SET (to);
4189
4190 BB_LV_SET (to) = BB_LV_SET (from);
4191 BB_LV_SET (from) = to_lv_set;
4192 }
4193
4194 {
4195 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4196
4197 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4198 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4199 }
4200 }
4201
4202
4203 /* Exchange av sets of TO and FROM. */
4204 static void
4205 exchange_av_sets (basic_block to, basic_block from)
4206 {
4207 {
4208 av_set_t to_av_set = BB_AV_SET (to);
4209
4210 BB_AV_SET (to) = BB_AV_SET (from);
4211 BB_AV_SET (from) = to_av_set;
4212 }
4213
4214 {
4215 int to_av_level = BB_AV_LEVEL (to);
4216
4217 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4218 BB_AV_LEVEL (from) = to_av_level;
4219 }
4220 }
4221
4222 /* Exchange data sets of TO and FROM. */
4223 void
4224 exchange_data_sets (basic_block to, basic_block from)
4225 {
4226 exchange_lv_sets (to, from);
4227 exchange_av_sets (to, from);
4228 }
4229
4230 /* Copy data sets of FROM to TO. */
4231 void
4232 copy_data_sets (basic_block to, basic_block from)
4233 {
4234 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4235 gcc_assert (BB_AV_SET (to) == NULL);
4236
4237 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4238 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4239
4240 if (BB_AV_SET_VALID_P (from))
4241 {
4242 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4243 }
4244 if (BB_LV_SET_VALID_P (from))
4245 {
4246 gcc_assert (BB_LV_SET (to) != NULL);
4247 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4248 }
4249 }
4250
4251 /* Return an av set for INSN, if any. */
4252 av_set_t
4253 get_av_set (insn_t insn)
4254 {
4255 av_set_t av_set;
4256
4257 gcc_assert (AV_SET_VALID_P (insn));
4258
4259 if (sel_bb_head_p (insn))
4260 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4261 else
4262 av_set = NULL;
4263
4264 return av_set;
4265 }
4266
4267 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4268 int
4269 get_av_level (insn_t insn)
4270 {
4271 int av_level;
4272
4273 gcc_assert (INSN_P (insn));
4274
4275 if (sel_bb_head_p (insn))
4276 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4277 else
4278 av_level = INSN_WS_LEVEL (insn);
4279
4280 return av_level;
4281 }
4282
4283 \f
4284
4285 /* Variables to work with control-flow graph. */
4286
4287 /* The basic block that already has been processed by the sched_data_update (),
4288 but hasn't been in sel_add_bb () yet. */
4289 static VEC (basic_block, heap) *last_added_blocks = NULL;
4290
4291 /* A pool for allocating successor infos. */
4292 static struct
4293 {
4294 /* A stack for saving succs_info structures. */
4295 struct succs_info *stack;
4296
4297 /* Its size. */
4298 int size;
4299
4300 /* Top of the stack. */
4301 int top;
4302
4303 /* Maximal value of the top. */
4304 int max_top;
4305 } succs_info_pool;
4306
4307 /* Functions to work with control-flow graph. */
4308
4309 /* Return basic block note of BB. */
4310 insn_t
4311 sel_bb_head (basic_block bb)
4312 {
4313 insn_t head;
4314
4315 if (bb == EXIT_BLOCK_PTR)
4316 {
4317 gcc_assert (exit_insn != NULL_RTX);
4318 head = exit_insn;
4319 }
4320 else
4321 {
4322 insn_t note;
4323
4324 note = bb_note (bb);
4325 head = next_nonnote_insn (note);
4326
4327 if (head && BLOCK_FOR_INSN (head) != bb)
4328 head = NULL_RTX;
4329 }
4330
4331 return head;
4332 }
4333
4334 /* Return true if INSN is a basic block header. */
4335 bool
4336 sel_bb_head_p (insn_t insn)
4337 {
4338 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4339 }
4340
4341 /* Return last insn of BB. */
4342 insn_t
4343 sel_bb_end (basic_block bb)
4344 {
4345 if (sel_bb_empty_p (bb))
4346 return NULL_RTX;
4347
4348 gcc_assert (bb != EXIT_BLOCK_PTR);
4349
4350 return BB_END (bb);
4351 }
4352
4353 /* Return true if INSN is the last insn in its basic block. */
4354 bool
4355 sel_bb_end_p (insn_t insn)
4356 {
4357 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4358 }
4359
4360 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4361 bool
4362 sel_bb_empty_p (basic_block bb)
4363 {
4364 return sel_bb_head (bb) == NULL;
4365 }
4366
4367 /* True when BB belongs to the current scheduling region. */
4368 bool
4369 in_current_region_p (basic_block bb)
4370 {
4371 if (bb->index < NUM_FIXED_BLOCKS)
4372 return false;
4373
4374 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4375 }
4376
4377 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4378 basic_block
4379 fallthru_bb_of_jump (rtx jump)
4380 {
4381 if (!JUMP_P (jump))
4382 return NULL;
4383
4384 if (any_uncondjump_p (jump))
4385 return single_succ (BLOCK_FOR_INSN (jump));
4386
4387 if (!any_condjump_p (jump))
4388 return NULL;
4389
4390 /* A basic block that ends with a conditional jump may still have one successor
4391 (and be followed by a barrier), we are not interested. */
4392 if (single_succ_p (BLOCK_FOR_INSN (jump)))
4393 return NULL;
4394
4395 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4396 }
4397
4398 /* Remove all notes from BB. */
4399 static void
4400 init_bb (basic_block bb)
4401 {
4402 remove_notes (bb_note (bb), BB_END (bb));
4403 BB_NOTE_LIST (bb) = note_list;
4404 }
4405
4406 void
4407 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4408 {
4409 const struct sched_scan_info_def ssi =
4410 {
4411 extend_bb_info, /* extend_bb */
4412 init_bb, /* init_bb */
4413 NULL, /* extend_insn */
4414 NULL /* init_insn */
4415 };
4416
4417 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4418 }
4419
4420 /* Restore notes for the whole region. */
4421 static void
4422 sel_restore_notes (void)
4423 {
4424 int bb;
4425 insn_t insn;
4426
4427 for (bb = 0; bb < current_nr_blocks; bb++)
4428 {
4429 basic_block first, last;
4430
4431 first = EBB_FIRST_BB (bb);
4432 last = EBB_LAST_BB (bb)->next_bb;
4433
4434 do
4435 {
4436 note_list = BB_NOTE_LIST (first);
4437 restore_other_notes (NULL, first);
4438 BB_NOTE_LIST (first) = NULL_RTX;
4439
4440 FOR_BB_INSNS (first, insn)
4441 if (NONDEBUG_INSN_P (insn))
4442 reemit_notes (insn);
4443
4444 first = first->next_bb;
4445 }
4446 while (first != last);
4447 }
4448 }
4449
4450 /* Free per-bb data structures. */
4451 void
4452 sel_finish_bbs (void)
4453 {
4454 sel_restore_notes ();
4455
4456 /* Remove current loop preheader from this loop. */
4457 if (current_loop_nest)
4458 sel_remove_loop_preheader ();
4459
4460 finish_region_bb_info ();
4461 }
4462
4463 /* Return true if INSN has a single successor of type FLAGS. */
4464 bool
4465 sel_insn_has_single_succ_p (insn_t insn, int flags)
4466 {
4467 insn_t succ;
4468 succ_iterator si;
4469 bool first_p = true;
4470
4471 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4472 {
4473 if (first_p)
4474 first_p = false;
4475 else
4476 return false;
4477 }
4478
4479 return true;
4480 }
4481
4482 /* Allocate successor's info. */
4483 static struct succs_info *
4484 alloc_succs_info (void)
4485 {
4486 if (succs_info_pool.top == succs_info_pool.max_top)
4487 {
4488 int i;
4489
4490 if (++succs_info_pool.max_top >= succs_info_pool.size)
4491 gcc_unreachable ();
4492
4493 i = ++succs_info_pool.top;
4494 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4495 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4496 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4497 }
4498 else
4499 succs_info_pool.top++;
4500
4501 return &succs_info_pool.stack[succs_info_pool.top];
4502 }
4503
4504 /* Free successor's info. */
4505 void
4506 free_succs_info (struct succs_info * sinfo)
4507 {
4508 gcc_assert (succs_info_pool.top >= 0
4509 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4510 succs_info_pool.top--;
4511
4512 /* Clear stale info. */
4513 VEC_block_remove (rtx, sinfo->succs_ok,
4514 0, VEC_length (rtx, sinfo->succs_ok));
4515 VEC_block_remove (rtx, sinfo->succs_other,
4516 0, VEC_length (rtx, sinfo->succs_other));
4517 VEC_block_remove (int, sinfo->probs_ok,
4518 0, VEC_length (int, sinfo->probs_ok));
4519 sinfo->all_prob = 0;
4520 sinfo->succs_ok_n = 0;
4521 sinfo->all_succs_n = 0;
4522 }
4523
4524 /* Compute successor info for INSN. FLAGS are the flags passed
4525 to the FOR_EACH_SUCC_1 iterator. */
4526 struct succs_info *
4527 compute_succs_info (insn_t insn, short flags)
4528 {
4529 succ_iterator si;
4530 insn_t succ;
4531 struct succs_info *sinfo = alloc_succs_info ();
4532
4533 /* Traverse *all* successors and decide what to do with each. */
4534 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4535 {
4536 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4537 perform code motion through inner loops. */
4538 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4539
4540 if (current_flags & flags)
4541 {
4542 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4543 VEC_safe_push (int, heap, sinfo->probs_ok,
4544 /* FIXME: Improve calculation when skipping
4545 inner loop to exits. */
4546 (si.bb_end
4547 ? si.e1->probability
4548 : REG_BR_PROB_BASE));
4549 sinfo->succs_ok_n++;
4550 }
4551 else
4552 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4553
4554 /* Compute all_prob. */
4555 if (!si.bb_end)
4556 sinfo->all_prob = REG_BR_PROB_BASE;
4557 else
4558 sinfo->all_prob += si.e1->probability;
4559
4560 sinfo->all_succs_n++;
4561 }
4562
4563 return sinfo;
4564 }
4565
4566 /* Return the predecessors of BB in PREDS and their number in N.
4567 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4568 static void
4569 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4570 {
4571 edge e;
4572 edge_iterator ei;
4573
4574 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4575
4576 FOR_EACH_EDGE (e, ei, bb->preds)
4577 {
4578 basic_block pred_bb = e->src;
4579 insn_t bb_end = BB_END (pred_bb);
4580
4581 /* ??? This code is not supposed to walk out of a region. */
4582 gcc_assert (in_current_region_p (pred_bb));
4583
4584 if (sel_bb_empty_p (pred_bb))
4585 cfg_preds_1 (pred_bb, preds, n, size);
4586 else
4587 {
4588 if (*n == *size)
4589 *preds = XRESIZEVEC (insn_t, *preds,
4590 (*size = 2 * *size + 1));
4591 (*preds)[(*n)++] = bb_end;
4592 }
4593 }
4594
4595 gcc_assert (*n != 0);
4596 }
4597
4598 /* Find all predecessors of BB and record them in PREDS and their number
4599 in N. Empty blocks are skipped, and only normal (forward in-region)
4600 edges are processed. */
4601 static void
4602 cfg_preds (basic_block bb, insn_t **preds, int *n)
4603 {
4604 int size = 0;
4605
4606 *preds = NULL;
4607 *n = 0;
4608 cfg_preds_1 (bb, preds, n, &size);
4609 }
4610
4611 /* Returns true if we are moving INSN through join point. */
4612 bool
4613 sel_num_cfg_preds_gt_1 (insn_t insn)
4614 {
4615 basic_block bb;
4616
4617 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4618 return false;
4619
4620 bb = BLOCK_FOR_INSN (insn);
4621
4622 while (1)
4623 {
4624 if (EDGE_COUNT (bb->preds) > 1)
4625 return true;
4626
4627 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4628 bb = EDGE_PRED (bb, 0)->src;
4629
4630 if (!sel_bb_empty_p (bb))
4631 break;
4632 }
4633
4634 return false;
4635 }
4636
4637 /* Returns true when BB should be the end of an ebb. Adapted from the
4638 code in sched-ebb.c. */
4639 bool
4640 bb_ends_ebb_p (basic_block bb)
4641 {
4642 basic_block next_bb = bb_next_bb (bb);
4643 edge e;
4644 edge_iterator ei;
4645
4646 if (next_bb == EXIT_BLOCK_PTR
4647 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4648 || (LABEL_P (BB_HEAD (next_bb))
4649 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4650 Work around that. */
4651 && !single_pred_p (next_bb)))
4652 return true;
4653
4654 if (!in_current_region_p (next_bb))
4655 return true;
4656
4657 FOR_EACH_EDGE (e, ei, bb->succs)
4658 if ((e->flags & EDGE_FALLTHRU) != 0)
4659 {
4660 gcc_assert (e->dest == next_bb);
4661
4662 return false;
4663 }
4664
4665 return true;
4666 }
4667
4668 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4669 successor of INSN. */
4670 bool
4671 in_same_ebb_p (insn_t insn, insn_t succ)
4672 {
4673 basic_block ptr = BLOCK_FOR_INSN (insn);
4674
4675 for(;;)
4676 {
4677 if (ptr == BLOCK_FOR_INSN (succ))
4678 return true;
4679
4680 if (bb_ends_ebb_p (ptr))
4681 return false;
4682
4683 ptr = bb_next_bb (ptr);
4684 }
4685
4686 gcc_unreachable ();
4687 return false;
4688 }
4689
4690 /* Recomputes the reverse topological order for the function and
4691 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4692 modified appropriately. */
4693 static void
4694 recompute_rev_top_order (void)
4695 {
4696 int *postorder;
4697 int n_blocks, i;
4698
4699 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4700 {
4701 rev_top_order_index_len = last_basic_block;
4702 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4703 rev_top_order_index_len);
4704 }
4705
4706 postorder = XNEWVEC (int, n_basic_blocks);
4707
4708 n_blocks = post_order_compute (postorder, true, false);
4709 gcc_assert (n_basic_blocks == n_blocks);
4710
4711 /* Build reverse function: for each basic block with BB->INDEX == K
4712 rev_top_order_index[K] is it's reverse topological sort number. */
4713 for (i = 0; i < n_blocks; i++)
4714 {
4715 gcc_assert (postorder[i] < rev_top_order_index_len);
4716 rev_top_order_index[postorder[i]] = i;
4717 }
4718
4719 free (postorder);
4720 }
4721
4722 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4723 void
4724 clear_outdated_rtx_info (basic_block bb)
4725 {
4726 rtx insn;
4727
4728 FOR_BB_INSNS (bb, insn)
4729 if (INSN_P (insn))
4730 {
4731 SCHED_GROUP_P (insn) = 0;
4732 INSN_AFTER_STALL_P (insn) = 0;
4733 INSN_SCHED_TIMES (insn) = 0;
4734 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4735
4736 /* We cannot use the changed caches, as previously we could ignore
4737 the LHS dependence due to enabled renaming and transform
4738 the expression, and currently we'll be unable to do this. */
4739 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4740 }
4741 }
4742
4743 /* Add BB_NOTE to the pool of available basic block notes. */
4744 static void
4745 return_bb_to_pool (basic_block bb)
4746 {
4747 rtx note = bb_note (bb);
4748
4749 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4750 && bb->aux == NULL);
4751
4752 /* It turns out that current cfg infrastructure does not support
4753 reuse of basic blocks. Don't bother for now. */
4754 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4755 }
4756
4757 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4758 static rtx
4759 get_bb_note_from_pool (void)
4760 {
4761 if (VEC_empty (rtx, bb_note_pool))
4762 return NULL_RTX;
4763 else
4764 {
4765 rtx note = VEC_pop (rtx, bb_note_pool);
4766
4767 PREV_INSN (note) = NULL_RTX;
4768 NEXT_INSN (note) = NULL_RTX;
4769
4770 return note;
4771 }
4772 }
4773
4774 /* Free bb_note_pool. */
4775 void
4776 free_bb_note_pool (void)
4777 {
4778 VEC_free (rtx, heap, bb_note_pool);
4779 }
4780
4781 /* Setup scheduler pool and successor structure. */
4782 void
4783 alloc_sched_pools (void)
4784 {
4785 int succs_size;
4786
4787 succs_size = MAX_WS + 1;
4788 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4789 succs_info_pool.size = succs_size;
4790 succs_info_pool.top = -1;
4791 succs_info_pool.max_top = -1;
4792
4793 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4794 sizeof (struct _list_node), 500);
4795 }
4796
4797 /* Free the pools. */
4798 void
4799 free_sched_pools (void)
4800 {
4801 int i;
4802
4803 free_alloc_pool (sched_lists_pool);
4804 gcc_assert (succs_info_pool.top == -1);
4805 for (i = 0; i < succs_info_pool.max_top; i++)
4806 {
4807 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4808 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4809 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4810 }
4811 free (succs_info_pool.stack);
4812 }
4813 \f
4814
4815 /* Returns a position in RGN where BB can be inserted retaining
4816 topological order. */
4817 static int
4818 find_place_to_insert_bb (basic_block bb, int rgn)
4819 {
4820 bool has_preds_outside_rgn = false;
4821 edge e;
4822 edge_iterator ei;
4823
4824 /* Find whether we have preds outside the region. */
4825 FOR_EACH_EDGE (e, ei, bb->preds)
4826 if (!in_current_region_p (e->src))
4827 {
4828 has_preds_outside_rgn = true;
4829 break;
4830 }
4831
4832 /* Recompute the top order -- needed when we have > 1 pred
4833 and in case we don't have preds outside. */
4834 if (flag_sel_sched_pipelining_outer_loops
4835 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4836 {
4837 int i, bbi = bb->index, cur_bbi;
4838
4839 recompute_rev_top_order ();
4840 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4841 {
4842 cur_bbi = BB_TO_BLOCK (i);
4843 if (rev_top_order_index[bbi]
4844 < rev_top_order_index[cur_bbi])
4845 break;
4846 }
4847
4848 /* We skipped the right block, so we increase i. We accomodate
4849 it for increasing by step later, so we decrease i. */
4850 return (i + 1) - 1;
4851 }
4852 else if (has_preds_outside_rgn)
4853 {
4854 /* This is the case when we generate an extra empty block
4855 to serve as region head during pipelining. */
4856 e = EDGE_SUCC (bb, 0);
4857 gcc_assert (EDGE_COUNT (bb->succs) == 1
4858 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4859 && (BLOCK_TO_BB (e->dest->index) == 0));
4860 return -1;
4861 }
4862
4863 /* We don't have preds outside the region. We should have
4864 the only pred, because the multiple preds case comes from
4865 the pipelining of outer loops, and that is handled above.
4866 Just take the bbi of this single pred. */
4867 if (EDGE_COUNT (bb->succs) > 0)
4868 {
4869 int pred_bbi;
4870
4871 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4872
4873 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4874 return BLOCK_TO_BB (pred_bbi);
4875 }
4876 else
4877 /* BB has no successors. It is safe to put it in the end. */
4878 return current_nr_blocks - 1;
4879 }
4880
4881 /* Deletes an empty basic block freeing its data. */
4882 static void
4883 delete_and_free_basic_block (basic_block bb)
4884 {
4885 gcc_assert (sel_bb_empty_p (bb));
4886
4887 if (BB_LV_SET (bb))
4888 free_lv_set (bb);
4889
4890 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4891
4892 /* Can't assert av_set properties because we use sel_aremove_bb
4893 when removing loop preheader from the region. At the point of
4894 removing the preheader we already have deallocated sel_region_bb_info. */
4895 gcc_assert (BB_LV_SET (bb) == NULL
4896 && !BB_LV_SET_VALID_P (bb)
4897 && BB_AV_LEVEL (bb) == 0
4898 && BB_AV_SET (bb) == NULL);
4899
4900 delete_basic_block (bb);
4901 }
4902
4903 /* Add BB to the current region and update the region data. */
4904 static void
4905 add_block_to_current_region (basic_block bb)
4906 {
4907 int i, pos, bbi = -2, rgn;
4908
4909 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4910 bbi = find_place_to_insert_bb (bb, rgn);
4911 bbi += 1;
4912 pos = RGN_BLOCKS (rgn) + bbi;
4913
4914 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4915 && ebb_head[bbi] == pos);
4916
4917 /* Make a place for the new block. */
4918 extend_regions ();
4919
4920 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4921 BLOCK_TO_BB (rgn_bb_table[i])++;
4922
4923 memmove (rgn_bb_table + pos + 1,
4924 rgn_bb_table + pos,
4925 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4926
4927 /* Initialize data for BB. */
4928 rgn_bb_table[pos] = bb->index;
4929 BLOCK_TO_BB (bb->index) = bbi;
4930 CONTAINING_RGN (bb->index) = rgn;
4931
4932 RGN_NR_BLOCKS (rgn)++;
4933
4934 for (i = rgn + 1; i <= nr_regions; i++)
4935 RGN_BLOCKS (i)++;
4936 }
4937
4938 /* Remove BB from the current region and update the region data. */
4939 static void
4940 remove_bb_from_region (basic_block bb)
4941 {
4942 int i, pos, bbi = -2, rgn;
4943
4944 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4945 bbi = BLOCK_TO_BB (bb->index);
4946 pos = RGN_BLOCKS (rgn) + bbi;
4947
4948 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4949 && ebb_head[bbi] == pos);
4950
4951 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4952 BLOCK_TO_BB (rgn_bb_table[i])--;
4953
4954 memmove (rgn_bb_table + pos,
4955 rgn_bb_table + pos + 1,
4956 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4957
4958 RGN_NR_BLOCKS (rgn)--;
4959 for (i = rgn + 1; i <= nr_regions; i++)
4960 RGN_BLOCKS (i)--;
4961 }
4962
4963 /* Add BB to the current region and update all data. If BB is NULL, add all
4964 blocks from last_added_blocks vector. */
4965 static void
4966 sel_add_bb (basic_block bb)
4967 {
4968 /* Extend luids so that new notes will receive zero luids. */
4969 sched_init_luids (NULL, NULL, NULL, NULL);
4970 sched_init_bbs ();
4971 sel_init_bbs (last_added_blocks, NULL);
4972
4973 /* When bb is passed explicitly, the vector should contain
4974 the only element that equals to bb; otherwise, the vector
4975 should not be NULL. */
4976 gcc_assert (last_added_blocks != NULL);
4977
4978 if (bb != NULL)
4979 {
4980 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4981 && VEC_index (basic_block,
4982 last_added_blocks, 0) == bb);
4983 add_block_to_current_region (bb);
4984
4985 /* We associate creating/deleting data sets with the first insn
4986 appearing / disappearing in the bb. */
4987 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4988 create_initial_data_sets (bb);
4989
4990 VEC_free (basic_block, heap, last_added_blocks);
4991 }
4992 else
4993 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4994 {
4995 int i;
4996 basic_block temp_bb = NULL;
4997
4998 for (i = 0;
4999 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5000 {
5001 add_block_to_current_region (bb);
5002 temp_bb = bb;
5003 }
5004
5005 /* We need to fetch at least one bb so we know the region
5006 to update. */
5007 gcc_assert (temp_bb != NULL);
5008 bb = temp_bb;
5009
5010 VEC_free (basic_block, heap, last_added_blocks);
5011 }
5012
5013 rgn_setup_region (CONTAINING_RGN (bb->index));
5014 }
5015
5016 /* Remove BB from the current region and update all data.
5017 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
5018 static void
5019 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
5020 {
5021 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
5022
5023 remove_bb_from_region (bb);
5024 return_bb_to_pool (bb);
5025 bitmap_clear_bit (blocks_to_reschedule, bb->index);
5026
5027 if (remove_from_cfg_p)
5028 delete_and_free_basic_block (bb);
5029
5030 rgn_setup_region (CONTAINING_RGN (bb->index));
5031 }
5032
5033 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
5034 static void
5035 move_bb_info (basic_block merge_bb, basic_block empty_bb)
5036 {
5037 gcc_assert (in_current_region_p (merge_bb));
5038
5039 concat_note_lists (BB_NOTE_LIST (empty_bb),
5040 &BB_NOTE_LIST (merge_bb));
5041 BB_NOTE_LIST (empty_bb) = NULL_RTX;
5042
5043 }
5044
5045 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
5046 EMPTY_BB's note lists into its predecessor instead of putting them
5047 into the successor. When REMOVE_FROM_CFG_P is true, also remove
5048 the empty block. */
5049 void
5050 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
5051 bool remove_from_cfg_p)
5052 {
5053 basic_block merge_bb;
5054
5055 gcc_assert (sel_bb_empty_p (empty_bb));
5056
5057 if (merge_up_p)
5058 {
5059 merge_bb = empty_bb->prev_bb;
5060 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
5061 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
5062 }
5063 else
5064 {
5065 edge e;
5066 edge_iterator ei;
5067
5068 merge_bb = bb_next_bb (empty_bb);
5069
5070 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
5071 successor block. */
5072 for (ei = ei_start (empty_bb->preds);
5073 (e = ei_safe_edge (ei)); )
5074 {
5075 if (! (e->flags & EDGE_FALLTHRU))
5076 sel_redirect_edge_and_branch (e, merge_bb);
5077 else
5078 ei_next (&ei);
5079 }
5080
5081 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
5082 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
5083 }
5084
5085 move_bb_info (merge_bb, empty_bb);
5086 remove_empty_bb (empty_bb, remove_from_cfg_p);
5087 }
5088
5089 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
5090 region, but keep it in CFG. */
5091 static void
5092 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
5093 {
5094 /* The block should contain just a note or a label.
5095 We try to check whether it is unused below. */
5096 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
5097 || LABEL_P (BB_HEAD (empty_bb)));
5098
5099 /* If basic block has predecessors or successors, redirect them. */
5100 if (remove_from_cfg_p
5101 && (EDGE_COUNT (empty_bb->preds) > 0
5102 || EDGE_COUNT (empty_bb->succs) > 0))
5103 {
5104 basic_block pred;
5105 basic_block succ;
5106
5107 /* We need to init PRED and SUCC before redirecting edges. */
5108 if (EDGE_COUNT (empty_bb->preds) > 0)
5109 {
5110 edge e;
5111
5112 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5113
5114 e = EDGE_PRED (empty_bb, 0);
5115 gcc_assert (e->src == empty_bb->prev_bb
5116 && (e->flags & EDGE_FALLTHRU));
5117
5118 pred = empty_bb->prev_bb;
5119 }
5120 else
5121 pred = NULL;
5122
5123 if (EDGE_COUNT (empty_bb->succs) > 0)
5124 {
5125 /* We do not check fallthruness here as above, because
5126 after removing a jump the edge may actually be not fallthru. */
5127 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5128 succ = EDGE_SUCC (empty_bb, 0)->dest;
5129 }
5130 else
5131 succ = NULL;
5132
5133 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5134 {
5135 edge e = EDGE_PRED (empty_bb, 0);
5136
5137 if (e->flags & EDGE_FALLTHRU)
5138 redirect_edge_succ_nodup (e, succ);
5139 else
5140 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5141 }
5142
5143 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5144 {
5145 edge e = EDGE_SUCC (empty_bb, 0);
5146
5147 if (find_edge (pred, e->dest) == NULL)
5148 redirect_edge_pred (e, pred);
5149 }
5150 }
5151
5152 /* Finish removing. */
5153 sel_remove_bb (empty_bb, remove_from_cfg_p);
5154 }
5155
5156 /* An implementation of create_basic_block hook, which additionally updates
5157 per-bb data structures. */
5158 static basic_block
5159 sel_create_basic_block (void *headp, void *endp, basic_block after)
5160 {
5161 basic_block new_bb;
5162 insn_t new_bb_note;
5163
5164 gcc_assert (flag_sel_sched_pipelining_outer_loops
5165 || last_added_blocks == NULL);
5166
5167 new_bb_note = get_bb_note_from_pool ();
5168
5169 if (new_bb_note == NULL_RTX)
5170 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5171 else
5172 {
5173 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5174 new_bb_note, after);
5175 new_bb->aux = NULL;
5176 }
5177
5178 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5179
5180 return new_bb;
5181 }
5182
5183 /* Implement sched_init_only_bb (). */
5184 static void
5185 sel_init_only_bb (basic_block bb, basic_block after)
5186 {
5187 gcc_assert (after == NULL);
5188
5189 extend_regions ();
5190 rgn_make_new_region_out_of_new_block (bb);
5191 }
5192
5193 /* Update the latch when we've splitted or merged it from FROM block to TO.
5194 This should be checked for all outer loops, too. */
5195 static void
5196 change_loops_latches (basic_block from, basic_block to)
5197 {
5198 gcc_assert (from != to);
5199
5200 if (current_loop_nest)
5201 {
5202 struct loop *loop;
5203
5204 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5205 if (considered_for_pipelining_p (loop) && loop->latch == from)
5206 {
5207 gcc_assert (loop == current_loop_nest);
5208 loop->latch = to;
5209 gcc_assert (loop_latch_edge (loop));
5210 }
5211 }
5212 }
5213
5214 /* Splits BB on two basic blocks, adding it to the region and extending
5215 per-bb data structures. Returns the newly created bb. */
5216 static basic_block
5217 sel_split_block (basic_block bb, rtx after)
5218 {
5219 basic_block new_bb;
5220 insn_t insn;
5221
5222 new_bb = sched_split_block_1 (bb, after);
5223 sel_add_bb (new_bb);
5224
5225 /* This should be called after sel_add_bb, because this uses
5226 CONTAINING_RGN for the new block, which is not yet initialized.
5227 FIXME: this function may be a no-op now. */
5228 change_loops_latches (bb, new_bb);
5229
5230 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5231 FOR_BB_INSNS (new_bb, insn)
5232 if (INSN_P (insn))
5233 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5234
5235 if (sel_bb_empty_p (bb))
5236 {
5237 gcc_assert (!sel_bb_empty_p (new_bb));
5238
5239 /* NEW_BB has data sets that need to be updated and BB holds
5240 data sets that should be removed. Exchange these data sets
5241 so that we won't lose BB's valid data sets. */
5242 exchange_data_sets (new_bb, bb);
5243 free_data_sets (bb);
5244 }
5245
5246 if (!sel_bb_empty_p (new_bb)
5247 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5248 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5249
5250 return new_bb;
5251 }
5252
5253 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5254 Otherwise returns NULL. */
5255 static rtx
5256 check_for_new_jump (basic_block bb, int prev_max_uid)
5257 {
5258 rtx end;
5259
5260 end = sel_bb_end (bb);
5261 if (end && INSN_UID (end) >= prev_max_uid)
5262 return end;
5263 return NULL;
5264 }
5265
5266 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5267 New means having UID at least equal to PREV_MAX_UID. */
5268 static rtx
5269 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5270 {
5271 rtx jump;
5272
5273 /* Return immediately if no new insns were emitted. */
5274 if (get_max_uid () == prev_max_uid)
5275 return NULL;
5276
5277 /* Now check both blocks for new jumps. It will ever be only one. */
5278 if ((jump = check_for_new_jump (from, prev_max_uid)))
5279 return jump;
5280
5281 if (jump_bb != NULL
5282 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5283 return jump;
5284 return NULL;
5285 }
5286
5287 /* Splits E and adds the newly created basic block to the current region.
5288 Returns this basic block. */
5289 basic_block
5290 sel_split_edge (edge e)
5291 {
5292 basic_block new_bb, src, other_bb = NULL;
5293 int prev_max_uid;
5294 rtx jump;
5295
5296 src = e->src;
5297 prev_max_uid = get_max_uid ();
5298 new_bb = split_edge (e);
5299
5300 if (flag_sel_sched_pipelining_outer_loops
5301 && current_loop_nest)
5302 {
5303 int i;
5304 basic_block bb;
5305
5306 /* Some of the basic blocks might not have been added to the loop.
5307 Add them here, until this is fixed in force_fallthru. */
5308 for (i = 0;
5309 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5310 if (!bb->loop_father)
5311 {
5312 add_bb_to_loop (bb, e->dest->loop_father);
5313
5314 gcc_assert (!other_bb && (new_bb->index != bb->index));
5315 other_bb = bb;
5316 }
5317 }
5318
5319 /* Add all last_added_blocks to the region. */
5320 sel_add_bb (NULL);
5321
5322 jump = find_new_jump (src, new_bb, prev_max_uid);
5323 if (jump)
5324 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5325
5326 /* Put the correct lv set on this block. */
5327 if (other_bb && !sel_bb_empty_p (other_bb))
5328 compute_live (sel_bb_head (other_bb));
5329
5330 return new_bb;
5331 }
5332
5333 /* Implement sched_create_empty_bb (). */
5334 static basic_block
5335 sel_create_empty_bb (basic_block after)
5336 {
5337 basic_block new_bb;
5338
5339 new_bb = sched_create_empty_bb_1 (after);
5340
5341 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5342 later. */
5343 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5344 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5345
5346 VEC_free (basic_block, heap, last_added_blocks);
5347 return new_bb;
5348 }
5349
5350 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5351 will be splitted to insert a check. */
5352 basic_block
5353 sel_create_recovery_block (insn_t orig_insn)
5354 {
5355 basic_block first_bb, second_bb, recovery_block;
5356 basic_block before_recovery = NULL;
5357 rtx jump;
5358
5359 first_bb = BLOCK_FOR_INSN (orig_insn);
5360 if (sel_bb_end_p (orig_insn))
5361 {
5362 /* Avoid introducing an empty block while splitting. */
5363 gcc_assert (single_succ_p (first_bb));
5364 second_bb = single_succ (first_bb);
5365 }
5366 else
5367 second_bb = sched_split_block (first_bb, orig_insn);
5368
5369 recovery_block = sched_create_recovery_block (&before_recovery);
5370 if (before_recovery)
5371 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5372
5373 gcc_assert (sel_bb_empty_p (recovery_block));
5374 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5375 if (current_loops != NULL)
5376 add_bb_to_loop (recovery_block, first_bb->loop_father);
5377
5378 sel_add_bb (recovery_block);
5379
5380 jump = BB_END (recovery_block);
5381 gcc_assert (sel_bb_head (recovery_block) == jump);
5382 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5383
5384 return recovery_block;
5385 }
5386
5387 /* Merge basic block B into basic block A. */
5388 void
5389 sel_merge_blocks (basic_block a, basic_block b)
5390 {
5391 sel_remove_empty_bb (b, true, false);
5392 merge_blocks (a, b);
5393
5394 change_loops_latches (b, a);
5395 }
5396
5397 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5398 data structures for possibly created bb and insns. Returns the newly
5399 added bb or NULL, when a bb was not needed. */
5400 void
5401 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5402 {
5403 basic_block jump_bb, src;
5404 int prev_max_uid;
5405 rtx jump;
5406
5407 gcc_assert (!sel_bb_empty_p (e->src));
5408
5409 src = e->src;
5410 prev_max_uid = get_max_uid ();
5411 jump_bb = redirect_edge_and_branch_force (e, to);
5412
5413 if (jump_bb != NULL)
5414 sel_add_bb (jump_bb);
5415
5416 /* This function could not be used to spoil the loop structure by now,
5417 thus we don't care to update anything. But check it to be sure. */
5418 if (current_loop_nest
5419 && pipelining_p)
5420 gcc_assert (loop_latch_edge (current_loop_nest));
5421
5422 jump = find_new_jump (src, jump_bb, prev_max_uid);
5423 if (jump)
5424 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5425 }
5426
5427 /* A wrapper for redirect_edge_and_branch. Return TRUE if blocks connected by
5428 redirected edge are in reverse topological order. */
5429 bool
5430 sel_redirect_edge_and_branch (edge e, basic_block to)
5431 {
5432 bool latch_edge_p;
5433 basic_block src;
5434 int prev_max_uid;
5435 rtx jump;
5436 edge redirected;
5437 bool recompute_toporder_p = false;
5438
5439 latch_edge_p = (pipelining_p
5440 && current_loop_nest
5441 && e == loop_latch_edge (current_loop_nest));
5442
5443 src = e->src;
5444 prev_max_uid = get_max_uid ();
5445
5446 redirected = redirect_edge_and_branch (e, to);
5447
5448 gcc_assert (redirected && last_added_blocks == NULL);
5449
5450 /* When we've redirected a latch edge, update the header. */
5451 if (latch_edge_p)
5452 {
5453 current_loop_nest->header = to;
5454 gcc_assert (loop_latch_edge (current_loop_nest));
5455 }
5456
5457 /* In rare situations, the topological relation between the blocks connected
5458 by the redirected edge can change (see PR42245 for an example). Update
5459 block_to_bb/bb_to_block. */
5460 if (CONTAINING_RGN (e->src->index) == CONTAINING_RGN (to->index)
5461 && BLOCK_TO_BB (e->src->index) > BLOCK_TO_BB (to->index))
5462 recompute_toporder_p = true;
5463
5464 jump = find_new_jump (src, NULL, prev_max_uid);
5465 if (jump)
5466 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5467
5468 return recompute_toporder_p;
5469 }
5470
5471 /* This variable holds the cfg hooks used by the selective scheduler. */
5472 static struct cfg_hooks sel_cfg_hooks;
5473
5474 /* Register sel-sched cfg hooks. */
5475 void
5476 sel_register_cfg_hooks (void)
5477 {
5478 sched_split_block = sel_split_block;
5479
5480 orig_cfg_hooks = get_cfg_hooks ();
5481 sel_cfg_hooks = orig_cfg_hooks;
5482
5483 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5484
5485 set_cfg_hooks (sel_cfg_hooks);
5486
5487 sched_init_only_bb = sel_init_only_bb;
5488 sched_split_block = sel_split_block;
5489 sched_create_empty_bb = sel_create_empty_bb;
5490 }
5491
5492 /* Unregister sel-sched cfg hooks. */
5493 void
5494 sel_unregister_cfg_hooks (void)
5495 {
5496 sched_create_empty_bb = NULL;
5497 sched_split_block = NULL;
5498 sched_init_only_bb = NULL;
5499
5500 set_cfg_hooks (orig_cfg_hooks);
5501 }
5502 \f
5503
5504 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5505 LABEL is where this jump should be directed. */
5506 rtx
5507 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5508 {
5509 rtx insn_rtx;
5510
5511 gcc_assert (!INSN_P (pattern));
5512
5513 start_sequence ();
5514
5515 if (label == NULL_RTX)
5516 insn_rtx = emit_insn (pattern);
5517 else if (DEBUG_INSN_P (label))
5518 insn_rtx = emit_debug_insn (pattern);
5519 else
5520 {
5521 insn_rtx = emit_jump_insn (pattern);
5522 JUMP_LABEL (insn_rtx) = label;
5523 ++LABEL_NUSES (label);
5524 }
5525
5526 end_sequence ();
5527
5528 sched_init_luids (NULL, NULL, NULL, NULL);
5529 sched_extend_target ();
5530 sched_deps_init (false);
5531
5532 /* Initialize INSN_CODE now. */
5533 recog_memoized (insn_rtx);
5534 return insn_rtx;
5535 }
5536
5537 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5538 must not be clonable. */
5539 vinsn_t
5540 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5541 {
5542 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5543
5544 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5545 return vinsn_create (insn_rtx, force_unique_p);
5546 }
5547
5548 /* Create a copy of INSN_RTX. */
5549 rtx
5550 create_copy_of_insn_rtx (rtx insn_rtx)
5551 {
5552 rtx res;
5553
5554 if (DEBUG_INSN_P (insn_rtx))
5555 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5556 insn_rtx);
5557
5558 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5559
5560 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5561 NULL_RTX);
5562 return res;
5563 }
5564
5565 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5566 void
5567 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5568 {
5569 vinsn_detach (EXPR_VINSN (expr));
5570
5571 EXPR_VINSN (expr) = new_vinsn;
5572 vinsn_attach (new_vinsn);
5573 }
5574
5575 /* Helpers for global init. */
5576 /* This structure is used to be able to call existing bundling mechanism
5577 and calculate insn priorities. */
5578 static struct haifa_sched_info sched_sel_haifa_sched_info =
5579 {
5580 NULL, /* init_ready_list */
5581 NULL, /* can_schedule_ready_p */
5582 NULL, /* schedule_more_p */
5583 NULL, /* new_ready */
5584 NULL, /* rgn_rank */
5585 sel_print_insn, /* rgn_print_insn */
5586 contributes_to_priority,
5587 NULL, /* insn_finishes_block_p */
5588
5589 NULL, NULL,
5590 NULL, NULL,
5591 0, 0,
5592
5593 NULL, /* add_remove_insn */
5594 NULL, /* begin_schedule_ready */
5595 NULL, /* advance_target_bb */
5596 SEL_SCHED | NEW_BBS
5597 };
5598
5599 /* Setup special insns used in the scheduler. */
5600 void
5601 setup_nop_and_exit_insns (void)
5602 {
5603 gcc_assert (nop_pattern == NULL_RTX
5604 && exit_insn == NULL_RTX);
5605
5606 nop_pattern = gen_nop ();
5607
5608 start_sequence ();
5609 emit_insn (nop_pattern);
5610 exit_insn = get_insns ();
5611 end_sequence ();
5612 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5613 }
5614
5615 /* Free special insns used in the scheduler. */
5616 void
5617 free_nop_and_exit_insns (void)
5618 {
5619 exit_insn = NULL_RTX;
5620 nop_pattern = NULL_RTX;
5621 }
5622
5623 /* Setup a special vinsn used in new insns initialization. */
5624 void
5625 setup_nop_vinsn (void)
5626 {
5627 nop_vinsn = vinsn_create (exit_insn, false);
5628 vinsn_attach (nop_vinsn);
5629 }
5630
5631 /* Free a special vinsn used in new insns initialization. */
5632 void
5633 free_nop_vinsn (void)
5634 {
5635 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5636 vinsn_detach (nop_vinsn);
5637 nop_vinsn = NULL;
5638 }
5639
5640 /* Call a set_sched_flags hook. */
5641 void
5642 sel_set_sched_flags (void)
5643 {
5644 /* ??? This means that set_sched_flags were called, and we decided to
5645 support speculation. However, set_sched_flags also modifies flags
5646 on current_sched_info, doing this only at global init. And we
5647 sometimes change c_s_i later. So put the correct flags again. */
5648 if (spec_info && targetm.sched.set_sched_flags)
5649 targetm.sched.set_sched_flags (spec_info);
5650 }
5651
5652 /* Setup pointers to global sched info structures. */
5653 void
5654 sel_setup_sched_infos (void)
5655 {
5656 rgn_setup_common_sched_info ();
5657
5658 memcpy (&sel_common_sched_info, common_sched_info,
5659 sizeof (sel_common_sched_info));
5660
5661 sel_common_sched_info.fix_recovery_cfg = NULL;
5662 sel_common_sched_info.add_block = NULL;
5663 sel_common_sched_info.estimate_number_of_insns
5664 = sel_estimate_number_of_insns;
5665 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5666 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5667
5668 common_sched_info = &sel_common_sched_info;
5669
5670 current_sched_info = &sched_sel_haifa_sched_info;
5671 current_sched_info->sched_max_insns_priority =
5672 get_rgn_sched_max_insns_priority ();
5673
5674 sel_set_sched_flags ();
5675 }
5676 \f
5677
5678 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5679 *BB_ORD_INDEX after that is increased. */
5680 static void
5681 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5682 {
5683 RGN_NR_BLOCKS (rgn) += 1;
5684 RGN_DONT_CALC_DEPS (rgn) = 0;
5685 RGN_HAS_REAL_EBB (rgn) = 0;
5686 CONTAINING_RGN (bb->index) = rgn;
5687 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5688 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5689 (*bb_ord_index)++;
5690
5691 /* FIXME: it is true only when not scheduling ebbs. */
5692 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5693 }
5694
5695 /* Functions to support pipelining of outer loops. */
5696
5697 /* Creates a new empty region and returns it's number. */
5698 static int
5699 sel_create_new_region (void)
5700 {
5701 int new_rgn_number = nr_regions;
5702
5703 RGN_NR_BLOCKS (new_rgn_number) = 0;
5704
5705 /* FIXME: This will work only when EBBs are not created. */
5706 if (new_rgn_number != 0)
5707 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5708 RGN_NR_BLOCKS (new_rgn_number - 1);
5709 else
5710 RGN_BLOCKS (new_rgn_number) = 0;
5711
5712 /* Set the blocks of the next region so the other functions may
5713 calculate the number of blocks in the region. */
5714 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5715 RGN_NR_BLOCKS (new_rgn_number);
5716
5717 nr_regions++;
5718
5719 return new_rgn_number;
5720 }
5721
5722 /* If X has a smaller topological sort number than Y, returns -1;
5723 if greater, returns 1. */
5724 static int
5725 bb_top_order_comparator (const void *x, const void *y)
5726 {
5727 basic_block bb1 = *(const basic_block *) x;
5728 basic_block bb2 = *(const basic_block *) y;
5729
5730 gcc_assert (bb1 == bb2
5731 || rev_top_order_index[bb1->index]
5732 != rev_top_order_index[bb2->index]);
5733
5734 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5735 bbs with greater number should go earlier. */
5736 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5737 return -1;
5738 else
5739 return 1;
5740 }
5741
5742 /* Create a region for LOOP and return its number. If we don't want
5743 to pipeline LOOP, return -1. */
5744 static int
5745 make_region_from_loop (struct loop *loop)
5746 {
5747 unsigned int i;
5748 int new_rgn_number = -1;
5749 struct loop *inner;
5750
5751 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5752 int bb_ord_index = 0;
5753 basic_block *loop_blocks;
5754 basic_block preheader_block;
5755
5756 if (loop->num_nodes
5757 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5758 return -1;
5759
5760 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5761 for (inner = loop->inner; inner; inner = inner->inner)
5762 if (flow_bb_inside_loop_p (inner, loop->latch))
5763 return -1;
5764
5765 loop->ninsns = num_loop_insns (loop);
5766 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5767 return -1;
5768
5769 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5770
5771 for (i = 0; i < loop->num_nodes; i++)
5772 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5773 {
5774 free (loop_blocks);
5775 return -1;
5776 }
5777
5778 preheader_block = loop_preheader_edge (loop)->src;
5779 gcc_assert (preheader_block);
5780 gcc_assert (loop_blocks[0] == loop->header);
5781
5782 new_rgn_number = sel_create_new_region ();
5783
5784 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5785 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5786
5787 for (i = 0; i < loop->num_nodes; i++)
5788 {
5789 /* Add only those blocks that haven't been scheduled in the inner loop.
5790 The exception is the basic blocks with bookkeeping code - they should
5791 be added to the region (and they actually don't belong to the loop
5792 body, but to the region containing that loop body). */
5793
5794 gcc_assert (new_rgn_number >= 0);
5795
5796 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5797 {
5798 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5799 new_rgn_number);
5800 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5801 }
5802 }
5803
5804 free (loop_blocks);
5805 MARK_LOOP_FOR_PIPELINING (loop);
5806
5807 return new_rgn_number;
5808 }
5809
5810 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5811 void
5812 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5813 {
5814 unsigned int i;
5815 int new_rgn_number = -1;
5816 basic_block bb;
5817
5818 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5819 int bb_ord_index = 0;
5820
5821 new_rgn_number = sel_create_new_region ();
5822
5823 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5824 {
5825 gcc_assert (new_rgn_number >= 0);
5826
5827 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5828 }
5829
5830 VEC_free (basic_block, heap, *loop_blocks);
5831 gcc_assert (*loop_blocks == NULL);
5832 }
5833
5834
5835 /* Create region(s) from loop nest LOOP, such that inner loops will be
5836 pipelined before outer loops. Returns true when a region for LOOP
5837 is created. */
5838 static bool
5839 make_regions_from_loop_nest (struct loop *loop)
5840 {
5841 struct loop *cur_loop;
5842 int rgn_number;
5843
5844 /* Traverse all inner nodes of the loop. */
5845 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5846 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5847 return false;
5848
5849 /* At this moment all regular inner loops should have been pipelined.
5850 Try to create a region from this loop. */
5851 rgn_number = make_region_from_loop (loop);
5852
5853 if (rgn_number < 0)
5854 return false;
5855
5856 VEC_safe_push (loop_p, heap, loop_nests, loop);
5857 return true;
5858 }
5859
5860 /* Initalize data structures needed. */
5861 void
5862 sel_init_pipelining (void)
5863 {
5864 /* Collect loop information to be used in outer loops pipelining. */
5865 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5866 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5867 | LOOPS_HAVE_RECORDED_EXITS
5868 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5869 current_loop_nest = NULL;
5870
5871 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5872 sbitmap_zero (bbs_in_loop_rgns);
5873
5874 recompute_rev_top_order ();
5875 }
5876
5877 /* Returns a struct loop for region RGN. */
5878 loop_p
5879 get_loop_nest_for_rgn (unsigned int rgn)
5880 {
5881 /* Regions created with extend_rgns don't have corresponding loop nests,
5882 because they don't represent loops. */
5883 if (rgn < VEC_length (loop_p, loop_nests))
5884 return VEC_index (loop_p, loop_nests, rgn);
5885 else
5886 return NULL;
5887 }
5888
5889 /* True when LOOP was included into pipelining regions. */
5890 bool
5891 considered_for_pipelining_p (struct loop *loop)
5892 {
5893 if (loop_depth (loop) == 0)
5894 return false;
5895
5896 /* Now, the loop could be too large or irreducible. Check whether its
5897 region is in LOOP_NESTS.
5898 We determine the region number of LOOP as the region number of its
5899 latch. We can't use header here, because this header could be
5900 just removed preheader and it will give us the wrong region number.
5901 Latch can't be used because it could be in the inner loop too. */
5902 if (LOOP_MARKED_FOR_PIPELINING_P (loop))
5903 {
5904 int rgn = CONTAINING_RGN (loop->latch->index);
5905
5906 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5907 return true;
5908 }
5909
5910 return false;
5911 }
5912
5913 /* Makes regions from the rest of the blocks, after loops are chosen
5914 for pipelining. */
5915 static void
5916 make_regions_from_the_rest (void)
5917 {
5918 int cur_rgn_blocks;
5919 int *loop_hdr;
5920 int i;
5921
5922 basic_block bb;
5923 edge e;
5924 edge_iterator ei;
5925 int *degree;
5926
5927 /* Index in rgn_bb_table where to start allocating new regions. */
5928 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5929
5930 /* Make regions from all the rest basic blocks - those that don't belong to
5931 any loop or belong to irreducible loops. Prepare the data structures
5932 for extend_rgns. */
5933
5934 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5935 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5936 loop. */
5937 loop_hdr = XNEWVEC (int, last_basic_block);
5938 degree = XCNEWVEC (int, last_basic_block);
5939
5940
5941 /* For each basic block that belongs to some loop assign the number
5942 of innermost loop it belongs to. */
5943 for (i = 0; i < last_basic_block; i++)
5944 loop_hdr[i] = -1;
5945
5946 FOR_EACH_BB (bb)
5947 {
5948 if (bb->loop_father && !bb->loop_father->num == 0
5949 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5950 loop_hdr[bb->index] = bb->loop_father->num;
5951 }
5952
5953 /* For each basic block degree is calculated as the number of incoming
5954 edges, that are going out of bbs that are not yet scheduled.
5955 The basic blocks that are scheduled have degree value of zero. */
5956 FOR_EACH_BB (bb)
5957 {
5958 degree[bb->index] = 0;
5959
5960 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5961 {
5962 FOR_EACH_EDGE (e, ei, bb->preds)
5963 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5964 degree[bb->index]++;
5965 }
5966 else
5967 degree[bb->index] = -1;
5968 }
5969
5970 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5971
5972 /* Any block that did not end up in a region is placed into a region
5973 by itself. */
5974 FOR_EACH_BB (bb)
5975 if (degree[bb->index] >= 0)
5976 {
5977 rgn_bb_table[cur_rgn_blocks] = bb->index;
5978 RGN_NR_BLOCKS (nr_regions) = 1;
5979 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5980 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5981 RGN_HAS_REAL_EBB (nr_regions) = 0;
5982 CONTAINING_RGN (bb->index) = nr_regions++;
5983 BLOCK_TO_BB (bb->index) = 0;
5984 }
5985
5986 free (degree);
5987 free (loop_hdr);
5988 }
5989
5990 /* Free data structures used in pipelining of loops. */
5991 void sel_finish_pipelining (void)
5992 {
5993 loop_iterator li;
5994 struct loop *loop;
5995
5996 /* Release aux fields so we don't free them later by mistake. */
5997 FOR_EACH_LOOP (li, loop, 0)
5998 loop->aux = NULL;
5999
6000 loop_optimizer_finalize ();
6001
6002 VEC_free (loop_p, heap, loop_nests);
6003
6004 free (rev_top_order_index);
6005 rev_top_order_index = NULL;
6006 }
6007
6008 /* This function replaces the find_rgns when
6009 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
6010 void
6011 sel_find_rgns (void)
6012 {
6013 sel_init_pipelining ();
6014 extend_regions ();
6015
6016 if (current_loops)
6017 {
6018 loop_p loop;
6019 loop_iterator li;
6020
6021 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
6022 ? LI_FROM_INNERMOST
6023 : LI_ONLY_INNERMOST))
6024 make_regions_from_loop_nest (loop);
6025 }
6026
6027 /* Make regions from all the rest basic blocks and schedule them.
6028 These blocks include blocks that don't belong to any loop or belong
6029 to irreducible loops. */
6030 make_regions_from_the_rest ();
6031
6032 /* We don't need bbs_in_loop_rgns anymore. */
6033 sbitmap_free (bbs_in_loop_rgns);
6034 bbs_in_loop_rgns = NULL;
6035 }
6036
6037 /* Adds the preheader blocks from previous loop to current region taking
6038 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
6039 This function is only used with -fsel-sched-pipelining-outer-loops. */
6040 void
6041 sel_add_loop_preheaders (void)
6042 {
6043 int i;
6044 basic_block bb;
6045 VEC(basic_block, heap) *preheader_blocks
6046 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
6047
6048 for (i = 0;
6049 VEC_iterate (basic_block, preheader_blocks, i, bb);
6050 i++)
6051 {
6052 VEC_safe_push (basic_block, heap, last_added_blocks, bb);
6053 sel_add_bb (bb);
6054 }
6055
6056 VEC_free (basic_block, heap, preheader_blocks);
6057 }
6058
6059 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
6060 Please note that the function should also work when pipelining_p is
6061 false, because it is used when deciding whether we should or should
6062 not reschedule pipelined code. */
6063 bool
6064 sel_is_loop_preheader_p (basic_block bb)
6065 {
6066 if (current_loop_nest)
6067 {
6068 struct loop *outer;
6069
6070 if (preheader_removed)
6071 return false;
6072
6073 /* Preheader is the first block in the region. */
6074 if (BLOCK_TO_BB (bb->index) == 0)
6075 return true;
6076
6077 /* We used to find a preheader with the topological information.
6078 Check that the above code is equivalent to what we did before. */
6079
6080 if (in_current_region_p (current_loop_nest->header))
6081 gcc_assert (!(BLOCK_TO_BB (bb->index)
6082 < BLOCK_TO_BB (current_loop_nest->header->index)));
6083
6084 /* Support the situation when the latch block of outer loop
6085 could be from here. */
6086 for (outer = loop_outer (current_loop_nest);
6087 outer;
6088 outer = loop_outer (outer))
6089 if (considered_for_pipelining_p (outer) && outer->latch == bb)
6090 gcc_unreachable ();
6091 }
6092
6093 return false;
6094 }
6095
6096 /* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
6097 bool
6098 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
6099 {
6100 basic_block jump_bb = BLOCK_FOR_INSN (jump);
6101
6102 /* It is not jump, jump with side-effects or jump can lead to several
6103 basic blocks. */
6104 if (!onlyjump_p (jump)
6105 || !any_uncondjump_p (jump))
6106 return false;
6107
6108 /* Several outgoing edges, abnormal edge or destination of jump is
6109 not DEST_BB. */
6110 if (EDGE_COUNT (jump_bb->succs) != 1
6111 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
6112 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
6113 return false;
6114
6115 /* If not anything of the upper. */
6116 return true;
6117 }
6118
6119 /* Removes the loop preheader from the current region and saves it in
6120 PREHEADER_BLOCKS of the father loop, so they will be added later to
6121 region that represents an outer loop. */
6122 static void
6123 sel_remove_loop_preheader (void)
6124 {
6125 int i, old_len;
6126 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6127 basic_block bb;
6128 bool all_empty_p = true;
6129 VEC(basic_block, heap) *preheader_blocks
6130 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6131
6132 gcc_assert (current_loop_nest);
6133 old_len = VEC_length (basic_block, preheader_blocks);
6134
6135 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6136 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6137 {
6138 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6139
6140 /* If the basic block belongs to region, but doesn't belong to
6141 corresponding loop, then it should be a preheader. */
6142 if (sel_is_loop_preheader_p (bb))
6143 {
6144 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6145 if (BB_END (bb) != bb_note (bb))
6146 all_empty_p = false;
6147 }
6148 }
6149
6150 /* Remove these blocks only after iterating over the whole region. */
6151 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6152 i >= old_len;
6153 i--)
6154 {
6155 bb = VEC_index (basic_block, preheader_blocks, i);
6156 sel_remove_bb (bb, false);
6157 }
6158
6159 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6160 {
6161 if (!all_empty_p)
6162 /* Immediately create new region from preheader. */
6163 make_region_from_loop_preheader (&preheader_blocks);
6164 else
6165 {
6166 /* If all preheader blocks are empty - dont create new empty region.
6167 Instead, remove them completely. */
6168 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6169 {
6170 edge e;
6171 edge_iterator ei;
6172 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6173
6174 /* Redirect all incoming edges to next basic block. */
6175 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6176 {
6177 if (! (e->flags & EDGE_FALLTHRU))
6178 redirect_edge_and_branch (e, bb->next_bb);
6179 else
6180 redirect_edge_succ (e, bb->next_bb);
6181 }
6182 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6183 delete_and_free_basic_block (bb);
6184
6185 /* Check if after deleting preheader there is a nonconditional
6186 jump in PREV_BB that leads to the next basic block NEXT_BB.
6187 If it is so - delete this jump and clear data sets of its
6188 basic block if it becomes empty. */
6189 if (next_bb->prev_bb == prev_bb
6190 && prev_bb != ENTRY_BLOCK_PTR
6191 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6192 {
6193 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6194 if (BB_END (prev_bb) == bb_note (prev_bb))
6195 free_data_sets (prev_bb);
6196 }
6197 }
6198 }
6199 VEC_free (basic_block, heap, preheader_blocks);
6200 }
6201 else
6202 /* Store preheader within the father's loop structure. */
6203 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6204 preheader_blocks);
6205 }
6206 #endif