invoke.texi (-fvar-tracking-assignments): New.
[gcc.git] / gcc / sel-sched-ir.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "toplev.h"
25 #include "rtl.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "toplev.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46
47 #ifdef INSN_SCHEDULING
48 #include "sel-sched-ir.h"
49 /* We don't have to use it except for sel_print_insn. */
50 #include "sel-sched-dump.h"
51
52 /* A vector holding bb info for whole scheduling pass. */
53 VEC(sel_global_bb_info_def, heap) *sel_global_bb_info = NULL;
54
55 /* A vector holding bb info. */
56 VEC(sel_region_bb_info_def, heap) *sel_region_bb_info = NULL;
57
58 /* A pool for allocating all lists. */
59 alloc_pool sched_lists_pool;
60
61 /* This contains information about successors for compute_av_set. */
62 struct succs_info current_succs;
63
64 /* Data structure to describe interaction with the generic scheduler utils. */
65 static struct common_sched_info_def sel_common_sched_info;
66
67 /* The loop nest being pipelined. */
68 struct loop *current_loop_nest;
69
70 /* LOOP_NESTS is a vector containing the corresponding loop nest for
71 each region. */
72 static VEC(loop_p, heap) *loop_nests = NULL;
73
74 /* Saves blocks already in loop regions, indexed by bb->index. */
75 static sbitmap bbs_in_loop_rgns = NULL;
76
77 /* CFG hooks that are saved before changing create_basic_block hook. */
78 static struct cfg_hooks orig_cfg_hooks;
79 \f
80
81 /* Array containing reverse topological index of function basic blocks,
82 indexed by BB->INDEX. */
83 static int *rev_top_order_index = NULL;
84
85 /* Length of the above array. */
86 static int rev_top_order_index_len = -1;
87
88 /* A regset pool structure. */
89 static struct
90 {
91 /* The stack to which regsets are returned. */
92 regset *v;
93
94 /* Its pointer. */
95 int n;
96
97 /* Its size. */
98 int s;
99
100 /* In VV we save all generated regsets so that, when destructing the
101 pool, we can compare it with V and check that every regset was returned
102 back to pool. */
103 regset *vv;
104
105 /* The pointer of VV stack. */
106 int nn;
107
108 /* Its size. */
109 int ss;
110
111 /* The difference between allocated and returned regsets. */
112 int diff;
113 } regset_pool = { NULL, 0, 0, NULL, 0, 0, 0 };
114
115 /* This represents the nop pool. */
116 static struct
117 {
118 /* The vector which holds previously emitted nops. */
119 insn_t *v;
120
121 /* Its pointer. */
122 int n;
123
124 /* Its size. */
125 int s;
126 } nop_pool = { NULL, 0, 0 };
127
128 /* The pool for basic block notes. */
129 static rtx_vec_t bb_note_pool;
130
131 /* A NOP pattern used to emit placeholder insns. */
132 rtx nop_pattern = NULL_RTX;
133 /* A special instruction that resides in EXIT_BLOCK.
134 EXIT_INSN is successor of the insns that lead to EXIT_BLOCK. */
135 rtx exit_insn = NULL_RTX;
136
137 /* TRUE if while scheduling current region, which is loop, its preheader
138 was removed. */
139 bool preheader_removed = false;
140 \f
141
142 /* Forward static declarations. */
143 static void fence_clear (fence_t);
144
145 static void deps_init_id (idata_t, insn_t, bool);
146 static void init_id_from_df (idata_t, insn_t, bool);
147 static expr_t set_insn_init (expr_t, vinsn_t, int);
148
149 static void cfg_preds (basic_block, insn_t **, int *);
150 static void prepare_insn_expr (insn_t, int);
151 static void free_history_vect (VEC (expr_history_def, heap) **);
152
153 static void move_bb_info (basic_block, basic_block);
154 static void remove_empty_bb (basic_block, bool);
155 static void sel_remove_loop_preheader (void);
156
157 static bool insn_is_the_only_one_in_bb_p (insn_t);
158 static void create_initial_data_sets (basic_block);
159
160 static void free_av_set (basic_block);
161 static void invalidate_av_set (basic_block);
162 static void extend_insn_data (void);
163 static void sel_init_new_insn (insn_t, int);
164 static void finish_insns (void);
165 \f
166 /* Various list functions. */
167
168 /* Copy an instruction list L. */
169 ilist_t
170 ilist_copy (ilist_t l)
171 {
172 ilist_t head = NULL, *tailp = &head;
173
174 while (l)
175 {
176 ilist_add (tailp, ILIST_INSN (l));
177 tailp = &ILIST_NEXT (*tailp);
178 l = ILIST_NEXT (l);
179 }
180
181 return head;
182 }
183
184 /* Invert an instruction list L. */
185 ilist_t
186 ilist_invert (ilist_t l)
187 {
188 ilist_t res = NULL;
189
190 while (l)
191 {
192 ilist_add (&res, ILIST_INSN (l));
193 l = ILIST_NEXT (l);
194 }
195
196 return res;
197 }
198
199 /* Add a new boundary to the LP list with parameters TO, PTR, and DC. */
200 void
201 blist_add (blist_t *lp, insn_t to, ilist_t ptr, deps_t dc)
202 {
203 bnd_t bnd;
204
205 _list_add (lp);
206 bnd = BLIST_BND (*lp);
207
208 BND_TO (bnd) = to;
209 BND_PTR (bnd) = ptr;
210 BND_AV (bnd) = NULL;
211 BND_AV1 (bnd) = NULL;
212 BND_DC (bnd) = dc;
213 }
214
215 /* Remove the list note pointed to by LP. */
216 void
217 blist_remove (blist_t *lp)
218 {
219 bnd_t b = BLIST_BND (*lp);
220
221 av_set_clear (&BND_AV (b));
222 av_set_clear (&BND_AV1 (b));
223 ilist_clear (&BND_PTR (b));
224
225 _list_remove (lp);
226 }
227
228 /* Init a fence tail L. */
229 void
230 flist_tail_init (flist_tail_t l)
231 {
232 FLIST_TAIL_HEAD (l) = NULL;
233 FLIST_TAIL_TAILP (l) = &FLIST_TAIL_HEAD (l);
234 }
235
236 /* Try to find fence corresponding to INSN in L. */
237 fence_t
238 flist_lookup (flist_t l, insn_t insn)
239 {
240 while (l)
241 {
242 if (FENCE_INSN (FLIST_FENCE (l)) == insn)
243 return FLIST_FENCE (l);
244
245 l = FLIST_NEXT (l);
246 }
247
248 return NULL;
249 }
250
251 /* Init the fields of F before running fill_insns. */
252 static void
253 init_fence_for_scheduling (fence_t f)
254 {
255 FENCE_BNDS (f) = NULL;
256 FENCE_PROCESSED_P (f) = false;
257 FENCE_SCHEDULED_P (f) = false;
258 }
259
260 /* Add new fence consisting of INSN and STATE to the list pointed to by LP. */
261 static void
262 flist_add (flist_t *lp, insn_t insn, state_t state, deps_t dc, void *tc,
263 insn_t last_scheduled_insn, VEC(rtx,gc) *executing_insns,
264 int *ready_ticks, int ready_ticks_size, insn_t sched_next,
265 int cycle, int cycle_issued_insns,
266 bool starts_cycle_p, bool after_stall_p)
267 {
268 fence_t f;
269
270 _list_add (lp);
271 f = FLIST_FENCE (*lp);
272
273 FENCE_INSN (f) = insn;
274
275 gcc_assert (state != NULL);
276 FENCE_STATE (f) = state;
277
278 FENCE_CYCLE (f) = cycle;
279 FENCE_ISSUED_INSNS (f) = cycle_issued_insns;
280 FENCE_STARTS_CYCLE_P (f) = starts_cycle_p;
281 FENCE_AFTER_STALL_P (f) = after_stall_p;
282
283 gcc_assert (dc != NULL);
284 FENCE_DC (f) = dc;
285
286 gcc_assert (tc != NULL || targetm.sched.alloc_sched_context == NULL);
287 FENCE_TC (f) = tc;
288
289 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
290 FENCE_EXECUTING_INSNS (f) = executing_insns;
291 FENCE_READY_TICKS (f) = ready_ticks;
292 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
293 FENCE_SCHED_NEXT (f) = sched_next;
294
295 init_fence_for_scheduling (f);
296 }
297
298 /* Remove the head node of the list pointed to by LP. */
299 static void
300 flist_remove (flist_t *lp)
301 {
302 if (FENCE_INSN (FLIST_FENCE (*lp)))
303 fence_clear (FLIST_FENCE (*lp));
304 _list_remove (lp);
305 }
306
307 /* Clear the fence list pointed to by LP. */
308 void
309 flist_clear (flist_t *lp)
310 {
311 while (*lp)
312 flist_remove (lp);
313 }
314
315 /* Add ORIGINAL_INSN the def list DL honoring CROSSES_CALL. */
316 void
317 def_list_add (def_list_t *dl, insn_t original_insn, bool crosses_call)
318 {
319 def_t d;
320
321 _list_add (dl);
322 d = DEF_LIST_DEF (*dl);
323
324 d->orig_insn = original_insn;
325 d->crosses_call = crosses_call;
326 }
327 \f
328
329 /* Functions to work with target contexts. */
330
331 /* Bulk target context. It is convenient for debugging purposes to ensure
332 that there are no uninitialized (null) target contexts. */
333 static tc_t bulk_tc = (tc_t) 1;
334
335 /* Target hooks wrappers. In the future we can provide some default
336 implementations for them. */
337
338 /* Allocate a store for the target context. */
339 static tc_t
340 alloc_target_context (void)
341 {
342 return (targetm.sched.alloc_sched_context
343 ? targetm.sched.alloc_sched_context () : bulk_tc);
344 }
345
346 /* Init target context TC.
347 If CLEAN_P is true, then make TC as it is beginning of the scheduler.
348 Overwise, copy current backend context to TC. */
349 static void
350 init_target_context (tc_t tc, bool clean_p)
351 {
352 if (targetm.sched.init_sched_context)
353 targetm.sched.init_sched_context (tc, clean_p);
354 }
355
356 /* Allocate and initialize a target context. Meaning of CLEAN_P is the same as
357 int init_target_context (). */
358 tc_t
359 create_target_context (bool clean_p)
360 {
361 tc_t tc = alloc_target_context ();
362
363 init_target_context (tc, clean_p);
364 return tc;
365 }
366
367 /* Copy TC to the current backend context. */
368 void
369 set_target_context (tc_t tc)
370 {
371 if (targetm.sched.set_sched_context)
372 targetm.sched.set_sched_context (tc);
373 }
374
375 /* TC is about to be destroyed. Free any internal data. */
376 static void
377 clear_target_context (tc_t tc)
378 {
379 if (targetm.sched.clear_sched_context)
380 targetm.sched.clear_sched_context (tc);
381 }
382
383 /* Clear and free it. */
384 static void
385 delete_target_context (tc_t tc)
386 {
387 clear_target_context (tc);
388
389 if (targetm.sched.free_sched_context)
390 targetm.sched.free_sched_context (tc);
391 }
392
393 /* Make a copy of FROM in TO.
394 NB: May be this should be a hook. */
395 static void
396 copy_target_context (tc_t to, tc_t from)
397 {
398 tc_t tmp = create_target_context (false);
399
400 set_target_context (from);
401 init_target_context (to, false);
402
403 set_target_context (tmp);
404 delete_target_context (tmp);
405 }
406
407 /* Create a copy of TC. */
408 static tc_t
409 create_copy_of_target_context (tc_t tc)
410 {
411 tc_t copy = alloc_target_context ();
412
413 copy_target_context (copy, tc);
414
415 return copy;
416 }
417
418 /* Clear TC and initialize it according to CLEAN_P. The meaning of CLEAN_P
419 is the same as in init_target_context (). */
420 void
421 reset_target_context (tc_t tc, bool clean_p)
422 {
423 clear_target_context (tc);
424 init_target_context (tc, clean_p);
425 }
426 \f
427 /* Functions to work with dependence contexts.
428 Dc (aka deps context, aka deps_t, aka struct deps *) is short for dependence
429 context. It accumulates information about processed insns to decide if
430 current insn is dependent on the processed ones. */
431
432 /* Make a copy of FROM in TO. */
433 static void
434 copy_deps_context (deps_t to, deps_t from)
435 {
436 init_deps (to);
437 deps_join (to, from);
438 }
439
440 /* Allocate store for dep context. */
441 static deps_t
442 alloc_deps_context (void)
443 {
444 return XNEW (struct deps);
445 }
446
447 /* Allocate and initialize dep context. */
448 static deps_t
449 create_deps_context (void)
450 {
451 deps_t dc = alloc_deps_context ();
452
453 init_deps (dc);
454 return dc;
455 }
456
457 /* Create a copy of FROM. */
458 static deps_t
459 create_copy_of_deps_context (deps_t from)
460 {
461 deps_t to = alloc_deps_context ();
462
463 copy_deps_context (to, from);
464 return to;
465 }
466
467 /* Clean up internal data of DC. */
468 static void
469 clear_deps_context (deps_t dc)
470 {
471 free_deps (dc);
472 }
473
474 /* Clear and free DC. */
475 static void
476 delete_deps_context (deps_t dc)
477 {
478 clear_deps_context (dc);
479 free (dc);
480 }
481
482 /* Clear and init DC. */
483 static void
484 reset_deps_context (deps_t dc)
485 {
486 clear_deps_context (dc);
487 init_deps (dc);
488 }
489
490 /* This structure describes the dependence analysis hooks for advancing
491 dependence context. */
492 static struct sched_deps_info_def advance_deps_context_sched_deps_info =
493 {
494 NULL,
495
496 NULL, /* start_insn */
497 NULL, /* finish_insn */
498 NULL, /* start_lhs */
499 NULL, /* finish_lhs */
500 NULL, /* start_rhs */
501 NULL, /* finish_rhs */
502 haifa_note_reg_set,
503 haifa_note_reg_clobber,
504 haifa_note_reg_use,
505 NULL, /* note_mem_dep */
506 NULL, /* note_dep */
507
508 0, 0, 0
509 };
510
511 /* Process INSN and add its impact on DC. */
512 void
513 advance_deps_context (deps_t dc, insn_t insn)
514 {
515 sched_deps_info = &advance_deps_context_sched_deps_info;
516 deps_analyze_insn (dc, insn);
517 }
518 \f
519
520 /* Functions to work with DFA states. */
521
522 /* Allocate store for a DFA state. */
523 static state_t
524 state_alloc (void)
525 {
526 return xmalloc (dfa_state_size);
527 }
528
529 /* Allocate and initialize DFA state. */
530 static state_t
531 state_create (void)
532 {
533 state_t state = state_alloc ();
534
535 state_reset (state);
536 advance_state (state);
537 return state;
538 }
539
540 /* Free DFA state. */
541 static void
542 state_free (state_t state)
543 {
544 free (state);
545 }
546
547 /* Make a copy of FROM in TO. */
548 static void
549 state_copy (state_t to, state_t from)
550 {
551 memcpy (to, from, dfa_state_size);
552 }
553
554 /* Create a copy of FROM. */
555 static state_t
556 state_create_copy (state_t from)
557 {
558 state_t to = state_alloc ();
559
560 state_copy (to, from);
561 return to;
562 }
563 \f
564
565 /* Functions to work with fences. */
566
567 /* Clear the fence. */
568 static void
569 fence_clear (fence_t f)
570 {
571 state_t s = FENCE_STATE (f);
572 deps_t dc = FENCE_DC (f);
573 void *tc = FENCE_TC (f);
574
575 ilist_clear (&FENCE_BNDS (f));
576
577 gcc_assert ((s != NULL && dc != NULL && tc != NULL)
578 || (s == NULL && dc == NULL && tc == NULL));
579
580 if (s != NULL)
581 free (s);
582
583 if (dc != NULL)
584 delete_deps_context (dc);
585
586 if (tc != NULL)
587 delete_target_context (tc);
588 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
589 free (FENCE_READY_TICKS (f));
590 FENCE_READY_TICKS (f) = NULL;
591 }
592
593 /* Init a list of fences with successors of OLD_FENCE. */
594 void
595 init_fences (insn_t old_fence)
596 {
597 insn_t succ;
598 succ_iterator si;
599 bool first = true;
600 int ready_ticks_size = get_max_uid () + 1;
601
602 FOR_EACH_SUCC_1 (succ, si, old_fence,
603 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
604 {
605
606 if (first)
607 first = false;
608 else
609 gcc_assert (flag_sel_sched_pipelining_outer_loops);
610
611 flist_add (&fences, succ,
612 state_create (),
613 create_deps_context () /* dc */,
614 create_target_context (true) /* tc */,
615 NULL_RTX /* last_scheduled_insn */,
616 NULL, /* executing_insns */
617 XCNEWVEC (int, ready_ticks_size), /* ready_ticks */
618 ready_ticks_size,
619 NULL_RTX /* sched_next */,
620 1 /* cycle */, 0 /* cycle_issued_insns */,
621 1 /* starts_cycle_p */, 0 /* after_stall_p */);
622 }
623 }
624
625 /* Merges two fences (filling fields of fence F with resulting values) by
626 following rules: 1) state, target context and last scheduled insn are
627 propagated from fallthrough edge if it is available;
628 2) deps context and cycle is propagated from more probable edge;
629 3) all other fields are set to corresponding constant values.
630
631 INSN, STATE, DC, TC, LAST_SCHEDULED_INSN, EXECUTING_INSNS,
632 READY_TICKS, READY_TICKS_SIZE, SCHED_NEXT, CYCLE and AFTER_STALL_P
633 are the corresponding fields of the second fence. */
634 static void
635 merge_fences (fence_t f, insn_t insn,
636 state_t state, deps_t dc, void *tc,
637 rtx last_scheduled_insn, VEC(rtx, gc) *executing_insns,
638 int *ready_ticks, int ready_ticks_size,
639 rtx sched_next, int cycle, bool after_stall_p)
640 {
641 insn_t last_scheduled_insn_old = FENCE_LAST_SCHEDULED_INSN (f);
642
643 gcc_assert (sel_bb_head_p (FENCE_INSN (f))
644 && !sched_next && !FENCE_SCHED_NEXT (f));
645
646 /* Check if we can decide which path fences came.
647 If we can't (or don't want to) - reset all. */
648 if (last_scheduled_insn == NULL
649 || last_scheduled_insn_old == NULL
650 /* This is a case when INSN is reachable on several paths from
651 one insn (this can happen when pipelining of outer loops is on and
652 there are two edges: one going around of inner loop and the other -
653 right through it; in such case just reset everything). */
654 || last_scheduled_insn == last_scheduled_insn_old)
655 {
656 state_reset (FENCE_STATE (f));
657 state_free (state);
658
659 reset_deps_context (FENCE_DC (f));
660 delete_deps_context (dc);
661
662 reset_target_context (FENCE_TC (f), true);
663 delete_target_context (tc);
664
665 if (cycle > FENCE_CYCLE (f))
666 FENCE_CYCLE (f) = cycle;
667
668 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
669 VEC_free (rtx, gc, executing_insns);
670 free (ready_ticks);
671 if (FENCE_EXECUTING_INSNS (f))
672 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
673 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
674 if (FENCE_READY_TICKS (f))
675 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
676 }
677 else
678 {
679 edge edge_old = NULL, edge_new = NULL;
680 edge candidate;
681 succ_iterator si;
682 insn_t succ;
683
684 /* Find fallthrough edge. */
685 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb);
686 candidate = find_fallthru_edge (BLOCK_FOR_INSN (insn)->prev_bb);
687
688 if (!candidate
689 || (candidate->src != BLOCK_FOR_INSN (last_scheduled_insn)
690 && candidate->src != BLOCK_FOR_INSN (last_scheduled_insn_old)))
691 {
692 /* No fallthrough edge leading to basic block of INSN. */
693 state_reset (FENCE_STATE (f));
694 state_free (state);
695
696 reset_target_context (FENCE_TC (f), true);
697 delete_target_context (tc);
698
699 FENCE_LAST_SCHEDULED_INSN (f) = NULL;
700 }
701 else
702 if (candidate->src == BLOCK_FOR_INSN (last_scheduled_insn))
703 {
704 /* Would be weird if same insn is successor of several fallthrough
705 edges. */
706 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
707 != BLOCK_FOR_INSN (last_scheduled_insn_old));
708
709 state_free (FENCE_STATE (f));
710 FENCE_STATE (f) = state;
711
712 delete_target_context (FENCE_TC (f));
713 FENCE_TC (f) = tc;
714
715 FENCE_LAST_SCHEDULED_INSN (f) = last_scheduled_insn;
716 }
717 else
718 {
719 /* Leave STATE, TC and LAST_SCHEDULED_INSN fields untouched. */
720 state_free (state);
721 delete_target_context (tc);
722
723 gcc_assert (BLOCK_FOR_INSN (insn)->prev_bb
724 != BLOCK_FOR_INSN (last_scheduled_insn));
725 }
726
727 /* Find edge of first predecessor (last_scheduled_insn_old->insn). */
728 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn_old,
729 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
730 {
731 if (succ == insn)
732 {
733 /* No same successor allowed from several edges. */
734 gcc_assert (!edge_old);
735 edge_old = si.e1;
736 }
737 }
738 /* Find edge of second predecessor (last_scheduled_insn->insn). */
739 FOR_EACH_SUCC_1 (succ, si, last_scheduled_insn,
740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
741 {
742 if (succ == insn)
743 {
744 /* No same successor allowed from several edges. */
745 gcc_assert (!edge_new);
746 edge_new = si.e1;
747 }
748 }
749
750 /* Check if we can choose most probable predecessor. */
751 if (edge_old == NULL || edge_new == NULL)
752 {
753 reset_deps_context (FENCE_DC (f));
754 delete_deps_context (dc);
755 VEC_free (rtx, gc, executing_insns);
756 free (ready_ticks);
757
758 FENCE_CYCLE (f) = MAX (FENCE_CYCLE (f), cycle);
759 if (FENCE_EXECUTING_INSNS (f))
760 VEC_block_remove (rtx, FENCE_EXECUTING_INSNS (f), 0,
761 VEC_length (rtx, FENCE_EXECUTING_INSNS (f)));
762 if (FENCE_READY_TICKS (f))
763 memset (FENCE_READY_TICKS (f), 0, FENCE_READY_TICKS_SIZE (f));
764 }
765 else
766 if (edge_new->probability > edge_old->probability)
767 {
768 delete_deps_context (FENCE_DC (f));
769 FENCE_DC (f) = dc;
770 VEC_free (rtx, gc, FENCE_EXECUTING_INSNS (f));
771 FENCE_EXECUTING_INSNS (f) = executing_insns;
772 free (FENCE_READY_TICKS (f));
773 FENCE_READY_TICKS (f) = ready_ticks;
774 FENCE_READY_TICKS_SIZE (f) = ready_ticks_size;
775 FENCE_CYCLE (f) = cycle;
776 }
777 else
778 {
779 /* Leave DC and CYCLE untouched. */
780 delete_deps_context (dc);
781 VEC_free (rtx, gc, executing_insns);
782 free (ready_ticks);
783 }
784 }
785
786 /* Fill remaining invariant fields. */
787 if (after_stall_p)
788 FENCE_AFTER_STALL_P (f) = 1;
789
790 FENCE_ISSUED_INSNS (f) = 0;
791 FENCE_STARTS_CYCLE_P (f) = 1;
792 FENCE_SCHED_NEXT (f) = NULL;
793 }
794
795 /* Add a new fence to NEW_FENCES list, initializing it from all
796 other parameters. */
797 static void
798 add_to_fences (flist_tail_t new_fences, insn_t insn,
799 state_t state, deps_t dc, void *tc, rtx last_scheduled_insn,
800 VEC(rtx, gc) *executing_insns, int *ready_ticks,
801 int ready_ticks_size, rtx sched_next, int cycle,
802 int cycle_issued_insns, bool starts_cycle_p, bool after_stall_p)
803 {
804 fence_t f = flist_lookup (FLIST_TAIL_HEAD (new_fences), insn);
805
806 if (! f)
807 {
808 flist_add (FLIST_TAIL_TAILP (new_fences), insn, state, dc, tc,
809 last_scheduled_insn, executing_insns, ready_ticks,
810 ready_ticks_size, sched_next, cycle, cycle_issued_insns,
811 starts_cycle_p, after_stall_p);
812
813 FLIST_TAIL_TAILP (new_fences)
814 = &FLIST_NEXT (*FLIST_TAIL_TAILP (new_fences));
815 }
816 else
817 {
818 merge_fences (f, insn, state, dc, tc, last_scheduled_insn,
819 executing_insns, ready_ticks, ready_ticks_size,
820 sched_next, cycle, after_stall_p);
821 }
822 }
823
824 /* Move the first fence in the OLD_FENCES list to NEW_FENCES. */
825 void
826 move_fence_to_fences (flist_t old_fences, flist_tail_t new_fences)
827 {
828 fence_t f, old;
829 flist_t *tailp = FLIST_TAIL_TAILP (new_fences);
830
831 old = FLIST_FENCE (old_fences);
832 f = flist_lookup (FLIST_TAIL_HEAD (new_fences),
833 FENCE_INSN (FLIST_FENCE (old_fences)));
834 if (f)
835 {
836 merge_fences (f, old->insn, old->state, old->dc, old->tc,
837 old->last_scheduled_insn, old->executing_insns,
838 old->ready_ticks, old->ready_ticks_size,
839 old->sched_next, old->cycle,
840 old->after_stall_p);
841 }
842 else
843 {
844 _list_add (tailp);
845 FLIST_TAIL_TAILP (new_fences) = &FLIST_NEXT (*tailp);
846 *FLIST_FENCE (*tailp) = *old;
847 init_fence_for_scheduling (FLIST_FENCE (*tailp));
848 }
849 FENCE_INSN (old) = NULL;
850 }
851
852 /* Add a new fence to NEW_FENCES list and initialize most of its data
853 as a clean one. */
854 void
855 add_clean_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
856 {
857 int ready_ticks_size = get_max_uid () + 1;
858
859 add_to_fences (new_fences,
860 succ, state_create (), create_deps_context (),
861 create_target_context (true),
862 NULL_RTX, NULL,
863 XCNEWVEC (int, ready_ticks_size), ready_ticks_size,
864 NULL_RTX, FENCE_CYCLE (fence) + 1,
865 0, 1, FENCE_AFTER_STALL_P (fence));
866 }
867
868 /* Add a new fence to NEW_FENCES list and initialize all of its data
869 from FENCE and SUCC. */
870 void
871 add_dirty_fence_to_fences (flist_tail_t new_fences, insn_t succ, fence_t fence)
872 {
873 int * new_ready_ticks
874 = XNEWVEC (int, FENCE_READY_TICKS_SIZE (fence));
875
876 memcpy (new_ready_ticks, FENCE_READY_TICKS (fence),
877 FENCE_READY_TICKS_SIZE (fence) * sizeof (int));
878 add_to_fences (new_fences,
879 succ, state_create_copy (FENCE_STATE (fence)),
880 create_copy_of_deps_context (FENCE_DC (fence)),
881 create_copy_of_target_context (FENCE_TC (fence)),
882 FENCE_LAST_SCHEDULED_INSN (fence),
883 VEC_copy (rtx, gc, FENCE_EXECUTING_INSNS (fence)),
884 new_ready_ticks,
885 FENCE_READY_TICKS_SIZE (fence),
886 FENCE_SCHED_NEXT (fence),
887 FENCE_CYCLE (fence),
888 FENCE_ISSUED_INSNS (fence),
889 FENCE_STARTS_CYCLE_P (fence),
890 FENCE_AFTER_STALL_P (fence));
891 }
892 \f
893
894 /* Functions to work with regset and nop pools. */
895
896 /* Returns the new regset from pool. It might have some of the bits set
897 from the previous usage. */
898 regset
899 get_regset_from_pool (void)
900 {
901 regset rs;
902
903 if (regset_pool.n != 0)
904 rs = regset_pool.v[--regset_pool.n];
905 else
906 /* We need to create the regset. */
907 {
908 rs = ALLOC_REG_SET (&reg_obstack);
909
910 if (regset_pool.nn == regset_pool.ss)
911 regset_pool.vv = XRESIZEVEC (regset, regset_pool.vv,
912 (regset_pool.ss = 2 * regset_pool.ss + 1));
913 regset_pool.vv[regset_pool.nn++] = rs;
914 }
915
916 regset_pool.diff++;
917
918 return rs;
919 }
920
921 /* Same as above, but returns the empty regset. */
922 regset
923 get_clear_regset_from_pool (void)
924 {
925 regset rs = get_regset_from_pool ();
926
927 CLEAR_REG_SET (rs);
928 return rs;
929 }
930
931 /* Return regset RS to the pool for future use. */
932 void
933 return_regset_to_pool (regset rs)
934 {
935 regset_pool.diff--;
936
937 if (regset_pool.n == regset_pool.s)
938 regset_pool.v = XRESIZEVEC (regset, regset_pool.v,
939 (regset_pool.s = 2 * regset_pool.s + 1));
940 regset_pool.v[regset_pool.n++] = rs;
941 }
942
943 #ifdef ENABLE_CHECKING
944 /* This is used as a qsort callback for sorting regset pool stacks.
945 X and XX are addresses of two regsets. They are never equal. */
946 static int
947 cmp_v_in_regset_pool (const void *x, const void *xx)
948 {
949 return *((const regset *) x) - *((const regset *) xx);
950 }
951 #endif
952
953 /* Free the regset pool possibly checking for memory leaks. */
954 void
955 free_regset_pool (void)
956 {
957 #ifdef ENABLE_CHECKING
958 {
959 regset *v = regset_pool.v;
960 int i = 0;
961 int n = regset_pool.n;
962
963 regset *vv = regset_pool.vv;
964 int ii = 0;
965 int nn = regset_pool.nn;
966
967 int diff = 0;
968
969 gcc_assert (n <= nn);
970
971 /* Sort both vectors so it will be possible to compare them. */
972 qsort (v, n, sizeof (*v), cmp_v_in_regset_pool);
973 qsort (vv, nn, sizeof (*vv), cmp_v_in_regset_pool);
974
975 while (ii < nn)
976 {
977 if (v[i] == vv[ii])
978 i++;
979 else
980 /* VV[II] was lost. */
981 diff++;
982
983 ii++;
984 }
985
986 gcc_assert (diff == regset_pool.diff);
987 }
988 #endif
989
990 /* If not true - we have a memory leak. */
991 gcc_assert (regset_pool.diff == 0);
992
993 while (regset_pool.n)
994 {
995 --regset_pool.n;
996 FREE_REG_SET (regset_pool.v[regset_pool.n]);
997 }
998
999 free (regset_pool.v);
1000 regset_pool.v = NULL;
1001 regset_pool.s = 0;
1002
1003 free (regset_pool.vv);
1004 regset_pool.vv = NULL;
1005 regset_pool.nn = 0;
1006 regset_pool.ss = 0;
1007
1008 regset_pool.diff = 0;
1009 }
1010 \f
1011
1012 /* Functions to work with nop pools. NOP insns are used as temporary
1013 placeholders of the insns being scheduled to allow correct update of
1014 the data sets. When update is finished, NOPs are deleted. */
1015
1016 /* A vinsn that is used to represent a nop. This vinsn is shared among all
1017 nops sel-sched generates. */
1018 static vinsn_t nop_vinsn = NULL;
1019
1020 /* Emit a nop before INSN, taking it from pool. */
1021 insn_t
1022 get_nop_from_pool (insn_t insn)
1023 {
1024 insn_t nop;
1025 bool old_p = nop_pool.n != 0;
1026 int flags;
1027
1028 if (old_p)
1029 nop = nop_pool.v[--nop_pool.n];
1030 else
1031 nop = nop_pattern;
1032
1033 nop = emit_insn_before (nop, insn);
1034
1035 if (old_p)
1036 flags = INSN_INIT_TODO_SSID;
1037 else
1038 flags = INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID;
1039
1040 set_insn_init (INSN_EXPR (insn), nop_vinsn, INSN_SEQNO (insn));
1041 sel_init_new_insn (nop, flags);
1042
1043 return nop;
1044 }
1045
1046 /* Remove NOP from the instruction stream and return it to the pool. */
1047 void
1048 return_nop_to_pool (insn_t nop, bool full_tidying)
1049 {
1050 gcc_assert (INSN_IN_STREAM_P (nop));
1051 sel_remove_insn (nop, false, full_tidying);
1052
1053 if (nop_pool.n == nop_pool.s)
1054 nop_pool.v = XRESIZEVEC (rtx, nop_pool.v,
1055 (nop_pool.s = 2 * nop_pool.s + 1));
1056 nop_pool.v[nop_pool.n++] = nop;
1057 }
1058
1059 /* Free the nop pool. */
1060 void
1061 free_nop_pool (void)
1062 {
1063 nop_pool.n = 0;
1064 nop_pool.s = 0;
1065 free (nop_pool.v);
1066 nop_pool.v = NULL;
1067 }
1068 \f
1069
1070 /* Skip unspec to support ia64 speculation. Called from rtx_equal_p_cb.
1071 The callback is given two rtxes XX and YY and writes the new rtxes
1072 to NX and NY in case some needs to be skipped. */
1073 static int
1074 skip_unspecs_callback (const_rtx *xx, const_rtx *yy, rtx *nx, rtx* ny)
1075 {
1076 const_rtx x = *xx;
1077 const_rtx y = *yy;
1078
1079 if (GET_CODE (x) == UNSPEC
1080 && (targetm.sched.skip_rtx_p == NULL
1081 || targetm.sched.skip_rtx_p (x)))
1082 {
1083 *nx = XVECEXP (x, 0, 0);
1084 *ny = CONST_CAST_RTX (y);
1085 return 1;
1086 }
1087
1088 if (GET_CODE (y) == UNSPEC
1089 && (targetm.sched.skip_rtx_p == NULL
1090 || targetm.sched.skip_rtx_p (y)))
1091 {
1092 *nx = CONST_CAST_RTX (x);
1093 *ny = XVECEXP (y, 0, 0);
1094 return 1;
1095 }
1096
1097 return 0;
1098 }
1099
1100 /* Callback, called from hash_rtx_cb. Helps to hash UNSPEC rtx X in a correct way
1101 to support ia64 speculation. When changes are needed, new rtx X and new mode
1102 NMODE are written, and the callback returns true. */
1103 static int
1104 hash_with_unspec_callback (const_rtx x, enum machine_mode mode ATTRIBUTE_UNUSED,
1105 rtx *nx, enum machine_mode* nmode)
1106 {
1107 if (GET_CODE (x) == UNSPEC
1108 && targetm.sched.skip_rtx_p
1109 && targetm.sched.skip_rtx_p (x))
1110 {
1111 *nx = XVECEXP (x, 0 ,0);
1112 *nmode = VOIDmode;
1113 return 1;
1114 }
1115
1116 return 0;
1117 }
1118
1119 /* Returns LHS and RHS are ok to be scheduled separately. */
1120 static bool
1121 lhs_and_rhs_separable_p (rtx lhs, rtx rhs)
1122 {
1123 if (lhs == NULL || rhs == NULL)
1124 return false;
1125
1126 /* Do not schedule CONST, CONST_INT and CONST_DOUBLE etc as rhs: no point
1127 to use reg, if const can be used. Moreover, scheduling const as rhs may
1128 lead to mode mismatch cause consts don't have modes but they could be
1129 merged from branches where the same const used in different modes. */
1130 if (CONSTANT_P (rhs))
1131 return false;
1132
1133 /* ??? Do not rename predicate registers to avoid ICEs in bundling. */
1134 if (COMPARISON_P (rhs))
1135 return false;
1136
1137 /* Do not allow single REG to be an rhs. */
1138 if (REG_P (rhs))
1139 return false;
1140
1141 /* See comment at find_used_regs_1 (*1) for explanation of this
1142 restriction. */
1143 /* FIXME: remove this later. */
1144 if (MEM_P (lhs))
1145 return false;
1146
1147 /* This will filter all tricky things like ZERO_EXTRACT etc.
1148 For now we don't handle it. */
1149 if (!REG_P (lhs) && !MEM_P (lhs))
1150 return false;
1151
1152 return true;
1153 }
1154
1155 /* Initialize vinsn VI for INSN. Only for use from vinsn_create (). When
1156 FORCE_UNIQUE_P is true, the resulting vinsn will not be clonable. This is
1157 used e.g. for insns from recovery blocks. */
1158 static void
1159 vinsn_init (vinsn_t vi, insn_t insn, bool force_unique_p)
1160 {
1161 hash_rtx_callback_function hrcf;
1162 int insn_class;
1163
1164 VINSN_INSN_RTX (vi) = insn;
1165 VINSN_COUNT (vi) = 0;
1166 vi->cost = -1;
1167
1168 if (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL)
1169 init_id_from_df (VINSN_ID (vi), insn, force_unique_p);
1170 else
1171 deps_init_id (VINSN_ID (vi), insn, force_unique_p);
1172
1173 /* Hash vinsn depending on whether it is separable or not. */
1174 hrcf = targetm.sched.skip_rtx_p ? hash_with_unspec_callback : NULL;
1175 if (VINSN_SEPARABLE_P (vi))
1176 {
1177 rtx rhs = VINSN_RHS (vi);
1178
1179 VINSN_HASH (vi) = hash_rtx_cb (rhs, GET_MODE (rhs),
1180 NULL, NULL, false, hrcf);
1181 VINSN_HASH_RTX (vi) = hash_rtx_cb (VINSN_PATTERN (vi),
1182 VOIDmode, NULL, NULL,
1183 false, hrcf);
1184 }
1185 else
1186 {
1187 VINSN_HASH (vi) = hash_rtx_cb (VINSN_PATTERN (vi), VOIDmode,
1188 NULL, NULL, false, hrcf);
1189 VINSN_HASH_RTX (vi) = VINSN_HASH (vi);
1190 }
1191
1192 insn_class = haifa_classify_insn (insn);
1193 if (insn_class >= 2
1194 && (!targetm.sched.get_insn_spec_ds
1195 || ((targetm.sched.get_insn_spec_ds (insn) & BEGIN_CONTROL)
1196 == 0)))
1197 VINSN_MAY_TRAP_P (vi) = true;
1198 else
1199 VINSN_MAY_TRAP_P (vi) = false;
1200 }
1201
1202 /* Indicate that VI has become the part of an rtx object. */
1203 void
1204 vinsn_attach (vinsn_t vi)
1205 {
1206 /* Assert that VI is not pending for deletion. */
1207 gcc_assert (VINSN_INSN_RTX (vi));
1208
1209 VINSN_COUNT (vi)++;
1210 }
1211
1212 /* Create and init VI from the INSN. Use UNIQUE_P for determining the correct
1213 VINSN_TYPE (VI). */
1214 static vinsn_t
1215 vinsn_create (insn_t insn, bool force_unique_p)
1216 {
1217 vinsn_t vi = XCNEW (struct vinsn_def);
1218
1219 vinsn_init (vi, insn, force_unique_p);
1220 return vi;
1221 }
1222
1223 /* Return a copy of VI. When REATTACH_P is true, detach VI and attach
1224 the copy. */
1225 vinsn_t
1226 vinsn_copy (vinsn_t vi, bool reattach_p)
1227 {
1228 rtx copy;
1229 bool unique = VINSN_UNIQUE_P (vi);
1230 vinsn_t new_vi;
1231
1232 copy = create_copy_of_insn_rtx (VINSN_INSN_RTX (vi));
1233 new_vi = create_vinsn_from_insn_rtx (copy, unique);
1234 if (reattach_p)
1235 {
1236 vinsn_detach (vi);
1237 vinsn_attach (new_vi);
1238 }
1239
1240 return new_vi;
1241 }
1242
1243 /* Delete the VI vinsn and free its data. */
1244 static void
1245 vinsn_delete (vinsn_t vi)
1246 {
1247 gcc_assert (VINSN_COUNT (vi) == 0);
1248
1249 return_regset_to_pool (VINSN_REG_SETS (vi));
1250 return_regset_to_pool (VINSN_REG_USES (vi));
1251 return_regset_to_pool (VINSN_REG_CLOBBERS (vi));
1252
1253 free (vi);
1254 }
1255
1256 /* Indicate that VI is no longer a part of some rtx object.
1257 Remove VI if it is no longer needed. */
1258 void
1259 vinsn_detach (vinsn_t vi)
1260 {
1261 gcc_assert (VINSN_COUNT (vi) > 0);
1262
1263 if (--VINSN_COUNT (vi) == 0)
1264 vinsn_delete (vi);
1265 }
1266
1267 /* Returns TRUE if VI is a branch. */
1268 bool
1269 vinsn_cond_branch_p (vinsn_t vi)
1270 {
1271 insn_t insn;
1272
1273 if (!VINSN_UNIQUE_P (vi))
1274 return false;
1275
1276 insn = VINSN_INSN_RTX (vi);
1277 if (BB_END (BLOCK_FOR_INSN (insn)) != insn)
1278 return false;
1279
1280 return control_flow_insn_p (insn);
1281 }
1282
1283 /* Return latency of INSN. */
1284 static int
1285 sel_insn_rtx_cost (rtx insn)
1286 {
1287 int cost;
1288
1289 /* A USE insn, or something else we don't need to
1290 understand. We can't pass these directly to
1291 result_ready_cost or insn_default_latency because it will
1292 trigger a fatal error for unrecognizable insns. */
1293 if (recog_memoized (insn) < 0)
1294 cost = 0;
1295 else
1296 {
1297 cost = insn_default_latency (insn);
1298
1299 if (cost < 0)
1300 cost = 0;
1301 }
1302
1303 return cost;
1304 }
1305
1306 /* Return the cost of the VI.
1307 !!! FIXME: Unify with haifa-sched.c: insn_cost (). */
1308 int
1309 sel_vinsn_cost (vinsn_t vi)
1310 {
1311 int cost = vi->cost;
1312
1313 if (cost < 0)
1314 {
1315 cost = sel_insn_rtx_cost (VINSN_INSN_RTX (vi));
1316 vi->cost = cost;
1317 }
1318
1319 return cost;
1320 }
1321 \f
1322
1323 /* Functions for insn emitting. */
1324
1325 /* Emit new insn after AFTER based on PATTERN and initialize its data from
1326 EXPR and SEQNO. */
1327 insn_t
1328 sel_gen_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno, insn_t after)
1329 {
1330 insn_t new_insn;
1331
1332 gcc_assert (EXPR_TARGET_AVAILABLE (expr) == true);
1333
1334 new_insn = emit_insn_after (pattern, after);
1335 set_insn_init (expr, NULL, seqno);
1336 sel_init_new_insn (new_insn, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SSID);
1337
1338 return new_insn;
1339 }
1340
1341 /* Force newly generated vinsns to be unique. */
1342 static bool init_insn_force_unique_p = false;
1343
1344 /* Emit new speculation recovery insn after AFTER based on PATTERN and
1345 initialize its data from EXPR and SEQNO. */
1346 insn_t
1347 sel_gen_recovery_insn_from_rtx_after (rtx pattern, expr_t expr, int seqno,
1348 insn_t after)
1349 {
1350 insn_t insn;
1351
1352 gcc_assert (!init_insn_force_unique_p);
1353
1354 init_insn_force_unique_p = true;
1355 insn = sel_gen_insn_from_rtx_after (pattern, expr, seqno, after);
1356 CANT_MOVE (insn) = 1;
1357 init_insn_force_unique_p = false;
1358
1359 return insn;
1360 }
1361
1362 /* Emit new insn after AFTER based on EXPR and SEQNO. If VINSN is not NULL,
1363 take it as a new vinsn instead of EXPR's vinsn.
1364 We simplify insns later, after scheduling region in
1365 simplify_changed_insns. */
1366 insn_t
1367 sel_gen_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
1368 insn_t after)
1369 {
1370 expr_t emit_expr;
1371 insn_t insn;
1372 int flags;
1373
1374 emit_expr = set_insn_init (expr, vinsn ? vinsn : EXPR_VINSN (expr),
1375 seqno);
1376 insn = EXPR_INSN_RTX (emit_expr);
1377 add_insn_after (insn, after, BLOCK_FOR_INSN (insn));
1378
1379 flags = INSN_INIT_TODO_SSID;
1380 if (INSN_LUID (insn) == 0)
1381 flags |= INSN_INIT_TODO_LUID;
1382 sel_init_new_insn (insn, flags);
1383
1384 return insn;
1385 }
1386
1387 /* Move insn from EXPR after AFTER. */
1388 insn_t
1389 sel_move_insn (expr_t expr, int seqno, insn_t after)
1390 {
1391 insn_t insn = EXPR_INSN_RTX (expr);
1392 basic_block bb = BLOCK_FOR_INSN (after);
1393 insn_t next = NEXT_INSN (after);
1394
1395 /* Assert that in move_op we disconnected this insn properly. */
1396 gcc_assert (EXPR_VINSN (INSN_EXPR (insn)) != NULL);
1397 PREV_INSN (insn) = after;
1398 NEXT_INSN (insn) = next;
1399
1400 NEXT_INSN (after) = insn;
1401 PREV_INSN (next) = insn;
1402
1403 /* Update links from insn to bb and vice versa. */
1404 df_insn_change_bb (insn, bb);
1405 if (BB_END (bb) == after)
1406 BB_END (bb) = insn;
1407
1408 prepare_insn_expr (insn, seqno);
1409 return insn;
1410 }
1411
1412 \f
1413 /* Functions to work with right-hand sides. */
1414
1415 /* Search for a hash value determined by UID/NEW_VINSN in a sorted vector
1416 VECT and return true when found. Use NEW_VINSN for comparison only when
1417 COMPARE_VINSNS is true. Write to INDP the index on which
1418 the search has stopped, such that inserting the new element at INDP will
1419 retain VECT's sort order. */
1420 static bool
1421 find_in_history_vect_1 (VEC(expr_history_def, heap) *vect,
1422 unsigned uid, vinsn_t new_vinsn,
1423 bool compare_vinsns, int *indp)
1424 {
1425 expr_history_def *arr;
1426 int i, j, len = VEC_length (expr_history_def, vect);
1427
1428 if (len == 0)
1429 {
1430 *indp = 0;
1431 return false;
1432 }
1433
1434 arr = VEC_address (expr_history_def, vect);
1435 i = 0, j = len - 1;
1436
1437 while (i <= j)
1438 {
1439 unsigned auid = arr[i].uid;
1440 vinsn_t avinsn = arr[i].new_expr_vinsn;
1441
1442 if (auid == uid
1443 /* When undoing transformation on a bookkeeping copy, the new vinsn
1444 may not be exactly equal to the one that is saved in the vector.
1445 This is because the insn whose copy we're checking was possibly
1446 substituted itself. */
1447 && (! compare_vinsns
1448 || vinsn_equal_p (avinsn, new_vinsn)))
1449 {
1450 *indp = i;
1451 return true;
1452 }
1453 else if (auid > uid)
1454 break;
1455 i++;
1456 }
1457
1458 *indp = i;
1459 return false;
1460 }
1461
1462 /* Search for a uid of INSN and NEW_VINSN in a sorted vector VECT. Return
1463 the position found or -1, if no such value is in vector.
1464 Search also for UIDs of insn's originators, if ORIGINATORS_P is true. */
1465 int
1466 find_in_history_vect (VEC(expr_history_def, heap) *vect, rtx insn,
1467 vinsn_t new_vinsn, bool originators_p)
1468 {
1469 int ind;
1470
1471 if (find_in_history_vect_1 (vect, INSN_UID (insn), new_vinsn,
1472 false, &ind))
1473 return ind;
1474
1475 if (INSN_ORIGINATORS (insn) && originators_p)
1476 {
1477 unsigned uid;
1478 bitmap_iterator bi;
1479
1480 EXECUTE_IF_SET_IN_BITMAP (INSN_ORIGINATORS (insn), 0, uid, bi)
1481 if (find_in_history_vect_1 (vect, uid, new_vinsn, false, &ind))
1482 return ind;
1483 }
1484
1485 return -1;
1486 }
1487
1488 /* Insert new element in a sorted history vector pointed to by PVECT,
1489 if it is not there already. The element is searched using
1490 UID/NEW_EXPR_VINSN pair. TYPE, OLD_EXPR_VINSN and SPEC_DS save
1491 the history of a transformation. */
1492 void
1493 insert_in_history_vect (VEC (expr_history_def, heap) **pvect,
1494 unsigned uid, enum local_trans_type type,
1495 vinsn_t old_expr_vinsn, vinsn_t new_expr_vinsn,
1496 ds_t spec_ds)
1497 {
1498 VEC(expr_history_def, heap) *vect = *pvect;
1499 expr_history_def temp;
1500 bool res;
1501 int ind;
1502
1503 res = find_in_history_vect_1 (vect, uid, new_expr_vinsn, true, &ind);
1504
1505 if (res)
1506 {
1507 expr_history_def *phist = VEC_index (expr_history_def, vect, ind);
1508
1509 /* It is possible that speculation types of expressions that were
1510 propagated through different paths will be different here. In this
1511 case, merge the status to get the correct check later. */
1512 if (phist->spec_ds != spec_ds)
1513 phist->spec_ds = ds_max_merge (phist->spec_ds, spec_ds);
1514 return;
1515 }
1516
1517 temp.uid = uid;
1518 temp.old_expr_vinsn = old_expr_vinsn;
1519 temp.new_expr_vinsn = new_expr_vinsn;
1520 temp.spec_ds = spec_ds;
1521 temp.type = type;
1522
1523 vinsn_attach (old_expr_vinsn);
1524 vinsn_attach (new_expr_vinsn);
1525 VEC_safe_insert (expr_history_def, heap, vect, ind, &temp);
1526 *pvect = vect;
1527 }
1528
1529 /* Free history vector PVECT. */
1530 static void
1531 free_history_vect (VEC (expr_history_def, heap) **pvect)
1532 {
1533 unsigned i;
1534 expr_history_def *phist;
1535
1536 if (! *pvect)
1537 return;
1538
1539 for (i = 0;
1540 VEC_iterate (expr_history_def, *pvect, i, phist);
1541 i++)
1542 {
1543 vinsn_detach (phist->old_expr_vinsn);
1544 vinsn_detach (phist->new_expr_vinsn);
1545 }
1546
1547 VEC_free (expr_history_def, heap, *pvect);
1548 *pvect = NULL;
1549 }
1550
1551
1552 /* Compare two vinsns as rhses if possible and as vinsns otherwise. */
1553 bool
1554 vinsn_equal_p (vinsn_t x, vinsn_t y)
1555 {
1556 rtx_equal_p_callback_function repcf;
1557
1558 if (x == y)
1559 return true;
1560
1561 if (VINSN_TYPE (x) != VINSN_TYPE (y))
1562 return false;
1563
1564 if (VINSN_HASH (x) != VINSN_HASH (y))
1565 return false;
1566
1567 repcf = targetm.sched.skip_rtx_p ? skip_unspecs_callback : NULL;
1568 if (VINSN_SEPARABLE_P (x))
1569 {
1570 /* Compare RHSes of VINSNs. */
1571 gcc_assert (VINSN_RHS (x));
1572 gcc_assert (VINSN_RHS (y));
1573
1574 return rtx_equal_p_cb (VINSN_RHS (x), VINSN_RHS (y), repcf);
1575 }
1576
1577 return rtx_equal_p_cb (VINSN_PATTERN (x), VINSN_PATTERN (y), repcf);
1578 }
1579 \f
1580
1581 /* Functions for working with expressions. */
1582
1583 /* Initialize EXPR. */
1584 static void
1585 init_expr (expr_t expr, vinsn_t vi, int spec, int use, int priority,
1586 int sched_times, int orig_bb_index, ds_t spec_done_ds,
1587 ds_t spec_to_check_ds, int orig_sched_cycle,
1588 VEC(expr_history_def, heap) *history, bool target_available,
1589 bool was_substituted, bool was_renamed, bool needs_spec_check_p,
1590 bool cant_move)
1591 {
1592 vinsn_attach (vi);
1593
1594 EXPR_VINSN (expr) = vi;
1595 EXPR_SPEC (expr) = spec;
1596 EXPR_USEFULNESS (expr) = use;
1597 EXPR_PRIORITY (expr) = priority;
1598 EXPR_PRIORITY_ADJ (expr) = 0;
1599 EXPR_SCHED_TIMES (expr) = sched_times;
1600 EXPR_ORIG_BB_INDEX (expr) = orig_bb_index;
1601 EXPR_ORIG_SCHED_CYCLE (expr) = orig_sched_cycle;
1602 EXPR_SPEC_DONE_DS (expr) = spec_done_ds;
1603 EXPR_SPEC_TO_CHECK_DS (expr) = spec_to_check_ds;
1604
1605 if (history)
1606 EXPR_HISTORY_OF_CHANGES (expr) = history;
1607 else
1608 EXPR_HISTORY_OF_CHANGES (expr) = NULL;
1609
1610 EXPR_TARGET_AVAILABLE (expr) = target_available;
1611 EXPR_WAS_SUBSTITUTED (expr) = was_substituted;
1612 EXPR_WAS_RENAMED (expr) = was_renamed;
1613 EXPR_NEEDS_SPEC_CHECK_P (expr) = needs_spec_check_p;
1614 EXPR_CANT_MOVE (expr) = cant_move;
1615 }
1616
1617 /* Make a copy of the expr FROM into the expr TO. */
1618 void
1619 copy_expr (expr_t to, expr_t from)
1620 {
1621 VEC(expr_history_def, heap) *temp = NULL;
1622
1623 if (EXPR_HISTORY_OF_CHANGES (from))
1624 {
1625 unsigned i;
1626 expr_history_def *phist;
1627
1628 temp = VEC_copy (expr_history_def, heap, EXPR_HISTORY_OF_CHANGES (from));
1629 for (i = 0;
1630 VEC_iterate (expr_history_def, temp, i, phist);
1631 i++)
1632 {
1633 vinsn_attach (phist->old_expr_vinsn);
1634 vinsn_attach (phist->new_expr_vinsn);
1635 }
1636 }
1637
1638 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from),
1639 EXPR_USEFULNESS (from), EXPR_PRIORITY (from),
1640 EXPR_SCHED_TIMES (from), EXPR_ORIG_BB_INDEX (from),
1641 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from),
1642 EXPR_ORIG_SCHED_CYCLE (from), temp,
1643 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1644 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1645 EXPR_CANT_MOVE (from));
1646 }
1647
1648 /* Same, but the final expr will not ever be in av sets, so don't copy
1649 "uninteresting" data such as bitmap cache. */
1650 void
1651 copy_expr_onside (expr_t to, expr_t from)
1652 {
1653 init_expr (to, EXPR_VINSN (from), EXPR_SPEC (from), EXPR_USEFULNESS (from),
1654 EXPR_PRIORITY (from), EXPR_SCHED_TIMES (from), 0,
1655 EXPR_SPEC_DONE_DS (from), EXPR_SPEC_TO_CHECK_DS (from), 0, NULL,
1656 EXPR_TARGET_AVAILABLE (from), EXPR_WAS_SUBSTITUTED (from),
1657 EXPR_WAS_RENAMED (from), EXPR_NEEDS_SPEC_CHECK_P (from),
1658 EXPR_CANT_MOVE (from));
1659 }
1660
1661 /* Prepare the expr of INSN for scheduling. Used when moving insn and when
1662 initializing new insns. */
1663 static void
1664 prepare_insn_expr (insn_t insn, int seqno)
1665 {
1666 expr_t expr = INSN_EXPR (insn);
1667 ds_t ds;
1668
1669 INSN_SEQNO (insn) = seqno;
1670 EXPR_ORIG_BB_INDEX (expr) = BLOCK_NUM (insn);
1671 EXPR_SPEC (expr) = 0;
1672 EXPR_ORIG_SCHED_CYCLE (expr) = 0;
1673 EXPR_WAS_SUBSTITUTED (expr) = 0;
1674 EXPR_WAS_RENAMED (expr) = 0;
1675 EXPR_TARGET_AVAILABLE (expr) = 1;
1676 INSN_LIVE_VALID_P (insn) = false;
1677
1678 /* ??? If this expression is speculative, make its dependence
1679 as weak as possible. We can filter this expression later
1680 in process_spec_exprs, because we do not distinguish
1681 between the status we got during compute_av_set and the
1682 existing status. To be fixed. */
1683 ds = EXPR_SPEC_DONE_DS (expr);
1684 if (ds)
1685 EXPR_SPEC_DONE_DS (expr) = ds_get_max_dep_weak (ds);
1686
1687 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1688 }
1689
1690 /* Update target_available bits when merging exprs TO and FROM. SPLIT_POINT
1691 is non-null when expressions are merged from different successors at
1692 a split point. */
1693 static void
1694 update_target_availability (expr_t to, expr_t from, insn_t split_point)
1695 {
1696 if (EXPR_TARGET_AVAILABLE (to) < 0
1697 || EXPR_TARGET_AVAILABLE (from) < 0)
1698 EXPR_TARGET_AVAILABLE (to) = -1;
1699 else
1700 {
1701 /* We try to detect the case when one of the expressions
1702 can only be reached through another one. In this case,
1703 we can do better. */
1704 if (split_point == NULL)
1705 {
1706 int toind, fromind;
1707
1708 toind = EXPR_ORIG_BB_INDEX (to);
1709 fromind = EXPR_ORIG_BB_INDEX (from);
1710
1711 if (toind && toind == fromind)
1712 /* Do nothing -- everything is done in
1713 merge_with_other_exprs. */
1714 ;
1715 else
1716 EXPR_TARGET_AVAILABLE (to) = -1;
1717 }
1718 else
1719 EXPR_TARGET_AVAILABLE (to) &= EXPR_TARGET_AVAILABLE (from);
1720 }
1721 }
1722
1723 /* Update speculation bits when merging exprs TO and FROM. SPLIT_POINT
1724 is non-null when expressions are merged from different successors at
1725 a split point. */
1726 static void
1727 update_speculative_bits (expr_t to, expr_t from, insn_t split_point)
1728 {
1729 ds_t old_to_ds, old_from_ds;
1730
1731 old_to_ds = EXPR_SPEC_DONE_DS (to);
1732 old_from_ds = EXPR_SPEC_DONE_DS (from);
1733
1734 EXPR_SPEC_DONE_DS (to) = ds_max_merge (old_to_ds, old_from_ds);
1735 EXPR_SPEC_TO_CHECK_DS (to) |= EXPR_SPEC_TO_CHECK_DS (from);
1736 EXPR_NEEDS_SPEC_CHECK_P (to) |= EXPR_NEEDS_SPEC_CHECK_P (from);
1737
1738 /* When merging e.g. control & data speculative exprs, or a control
1739 speculative with a control&data speculative one, we really have
1740 to change vinsn too. Also, when speculative status is changed,
1741 we also need to record this as a transformation in expr's history. */
1742 if ((old_to_ds & SPECULATIVE) || (old_from_ds & SPECULATIVE))
1743 {
1744 old_to_ds = ds_get_speculation_types (old_to_ds);
1745 old_from_ds = ds_get_speculation_types (old_from_ds);
1746
1747 if (old_to_ds != old_from_ds)
1748 {
1749 ds_t record_ds;
1750
1751 /* When both expressions are speculative, we need to change
1752 the vinsn first. */
1753 if ((old_to_ds & SPECULATIVE) && (old_from_ds & SPECULATIVE))
1754 {
1755 int res;
1756
1757 res = speculate_expr (to, EXPR_SPEC_DONE_DS (to));
1758 gcc_assert (res >= 0);
1759 }
1760
1761 if (split_point != NULL)
1762 {
1763 /* Record the change with proper status. */
1764 record_ds = EXPR_SPEC_DONE_DS (to) & SPECULATIVE;
1765 record_ds &= ~(old_to_ds & SPECULATIVE);
1766 record_ds &= ~(old_from_ds & SPECULATIVE);
1767
1768 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1769 INSN_UID (split_point), TRANS_SPECULATION,
1770 EXPR_VINSN (from), EXPR_VINSN (to),
1771 record_ds);
1772 }
1773 }
1774 }
1775 }
1776
1777
1778 /* Merge bits of FROM expr to TO expr. When SPLIT_POINT is not NULL,
1779 this is done along different paths. */
1780 void
1781 merge_expr_data (expr_t to, expr_t from, insn_t split_point)
1782 {
1783 int i;
1784 expr_history_def *phist;
1785
1786 /* For now, we just set the spec of resulting expr to be minimum of the specs
1787 of merged exprs. */
1788 if (EXPR_SPEC (to) > EXPR_SPEC (from))
1789 EXPR_SPEC (to) = EXPR_SPEC (from);
1790
1791 if (split_point)
1792 EXPR_USEFULNESS (to) += EXPR_USEFULNESS (from);
1793 else
1794 EXPR_USEFULNESS (to) = MAX (EXPR_USEFULNESS (to),
1795 EXPR_USEFULNESS (from));
1796
1797 if (EXPR_PRIORITY (to) < EXPR_PRIORITY (from))
1798 EXPR_PRIORITY (to) = EXPR_PRIORITY (from);
1799
1800 if (EXPR_SCHED_TIMES (to) > EXPR_SCHED_TIMES (from))
1801 EXPR_SCHED_TIMES (to) = EXPR_SCHED_TIMES (from);
1802
1803 if (EXPR_ORIG_BB_INDEX (to) != EXPR_ORIG_BB_INDEX (from))
1804 EXPR_ORIG_BB_INDEX (to) = 0;
1805
1806 EXPR_ORIG_SCHED_CYCLE (to) = MIN (EXPR_ORIG_SCHED_CYCLE (to),
1807 EXPR_ORIG_SCHED_CYCLE (from));
1808
1809 /* We keep this vector sorted. */
1810 for (i = 0;
1811 VEC_iterate (expr_history_def, EXPR_HISTORY_OF_CHANGES (from),
1812 i, phist);
1813 i++)
1814 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (to),
1815 phist->uid, phist->type,
1816 phist->old_expr_vinsn, phist->new_expr_vinsn,
1817 phist->spec_ds);
1818
1819 EXPR_WAS_SUBSTITUTED (to) |= EXPR_WAS_SUBSTITUTED (from);
1820 EXPR_WAS_RENAMED (to) |= EXPR_WAS_RENAMED (from);
1821 EXPR_CANT_MOVE (to) |= EXPR_CANT_MOVE (from);
1822
1823 update_target_availability (to, from, split_point);
1824 update_speculative_bits (to, from, split_point);
1825 }
1826
1827 /* Merge bits of FROM expr to TO expr. Vinsns in the exprs should be equal
1828 in terms of vinsn_equal_p. SPLIT_POINT is non-null when expressions
1829 are merged from different successors at a split point. */
1830 void
1831 merge_expr (expr_t to, expr_t from, insn_t split_point)
1832 {
1833 vinsn_t to_vi = EXPR_VINSN (to);
1834 vinsn_t from_vi = EXPR_VINSN (from);
1835
1836 gcc_assert (vinsn_equal_p (to_vi, from_vi));
1837
1838 /* Make sure that speculative pattern is propagated into exprs that
1839 have non-speculative one. This will provide us with consistent
1840 speculative bits and speculative patterns inside expr. */
1841 if (EXPR_SPEC_DONE_DS (to) == 0
1842 && EXPR_SPEC_DONE_DS (from) != 0)
1843 change_vinsn_in_expr (to, EXPR_VINSN (from));
1844
1845 merge_expr_data (to, from, split_point);
1846 gcc_assert (EXPR_USEFULNESS (to) <= REG_BR_PROB_BASE);
1847 }
1848
1849 /* Clear the information of this EXPR. */
1850 void
1851 clear_expr (expr_t expr)
1852 {
1853
1854 vinsn_detach (EXPR_VINSN (expr));
1855 EXPR_VINSN (expr) = NULL;
1856
1857 free_history_vect (&EXPR_HISTORY_OF_CHANGES (expr));
1858 }
1859
1860 /* For a given LV_SET, mark EXPR having unavailable target register. */
1861 static void
1862 set_unavailable_target_for_expr (expr_t expr, regset lv_set)
1863 {
1864 if (EXPR_SEPARABLE_P (expr))
1865 {
1866 if (REG_P (EXPR_LHS (expr))
1867 && bitmap_bit_p (lv_set, REGNO (EXPR_LHS (expr))))
1868 {
1869 /* If it's an insn like r1 = use (r1, ...), and it exists in
1870 different forms in each of the av_sets being merged, we can't say
1871 whether original destination register is available or not.
1872 However, this still works if destination register is not used
1873 in the original expression: if the branch at which LV_SET we're
1874 looking here is not actually 'other branch' in sense that same
1875 expression is available through it (but it can't be determined
1876 at computation stage because of transformations on one of the
1877 branches), it still won't affect the availability.
1878 Liveness of a register somewhere on a code motion path means
1879 it's either read somewhere on a codemotion path, live on
1880 'other' branch, live at the point immediately following
1881 the original operation, or is read by the original operation.
1882 The latter case is filtered out in the condition below.
1883 It still doesn't cover the case when register is defined and used
1884 somewhere within the code motion path, and in this case we could
1885 miss a unifying code motion along both branches using a renamed
1886 register, but it won't affect a code correctness since upon
1887 an actual code motion a bookkeeping code would be generated. */
1888 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1889 REGNO (EXPR_LHS (expr))))
1890 EXPR_TARGET_AVAILABLE (expr) = -1;
1891 else
1892 EXPR_TARGET_AVAILABLE (expr) = false;
1893 }
1894 }
1895 else
1896 {
1897 unsigned regno;
1898 reg_set_iterator rsi;
1899
1900 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (EXPR_VINSN (expr)),
1901 0, regno, rsi)
1902 if (bitmap_bit_p (lv_set, regno))
1903 {
1904 EXPR_TARGET_AVAILABLE (expr) = false;
1905 break;
1906 }
1907
1908 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (EXPR_VINSN (expr)),
1909 0, regno, rsi)
1910 if (bitmap_bit_p (lv_set, regno))
1911 {
1912 EXPR_TARGET_AVAILABLE (expr) = false;
1913 break;
1914 }
1915 }
1916 }
1917
1918 /* Try to make EXPR speculative. Return 1 when EXPR's pattern
1919 or dependence status have changed, 2 when also the target register
1920 became unavailable, 0 if nothing had to be changed. */
1921 int
1922 speculate_expr (expr_t expr, ds_t ds)
1923 {
1924 int res;
1925 rtx orig_insn_rtx;
1926 rtx spec_pat;
1927 ds_t target_ds, current_ds;
1928
1929 /* Obtain the status we need to put on EXPR. */
1930 target_ds = (ds & SPECULATIVE);
1931 current_ds = EXPR_SPEC_DONE_DS (expr);
1932 ds = ds_full_merge (current_ds, target_ds, NULL_RTX, NULL_RTX);
1933
1934 orig_insn_rtx = EXPR_INSN_RTX (expr);
1935
1936 res = sched_speculate_insn (orig_insn_rtx, ds, &spec_pat);
1937
1938 switch (res)
1939 {
1940 case 0:
1941 EXPR_SPEC_DONE_DS (expr) = ds;
1942 return current_ds != ds ? 1 : 0;
1943
1944 case 1:
1945 {
1946 rtx spec_insn_rtx = create_insn_rtx_from_pattern (spec_pat, NULL_RTX);
1947 vinsn_t spec_vinsn = create_vinsn_from_insn_rtx (spec_insn_rtx, false);
1948
1949 change_vinsn_in_expr (expr, spec_vinsn);
1950 EXPR_SPEC_DONE_DS (expr) = ds;
1951 EXPR_NEEDS_SPEC_CHECK_P (expr) = true;
1952
1953 /* Do not allow clobbering the address register of speculative
1954 insns. */
1955 if (bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
1956 expr_dest_regno (expr)))
1957 {
1958 EXPR_TARGET_AVAILABLE (expr) = false;
1959 return 2;
1960 }
1961
1962 return 1;
1963 }
1964
1965 case -1:
1966 return -1;
1967
1968 default:
1969 gcc_unreachable ();
1970 return -1;
1971 }
1972 }
1973
1974 /* Return a destination register, if any, of EXPR. */
1975 rtx
1976 expr_dest_reg (expr_t expr)
1977 {
1978 rtx dest = VINSN_LHS (EXPR_VINSN (expr));
1979
1980 if (dest != NULL_RTX && REG_P (dest))
1981 return dest;
1982
1983 return NULL_RTX;
1984 }
1985
1986 /* Returns the REGNO of the R's destination. */
1987 unsigned
1988 expr_dest_regno (expr_t expr)
1989 {
1990 rtx dest = expr_dest_reg (expr);
1991
1992 gcc_assert (dest != NULL_RTX);
1993 return REGNO (dest);
1994 }
1995
1996 /* For a given LV_SET, mark all expressions in JOIN_SET, but not present in
1997 AV_SET having unavailable target register. */
1998 void
1999 mark_unavailable_targets (av_set_t join_set, av_set_t av_set, regset lv_set)
2000 {
2001 expr_t expr;
2002 av_set_iterator avi;
2003
2004 FOR_EACH_EXPR (expr, avi, join_set)
2005 if (av_set_lookup (av_set, EXPR_VINSN (expr)) == NULL)
2006 set_unavailable_target_for_expr (expr, lv_set);
2007 }
2008 \f
2009
2010 /* Av set functions. */
2011
2012 /* Add a new element to av set SETP.
2013 Return the element added. */
2014 static av_set_t
2015 av_set_add_element (av_set_t *setp)
2016 {
2017 /* Insert at the beginning of the list. */
2018 _list_add (setp);
2019 return *setp;
2020 }
2021
2022 /* Add EXPR to SETP. */
2023 void
2024 av_set_add (av_set_t *setp, expr_t expr)
2025 {
2026 av_set_t elem;
2027
2028 gcc_assert (!INSN_NOP_P (EXPR_INSN_RTX (expr)));
2029 elem = av_set_add_element (setp);
2030 copy_expr (_AV_SET_EXPR (elem), expr);
2031 }
2032
2033 /* Same, but do not copy EXPR. */
2034 static void
2035 av_set_add_nocopy (av_set_t *setp, expr_t expr)
2036 {
2037 av_set_t elem;
2038
2039 elem = av_set_add_element (setp);
2040 *_AV_SET_EXPR (elem) = *expr;
2041 }
2042
2043 /* Remove expr pointed to by IP from the av_set. */
2044 void
2045 av_set_iter_remove (av_set_iterator *ip)
2046 {
2047 clear_expr (_AV_SET_EXPR (*ip->lp));
2048 _list_iter_remove (ip);
2049 }
2050
2051 /* Search for an expr in SET, such that it's equivalent to SOUGHT_VINSN in the
2052 sense of vinsn_equal_p function. Return NULL if no such expr is
2053 in SET was found. */
2054 expr_t
2055 av_set_lookup (av_set_t set, vinsn_t sought_vinsn)
2056 {
2057 expr_t expr;
2058 av_set_iterator i;
2059
2060 FOR_EACH_EXPR (expr, i, set)
2061 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2062 return expr;
2063 return NULL;
2064 }
2065
2066 /* Same, but also remove the EXPR found. */
2067 static expr_t
2068 av_set_lookup_and_remove (av_set_t *setp, vinsn_t sought_vinsn)
2069 {
2070 expr_t expr;
2071 av_set_iterator i;
2072
2073 FOR_EACH_EXPR_1 (expr, i, setp)
2074 if (vinsn_equal_p (EXPR_VINSN (expr), sought_vinsn))
2075 {
2076 _list_iter_remove_nofree (&i);
2077 return expr;
2078 }
2079 return NULL;
2080 }
2081
2082 /* Search for an expr in SET, such that it's equivalent to EXPR in the
2083 sense of vinsn_equal_p function of their vinsns, but not EXPR itself.
2084 Returns NULL if no such expr is in SET was found. */
2085 static expr_t
2086 av_set_lookup_other_equiv_expr (av_set_t set, expr_t expr)
2087 {
2088 expr_t cur_expr;
2089 av_set_iterator i;
2090
2091 FOR_EACH_EXPR (cur_expr, i, set)
2092 {
2093 if (cur_expr == expr)
2094 continue;
2095 if (vinsn_equal_p (EXPR_VINSN (cur_expr), EXPR_VINSN (expr)))
2096 return cur_expr;
2097 }
2098
2099 return NULL;
2100 }
2101
2102 /* If other expression is already in AVP, remove one of them. */
2103 expr_t
2104 merge_with_other_exprs (av_set_t *avp, av_set_iterator *ip, expr_t expr)
2105 {
2106 expr_t expr2;
2107
2108 expr2 = av_set_lookup_other_equiv_expr (*avp, expr);
2109 if (expr2 != NULL)
2110 {
2111 /* Reset target availability on merge, since taking it only from one
2112 of the exprs would be controversial for different code. */
2113 EXPR_TARGET_AVAILABLE (expr2) = -1;
2114 EXPR_USEFULNESS (expr2) = 0;
2115
2116 merge_expr (expr2, expr, NULL);
2117
2118 /* Fix usefulness as it should be now REG_BR_PROB_BASE. */
2119 EXPR_USEFULNESS (expr2) = REG_BR_PROB_BASE;
2120
2121 av_set_iter_remove (ip);
2122 return expr2;
2123 }
2124
2125 return expr;
2126 }
2127
2128 /* Return true if there is an expr that correlates to VI in SET. */
2129 bool
2130 av_set_is_in_p (av_set_t set, vinsn_t vi)
2131 {
2132 return av_set_lookup (set, vi) != NULL;
2133 }
2134
2135 /* Return a copy of SET. */
2136 av_set_t
2137 av_set_copy (av_set_t set)
2138 {
2139 expr_t expr;
2140 av_set_iterator i;
2141 av_set_t res = NULL;
2142
2143 FOR_EACH_EXPR (expr, i, set)
2144 av_set_add (&res, expr);
2145
2146 return res;
2147 }
2148
2149 /* Join two av sets that do not have common elements by attaching second set
2150 (pointed to by FROMP) to the end of first set (TO_TAILP must point to
2151 _AV_SET_NEXT of first set's last element). */
2152 static void
2153 join_distinct_sets (av_set_t *to_tailp, av_set_t *fromp)
2154 {
2155 gcc_assert (*to_tailp == NULL);
2156 *to_tailp = *fromp;
2157 *fromp = NULL;
2158 }
2159
2160 /* Makes set pointed to by TO to be the union of TO and FROM. Clear av_set
2161 pointed to by FROMP afterwards. */
2162 void
2163 av_set_union_and_clear (av_set_t *top, av_set_t *fromp, insn_t insn)
2164 {
2165 expr_t expr1;
2166 av_set_iterator i;
2167
2168 /* Delete from TOP all exprs, that present in FROMP. */
2169 FOR_EACH_EXPR_1 (expr1, i, top)
2170 {
2171 expr_t expr2 = av_set_lookup (*fromp, EXPR_VINSN (expr1));
2172
2173 if (expr2)
2174 {
2175 merge_expr (expr2, expr1, insn);
2176 av_set_iter_remove (&i);
2177 }
2178 }
2179
2180 join_distinct_sets (i.lp, fromp);
2181 }
2182
2183 /* Same as above, but also update availability of target register in
2184 TOP judging by TO_LV_SET and FROM_LV_SET. */
2185 void
2186 av_set_union_and_live (av_set_t *top, av_set_t *fromp, regset to_lv_set,
2187 regset from_lv_set, insn_t insn)
2188 {
2189 expr_t expr1;
2190 av_set_iterator i;
2191 av_set_t *to_tailp, in_both_set = NULL;
2192
2193 /* Delete from TOP all expres, that present in FROMP. */
2194 FOR_EACH_EXPR_1 (expr1, i, top)
2195 {
2196 expr_t expr2 = av_set_lookup_and_remove (fromp, EXPR_VINSN (expr1));
2197
2198 if (expr2)
2199 {
2200 /* It may be that the expressions have different destination
2201 registers, in which case we need to check liveness here. */
2202 if (EXPR_SEPARABLE_P (expr1))
2203 {
2204 int regno1 = (REG_P (EXPR_LHS (expr1))
2205 ? (int) expr_dest_regno (expr1) : -1);
2206 int regno2 = (REG_P (EXPR_LHS (expr2))
2207 ? (int) expr_dest_regno (expr2) : -1);
2208
2209 /* ??? We don't have a way to check restrictions for
2210 *other* register on the current path, we did it only
2211 for the current target register. Give up. */
2212 if (regno1 != regno2)
2213 EXPR_TARGET_AVAILABLE (expr2) = -1;
2214 }
2215 else if (EXPR_INSN_RTX (expr1) != EXPR_INSN_RTX (expr2))
2216 EXPR_TARGET_AVAILABLE (expr2) = -1;
2217
2218 merge_expr (expr2, expr1, insn);
2219 av_set_add_nocopy (&in_both_set, expr2);
2220 av_set_iter_remove (&i);
2221 }
2222 else
2223 /* EXPR1 is present in TOP, but not in FROMP. Check it on
2224 FROM_LV_SET. */
2225 set_unavailable_target_for_expr (expr1, from_lv_set);
2226 }
2227 to_tailp = i.lp;
2228
2229 /* These expressions are not present in TOP. Check liveness
2230 restrictions on TO_LV_SET. */
2231 FOR_EACH_EXPR (expr1, i, *fromp)
2232 set_unavailable_target_for_expr (expr1, to_lv_set);
2233
2234 join_distinct_sets (i.lp, &in_both_set);
2235 join_distinct_sets (to_tailp, fromp);
2236 }
2237
2238 /* Clear av_set pointed to by SETP. */
2239 void
2240 av_set_clear (av_set_t *setp)
2241 {
2242 expr_t expr;
2243 av_set_iterator i;
2244
2245 FOR_EACH_EXPR_1 (expr, i, setp)
2246 av_set_iter_remove (&i);
2247
2248 gcc_assert (*setp == NULL);
2249 }
2250
2251 /* Leave only one non-speculative element in the SETP. */
2252 void
2253 av_set_leave_one_nonspec (av_set_t *setp)
2254 {
2255 expr_t expr;
2256 av_set_iterator i;
2257 bool has_one_nonspec = false;
2258
2259 /* Keep all speculative exprs, and leave one non-speculative
2260 (the first one). */
2261 FOR_EACH_EXPR_1 (expr, i, setp)
2262 {
2263 if (!EXPR_SPEC_DONE_DS (expr))
2264 {
2265 if (has_one_nonspec)
2266 av_set_iter_remove (&i);
2267 else
2268 has_one_nonspec = true;
2269 }
2270 }
2271 }
2272
2273 /* Return the N'th element of the SET. */
2274 expr_t
2275 av_set_element (av_set_t set, int n)
2276 {
2277 expr_t expr;
2278 av_set_iterator i;
2279
2280 FOR_EACH_EXPR (expr, i, set)
2281 if (n-- == 0)
2282 return expr;
2283
2284 gcc_unreachable ();
2285 return NULL;
2286 }
2287
2288 /* Deletes all expressions from AVP that are conditional branches (IFs). */
2289 void
2290 av_set_substract_cond_branches (av_set_t *avp)
2291 {
2292 av_set_iterator i;
2293 expr_t expr;
2294
2295 FOR_EACH_EXPR_1 (expr, i, avp)
2296 if (vinsn_cond_branch_p (EXPR_VINSN (expr)))
2297 av_set_iter_remove (&i);
2298 }
2299
2300 /* Multiplies usefulness attribute of each member of av-set *AVP by
2301 value PROB / ALL_PROB. */
2302 void
2303 av_set_split_usefulness (av_set_t av, int prob, int all_prob)
2304 {
2305 av_set_iterator i;
2306 expr_t expr;
2307
2308 FOR_EACH_EXPR (expr, i, av)
2309 EXPR_USEFULNESS (expr) = (all_prob
2310 ? (EXPR_USEFULNESS (expr) * prob) / all_prob
2311 : 0);
2312 }
2313
2314 /* Leave in AVP only those expressions, which are present in AV,
2315 and return it. */
2316 void
2317 av_set_intersect (av_set_t *avp, av_set_t av)
2318 {
2319 av_set_iterator i;
2320 expr_t expr;
2321
2322 FOR_EACH_EXPR_1 (expr, i, avp)
2323 if (av_set_lookup (av, EXPR_VINSN (expr)) == NULL)
2324 av_set_iter_remove (&i);
2325 }
2326
2327 \f
2328
2329 /* Dependence hooks to initialize insn data. */
2330
2331 /* This is used in hooks callable from dependence analysis when initializing
2332 instruction's data. */
2333 static struct
2334 {
2335 /* Where the dependence was found (lhs/rhs). */
2336 deps_where_t where;
2337
2338 /* The actual data object to initialize. */
2339 idata_t id;
2340
2341 /* True when the insn should not be made clonable. */
2342 bool force_unique_p;
2343
2344 /* True when insn should be treated as of type USE, i.e. never renamed. */
2345 bool force_use_p;
2346 } deps_init_id_data;
2347
2348
2349 /* Setup ID for INSN. FORCE_UNIQUE_P is true when INSN should not be
2350 clonable. */
2351 static void
2352 setup_id_for_insn (idata_t id, insn_t insn, bool force_unique_p)
2353 {
2354 int type;
2355
2356 /* Determine whether INSN could be cloned and return appropriate vinsn type.
2357 That clonable insns which can be separated into lhs and rhs have type SET.
2358 Other clonable insns have type USE. */
2359 type = GET_CODE (insn);
2360
2361 /* Only regular insns could be cloned. */
2362 if (type == INSN && !force_unique_p)
2363 type = SET;
2364 else if (type == JUMP_INSN && simplejump_p (insn))
2365 type = PC;
2366 else if (type == DEBUG_INSN)
2367 type = !force_unique_p ? USE : INSN;
2368
2369 IDATA_TYPE (id) = type;
2370 IDATA_REG_SETS (id) = get_clear_regset_from_pool ();
2371 IDATA_REG_USES (id) = get_clear_regset_from_pool ();
2372 IDATA_REG_CLOBBERS (id) = get_clear_regset_from_pool ();
2373 }
2374
2375 /* Start initializing insn data. */
2376 static void
2377 deps_init_id_start_insn (insn_t insn)
2378 {
2379 gcc_assert (deps_init_id_data.where == DEPS_IN_NOWHERE);
2380
2381 setup_id_for_insn (deps_init_id_data.id, insn,
2382 deps_init_id_data.force_unique_p);
2383 deps_init_id_data.where = DEPS_IN_INSN;
2384 }
2385
2386 /* Start initializing lhs data. */
2387 static void
2388 deps_init_id_start_lhs (rtx lhs)
2389 {
2390 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2391 gcc_assert (IDATA_LHS (deps_init_id_data.id) == NULL);
2392
2393 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2394 {
2395 IDATA_LHS (deps_init_id_data.id) = lhs;
2396 deps_init_id_data.where = DEPS_IN_LHS;
2397 }
2398 }
2399
2400 /* Finish initializing lhs data. */
2401 static void
2402 deps_init_id_finish_lhs (void)
2403 {
2404 deps_init_id_data.where = DEPS_IN_INSN;
2405 }
2406
2407 /* Note a set of REGNO. */
2408 static void
2409 deps_init_id_note_reg_set (int regno)
2410 {
2411 haifa_note_reg_set (regno);
2412
2413 if (deps_init_id_data.where == DEPS_IN_RHS)
2414 deps_init_id_data.force_use_p = true;
2415
2416 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2417 SET_REGNO_REG_SET (IDATA_REG_SETS (deps_init_id_data.id), regno);
2418
2419 #ifdef STACK_REGS
2420 /* Make instructions that set stack registers to be ineligible for
2421 renaming to avoid issues with find_used_regs. */
2422 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2423 deps_init_id_data.force_use_p = true;
2424 #endif
2425 }
2426
2427 /* Note a clobber of REGNO. */
2428 static void
2429 deps_init_id_note_reg_clobber (int regno)
2430 {
2431 haifa_note_reg_clobber (regno);
2432
2433 if (deps_init_id_data.where == DEPS_IN_RHS)
2434 deps_init_id_data.force_use_p = true;
2435
2436 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2437 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (deps_init_id_data.id), regno);
2438 }
2439
2440 /* Note a use of REGNO. */
2441 static void
2442 deps_init_id_note_reg_use (int regno)
2443 {
2444 haifa_note_reg_use (regno);
2445
2446 if (IDATA_TYPE (deps_init_id_data.id) != PC)
2447 SET_REGNO_REG_SET (IDATA_REG_USES (deps_init_id_data.id), regno);
2448 }
2449
2450 /* Start initializing rhs data. */
2451 static void
2452 deps_init_id_start_rhs (rtx rhs)
2453 {
2454 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2455
2456 /* And there was no sel_deps_reset_to_insn (). */
2457 if (IDATA_LHS (deps_init_id_data.id) != NULL)
2458 {
2459 IDATA_RHS (deps_init_id_data.id) = rhs;
2460 deps_init_id_data.where = DEPS_IN_RHS;
2461 }
2462 }
2463
2464 /* Finish initializing rhs data. */
2465 static void
2466 deps_init_id_finish_rhs (void)
2467 {
2468 gcc_assert (deps_init_id_data.where == DEPS_IN_RHS
2469 || deps_init_id_data.where == DEPS_IN_INSN);
2470 deps_init_id_data.where = DEPS_IN_INSN;
2471 }
2472
2473 /* Finish initializing insn data. */
2474 static void
2475 deps_init_id_finish_insn (void)
2476 {
2477 gcc_assert (deps_init_id_data.where == DEPS_IN_INSN);
2478
2479 if (IDATA_TYPE (deps_init_id_data.id) == SET)
2480 {
2481 rtx lhs = IDATA_LHS (deps_init_id_data.id);
2482 rtx rhs = IDATA_RHS (deps_init_id_data.id);
2483
2484 if (lhs == NULL || rhs == NULL || !lhs_and_rhs_separable_p (lhs, rhs)
2485 || deps_init_id_data.force_use_p)
2486 {
2487 /* This should be a USE, as we don't want to schedule its RHS
2488 separately. However, we still want to have them recorded
2489 for the purposes of substitution. That's why we don't
2490 simply call downgrade_to_use () here. */
2491 gcc_assert (IDATA_TYPE (deps_init_id_data.id) == SET);
2492 gcc_assert (!lhs == !rhs);
2493
2494 IDATA_TYPE (deps_init_id_data.id) = USE;
2495 }
2496 }
2497
2498 deps_init_id_data.where = DEPS_IN_NOWHERE;
2499 }
2500
2501 /* This is dependence info used for initializing insn's data. */
2502 static struct sched_deps_info_def deps_init_id_sched_deps_info;
2503
2504 /* This initializes most of the static part of the above structure. */
2505 static const struct sched_deps_info_def const_deps_init_id_sched_deps_info =
2506 {
2507 NULL,
2508
2509 deps_init_id_start_insn,
2510 deps_init_id_finish_insn,
2511 deps_init_id_start_lhs,
2512 deps_init_id_finish_lhs,
2513 deps_init_id_start_rhs,
2514 deps_init_id_finish_rhs,
2515 deps_init_id_note_reg_set,
2516 deps_init_id_note_reg_clobber,
2517 deps_init_id_note_reg_use,
2518 NULL, /* note_mem_dep */
2519 NULL, /* note_dep */
2520
2521 0, /* use_cselib */
2522 0, /* use_deps_list */
2523 0 /* generate_spec_deps */
2524 };
2525
2526 /* Initialize INSN's lhs and rhs in ID. When FORCE_UNIQUE_P is true,
2527 we don't actually need information about lhs and rhs. */
2528 static void
2529 setup_id_lhs_rhs (idata_t id, insn_t insn, bool force_unique_p)
2530 {
2531 rtx pat = PATTERN (insn);
2532
2533 if (NONJUMP_INSN_P (insn)
2534 && GET_CODE (pat) == SET
2535 && !force_unique_p)
2536 {
2537 IDATA_RHS (id) = SET_SRC (pat);
2538 IDATA_LHS (id) = SET_DEST (pat);
2539 }
2540 else
2541 IDATA_LHS (id) = IDATA_RHS (id) = NULL;
2542 }
2543
2544 /* Possibly downgrade INSN to USE. */
2545 static void
2546 maybe_downgrade_id_to_use (idata_t id, insn_t insn)
2547 {
2548 bool must_be_use = false;
2549 unsigned uid = INSN_UID (insn);
2550 df_ref *rec;
2551 rtx lhs = IDATA_LHS (id);
2552 rtx rhs = IDATA_RHS (id);
2553
2554 /* We downgrade only SETs. */
2555 if (IDATA_TYPE (id) != SET)
2556 return;
2557
2558 if (!lhs || !lhs_and_rhs_separable_p (lhs, rhs))
2559 {
2560 IDATA_TYPE (id) = USE;
2561 return;
2562 }
2563
2564 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2565 {
2566 df_ref def = *rec;
2567
2568 if (DF_REF_INSN (def)
2569 && DF_REF_FLAGS_IS_SET (def, DF_REF_PRE_POST_MODIFY)
2570 && loc_mentioned_in_p (DF_REF_LOC (def), IDATA_RHS (id)))
2571 {
2572 must_be_use = true;
2573 break;
2574 }
2575
2576 #ifdef STACK_REGS
2577 /* Make instructions that set stack registers to be ineligible for
2578 renaming to avoid issues with find_used_regs. */
2579 if (IN_RANGE (DF_REF_REGNO (def), FIRST_STACK_REG, LAST_STACK_REG))
2580 {
2581 must_be_use = true;
2582 break;
2583 }
2584 #endif
2585 }
2586
2587 if (must_be_use)
2588 IDATA_TYPE (id) = USE;
2589 }
2590
2591 /* Setup register sets describing INSN in ID. */
2592 static void
2593 setup_id_reg_sets (idata_t id, insn_t insn)
2594 {
2595 unsigned uid = INSN_UID (insn);
2596 df_ref *rec;
2597 regset tmp = get_clear_regset_from_pool ();
2598
2599 for (rec = DF_INSN_UID_DEFS (uid); *rec; rec++)
2600 {
2601 df_ref def = *rec;
2602 unsigned int regno = DF_REF_REGNO (def);
2603
2604 /* Post modifies are treated like clobbers by sched-deps.c. */
2605 if (DF_REF_FLAGS_IS_SET (def, (DF_REF_MUST_CLOBBER
2606 | DF_REF_PRE_POST_MODIFY)))
2607 SET_REGNO_REG_SET (IDATA_REG_CLOBBERS (id), regno);
2608 else if (! DF_REF_FLAGS_IS_SET (def, DF_REF_MAY_CLOBBER))
2609 {
2610 SET_REGNO_REG_SET (IDATA_REG_SETS (id), regno);
2611
2612 #ifdef STACK_REGS
2613 /* For stack registers, treat writes to them as writes
2614 to the first one to be consistent with sched-deps.c. */
2615 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2616 SET_REGNO_REG_SET (IDATA_REG_SETS (id), FIRST_STACK_REG);
2617 #endif
2618 }
2619 /* Mark special refs that generate read/write def pair. */
2620 if (DF_REF_FLAGS_IS_SET (def, DF_REF_CONDITIONAL)
2621 || regno == STACK_POINTER_REGNUM)
2622 bitmap_set_bit (tmp, regno);
2623 }
2624
2625 for (rec = DF_INSN_UID_USES (uid); *rec; rec++)
2626 {
2627 df_ref use = *rec;
2628 unsigned int regno = DF_REF_REGNO (use);
2629
2630 /* When these refs are met for the first time, skip them, as
2631 these uses are just counterparts of some defs. */
2632 if (bitmap_bit_p (tmp, regno))
2633 bitmap_clear_bit (tmp, regno);
2634 else if (! DF_REF_FLAGS_IS_SET (use, DF_REF_CALL_STACK_USAGE))
2635 {
2636 SET_REGNO_REG_SET (IDATA_REG_USES (id), regno);
2637
2638 #ifdef STACK_REGS
2639 /* For stack registers, treat reads from them as reads from
2640 the first one to be consistent with sched-deps.c. */
2641 if (IN_RANGE (regno, FIRST_STACK_REG, LAST_STACK_REG))
2642 SET_REGNO_REG_SET (IDATA_REG_USES (id), FIRST_STACK_REG);
2643 #endif
2644 }
2645 }
2646
2647 return_regset_to_pool (tmp);
2648 }
2649
2650 /* Initialize instruction data for INSN in ID using DF's data. */
2651 static void
2652 init_id_from_df (idata_t id, insn_t insn, bool force_unique_p)
2653 {
2654 gcc_assert (DF_INSN_UID_SAFE_GET (INSN_UID (insn)) != NULL);
2655
2656 setup_id_for_insn (id, insn, force_unique_p);
2657 setup_id_lhs_rhs (id, insn, force_unique_p);
2658
2659 if (INSN_NOP_P (insn))
2660 return;
2661
2662 maybe_downgrade_id_to_use (id, insn);
2663 setup_id_reg_sets (id, insn);
2664 }
2665
2666 /* Initialize instruction data for INSN in ID. */
2667 static void
2668 deps_init_id (idata_t id, insn_t insn, bool force_unique_p)
2669 {
2670 struct deps _dc, *dc = &_dc;
2671
2672 deps_init_id_data.where = DEPS_IN_NOWHERE;
2673 deps_init_id_data.id = id;
2674 deps_init_id_data.force_unique_p = force_unique_p;
2675 deps_init_id_data.force_use_p = false;
2676
2677 init_deps (dc);
2678
2679 memcpy (&deps_init_id_sched_deps_info,
2680 &const_deps_init_id_sched_deps_info,
2681 sizeof (deps_init_id_sched_deps_info));
2682
2683 if (spec_info != NULL)
2684 deps_init_id_sched_deps_info.generate_spec_deps = 1;
2685
2686 sched_deps_info = &deps_init_id_sched_deps_info;
2687
2688 deps_analyze_insn (dc, insn);
2689
2690 free_deps (dc);
2691
2692 deps_init_id_data.id = NULL;
2693 }
2694
2695 \f
2696
2697 /* Implement hooks for collecting fundamental insn properties like if insn is
2698 an ASM or is within a SCHED_GROUP. */
2699
2700 /* True when a "one-time init" data for INSN was already inited. */
2701 static bool
2702 first_time_insn_init (insn_t insn)
2703 {
2704 return INSN_LIVE (insn) == NULL;
2705 }
2706
2707 /* Hash an entry in a transformed_insns hashtable. */
2708 static hashval_t
2709 hash_transformed_insns (const void *p)
2710 {
2711 return VINSN_HASH_RTX (((const struct transformed_insns *) p)->vinsn_old);
2712 }
2713
2714 /* Compare the entries in a transformed_insns hashtable. */
2715 static int
2716 eq_transformed_insns (const void *p, const void *q)
2717 {
2718 rtx i1 = VINSN_INSN_RTX (((const struct transformed_insns *) p)->vinsn_old);
2719 rtx i2 = VINSN_INSN_RTX (((const struct transformed_insns *) q)->vinsn_old);
2720
2721 if (INSN_UID (i1) == INSN_UID (i2))
2722 return 1;
2723 return rtx_equal_p (PATTERN (i1), PATTERN (i2));
2724 }
2725
2726 /* Free an entry in a transformed_insns hashtable. */
2727 static void
2728 free_transformed_insns (void *p)
2729 {
2730 struct transformed_insns *pti = (struct transformed_insns *) p;
2731
2732 vinsn_detach (pti->vinsn_old);
2733 vinsn_detach (pti->vinsn_new);
2734 free (pti);
2735 }
2736
2737 /* Init the s_i_d data for INSN which should be inited just once, when
2738 we first see the insn. */
2739 static void
2740 init_first_time_insn_data (insn_t insn)
2741 {
2742 /* This should not be set if this is the first time we init data for
2743 insn. */
2744 gcc_assert (first_time_insn_init (insn));
2745
2746 /* These are needed for nops too. */
2747 INSN_LIVE (insn) = get_regset_from_pool ();
2748 INSN_LIVE_VALID_P (insn) = false;
2749
2750 if (!INSN_NOP_P (insn))
2751 {
2752 INSN_ANALYZED_DEPS (insn) = BITMAP_ALLOC (NULL);
2753 INSN_FOUND_DEPS (insn) = BITMAP_ALLOC (NULL);
2754 INSN_TRANSFORMED_INSNS (insn)
2755 = htab_create (16, hash_transformed_insns,
2756 eq_transformed_insns, free_transformed_insns);
2757 init_deps (&INSN_DEPS_CONTEXT (insn));
2758 }
2759 }
2760
2761 /* Free the same data as above for INSN. */
2762 static void
2763 free_first_time_insn_data (insn_t insn)
2764 {
2765 gcc_assert (! first_time_insn_init (insn));
2766
2767 BITMAP_FREE (INSN_ANALYZED_DEPS (insn));
2768 BITMAP_FREE (INSN_FOUND_DEPS (insn));
2769 htab_delete (INSN_TRANSFORMED_INSNS (insn));
2770 return_regset_to_pool (INSN_LIVE (insn));
2771 INSN_LIVE (insn) = NULL;
2772 INSN_LIVE_VALID_P (insn) = false;
2773
2774 /* This is allocated only for bookkeeping insns. */
2775 if (INSN_ORIGINATORS (insn))
2776 BITMAP_FREE (INSN_ORIGINATORS (insn));
2777 free_deps (&INSN_DEPS_CONTEXT (insn));
2778 }
2779
2780 /* Initialize region-scope data structures for basic blocks. */
2781 static void
2782 init_global_and_expr_for_bb (basic_block bb)
2783 {
2784 if (sel_bb_empty_p (bb))
2785 return;
2786
2787 invalidate_av_set (bb);
2788 }
2789
2790 /* Data for global dependency analysis (to initialize CANT_MOVE and
2791 SCHED_GROUP_P). */
2792 static struct
2793 {
2794 /* Previous insn. */
2795 insn_t prev_insn;
2796 } init_global_data;
2797
2798 /* Determine if INSN is in the sched_group, is an asm or should not be
2799 cloned. After that initialize its expr. */
2800 static void
2801 init_global_and_expr_for_insn (insn_t insn)
2802 {
2803 if (LABEL_P (insn))
2804 return;
2805
2806 if (NOTE_INSN_BASIC_BLOCK_P (insn))
2807 {
2808 init_global_data.prev_insn = NULL_RTX;
2809 return;
2810 }
2811
2812 gcc_assert (INSN_P (insn));
2813
2814 if (SCHED_GROUP_P (insn))
2815 /* Setup a sched_group. */
2816 {
2817 insn_t prev_insn = init_global_data.prev_insn;
2818
2819 if (prev_insn)
2820 INSN_SCHED_NEXT (prev_insn) = insn;
2821
2822 init_global_data.prev_insn = insn;
2823 }
2824 else
2825 init_global_data.prev_insn = NULL_RTX;
2826
2827 if (GET_CODE (PATTERN (insn)) == ASM_INPUT
2828 || asm_noperands (PATTERN (insn)) >= 0)
2829 /* Mark INSN as an asm. */
2830 INSN_ASM_P (insn) = true;
2831
2832 {
2833 bool force_unique_p;
2834 ds_t spec_done_ds;
2835
2836 /* Certain instructions cannot be cloned. */
2837 if (CANT_MOVE (insn)
2838 || INSN_ASM_P (insn)
2839 || SCHED_GROUP_P (insn)
2840 || prologue_epilogue_contains (insn)
2841 /* Exception handling insns are always unique. */
2842 || (flag_non_call_exceptions && can_throw_internal (insn))
2843 /* TRAP_IF though have an INSN code is control_flow_insn_p (). */
2844 || control_flow_insn_p (insn))
2845 force_unique_p = true;
2846 else
2847 force_unique_p = false;
2848
2849 if (targetm.sched.get_insn_spec_ds)
2850 {
2851 spec_done_ds = targetm.sched.get_insn_spec_ds (insn);
2852 spec_done_ds = ds_get_max_dep_weak (spec_done_ds);
2853 }
2854 else
2855 spec_done_ds = 0;
2856
2857 /* Initialize INSN's expr. */
2858 init_expr (INSN_EXPR (insn), vinsn_create (insn, force_unique_p), 0,
2859 REG_BR_PROB_BASE, INSN_PRIORITY (insn), 0, BLOCK_NUM (insn),
2860 spec_done_ds, 0, 0, NULL, true, false, false, false,
2861 CANT_MOVE (insn));
2862 }
2863
2864 init_first_time_insn_data (insn);
2865 }
2866
2867 /* Scan the region and initialize instruction data for basic blocks BBS. */
2868 void
2869 sel_init_global_and_expr (bb_vec_t bbs)
2870 {
2871 /* ??? It would be nice to implement push / pop scheme for sched_infos. */
2872 const struct sched_scan_info_def ssi =
2873 {
2874 NULL, /* extend_bb */
2875 init_global_and_expr_for_bb, /* init_bb */
2876 extend_insn_data, /* extend_insn */
2877 init_global_and_expr_for_insn /* init_insn */
2878 };
2879
2880 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2881 }
2882
2883 /* Finalize region-scope data structures for basic blocks. */
2884 static void
2885 finish_global_and_expr_for_bb (basic_block bb)
2886 {
2887 av_set_clear (&BB_AV_SET (bb));
2888 BB_AV_LEVEL (bb) = 0;
2889 }
2890
2891 /* Finalize INSN's data. */
2892 static void
2893 finish_global_and_expr_insn (insn_t insn)
2894 {
2895 if (LABEL_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn))
2896 return;
2897
2898 gcc_assert (INSN_P (insn));
2899
2900 if (INSN_LUID (insn) > 0)
2901 {
2902 free_first_time_insn_data (insn);
2903 INSN_WS_LEVEL (insn) = 0;
2904 CANT_MOVE (insn) = 0;
2905
2906 /* We can no longer assert this, as vinsns of this insn could be
2907 easily live in other insn's caches. This should be changed to
2908 a counter-like approach among all vinsns. */
2909 gcc_assert (true || VINSN_COUNT (INSN_VINSN (insn)) == 1);
2910 clear_expr (INSN_EXPR (insn));
2911 }
2912 }
2913
2914 /* Finalize per instruction data for the whole region. */
2915 void
2916 sel_finish_global_and_expr (void)
2917 {
2918 {
2919 bb_vec_t bbs;
2920 int i;
2921
2922 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
2923
2924 for (i = 0; i < current_nr_blocks; i++)
2925 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
2926
2927 /* Clear AV_SETs and INSN_EXPRs. */
2928 {
2929 const struct sched_scan_info_def ssi =
2930 {
2931 NULL, /* extend_bb */
2932 finish_global_and_expr_for_bb, /* init_bb */
2933 NULL, /* extend_insn */
2934 finish_global_and_expr_insn /* init_insn */
2935 };
2936
2937 sched_scan (&ssi, bbs, NULL, NULL, NULL);
2938 }
2939
2940 VEC_free (basic_block, heap, bbs);
2941 }
2942
2943 finish_insns ();
2944 }
2945 \f
2946
2947 /* In the below hooks, we merely calculate whether or not a dependence
2948 exists, and in what part of insn. However, we will need more data
2949 when we'll start caching dependence requests. */
2950
2951 /* Container to hold information for dependency analysis. */
2952 static struct
2953 {
2954 deps_t dc;
2955
2956 /* A variable to track which part of rtx we are scanning in
2957 sched-deps.c: sched_analyze_insn (). */
2958 deps_where_t where;
2959
2960 /* Current producer. */
2961 insn_t pro;
2962
2963 /* Current consumer. */
2964 vinsn_t con;
2965
2966 /* Is SEL_DEPS_HAS_DEP_P[DEPS_IN_X] is true, then X has a dependence.
2967 X is from { INSN, LHS, RHS }. */
2968 ds_t has_dep_p[DEPS_IN_NOWHERE];
2969 } has_dependence_data;
2970
2971 /* Start analyzing dependencies of INSN. */
2972 static void
2973 has_dependence_start_insn (insn_t insn ATTRIBUTE_UNUSED)
2974 {
2975 gcc_assert (has_dependence_data.where == DEPS_IN_NOWHERE);
2976
2977 has_dependence_data.where = DEPS_IN_INSN;
2978 }
2979
2980 /* Finish analyzing dependencies of an insn. */
2981 static void
2982 has_dependence_finish_insn (void)
2983 {
2984 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
2985
2986 has_dependence_data.where = DEPS_IN_NOWHERE;
2987 }
2988
2989 /* Start analyzing dependencies of LHS. */
2990 static void
2991 has_dependence_start_lhs (rtx lhs ATTRIBUTE_UNUSED)
2992 {
2993 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
2994
2995 if (VINSN_LHS (has_dependence_data.con) != NULL)
2996 has_dependence_data.where = DEPS_IN_LHS;
2997 }
2998
2999 /* Finish analyzing dependencies of an lhs. */
3000 static void
3001 has_dependence_finish_lhs (void)
3002 {
3003 has_dependence_data.where = DEPS_IN_INSN;
3004 }
3005
3006 /* Start analyzing dependencies of RHS. */
3007 static void
3008 has_dependence_start_rhs (rtx rhs ATTRIBUTE_UNUSED)
3009 {
3010 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3011
3012 if (VINSN_RHS (has_dependence_data.con) != NULL)
3013 has_dependence_data.where = DEPS_IN_RHS;
3014 }
3015
3016 /* Start analyzing dependencies of an rhs. */
3017 static void
3018 has_dependence_finish_rhs (void)
3019 {
3020 gcc_assert (has_dependence_data.where == DEPS_IN_RHS
3021 || has_dependence_data.where == DEPS_IN_INSN);
3022
3023 has_dependence_data.where = DEPS_IN_INSN;
3024 }
3025
3026 /* Note a set of REGNO. */
3027 static void
3028 has_dependence_note_reg_set (int regno)
3029 {
3030 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3031
3032 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3033 VINSN_INSN_RTX
3034 (has_dependence_data.con)))
3035 {
3036 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3037
3038 if (reg_last->sets != NULL
3039 || reg_last->clobbers != NULL)
3040 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3041
3042 if (reg_last->uses)
3043 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3044 }
3045 }
3046
3047 /* Note a clobber of REGNO. */
3048 static void
3049 has_dependence_note_reg_clobber (int regno)
3050 {
3051 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3052
3053 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3054 VINSN_INSN_RTX
3055 (has_dependence_data.con)))
3056 {
3057 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3058
3059 if (reg_last->sets)
3060 *dsp = (*dsp & ~SPECULATIVE) | DEP_OUTPUT;
3061
3062 if (reg_last->uses)
3063 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3064 }
3065 }
3066
3067 /* Note a use of REGNO. */
3068 static void
3069 has_dependence_note_reg_use (int regno)
3070 {
3071 struct deps_reg *reg_last = &has_dependence_data.dc->reg_last[regno];
3072
3073 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3074 VINSN_INSN_RTX
3075 (has_dependence_data.con)))
3076 {
3077 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3078
3079 if (reg_last->sets)
3080 *dsp = (*dsp & ~SPECULATIVE) | DEP_TRUE;
3081
3082 if (reg_last->clobbers)
3083 *dsp = (*dsp & ~SPECULATIVE) | DEP_ANTI;
3084
3085 /* Handle BE_IN_SPEC. */
3086 if (reg_last->uses)
3087 {
3088 ds_t pro_spec_checked_ds;
3089
3090 pro_spec_checked_ds = INSN_SPEC_CHECKED_DS (has_dependence_data.pro);
3091 pro_spec_checked_ds = ds_get_max_dep_weak (pro_spec_checked_ds);
3092
3093 if (pro_spec_checked_ds != 0)
3094 /* Merge BE_IN_SPEC bits into *DSP. */
3095 *dsp = ds_full_merge (*dsp, pro_spec_checked_ds,
3096 NULL_RTX, NULL_RTX);
3097 }
3098 }
3099 }
3100
3101 /* Note a memory dependence. */
3102 static void
3103 has_dependence_note_mem_dep (rtx mem ATTRIBUTE_UNUSED,
3104 rtx pending_mem ATTRIBUTE_UNUSED,
3105 insn_t pending_insn ATTRIBUTE_UNUSED,
3106 ds_t ds ATTRIBUTE_UNUSED)
3107 {
3108 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3109 VINSN_INSN_RTX (has_dependence_data.con)))
3110 {
3111 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3112
3113 *dsp = ds_full_merge (ds, *dsp, pending_mem, mem);
3114 }
3115 }
3116
3117 /* Note a dependence. */
3118 static void
3119 has_dependence_note_dep (insn_t pro ATTRIBUTE_UNUSED,
3120 ds_t ds ATTRIBUTE_UNUSED)
3121 {
3122 if (!sched_insns_conditions_mutex_p (has_dependence_data.pro,
3123 VINSN_INSN_RTX (has_dependence_data.con)))
3124 {
3125 ds_t *dsp = &has_dependence_data.has_dep_p[has_dependence_data.where];
3126
3127 *dsp = ds_full_merge (ds, *dsp, NULL_RTX, NULL_RTX);
3128 }
3129 }
3130
3131 /* Mark the insn as having a hard dependence that prevents speculation. */
3132 void
3133 sel_mark_hard_insn (rtx insn)
3134 {
3135 int i;
3136
3137 /* Only work when we're in has_dependence_p mode.
3138 ??? This is a hack, this should actually be a hook. */
3139 if (!has_dependence_data.dc || !has_dependence_data.pro)
3140 return;
3141
3142 gcc_assert (insn == VINSN_INSN_RTX (has_dependence_data.con));
3143 gcc_assert (has_dependence_data.where == DEPS_IN_INSN);
3144
3145 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3146 has_dependence_data.has_dep_p[i] &= ~SPECULATIVE;
3147 }
3148
3149 /* This structure holds the hooks for the dependency analysis used when
3150 actually processing dependencies in the scheduler. */
3151 static struct sched_deps_info_def has_dependence_sched_deps_info;
3152
3153 /* This initializes most of the fields of the above structure. */
3154 static const struct sched_deps_info_def const_has_dependence_sched_deps_info =
3155 {
3156 NULL,
3157
3158 has_dependence_start_insn,
3159 has_dependence_finish_insn,
3160 has_dependence_start_lhs,
3161 has_dependence_finish_lhs,
3162 has_dependence_start_rhs,
3163 has_dependence_finish_rhs,
3164 has_dependence_note_reg_set,
3165 has_dependence_note_reg_clobber,
3166 has_dependence_note_reg_use,
3167 has_dependence_note_mem_dep,
3168 has_dependence_note_dep,
3169
3170 0, /* use_cselib */
3171 0, /* use_deps_list */
3172 0 /* generate_spec_deps */
3173 };
3174
3175 /* Initialize has_dependence_sched_deps_info with extra spec field. */
3176 static void
3177 setup_has_dependence_sched_deps_info (void)
3178 {
3179 memcpy (&has_dependence_sched_deps_info,
3180 &const_has_dependence_sched_deps_info,
3181 sizeof (has_dependence_sched_deps_info));
3182
3183 if (spec_info != NULL)
3184 has_dependence_sched_deps_info.generate_spec_deps = 1;
3185
3186 sched_deps_info = &has_dependence_sched_deps_info;
3187 }
3188
3189 /* Remove all dependences found and recorded in has_dependence_data array. */
3190 void
3191 sel_clear_has_dependence (void)
3192 {
3193 int i;
3194
3195 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3196 has_dependence_data.has_dep_p[i] = 0;
3197 }
3198
3199 /* Return nonzero if EXPR has is dependent upon PRED. Return the pointer
3200 to the dependence information array in HAS_DEP_PP. */
3201 ds_t
3202 has_dependence_p (expr_t expr, insn_t pred, ds_t **has_dep_pp)
3203 {
3204 int i;
3205 ds_t ds;
3206 struct deps *dc;
3207
3208 if (INSN_SIMPLEJUMP_P (pred))
3209 /* Unconditional jump is just a transfer of control flow.
3210 Ignore it. */
3211 return false;
3212
3213 dc = &INSN_DEPS_CONTEXT (pred);
3214 if (!dc->readonly)
3215 {
3216 has_dependence_data.pro = NULL;
3217 /* Initialize empty dep context with information about PRED. */
3218 advance_deps_context (dc, pred);
3219 dc->readonly = 1;
3220 }
3221
3222 has_dependence_data.where = DEPS_IN_NOWHERE;
3223 has_dependence_data.pro = pred;
3224 has_dependence_data.con = EXPR_VINSN (expr);
3225 has_dependence_data.dc = dc;
3226
3227 sel_clear_has_dependence ();
3228
3229 /* Now catch all dependencies that would be generated between PRED and
3230 INSN. */
3231 setup_has_dependence_sched_deps_info ();
3232 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3233 has_dependence_data.dc = NULL;
3234
3235 /* When a barrier was found, set DEPS_IN_INSN bits. */
3236 if (dc->last_reg_pending_barrier == TRUE_BARRIER)
3237 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_TRUE;
3238 else if (dc->last_reg_pending_barrier == MOVE_BARRIER)
3239 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3240
3241 /* Do not allow stores to memory to move through checks. Currently
3242 we don't move this to sched-deps.c as the check doesn't have
3243 obvious places to which this dependence can be attached.
3244 FIMXE: this should go to a hook. */
3245 if (EXPR_LHS (expr)
3246 && MEM_P (EXPR_LHS (expr))
3247 && sel_insn_is_speculation_check (pred))
3248 has_dependence_data.has_dep_p[DEPS_IN_INSN] = DEP_ANTI;
3249
3250 *has_dep_pp = has_dependence_data.has_dep_p;
3251 ds = 0;
3252 for (i = 0; i < DEPS_IN_NOWHERE; i++)
3253 ds = ds_full_merge (ds, has_dependence_data.has_dep_p[i],
3254 NULL_RTX, NULL_RTX);
3255
3256 return ds;
3257 }
3258 \f
3259
3260 /* Dependence hooks implementation that checks dependence latency constraints
3261 on the insns being scheduled. The entry point for these routines is
3262 tick_check_p predicate. */
3263
3264 static struct
3265 {
3266 /* An expr we are currently checking. */
3267 expr_t expr;
3268
3269 /* A minimal cycle for its scheduling. */
3270 int cycle;
3271
3272 /* Whether we have seen a true dependence while checking. */
3273 bool seen_true_dep_p;
3274 } tick_check_data;
3275
3276 /* Update minimal scheduling cycle for tick_check_insn given that it depends
3277 on PRO with status DS and weight DW. */
3278 static void
3279 tick_check_dep_with_dw (insn_t pro_insn, ds_t ds, dw_t dw)
3280 {
3281 expr_t con_expr = tick_check_data.expr;
3282 insn_t con_insn = EXPR_INSN_RTX (con_expr);
3283
3284 if (con_insn != pro_insn)
3285 {
3286 enum reg_note dt;
3287 int tick;
3288
3289 if (/* PROducer was removed from above due to pipelining. */
3290 !INSN_IN_STREAM_P (pro_insn)
3291 /* Or PROducer was originally on the next iteration regarding the
3292 CONsumer. */
3293 || (INSN_SCHED_TIMES (pro_insn)
3294 - EXPR_SCHED_TIMES (con_expr)) > 1)
3295 /* Don't count this dependence. */
3296 return;
3297
3298 dt = ds_to_dt (ds);
3299 if (dt == REG_DEP_TRUE)
3300 tick_check_data.seen_true_dep_p = true;
3301
3302 gcc_assert (INSN_SCHED_CYCLE (pro_insn) > 0);
3303
3304 {
3305 dep_def _dep, *dep = &_dep;
3306
3307 init_dep (dep, pro_insn, con_insn, dt);
3308
3309 tick = INSN_SCHED_CYCLE (pro_insn) + dep_cost_1 (dep, dw);
3310 }
3311
3312 /* When there are several kinds of dependencies between pro and con,
3313 only REG_DEP_TRUE should be taken into account. */
3314 if (tick > tick_check_data.cycle
3315 && (dt == REG_DEP_TRUE || !tick_check_data.seen_true_dep_p))
3316 tick_check_data.cycle = tick;
3317 }
3318 }
3319
3320 /* An implementation of note_dep hook. */
3321 static void
3322 tick_check_note_dep (insn_t pro, ds_t ds)
3323 {
3324 tick_check_dep_with_dw (pro, ds, 0);
3325 }
3326
3327 /* An implementation of note_mem_dep hook. */
3328 static void
3329 tick_check_note_mem_dep (rtx mem1, rtx mem2, insn_t pro, ds_t ds)
3330 {
3331 dw_t dw;
3332
3333 dw = (ds_to_dt (ds) == REG_DEP_TRUE
3334 ? estimate_dep_weak (mem1, mem2)
3335 : 0);
3336
3337 tick_check_dep_with_dw (pro, ds, dw);
3338 }
3339
3340 /* This structure contains hooks for dependence analysis used when determining
3341 whether an insn is ready for scheduling. */
3342 static struct sched_deps_info_def tick_check_sched_deps_info =
3343 {
3344 NULL,
3345
3346 NULL,
3347 NULL,
3348 NULL,
3349 NULL,
3350 NULL,
3351 NULL,
3352 haifa_note_reg_set,
3353 haifa_note_reg_clobber,
3354 haifa_note_reg_use,
3355 tick_check_note_mem_dep,
3356 tick_check_note_dep,
3357
3358 0, 0, 0
3359 };
3360
3361 /* Estimate number of cycles from the current cycle of FENCE until EXPR can be
3362 scheduled. Return 0 if all data from producers in DC is ready. */
3363 int
3364 tick_check_p (expr_t expr, deps_t dc, fence_t fence)
3365 {
3366 int cycles_left;
3367 /* Initialize variables. */
3368 tick_check_data.expr = expr;
3369 tick_check_data.cycle = 0;
3370 tick_check_data.seen_true_dep_p = false;
3371 sched_deps_info = &tick_check_sched_deps_info;
3372
3373 gcc_assert (!dc->readonly);
3374 dc->readonly = 1;
3375 deps_analyze_insn (dc, EXPR_INSN_RTX (expr));
3376 dc->readonly = 0;
3377
3378 cycles_left = tick_check_data.cycle - FENCE_CYCLE (fence);
3379
3380 return cycles_left >= 0 ? cycles_left : 0;
3381 }
3382 \f
3383
3384 /* Functions to work with insns. */
3385
3386 /* Returns true if LHS of INSN is the same as DEST of an insn
3387 being moved. */
3388 bool
3389 lhs_of_insn_equals_to_dest_p (insn_t insn, rtx dest)
3390 {
3391 rtx lhs = INSN_LHS (insn);
3392
3393 if (lhs == NULL || dest == NULL)
3394 return false;
3395
3396 return rtx_equal_p (lhs, dest);
3397 }
3398
3399 /* Return s_i_d entry of INSN. Callable from debugger. */
3400 sel_insn_data_def
3401 insn_sid (insn_t insn)
3402 {
3403 return *SID (insn);
3404 }
3405
3406 /* True when INSN is a speculative check. We can tell this by looking
3407 at the data structures of the selective scheduler, not by examining
3408 the pattern. */
3409 bool
3410 sel_insn_is_speculation_check (rtx insn)
3411 {
3412 return s_i_d && !! INSN_SPEC_CHECKED_DS (insn);
3413 }
3414
3415 /* Extracts machine mode MODE and destination location DST_LOC
3416 for given INSN. */
3417 void
3418 get_dest_and_mode (rtx insn, rtx *dst_loc, enum machine_mode *mode)
3419 {
3420 rtx pat = PATTERN (insn);
3421
3422 gcc_assert (dst_loc);
3423 gcc_assert (GET_CODE (pat) == SET);
3424
3425 *dst_loc = SET_DEST (pat);
3426
3427 gcc_assert (*dst_loc);
3428 gcc_assert (MEM_P (*dst_loc) || REG_P (*dst_loc));
3429
3430 if (mode)
3431 *mode = GET_MODE (*dst_loc);
3432 }
3433
3434 /* Returns true when moving through JUMP will result in bookkeeping
3435 creation. */
3436 bool
3437 bookkeeping_can_be_created_if_moved_through_p (insn_t jump)
3438 {
3439 insn_t succ;
3440 succ_iterator si;
3441
3442 FOR_EACH_SUCC (succ, si, jump)
3443 if (sel_num_cfg_preds_gt_1 (succ))
3444 return true;
3445
3446 return false;
3447 }
3448
3449 /* Return 'true' if INSN is the only one in its basic block. */
3450 static bool
3451 insn_is_the_only_one_in_bb_p (insn_t insn)
3452 {
3453 return sel_bb_head_p (insn) && sel_bb_end_p (insn);
3454 }
3455
3456 #ifdef ENABLE_CHECKING
3457 /* Check that the region we're scheduling still has at most one
3458 backedge. */
3459 static void
3460 verify_backedges (void)
3461 {
3462 if (pipelining_p)
3463 {
3464 int i, n = 0;
3465 edge e;
3466 edge_iterator ei;
3467
3468 for (i = 0; i < current_nr_blocks; i++)
3469 FOR_EACH_EDGE (e, ei, BASIC_BLOCK (BB_TO_BLOCK (i))->succs)
3470 if (in_current_region_p (e->dest)
3471 && BLOCK_TO_BB (e->dest->index) < i)
3472 n++;
3473
3474 gcc_assert (n <= 1);
3475 }
3476 }
3477 #endif
3478 \f
3479
3480 /* Functions to work with control flow. */
3481
3482 /* Tidy the possibly empty block BB. */
3483 bool
3484 maybe_tidy_empty_bb (basic_block bb)
3485 {
3486 basic_block succ_bb, pred_bb;
3487 edge e;
3488 edge_iterator ei;
3489 bool rescan_p;
3490
3491 /* Keep empty bb only if this block immediately precedes EXIT and
3492 has incoming non-fallthrough edge. Otherwise remove it. */
3493 if (!sel_bb_empty_p (bb)
3494 || (single_succ_p (bb)
3495 && single_succ (bb) == EXIT_BLOCK_PTR
3496 && (!single_pred_p (bb)
3497 || !(single_pred_edge (bb)->flags & EDGE_FALLTHRU))))
3498 return false;
3499
3500 /* Do not attempt to redirect complex edges. */
3501 FOR_EACH_EDGE (e, ei, bb->preds)
3502 if (e->flags & EDGE_COMPLEX)
3503 return false;
3504
3505 free_data_sets (bb);
3506
3507 /* Do not delete BB if it has more than one successor.
3508 That can occur when we moving a jump. */
3509 if (!single_succ_p (bb))
3510 {
3511 gcc_assert (can_merge_blocks_p (bb->prev_bb, bb));
3512 sel_merge_blocks (bb->prev_bb, bb);
3513 return true;
3514 }
3515
3516 succ_bb = single_succ (bb);
3517 rescan_p = true;
3518 pred_bb = NULL;
3519
3520 /* Redirect all non-fallthru edges to the next bb. */
3521 while (rescan_p)
3522 {
3523 rescan_p = false;
3524
3525 FOR_EACH_EDGE (e, ei, bb->preds)
3526 {
3527 pred_bb = e->src;
3528
3529 if (!(e->flags & EDGE_FALLTHRU))
3530 {
3531 sel_redirect_edge_and_branch (e, succ_bb);
3532 rescan_p = true;
3533 break;
3534 }
3535 }
3536 }
3537
3538 /* If it is possible - merge BB with its predecessor. */
3539 if (can_merge_blocks_p (bb->prev_bb, bb))
3540 sel_merge_blocks (bb->prev_bb, bb);
3541 else
3542 /* Otherwise this is a block without fallthru predecessor.
3543 Just delete it. */
3544 {
3545 gcc_assert (pred_bb != NULL);
3546
3547 move_bb_info (pred_bb, bb);
3548 remove_empty_bb (bb, true);
3549 }
3550
3551 #ifdef ENABLE_CHECKING
3552 verify_backedges ();
3553 #endif
3554
3555 return true;
3556 }
3557
3558 /* Tidy the control flow after we have removed original insn from
3559 XBB. Return true if we have removed some blocks. When FULL_TIDYING
3560 is true, also try to optimize control flow on non-empty blocks. */
3561 bool
3562 tidy_control_flow (basic_block xbb, bool full_tidying)
3563 {
3564 bool changed = true;
3565 insn_t first, last;
3566
3567 /* First check whether XBB is empty. */
3568 changed = maybe_tidy_empty_bb (xbb);
3569 if (changed || !full_tidying)
3570 return changed;
3571
3572 /* Check if there is a unnecessary jump after insn left. */
3573 if (jump_leads_only_to_bb_p (BB_END (xbb), xbb->next_bb)
3574 && INSN_SCHED_TIMES (BB_END (xbb)) == 0
3575 && !IN_CURRENT_FENCE_P (BB_END (xbb)))
3576 {
3577 if (sel_remove_insn (BB_END (xbb), false, false))
3578 return true;
3579 tidy_fallthru_edge (EDGE_SUCC (xbb, 0));
3580 }
3581
3582 first = sel_bb_head (xbb);
3583 last = sel_bb_end (xbb);
3584 if (MAY_HAVE_DEBUG_INSNS)
3585 {
3586 if (first != last && DEBUG_INSN_P (first))
3587 do
3588 first = NEXT_INSN (first);
3589 while (first != last && (DEBUG_INSN_P (first) || NOTE_P (first)));
3590
3591 if (first != last && DEBUG_INSN_P (last))
3592 do
3593 last = PREV_INSN (last);
3594 while (first != last && (DEBUG_INSN_P (last) || NOTE_P (last)));
3595 }
3596 /* Check if there is an unnecessary jump in previous basic block leading
3597 to next basic block left after removing INSN from stream.
3598 If it is so, remove that jump and redirect edge to current
3599 basic block (where there was INSN before deletion). This way
3600 when NOP will be deleted several instructions later with its
3601 basic block we will not get a jump to next instruction, which
3602 can be harmful. */
3603 if (first == last
3604 && !sel_bb_empty_p (xbb)
3605 && INSN_NOP_P (last)
3606 /* Flow goes fallthru from current block to the next. */
3607 && EDGE_COUNT (xbb->succs) == 1
3608 && (EDGE_SUCC (xbb, 0)->flags & EDGE_FALLTHRU)
3609 /* When successor is an EXIT block, it may not be the next block. */
3610 && single_succ (xbb) != EXIT_BLOCK_PTR
3611 /* And unconditional jump in previous basic block leads to
3612 next basic block of XBB and this jump can be safely removed. */
3613 && in_current_region_p (xbb->prev_bb)
3614 && jump_leads_only_to_bb_p (BB_END (xbb->prev_bb), xbb->next_bb)
3615 && INSN_SCHED_TIMES (BB_END (xbb->prev_bb)) == 0
3616 /* Also this jump is not at the scheduling boundary. */
3617 && !IN_CURRENT_FENCE_P (BB_END (xbb->prev_bb)))
3618 {
3619 /* Clear data structures of jump - jump itself will be removed
3620 by sel_redirect_edge_and_branch. */
3621 clear_expr (INSN_EXPR (BB_END (xbb->prev_bb)));
3622 sel_redirect_edge_and_branch (EDGE_SUCC (xbb->prev_bb, 0), xbb);
3623 gcc_assert (EDGE_SUCC (xbb->prev_bb, 0)->flags & EDGE_FALLTHRU);
3624
3625 /* It can turn out that after removing unused jump, basic block
3626 that contained that jump, becomes empty too. In such case
3627 remove it too. */
3628 if (sel_bb_empty_p (xbb->prev_bb))
3629 changed = maybe_tidy_empty_bb (xbb->prev_bb);
3630 }
3631
3632 return changed;
3633 }
3634
3635 /* Rip-off INSN from the insn stream. When ONLY_DISCONNECT is true,
3636 do not delete insn's data, because it will be later re-emitted.
3637 Return true if we have removed some blocks afterwards. */
3638 bool
3639 sel_remove_insn (insn_t insn, bool only_disconnect, bool full_tidying)
3640 {
3641 basic_block bb = BLOCK_FOR_INSN (insn);
3642
3643 gcc_assert (INSN_IN_STREAM_P (insn));
3644
3645 if (DEBUG_INSN_P (insn) && BB_AV_SET_VALID_P (bb))
3646 {
3647 expr_t expr;
3648 av_set_iterator i;
3649
3650 /* When we remove a debug insn that is head of a BB, it remains
3651 in the AV_SET of the block, but it shouldn't. */
3652 FOR_EACH_EXPR_1 (expr, i, &BB_AV_SET (bb))
3653 if (EXPR_INSN_RTX (expr) == insn)
3654 {
3655 av_set_iter_remove (&i);
3656 break;
3657 }
3658 }
3659
3660 if (only_disconnect)
3661 {
3662 insn_t prev = PREV_INSN (insn);
3663 insn_t next = NEXT_INSN (insn);
3664 basic_block bb = BLOCK_FOR_INSN (insn);
3665
3666 NEXT_INSN (prev) = next;
3667 PREV_INSN (next) = prev;
3668
3669 if (BB_HEAD (bb) == insn)
3670 {
3671 gcc_assert (BLOCK_FOR_INSN (prev) == bb);
3672 BB_HEAD (bb) = prev;
3673 }
3674 if (BB_END (bb) == insn)
3675 BB_END (bb) = prev;
3676 }
3677 else
3678 {
3679 remove_insn (insn);
3680 clear_expr (INSN_EXPR (insn));
3681 }
3682
3683 /* It is necessary to null this fields before calling add_insn (). */
3684 PREV_INSN (insn) = NULL_RTX;
3685 NEXT_INSN (insn) = NULL_RTX;
3686
3687 return tidy_control_flow (bb, full_tidying);
3688 }
3689
3690 /* Estimate number of the insns in BB. */
3691 static int
3692 sel_estimate_number_of_insns (basic_block bb)
3693 {
3694 int res = 0;
3695 insn_t insn = NEXT_INSN (BB_HEAD (bb)), next_tail = NEXT_INSN (BB_END (bb));
3696
3697 for (; insn != next_tail; insn = NEXT_INSN (insn))
3698 if (NONDEBUG_INSN_P (insn))
3699 res++;
3700
3701 return res;
3702 }
3703
3704 /* We don't need separate luids for notes or labels. */
3705 static int
3706 sel_luid_for_non_insn (rtx x)
3707 {
3708 gcc_assert (NOTE_P (x) || LABEL_P (x));
3709
3710 return -1;
3711 }
3712
3713 /* Return seqno of the only predecessor of INSN. */
3714 static int
3715 get_seqno_of_a_pred (insn_t insn)
3716 {
3717 int seqno;
3718
3719 gcc_assert (INSN_SIMPLEJUMP_P (insn));
3720
3721 if (!sel_bb_head_p (insn))
3722 seqno = INSN_SEQNO (PREV_INSN (insn));
3723 else
3724 {
3725 basic_block bb = BLOCK_FOR_INSN (insn);
3726
3727 if (single_pred_p (bb)
3728 && !in_current_region_p (single_pred (bb)))
3729 {
3730 /* We can have preds outside a region when splitting edges
3731 for pipelining of an outer loop. Use succ instead.
3732 There should be only one of them. */
3733 insn_t succ = NULL;
3734 succ_iterator si;
3735 bool first = true;
3736
3737 gcc_assert (flag_sel_sched_pipelining_outer_loops
3738 && current_loop_nest);
3739 FOR_EACH_SUCC_1 (succ, si, insn,
3740 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
3741 {
3742 gcc_assert (first);
3743 first = false;
3744 }
3745
3746 gcc_assert (succ != NULL);
3747 seqno = INSN_SEQNO (succ);
3748 }
3749 else
3750 {
3751 insn_t *preds;
3752 int n;
3753
3754 cfg_preds (BLOCK_FOR_INSN (insn), &preds, &n);
3755 gcc_assert (n == 1);
3756
3757 seqno = INSN_SEQNO (preds[0]);
3758
3759 free (preds);
3760 }
3761 }
3762
3763 return seqno;
3764 }
3765
3766 /* Find the proper seqno for inserting at INSN. Returns -1 if no predecessors
3767 with positive seqno exist. */
3768 int
3769 get_seqno_by_preds (rtx insn)
3770 {
3771 basic_block bb = BLOCK_FOR_INSN (insn);
3772 rtx tmp = insn, head = BB_HEAD (bb);
3773 insn_t *preds;
3774 int n, i, seqno;
3775
3776 while (tmp != head)
3777 if (INSN_P (tmp))
3778 return INSN_SEQNO (tmp);
3779 else
3780 tmp = PREV_INSN (tmp);
3781
3782 cfg_preds (bb, &preds, &n);
3783 for (i = 0, seqno = -1; i < n; i++)
3784 seqno = MAX (seqno, INSN_SEQNO (preds[i]));
3785
3786 return seqno;
3787 }
3788
3789 \f
3790
3791 /* Extend pass-scope data structures for basic blocks. */
3792 void
3793 sel_extend_global_bb_info (void)
3794 {
3795 VEC_safe_grow_cleared (sel_global_bb_info_def, heap, sel_global_bb_info,
3796 last_basic_block);
3797 }
3798
3799 /* Extend region-scope data structures for basic blocks. */
3800 static void
3801 extend_region_bb_info (void)
3802 {
3803 VEC_safe_grow_cleared (sel_region_bb_info_def, heap, sel_region_bb_info,
3804 last_basic_block);
3805 }
3806
3807 /* Extend all data structures to fit for all basic blocks. */
3808 static void
3809 extend_bb_info (void)
3810 {
3811 sel_extend_global_bb_info ();
3812 extend_region_bb_info ();
3813 }
3814
3815 /* Finalize pass-scope data structures for basic blocks. */
3816 void
3817 sel_finish_global_bb_info (void)
3818 {
3819 VEC_free (sel_global_bb_info_def, heap, sel_global_bb_info);
3820 }
3821
3822 /* Finalize region-scope data structures for basic blocks. */
3823 static void
3824 finish_region_bb_info (void)
3825 {
3826 VEC_free (sel_region_bb_info_def, heap, sel_region_bb_info);
3827 }
3828 \f
3829
3830 /* Data for each insn in current region. */
3831 VEC (sel_insn_data_def, heap) *s_i_d = NULL;
3832
3833 /* A vector for the insns we've emitted. */
3834 static insn_vec_t new_insns = NULL;
3835
3836 /* Extend data structures for insns from current region. */
3837 static void
3838 extend_insn_data (void)
3839 {
3840 int reserve;
3841
3842 sched_extend_target ();
3843 sched_deps_init (false);
3844
3845 /* Extend data structures for insns from current region. */
3846 reserve = (sched_max_luid + 1
3847 - VEC_length (sel_insn_data_def, s_i_d));
3848 if (reserve > 0
3849 && ! VEC_space (sel_insn_data_def, s_i_d, reserve))
3850 VEC_safe_grow_cleared (sel_insn_data_def, heap, s_i_d,
3851 3 * sched_max_luid / 2);
3852 }
3853
3854 /* Finalize data structures for insns from current region. */
3855 static void
3856 finish_insns (void)
3857 {
3858 unsigned i;
3859
3860 /* Clear here all dependence contexts that may have left from insns that were
3861 removed during the scheduling. */
3862 for (i = 0; i < VEC_length (sel_insn_data_def, s_i_d); i++)
3863 {
3864 sel_insn_data_def *sid_entry = VEC_index (sel_insn_data_def, s_i_d, i);
3865
3866 if (sid_entry->live)
3867 return_regset_to_pool (sid_entry->live);
3868 if (sid_entry->analyzed_deps)
3869 {
3870 BITMAP_FREE (sid_entry->analyzed_deps);
3871 BITMAP_FREE (sid_entry->found_deps);
3872 htab_delete (sid_entry->transformed_insns);
3873 free_deps (&sid_entry->deps_context);
3874 }
3875 if (EXPR_VINSN (&sid_entry->expr))
3876 {
3877 clear_expr (&sid_entry->expr);
3878
3879 /* Also, clear CANT_MOVE bit here, because we really don't want it
3880 to be passed to the next region. */
3881 CANT_MOVE_BY_LUID (i) = 0;
3882 }
3883 }
3884
3885 VEC_free (sel_insn_data_def, heap, s_i_d);
3886 }
3887
3888 /* A proxy to pass initialization data to init_insn (). */
3889 static sel_insn_data_def _insn_init_ssid;
3890 static sel_insn_data_t insn_init_ssid = &_insn_init_ssid;
3891
3892 /* If true create a new vinsn. Otherwise use the one from EXPR. */
3893 static bool insn_init_create_new_vinsn_p;
3894
3895 /* Set all necessary data for initialization of the new insn[s]. */
3896 static expr_t
3897 set_insn_init (expr_t expr, vinsn_t vi, int seqno)
3898 {
3899 expr_t x = &insn_init_ssid->expr;
3900
3901 copy_expr_onside (x, expr);
3902 if (vi != NULL)
3903 {
3904 insn_init_create_new_vinsn_p = false;
3905 change_vinsn_in_expr (x, vi);
3906 }
3907 else
3908 insn_init_create_new_vinsn_p = true;
3909
3910 insn_init_ssid->seqno = seqno;
3911 return x;
3912 }
3913
3914 /* Init data for INSN. */
3915 static void
3916 init_insn_data (insn_t insn)
3917 {
3918 expr_t expr;
3919 sel_insn_data_t ssid = insn_init_ssid;
3920
3921 /* The fields mentioned below are special and hence are not being
3922 propagated to the new insns. */
3923 gcc_assert (!ssid->asm_p && ssid->sched_next == NULL
3924 && !ssid->after_stall_p && ssid->sched_cycle == 0);
3925 gcc_assert (INSN_P (insn) && INSN_LUID (insn) > 0);
3926
3927 expr = INSN_EXPR (insn);
3928 copy_expr (expr, &ssid->expr);
3929 prepare_insn_expr (insn, ssid->seqno);
3930
3931 if (insn_init_create_new_vinsn_p)
3932 change_vinsn_in_expr (expr, vinsn_create (insn, init_insn_force_unique_p));
3933
3934 if (first_time_insn_init (insn))
3935 init_first_time_insn_data (insn);
3936 }
3937
3938 /* This is used to initialize spurious jumps generated by
3939 sel_redirect_edge (). */
3940 static void
3941 init_simplejump_data (insn_t insn)
3942 {
3943 init_expr (INSN_EXPR (insn), vinsn_create (insn, false), 0,
3944 REG_BR_PROB_BASE, 0, 0, 0, 0, 0, 0, NULL, true, false, false,
3945 false, true);
3946 INSN_SEQNO (insn) = get_seqno_of_a_pred (insn);
3947 init_first_time_insn_data (insn);
3948 }
3949
3950 /* Perform deferred initialization of insns. This is used to process
3951 a new jump that may be created by redirect_edge. */
3952 void
3953 sel_init_new_insn (insn_t insn, int flags)
3954 {
3955 /* We create data structures for bb when the first insn is emitted in it. */
3956 if (INSN_P (insn)
3957 && INSN_IN_STREAM_P (insn)
3958 && insn_is_the_only_one_in_bb_p (insn))
3959 {
3960 extend_bb_info ();
3961 create_initial_data_sets (BLOCK_FOR_INSN (insn));
3962 }
3963
3964 if (flags & INSN_INIT_TODO_LUID)
3965 sched_init_luids (NULL, NULL, NULL, insn);
3966
3967 if (flags & INSN_INIT_TODO_SSID)
3968 {
3969 extend_insn_data ();
3970 init_insn_data (insn);
3971 clear_expr (&insn_init_ssid->expr);
3972 }
3973
3974 if (flags & INSN_INIT_TODO_SIMPLEJUMP)
3975 {
3976 extend_insn_data ();
3977 init_simplejump_data (insn);
3978 }
3979
3980 gcc_assert (CONTAINING_RGN (BLOCK_NUM (insn))
3981 == CONTAINING_RGN (BB_TO_BLOCK (0)));
3982 }
3983 \f
3984
3985 /* Functions to init/finish work with lv sets. */
3986
3987 /* Init BB_LV_SET of BB from DF_LR_IN set of BB. */
3988 static void
3989 init_lv_set (basic_block bb)
3990 {
3991 gcc_assert (!BB_LV_SET_VALID_P (bb));
3992
3993 BB_LV_SET (bb) = get_regset_from_pool ();
3994 COPY_REG_SET (BB_LV_SET (bb), DF_LR_IN (bb));
3995 BB_LV_SET_VALID_P (bb) = true;
3996 }
3997
3998 /* Copy liveness information to BB from FROM_BB. */
3999 static void
4000 copy_lv_set_from (basic_block bb, basic_block from_bb)
4001 {
4002 gcc_assert (!BB_LV_SET_VALID_P (bb));
4003
4004 COPY_REG_SET (BB_LV_SET (bb), BB_LV_SET (from_bb));
4005 BB_LV_SET_VALID_P (bb) = true;
4006 }
4007
4008 /* Initialize lv set of all bb headers. */
4009 void
4010 init_lv_sets (void)
4011 {
4012 basic_block bb;
4013
4014 /* Initialize of LV sets. */
4015 FOR_EACH_BB (bb)
4016 init_lv_set (bb);
4017
4018 /* Don't forget EXIT_BLOCK. */
4019 init_lv_set (EXIT_BLOCK_PTR);
4020 }
4021
4022 /* Release lv set of HEAD. */
4023 static void
4024 free_lv_set (basic_block bb)
4025 {
4026 gcc_assert (BB_LV_SET (bb) != NULL);
4027
4028 return_regset_to_pool (BB_LV_SET (bb));
4029 BB_LV_SET (bb) = NULL;
4030 BB_LV_SET_VALID_P (bb) = false;
4031 }
4032
4033 /* Finalize lv sets of all bb headers. */
4034 void
4035 free_lv_sets (void)
4036 {
4037 basic_block bb;
4038
4039 /* Don't forget EXIT_BLOCK. */
4040 free_lv_set (EXIT_BLOCK_PTR);
4041
4042 /* Free LV sets. */
4043 FOR_EACH_BB (bb)
4044 if (BB_LV_SET (bb))
4045 free_lv_set (bb);
4046 }
4047
4048 /* Initialize an invalid AV_SET for BB.
4049 This set will be updated next time compute_av () process BB. */
4050 static void
4051 invalidate_av_set (basic_block bb)
4052 {
4053 gcc_assert (BB_AV_LEVEL (bb) <= 0
4054 && BB_AV_SET (bb) == NULL);
4055
4056 BB_AV_LEVEL (bb) = -1;
4057 }
4058
4059 /* Create initial data sets for BB (they will be invalid). */
4060 static void
4061 create_initial_data_sets (basic_block bb)
4062 {
4063 if (BB_LV_SET (bb))
4064 BB_LV_SET_VALID_P (bb) = false;
4065 else
4066 BB_LV_SET (bb) = get_regset_from_pool ();
4067 invalidate_av_set (bb);
4068 }
4069
4070 /* Free av set of BB. */
4071 static void
4072 free_av_set (basic_block bb)
4073 {
4074 av_set_clear (&BB_AV_SET (bb));
4075 BB_AV_LEVEL (bb) = 0;
4076 }
4077
4078 /* Free data sets of BB. */
4079 void
4080 free_data_sets (basic_block bb)
4081 {
4082 free_lv_set (bb);
4083 free_av_set (bb);
4084 }
4085
4086 /* Exchange lv sets of TO and FROM. */
4087 static void
4088 exchange_lv_sets (basic_block to, basic_block from)
4089 {
4090 {
4091 regset to_lv_set = BB_LV_SET (to);
4092
4093 BB_LV_SET (to) = BB_LV_SET (from);
4094 BB_LV_SET (from) = to_lv_set;
4095 }
4096
4097 {
4098 bool to_lv_set_valid_p = BB_LV_SET_VALID_P (to);
4099
4100 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4101 BB_LV_SET_VALID_P (from) = to_lv_set_valid_p;
4102 }
4103 }
4104
4105
4106 /* Exchange av sets of TO and FROM. */
4107 static void
4108 exchange_av_sets (basic_block to, basic_block from)
4109 {
4110 {
4111 av_set_t to_av_set = BB_AV_SET (to);
4112
4113 BB_AV_SET (to) = BB_AV_SET (from);
4114 BB_AV_SET (from) = to_av_set;
4115 }
4116
4117 {
4118 int to_av_level = BB_AV_LEVEL (to);
4119
4120 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4121 BB_AV_LEVEL (from) = to_av_level;
4122 }
4123 }
4124
4125 /* Exchange data sets of TO and FROM. */
4126 void
4127 exchange_data_sets (basic_block to, basic_block from)
4128 {
4129 exchange_lv_sets (to, from);
4130 exchange_av_sets (to, from);
4131 }
4132
4133 /* Copy data sets of FROM to TO. */
4134 void
4135 copy_data_sets (basic_block to, basic_block from)
4136 {
4137 gcc_assert (!BB_LV_SET_VALID_P (to) && !BB_AV_SET_VALID_P (to));
4138 gcc_assert (BB_AV_SET (to) == NULL);
4139
4140 BB_AV_LEVEL (to) = BB_AV_LEVEL (from);
4141 BB_LV_SET_VALID_P (to) = BB_LV_SET_VALID_P (from);
4142
4143 if (BB_AV_SET_VALID_P (from))
4144 {
4145 BB_AV_SET (to) = av_set_copy (BB_AV_SET (from));
4146 }
4147 if (BB_LV_SET_VALID_P (from))
4148 {
4149 gcc_assert (BB_LV_SET (to) != NULL);
4150 COPY_REG_SET (BB_LV_SET (to), BB_LV_SET (from));
4151 }
4152 }
4153
4154 /* Return an av set for INSN, if any. */
4155 av_set_t
4156 get_av_set (insn_t insn)
4157 {
4158 av_set_t av_set;
4159
4160 gcc_assert (AV_SET_VALID_P (insn));
4161
4162 if (sel_bb_head_p (insn))
4163 av_set = BB_AV_SET (BLOCK_FOR_INSN (insn));
4164 else
4165 av_set = NULL;
4166
4167 return av_set;
4168 }
4169
4170 /* Implementation of AV_LEVEL () macro. Return AV_LEVEL () of INSN. */
4171 int
4172 get_av_level (insn_t insn)
4173 {
4174 int av_level;
4175
4176 gcc_assert (INSN_P (insn));
4177
4178 if (sel_bb_head_p (insn))
4179 av_level = BB_AV_LEVEL (BLOCK_FOR_INSN (insn));
4180 else
4181 av_level = INSN_WS_LEVEL (insn);
4182
4183 return av_level;
4184 }
4185
4186 \f
4187
4188 /* Variables to work with control-flow graph. */
4189
4190 /* The basic block that already has been processed by the sched_data_update (),
4191 but hasn't been in sel_add_bb () yet. */
4192 static VEC (basic_block, heap) *last_added_blocks = NULL;
4193
4194 /* A pool for allocating successor infos. */
4195 static struct
4196 {
4197 /* A stack for saving succs_info structures. */
4198 struct succs_info *stack;
4199
4200 /* Its size. */
4201 int size;
4202
4203 /* Top of the stack. */
4204 int top;
4205
4206 /* Maximal value of the top. */
4207 int max_top;
4208 } succs_info_pool;
4209
4210 /* Functions to work with control-flow graph. */
4211
4212 /* Return basic block note of BB. */
4213 insn_t
4214 sel_bb_head (basic_block bb)
4215 {
4216 insn_t head;
4217
4218 if (bb == EXIT_BLOCK_PTR)
4219 {
4220 gcc_assert (exit_insn != NULL_RTX);
4221 head = exit_insn;
4222 }
4223 else
4224 {
4225 insn_t note;
4226
4227 note = bb_note (bb);
4228 head = next_nonnote_insn (note);
4229
4230 if (head && BLOCK_FOR_INSN (head) != bb)
4231 head = NULL_RTX;
4232 }
4233
4234 return head;
4235 }
4236
4237 /* Return true if INSN is a basic block header. */
4238 bool
4239 sel_bb_head_p (insn_t insn)
4240 {
4241 return sel_bb_head (BLOCK_FOR_INSN (insn)) == insn;
4242 }
4243
4244 /* Return last insn of BB. */
4245 insn_t
4246 sel_bb_end (basic_block bb)
4247 {
4248 if (sel_bb_empty_p (bb))
4249 return NULL_RTX;
4250
4251 gcc_assert (bb != EXIT_BLOCK_PTR);
4252
4253 return BB_END (bb);
4254 }
4255
4256 /* Return true if INSN is the last insn in its basic block. */
4257 bool
4258 sel_bb_end_p (insn_t insn)
4259 {
4260 return insn == sel_bb_end (BLOCK_FOR_INSN (insn));
4261 }
4262
4263 /* Return true if BB consist of single NOTE_INSN_BASIC_BLOCK. */
4264 bool
4265 sel_bb_empty_p (basic_block bb)
4266 {
4267 return sel_bb_head (bb) == NULL;
4268 }
4269
4270 /* True when BB belongs to the current scheduling region. */
4271 bool
4272 in_current_region_p (basic_block bb)
4273 {
4274 if (bb->index < NUM_FIXED_BLOCKS)
4275 return false;
4276
4277 return CONTAINING_RGN (bb->index) == CONTAINING_RGN (BB_TO_BLOCK (0));
4278 }
4279
4280 /* Return the block which is a fallthru bb of a conditional jump JUMP. */
4281 basic_block
4282 fallthru_bb_of_jump (rtx jump)
4283 {
4284 if (!JUMP_P (jump))
4285 return NULL;
4286
4287 if (any_uncondjump_p (jump))
4288 return single_succ (BLOCK_FOR_INSN (jump));
4289
4290 if (!any_condjump_p (jump))
4291 return NULL;
4292
4293 return FALLTHRU_EDGE (BLOCK_FOR_INSN (jump))->dest;
4294 }
4295
4296 /* Remove all notes from BB. */
4297 static void
4298 init_bb (basic_block bb)
4299 {
4300 remove_notes (bb_note (bb), BB_END (bb));
4301 BB_NOTE_LIST (bb) = note_list;
4302 }
4303
4304 void
4305 sel_init_bbs (bb_vec_t bbs, basic_block bb)
4306 {
4307 const struct sched_scan_info_def ssi =
4308 {
4309 extend_bb_info, /* extend_bb */
4310 init_bb, /* init_bb */
4311 NULL, /* extend_insn */
4312 NULL /* init_insn */
4313 };
4314
4315 sched_scan (&ssi, bbs, bb, new_insns, NULL);
4316 }
4317
4318 /* Restore other notes for the whole region. */
4319 static void
4320 sel_restore_other_notes (void)
4321 {
4322 int bb;
4323
4324 for (bb = 0; bb < current_nr_blocks; bb++)
4325 {
4326 basic_block first, last;
4327
4328 first = EBB_FIRST_BB (bb);
4329 last = EBB_LAST_BB (bb)->next_bb;
4330
4331 do
4332 {
4333 note_list = BB_NOTE_LIST (first);
4334 restore_other_notes (NULL, first);
4335 BB_NOTE_LIST (first) = NULL_RTX;
4336
4337 first = first->next_bb;
4338 }
4339 while (first != last);
4340 }
4341 }
4342
4343 /* Free per-bb data structures. */
4344 void
4345 sel_finish_bbs (void)
4346 {
4347 sel_restore_other_notes ();
4348
4349 /* Remove current loop preheader from this loop. */
4350 if (current_loop_nest)
4351 sel_remove_loop_preheader ();
4352
4353 finish_region_bb_info ();
4354 }
4355
4356 /* Return true if INSN has a single successor of type FLAGS. */
4357 bool
4358 sel_insn_has_single_succ_p (insn_t insn, int flags)
4359 {
4360 insn_t succ;
4361 succ_iterator si;
4362 bool first_p = true;
4363
4364 FOR_EACH_SUCC_1 (succ, si, insn, flags)
4365 {
4366 if (first_p)
4367 first_p = false;
4368 else
4369 return false;
4370 }
4371
4372 return true;
4373 }
4374
4375 /* Allocate successor's info. */
4376 static struct succs_info *
4377 alloc_succs_info (void)
4378 {
4379 if (succs_info_pool.top == succs_info_pool.max_top)
4380 {
4381 int i;
4382
4383 if (++succs_info_pool.max_top >= succs_info_pool.size)
4384 gcc_unreachable ();
4385
4386 i = ++succs_info_pool.top;
4387 succs_info_pool.stack[i].succs_ok = VEC_alloc (rtx, heap, 10);
4388 succs_info_pool.stack[i].succs_other = VEC_alloc (rtx, heap, 10);
4389 succs_info_pool.stack[i].probs_ok = VEC_alloc (int, heap, 10);
4390 }
4391 else
4392 succs_info_pool.top++;
4393
4394 return &succs_info_pool.stack[succs_info_pool.top];
4395 }
4396
4397 /* Free successor's info. */
4398 void
4399 free_succs_info (struct succs_info * sinfo)
4400 {
4401 gcc_assert (succs_info_pool.top >= 0
4402 && &succs_info_pool.stack[succs_info_pool.top] == sinfo);
4403 succs_info_pool.top--;
4404
4405 /* Clear stale info. */
4406 VEC_block_remove (rtx, sinfo->succs_ok,
4407 0, VEC_length (rtx, sinfo->succs_ok));
4408 VEC_block_remove (rtx, sinfo->succs_other,
4409 0, VEC_length (rtx, sinfo->succs_other));
4410 VEC_block_remove (int, sinfo->probs_ok,
4411 0, VEC_length (int, sinfo->probs_ok));
4412 sinfo->all_prob = 0;
4413 sinfo->succs_ok_n = 0;
4414 sinfo->all_succs_n = 0;
4415 }
4416
4417 /* Compute successor info for INSN. FLAGS are the flags passed
4418 to the FOR_EACH_SUCC_1 iterator. */
4419 struct succs_info *
4420 compute_succs_info (insn_t insn, short flags)
4421 {
4422 succ_iterator si;
4423 insn_t succ;
4424 struct succs_info *sinfo = alloc_succs_info ();
4425
4426 /* Traverse *all* successors and decide what to do with each. */
4427 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
4428 {
4429 /* FIXME: this doesn't work for skipping to loop exits, as we don't
4430 perform code motion through inner loops. */
4431 short current_flags = si.current_flags & ~SUCCS_SKIP_TO_LOOP_EXITS;
4432
4433 if (current_flags & flags)
4434 {
4435 VEC_safe_push (rtx, heap, sinfo->succs_ok, succ);
4436 VEC_safe_push (int, heap, sinfo->probs_ok,
4437 /* FIXME: Improve calculation when skipping
4438 inner loop to exits. */
4439 (si.bb_end
4440 ? si.e1->probability
4441 : REG_BR_PROB_BASE));
4442 sinfo->succs_ok_n++;
4443 }
4444 else
4445 VEC_safe_push (rtx, heap, sinfo->succs_other, succ);
4446
4447 /* Compute all_prob. */
4448 if (!si.bb_end)
4449 sinfo->all_prob = REG_BR_PROB_BASE;
4450 else
4451 sinfo->all_prob += si.e1->probability;
4452
4453 sinfo->all_succs_n++;
4454 }
4455
4456 return sinfo;
4457 }
4458
4459 /* Return the predecessors of BB in PREDS and their number in N.
4460 Empty blocks are skipped. SIZE is used to allocate PREDS. */
4461 static void
4462 cfg_preds_1 (basic_block bb, insn_t **preds, int *n, int *size)
4463 {
4464 edge e;
4465 edge_iterator ei;
4466
4467 gcc_assert (BLOCK_TO_BB (bb->index) != 0);
4468
4469 FOR_EACH_EDGE (e, ei, bb->preds)
4470 {
4471 basic_block pred_bb = e->src;
4472 insn_t bb_end = BB_END (pred_bb);
4473
4474 /* ??? This code is not supposed to walk out of a region. */
4475 gcc_assert (in_current_region_p (pred_bb));
4476
4477 if (sel_bb_empty_p (pred_bb))
4478 cfg_preds_1 (pred_bb, preds, n, size);
4479 else
4480 {
4481 if (*n == *size)
4482 *preds = XRESIZEVEC (insn_t, *preds,
4483 (*size = 2 * *size + 1));
4484 (*preds)[(*n)++] = bb_end;
4485 }
4486 }
4487
4488 gcc_assert (*n != 0);
4489 }
4490
4491 /* Find all predecessors of BB and record them in PREDS and their number
4492 in N. Empty blocks are skipped, and only normal (forward in-region)
4493 edges are processed. */
4494 static void
4495 cfg_preds (basic_block bb, insn_t **preds, int *n)
4496 {
4497 int size = 0;
4498
4499 *preds = NULL;
4500 *n = 0;
4501 cfg_preds_1 (bb, preds, n, &size);
4502 }
4503
4504 /* Returns true if we are moving INSN through join point. */
4505 bool
4506 sel_num_cfg_preds_gt_1 (insn_t insn)
4507 {
4508 basic_block bb;
4509
4510 if (!sel_bb_head_p (insn) || INSN_BB (insn) == 0)
4511 return false;
4512
4513 bb = BLOCK_FOR_INSN (insn);
4514
4515 while (1)
4516 {
4517 if (EDGE_COUNT (bb->preds) > 1)
4518 return true;
4519
4520 gcc_assert (EDGE_PRED (bb, 0)->dest == bb);
4521 bb = EDGE_PRED (bb, 0)->src;
4522
4523 if (!sel_bb_empty_p (bb))
4524 break;
4525 }
4526
4527 return false;
4528 }
4529
4530 /* Returns true when BB should be the end of an ebb. Adapted from the
4531 code in sched-ebb.c. */
4532 bool
4533 bb_ends_ebb_p (basic_block bb)
4534 {
4535 basic_block next_bb = bb_next_bb (bb);
4536 edge e;
4537 edge_iterator ei;
4538
4539 if (next_bb == EXIT_BLOCK_PTR
4540 || bitmap_bit_p (forced_ebb_heads, next_bb->index)
4541 || (LABEL_P (BB_HEAD (next_bb))
4542 /* NB: LABEL_NUSES () is not maintained outside of jump.c.
4543 Work around that. */
4544 && !single_pred_p (next_bb)))
4545 return true;
4546
4547 if (!in_current_region_p (next_bb))
4548 return true;
4549
4550 FOR_EACH_EDGE (e, ei, bb->succs)
4551 if ((e->flags & EDGE_FALLTHRU) != 0)
4552 {
4553 gcc_assert (e->dest == next_bb);
4554
4555 return false;
4556 }
4557
4558 return true;
4559 }
4560
4561 /* Returns true when INSN and SUCC are in the same EBB, given that SUCC is a
4562 successor of INSN. */
4563 bool
4564 in_same_ebb_p (insn_t insn, insn_t succ)
4565 {
4566 basic_block ptr = BLOCK_FOR_INSN (insn);
4567
4568 for(;;)
4569 {
4570 if (ptr == BLOCK_FOR_INSN (succ))
4571 return true;
4572
4573 if (bb_ends_ebb_p (ptr))
4574 return false;
4575
4576 ptr = bb_next_bb (ptr);
4577 }
4578
4579 gcc_unreachable ();
4580 return false;
4581 }
4582
4583 /* Recomputes the reverse topological order for the function and
4584 saves it in REV_TOP_ORDER_INDEX. REV_TOP_ORDER_INDEX_LEN is also
4585 modified appropriately. */
4586 static void
4587 recompute_rev_top_order (void)
4588 {
4589 int *postorder;
4590 int n_blocks, i;
4591
4592 if (!rev_top_order_index || rev_top_order_index_len < last_basic_block)
4593 {
4594 rev_top_order_index_len = last_basic_block;
4595 rev_top_order_index = XRESIZEVEC (int, rev_top_order_index,
4596 rev_top_order_index_len);
4597 }
4598
4599 postorder = XNEWVEC (int, n_basic_blocks);
4600
4601 n_blocks = post_order_compute (postorder, true, false);
4602 gcc_assert (n_basic_blocks == n_blocks);
4603
4604 /* Build reverse function: for each basic block with BB->INDEX == K
4605 rev_top_order_index[K] is it's reverse topological sort number. */
4606 for (i = 0; i < n_blocks; i++)
4607 {
4608 gcc_assert (postorder[i] < rev_top_order_index_len);
4609 rev_top_order_index[postorder[i]] = i;
4610 }
4611
4612 free (postorder);
4613 }
4614
4615 /* Clear all flags from insns in BB that could spoil its rescheduling. */
4616 void
4617 clear_outdated_rtx_info (basic_block bb)
4618 {
4619 rtx insn;
4620
4621 FOR_BB_INSNS (bb, insn)
4622 if (INSN_P (insn))
4623 {
4624 SCHED_GROUP_P (insn) = 0;
4625 INSN_AFTER_STALL_P (insn) = 0;
4626 INSN_SCHED_TIMES (insn) = 0;
4627 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) = 0;
4628
4629 /* We cannot use the changed caches, as previously we could ignore
4630 the LHS dependence due to enabled renaming and transform
4631 the expression, and currently we'll be unable to do this. */
4632 htab_empty (INSN_TRANSFORMED_INSNS (insn));
4633 }
4634 }
4635
4636 /* Add BB_NOTE to the pool of available basic block notes. */
4637 static void
4638 return_bb_to_pool (basic_block bb)
4639 {
4640 rtx note = bb_note (bb);
4641
4642 gcc_assert (NOTE_BASIC_BLOCK (note) == bb
4643 && bb->aux == NULL);
4644
4645 /* It turns out that current cfg infrastructure does not support
4646 reuse of basic blocks. Don't bother for now. */
4647 /*VEC_safe_push (rtx, heap, bb_note_pool, note);*/
4648 }
4649
4650 /* Get a bb_note from pool or return NULL_RTX if pool is empty. */
4651 static rtx
4652 get_bb_note_from_pool (void)
4653 {
4654 if (VEC_empty (rtx, bb_note_pool))
4655 return NULL_RTX;
4656 else
4657 {
4658 rtx note = VEC_pop (rtx, bb_note_pool);
4659
4660 PREV_INSN (note) = NULL_RTX;
4661 NEXT_INSN (note) = NULL_RTX;
4662
4663 return note;
4664 }
4665 }
4666
4667 /* Free bb_note_pool. */
4668 void
4669 free_bb_note_pool (void)
4670 {
4671 VEC_free (rtx, heap, bb_note_pool);
4672 }
4673
4674 /* Setup scheduler pool and successor structure. */
4675 void
4676 alloc_sched_pools (void)
4677 {
4678 int succs_size;
4679
4680 succs_size = MAX_WS + 1;
4681 succs_info_pool.stack = XCNEWVEC (struct succs_info, succs_size);
4682 succs_info_pool.size = succs_size;
4683 succs_info_pool.top = -1;
4684 succs_info_pool.max_top = -1;
4685
4686 sched_lists_pool = create_alloc_pool ("sel-sched-lists",
4687 sizeof (struct _list_node), 500);
4688 }
4689
4690 /* Free the pools. */
4691 void
4692 free_sched_pools (void)
4693 {
4694 int i;
4695
4696 free_alloc_pool (sched_lists_pool);
4697 gcc_assert (succs_info_pool.top == -1);
4698 for (i = 0; i < succs_info_pool.max_top; i++)
4699 {
4700 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_ok);
4701 VEC_free (rtx, heap, succs_info_pool.stack[i].succs_other);
4702 VEC_free (int, heap, succs_info_pool.stack[i].probs_ok);
4703 }
4704 free (succs_info_pool.stack);
4705 }
4706 \f
4707
4708 /* Returns a position in RGN where BB can be inserted retaining
4709 topological order. */
4710 static int
4711 find_place_to_insert_bb (basic_block bb, int rgn)
4712 {
4713 bool has_preds_outside_rgn = false;
4714 edge e;
4715 edge_iterator ei;
4716
4717 /* Find whether we have preds outside the region. */
4718 FOR_EACH_EDGE (e, ei, bb->preds)
4719 if (!in_current_region_p (e->src))
4720 {
4721 has_preds_outside_rgn = true;
4722 break;
4723 }
4724
4725 /* Recompute the top order -- needed when we have > 1 pred
4726 and in case we don't have preds outside. */
4727 if (flag_sel_sched_pipelining_outer_loops
4728 && (has_preds_outside_rgn || EDGE_COUNT (bb->preds) > 1))
4729 {
4730 int i, bbi = bb->index, cur_bbi;
4731
4732 recompute_rev_top_order ();
4733 for (i = RGN_NR_BLOCKS (rgn) - 1; i >= 0; i--)
4734 {
4735 cur_bbi = BB_TO_BLOCK (i);
4736 if (rev_top_order_index[bbi]
4737 < rev_top_order_index[cur_bbi])
4738 break;
4739 }
4740
4741 /* We skipped the right block, so we increase i. We accomodate
4742 it for increasing by step later, so we decrease i. */
4743 return (i + 1) - 1;
4744 }
4745 else if (has_preds_outside_rgn)
4746 {
4747 /* This is the case when we generate an extra empty block
4748 to serve as region head during pipelining. */
4749 e = EDGE_SUCC (bb, 0);
4750 gcc_assert (EDGE_COUNT (bb->succs) == 1
4751 && in_current_region_p (EDGE_SUCC (bb, 0)->dest)
4752 && (BLOCK_TO_BB (e->dest->index) == 0));
4753 return -1;
4754 }
4755
4756 /* We don't have preds outside the region. We should have
4757 the only pred, because the multiple preds case comes from
4758 the pipelining of outer loops, and that is handled above.
4759 Just take the bbi of this single pred. */
4760 if (EDGE_COUNT (bb->succs) > 0)
4761 {
4762 int pred_bbi;
4763
4764 gcc_assert (EDGE_COUNT (bb->preds) == 1);
4765
4766 pred_bbi = EDGE_PRED (bb, 0)->src->index;
4767 return BLOCK_TO_BB (pred_bbi);
4768 }
4769 else
4770 /* BB has no successors. It is safe to put it in the end. */
4771 return current_nr_blocks - 1;
4772 }
4773
4774 /* Deletes an empty basic block freeing its data. */
4775 static void
4776 delete_and_free_basic_block (basic_block bb)
4777 {
4778 gcc_assert (sel_bb_empty_p (bb));
4779
4780 if (BB_LV_SET (bb))
4781 free_lv_set (bb);
4782
4783 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4784
4785 /* Can't assert av_set properties because we use sel_aremove_bb
4786 when removing loop preheader from the region. At the point of
4787 removing the preheader we already have deallocated sel_region_bb_info. */
4788 gcc_assert (BB_LV_SET (bb) == NULL
4789 && !BB_LV_SET_VALID_P (bb)
4790 && BB_AV_LEVEL (bb) == 0
4791 && BB_AV_SET (bb) == NULL);
4792
4793 delete_basic_block (bb);
4794 }
4795
4796 /* Add BB to the current region and update the region data. */
4797 static void
4798 add_block_to_current_region (basic_block bb)
4799 {
4800 int i, pos, bbi = -2, rgn;
4801
4802 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4803 bbi = find_place_to_insert_bb (bb, rgn);
4804 bbi += 1;
4805 pos = RGN_BLOCKS (rgn) + bbi;
4806
4807 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4808 && ebb_head[bbi] == pos);
4809
4810 /* Make a place for the new block. */
4811 extend_regions ();
4812
4813 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4814 BLOCK_TO_BB (rgn_bb_table[i])++;
4815
4816 memmove (rgn_bb_table + pos + 1,
4817 rgn_bb_table + pos,
4818 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4819
4820 /* Initialize data for BB. */
4821 rgn_bb_table[pos] = bb->index;
4822 BLOCK_TO_BB (bb->index) = bbi;
4823 CONTAINING_RGN (bb->index) = rgn;
4824
4825 RGN_NR_BLOCKS (rgn)++;
4826
4827 for (i = rgn + 1; i <= nr_regions; i++)
4828 RGN_BLOCKS (i)++;
4829 }
4830
4831 /* Remove BB from the current region and update the region data. */
4832 static void
4833 remove_bb_from_region (basic_block bb)
4834 {
4835 int i, pos, bbi = -2, rgn;
4836
4837 rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
4838 bbi = BLOCK_TO_BB (bb->index);
4839 pos = RGN_BLOCKS (rgn) + bbi;
4840
4841 gcc_assert (RGN_HAS_REAL_EBB (rgn) == 0
4842 && ebb_head[bbi] == pos);
4843
4844 for (i = RGN_BLOCKS (rgn + 1) - 1; i >= pos; i--)
4845 BLOCK_TO_BB (rgn_bb_table[i])--;
4846
4847 memmove (rgn_bb_table + pos,
4848 rgn_bb_table + pos + 1,
4849 (RGN_BLOCKS (nr_regions) - pos) * sizeof (*rgn_bb_table));
4850
4851 RGN_NR_BLOCKS (rgn)--;
4852 for (i = rgn + 1; i <= nr_regions; i++)
4853 RGN_BLOCKS (i)--;
4854 }
4855
4856 /* Add BB to the current region and update all data. If BB is NULL, add all
4857 blocks from last_added_blocks vector. */
4858 static void
4859 sel_add_bb (basic_block bb)
4860 {
4861 /* Extend luids so that new notes will receive zero luids. */
4862 sched_init_luids (NULL, NULL, NULL, NULL);
4863 sched_init_bbs ();
4864 sel_init_bbs (last_added_blocks, NULL);
4865
4866 /* When bb is passed explicitly, the vector should contain
4867 the only element that equals to bb; otherwise, the vector
4868 should not be NULL. */
4869 gcc_assert (last_added_blocks != NULL);
4870
4871 if (bb != NULL)
4872 {
4873 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
4874 && VEC_index (basic_block,
4875 last_added_blocks, 0) == bb);
4876 add_block_to_current_region (bb);
4877
4878 /* We associate creating/deleting data sets with the first insn
4879 appearing / disappearing in the bb. */
4880 if (!sel_bb_empty_p (bb) && BB_LV_SET (bb) == NULL)
4881 create_initial_data_sets (bb);
4882
4883 VEC_free (basic_block, heap, last_added_blocks);
4884 }
4885 else
4886 /* BB is NULL - process LAST_ADDED_BLOCKS instead. */
4887 {
4888 int i;
4889 basic_block temp_bb = NULL;
4890
4891 for (i = 0;
4892 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
4893 {
4894 add_block_to_current_region (bb);
4895 temp_bb = bb;
4896 }
4897
4898 /* We need to fetch at least one bb so we know the region
4899 to update. */
4900 gcc_assert (temp_bb != NULL);
4901 bb = temp_bb;
4902
4903 VEC_free (basic_block, heap, last_added_blocks);
4904 }
4905
4906 rgn_setup_region (CONTAINING_RGN (bb->index));
4907 }
4908
4909 /* Remove BB from the current region and update all data.
4910 If REMOVE_FROM_CFG_PBB is true, also remove the block cfom cfg. */
4911 static void
4912 sel_remove_bb (basic_block bb, bool remove_from_cfg_p)
4913 {
4914 gcc_assert (bb != NULL && BB_NOTE_LIST (bb) == NULL_RTX);
4915
4916 remove_bb_from_region (bb);
4917 return_bb_to_pool (bb);
4918 bitmap_clear_bit (blocks_to_reschedule, bb->index);
4919
4920 if (remove_from_cfg_p)
4921 delete_and_free_basic_block (bb);
4922
4923 rgn_setup_region (CONTAINING_RGN (bb->index));
4924 }
4925
4926 /* Concatenate info of EMPTY_BB to info of MERGE_BB. */
4927 static void
4928 move_bb_info (basic_block merge_bb, basic_block empty_bb)
4929 {
4930 gcc_assert (in_current_region_p (merge_bb));
4931
4932 concat_note_lists (BB_NOTE_LIST (empty_bb),
4933 &BB_NOTE_LIST (merge_bb));
4934 BB_NOTE_LIST (empty_bb) = NULL_RTX;
4935
4936 }
4937
4938 /* Remove an empty basic block EMPTY_BB. When MERGE_UP_P is true, we put
4939 EMPTY_BB's note lists into its predecessor instead of putting them
4940 into the successor. When REMOVE_FROM_CFG_P is true, also remove
4941 the empty block. */
4942 void
4943 sel_remove_empty_bb (basic_block empty_bb, bool merge_up_p,
4944 bool remove_from_cfg_p)
4945 {
4946 basic_block merge_bb;
4947
4948 gcc_assert (sel_bb_empty_p (empty_bb));
4949
4950 if (merge_up_p)
4951 {
4952 merge_bb = empty_bb->prev_bb;
4953 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1
4954 && EDGE_PRED (empty_bb, 0)->src == merge_bb);
4955 }
4956 else
4957 {
4958 edge e;
4959 edge_iterator ei;
4960
4961 merge_bb = bb_next_bb (empty_bb);
4962
4963 /* Redirect incoming edges (except fallthrough one) of EMPTY_BB to its
4964 successor block. */
4965 for (ei = ei_start (empty_bb->preds);
4966 (e = ei_safe_edge (ei)); )
4967 {
4968 if (! (e->flags & EDGE_FALLTHRU))
4969 sel_redirect_edge_and_branch (e, merge_bb);
4970 else
4971 ei_next (&ei);
4972 }
4973
4974 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1
4975 && EDGE_SUCC (empty_bb, 0)->dest == merge_bb);
4976 }
4977
4978 move_bb_info (merge_bb, empty_bb);
4979 remove_empty_bb (empty_bb, remove_from_cfg_p);
4980 }
4981
4982 /* Remove EMPTY_BB. If REMOVE_FROM_CFG_P is false, remove EMPTY_BB from
4983 region, but keep it in CFG. */
4984 static void
4985 remove_empty_bb (basic_block empty_bb, bool remove_from_cfg_p)
4986 {
4987 /* The block should contain just a note or a label.
4988 We try to check whether it is unused below. */
4989 gcc_assert (BB_HEAD (empty_bb) == BB_END (empty_bb)
4990 || LABEL_P (BB_HEAD (empty_bb)));
4991
4992 /* If basic block has predecessors or successors, redirect them. */
4993 if (remove_from_cfg_p
4994 && (EDGE_COUNT (empty_bb->preds) > 0
4995 || EDGE_COUNT (empty_bb->succs) > 0))
4996 {
4997 basic_block pred;
4998 basic_block succ;
4999
5000 /* We need to init PRED and SUCC before redirecting edges. */
5001 if (EDGE_COUNT (empty_bb->preds) > 0)
5002 {
5003 edge e;
5004
5005 gcc_assert (EDGE_COUNT (empty_bb->preds) == 1);
5006
5007 e = EDGE_PRED (empty_bb, 0);
5008 gcc_assert (e->src == empty_bb->prev_bb
5009 && (e->flags & EDGE_FALLTHRU));
5010
5011 pred = empty_bb->prev_bb;
5012 }
5013 else
5014 pred = NULL;
5015
5016 if (EDGE_COUNT (empty_bb->succs) > 0)
5017 {
5018 /* We do not check fallthruness here as above, because
5019 after removing a jump the edge may actually be not fallthru. */
5020 gcc_assert (EDGE_COUNT (empty_bb->succs) == 1);
5021 succ = EDGE_SUCC (empty_bb, 0)->dest;
5022 }
5023 else
5024 succ = NULL;
5025
5026 if (EDGE_COUNT (empty_bb->preds) > 0 && succ != NULL)
5027 {
5028 edge e = EDGE_PRED (empty_bb, 0);
5029
5030 if (e->flags & EDGE_FALLTHRU)
5031 redirect_edge_succ_nodup (e, succ);
5032 else
5033 sel_redirect_edge_and_branch (EDGE_PRED (empty_bb, 0), succ);
5034 }
5035
5036 if (EDGE_COUNT (empty_bb->succs) > 0 && pred != NULL)
5037 {
5038 edge e = EDGE_SUCC (empty_bb, 0);
5039
5040 if (find_edge (pred, e->dest) == NULL)
5041 redirect_edge_pred (e, pred);
5042 }
5043 }
5044
5045 /* Finish removing. */
5046 sel_remove_bb (empty_bb, remove_from_cfg_p);
5047 }
5048
5049 /* An implementation of create_basic_block hook, which additionally updates
5050 per-bb data structures. */
5051 static basic_block
5052 sel_create_basic_block (void *headp, void *endp, basic_block after)
5053 {
5054 basic_block new_bb;
5055 insn_t new_bb_note;
5056
5057 gcc_assert (flag_sel_sched_pipelining_outer_loops
5058 || last_added_blocks == NULL);
5059
5060 new_bb_note = get_bb_note_from_pool ();
5061
5062 if (new_bb_note == NULL_RTX)
5063 new_bb = orig_cfg_hooks.create_basic_block (headp, endp, after);
5064 else
5065 {
5066 new_bb = create_basic_block_structure ((rtx) headp, (rtx) endp,
5067 new_bb_note, after);
5068 new_bb->aux = NULL;
5069 }
5070
5071 VEC_safe_push (basic_block, heap, last_added_blocks, new_bb);
5072
5073 return new_bb;
5074 }
5075
5076 /* Implement sched_init_only_bb (). */
5077 static void
5078 sel_init_only_bb (basic_block bb, basic_block after)
5079 {
5080 gcc_assert (after == NULL);
5081
5082 extend_regions ();
5083 rgn_make_new_region_out_of_new_block (bb);
5084 }
5085
5086 /* Update the latch when we've splitted or merged it from FROM block to TO.
5087 This should be checked for all outer loops, too. */
5088 static void
5089 change_loops_latches (basic_block from, basic_block to)
5090 {
5091 gcc_assert (from != to);
5092
5093 if (current_loop_nest)
5094 {
5095 struct loop *loop;
5096
5097 for (loop = current_loop_nest; loop; loop = loop_outer (loop))
5098 if (considered_for_pipelining_p (loop) && loop->latch == from)
5099 {
5100 gcc_assert (loop == current_loop_nest);
5101 loop->latch = to;
5102 gcc_assert (loop_latch_edge (loop));
5103 }
5104 }
5105 }
5106
5107 /* Splits BB on two basic blocks, adding it to the region and extending
5108 per-bb data structures. Returns the newly created bb. */
5109 static basic_block
5110 sel_split_block (basic_block bb, rtx after)
5111 {
5112 basic_block new_bb;
5113 insn_t insn;
5114
5115 new_bb = sched_split_block_1 (bb, after);
5116 sel_add_bb (new_bb);
5117
5118 /* This should be called after sel_add_bb, because this uses
5119 CONTAINING_RGN for the new block, which is not yet initialized.
5120 FIXME: this function may be a no-op now. */
5121 change_loops_latches (bb, new_bb);
5122
5123 /* Update ORIG_BB_INDEX for insns moved into the new block. */
5124 FOR_BB_INSNS (new_bb, insn)
5125 if (INSN_P (insn))
5126 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
5127
5128 if (sel_bb_empty_p (bb))
5129 {
5130 gcc_assert (!sel_bb_empty_p (new_bb));
5131
5132 /* NEW_BB has data sets that need to be updated and BB holds
5133 data sets that should be removed. Exchange these data sets
5134 so that we won't lose BB's valid data sets. */
5135 exchange_data_sets (new_bb, bb);
5136 free_data_sets (bb);
5137 }
5138
5139 if (!sel_bb_empty_p (new_bb)
5140 && bitmap_bit_p (blocks_to_reschedule, bb->index))
5141 bitmap_set_bit (blocks_to_reschedule, new_bb->index);
5142
5143 return new_bb;
5144 }
5145
5146 /* If BB ends with a jump insn whose ID is bigger then PREV_MAX_UID, return it.
5147 Otherwise returns NULL. */
5148 static rtx
5149 check_for_new_jump (basic_block bb, int prev_max_uid)
5150 {
5151 rtx end;
5152
5153 end = sel_bb_end (bb);
5154 if (end && INSN_UID (end) >= prev_max_uid)
5155 return end;
5156 return NULL;
5157 }
5158
5159 /* Look for a new jump either in FROM_BB block or in newly created JUMP_BB block.
5160 New means having UID at least equal to PREV_MAX_UID. */
5161 static rtx
5162 find_new_jump (basic_block from, basic_block jump_bb, int prev_max_uid)
5163 {
5164 rtx jump;
5165
5166 /* Return immediately if no new insns were emitted. */
5167 if (get_max_uid () == prev_max_uid)
5168 return NULL;
5169
5170 /* Now check both blocks for new jumps. It will ever be only one. */
5171 if ((jump = check_for_new_jump (from, prev_max_uid)))
5172 return jump;
5173
5174 if (jump_bb != NULL
5175 && (jump = check_for_new_jump (jump_bb, prev_max_uid)))
5176 return jump;
5177 return NULL;
5178 }
5179
5180 /* Splits E and adds the newly created basic block to the current region.
5181 Returns this basic block. */
5182 basic_block
5183 sel_split_edge (edge e)
5184 {
5185 basic_block new_bb, src, other_bb = NULL;
5186 int prev_max_uid;
5187 rtx jump;
5188
5189 src = e->src;
5190 prev_max_uid = get_max_uid ();
5191 new_bb = split_edge (e);
5192
5193 if (flag_sel_sched_pipelining_outer_loops
5194 && current_loop_nest)
5195 {
5196 int i;
5197 basic_block bb;
5198
5199 /* Some of the basic blocks might not have been added to the loop.
5200 Add them here, until this is fixed in force_fallthru. */
5201 for (i = 0;
5202 VEC_iterate (basic_block, last_added_blocks, i, bb); i++)
5203 if (!bb->loop_father)
5204 {
5205 add_bb_to_loop (bb, e->dest->loop_father);
5206
5207 gcc_assert (!other_bb && (new_bb->index != bb->index));
5208 other_bb = bb;
5209 }
5210 }
5211
5212 /* Add all last_added_blocks to the region. */
5213 sel_add_bb (NULL);
5214
5215 jump = find_new_jump (src, new_bb, prev_max_uid);
5216 if (jump)
5217 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5218
5219 /* Put the correct lv set on this block. */
5220 if (other_bb && !sel_bb_empty_p (other_bb))
5221 compute_live (sel_bb_head (other_bb));
5222
5223 return new_bb;
5224 }
5225
5226 /* Implement sched_create_empty_bb (). */
5227 static basic_block
5228 sel_create_empty_bb (basic_block after)
5229 {
5230 basic_block new_bb;
5231
5232 new_bb = sched_create_empty_bb_1 (after);
5233
5234 /* We'll explicitly initialize NEW_BB via sel_init_only_bb () a bit
5235 later. */
5236 gcc_assert (VEC_length (basic_block, last_added_blocks) == 1
5237 && VEC_index (basic_block, last_added_blocks, 0) == new_bb);
5238
5239 VEC_free (basic_block, heap, last_added_blocks);
5240 return new_bb;
5241 }
5242
5243 /* Implement sched_create_recovery_block. ORIG_INSN is where block
5244 will be splitted to insert a check. */
5245 basic_block
5246 sel_create_recovery_block (insn_t orig_insn)
5247 {
5248 basic_block first_bb, second_bb, recovery_block;
5249 basic_block before_recovery = NULL;
5250 rtx jump;
5251
5252 first_bb = BLOCK_FOR_INSN (orig_insn);
5253 if (sel_bb_end_p (orig_insn))
5254 {
5255 /* Avoid introducing an empty block while splitting. */
5256 gcc_assert (single_succ_p (first_bb));
5257 second_bb = single_succ (first_bb);
5258 }
5259 else
5260 second_bb = sched_split_block (first_bb, orig_insn);
5261
5262 recovery_block = sched_create_recovery_block (&before_recovery);
5263 if (before_recovery)
5264 copy_lv_set_from (before_recovery, EXIT_BLOCK_PTR);
5265
5266 gcc_assert (sel_bb_empty_p (recovery_block));
5267 sched_create_recovery_edges (first_bb, recovery_block, second_bb);
5268 if (current_loops != NULL)
5269 add_bb_to_loop (recovery_block, first_bb->loop_father);
5270
5271 sel_add_bb (recovery_block);
5272
5273 jump = BB_END (recovery_block);
5274 gcc_assert (sel_bb_head (recovery_block) == jump);
5275 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5276
5277 return recovery_block;
5278 }
5279
5280 /* Merge basic block B into basic block A. */
5281 void
5282 sel_merge_blocks (basic_block a, basic_block b)
5283 {
5284 sel_remove_empty_bb (b, true, false);
5285 merge_blocks (a, b);
5286
5287 change_loops_latches (b, a);
5288 }
5289
5290 /* A wrapper for redirect_edge_and_branch_force, which also initializes
5291 data structures for possibly created bb and insns. Returns the newly
5292 added bb or NULL, when a bb was not needed. */
5293 void
5294 sel_redirect_edge_and_branch_force (edge e, basic_block to)
5295 {
5296 basic_block jump_bb, src;
5297 int prev_max_uid;
5298 rtx jump;
5299
5300 gcc_assert (!sel_bb_empty_p (e->src));
5301
5302 src = e->src;
5303 prev_max_uid = get_max_uid ();
5304 jump_bb = redirect_edge_and_branch_force (e, to);
5305
5306 if (jump_bb != NULL)
5307 sel_add_bb (jump_bb);
5308
5309 /* This function could not be used to spoil the loop structure by now,
5310 thus we don't care to update anything. But check it to be sure. */
5311 if (current_loop_nest
5312 && pipelining_p)
5313 gcc_assert (loop_latch_edge (current_loop_nest));
5314
5315 jump = find_new_jump (src, jump_bb, prev_max_uid);
5316 if (jump)
5317 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5318 }
5319
5320 /* A wrapper for redirect_edge_and_branch. */
5321 void
5322 sel_redirect_edge_and_branch (edge e, basic_block to)
5323 {
5324 bool latch_edge_p;
5325 basic_block src;
5326 int prev_max_uid;
5327 rtx jump;
5328 edge redirected;
5329
5330 latch_edge_p = (pipelining_p
5331 && current_loop_nest
5332 && e == loop_latch_edge (current_loop_nest));
5333
5334 src = e->src;
5335 prev_max_uid = get_max_uid ();
5336
5337 redirected = redirect_edge_and_branch (e, to);
5338
5339 gcc_assert (redirected && last_added_blocks == NULL);
5340
5341 /* When we've redirected a latch edge, update the header. */
5342 if (latch_edge_p)
5343 {
5344 current_loop_nest->header = to;
5345 gcc_assert (loop_latch_edge (current_loop_nest));
5346 }
5347
5348 jump = find_new_jump (src, NULL, prev_max_uid);
5349 if (jump)
5350 sel_init_new_insn (jump, INSN_INIT_TODO_LUID | INSN_INIT_TODO_SIMPLEJUMP);
5351 }
5352
5353 /* This variable holds the cfg hooks used by the selective scheduler. */
5354 static struct cfg_hooks sel_cfg_hooks;
5355
5356 /* Register sel-sched cfg hooks. */
5357 void
5358 sel_register_cfg_hooks (void)
5359 {
5360 sched_split_block = sel_split_block;
5361
5362 orig_cfg_hooks = get_cfg_hooks ();
5363 sel_cfg_hooks = orig_cfg_hooks;
5364
5365 sel_cfg_hooks.create_basic_block = sel_create_basic_block;
5366
5367 set_cfg_hooks (sel_cfg_hooks);
5368
5369 sched_init_only_bb = sel_init_only_bb;
5370 sched_split_block = sel_split_block;
5371 sched_create_empty_bb = sel_create_empty_bb;
5372 }
5373
5374 /* Unregister sel-sched cfg hooks. */
5375 void
5376 sel_unregister_cfg_hooks (void)
5377 {
5378 sched_create_empty_bb = NULL;
5379 sched_split_block = NULL;
5380 sched_init_only_bb = NULL;
5381
5382 set_cfg_hooks (orig_cfg_hooks);
5383 }
5384 \f
5385
5386 /* Emit an insn rtx based on PATTERN. If a jump insn is wanted,
5387 LABEL is where this jump should be directed. */
5388 rtx
5389 create_insn_rtx_from_pattern (rtx pattern, rtx label)
5390 {
5391 rtx insn_rtx;
5392
5393 gcc_assert (!INSN_P (pattern));
5394
5395 start_sequence ();
5396
5397 if (label == NULL_RTX)
5398 insn_rtx = emit_insn (pattern);
5399 else if (DEBUG_INSN_P (label))
5400 insn_rtx = emit_debug_insn (pattern);
5401 else
5402 {
5403 insn_rtx = emit_jump_insn (pattern);
5404 JUMP_LABEL (insn_rtx) = label;
5405 ++LABEL_NUSES (label);
5406 }
5407
5408 end_sequence ();
5409
5410 sched_init_luids (NULL, NULL, NULL, NULL);
5411 sched_extend_target ();
5412 sched_deps_init (false);
5413
5414 /* Initialize INSN_CODE now. */
5415 recog_memoized (insn_rtx);
5416 return insn_rtx;
5417 }
5418
5419 /* Create a new vinsn for INSN_RTX. FORCE_UNIQUE_P is true when the vinsn
5420 must not be clonable. */
5421 vinsn_t
5422 create_vinsn_from_insn_rtx (rtx insn_rtx, bool force_unique_p)
5423 {
5424 gcc_assert (INSN_P (insn_rtx) && !INSN_IN_STREAM_P (insn_rtx));
5425
5426 /* If VINSN_TYPE is not USE, retain its uniqueness. */
5427 return vinsn_create (insn_rtx, force_unique_p);
5428 }
5429
5430 /* Create a copy of INSN_RTX. */
5431 rtx
5432 create_copy_of_insn_rtx (rtx insn_rtx)
5433 {
5434 rtx res;
5435
5436 if (DEBUG_INSN_P (insn_rtx))
5437 return create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5438 insn_rtx);
5439
5440 gcc_assert (NONJUMP_INSN_P (insn_rtx));
5441
5442 res = create_insn_rtx_from_pattern (copy_rtx (PATTERN (insn_rtx)),
5443 NULL_RTX);
5444 return res;
5445 }
5446
5447 /* Change vinsn field of EXPR to hold NEW_VINSN. */
5448 void
5449 change_vinsn_in_expr (expr_t expr, vinsn_t new_vinsn)
5450 {
5451 vinsn_detach (EXPR_VINSN (expr));
5452
5453 EXPR_VINSN (expr) = new_vinsn;
5454 vinsn_attach (new_vinsn);
5455 }
5456
5457 /* Helpers for global init. */
5458 /* This structure is used to be able to call existing bundling mechanism
5459 and calculate insn priorities. */
5460 static struct haifa_sched_info sched_sel_haifa_sched_info =
5461 {
5462 NULL, /* init_ready_list */
5463 NULL, /* can_schedule_ready_p */
5464 NULL, /* schedule_more_p */
5465 NULL, /* new_ready */
5466 NULL, /* rgn_rank */
5467 sel_print_insn, /* rgn_print_insn */
5468 contributes_to_priority,
5469 NULL, /* insn_finishes_block_p */
5470
5471 NULL, NULL,
5472 NULL, NULL,
5473 0, 0,
5474
5475 NULL, /* add_remove_insn */
5476 NULL, /* begin_schedule_ready */
5477 NULL, /* advance_target_bb */
5478 SEL_SCHED | NEW_BBS
5479 };
5480
5481 /* Setup special insns used in the scheduler. */
5482 void
5483 setup_nop_and_exit_insns (void)
5484 {
5485 gcc_assert (nop_pattern == NULL_RTX
5486 && exit_insn == NULL_RTX);
5487
5488 nop_pattern = gen_nop ();
5489
5490 start_sequence ();
5491 emit_insn (nop_pattern);
5492 exit_insn = get_insns ();
5493 end_sequence ();
5494 set_block_for_insn (exit_insn, EXIT_BLOCK_PTR);
5495 }
5496
5497 /* Free special insns used in the scheduler. */
5498 void
5499 free_nop_and_exit_insns (void)
5500 {
5501 exit_insn = NULL_RTX;
5502 nop_pattern = NULL_RTX;
5503 }
5504
5505 /* Setup a special vinsn used in new insns initialization. */
5506 void
5507 setup_nop_vinsn (void)
5508 {
5509 nop_vinsn = vinsn_create (exit_insn, false);
5510 vinsn_attach (nop_vinsn);
5511 }
5512
5513 /* Free a special vinsn used in new insns initialization. */
5514 void
5515 free_nop_vinsn (void)
5516 {
5517 gcc_assert (VINSN_COUNT (nop_vinsn) == 1);
5518 vinsn_detach (nop_vinsn);
5519 nop_vinsn = NULL;
5520 }
5521
5522 /* Call a set_sched_flags hook. */
5523 void
5524 sel_set_sched_flags (void)
5525 {
5526 /* ??? This means that set_sched_flags were called, and we decided to
5527 support speculation. However, set_sched_flags also modifies flags
5528 on current_sched_info, doing this only at global init. And we
5529 sometimes change c_s_i later. So put the correct flags again. */
5530 if (spec_info && targetm.sched.set_sched_flags)
5531 targetm.sched.set_sched_flags (spec_info);
5532 }
5533
5534 /* Setup pointers to global sched info structures. */
5535 void
5536 sel_setup_sched_infos (void)
5537 {
5538 rgn_setup_common_sched_info ();
5539
5540 memcpy (&sel_common_sched_info, common_sched_info,
5541 sizeof (sel_common_sched_info));
5542
5543 sel_common_sched_info.fix_recovery_cfg = NULL;
5544 sel_common_sched_info.add_block = NULL;
5545 sel_common_sched_info.estimate_number_of_insns
5546 = sel_estimate_number_of_insns;
5547 sel_common_sched_info.luid_for_non_insn = sel_luid_for_non_insn;
5548 sel_common_sched_info.sched_pass_id = SCHED_SEL_PASS;
5549
5550 common_sched_info = &sel_common_sched_info;
5551
5552 current_sched_info = &sched_sel_haifa_sched_info;
5553 current_sched_info->sched_max_insns_priority =
5554 get_rgn_sched_max_insns_priority ();
5555
5556 sel_set_sched_flags ();
5557 }
5558 \f
5559
5560 /* Adds basic block BB to region RGN at the position *BB_ORD_INDEX,
5561 *BB_ORD_INDEX after that is increased. */
5562 static void
5563 sel_add_block_to_region (basic_block bb, int *bb_ord_index, int rgn)
5564 {
5565 RGN_NR_BLOCKS (rgn) += 1;
5566 RGN_DONT_CALC_DEPS (rgn) = 0;
5567 RGN_HAS_REAL_EBB (rgn) = 0;
5568 CONTAINING_RGN (bb->index) = rgn;
5569 BLOCK_TO_BB (bb->index) = *bb_ord_index;
5570 rgn_bb_table[RGN_BLOCKS (rgn) + *bb_ord_index] = bb->index;
5571 (*bb_ord_index)++;
5572
5573 /* FIXME: it is true only when not scheduling ebbs. */
5574 RGN_BLOCKS (rgn + 1) = RGN_BLOCKS (rgn) + RGN_NR_BLOCKS (rgn);
5575 }
5576
5577 /* Functions to support pipelining of outer loops. */
5578
5579 /* Creates a new empty region and returns it's number. */
5580 static int
5581 sel_create_new_region (void)
5582 {
5583 int new_rgn_number = nr_regions;
5584
5585 RGN_NR_BLOCKS (new_rgn_number) = 0;
5586
5587 /* FIXME: This will work only when EBBs are not created. */
5588 if (new_rgn_number != 0)
5589 RGN_BLOCKS (new_rgn_number) = RGN_BLOCKS (new_rgn_number - 1) +
5590 RGN_NR_BLOCKS (new_rgn_number - 1);
5591 else
5592 RGN_BLOCKS (new_rgn_number) = 0;
5593
5594 /* Set the blocks of the next region so the other functions may
5595 calculate the number of blocks in the region. */
5596 RGN_BLOCKS (new_rgn_number + 1) = RGN_BLOCKS (new_rgn_number) +
5597 RGN_NR_BLOCKS (new_rgn_number);
5598
5599 nr_regions++;
5600
5601 return new_rgn_number;
5602 }
5603
5604 /* If X has a smaller topological sort number than Y, returns -1;
5605 if greater, returns 1. */
5606 static int
5607 bb_top_order_comparator (const void *x, const void *y)
5608 {
5609 basic_block bb1 = *(const basic_block *) x;
5610 basic_block bb2 = *(const basic_block *) y;
5611
5612 gcc_assert (bb1 == bb2
5613 || rev_top_order_index[bb1->index]
5614 != rev_top_order_index[bb2->index]);
5615
5616 /* It's a reverse topological order in REV_TOP_ORDER_INDEX, so
5617 bbs with greater number should go earlier. */
5618 if (rev_top_order_index[bb1->index] > rev_top_order_index[bb2->index])
5619 return -1;
5620 else
5621 return 1;
5622 }
5623
5624 /* Create a region for LOOP and return its number. If we don't want
5625 to pipeline LOOP, return -1. */
5626 static int
5627 make_region_from_loop (struct loop *loop)
5628 {
5629 unsigned int i;
5630 int new_rgn_number = -1;
5631 struct loop *inner;
5632
5633 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5634 int bb_ord_index = 0;
5635 basic_block *loop_blocks;
5636 basic_block preheader_block;
5637
5638 if (loop->num_nodes
5639 > (unsigned) PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_BLOCKS))
5640 return -1;
5641
5642 /* Don't pipeline loops whose latch belongs to some of its inner loops. */
5643 for (inner = loop->inner; inner; inner = inner->inner)
5644 if (flow_bb_inside_loop_p (inner, loop->latch))
5645 return -1;
5646
5647 loop->ninsns = num_loop_insns (loop);
5648 if ((int) loop->ninsns > PARAM_VALUE (PARAM_MAX_PIPELINE_REGION_INSNS))
5649 return -1;
5650
5651 loop_blocks = get_loop_body_in_custom_order (loop, bb_top_order_comparator);
5652
5653 for (i = 0; i < loop->num_nodes; i++)
5654 if (loop_blocks[i]->flags & BB_IRREDUCIBLE_LOOP)
5655 {
5656 free (loop_blocks);
5657 return -1;
5658 }
5659
5660 preheader_block = loop_preheader_edge (loop)->src;
5661 gcc_assert (preheader_block);
5662 gcc_assert (loop_blocks[0] == loop->header);
5663
5664 new_rgn_number = sel_create_new_region ();
5665
5666 sel_add_block_to_region (preheader_block, &bb_ord_index, new_rgn_number);
5667 SET_BIT (bbs_in_loop_rgns, preheader_block->index);
5668
5669 for (i = 0; i < loop->num_nodes; i++)
5670 {
5671 /* Add only those blocks that haven't been scheduled in the inner loop.
5672 The exception is the basic blocks with bookkeeping code - they should
5673 be added to the region (and they actually don't belong to the loop
5674 body, but to the region containing that loop body). */
5675
5676 gcc_assert (new_rgn_number >= 0);
5677
5678 if (! TEST_BIT (bbs_in_loop_rgns, loop_blocks[i]->index))
5679 {
5680 sel_add_block_to_region (loop_blocks[i], &bb_ord_index,
5681 new_rgn_number);
5682 SET_BIT (bbs_in_loop_rgns, loop_blocks[i]->index);
5683 }
5684 }
5685
5686 free (loop_blocks);
5687 MARK_LOOP_FOR_PIPELINING (loop);
5688
5689 return new_rgn_number;
5690 }
5691
5692 /* Create a new region from preheader blocks LOOP_BLOCKS. */
5693 void
5694 make_region_from_loop_preheader (VEC(basic_block, heap) **loop_blocks)
5695 {
5696 unsigned int i;
5697 int new_rgn_number = -1;
5698 basic_block bb;
5699
5700 /* Basic block index, to be assigned to BLOCK_TO_BB. */
5701 int bb_ord_index = 0;
5702
5703 new_rgn_number = sel_create_new_region ();
5704
5705 for (i = 0; VEC_iterate (basic_block, *loop_blocks, i, bb); i++)
5706 {
5707 gcc_assert (new_rgn_number >= 0);
5708
5709 sel_add_block_to_region (bb, &bb_ord_index, new_rgn_number);
5710 }
5711
5712 VEC_free (basic_block, heap, *loop_blocks);
5713 gcc_assert (*loop_blocks == NULL);
5714 }
5715
5716
5717 /* Create region(s) from loop nest LOOP, such that inner loops will be
5718 pipelined before outer loops. Returns true when a region for LOOP
5719 is created. */
5720 static bool
5721 make_regions_from_loop_nest (struct loop *loop)
5722 {
5723 struct loop *cur_loop;
5724 int rgn_number;
5725
5726 /* Traverse all inner nodes of the loop. */
5727 for (cur_loop = loop->inner; cur_loop; cur_loop = cur_loop->next)
5728 if (! TEST_BIT (bbs_in_loop_rgns, cur_loop->header->index))
5729 return false;
5730
5731 /* At this moment all regular inner loops should have been pipelined.
5732 Try to create a region from this loop. */
5733 rgn_number = make_region_from_loop (loop);
5734
5735 if (rgn_number < 0)
5736 return false;
5737
5738 VEC_safe_push (loop_p, heap, loop_nests, loop);
5739 return true;
5740 }
5741
5742 /* Initalize data structures needed. */
5743 void
5744 sel_init_pipelining (void)
5745 {
5746 /* Collect loop information to be used in outer loops pipelining. */
5747 loop_optimizer_init (LOOPS_HAVE_PREHEADERS
5748 | LOOPS_HAVE_FALLTHRU_PREHEADERS
5749 | LOOPS_HAVE_RECORDED_EXITS
5750 | LOOPS_HAVE_MARKED_IRREDUCIBLE_REGIONS);
5751 current_loop_nest = NULL;
5752
5753 bbs_in_loop_rgns = sbitmap_alloc (last_basic_block);
5754 sbitmap_zero (bbs_in_loop_rgns);
5755
5756 recompute_rev_top_order ();
5757 }
5758
5759 /* Returns a struct loop for region RGN. */
5760 loop_p
5761 get_loop_nest_for_rgn (unsigned int rgn)
5762 {
5763 /* Regions created with extend_rgns don't have corresponding loop nests,
5764 because they don't represent loops. */
5765 if (rgn < VEC_length (loop_p, loop_nests))
5766 return VEC_index (loop_p, loop_nests, rgn);
5767 else
5768 return NULL;
5769 }
5770
5771 /* True when LOOP was included into pipelining regions. */
5772 bool
5773 considered_for_pipelining_p (struct loop *loop)
5774 {
5775 if (loop_depth (loop) == 0)
5776 return false;
5777
5778 /* Now, the loop could be too large or irreducible. Check whether its
5779 region is in LOOP_NESTS.
5780 We determine the region number of LOOP as the region number of its
5781 latch. We can't use header here, because this header could be
5782 just removed preheader and it will give us the wrong region number.
5783 Latch can't be used because it could be in the inner loop too. */
5784 if (LOOP_MARKED_FOR_PIPELINING_P (loop) && pipelining_p)
5785 {
5786 int rgn = CONTAINING_RGN (loop->latch->index);
5787
5788 gcc_assert ((unsigned) rgn < VEC_length (loop_p, loop_nests));
5789 return true;
5790 }
5791
5792 return false;
5793 }
5794
5795 /* Makes regions from the rest of the blocks, after loops are chosen
5796 for pipelining. */
5797 static void
5798 make_regions_from_the_rest (void)
5799 {
5800 int cur_rgn_blocks;
5801 int *loop_hdr;
5802 int i;
5803
5804 basic_block bb;
5805 edge e;
5806 edge_iterator ei;
5807 int *degree;
5808 int new_regions;
5809
5810 /* Index in rgn_bb_table where to start allocating new regions. */
5811 cur_rgn_blocks = nr_regions ? RGN_BLOCKS (nr_regions) : 0;
5812 new_regions = nr_regions;
5813
5814 /* Make regions from all the rest basic blocks - those that don't belong to
5815 any loop or belong to irreducible loops. Prepare the data structures
5816 for extend_rgns. */
5817
5818 /* LOOP_HDR[I] == -1 if I-th bb doesn't belong to any loop,
5819 LOOP_HDR[I] == LOOP_HDR[J] iff basic blocks I and J reside within the same
5820 loop. */
5821 loop_hdr = XNEWVEC (int, last_basic_block);
5822 degree = XCNEWVEC (int, last_basic_block);
5823
5824
5825 /* For each basic block that belongs to some loop assign the number
5826 of innermost loop it belongs to. */
5827 for (i = 0; i < last_basic_block; i++)
5828 loop_hdr[i] = -1;
5829
5830 FOR_EACH_BB (bb)
5831 {
5832 if (bb->loop_father && !bb->loop_father->num == 0
5833 && !(bb->flags & BB_IRREDUCIBLE_LOOP))
5834 loop_hdr[bb->index] = bb->loop_father->num;
5835 }
5836
5837 /* For each basic block degree is calculated as the number of incoming
5838 edges, that are going out of bbs that are not yet scheduled.
5839 The basic blocks that are scheduled have degree value of zero. */
5840 FOR_EACH_BB (bb)
5841 {
5842 degree[bb->index] = 0;
5843
5844 if (!TEST_BIT (bbs_in_loop_rgns, bb->index))
5845 {
5846 FOR_EACH_EDGE (e, ei, bb->preds)
5847 if (!TEST_BIT (bbs_in_loop_rgns, e->src->index))
5848 degree[bb->index]++;
5849 }
5850 else
5851 degree[bb->index] = -1;
5852 }
5853
5854 extend_rgns (degree, &cur_rgn_blocks, bbs_in_loop_rgns, loop_hdr);
5855
5856 /* Any block that did not end up in a region is placed into a region
5857 by itself. */
5858 FOR_EACH_BB (bb)
5859 if (degree[bb->index] >= 0)
5860 {
5861 rgn_bb_table[cur_rgn_blocks] = bb->index;
5862 RGN_NR_BLOCKS (nr_regions) = 1;
5863 RGN_BLOCKS (nr_regions) = cur_rgn_blocks++;
5864 RGN_DONT_CALC_DEPS (nr_regions) = 0;
5865 RGN_HAS_REAL_EBB (nr_regions) = 0;
5866 CONTAINING_RGN (bb->index) = nr_regions++;
5867 BLOCK_TO_BB (bb->index) = 0;
5868 }
5869
5870 free (degree);
5871 free (loop_hdr);
5872 }
5873
5874 /* Free data structures used in pipelining of loops. */
5875 void sel_finish_pipelining (void)
5876 {
5877 loop_iterator li;
5878 struct loop *loop;
5879
5880 /* Release aux fields so we don't free them later by mistake. */
5881 FOR_EACH_LOOP (li, loop, 0)
5882 loop->aux = NULL;
5883
5884 loop_optimizer_finalize ();
5885
5886 VEC_free (loop_p, heap, loop_nests);
5887
5888 free (rev_top_order_index);
5889 rev_top_order_index = NULL;
5890 }
5891
5892 /* This function replaces the find_rgns when
5893 FLAG_SEL_SCHED_PIPELINING_OUTER_LOOPS is set. */
5894 void
5895 sel_find_rgns (void)
5896 {
5897 sel_init_pipelining ();
5898 extend_regions ();
5899
5900 if (current_loops)
5901 {
5902 loop_p loop;
5903 loop_iterator li;
5904
5905 FOR_EACH_LOOP (li, loop, (flag_sel_sched_pipelining_outer_loops
5906 ? LI_FROM_INNERMOST
5907 : LI_ONLY_INNERMOST))
5908 make_regions_from_loop_nest (loop);
5909 }
5910
5911 /* Make regions from all the rest basic blocks and schedule them.
5912 These blocks include blocks that don't belong to any loop or belong
5913 to irreducible loops. */
5914 make_regions_from_the_rest ();
5915
5916 /* We don't need bbs_in_loop_rgns anymore. */
5917 sbitmap_free (bbs_in_loop_rgns);
5918 bbs_in_loop_rgns = NULL;
5919 }
5920
5921 /* Adds the preheader blocks from previous loop to current region taking
5922 it from LOOP_PREHEADER_BLOCKS (current_loop_nest).
5923 This function is only used with -fsel-sched-pipelining-outer-loops. */
5924 void
5925 sel_add_loop_preheaders (void)
5926 {
5927 int i;
5928 basic_block bb;
5929 VEC(basic_block, heap) *preheader_blocks
5930 = LOOP_PREHEADER_BLOCKS (current_loop_nest);
5931
5932 for (i = 0;
5933 VEC_iterate (basic_block, preheader_blocks, i, bb);
5934 i++)
5935 sel_add_bb (bb);
5936
5937 VEC_free (basic_block, heap, preheader_blocks);
5938 }
5939
5940 /* While pipelining outer loops, returns TRUE if BB is a loop preheader.
5941 Please note that the function should also work when pipelining_p is
5942 false, because it is used when deciding whether we should or should
5943 not reschedule pipelined code. */
5944 bool
5945 sel_is_loop_preheader_p (basic_block bb)
5946 {
5947 if (current_loop_nest)
5948 {
5949 struct loop *outer;
5950
5951 if (preheader_removed)
5952 return false;
5953
5954 /* Preheader is the first block in the region. */
5955 if (BLOCK_TO_BB (bb->index) == 0)
5956 return true;
5957
5958 /* We used to find a preheader with the topological information.
5959 Check that the above code is equivalent to what we did before. */
5960
5961 if (in_current_region_p (current_loop_nest->header))
5962 gcc_assert (!(BLOCK_TO_BB (bb->index)
5963 < BLOCK_TO_BB (current_loop_nest->header->index)));
5964
5965 /* Support the situation when the latch block of outer loop
5966 could be from here. */
5967 for (outer = loop_outer (current_loop_nest);
5968 outer;
5969 outer = loop_outer (outer))
5970 if (considered_for_pipelining_p (outer) && outer->latch == bb)
5971 gcc_unreachable ();
5972 }
5973
5974 return false;
5975 }
5976
5977 /* Checks whether JUMP leads to basic block DEST_BB and no other blocks. */
5978 bool
5979 jump_leads_only_to_bb_p (insn_t jump, basic_block dest_bb)
5980 {
5981 basic_block jump_bb = BLOCK_FOR_INSN (jump);
5982
5983 /* It is not jump, jump with side-effects or jump can lead to several
5984 basic blocks. */
5985 if (!onlyjump_p (jump)
5986 || !any_uncondjump_p (jump))
5987 return false;
5988
5989 /* Several outgoing edges, abnormal edge or destination of jump is
5990 not DEST_BB. */
5991 if (EDGE_COUNT (jump_bb->succs) != 1
5992 || EDGE_SUCC (jump_bb, 0)->flags & EDGE_ABNORMAL
5993 || EDGE_SUCC (jump_bb, 0)->dest != dest_bb)
5994 return false;
5995
5996 /* If not anything of the upper. */
5997 return true;
5998 }
5999
6000 /* Removes the loop preheader from the current region and saves it in
6001 PREHEADER_BLOCKS of the father loop, so they will be added later to
6002 region that represents an outer loop. */
6003 static void
6004 sel_remove_loop_preheader (void)
6005 {
6006 int i, old_len;
6007 int cur_rgn = CONTAINING_RGN (BB_TO_BLOCK (0));
6008 basic_block bb;
6009 bool all_empty_p = true;
6010 VEC(basic_block, heap) *preheader_blocks
6011 = LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest));
6012
6013 gcc_assert (current_loop_nest);
6014 old_len = VEC_length (basic_block, preheader_blocks);
6015
6016 /* Add blocks that aren't within the current loop to PREHEADER_BLOCKS. */
6017 for (i = 0; i < RGN_NR_BLOCKS (cur_rgn); i++)
6018 {
6019 bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6020
6021 /* If the basic block belongs to region, but doesn't belong to
6022 corresponding loop, then it should be a preheader. */
6023 if (sel_is_loop_preheader_p (bb))
6024 {
6025 VEC_safe_push (basic_block, heap, preheader_blocks, bb);
6026 if (BB_END (bb) != bb_note (bb))
6027 all_empty_p = false;
6028 }
6029 }
6030
6031 /* Remove these blocks only after iterating over the whole region. */
6032 for (i = VEC_length (basic_block, preheader_blocks) - 1;
6033 i >= old_len;
6034 i--)
6035 {
6036 bb = VEC_index (basic_block, preheader_blocks, i);
6037 sel_remove_bb (bb, false);
6038 }
6039
6040 if (!considered_for_pipelining_p (loop_outer (current_loop_nest)))
6041 {
6042 if (!all_empty_p)
6043 /* Immediately create new region from preheader. */
6044 make_region_from_loop_preheader (&preheader_blocks);
6045 else
6046 {
6047 /* If all preheader blocks are empty - dont create new empty region.
6048 Instead, remove them completely. */
6049 for (i = 0; VEC_iterate (basic_block, preheader_blocks, i, bb); i++)
6050 {
6051 edge e;
6052 edge_iterator ei;
6053 basic_block prev_bb = bb->prev_bb, next_bb = bb->next_bb;
6054
6055 /* Redirect all incoming edges to next basic block. */
6056 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
6057 {
6058 if (! (e->flags & EDGE_FALLTHRU))
6059 redirect_edge_and_branch (e, bb->next_bb);
6060 else
6061 redirect_edge_succ (e, bb->next_bb);
6062 }
6063 gcc_assert (BB_NOTE_LIST (bb) == NULL);
6064 delete_and_free_basic_block (bb);
6065
6066 /* Check if after deleting preheader there is a nonconditional
6067 jump in PREV_BB that leads to the next basic block NEXT_BB.
6068 If it is so - delete this jump and clear data sets of its
6069 basic block if it becomes empty. */
6070 if (next_bb->prev_bb == prev_bb
6071 && prev_bb != ENTRY_BLOCK_PTR
6072 && jump_leads_only_to_bb_p (BB_END (prev_bb), next_bb))
6073 {
6074 redirect_edge_and_branch (EDGE_SUCC (prev_bb, 0), next_bb);
6075 if (BB_END (prev_bb) == bb_note (prev_bb))
6076 free_data_sets (prev_bb);
6077 }
6078 }
6079 }
6080 VEC_free (basic_block, heap, preheader_blocks);
6081 }
6082 else
6083 /* Store preheader within the father's loop structure. */
6084 SET_LOOP_PREHEADER_BLOCKS (loop_outer (current_loop_nest),
6085 preheader_blocks);
6086 }
6087 #endif