expmed.c (struct init_expmed_rtl): Change all fields but pow2 and cint from struct...
[gcc.git] / gcc / sel-sched-ir.h
1 /* Instruction scheduling pass. This file contains definitions used
2 internally in the scheduler.
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #ifndef GCC_SEL_SCHED_IR_H
22 #define GCC_SEL_SCHED_IR_H
23
24 /* For state_t. */
25 #include "insn-attr.h"
26 #include "regset.h"
27 #include "basic-block.h"
28 /* For reg_note. */
29 #include "rtl.h"
30 #include "ggc.h"
31 #include "bitmap.h"
32 #include "sched-int.h"
33 #include "cfgloop.h"
34
35 /* tc_t is a short for target context. This is a state of the target
36 backend. */
37 typedef void *tc_t;
38
39 /* List data types used for av sets, fences, paths, and boundaries. */
40
41 /* Forward declarations for types that are part of some list nodes. */
42 struct _list_node;
43
44 /* List backend. */
45 typedef struct _list_node *_list_t;
46 #define _LIST_NEXT(L) ((L)->next)
47
48 /* Instruction data that is part of vinsn type. */
49 struct idata_def;
50 typedef struct idata_def *idata_t;
51
52 /* A virtual instruction, i.e. an instruction as seen by the scheduler. */
53 struct vinsn_def;
54 typedef struct vinsn_def *vinsn_t;
55
56 /* RTX list.
57 This type is the backend for ilist. */
58 typedef _list_t _xlist_t;
59 #define _XLIST_X(L) ((L)->u.x)
60 #define _XLIST_NEXT(L) (_LIST_NEXT (L))
61
62 /* Instruction. */
63 typedef rtx insn_t;
64
65 /* List of insns. */
66 typedef _xlist_t ilist_t;
67 #define ILIST_INSN(L) (_XLIST_X (L))
68 #define ILIST_NEXT(L) (_XLIST_NEXT (L))
69
70 /* This lists possible transformations that done locally, i.e. in
71 moveup_expr. */
72 enum local_trans_type
73 {
74 TRANS_SUBSTITUTION,
75 TRANS_SPECULATION
76 };
77
78 /* This struct is used to record the history of expression's
79 transformations. */
80 struct expr_history_def_1
81 {
82 /* UID of the insn. */
83 unsigned uid;
84
85 /* How the expression looked like. */
86 vinsn_t old_expr_vinsn;
87
88 /* How the expression looks after the transformation. */
89 vinsn_t new_expr_vinsn;
90
91 /* And its speculative status. */
92 ds_t spec_ds;
93
94 /* Type of the transformation. */
95 enum local_trans_type type;
96 };
97
98 typedef struct expr_history_def_1 expr_history_def;
99
100
101 /* Expression information. */
102 struct _expr
103 {
104 /* Insn description. */
105 vinsn_t vinsn;
106
107 /* SPEC is the degree of speculativeness.
108 FIXME: now spec is increased when an rhs is moved through a
109 conditional, thus showing only control speculativeness. In the
110 future we'd like to count data spec separately to allow a better
111 control on scheduling. */
112 int spec;
113
114 /* Degree of speculativeness measured as probability of executing
115 instruction's original basic block given relative to
116 the current scheduling point. */
117 int usefulness;
118
119 /* A priority of this expression. */
120 int priority;
121
122 /* A priority adjustment of this expression. */
123 int priority_adj;
124
125 /* Number of times the insn was scheduled. */
126 int sched_times;
127
128 /* A basic block index this was originated from. Zero when there is
129 more than one originator. */
130 int orig_bb_index;
131
132 /* Instruction should be of SPEC_DONE_DS type in order to be moved to this
133 point. */
134 ds_t spec_done_ds;
135
136 /* SPEC_TO_CHECK_DS hold speculation types that should be checked
137 (used only during move_op ()). */
138 ds_t spec_to_check_ds;
139
140 /* Cycle on which original insn was scheduled. Zero when it has not yet
141 been scheduled or more than one originator. */
142 int orig_sched_cycle;
143
144 /* This vector contains the history of insn's transformations. */
145 vec<expr_history_def> history_of_changes;
146
147 /* True (1) when original target (register or memory) of this instruction
148 is available for scheduling, false otherwise. -1 means we're not sure;
149 please run find_used_regs to clarify. */
150 signed char target_available;
151
152 /* True when this expression needs a speculation check to be scheduled.
153 This is used during find_used_regs. */
154 BOOL_BITFIELD needs_spec_check_p : 1;
155
156 /* True when the expression was substituted. Used for statistical
157 purposes. */
158 BOOL_BITFIELD was_substituted : 1;
159
160 /* True when the expression was renamed. */
161 BOOL_BITFIELD was_renamed : 1;
162
163 /* True when expression can't be moved. */
164 BOOL_BITFIELD cant_move : 1;
165 };
166
167 typedef struct _expr expr_def;
168 typedef expr_def *expr_t;
169
170 #define EXPR_VINSN(EXPR) ((EXPR)->vinsn)
171 #define EXPR_INSN_RTX(EXPR) (VINSN_INSN_RTX (EXPR_VINSN (EXPR)))
172 #define EXPR_PATTERN(EXPR) (VINSN_PATTERN (EXPR_VINSN (EXPR)))
173 #define EXPR_LHS(EXPR) (VINSN_LHS (EXPR_VINSN (EXPR)))
174 #define EXPR_RHS(EXPR) (VINSN_RHS (EXPR_VINSN (EXPR)))
175 #define EXPR_TYPE(EXPR) (VINSN_TYPE (EXPR_VINSN (EXPR)))
176 #define EXPR_SEPARABLE_P(EXPR) (VINSN_SEPARABLE_P (EXPR_VINSN (EXPR)))
177
178 #define EXPR_SPEC(EXPR) ((EXPR)->spec)
179 #define EXPR_USEFULNESS(EXPR) ((EXPR)->usefulness)
180 #define EXPR_PRIORITY(EXPR) ((EXPR)->priority)
181 #define EXPR_PRIORITY_ADJ(EXPR) ((EXPR)->priority_adj)
182 #define EXPR_SCHED_TIMES(EXPR) ((EXPR)->sched_times)
183 #define EXPR_ORIG_BB_INDEX(EXPR) ((EXPR)->orig_bb_index)
184 #define EXPR_ORIG_SCHED_CYCLE(EXPR) ((EXPR)->orig_sched_cycle)
185 #define EXPR_SPEC_DONE_DS(EXPR) ((EXPR)->spec_done_ds)
186 #define EXPR_SPEC_TO_CHECK_DS(EXPR) ((EXPR)->spec_to_check_ds)
187 #define EXPR_HISTORY_OF_CHANGES(EXPR) ((EXPR)->history_of_changes)
188 #define EXPR_TARGET_AVAILABLE(EXPR) ((EXPR)->target_available)
189 #define EXPR_NEEDS_SPEC_CHECK_P(EXPR) ((EXPR)->needs_spec_check_p)
190 #define EXPR_WAS_SUBSTITUTED(EXPR) ((EXPR)->was_substituted)
191 #define EXPR_WAS_RENAMED(EXPR) ((EXPR)->was_renamed)
192 #define EXPR_CANT_MOVE(EXPR) ((EXPR)->cant_move)
193
194 /* Insn definition for list of original insns in find_used_regs. */
195 struct _def
196 {
197 insn_t orig_insn;
198
199 /* FIXME: Get rid of CROSSES_CALL in each def, since if we're moving up
200 rhs from two different places, but only one of the code motion paths
201 crosses a call, we can't use any of the call_used_regs, no matter which
202 path or whether all paths crosses a call. Thus we should move CROSSES_CALL
203 to static params. */
204 bool crosses_call;
205 };
206 typedef struct _def *def_t;
207
208
209 /* Availability sets are sets of expressions we're scheduling. */
210 typedef _list_t av_set_t;
211 #define _AV_SET_EXPR(L) (&(L)->u.expr)
212 #define _AV_SET_NEXT(L) (_LIST_NEXT (L))
213
214
215 /* Boundary of the current fence group. */
216 struct _bnd
217 {
218 /* The actual boundary instruction. */
219 insn_t to;
220
221 /* Its path to the fence. */
222 ilist_t ptr;
223
224 /* Availability set at the boundary. */
225 av_set_t av;
226
227 /* This set moved to the fence. */
228 av_set_t av1;
229
230 /* Deps context at this boundary. As long as we have one boundary per fence,
231 this is just a pointer to the same deps context as in the corresponding
232 fence. */
233 deps_t dc;
234 };
235 typedef struct _bnd *bnd_t;
236 #define BND_TO(B) ((B)->to)
237
238 /* PTR stands not for pointer as you might think, but as a Path To Root of the
239 current instruction group from boundary B. */
240 #define BND_PTR(B) ((B)->ptr)
241 #define BND_AV(B) ((B)->av)
242 #define BND_AV1(B) ((B)->av1)
243 #define BND_DC(B) ((B)->dc)
244
245 /* List of boundaries. */
246 typedef _list_t blist_t;
247 #define BLIST_BND(L) (&(L)->u.bnd)
248 #define BLIST_NEXT(L) (_LIST_NEXT (L))
249
250
251 /* Fence information. A fence represents current scheduling point and also
252 blocks code motion through it when pipelining. */
253 struct _fence
254 {
255 /* Insn before which we gather an instruction group.*/
256 insn_t insn;
257
258 /* Modeled state of the processor pipeline. */
259 state_t state;
260
261 /* Current cycle that is being scheduled on this fence. */
262 int cycle;
263
264 /* Number of insns that were scheduled on the current cycle.
265 This information has to be local to a fence. */
266 int cycle_issued_insns;
267
268 /* At the end of fill_insns () this field holds the list of the instructions
269 that are inner boundaries of the scheduled parallel group. */
270 ilist_t bnds;
271
272 /* Deps context at this fence. It is used to model dependencies at the
273 fence so that insn ticks can be properly evaluated. */
274 deps_t dc;
275
276 /* Target context at this fence. Used to save and load any local target
277 scheduling information when changing fences. */
278 tc_t tc;
279
280 /* A vector of insns that are scheduled but not yet completed. */
281 vec<rtx, va_gc> *executing_insns;
282
283 /* A vector indexed by UIDs that caches the earliest cycle on which
284 an insn can be scheduled on this fence. */
285 int *ready_ticks;
286
287 /* Its size. */
288 int ready_ticks_size;
289
290 /* Insn, which has been scheduled last on this fence. */
291 rtx last_scheduled_insn;
292
293 /* The last value of can_issue_more variable on this fence. */
294 int issue_more;
295
296 /* If non-NULL force the next scheduled insn to be SCHED_NEXT. */
297 rtx sched_next;
298
299 /* True if fill_insns processed this fence. */
300 BOOL_BITFIELD processed_p : 1;
301
302 /* True if fill_insns actually scheduled something on this fence. */
303 BOOL_BITFIELD scheduled_p : 1;
304
305 /* True when the next insn scheduled here would start a cycle. */
306 BOOL_BITFIELD starts_cycle_p : 1;
307
308 /* True when the next insn scheduled here would be scheduled after a stall. */
309 BOOL_BITFIELD after_stall_p : 1;
310 };
311 typedef struct _fence *fence_t;
312
313 #define FENCE_INSN(F) ((F)->insn)
314 #define FENCE_STATE(F) ((F)->state)
315 #define FENCE_BNDS(F) ((F)->bnds)
316 #define FENCE_PROCESSED_P(F) ((F)->processed_p)
317 #define FENCE_SCHEDULED_P(F) ((F)->scheduled_p)
318 #define FENCE_ISSUED_INSNS(F) ((F)->cycle_issued_insns)
319 #define FENCE_CYCLE(F) ((F)->cycle)
320 #define FENCE_STARTS_CYCLE_P(F) ((F)->starts_cycle_p)
321 #define FENCE_AFTER_STALL_P(F) ((F)->after_stall_p)
322 #define FENCE_DC(F) ((F)->dc)
323 #define FENCE_TC(F) ((F)->tc)
324 #define FENCE_LAST_SCHEDULED_INSN(F) ((F)->last_scheduled_insn)
325 #define FENCE_ISSUE_MORE(F) ((F)->issue_more)
326 #define FENCE_EXECUTING_INSNS(F) ((F)->executing_insns)
327 #define FENCE_READY_TICKS(F) ((F)->ready_ticks)
328 #define FENCE_READY_TICKS_SIZE(F) ((F)->ready_ticks_size)
329 #define FENCE_SCHED_NEXT(F) ((F)->sched_next)
330
331 /* List of fences. */
332 typedef _list_t flist_t;
333 #define FLIST_FENCE(L) (&(L)->u.fence)
334 #define FLIST_NEXT(L) (_LIST_NEXT (L))
335
336 /* List of fences with pointer to the tail node. */
337 struct flist_tail_def
338 {
339 flist_t head;
340 flist_t *tailp;
341 };
342
343 typedef struct flist_tail_def *flist_tail_t;
344 #define FLIST_TAIL_HEAD(L) ((L)->head)
345 #define FLIST_TAIL_TAILP(L) ((L)->tailp)
346
347 /* List node information. A list node can be any of the types above. */
348 struct _list_node
349 {
350 _list_t next;
351
352 union
353 {
354 rtx x;
355 struct _bnd bnd;
356 expr_def expr;
357 struct _fence fence;
358 struct _def def;
359 void *data;
360 } u;
361 };
362 \f
363
364 /* _list_t functions.
365 All of _*list_* functions are used through accessor macros, thus
366 we can't move them in sel-sched-ir.c. */
367 extern alloc_pool sched_lists_pool;
368
369 static inline _list_t
370 _list_alloc (void)
371 {
372 return (_list_t) pool_alloc (sched_lists_pool);
373 }
374
375 static inline void
376 _list_add (_list_t *lp)
377 {
378 _list_t l = _list_alloc ();
379
380 _LIST_NEXT (l) = *lp;
381 *lp = l;
382 }
383
384 static inline void
385 _list_remove_nofree (_list_t *lp)
386 {
387 _list_t n = *lp;
388
389 *lp = _LIST_NEXT (n);
390 }
391
392 static inline void
393 _list_remove (_list_t *lp)
394 {
395 _list_t n = *lp;
396
397 *lp = _LIST_NEXT (n);
398 pool_free (sched_lists_pool, n);
399 }
400
401 static inline void
402 _list_clear (_list_t *l)
403 {
404 while (*l)
405 _list_remove (l);
406 }
407 \f
408
409 /* List iterator backend. */
410 struct _list_iterator
411 {
412 /* The list we're iterating. */
413 _list_t *lp;
414
415 /* True when this iterator supprts removing. */
416 bool can_remove_p;
417
418 /* True when we've actually removed something. */
419 bool removed_p;
420 };
421
422 static inline void
423 _list_iter_start (_list_iterator *ip, _list_t *lp, bool can_remove_p)
424 {
425 ip->lp = lp;
426 ip->can_remove_p = can_remove_p;
427 ip->removed_p = false;
428 }
429
430 static inline void
431 _list_iter_next (_list_iterator *ip)
432 {
433 if (!ip->removed_p)
434 ip->lp = &_LIST_NEXT (*ip->lp);
435 else
436 ip->removed_p = false;
437 }
438
439 static inline void
440 _list_iter_remove (_list_iterator *ip)
441 {
442 gcc_assert (!ip->removed_p && ip->can_remove_p);
443 _list_remove (ip->lp);
444 ip->removed_p = true;
445 }
446
447 static inline void
448 _list_iter_remove_nofree (_list_iterator *ip)
449 {
450 gcc_assert (!ip->removed_p && ip->can_remove_p);
451 _list_remove_nofree (ip->lp);
452 ip->removed_p = true;
453 }
454
455 /* General macros to traverse a list. FOR_EACH_* interfaces are
456 implemented using these. */
457 #define _FOR_EACH(TYPE, ELEM, I, L) \
458 for (_list_iter_start (&(I), &(L), false); \
459 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
460 _list_iter_next (&(I)))
461
462 #define _FOR_EACH_1(TYPE, ELEM, I, LP) \
463 for (_list_iter_start (&(I), (LP), true); \
464 _list_iter_cond_##TYPE (*(I).lp, &(ELEM)); \
465 _list_iter_next (&(I)))
466 \f
467
468 /* _xlist_t functions. */
469
470 static inline void
471 _xlist_add (_xlist_t *lp, rtx x)
472 {
473 _list_add (lp);
474 _XLIST_X (*lp) = x;
475 }
476
477 #define _xlist_remove(LP) (_list_remove (LP))
478 #define _xlist_clear(LP) (_list_clear (LP))
479
480 static inline bool
481 _xlist_is_in_p (_xlist_t l, rtx x)
482 {
483 while (l)
484 {
485 if (_XLIST_X (l) == x)
486 return true;
487 l = _XLIST_NEXT (l);
488 }
489
490 return false;
491 }
492
493 /* Used through _FOR_EACH. */
494 static inline bool
495 _list_iter_cond_x (_xlist_t l, rtx *xp)
496 {
497 if (l)
498 {
499 *xp = _XLIST_X (l);
500 return true;
501 }
502
503 return false;
504 }
505
506 #define _xlist_iter_remove(IP) (_list_iter_remove (IP))
507
508 typedef _list_iterator _xlist_iterator;
509 #define _FOR_EACH_X(X, I, L) _FOR_EACH (x, (X), (I), (L))
510 #define _FOR_EACH_X_1(X, I, LP) _FOR_EACH_1 (x, (X), (I), (LP))
511 \f
512
513 /* ilist_t functions. Instruction lists are simply RTX lists. */
514
515 #define ilist_add(LP, INSN) (_xlist_add ((LP), (INSN)))
516 #define ilist_remove(LP) (_xlist_remove (LP))
517 #define ilist_clear(LP) (_xlist_clear (LP))
518 #define ilist_is_in_p(L, INSN) (_xlist_is_in_p ((L), (INSN)))
519 #define ilist_iter_remove(IP) (_xlist_iter_remove (IP))
520
521 typedef _xlist_iterator ilist_iterator;
522 #define FOR_EACH_INSN(INSN, I, L) _FOR_EACH_X (INSN, I, L)
523 #define FOR_EACH_INSN_1(INSN, I, LP) _FOR_EACH_X_1 (INSN, I, LP)
524 \f
525
526 /* Av set iterators. */
527 typedef _list_iterator av_set_iterator;
528 #define FOR_EACH_EXPR(EXPR, I, AV) _FOR_EACH (expr, (EXPR), (I), (AV))
529 #define FOR_EACH_EXPR_1(EXPR, I, AV) _FOR_EACH_1 (expr, (EXPR), (I), (AV))
530
531 inline bool
532 _list_iter_cond_expr (av_set_t av, expr_t *exprp)
533 {
534 if (av)
535 {
536 *exprp = _AV_SET_EXPR (av);
537 return true;
538 }
539
540 return false;
541 }
542 \f
543
544 /* Def list iterators. */
545 typedef _list_t def_list_t;
546 typedef _list_iterator def_list_iterator;
547
548 #define DEF_LIST_NEXT(L) (_LIST_NEXT (L))
549 #define DEF_LIST_DEF(L) (&(L)->u.def)
550
551 #define FOR_EACH_DEF(DEF, I, DEF_LIST) _FOR_EACH (def, (DEF), (I), (DEF_LIST))
552
553 static inline bool
554 _list_iter_cond_def (def_list_t def_list, def_t *def)
555 {
556 if (def_list)
557 {
558 *def = DEF_LIST_DEF (def_list);
559 return true;
560 }
561
562 return false;
563 }
564 \f
565
566 /* InstructionData. Contains information about insn pattern. */
567 struct idata_def
568 {
569 /* Type of the insn.
570 o CALL_INSN - Call insn
571 o JUMP_INSN - Jump insn
572 o INSN - INSN that cannot be cloned
573 o USE - INSN that can be cloned
574 o SET - INSN that can be cloned and separable into lhs and rhs
575 o PC - simplejump. Insns that simply redirect control flow should not
576 have any dependencies. Sched-deps.c, though, might consider them as
577 producers or consumers of certain registers. To avoid that we handle
578 dependency for simple jumps ourselves. */
579 int type;
580
581 /* If insn is a SET, this is its left hand side. */
582 rtx lhs;
583
584 /* If insn is a SET, this is its right hand side. */
585 rtx rhs;
586
587 /* Registers that are set/used by this insn. This info is now gathered
588 via sched-deps.c. The downside of this is that we also use live info
589 from flow that is accumulated in the basic blocks. These two infos
590 can be slightly inconsistent, hence in the beginning we make a pass
591 through CFG and calculating the conservative solution for the info in
592 basic blocks. When this scheduler will be switched to use dataflow,
593 this can be unified as df gives us both per basic block and per
594 instruction info. Actually, we don't do that pass and just hope
595 for the best. */
596 regset reg_sets;
597
598 regset reg_clobbers;
599
600 regset reg_uses;
601 };
602
603 #define IDATA_TYPE(ID) ((ID)->type)
604 #define IDATA_LHS(ID) ((ID)->lhs)
605 #define IDATA_RHS(ID) ((ID)->rhs)
606 #define IDATA_REG_SETS(ID) ((ID)->reg_sets)
607 #define IDATA_REG_USES(ID) ((ID)->reg_uses)
608 #define IDATA_REG_CLOBBERS(ID) ((ID)->reg_clobbers)
609
610 /* Type to represent all needed info to emit an insn.
611 This is a virtual equivalent of the insn.
612 Every insn in the stream has an associated vinsn. This is used
613 to reduce memory consumption basing on the fact that many insns
614 don't change through the scheduler.
615
616 vinsn can be either normal or unique.
617 * Normal vinsn is the one, that can be cloned multiple times and typically
618 corresponds to normal instruction.
619
620 * Unique vinsn derivates from CALL, ASM, JUMP (for a while) and other
621 unusual stuff. Such a vinsn is described by its INSN field, which is a
622 reference to the original instruction. */
623 struct vinsn_def
624 {
625 /* Associated insn. */
626 rtx insn_rtx;
627
628 /* Its description. */
629 struct idata_def id;
630
631 /* Hash of vinsn. It is computed either from pattern or from rhs using
632 hash_rtx. It is not placed in ID for faster compares. */
633 unsigned hash;
634
635 /* Hash of the insn_rtx pattern. */
636 unsigned hash_rtx;
637
638 /* Smart pointer counter. */
639 int count;
640
641 /* Cached cost of the vinsn. To access it please use vinsn_cost (). */
642 int cost;
643
644 /* Mark insns that may trap so we don't move them through jumps. */
645 bool may_trap_p;
646 };
647
648 #define VINSN_INSN_RTX(VI) ((VI)->insn_rtx)
649 #define VINSN_PATTERN(VI) (PATTERN (VINSN_INSN_RTX (VI)))
650
651 #define VINSN_ID(VI) (&((VI)->id))
652 #define VINSN_HASH(VI) ((VI)->hash)
653 #define VINSN_HASH_RTX(VI) ((VI)->hash_rtx)
654 #define VINSN_TYPE(VI) (IDATA_TYPE (VINSN_ID (VI)))
655 #define VINSN_SEPARABLE_P(VI) (VINSN_TYPE (VI) == SET)
656 #define VINSN_CLONABLE_P(VI) (VINSN_SEPARABLE_P (VI) || VINSN_TYPE (VI) == USE)
657 #define VINSN_UNIQUE_P(VI) (!VINSN_CLONABLE_P (VI))
658 #define VINSN_LHS(VI) (IDATA_LHS (VINSN_ID (VI)))
659 #define VINSN_RHS(VI) (IDATA_RHS (VINSN_ID (VI)))
660 #define VINSN_REG_SETS(VI) (IDATA_REG_SETS (VINSN_ID (VI)))
661 #define VINSN_REG_USES(VI) (IDATA_REG_USES (VINSN_ID (VI)))
662 #define VINSN_REG_CLOBBERS(VI) (IDATA_REG_CLOBBERS (VINSN_ID (VI)))
663 #define VINSN_COUNT(VI) ((VI)->count)
664 #define VINSN_MAY_TRAP_P(VI) ((VI)->may_trap_p)
665 \f
666
667 /* An entry of the hashtable describing transformations happened when
668 moving up through an insn. */
669 struct transformed_insns
670 {
671 /* Previous vinsn. Used to find the proper element. */
672 vinsn_t vinsn_old;
673
674 /* A new vinsn. */
675 vinsn_t vinsn_new;
676
677 /* Speculative status. */
678 ds_t ds;
679
680 /* Type of transformation happened. */
681 enum local_trans_type type;
682
683 /* Whether a conflict on the target register happened. */
684 BOOL_BITFIELD was_target_conflict : 1;
685
686 /* Whether a check was needed. */
687 BOOL_BITFIELD needs_check : 1;
688 };
689
690 /* Indexed by INSN_LUID, the collection of all data associated with
691 a single instruction that is in the stream. */
692 struct _sel_insn_data
693 {
694 /* The expression that contains vinsn for this insn and some
695 flow-sensitive data like priority. */
696 expr_def expr;
697
698 /* If (WS_LEVEL == GLOBAL_LEVEL) then AV is empty. */
699 int ws_level;
700
701 /* A number that helps in defining a traversing order for a region. */
702 int seqno;
703
704 /* A liveness data computed above this insn. */
705 regset live;
706
707 /* An INSN_UID bit is set when deps analysis result is already known. */
708 bitmap analyzed_deps;
709
710 /* An INSN_UID bit is set when a hard dep was found, not set when
711 no dependence is found. This is meaningful only when the analyzed_deps
712 bitmap has its bit set. */
713 bitmap found_deps;
714
715 /* An INSN_UID bit is set when this is a bookkeeping insn generated from
716 a parent with this uid. If a parent is a bookkeeping copy, all its
717 originators are transitively included in this set. */
718 bitmap originators;
719
720 /* A hashtable caching the result of insn transformations through this one. */
721 htab_t transformed_insns;
722
723 /* A context incapsulating this insn. */
724 struct deps_desc deps_context;
725
726 /* This field is initialized at the beginning of scheduling and is used
727 to handle sched group instructions. If it is non-null, then it points
728 to the instruction, which should be forced to schedule next. Such
729 instructions are unique. */
730 insn_t sched_next;
731
732 /* Cycle at which insn was scheduled. It is greater than zero if insn was
733 scheduled. This is used for bundling. */
734 int sched_cycle;
735
736 /* Cycle at which insn's data will be fully ready. */
737 int ready_cycle;
738
739 /* Speculations that are being checked by this insn. */
740 ds_t spec_checked_ds;
741
742 /* Whether the live set valid or not. */
743 BOOL_BITFIELD live_valid_p : 1;
744 /* Insn is an ASM. */
745 BOOL_BITFIELD asm_p : 1;
746
747 /* True when an insn is scheduled after we've determined that a stall is
748 required.
749 This is used when emulating the Haifa scheduler for bundling. */
750 BOOL_BITFIELD after_stall_p : 1;
751 };
752
753 typedef struct _sel_insn_data sel_insn_data_def;
754 typedef sel_insn_data_def *sel_insn_data_t;
755
756 extern vec<sel_insn_data_def> s_i_d;
757
758 /* Accessor macros for s_i_d. */
759 #define SID(INSN) (&s_i_d[INSN_LUID (INSN)])
760 #define SID_BY_UID(UID) (&s_i_d[LUID_BY_UID (UID)])
761
762 extern sel_insn_data_def insn_sid (insn_t);
763
764 #define INSN_ASM_P(INSN) (SID (INSN)->asm_p)
765 #define INSN_SCHED_NEXT(INSN) (SID (INSN)->sched_next)
766 #define INSN_ANALYZED_DEPS(INSN) (SID (INSN)->analyzed_deps)
767 #define INSN_FOUND_DEPS(INSN) (SID (INSN)->found_deps)
768 #define INSN_DEPS_CONTEXT(INSN) (SID (INSN)->deps_context)
769 #define INSN_ORIGINATORS(INSN) (SID (INSN)->originators)
770 #define INSN_ORIGINATORS_BY_UID(UID) (SID_BY_UID (UID)->originators)
771 #define INSN_TRANSFORMED_INSNS(INSN) (SID (INSN)->transformed_insns)
772
773 #define INSN_EXPR(INSN) (&SID (INSN)->expr)
774 #define INSN_LIVE(INSN) (SID (INSN)->live)
775 #define INSN_LIVE_VALID_P(INSN) (SID (INSN)->live_valid_p)
776 #define INSN_VINSN(INSN) (EXPR_VINSN (INSN_EXPR (INSN)))
777 #define INSN_TYPE(INSN) (VINSN_TYPE (INSN_VINSN (INSN)))
778 #define INSN_SIMPLEJUMP_P(INSN) (INSN_TYPE (INSN) == PC)
779 #define INSN_LHS(INSN) (VINSN_LHS (INSN_VINSN (INSN)))
780 #define INSN_RHS(INSN) (VINSN_RHS (INSN_VINSN (INSN)))
781 #define INSN_REG_SETS(INSN) (VINSN_REG_SETS (INSN_VINSN (INSN)))
782 #define INSN_REG_CLOBBERS(INSN) (VINSN_REG_CLOBBERS (INSN_VINSN (INSN)))
783 #define INSN_REG_USES(INSN) (VINSN_REG_USES (INSN_VINSN (INSN)))
784 #define INSN_SCHED_TIMES(INSN) (EXPR_SCHED_TIMES (INSN_EXPR (INSN)))
785 #define INSN_SEQNO(INSN) (SID (INSN)->seqno)
786 #define INSN_AFTER_STALL_P(INSN) (SID (INSN)->after_stall_p)
787 #define INSN_SCHED_CYCLE(INSN) (SID (INSN)->sched_cycle)
788 #define INSN_READY_CYCLE(INSN) (SID (INSN)->ready_cycle)
789 #define INSN_SPEC_CHECKED_DS(INSN) (SID (INSN)->spec_checked_ds)
790
791 /* A global level shows whether an insn is valid or not. */
792 extern int global_level;
793
794 #define INSN_WS_LEVEL(INSN) (SID (INSN)->ws_level)
795
796 extern av_set_t get_av_set (insn_t);
797 extern int get_av_level (insn_t);
798
799 #define AV_SET(INSN) (get_av_set (INSN))
800 #define AV_LEVEL(INSN) (get_av_level (INSN))
801 #define AV_SET_VALID_P(INSN) (AV_LEVEL (INSN) == global_level)
802
803 /* A list of fences currently in the works. */
804 extern flist_t fences;
805
806 /* A NOP pattern used as a placeholder for real insns. */
807 extern rtx nop_pattern;
808
809 /* An insn that 'contained' in EXIT block. */
810 extern rtx exit_insn;
811
812 /* Provide a separate luid for the insn. */
813 #define INSN_INIT_TODO_LUID (1)
814
815 /* Initialize s_s_i_d. */
816 #define INSN_INIT_TODO_SSID (2)
817
818 /* Initialize data for simplejump. */
819 #define INSN_INIT_TODO_SIMPLEJUMP (4)
820
821 /* Return true if INSN is a local NOP. The nop is local in the sense that
822 it was emitted by the scheduler as a temporary insn and will soon be
823 deleted. These nops are identified by their pattern. */
824 #define INSN_NOP_P(INSN) (PATTERN (INSN) == nop_pattern)
825
826 /* Return true if INSN is linked into instruction stream.
827 NB: It is impossible for INSN to have one field null and the other not
828 null: gcc_assert ((PREV_INSN (INSN) == NULL_RTX)
829 == (NEXT_INSN (INSN) == NULL_RTX)) is valid. */
830 #define INSN_IN_STREAM_P(INSN) (PREV_INSN (INSN) && NEXT_INSN (INSN))
831
832 /* Return true if INSN is in current fence. */
833 #define IN_CURRENT_FENCE_P(INSN) (flist_lookup (fences, INSN) != NULL)
834
835 /* Marks loop as being considered for pipelining. */
836 #define MARK_LOOP_FOR_PIPELINING(LOOP) ((LOOP)->aux = (void *)(size_t)(1))
837 #define LOOP_MARKED_FOR_PIPELINING_P(LOOP) ((size_t)((LOOP)->aux))
838
839 /* Saved loop preheader to transfer when scheduling the loop. */
840 #define LOOP_PREHEADER_BLOCKS(LOOP) ((size_t)((LOOP)->aux) == 1 \
841 ? NULL \
842 : ((vec<basic_block> *) (LOOP)->aux))
843 #define SET_LOOP_PREHEADER_BLOCKS(LOOP,BLOCKS) ((LOOP)->aux \
844 = (BLOCKS != NULL \
845 ? BLOCKS \
846 : (LOOP)->aux))
847
848 extern bitmap blocks_to_reschedule;
849 \f
850
851 /* A variable to track which part of rtx we are scanning in
852 sched-deps.c: sched_analyze_insn (). */
853 enum deps_where_t
854 {
855 DEPS_IN_INSN,
856 DEPS_IN_LHS,
857 DEPS_IN_RHS,
858 DEPS_IN_NOWHERE
859 };
860 \f
861
862 /* Per basic block data for the whole CFG. */
863 struct sel_global_bb_info_def
864 {
865 /* For each bb header this field contains a set of live registers.
866 For all other insns this field has a NULL.
867 We also need to know LV sets for the instructions, that are immediately
868 after the border of the region. */
869 regset lv_set;
870
871 /* Status of LV_SET.
872 true - block has usable LV_SET.
873 false - block's LV_SET should be recomputed. */
874 bool lv_set_valid_p;
875 };
876
877 typedef sel_global_bb_info_def *sel_global_bb_info_t;
878
879
880 /* Per basic block data. This array is indexed by basic block index. */
881 extern vec<sel_global_bb_info_def> sel_global_bb_info;
882
883 extern void sel_extend_global_bb_info (void);
884 extern void sel_finish_global_bb_info (void);
885
886 /* Get data for BB. */
887 #define SEL_GLOBAL_BB_INFO(BB) \
888 (&sel_global_bb_info[(BB)->index])
889
890 /* Access macros. */
891 #define BB_LV_SET(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set)
892 #define BB_LV_SET_VALID_P(BB) (SEL_GLOBAL_BB_INFO (BB)->lv_set_valid_p)
893
894 /* Per basic block data for the region. */
895 struct sel_region_bb_info_def
896 {
897 /* This insn stream is constructed in such a way that it should be
898 traversed by PREV_INSN field - (*not* NEXT_INSN). */
899 rtx note_list;
900
901 /* Cached availability set at the beginning of a block.
902 See also AV_LEVEL () for conditions when this av_set can be used. */
903 av_set_t av_set;
904
905 /* If (AV_LEVEL == GLOBAL_LEVEL) then AV is valid. */
906 int av_level;
907 };
908
909 typedef sel_region_bb_info_def *sel_region_bb_info_t;
910
911
912 /* Per basic block data. This array is indexed by basic block index. */
913 extern vec<sel_region_bb_info_def> sel_region_bb_info;
914
915 /* Get data for BB. */
916 #define SEL_REGION_BB_INFO(BB) (&sel_region_bb_info[(BB)->index])
917
918 /* Get BB's note_list.
919 A note_list is a list of various notes that was scattered across BB
920 before scheduling, and will be appended at the beginning of BB after
921 scheduling is finished. */
922 #define BB_NOTE_LIST(BB) (SEL_REGION_BB_INFO (BB)->note_list)
923
924 #define BB_AV_SET(BB) (SEL_REGION_BB_INFO (BB)->av_set)
925 #define BB_AV_LEVEL(BB) (SEL_REGION_BB_INFO (BB)->av_level)
926 #define BB_AV_SET_VALID_P(BB) (BB_AV_LEVEL (BB) == global_level)
927
928 /* Used in bb_in_ebb_p. */
929 extern bitmap_head *forced_ebb_heads;
930
931 /* The loop nest being pipelined. */
932 extern struct loop *current_loop_nest;
933
934 /* Saves pipelined blocks. Bitmap is indexed by bb->index. */
935 extern sbitmap bbs_pipelined;
936
937 /* Various flags. */
938 extern bool enable_moveup_set_path_p;
939 extern bool pipelining_p;
940 extern bool bookkeeping_p;
941 extern int max_insns_to_rename;
942 extern bool preheader_removed;
943
944 /* Software lookahead window size.
945 According to the results in Nakatani and Ebcioglu [1993], window size of 16
946 is enough to extract most ILP in integer code. */
947 #define MAX_WS (PARAM_VALUE (PARAM_SELSCHED_MAX_LOOKAHEAD))
948
949 extern regset sel_all_regs;
950 \f
951
952 /* Successor iterator backend. */
953 struct succ_iterator
954 {
955 /* True if we're at BB end. */
956 bool bb_end;
957
958 /* An edge on which we're iterating. */
959 edge e1;
960
961 /* The previous edge saved after skipping empty blocks. */
962 edge e2;
963
964 /* Edge iterator used when there are successors in other basic blocks. */
965 edge_iterator ei;
966
967 /* Successor block we're traversing. */
968 basic_block bb;
969
970 /* Flags that are passed to the iterator. We return only successors
971 that comply to these flags. */
972 short flags;
973
974 /* When flags include SUCCS_ALL, this will be set to the exact type
975 of the successor we're traversing now. */
976 short current_flags;
977
978 /* If skip to loop exits, save here information about loop exits. */
979 int current_exit;
980 vec<edge> loop_exits;
981 };
982
983 /* A structure returning all successor's information. */
984 struct succs_info
985 {
986 /* Flags that these succcessors were computed with. */
987 short flags;
988
989 /* Successors that correspond to the flags. */
990 insn_vec_t succs_ok;
991
992 /* Their probabilities. As of now, we don't need this for other
993 successors. */
994 vec<int> probs_ok;
995
996 /* Other successors. */
997 insn_vec_t succs_other;
998
999 /* Probability of all successors. */
1000 int all_prob;
1001
1002 /* The number of all successors. */
1003 int all_succs_n;
1004
1005 /* The number of good successors. */
1006 int succs_ok_n;
1007 };
1008
1009 /* Some needed definitions. */
1010 extern basic_block after_recovery;
1011
1012 extern insn_t sel_bb_head (basic_block);
1013 extern insn_t sel_bb_end (basic_block);
1014 extern bool sel_bb_empty_p (basic_block);
1015 extern bool in_current_region_p (basic_block);
1016
1017 /* True when BB is a header of the inner loop. */
1018 static inline bool
1019 inner_loop_header_p (basic_block bb)
1020 {
1021 struct loop *inner_loop;
1022
1023 if (!current_loop_nest)
1024 return false;
1025
1026 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1027 return false;
1028
1029 inner_loop = bb->loop_father;
1030 if (inner_loop == current_loop_nest)
1031 return false;
1032
1033 /* If successor belongs to another loop. */
1034 if (bb == inner_loop->header
1035 && flow_bb_inside_loop_p (current_loop_nest, bb))
1036 {
1037 /* Could be '=' here because of wrong loop depths. */
1038 gcc_assert (loop_depth (inner_loop) >= loop_depth (current_loop_nest));
1039 return true;
1040 }
1041
1042 return false;
1043 }
1044
1045 /* Return exit edges of LOOP, filtering out edges with the same dest bb. */
1046 static inline vec<edge>
1047 get_loop_exit_edges_unique_dests (const struct loop *loop)
1048 {
1049 vec<edge> edges = vNULL;
1050 struct loop_exit *exit;
1051
1052 gcc_assert (loop->latch != EXIT_BLOCK_PTR_FOR_FN (cfun)
1053 && current_loops->state & LOOPS_HAVE_RECORDED_EXITS);
1054
1055 for (exit = loop->exits->next; exit->e; exit = exit->next)
1056 {
1057 int i;
1058 edge e;
1059 bool was_dest = false;
1060
1061 for (i = 0; edges.iterate (i, &e); i++)
1062 if (e->dest == exit->e->dest)
1063 {
1064 was_dest = true;
1065 break;
1066 }
1067
1068 if (!was_dest)
1069 edges.safe_push (exit->e);
1070 }
1071 return edges;
1072 }
1073
1074 static bool
1075 sel_bb_empty_or_nop_p (basic_block bb)
1076 {
1077 insn_t first = sel_bb_head (bb), last;
1078
1079 if (first == NULL_RTX)
1080 return true;
1081
1082 if (!INSN_NOP_P (first))
1083 return false;
1084
1085 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun))
1086 return false;
1087
1088 last = sel_bb_end (bb);
1089 if (first != last)
1090 return false;
1091
1092 return true;
1093 }
1094
1095 /* Collect all loop exits recursively, skipping empty BBs between them.
1096 E.g. if BB is a loop header which has several loop exits,
1097 traverse all of them and if any of them turns out to be another loop header
1098 (after skipping empty BBs), add its loop exits to the resulting vector
1099 as well. */
1100 static inline vec<edge>
1101 get_all_loop_exits (basic_block bb)
1102 {
1103 vec<edge> exits = vNULL;
1104
1105 /* If bb is empty, and we're skipping to loop exits, then
1106 consider bb as a possible gate to the inner loop now. */
1107 while (sel_bb_empty_or_nop_p (bb)
1108 && in_current_region_p (bb)
1109 && EDGE_COUNT (bb->succs) > 0)
1110 {
1111 bb = single_succ (bb);
1112
1113 /* This empty block could only lead outside the region. */
1114 gcc_assert (! in_current_region_p (bb));
1115 }
1116
1117 /* And now check whether we should skip over inner loop. */
1118 if (inner_loop_header_p (bb))
1119 {
1120 struct loop *this_loop;
1121 struct loop *pred_loop = NULL;
1122 int i;
1123 edge e;
1124
1125 for (this_loop = bb->loop_father;
1126 this_loop && this_loop != current_loop_nest;
1127 this_loop = loop_outer (this_loop))
1128 pred_loop = this_loop;
1129
1130 this_loop = pred_loop;
1131 gcc_assert (this_loop != NULL);
1132
1133 exits = get_loop_exit_edges_unique_dests (this_loop);
1134
1135 /* Traverse all loop headers. */
1136 for (i = 0; exits.iterate (i, &e); i++)
1137 if (in_current_region_p (e->dest)
1138 || inner_loop_header_p (e->dest))
1139 {
1140 vec<edge> next_exits = get_all_loop_exits (e->dest);
1141
1142 if (next_exits.exists ())
1143 {
1144 int j;
1145 edge ne;
1146
1147 /* Add all loop exits for the current edge into the
1148 resulting vector. */
1149 for (j = 0; next_exits.iterate (j, &ne); j++)
1150 exits.safe_push (ne);
1151
1152 /* Remove the original edge. */
1153 exits.ordered_remove (i);
1154
1155 /* Decrease the loop counter so we won't skip anything. */
1156 i--;
1157 continue;
1158 }
1159 }
1160 }
1161
1162 return exits;
1163 }
1164
1165 /* Flags to pass to compute_succs_info and FOR_EACH_SUCC.
1166 Any successor will fall into exactly one category. */
1167
1168 /* Include normal successors. */
1169 #define SUCCS_NORMAL (1)
1170
1171 /* Include back-edge successors. */
1172 #define SUCCS_BACK (2)
1173
1174 /* Include successors that are outside of the current region. */
1175 #define SUCCS_OUT (4)
1176
1177 /* When pipelining of the outer loops is enabled, skip innermost loops
1178 to their exits. */
1179 #define SUCCS_SKIP_TO_LOOP_EXITS (8)
1180
1181 /* Include all successors. */
1182 #define SUCCS_ALL (SUCCS_NORMAL | SUCCS_BACK | SUCCS_OUT)
1183
1184 /* We need to return a succ_iterator to avoid 'unitialized' warning
1185 during bootstrap. */
1186 static inline succ_iterator
1187 _succ_iter_start (insn_t *succp, insn_t insn, int flags)
1188 {
1189 succ_iterator i;
1190
1191 basic_block bb = BLOCK_FOR_INSN (insn);
1192
1193 gcc_assert (INSN_P (insn) || NOTE_INSN_BASIC_BLOCK_P (insn));
1194
1195 i.flags = flags;
1196
1197 /* Avoid 'uninitialized' warning. */
1198 *succp = NULL;
1199 i.e1 = NULL;
1200 i.e2 = NULL;
1201 i.bb = bb;
1202 i.current_flags = 0;
1203 i.current_exit = -1;
1204 i.loop_exits.create (0);
1205
1206 if (bb != EXIT_BLOCK_PTR_FOR_FN (cfun) && BB_END (bb) != insn)
1207 {
1208 i.bb_end = false;
1209
1210 /* Avoid 'uninitialized' warning. */
1211 i.ei.index = 0;
1212 i.ei.container = 0;
1213 }
1214 else
1215 {
1216 i.ei = ei_start (bb->succs);
1217 i.bb_end = true;
1218 }
1219
1220 return i;
1221 }
1222
1223 static inline bool
1224 _succ_iter_cond (succ_iterator *ip, rtx *succp, rtx insn,
1225 bool check (edge, succ_iterator *))
1226 {
1227 if (!ip->bb_end)
1228 {
1229 /* When we're in a middle of a basic block, return
1230 the next insn immediately, but only when SUCCS_NORMAL is set. */
1231 if (*succp != NULL || (ip->flags & SUCCS_NORMAL) == 0)
1232 return false;
1233
1234 *succp = NEXT_INSN (insn);
1235 ip->current_flags = SUCCS_NORMAL;
1236 return true;
1237 }
1238 else
1239 {
1240 while (1)
1241 {
1242 edge e_tmp = NULL;
1243
1244 /* First, try loop exits, if we have them. */
1245 if (ip->loop_exits.exists ())
1246 {
1247 do
1248 {
1249 ip->loop_exits.iterate (ip->current_exit, &e_tmp);
1250 ip->current_exit++;
1251 }
1252 while (e_tmp && !check (e_tmp, ip));
1253
1254 if (!e_tmp)
1255 ip->loop_exits.release ();
1256 }
1257
1258 /* If we have found a successor, then great. */
1259 if (e_tmp)
1260 {
1261 ip->e1 = e_tmp;
1262 break;
1263 }
1264
1265 /* If not, then try the next edge. */
1266 while (ei_cond (ip->ei, &(ip->e1)))
1267 {
1268 basic_block bb = ip->e1->dest;
1269
1270 /* Consider bb as a possible loop header. */
1271 if ((ip->flags & SUCCS_SKIP_TO_LOOP_EXITS)
1272 && flag_sel_sched_pipelining_outer_loops
1273 && (!in_current_region_p (bb)
1274 || BLOCK_TO_BB (ip->bb->index)
1275 < BLOCK_TO_BB (bb->index)))
1276 {
1277 /* Get all loop exits recursively. */
1278 ip->loop_exits = get_all_loop_exits (bb);
1279
1280 if (ip->loop_exits.exists ())
1281 {
1282 ip->current_exit = 0;
1283 /* Move the iterator now, because we won't do
1284 succ_iter_next until loop exits will end. */
1285 ei_next (&(ip->ei));
1286 break;
1287 }
1288 }
1289
1290 /* bb is not a loop header, check as usual. */
1291 if (check (ip->e1, ip))
1292 break;
1293
1294 ei_next (&(ip->ei));
1295 }
1296
1297 /* If loop_exits are non null, we have found an inner loop;
1298 do one more iteration to fetch an edge from these exits. */
1299 if (ip->loop_exits.exists ())
1300 continue;
1301
1302 /* Otherwise, we've found an edge in a usual way. Break now. */
1303 break;
1304 }
1305
1306 if (ip->e1)
1307 {
1308 basic_block bb = ip->e2->dest;
1309
1310 if (bb == EXIT_BLOCK_PTR_FOR_FN (cfun) || bb == after_recovery)
1311 *succp = exit_insn;
1312 else
1313 {
1314 *succp = sel_bb_head (bb);
1315
1316 gcc_assert (ip->flags != SUCCS_NORMAL
1317 || *succp == NEXT_INSN (bb_note (bb)));
1318 gcc_assert (BLOCK_FOR_INSN (*succp) == bb);
1319 }
1320
1321 return true;
1322 }
1323 else
1324 return false;
1325 }
1326 }
1327
1328 static inline void
1329 _succ_iter_next (succ_iterator *ip)
1330 {
1331 gcc_assert (!ip->e2 || ip->e1);
1332
1333 if (ip->bb_end && ip->e1 && !ip->loop_exits.exists ())
1334 ei_next (&(ip->ei));
1335 }
1336
1337 /* Returns true when E1 is an eligible successor edge, possibly skipping
1338 empty blocks. When E2P is not null, the resulting edge is written there.
1339 FLAGS are used to specify whether back edges and out-of-region edges
1340 should be considered. */
1341 static inline bool
1342 _eligible_successor_edge_p (edge e1, succ_iterator *ip)
1343 {
1344 edge e2 = e1;
1345 basic_block bb;
1346 int flags = ip->flags;
1347 bool src_outside_rgn = !in_current_region_p (e1->src);
1348
1349 gcc_assert (flags != 0);
1350
1351 if (src_outside_rgn)
1352 {
1353 /* Any successor of the block that is outside current region is
1354 ineligible, except when we're skipping to loop exits. */
1355 gcc_assert (flags & (SUCCS_OUT | SUCCS_SKIP_TO_LOOP_EXITS));
1356
1357 if (flags & SUCCS_OUT)
1358 return false;
1359 }
1360
1361 bb = e2->dest;
1362
1363 /* Skip empty blocks, but be careful not to leave the region. */
1364 while (1)
1365 {
1366 if (!sel_bb_empty_p (bb))
1367 {
1368 edge ne;
1369 basic_block nbb;
1370
1371 if (!sel_bb_empty_or_nop_p (bb))
1372 break;
1373
1374 ne = EDGE_SUCC (bb, 0);
1375 nbb = ne->dest;
1376
1377 if (!in_current_region_p (nbb)
1378 && !(flags & SUCCS_OUT))
1379 break;
1380
1381 e2 = ne;
1382 bb = nbb;
1383 continue;
1384 }
1385
1386 if (!in_current_region_p (bb)
1387 && !(flags & SUCCS_OUT))
1388 return false;
1389
1390 if (EDGE_COUNT (bb->succs) == 0)
1391 return false;
1392
1393 e2 = EDGE_SUCC (bb, 0);
1394 bb = e2->dest;
1395 }
1396
1397 /* Save the second edge for later checks. */
1398 ip->e2 = e2;
1399
1400 if (in_current_region_p (bb))
1401 {
1402 /* BLOCK_TO_BB sets topological order of the region here.
1403 It is important to use real predecessor here, which is ip->bb,
1404 as we may well have e1->src outside current region,
1405 when skipping to loop exits. */
1406 bool succeeds_in_top_order = (BLOCK_TO_BB (ip->bb->index)
1407 < BLOCK_TO_BB (bb->index));
1408
1409 /* This is true for the all cases except the last one. */
1410 ip->current_flags = SUCCS_NORMAL;
1411
1412 /* We are advancing forward in the region, as usual. */
1413 if (succeeds_in_top_order)
1414 {
1415 /* We are skipping to loop exits here. */
1416 gcc_assert (!src_outside_rgn
1417 || flag_sel_sched_pipelining_outer_loops);
1418 return !!(flags & SUCCS_NORMAL);
1419 }
1420
1421 /* This is a back edge. During pipelining we ignore back edges,
1422 but only when it leads to the same loop. It can lead to the header
1423 of the outer loop, which will also be the preheader of
1424 the current loop. */
1425 if (pipelining_p
1426 && e1->src->loop_father == bb->loop_father)
1427 return !!(flags & SUCCS_NORMAL);
1428
1429 /* A back edge should be requested explicitly. */
1430 ip->current_flags = SUCCS_BACK;
1431 return !!(flags & SUCCS_BACK);
1432 }
1433
1434 ip->current_flags = SUCCS_OUT;
1435 return !!(flags & SUCCS_OUT);
1436 }
1437
1438 #define FOR_EACH_SUCC_1(SUCC, ITER, INSN, FLAGS) \
1439 for ((ITER) = _succ_iter_start (&(SUCC), (INSN), (FLAGS)); \
1440 _succ_iter_cond (&(ITER), &(SUCC), (INSN), _eligible_successor_edge_p); \
1441 _succ_iter_next (&(ITER)))
1442
1443 #define FOR_EACH_SUCC(SUCC, ITER, INSN) \
1444 FOR_EACH_SUCC_1 (SUCC, ITER, INSN, SUCCS_NORMAL)
1445
1446 /* Return the current edge along which a successor was built. */
1447 #define SUCC_ITER_EDGE(ITER) ((ITER)->e1)
1448
1449 /* Return the next block of BB not running into inconsistencies. */
1450 static inline basic_block
1451 bb_next_bb (basic_block bb)
1452 {
1453 switch (EDGE_COUNT (bb->succs))
1454 {
1455 case 0:
1456 return bb->next_bb;
1457
1458 case 1:
1459 return single_succ (bb);
1460
1461 case 2:
1462 return FALLTHRU_EDGE (bb)->dest;
1463
1464 default:
1465 return bb->next_bb;
1466 }
1467
1468 gcc_unreachable ();
1469 }
1470
1471 \f
1472
1473 /* Functions that are used in sel-sched.c. */
1474
1475 /* List functions. */
1476 extern ilist_t ilist_copy (ilist_t);
1477 extern ilist_t ilist_invert (ilist_t);
1478 extern void blist_add (blist_t *, insn_t, ilist_t, deps_t);
1479 extern void blist_remove (blist_t *);
1480 extern void flist_tail_init (flist_tail_t);
1481
1482 extern fence_t flist_lookup (flist_t, insn_t);
1483 extern void flist_clear (flist_t *);
1484 extern void def_list_add (def_list_t *, insn_t, bool);
1485
1486 /* Target context functions. */
1487 extern tc_t create_target_context (bool);
1488 extern void set_target_context (tc_t);
1489 extern void reset_target_context (tc_t, bool);
1490
1491 /* Deps context functions. */
1492 extern void advance_deps_context (deps_t, insn_t);
1493
1494 /* Fences functions. */
1495 extern void init_fences (insn_t);
1496 extern void add_clean_fence_to_fences (flist_tail_t, insn_t, fence_t);
1497 extern void add_dirty_fence_to_fences (flist_tail_t, insn_t, fence_t);
1498 extern void move_fence_to_fences (flist_t, flist_tail_t);
1499
1500 /* Pool functions. */
1501 extern regset get_regset_from_pool (void);
1502 extern regset get_clear_regset_from_pool (void);
1503 extern void return_regset_to_pool (regset);
1504 extern void free_regset_pool (void);
1505
1506 extern insn_t get_nop_from_pool (insn_t);
1507 extern void return_nop_to_pool (insn_t, bool);
1508 extern void free_nop_pool (void);
1509
1510 /* Vinsns functions. */
1511 extern bool vinsn_separable_p (vinsn_t);
1512 extern bool vinsn_cond_branch_p (vinsn_t);
1513 extern void recompute_vinsn_lhs_rhs (vinsn_t);
1514 extern int sel_vinsn_cost (vinsn_t);
1515 extern insn_t sel_gen_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1516 extern insn_t sel_gen_recovery_insn_from_rtx_after (rtx, expr_t, int, insn_t);
1517 extern insn_t sel_gen_insn_from_expr_after (expr_t, vinsn_t, int, insn_t);
1518 extern insn_t sel_move_insn (expr_t, int, insn_t);
1519 extern void vinsn_attach (vinsn_t);
1520 extern void vinsn_detach (vinsn_t);
1521 extern vinsn_t vinsn_copy (vinsn_t, bool);
1522 extern bool vinsn_equal_p (vinsn_t, vinsn_t);
1523
1524 /* EXPR functions. */
1525 extern void copy_expr (expr_t, expr_t);
1526 extern void copy_expr_onside (expr_t, expr_t);
1527 extern void merge_expr_data (expr_t, expr_t, insn_t);
1528 extern void merge_expr (expr_t, expr_t, insn_t);
1529 extern void clear_expr (expr_t);
1530 extern unsigned expr_dest_regno (expr_t);
1531 extern rtx expr_dest_reg (expr_t);
1532 extern int find_in_history_vect (vec<expr_history_def> ,
1533 rtx, vinsn_t, bool);
1534 extern void insert_in_history_vect (vec<expr_history_def> *,
1535 unsigned, enum local_trans_type,
1536 vinsn_t, vinsn_t, ds_t);
1537 extern void mark_unavailable_targets (av_set_t, av_set_t, regset);
1538 extern int speculate_expr (expr_t, ds_t);
1539
1540 /* Av set functions. */
1541 extern void av_set_add (av_set_t *, expr_t);
1542 extern void av_set_iter_remove (av_set_iterator *);
1543 extern expr_t av_set_lookup (av_set_t, vinsn_t);
1544 extern expr_t merge_with_other_exprs (av_set_t *, av_set_iterator *, expr_t);
1545 extern bool av_set_is_in_p (av_set_t, vinsn_t);
1546 extern av_set_t av_set_copy (av_set_t);
1547 extern void av_set_union_and_clear (av_set_t *, av_set_t *, insn_t);
1548 extern void av_set_union_and_live (av_set_t *, av_set_t *, regset, regset, insn_t);
1549 extern void av_set_clear (av_set_t *);
1550 extern void av_set_leave_one_nonspec (av_set_t *);
1551 extern expr_t av_set_element (av_set_t, int);
1552 extern void av_set_substract_cond_branches (av_set_t *);
1553 extern void av_set_split_usefulness (av_set_t, int, int);
1554 extern void av_set_code_motion_filter (av_set_t *, av_set_t);
1555
1556 extern void sel_save_haifa_priorities (void);
1557
1558 extern void sel_init_global_and_expr (bb_vec_t);
1559 extern void sel_finish_global_and_expr (void);
1560
1561 extern regset compute_live (insn_t);
1562 extern bool register_unavailable_p (regset, rtx);
1563
1564 /* Dependence analysis functions. */
1565 extern void sel_clear_has_dependence (void);
1566 extern ds_t has_dependence_p (expr_t, insn_t, ds_t **);
1567
1568 extern int tick_check_p (expr_t, deps_t, fence_t);
1569
1570 /* Functions to work with insns. */
1571 extern bool lhs_of_insn_equals_to_dest_p (insn_t, rtx);
1572 extern bool insn_eligible_for_subst_p (insn_t);
1573 extern void get_dest_and_mode (rtx, rtx *, enum machine_mode *);
1574
1575 extern bool bookkeeping_can_be_created_if_moved_through_p (insn_t);
1576 extern bool sel_remove_insn (insn_t, bool, bool);
1577 extern bool bb_header_p (insn_t);
1578 extern void sel_init_invalid_data_sets (insn_t);
1579 extern bool insn_at_boundary_p (insn_t);
1580
1581 /* Basic block and CFG functions. */
1582
1583 extern insn_t sel_bb_head (basic_block);
1584 extern bool sel_bb_head_p (insn_t);
1585 extern insn_t sel_bb_end (basic_block);
1586 extern bool sel_bb_end_p (insn_t);
1587 extern bool sel_bb_empty_p (basic_block);
1588
1589 extern bool in_current_region_p (basic_block);
1590 extern basic_block fallthru_bb_of_jump (rtx);
1591
1592 extern void sel_init_bbs (bb_vec_t);
1593 extern void sel_finish_bbs (void);
1594
1595 extern struct succs_info * compute_succs_info (insn_t, short);
1596 extern void free_succs_info (struct succs_info *);
1597 extern bool sel_insn_has_single_succ_p (insn_t, int);
1598 extern bool sel_num_cfg_preds_gt_1 (insn_t);
1599 extern int get_seqno_by_preds (rtx);
1600
1601 extern bool bb_ends_ebb_p (basic_block);
1602 extern bool in_same_ebb_p (insn_t, insn_t);
1603
1604 extern bool tidy_control_flow (basic_block, bool);
1605 extern void free_bb_note_pool (void);
1606
1607 extern void purge_empty_blocks (void);
1608 extern basic_block sel_split_edge (edge);
1609 extern basic_block sel_create_recovery_block (insn_t);
1610 extern bool sel_redirect_edge_and_branch (edge, basic_block);
1611 extern void sel_redirect_edge_and_branch_force (edge, basic_block);
1612 extern void sel_init_pipelining (void);
1613 extern void sel_finish_pipelining (void);
1614 extern void sel_sched_region (int);
1615 extern loop_p get_loop_nest_for_rgn (unsigned int);
1616 extern bool considered_for_pipelining_p (struct loop *);
1617 extern void make_region_from_loop_preheader (vec<basic_block> *&);
1618 extern void sel_add_loop_preheaders (bb_vec_t *);
1619 extern bool sel_is_loop_preheader_p (basic_block);
1620 extern void clear_outdated_rtx_info (basic_block);
1621 extern void free_data_sets (basic_block);
1622 extern void exchange_data_sets (basic_block, basic_block);
1623 extern void copy_data_sets (basic_block, basic_block);
1624
1625 extern void sel_register_cfg_hooks (void);
1626 extern void sel_unregister_cfg_hooks (void);
1627
1628 /* Expression transformation routines. */
1629 extern rtx create_insn_rtx_from_pattern (rtx, rtx);
1630 extern vinsn_t create_vinsn_from_insn_rtx (rtx, bool);
1631 extern rtx create_copy_of_insn_rtx (rtx);
1632 extern void change_vinsn_in_expr (expr_t, vinsn_t);
1633
1634 /* Various initialization functions. */
1635 extern void init_lv_sets (void);
1636 extern void free_lv_sets (void);
1637 extern void setup_nop_and_exit_insns (void);
1638 extern void free_nop_and_exit_insns (void);
1639 extern void free_data_for_scheduled_insn (insn_t);
1640 extern void setup_nop_vinsn (void);
1641 extern void free_nop_vinsn (void);
1642 extern void sel_set_sched_flags (void);
1643 extern void sel_setup_sched_infos (void);
1644 extern void alloc_sched_pools (void);
1645 extern void free_sched_pools (void);
1646
1647 #endif /* GCC_SEL_SCHED_IR_H */
1648
1649
1650
1651
1652
1653
1654
1655