typo
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "sched-int.h"
38 #include "ggc.h"
39 #include "tree.h"
40 #include "vec.h"
41 #include "langhooks.h"
42 #include "rtlhooks-def.h"
43 #include "emit-rtl.h"
44 #include "ira.h"
45
46 #ifdef INSN_SCHEDULING
47 #include "sel-sched-ir.h"
48 #include "sel-sched-dump.h"
49 #include "sel-sched.h"
50 #include "dbgcnt.h"
51
52 /* Implementation of selective scheduling approach.
53 The below implementation follows the original approach with the following
54 changes:
55
56 o the scheduler works after register allocation (but can be also tuned
57 to work before RA);
58 o some instructions are not copied or register renamed;
59 o conditional jumps are not moved with code duplication;
60 o several jumps in one parallel group are not supported;
61 o when pipelining outer loops, code motion through inner loops
62 is not supported;
63 o control and data speculation are supported;
64 o some improvements for better compile time/performance were made.
65
66 Terminology
67 ===========
68
69 A vinsn, or virtual insn, is an insn with additional data characterizing
70 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
71 Vinsns also act as smart pointers to save memory by reusing them in
72 different expressions. A vinsn is described by vinsn_t type.
73
74 An expression is a vinsn with additional data characterizing its properties
75 at some point in the control flow graph. The data may be its usefulness,
76 priority, speculative status, whether it was renamed/subsituted, etc.
77 An expression is described by expr_t type.
78
79 Availability set (av_set) is a set of expressions at a given control flow
80 point. It is represented as av_set_t. The expressions in av sets are kept
81 sorted in the terms of expr_greater_p function. It allows to truncate
82 the set while leaving the best expressions.
83
84 A fence is a point through which code motion is prohibited. On each step,
85 we gather a parallel group of insns at a fence. It is possible to have
86 multiple fences. A fence is represented via fence_t.
87
88 A boundary is the border between the fence group and the rest of the code.
89 Currently, we never have more than one boundary per fence, as we finalize
90 the fence group when a jump is scheduled. A boundary is represented
91 via bnd_t.
92
93 High-level overview
94 ===================
95
96 The scheduler finds regions to schedule, schedules each one, and finalizes.
97 The regions are formed starting from innermost loops, so that when the inner
98 loop is pipelined, its prologue can be scheduled together with yet unprocessed
99 outer loop. The rest of acyclic regions are found using extend_rgns:
100 the blocks that are not yet allocated to any regions are traversed in top-down
101 order, and a block is added to a region to which all its predecessors belong;
102 otherwise, the block starts its own region.
103
104 The main scheduling loop (sel_sched_region_2) consists of just
105 scheduling on each fence and updating fences. For each fence,
106 we fill a parallel group of insns (fill_insns) until some insns can be added.
107 First, we compute available exprs (av-set) at the boundary of the current
108 group. Second, we choose the best expression from it. If the stall is
109 required to schedule any of the expressions, we advance the current cycle
110 appropriately. So, the final group does not exactly correspond to a VLIW
111 word. Third, we move the chosen expression to the boundary (move_op)
112 and update the intermediate av sets and liveness sets. We quit fill_insns
113 when either no insns left for scheduling or we have scheduled enough insns
114 so we feel like advancing a scheduling point.
115
116 Computing available expressions
117 ===============================
118
119 The computation (compute_av_set) is a bottom-up traversal. At each insn,
120 we're moving the union of its successors' sets through it via
121 moveup_expr_set. The dependent expressions are removed. Local
122 transformations (substitution, speculation) are applied to move more
123 exprs. Then the expr corresponding to the current insn is added.
124 The result is saved on each basic block header.
125
126 When traversing the CFG, we're moving down for no more than max_ws insns.
127 Also, we do not move down to ineligible successors (is_ineligible_successor),
128 which include moving along a back-edge, moving to already scheduled code,
129 and moving to another fence. The first two restrictions are lifted during
130 pipelining, which allows us to move insns along a back-edge. We always have
131 an acyclic region for scheduling because we forbid motion through fences.
132
133 Choosing the best expression
134 ============================
135
136 We sort the final availability set via sel_rank_for_schedule, then we remove
137 expressions which are not yet ready (tick_check_p) or which dest registers
138 cannot be used. For some of them, we choose another register via
139 find_best_reg. To do this, we run find_used_regs to calculate the set of
140 registers which cannot be used. The find_used_regs function performs
141 a traversal of code motion paths for an expr. We consider for renaming
142 only registers which are from the same regclass as the original one and
143 using which does not interfere with any live ranges. Finally, we convert
144 the resulting set to the ready list format and use max_issue and reorder*
145 hooks similarly to the Haifa scheduler.
146
147 Scheduling the best expression
148 ==============================
149
150 We run the move_op routine to perform the same type of code motion paths
151 traversal as in find_used_regs. (These are working via the same driver,
152 code_motion_path_driver.) When moving down the CFG, we look for original
153 instruction that gave birth to a chosen expression. We undo
154 the transformations performed on an expression via the history saved in it.
155 When found, we remove the instruction or leave a reg-reg copy/speculation
156 check if needed. On a way up, we insert bookkeeping copies at each join
157 point. If a copy is not needed, it will be removed later during this
158 traversal. We update the saved av sets and liveness sets on the way up, too.
159
160 Finalizing the schedule
161 =======================
162
163 When pipelining, we reschedule the blocks from which insns were pipelined
164 to get a tighter schedule. On Itanium, we also perform bundling via
165 the same routine from ia64.c.
166
167 Dependence analysis changes
168 ===========================
169
170 We augmented the sched-deps.c with hooks that get called when a particular
171 dependence is found in a particular part of an insn. Using these hooks, we
172 can do several actions such as: determine whether an insn can be moved through
173 another (has_dependence_p, moveup_expr); find out whether an insn can be
174 scheduled on the current cycle (tick_check_p); find out registers that
175 are set/used/clobbered by an insn and find out all the strange stuff that
176 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
177 init_global_and_expr_for_insn).
178
179 Initialization changes
180 ======================
181
182 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
183 reused in all of the schedulers. We have split up the initialization of data
184 of such parts into different functions prefixed with scheduler type and
185 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
186 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
187 The same splitting is done with current_sched_info structure:
188 dependence-related parts are in sched_deps_info, common part is in
189 common_sched_info, and haifa/sel/etc part is in current_sched_info.
190
191 Target contexts
192 ===============
193
194 As we now have multiple-point scheduling, this would not work with backends
195 which save some of the scheduler state to use it in the target hooks.
196 For this purpose, we introduce a concept of target contexts, which
197 encapsulate such information. The backend should implement simple routines
198 of allocating/freeing/setting such a context. The scheduler calls these
199 as target hooks and handles the target context as an opaque pointer (similar
200 to the DFA state type, state_t).
201
202 Various speedups
203 ================
204
205 As the correct data dependence graph is not supported during scheduling (which
206 is to be changed in mid-term), we cache as much of the dependence analysis
207 results as possible to avoid reanalyzing. This includes: bitmap caches on
208 each insn in stream of the region saying yes/no for a query with a pair of
209 UIDs; hashtables with the previously done transformations on each insn in
210 stream; a vector keeping a history of transformations on each expr.
211
212 Also, we try to minimize the dependence context used on each fence to check
213 whether the given expression is ready for scheduling by removing from it
214 insns that are definitely completed the execution. The results of
215 tick_check_p checks are also cached in a vector on each fence.
216
217 We keep a valid liveness set on each insn in a region to avoid the high
218 cost of recomputation on large basic blocks.
219
220 Finally, we try to minimize the number of needed updates to the availability
221 sets. The updates happen in two cases: when fill_insns terminates,
222 we advance all fences and increase the stage number to show that the region
223 has changed and the sets are to be recomputed; and when the next iteration
224 of a loop in fill_insns happens (but this one reuses the saved av sets
225 on bb headers.) Thus, we try to break the fill_insns loop only when
226 "significant" number of insns from the current scheduling window was
227 scheduled. This should be made a target param.
228
229
230 TODO: correctly support the data dependence graph at all stages and get rid
231 of all caches. This should speed up the scheduler.
232 TODO: implement moving cond jumps with bookkeeping copies on both targets.
233 TODO: tune the scheduler before RA so it does not create too much pseudos.
234
235
236 References:
237 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
238 selective scheduling and software pipelining.
239 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
240
241 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
242 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
243 for GCC. In Proceedings of GCC Developers' Summit 2006.
244
245 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
246 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
247 http://rogue.colorado.edu/EPIC7/.
248
249 */
250
251 /* True when pipelining is enabled. */
252 bool pipelining_p;
253
254 /* True if bookkeeping is enabled. */
255 bool bookkeeping_p;
256
257 /* Maximum number of insns that are eligible for renaming. */
258 int max_insns_to_rename;
259 \f
260
261 /* Definitions of local types and macros. */
262
263 /* Represents possible outcomes of moving an expression through an insn. */
264 enum MOVEUP_EXPR_CODE
265 {
266 /* The expression is not changed. */
267 MOVEUP_EXPR_SAME,
268
269 /* Not changed, but requires a new destination register. */
270 MOVEUP_EXPR_AS_RHS,
271
272 /* Cannot be moved. */
273 MOVEUP_EXPR_NULL,
274
275 /* Changed (substituted or speculated). */
276 MOVEUP_EXPR_CHANGED
277 };
278
279 /* The container to be passed into rtx search & replace functions. */
280 struct rtx_search_arg
281 {
282 /* What we are searching for. */
283 rtx x;
284
285 /* The occurrence counter. */
286 int n;
287 };
288
289 typedef struct rtx_search_arg *rtx_search_arg_p;
290
291 /* This struct contains precomputed hard reg sets that are needed when
292 computing registers available for renaming. */
293 struct hard_regs_data
294 {
295 /* For every mode, this stores registers available for use with
296 that mode. */
297 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
298
299 /* True when regs_for_mode[mode] is initialized. */
300 bool regs_for_mode_ok[NUM_MACHINE_MODES];
301
302 /* For every register, it has regs that are ok to rename into it.
303 The register in question is always set. If not, this means
304 that the whole set is not computed yet. */
305 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
306
307 /* For every mode, this stores registers not available due to
308 call clobbering. */
309 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
310
311 /* All registers that are used or call used. */
312 HARD_REG_SET regs_ever_used;
313
314 #ifdef STACK_REGS
315 /* Stack registers. */
316 HARD_REG_SET stack_regs;
317 #endif
318 };
319
320 /* Holds the results of computation of available for renaming and
321 unavailable hard registers. */
322 struct reg_rename
323 {
324 /* These are unavailable due to calls crossing, globalness, etc. */
325 HARD_REG_SET unavailable_hard_regs;
326
327 /* These are *available* for renaming. */
328 HARD_REG_SET available_for_renaming;
329
330 /* Whether this code motion path crosses a call. */
331 bool crosses_call;
332 };
333
334 /* A global structure that contains the needed information about harg
335 regs. */
336 static struct hard_regs_data sel_hrd;
337 \f
338
339 /* This structure holds local data used in code_motion_path_driver hooks on
340 the same or adjacent levels of recursion. Here we keep those parameters
341 that are not used in code_motion_path_driver routine itself, but only in
342 its hooks. Moreover, all parameters that can be modified in hooks are
343 in this structure, so all other parameters passed explicitly to hooks are
344 read-only. */
345 struct cmpd_local_params
346 {
347 /* Local params used in move_op_* functions. */
348
349 /* Edges for bookkeeping generation. */
350 edge e1, e2;
351
352 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
353 expr_t c_expr_merged, c_expr_local;
354
355 /* Local params used in fur_* functions. */
356 /* Copy of the ORIGINAL_INSN list, stores the original insns already
357 found before entering the current level of code_motion_path_driver. */
358 def_list_t old_original_insns;
359
360 /* Local params used in move_op_* functions. */
361 /* True when we have removed last insn in the block which was
362 also a boundary. Do not update anything or create bookkeeping copies. */
363 BOOL_BITFIELD removed_last_insn : 1;
364 };
365
366 /* Stores the static parameters for move_op_* calls. */
367 struct moveop_static_params
368 {
369 /* Destination register. */
370 rtx dest;
371
372 /* Current C_EXPR. */
373 expr_t c_expr;
374
375 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
376 they are to be removed. */
377 int uid;
378
379 #ifdef ENABLE_CHECKING
380 /* This is initialized to the insn on which the driver stopped its traversal. */
381 insn_t failed_insn;
382 #endif
383
384 /* True if we scheduled an insn with different register. */
385 bool was_renamed;
386 };
387
388 /* Stores the static parameters for fur_* calls. */
389 struct fur_static_params
390 {
391 /* Set of registers unavailable on the code motion path. */
392 regset used_regs;
393
394 /* Pointer to the list of original insns definitions. */
395 def_list_t *original_insns;
396
397 /* True if a code motion path contains a CALL insn. */
398 bool crosses_call;
399 };
400
401 typedef struct fur_static_params *fur_static_params_p;
402 typedef struct cmpd_local_params *cmpd_local_params_p;
403 typedef struct moveop_static_params *moveop_static_params_p;
404
405 /* Set of hooks and parameters that determine behaviour specific to
406 move_op or find_used_regs functions. */
407 struct code_motion_path_driver_info_def
408 {
409 /* Called on enter to the basic block. */
410 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
411
412 /* Called when original expr is found. */
413 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
414
415 /* Called while descending current basic block if current insn is not
416 the original EXPR we're searching for. */
417 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
418
419 /* Function to merge C_EXPRes from different successors. */
420 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
421
422 /* Function to finalize merge from different successors and possibly
423 deallocate temporary data structures used for merging. */
424 void (*after_merge_succs) (cmpd_local_params_p, void *);
425
426 /* Called on the backward stage of recursion to do moveup_expr.
427 Used only with move_op_*. */
428 void (*ascend) (insn_t, void *);
429
430 /* Called on the ascending pass, before returning from the current basic
431 block or from the whole traversal. */
432 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
433
434 /* When processing successors in move_op we need only descend into
435 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
436 int succ_flags;
437
438 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
439 const char *routine_name;
440 };
441
442 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
443 FUR_HOOKS. */
444 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
445
446 /* Set of hooks for performing move_op and find_used_regs routines with
447 code_motion_path_driver. */
448 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
449
450 /* True if/when we want to emulate Haifa scheduler in the common code.
451 This is used in sched_rgn_local_init and in various places in
452 sched-deps.c. */
453 int sched_emulate_haifa_p;
454
455 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
456 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
457 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
458 scheduling window. */
459 int global_level;
460
461 /* Current fences. */
462 flist_t fences;
463
464 /* True when separable insns should be scheduled as RHSes. */
465 static bool enable_schedule_as_rhs_p;
466
467 /* Used in verify_target_availability to assert that target reg is reported
468 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
469 we haven't scheduled anything on the previous fence.
470 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
471 have more conservative value than the one returned by the
472 find_used_regs, thus we shouldn't assert that these values are equal. */
473 static bool scheduled_something_on_previous_fence;
474
475 /* All newly emitted insns will have their uids greater than this value. */
476 static int first_emitted_uid;
477
478 /* Set of basic blocks that are forced to start new ebbs. This is a subset
479 of all the ebb heads. */
480 static bitmap_head _forced_ebb_heads;
481 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
482
483 /* Blocks that need to be rescheduled after pipelining. */
484 bitmap blocks_to_reschedule = NULL;
485
486 /* True when the first lv set should be ignored when updating liveness. */
487 static bool ignore_first = false;
488
489 /* Number of insns max_issue has initialized data structures for. */
490 static int max_issue_size = 0;
491
492 /* Whether we can issue more instructions. */
493 static int can_issue_more;
494
495 /* Maximum software lookahead window size, reduced when rescheduling after
496 pipelining. */
497 static int max_ws;
498
499 /* Number of insns scheduled in current region. */
500 static int num_insns_scheduled;
501
502 /* A vector of expressions is used to be able to sort them. */
503 static vec<expr_t> vec_av_set = vNULL;
504
505 /* A vector of vinsns is used to hold temporary lists of vinsns. */
506 typedef vec<vinsn_t> vinsn_vec_t;
507
508 /* This vector has the exprs which may still present in av_sets, but actually
509 can't be moved up due to bookkeeping created during code motion to another
510 fence. See comment near the call to update_and_record_unavailable_insns
511 for the detailed explanations. */
512 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
513
514 /* This vector has vinsns which are scheduled with renaming on the first fence
515 and then seen on the second. For expressions with such vinsns, target
516 availability information may be wrong. */
517 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
518
519 /* Vector to store temporary nops inserted in move_op to prevent removal
520 of empty bbs. */
521 static vec<insn_t> vec_temp_moveop_nops = vNULL;
522
523 /* These bitmaps record original instructions scheduled on the current
524 iteration and bookkeeping copies created by them. */
525 static bitmap current_originators = NULL;
526 static bitmap current_copies = NULL;
527
528 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
529 visit them afterwards. */
530 static bitmap code_motion_visited_blocks = NULL;
531
532 /* Variables to accumulate different statistics. */
533
534 /* The number of bookkeeping copies created. */
535 static int stat_bookkeeping_copies;
536
537 /* The number of insns that required bookkeeiping for their scheduling. */
538 static int stat_insns_needed_bookkeeping;
539
540 /* The number of insns that got renamed. */
541 static int stat_renamed_scheduled;
542
543 /* The number of substitutions made during scheduling. */
544 static int stat_substitutions_total;
545 \f
546
547 /* Forward declarations of static functions. */
548 static bool rtx_ok_for_substitution_p (rtx, rtx);
549 static int sel_rank_for_schedule (const void *, const void *);
550 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
551 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
552
553 static rtx get_dest_from_orig_ops (av_set_t);
554 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
555 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
556 def_list_t *);
557 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
558 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
559 cmpd_local_params_p, void *);
560 static void sel_sched_region_1 (void);
561 static void sel_sched_region_2 (int);
562 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
563
564 static void debug_state (state_t);
565 \f
566
567 /* Functions that work with fences. */
568
569 /* Advance one cycle on FENCE. */
570 static void
571 advance_one_cycle (fence_t fence)
572 {
573 unsigned i;
574 int cycle;
575 rtx insn;
576
577 advance_state (FENCE_STATE (fence));
578 cycle = ++FENCE_CYCLE (fence);
579 FENCE_ISSUED_INSNS (fence) = 0;
580 FENCE_STARTS_CYCLE_P (fence) = 1;
581 can_issue_more = issue_rate;
582 FENCE_ISSUE_MORE (fence) = can_issue_more;
583
584 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
585 {
586 if (INSN_READY_CYCLE (insn) < cycle)
587 {
588 remove_from_deps (FENCE_DC (fence), insn);
589 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
590 continue;
591 }
592 i++;
593 }
594 if (sched_verbose >= 2)
595 {
596 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
597 debug_state (FENCE_STATE (fence));
598 }
599 }
600
601 /* Returns true when SUCC in a fallthru bb of INSN, possibly
602 skipping empty basic blocks. */
603 static bool
604 in_fallthru_bb_p (rtx insn, rtx succ)
605 {
606 basic_block bb = BLOCK_FOR_INSN (insn);
607 edge e;
608
609 if (bb == BLOCK_FOR_INSN (succ))
610 return true;
611
612 e = find_fallthru_edge_from (bb);
613 if (e)
614 bb = e->dest;
615 else
616 return false;
617
618 while (sel_bb_empty_p (bb))
619 bb = bb->next_bb;
620
621 return bb == BLOCK_FOR_INSN (succ);
622 }
623
624 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
625 When a successor will continue a ebb, transfer all parameters of a fence
626 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
627 of scheduling helping to distinguish between the old and the new code. */
628 static void
629 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
630 int orig_max_seqno)
631 {
632 bool was_here_p = false;
633 insn_t insn = NULL_RTX;
634 insn_t succ;
635 succ_iterator si;
636 ilist_iterator ii;
637 fence_t fence = FLIST_FENCE (old_fences);
638 basic_block bb;
639
640 /* Get the only element of FENCE_BNDS (fence). */
641 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
642 {
643 gcc_assert (!was_here_p);
644 was_here_p = true;
645 }
646 gcc_assert (was_here_p && insn != NULL_RTX);
647
648 /* When in the "middle" of the block, just move this fence
649 to the new list. */
650 bb = BLOCK_FOR_INSN (insn);
651 if (! sel_bb_end_p (insn)
652 || (single_succ_p (bb)
653 && single_pred_p (single_succ (bb))))
654 {
655 insn_t succ;
656
657 succ = (sel_bb_end_p (insn)
658 ? sel_bb_head (single_succ (bb))
659 : NEXT_INSN (insn));
660
661 if (INSN_SEQNO (succ) > 0
662 && INSN_SEQNO (succ) <= orig_max_seqno
663 && INSN_SCHED_TIMES (succ) <= 0)
664 {
665 FENCE_INSN (fence) = succ;
666 move_fence_to_fences (old_fences, new_fences);
667
668 if (sched_verbose >= 1)
669 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
670 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
671 }
672 return;
673 }
674
675 /* Otherwise copy fence's structures to (possibly) multiple successors. */
676 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
677 {
678 int seqno = INSN_SEQNO (succ);
679
680 if (0 < seqno && seqno <= orig_max_seqno
681 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
682 {
683 bool b = (in_same_ebb_p (insn, succ)
684 || in_fallthru_bb_p (insn, succ));
685
686 if (sched_verbose >= 1)
687 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
688 INSN_UID (insn), INSN_UID (succ),
689 BLOCK_NUM (succ), b ? "continue" : "reset");
690
691 if (b)
692 add_dirty_fence_to_fences (new_fences, succ, fence);
693 else
694 {
695 /* Mark block of the SUCC as head of the new ebb. */
696 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
697 add_clean_fence_to_fences (new_fences, succ, fence);
698 }
699 }
700 }
701 }
702 \f
703
704 /* Functions to support substitution. */
705
706 /* Returns whether INSN with dependence status DS is eligible for
707 substitution, i.e. it's a copy operation x := y, and RHS that is
708 moved up through this insn should be substituted. */
709 static bool
710 can_substitute_through_p (insn_t insn, ds_t ds)
711 {
712 /* We can substitute only true dependencies. */
713 if ((ds & DEP_OUTPUT)
714 || (ds & DEP_ANTI)
715 || ! INSN_RHS (insn)
716 || ! INSN_LHS (insn))
717 return false;
718
719 /* Now we just need to make sure the INSN_RHS consists of only one
720 simple REG rtx. */
721 if (REG_P (INSN_LHS (insn))
722 && REG_P (INSN_RHS (insn)))
723 return true;
724 return false;
725 }
726
727 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
728 source (if INSN is eligible for substitution). Returns TRUE if
729 substitution was actually performed, FALSE otherwise. Substitution might
730 be not performed because it's either EXPR' vinsn doesn't contain INSN's
731 destination or the resulting insn is invalid for the target machine.
732 When UNDO is true, perform unsubstitution instead (the difference is in
733 the part of rtx on which validate_replace_rtx is called). */
734 static bool
735 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
736 {
737 rtx *where;
738 bool new_insn_valid;
739 vinsn_t *vi = &EXPR_VINSN (expr);
740 bool has_rhs = VINSN_RHS (*vi) != NULL;
741 rtx old, new_rtx;
742
743 /* Do not try to replace in SET_DEST. Although we'll choose new
744 register for the RHS, we don't want to change RHS' original reg.
745 If the insn is not SET, we may still be able to substitute something
746 in it, and if we're here (don't have deps), it doesn't write INSN's
747 dest. */
748 where = (has_rhs
749 ? &VINSN_RHS (*vi)
750 : &PATTERN (VINSN_INSN_RTX (*vi)));
751 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
752
753 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
754 if (rtx_ok_for_substitution_p (old, *where))
755 {
756 rtx new_insn;
757 rtx *where_replace;
758
759 /* We should copy these rtxes before substitution. */
760 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
761 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
762
763 /* Where we'll replace.
764 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
765 used instead of SET_SRC. */
766 where_replace = (has_rhs
767 ? &SET_SRC (PATTERN (new_insn))
768 : &PATTERN (new_insn));
769
770 new_insn_valid
771 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
772 new_insn);
773
774 /* ??? Actually, constrain_operands result depends upon choice of
775 destination register. E.g. if we allow single register to be an rhs,
776 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
777 in invalid insn dx=dx, so we'll loose this rhs here.
778 Just can't come up with significant testcase for this, so just
779 leaving it for now. */
780 if (new_insn_valid)
781 {
782 change_vinsn_in_expr (expr,
783 create_vinsn_from_insn_rtx (new_insn, false));
784
785 /* Do not allow clobbering the address register of speculative
786 insns. */
787 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
788 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
789 expr_dest_reg (expr)))
790 EXPR_TARGET_AVAILABLE (expr) = false;
791
792 return true;
793 }
794 else
795 return false;
796 }
797 else
798 return false;
799 }
800
801 /* Helper function for count_occurences_equiv. */
802 static int
803 count_occurrences_1 (rtx *cur_rtx, void *arg)
804 {
805 rtx_search_arg_p p = (rtx_search_arg_p) arg;
806
807 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
808 {
809 /* Bail out if mode is different or more than one register is used. */
810 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
811 || (HARD_REGISTER_P (*cur_rtx)
812 && hard_regno_nregs[REGNO (*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
813 {
814 p->n = 0;
815 return 1;
816 }
817
818 p->n++;
819
820 /* Do not traverse subexprs. */
821 return -1;
822 }
823
824 if (GET_CODE (*cur_rtx) == SUBREG
825 && (!REG_P (SUBREG_REG (*cur_rtx))
826 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
827 {
828 /* ??? Do not support substituting regs inside subregs. In that case,
829 simplify_subreg will be called by validate_replace_rtx, and
830 unsubstitution will fail later. */
831 p->n = 0;
832 return 1;
833 }
834
835 /* Continue search. */
836 return 0;
837 }
838
839 /* Return the number of places WHAT appears within WHERE.
840 Bail out when we found a reference occupying several hard registers. */
841 static int
842 count_occurrences_equiv (rtx what, rtx where)
843 {
844 struct rtx_search_arg arg;
845
846 gcc_assert (REG_P (what));
847 arg.x = what;
848 arg.n = 0;
849
850 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
851
852 return arg.n;
853 }
854
855 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
856 static bool
857 rtx_ok_for_substitution_p (rtx what, rtx where)
858 {
859 return (count_occurrences_equiv (what, where) > 0);
860 }
861 \f
862
863 /* Functions to support register renaming. */
864
865 /* Substitute VI's set source with REGNO. Returns newly created pattern
866 that has REGNO as its source. */
867 static rtx
868 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
869 {
870 rtx lhs_rtx;
871 rtx pattern;
872 rtx insn_rtx;
873
874 lhs_rtx = copy_rtx (VINSN_LHS (vi));
875
876 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
877 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
878
879 return insn_rtx;
880 }
881
882 /* Returns whether INSN's src can be replaced with register number
883 NEW_SRC_REG. E.g. the following insn is valid for i386:
884
885 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
886 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
887 (reg:SI 0 ax [orig:770 c1 ] [770]))
888 (const_int 288 [0x120])) [0 str S1 A8])
889 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
890 (nil))
891
892 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
893 because of operand constraints:
894
895 (define_insn "*movqi_1"
896 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
897 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
898 )]
899
900 So do constrain_operands here, before choosing NEW_SRC_REG as best
901 reg for rhs. */
902
903 static bool
904 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
905 {
906 vinsn_t vi = INSN_VINSN (insn);
907 enum machine_mode mode;
908 rtx dst_loc;
909 bool res;
910
911 gcc_assert (VINSN_SEPARABLE_P (vi));
912
913 get_dest_and_mode (insn, &dst_loc, &mode);
914 gcc_assert (mode == GET_MODE (new_src_reg));
915
916 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
917 return true;
918
919 /* See whether SET_SRC can be replaced with this register. */
920 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
921 res = verify_changes (0);
922 cancel_changes (0);
923
924 return res;
925 }
926
927 /* Returns whether INSN still be valid after replacing it's DEST with
928 register NEW_REG. */
929 static bool
930 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
931 {
932 vinsn_t vi = INSN_VINSN (insn);
933 bool res;
934
935 /* We should deal here only with separable insns. */
936 gcc_assert (VINSN_SEPARABLE_P (vi));
937 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
938
939 /* See whether SET_DEST can be replaced with this register. */
940 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
941 res = verify_changes (0);
942 cancel_changes (0);
943
944 return res;
945 }
946
947 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
948 static rtx
949 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
950 {
951 rtx rhs_rtx;
952 rtx pattern;
953 rtx insn_rtx;
954
955 rhs_rtx = copy_rtx (VINSN_RHS (vi));
956
957 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
958 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
959
960 return insn_rtx;
961 }
962
963 /* Substitute lhs in the given expression EXPR for the register with number
964 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
965 static void
966 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
967 {
968 rtx insn_rtx;
969 vinsn_t vinsn;
970
971 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
972 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
973
974 change_vinsn_in_expr (expr, vinsn);
975 EXPR_WAS_RENAMED (expr) = 1;
976 EXPR_TARGET_AVAILABLE (expr) = 1;
977 }
978
979 /* Returns whether VI writes either one of the USED_REGS registers or,
980 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
981 static bool
982 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
983 HARD_REG_SET unavailable_hard_regs)
984 {
985 unsigned regno;
986 reg_set_iterator rsi;
987
988 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
989 {
990 if (REGNO_REG_SET_P (used_regs, regno))
991 return true;
992 if (HARD_REGISTER_NUM_P (regno)
993 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
994 return true;
995 }
996
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
998 {
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1004 }
1005
1006 return false;
1007 }
1008
1009 /* Returns register class of the output register in INSN.
1010 Returns NO_REGS for call insns because some targets have constraints on
1011 destination register of a call insn.
1012
1013 Code adopted from regrename.c::build_def_use. */
1014 static enum reg_class
1015 get_reg_class (rtx insn)
1016 {
1017 int alt, i, n_ops;
1018
1019 extract_insn (insn);
1020 if (! constrain_operands (1))
1021 fatal_insn_not_found (insn);
1022 preprocess_constraints ();
1023 alt = which_alternative;
1024 n_ops = recog_data.n_operands;
1025
1026 for (i = 0; i < n_ops; ++i)
1027 {
1028 int matches = recog_op_alt[i][alt].matches;
1029 if (matches >= 0)
1030 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1031 }
1032
1033 if (asm_noperands (PATTERN (insn)) > 0)
1034 {
1035 for (i = 0; i < n_ops; i++)
1036 if (recog_data.operand_type[i] == OP_OUT)
1037 {
1038 rtx *loc = recog_data.operand_loc[i];
1039 rtx op = *loc;
1040 enum reg_class cl = recog_op_alt[i][alt].cl;
1041
1042 if (REG_P (op)
1043 && REGNO (op) == ORIGINAL_REGNO (op))
1044 continue;
1045
1046 return cl;
1047 }
1048 }
1049 else if (!CALL_P (insn))
1050 {
1051 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1052 {
1053 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1054 enum reg_class cl = recog_op_alt[opn][alt].cl;
1055
1056 if (recog_data.operand_type[opn] == OP_OUT ||
1057 recog_data.operand_type[opn] == OP_INOUT)
1058 return cl;
1059 }
1060 }
1061
1062 /* Insns like
1063 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1064 may result in returning NO_REGS, cause flags is written implicitly through
1065 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1066 return NO_REGS;
1067 }
1068
1069 #ifdef HARD_REGNO_RENAME_OK
1070 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1071 static void
1072 init_hard_regno_rename (int regno)
1073 {
1074 int cur_reg;
1075
1076 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1077
1078 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1079 {
1080 /* We are not interested in renaming in other regs. */
1081 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1082 continue;
1083
1084 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1086 }
1087 }
1088 #endif
1089
1090 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1091 data first. */
1092 static inline bool
1093 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1094 {
1095 #ifdef HARD_REGNO_RENAME_OK
1096 /* Check whether this is all calculated. */
1097 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1098 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1099
1100 init_hard_regno_rename (from);
1101
1102 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1103 #else
1104 return true;
1105 #endif
1106 }
1107
1108 /* Calculate set of registers that are capable of holding MODE. */
1109 static void
1110 init_regs_for_mode (enum machine_mode mode)
1111 {
1112 int cur_reg;
1113
1114 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1115 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1116
1117 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1118 {
1119 int nregs = hard_regno_nregs[cur_reg][mode];
1120 int i;
1121
1122 for (i = nregs - 1; i >= 0; --i)
1123 if (fixed_regs[cur_reg + i]
1124 || global_regs[cur_reg + i]
1125 /* Can't use regs which aren't saved by
1126 the prologue. */
1127 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1128 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1129 it affects aliasing globally and invalidates all AV sets. */
1130 || get_reg_base_value (cur_reg + i)
1131 #ifdef LEAF_REGISTERS
1132 /* We can't use a non-leaf register if we're in a
1133 leaf function. */
1134 || (crtl->is_leaf
1135 && !LEAF_REGISTERS[cur_reg + i])
1136 #endif
1137 )
1138 break;
1139
1140 if (i >= 0)
1141 continue;
1142
1143 /* See whether it accepts all modes that occur in
1144 original insns. */
1145 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1146 continue;
1147
1148 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1149 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1150 cur_reg);
1151
1152 /* If the CUR_REG passed all the checks above,
1153 then it's ok. */
1154 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1155 }
1156
1157 sel_hrd.regs_for_mode_ok[mode] = true;
1158 }
1159
1160 /* Init all register sets gathered in HRD. */
1161 static void
1162 init_hard_regs_data (void)
1163 {
1164 int cur_reg = 0;
1165 int cur_mode = 0;
1166
1167 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1168 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1169 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1170 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1171
1172 /* Initialize registers that are valid based on mode when this is
1173 really needed. */
1174 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1175 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1176
1177 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1178 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1179 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1180
1181 #ifdef STACK_REGS
1182 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1183
1184 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1185 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1186 #endif
1187 }
1188
1189 /* Mark hardware regs in REG_RENAME_P that are not suitable
1190 for renaming rhs in INSN due to hardware restrictions (register class,
1191 modes compatibility etc). This doesn't affect original insn's dest reg,
1192 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1193 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1194 Registers that are in used_regs are always marked in
1195 unavailable_hard_regs as well. */
1196
1197 static void
1198 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1199 regset used_regs ATTRIBUTE_UNUSED)
1200 {
1201 enum machine_mode mode;
1202 enum reg_class cl = NO_REGS;
1203 rtx orig_dest;
1204 unsigned cur_reg, regno;
1205 hard_reg_set_iterator hrsi;
1206
1207 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1208 gcc_assert (reg_rename_p);
1209
1210 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1211
1212 /* We have decided not to rename 'mem = something;' insns, as 'something'
1213 is usually a register. */
1214 if (!REG_P (orig_dest))
1215 return;
1216
1217 regno = REGNO (orig_dest);
1218
1219 /* If before reload, don't try to work with pseudos. */
1220 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1221 return;
1222
1223 if (reload_completed)
1224 cl = get_reg_class (def->orig_insn);
1225
1226 /* Stop if the original register is one of the fixed_regs, global_regs or
1227 frame pointer, or we could not discover its class. */
1228 if (fixed_regs[regno]
1229 || global_regs[regno]
1230 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1231 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1232 #else
1233 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1234 #endif
1235 || (reload_completed && cl == NO_REGS))
1236 {
1237 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1238
1239 /* Give a chance for original register, if it isn't in used_regs. */
1240 if (!def->crosses_call)
1241 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1242
1243 return;
1244 }
1245
1246 /* If something allocated on stack in this function, mark frame pointer
1247 register unavailable, considering also modes.
1248 FIXME: it is enough to do this once per all original defs. */
1249 if (frame_pointer_needed)
1250 {
1251 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1252 Pmode, FRAME_POINTER_REGNUM);
1253
1254 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1255 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1256 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1257 }
1258
1259 #ifdef STACK_REGS
1260 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1261 is equivalent to as if all stack regs were in this set.
1262 I.e. no stack register can be renamed, and even if it's an original
1263 register here we make sure it won't be lifted over it's previous def
1264 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1265 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1266 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1267 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1268 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1269 sel_hrd.stack_regs);
1270 #endif
1271
1272 /* If there's a call on this path, make regs from call_used_reg_set
1273 unavailable. */
1274 if (def->crosses_call)
1275 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1276 call_used_reg_set);
1277
1278 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1279 but not register classes. */
1280 if (!reload_completed)
1281 return;
1282
1283 /* Leave regs as 'available' only from the current
1284 register class. */
1285 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1286 reg_class_contents[cl]);
1287
1288 mode = GET_MODE (orig_dest);
1289
1290 /* Leave only registers available for this mode. */
1291 if (!sel_hrd.regs_for_mode_ok[mode])
1292 init_regs_for_mode (mode);
1293 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1294 sel_hrd.regs_for_mode[mode]);
1295
1296 /* Exclude registers that are partially call clobbered. */
1297 if (def->crosses_call
1298 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1299 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 sel_hrd.regs_for_call_clobbered[mode]);
1301
1302 /* Leave only those that are ok to rename. */
1303 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1304 0, cur_reg, hrsi)
1305 {
1306 int nregs;
1307 int i;
1308
1309 nregs = hard_regno_nregs[cur_reg][mode];
1310 gcc_assert (nregs > 0);
1311
1312 for (i = nregs - 1; i >= 0; --i)
1313 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1314 break;
1315
1316 if (i >= 0)
1317 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1318 cur_reg);
1319 }
1320
1321 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1322 reg_rename_p->unavailable_hard_regs);
1323
1324 /* Regno is always ok from the renaming part of view, but it really
1325 could be in *unavailable_hard_regs already, so set it here instead
1326 of there. */
1327 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1328 }
1329
1330 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1331 best register more recently than REG2. */
1332 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1333
1334 /* Indicates the number of times renaming happened before the current one. */
1335 static int reg_rename_this_tick;
1336
1337 /* Choose the register among free, that is suitable for storing
1338 the rhs value.
1339
1340 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1341 originally appears. There could be multiple original operations
1342 for single rhs since we moving it up and merging along different
1343 paths.
1344
1345 Some code is adapted from regrename.c (regrename_optimize).
1346 If original register is available, function returns it.
1347 Otherwise it performs the checks, so the new register should
1348 comply with the following:
1349 - it should not violate any live ranges (such registers are in
1350 REG_RENAME_P->available_for_renaming set);
1351 - it should not be in the HARD_REGS_USED regset;
1352 - it should be in the class compatible with original uses;
1353 - it should not be clobbered through reference with different mode;
1354 - if we're in the leaf function, then the new register should
1355 not be in the LEAF_REGISTERS;
1356 - etc.
1357
1358 If several registers meet the conditions, the register with smallest
1359 tick is returned to achieve more even register allocation.
1360
1361 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1362
1363 If no register satisfies the above conditions, NULL_RTX is returned. */
1364 static rtx
1365 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1366 struct reg_rename *reg_rename_p,
1367 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1368 {
1369 int best_new_reg;
1370 unsigned cur_reg;
1371 enum machine_mode mode = VOIDmode;
1372 unsigned regno, i, n;
1373 hard_reg_set_iterator hrsi;
1374 def_list_iterator di;
1375 def_t def;
1376
1377 /* If original register is available, return it. */
1378 *is_orig_reg_p_ptr = true;
1379
1380 FOR_EACH_DEF (def, di, original_insns)
1381 {
1382 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1383
1384 gcc_assert (REG_P (orig_dest));
1385
1386 /* Check that all original operations have the same mode.
1387 This is done for the next loop; if we'd return from this
1388 loop, we'd check only part of them, but in this case
1389 it doesn't matter. */
1390 if (mode == VOIDmode)
1391 mode = GET_MODE (orig_dest);
1392 gcc_assert (mode == GET_MODE (orig_dest));
1393
1394 regno = REGNO (orig_dest);
1395 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1396 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1397 break;
1398
1399 /* All hard registers are available. */
1400 if (i == n)
1401 {
1402 gcc_assert (mode != VOIDmode);
1403
1404 /* Hard registers should not be shared. */
1405 return gen_rtx_REG (mode, regno);
1406 }
1407 }
1408
1409 *is_orig_reg_p_ptr = false;
1410 best_new_reg = -1;
1411
1412 /* Among all available regs choose the register that was
1413 allocated earliest. */
1414 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1415 0, cur_reg, hrsi)
1416 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1417 {
1418 /* Check that all hard regs for mode are available. */
1419 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1420 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1421 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1422 cur_reg + i))
1423 break;
1424
1425 if (i < n)
1426 continue;
1427
1428 /* All hard registers are available. */
1429 if (best_new_reg < 0
1430 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1431 {
1432 best_new_reg = cur_reg;
1433
1434 /* Return immediately when we know there's no better reg. */
1435 if (! reg_rename_tick[best_new_reg])
1436 break;
1437 }
1438 }
1439
1440 if (best_new_reg >= 0)
1441 {
1442 /* Use the check from the above loop. */
1443 gcc_assert (mode != VOIDmode);
1444 return gen_rtx_REG (mode, best_new_reg);
1445 }
1446
1447 return NULL_RTX;
1448 }
1449
1450 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1451 assumptions about available registers in the function. */
1452 static rtx
1453 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1454 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1455 {
1456 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1457 original_insns, is_orig_reg_p_ptr);
1458
1459 /* FIXME loop over hard_regno_nregs here. */
1460 gcc_assert (best_reg == NULL_RTX
1461 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1462
1463 return best_reg;
1464 }
1465
1466 /* Choose the pseudo register for storing rhs value. As this is supposed
1467 to work before reload, we return either the original register or make
1468 the new one. The parameters are the same that in choose_nest_reg_1
1469 functions, except that USED_REGS may contain pseudos.
1470 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1471
1472 TODO: take into account register pressure while doing this. Up to this
1473 moment, this function would never return NULL for pseudos, but we should
1474 not rely on this. */
1475 static rtx
1476 choose_best_pseudo_reg (regset used_regs,
1477 struct reg_rename *reg_rename_p,
1478 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1479 {
1480 def_list_iterator i;
1481 def_t def;
1482 enum machine_mode mode = VOIDmode;
1483 bool bad_hard_regs = false;
1484
1485 /* We should not use this after reload. */
1486 gcc_assert (!reload_completed);
1487
1488 /* If original register is available, return it. */
1489 *is_orig_reg_p_ptr = true;
1490
1491 FOR_EACH_DEF (def, i, original_insns)
1492 {
1493 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1494 int orig_regno;
1495
1496 gcc_assert (REG_P (dest));
1497
1498 /* Check that all original operations have the same mode. */
1499 if (mode == VOIDmode)
1500 mode = GET_MODE (dest);
1501 else
1502 gcc_assert (mode == GET_MODE (dest));
1503 orig_regno = REGNO (dest);
1504
1505 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1506 {
1507 if (orig_regno < FIRST_PSEUDO_REGISTER)
1508 {
1509 gcc_assert (df_regs_ever_live_p (orig_regno));
1510
1511 /* For hard registers, we have to check hardware imposed
1512 limitations (frame/stack registers, calls crossed). */
1513 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1514 orig_regno))
1515 {
1516 /* Don't let register cross a call if it doesn't already
1517 cross one. This condition is written in accordance with
1518 that in sched-deps.c sched_analyze_reg(). */
1519 if (!reg_rename_p->crosses_call
1520 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1521 return gen_rtx_REG (mode, orig_regno);
1522 }
1523
1524 bad_hard_regs = true;
1525 }
1526 else
1527 return dest;
1528 }
1529 }
1530
1531 *is_orig_reg_p_ptr = false;
1532
1533 /* We had some original hard registers that couldn't be used.
1534 Those were likely special. Don't try to create a pseudo. */
1535 if (bad_hard_regs)
1536 return NULL_RTX;
1537
1538 /* We haven't found a register from original operations. Get a new one.
1539 FIXME: control register pressure somehow. */
1540 {
1541 rtx new_reg = gen_reg_rtx (mode);
1542
1543 gcc_assert (mode != VOIDmode);
1544
1545 max_regno = max_reg_num ();
1546 maybe_extend_reg_info_p ();
1547 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1548
1549 return new_reg;
1550 }
1551 }
1552
1553 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1554 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1555 static void
1556 verify_target_availability (expr_t expr, regset used_regs,
1557 struct reg_rename *reg_rename_p)
1558 {
1559 unsigned n, i, regno;
1560 enum machine_mode mode;
1561 bool target_available, live_available, hard_available;
1562
1563 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1564 return;
1565
1566 regno = expr_dest_regno (expr);
1567 mode = GET_MODE (EXPR_LHS (expr));
1568 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1569 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1570
1571 live_available = hard_available = true;
1572 for (i = 0; i < n; i++)
1573 {
1574 if (bitmap_bit_p (used_regs, regno + i))
1575 live_available = false;
1576 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1577 hard_available = false;
1578 }
1579
1580 /* When target is not available, it may be due to hard register
1581 restrictions, e.g. crosses calls, so we check hard_available too. */
1582 if (target_available)
1583 gcc_assert (live_available);
1584 else
1585 /* Check only if we haven't scheduled something on the previous fence,
1586 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1587 and having more than one fence, we may end having targ_un in a block
1588 in which successors target register is actually available.
1589
1590 The last condition handles the case when a dependence from a call insn
1591 was created in sched-deps.c for insns with destination registers that
1592 never crossed a call before, but do cross one after our code motion.
1593
1594 FIXME: in the latter case, we just uselessly called find_used_regs,
1595 because we can't move this expression with any other register
1596 as well. */
1597 gcc_assert (scheduled_something_on_previous_fence || !live_available
1598 || !hard_available
1599 || (!reload_completed && reg_rename_p->crosses_call
1600 && REG_N_CALLS_CROSSED (regno) == 0));
1601 }
1602
1603 /* Collect unavailable registers due to liveness for EXPR from BNDS
1604 into USED_REGS. Save additional information about available
1605 registers and unavailable due to hardware restriction registers
1606 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1607 list. */
1608 static void
1609 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1610 struct reg_rename *reg_rename_p,
1611 def_list_t *original_insns)
1612 {
1613 for (; bnds; bnds = BLIST_NEXT (bnds))
1614 {
1615 bool res;
1616 av_set_t orig_ops = NULL;
1617 bnd_t bnd = BLIST_BND (bnds);
1618
1619 /* If the chosen best expr doesn't belong to current boundary,
1620 skip it. */
1621 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1622 continue;
1623
1624 /* Put in ORIG_OPS all exprs from this boundary that became
1625 RES on top. */
1626 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1627
1628 /* Compute used regs and OR it into the USED_REGS. */
1629 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1630 reg_rename_p, original_insns);
1631
1632 /* FIXME: the assert is true until we'd have several boundaries. */
1633 gcc_assert (res);
1634 av_set_clear (&orig_ops);
1635 }
1636 }
1637
1638 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1639 If BEST_REG is valid, replace LHS of EXPR with it. */
1640 static bool
1641 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1642 {
1643 /* Try whether we'll be able to generate the insn
1644 'dest := best_reg' at the place of the original operation. */
1645 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1646 {
1647 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1648
1649 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1650
1651 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1652 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1653 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1654 return false;
1655 }
1656
1657 /* Make sure that EXPR has the right destination
1658 register. */
1659 if (expr_dest_regno (expr) != REGNO (best_reg))
1660 replace_dest_with_reg_in_expr (expr, best_reg);
1661 else
1662 EXPR_TARGET_AVAILABLE (expr) = 1;
1663
1664 return true;
1665 }
1666
1667 /* Select and assign best register to EXPR searching from BNDS.
1668 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1669 Return FALSE if no register can be chosen, which could happen when:
1670 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1671 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1672 that are used on the moving path. */
1673 static bool
1674 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1675 {
1676 static struct reg_rename reg_rename_data;
1677
1678 regset used_regs;
1679 def_list_t original_insns = NULL;
1680 bool reg_ok;
1681
1682 *is_orig_reg_p = false;
1683
1684 /* Don't bother to do anything if this insn doesn't set any registers. */
1685 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1686 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1687 return true;
1688
1689 used_regs = get_clear_regset_from_pool ();
1690 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1691
1692 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1693 &original_insns);
1694
1695 #ifdef ENABLE_CHECKING
1696 /* If after reload, make sure we're working with hard regs here. */
1697 if (reload_completed)
1698 {
1699 reg_set_iterator rsi;
1700 unsigned i;
1701
1702 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1703 gcc_unreachable ();
1704 }
1705 #endif
1706
1707 if (EXPR_SEPARABLE_P (expr))
1708 {
1709 rtx best_reg = NULL_RTX;
1710 /* Check that we have computed availability of a target register
1711 correctly. */
1712 verify_target_availability (expr, used_regs, &reg_rename_data);
1713
1714 /* Turn everything in hard regs after reload. */
1715 if (reload_completed)
1716 {
1717 HARD_REG_SET hard_regs_used;
1718 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1719
1720 /* Join hard registers unavailable due to register class
1721 restrictions and live range intersection. */
1722 IOR_HARD_REG_SET (hard_regs_used,
1723 reg_rename_data.unavailable_hard_regs);
1724
1725 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1726 original_insns, is_orig_reg_p);
1727 }
1728 else
1729 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1730 original_insns, is_orig_reg_p);
1731
1732 if (!best_reg)
1733 reg_ok = false;
1734 else if (*is_orig_reg_p)
1735 {
1736 /* In case of unification BEST_REG may be different from EXPR's LHS
1737 when EXPR's LHS is unavailable, and there is another LHS among
1738 ORIGINAL_INSNS. */
1739 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1740 }
1741 else
1742 {
1743 /* Forbid renaming of low-cost insns. */
1744 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1745 reg_ok = false;
1746 else
1747 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1748 }
1749 }
1750 else
1751 {
1752 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1753 any of the HARD_REGS_USED set. */
1754 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1755 reg_rename_data.unavailable_hard_regs))
1756 {
1757 reg_ok = false;
1758 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1759 }
1760 else
1761 {
1762 reg_ok = true;
1763 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1764 }
1765 }
1766
1767 ilist_clear (&original_insns);
1768 return_regset_to_pool (used_regs);
1769
1770 return reg_ok;
1771 }
1772 \f
1773
1774 /* Return true if dependence described by DS can be overcomed. */
1775 static bool
1776 can_speculate_dep_p (ds_t ds)
1777 {
1778 if (spec_info == NULL)
1779 return false;
1780
1781 /* Leave only speculative data. */
1782 ds &= SPECULATIVE;
1783
1784 if (ds == 0)
1785 return false;
1786
1787 {
1788 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1789 that we can overcome. */
1790 ds_t spec_mask = spec_info->mask;
1791
1792 if ((ds & spec_mask) != ds)
1793 return false;
1794 }
1795
1796 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1797 return false;
1798
1799 return true;
1800 }
1801
1802 /* Get a speculation check instruction.
1803 C_EXPR is a speculative expression,
1804 CHECK_DS describes speculations that should be checked,
1805 ORIG_INSN is the original non-speculative insn in the stream. */
1806 static insn_t
1807 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1808 {
1809 rtx check_pattern;
1810 rtx insn_rtx;
1811 insn_t insn;
1812 basic_block recovery_block;
1813 rtx label;
1814
1815 /* Create a recovery block if target is going to emit branchy check, or if
1816 ORIG_INSN was speculative already. */
1817 if (targetm.sched.needs_block_p (check_ds)
1818 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1819 {
1820 recovery_block = sel_create_recovery_block (orig_insn);
1821 label = BB_HEAD (recovery_block);
1822 }
1823 else
1824 {
1825 recovery_block = NULL;
1826 label = NULL_RTX;
1827 }
1828
1829 /* Get pattern of the check. */
1830 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1831 check_ds);
1832
1833 gcc_assert (check_pattern != NULL);
1834
1835 /* Emit check. */
1836 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1837
1838 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1839 INSN_SEQNO (orig_insn), orig_insn);
1840
1841 /* Make check to be non-speculative. */
1842 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1843 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1844
1845 /* Decrease priority of check by difference of load/check instruction
1846 latencies. */
1847 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1848 - sel_vinsn_cost (INSN_VINSN (insn)));
1849
1850 /* Emit copy of original insn (though with replaced target register,
1851 if needed) to the recovery block. */
1852 if (recovery_block != NULL)
1853 {
1854 rtx twin_rtx;
1855
1856 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1857 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1858 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1859 INSN_EXPR (orig_insn),
1860 INSN_SEQNO (insn),
1861 bb_note (recovery_block));
1862 }
1863
1864 /* If we've generated a data speculation check, make sure
1865 that all the bookkeeping instruction we'll create during
1866 this move_op () will allocate an ALAT entry so that the
1867 check won't fail.
1868 In case of control speculation we must convert C_EXPR to control
1869 speculative mode, because failing to do so will bring us an exception
1870 thrown by the non-control-speculative load. */
1871 check_ds = ds_get_max_dep_weak (check_ds);
1872 speculate_expr (c_expr, check_ds);
1873
1874 return insn;
1875 }
1876
1877 /* True when INSN is a "regN = regN" copy. */
1878 static bool
1879 identical_copy_p (rtx insn)
1880 {
1881 rtx lhs, rhs, pat;
1882
1883 pat = PATTERN (insn);
1884
1885 if (GET_CODE (pat) != SET)
1886 return false;
1887
1888 lhs = SET_DEST (pat);
1889 if (!REG_P (lhs))
1890 return false;
1891
1892 rhs = SET_SRC (pat);
1893 if (!REG_P (rhs))
1894 return false;
1895
1896 return REGNO (lhs) == REGNO (rhs);
1897 }
1898
1899 /* Undo all transformations on *AV_PTR that were done when
1900 moving through INSN. */
1901 static void
1902 undo_transformations (av_set_t *av_ptr, rtx insn)
1903 {
1904 av_set_iterator av_iter;
1905 expr_t expr;
1906 av_set_t new_set = NULL;
1907
1908 /* First, kill any EXPR that uses registers set by an insn. This is
1909 required for correctness. */
1910 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1911 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1912 && bitmap_intersect_p (INSN_REG_SETS (insn),
1913 VINSN_REG_USES (EXPR_VINSN (expr)))
1914 /* When an insn looks like 'r1 = r1', we could substitute through
1915 it, but the above condition will still hold. This happened with
1916 gcc.c-torture/execute/961125-1.c. */
1917 && !identical_copy_p (insn))
1918 {
1919 if (sched_verbose >= 6)
1920 sel_print ("Expr %d removed due to use/set conflict\n",
1921 INSN_UID (EXPR_INSN_RTX (expr)));
1922 av_set_iter_remove (&av_iter);
1923 }
1924
1925 /* Undo transformations looking at the history vector. */
1926 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1927 {
1928 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1929 insn, EXPR_VINSN (expr), true);
1930
1931 if (index >= 0)
1932 {
1933 expr_history_def *phist;
1934
1935 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1936
1937 switch (phist->type)
1938 {
1939 case TRANS_SPECULATION:
1940 {
1941 ds_t old_ds, new_ds;
1942
1943 /* Compute the difference between old and new speculative
1944 statuses: that's what we need to check.
1945 Earlier we used to assert that the status will really
1946 change. This no longer works because only the probability
1947 bits in the status may have changed during compute_av_set,
1948 and in the case of merging different probabilities of the
1949 same speculative status along different paths we do not
1950 record this in the history vector. */
1951 old_ds = phist->spec_ds;
1952 new_ds = EXPR_SPEC_DONE_DS (expr);
1953
1954 old_ds &= SPECULATIVE;
1955 new_ds &= SPECULATIVE;
1956 new_ds &= ~old_ds;
1957
1958 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1959 break;
1960 }
1961 case TRANS_SUBSTITUTION:
1962 {
1963 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1964 vinsn_t new_vi;
1965 bool add = true;
1966
1967 new_vi = phist->old_expr_vinsn;
1968
1969 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1970 == EXPR_SEPARABLE_P (expr));
1971 copy_expr (tmp_expr, expr);
1972
1973 if (vinsn_equal_p (phist->new_expr_vinsn,
1974 EXPR_VINSN (tmp_expr)))
1975 change_vinsn_in_expr (tmp_expr, new_vi);
1976 else
1977 /* This happens when we're unsubstituting on a bookkeeping
1978 copy, which was in turn substituted. The history is wrong
1979 in this case. Do it the hard way. */
1980 add = substitute_reg_in_expr (tmp_expr, insn, true);
1981 if (add)
1982 av_set_add (&new_set, tmp_expr);
1983 clear_expr (tmp_expr);
1984 break;
1985 }
1986 default:
1987 gcc_unreachable ();
1988 }
1989 }
1990
1991 }
1992
1993 av_set_union_and_clear (av_ptr, &new_set, NULL);
1994 }
1995 \f
1996
1997 /* Moveup_* helpers for code motion and computing av sets. */
1998
1999 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2000 The difference from the below function is that only substitution is
2001 performed. */
2002 static enum MOVEUP_EXPR_CODE
2003 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2004 {
2005 vinsn_t vi = EXPR_VINSN (expr);
2006 ds_t *has_dep_p;
2007 ds_t full_ds;
2008
2009 /* Do this only inside insn group. */
2010 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2011
2012 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2013 if (full_ds == 0)
2014 return MOVEUP_EXPR_SAME;
2015
2016 /* Substitution is the possible choice in this case. */
2017 if (has_dep_p[DEPS_IN_RHS])
2018 {
2019 /* Can't substitute UNIQUE VINSNs. */
2020 gcc_assert (!VINSN_UNIQUE_P (vi));
2021
2022 if (can_substitute_through_p (through_insn,
2023 has_dep_p[DEPS_IN_RHS])
2024 && substitute_reg_in_expr (expr, through_insn, false))
2025 {
2026 EXPR_WAS_SUBSTITUTED (expr) = true;
2027 return MOVEUP_EXPR_CHANGED;
2028 }
2029
2030 /* Don't care about this, as even true dependencies may be allowed
2031 in an insn group. */
2032 return MOVEUP_EXPR_SAME;
2033 }
2034
2035 /* This can catch output dependencies in COND_EXECs. */
2036 if (has_dep_p[DEPS_IN_INSN])
2037 return MOVEUP_EXPR_NULL;
2038
2039 /* This is either an output or an anti dependence, which usually have
2040 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2041 will fix this. */
2042 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2043 return MOVEUP_EXPR_AS_RHS;
2044 }
2045
2046 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2047 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2048 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2049 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2050 && !sel_insn_is_speculation_check (through_insn))
2051
2052 /* True when a conflict on a target register was found during moveup_expr. */
2053 static bool was_target_conflict = false;
2054
2055 /* Return true when moving a debug INSN across THROUGH_INSN will
2056 create a bookkeeping block. We don't want to create such blocks,
2057 for they would cause codegen differences between compilations with
2058 and without debug info. */
2059
2060 static bool
2061 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2062 insn_t through_insn)
2063 {
2064 basic_block bbi, bbt;
2065 edge e1, e2;
2066 edge_iterator ei1, ei2;
2067
2068 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2069 {
2070 if (sched_verbose >= 9)
2071 sel_print ("no bookkeeping required: ");
2072 return FALSE;
2073 }
2074
2075 bbi = BLOCK_FOR_INSN (insn);
2076
2077 if (EDGE_COUNT (bbi->preds) == 1)
2078 {
2079 if (sched_verbose >= 9)
2080 sel_print ("only one pred edge: ");
2081 return TRUE;
2082 }
2083
2084 bbt = BLOCK_FOR_INSN (through_insn);
2085
2086 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2087 {
2088 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2089 {
2090 if (find_block_for_bookkeeping (e1, e2, TRUE))
2091 {
2092 if (sched_verbose >= 9)
2093 sel_print ("found existing block: ");
2094 return FALSE;
2095 }
2096 }
2097 }
2098
2099 if (sched_verbose >= 9)
2100 sel_print ("would create bookkeeping block: ");
2101
2102 return TRUE;
2103 }
2104
2105 /* Return true when the conflict with newly created implicit clobbers
2106 between EXPR and THROUGH_INSN is found because of renaming. */
2107 static bool
2108 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2109 {
2110 HARD_REG_SET temp;
2111 rtx insn, reg, rhs, pat;
2112 hard_reg_set_iterator hrsi;
2113 unsigned regno;
2114 bool valid;
2115
2116 /* Make a new pseudo register. */
2117 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2118 max_regno = max_reg_num ();
2119 maybe_extend_reg_info_p ();
2120
2121 /* Validate a change and bail out early. */
2122 insn = EXPR_INSN_RTX (expr);
2123 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2124 valid = verify_changes (0);
2125 cancel_changes (0);
2126 if (!valid)
2127 {
2128 if (sched_verbose >= 6)
2129 sel_print ("implicit clobbers failed validation, ");
2130 return true;
2131 }
2132
2133 /* Make a new insn with it. */
2134 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2135 pat = gen_rtx_SET (VOIDmode, reg, rhs);
2136 start_sequence ();
2137 insn = emit_insn (pat);
2138 end_sequence ();
2139
2140 /* Calculate implicit clobbers. */
2141 extract_insn (insn);
2142 preprocess_constraints ();
2143 ira_implicitly_set_insn_hard_regs (&temp);
2144 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2145
2146 /* If any implicit clobber registers intersect with regular ones in
2147 through_insn, we have a dependency and thus bail out. */
2148 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2149 {
2150 vinsn_t vi = INSN_VINSN (through_insn);
2151 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2152 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2153 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2154 return true;
2155 }
2156
2157 return false;
2158 }
2159
2160 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2161 performing necessary transformations. Record the type of transformation
2162 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2163 permit all dependencies except true ones, and try to remove those
2164 too via forward substitution. All cases when a non-eliminable
2165 non-zero cost dependency exists inside an insn group will be fixed
2166 in tick_check_p instead. */
2167 static enum MOVEUP_EXPR_CODE
2168 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2169 enum local_trans_type *ptrans_type)
2170 {
2171 vinsn_t vi = EXPR_VINSN (expr);
2172 insn_t insn = VINSN_INSN_RTX (vi);
2173 bool was_changed = false;
2174 bool as_rhs = false;
2175 ds_t *has_dep_p;
2176 ds_t full_ds;
2177
2178 /* ??? We use dependencies of non-debug insns on debug insns to
2179 indicate that the debug insns need to be reset if the non-debug
2180 insn is pulled ahead of it. It's hard to figure out how to
2181 introduce such a notion in sel-sched, but it already fails to
2182 support debug insns in other ways, so we just go ahead and
2183 let the deug insns go corrupt for now. */
2184 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2185 return MOVEUP_EXPR_SAME;
2186
2187 /* When inside_insn_group, delegate to the helper. */
2188 if (inside_insn_group)
2189 return moveup_expr_inside_insn_group (expr, through_insn);
2190
2191 /* Deal with unique insns and control dependencies. */
2192 if (VINSN_UNIQUE_P (vi))
2193 {
2194 /* We can move jumps without side-effects or jumps that are
2195 mutually exclusive with instruction THROUGH_INSN (all in cases
2196 dependencies allow to do so and jump is not speculative). */
2197 if (control_flow_insn_p (insn))
2198 {
2199 basic_block fallthru_bb;
2200
2201 /* Do not move checks and do not move jumps through other
2202 jumps. */
2203 if (control_flow_insn_p (through_insn)
2204 || sel_insn_is_speculation_check (insn))
2205 return MOVEUP_EXPR_NULL;
2206
2207 /* Don't move jumps through CFG joins. */
2208 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2209 return MOVEUP_EXPR_NULL;
2210
2211 /* The jump should have a clear fallthru block, and
2212 this block should be in the current region. */
2213 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2214 || ! in_current_region_p (fallthru_bb))
2215 return MOVEUP_EXPR_NULL;
2216
2217 /* And it should be mutually exclusive with through_insn. */
2218 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2219 && ! DEBUG_INSN_P (through_insn))
2220 return MOVEUP_EXPR_NULL;
2221 }
2222
2223 /* Don't move what we can't move. */
2224 if (EXPR_CANT_MOVE (expr)
2225 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2226 return MOVEUP_EXPR_NULL;
2227
2228 /* Don't move SCHED_GROUP instruction through anything.
2229 If we don't force this, then it will be possible to start
2230 scheduling a sched_group before all its dependencies are
2231 resolved.
2232 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2233 as late as possible through rank_for_schedule. */
2234 if (SCHED_GROUP_P (insn))
2235 return MOVEUP_EXPR_NULL;
2236 }
2237 else
2238 gcc_assert (!control_flow_insn_p (insn));
2239
2240 /* Don't move debug insns if this would require bookkeeping. */
2241 if (DEBUG_INSN_P (insn)
2242 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2243 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2244 return MOVEUP_EXPR_NULL;
2245
2246 /* Deal with data dependencies. */
2247 was_target_conflict = false;
2248 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2249 if (full_ds == 0)
2250 {
2251 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2252 return MOVEUP_EXPR_SAME;
2253 }
2254 else
2255 {
2256 /* We can move UNIQUE insn up only as a whole and unchanged,
2257 so it shouldn't have any dependencies. */
2258 if (VINSN_UNIQUE_P (vi))
2259 return MOVEUP_EXPR_NULL;
2260 }
2261
2262 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2263 {
2264 int res;
2265
2266 res = speculate_expr (expr, full_ds);
2267 if (res >= 0)
2268 {
2269 /* Speculation was successful. */
2270 full_ds = 0;
2271 was_changed = (res > 0);
2272 if (res == 2)
2273 was_target_conflict = true;
2274 if (ptrans_type)
2275 *ptrans_type = TRANS_SPECULATION;
2276 sel_clear_has_dependence ();
2277 }
2278 }
2279
2280 if (has_dep_p[DEPS_IN_INSN])
2281 /* We have some dependency that cannot be discarded. */
2282 return MOVEUP_EXPR_NULL;
2283
2284 if (has_dep_p[DEPS_IN_LHS])
2285 {
2286 /* Only separable insns can be moved up with the new register.
2287 Anyways, we should mark that the original register is
2288 unavailable. */
2289 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2290 return MOVEUP_EXPR_NULL;
2291
2292 /* When renaming a hard register to a pseudo before reload, extra
2293 dependencies can occur from the implicit clobbers of the insn.
2294 Filter out such cases here. */
2295 if (!reload_completed && REG_P (EXPR_LHS (expr))
2296 && HARD_REGISTER_P (EXPR_LHS (expr))
2297 && implicit_clobber_conflict_p (through_insn, expr))
2298 {
2299 if (sched_verbose >= 6)
2300 sel_print ("implicit clobbers conflict detected, ");
2301 return MOVEUP_EXPR_NULL;
2302 }
2303 EXPR_TARGET_AVAILABLE (expr) = false;
2304 was_target_conflict = true;
2305 as_rhs = true;
2306 }
2307
2308 /* At this point we have either separable insns, that will be lifted
2309 up only as RHSes, or non-separable insns with no dependency in lhs.
2310 If dependency is in RHS, then try to perform substitution and move up
2311 substituted RHS:
2312
2313 Ex. 1: Ex.2
2314 y = x; y = x;
2315 z = y*2; y = y*2;
2316
2317 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2318 moved above y=x assignment as z=x*2.
2319
2320 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2321 side can be moved because of the output dependency. The operation was
2322 cropped to its rhs above. */
2323 if (has_dep_p[DEPS_IN_RHS])
2324 {
2325 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2326
2327 /* Can't substitute UNIQUE VINSNs. */
2328 gcc_assert (!VINSN_UNIQUE_P (vi));
2329
2330 if (can_speculate_dep_p (*rhs_dsp))
2331 {
2332 int res;
2333
2334 res = speculate_expr (expr, *rhs_dsp);
2335 if (res >= 0)
2336 {
2337 /* Speculation was successful. */
2338 *rhs_dsp = 0;
2339 was_changed = (res > 0);
2340 if (res == 2)
2341 was_target_conflict = true;
2342 if (ptrans_type)
2343 *ptrans_type = TRANS_SPECULATION;
2344 }
2345 else
2346 return MOVEUP_EXPR_NULL;
2347 }
2348 else if (can_substitute_through_p (through_insn,
2349 *rhs_dsp)
2350 && substitute_reg_in_expr (expr, through_insn, false))
2351 {
2352 /* ??? We cannot perform substitution AND speculation on the same
2353 insn. */
2354 gcc_assert (!was_changed);
2355 was_changed = true;
2356 if (ptrans_type)
2357 *ptrans_type = TRANS_SUBSTITUTION;
2358 EXPR_WAS_SUBSTITUTED (expr) = true;
2359 }
2360 else
2361 return MOVEUP_EXPR_NULL;
2362 }
2363
2364 /* Don't move trapping insns through jumps.
2365 This check should be at the end to give a chance to control speculation
2366 to perform its duties. */
2367 if (CANT_MOVE_TRAPPING (expr, through_insn))
2368 return MOVEUP_EXPR_NULL;
2369
2370 return (was_changed
2371 ? MOVEUP_EXPR_CHANGED
2372 : (as_rhs
2373 ? MOVEUP_EXPR_AS_RHS
2374 : MOVEUP_EXPR_SAME));
2375 }
2376
2377 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2378 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2379 that can exist within a parallel group. Write to RES the resulting
2380 code for moveup_expr. */
2381 static bool
2382 try_bitmap_cache (expr_t expr, insn_t insn,
2383 bool inside_insn_group,
2384 enum MOVEUP_EXPR_CODE *res)
2385 {
2386 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2387
2388 /* First check whether we've analyzed this situation already. */
2389 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2390 {
2391 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2392 {
2393 if (sched_verbose >= 6)
2394 sel_print ("removed (cached)\n");
2395 *res = MOVEUP_EXPR_NULL;
2396 return true;
2397 }
2398 else
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("unchanged (cached)\n");
2402 *res = MOVEUP_EXPR_SAME;
2403 return true;
2404 }
2405 }
2406 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2407 {
2408 if (inside_insn_group)
2409 {
2410 if (sched_verbose >= 6)
2411 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2412 *res = MOVEUP_EXPR_SAME;
2413 return true;
2414
2415 }
2416 else
2417 EXPR_TARGET_AVAILABLE (expr) = false;
2418
2419 /* This is the only case when propagation result can change over time,
2420 as we can dynamically switch off scheduling as RHS. In this case,
2421 just check the flag to reach the correct decision. */
2422 if (enable_schedule_as_rhs_p)
2423 {
2424 if (sched_verbose >= 6)
2425 sel_print ("unchanged (as RHS, cached)\n");
2426 *res = MOVEUP_EXPR_AS_RHS;
2427 return true;
2428 }
2429 else
2430 {
2431 if (sched_verbose >= 6)
2432 sel_print ("removed (cached as RHS, but renaming"
2433 " is now disabled)\n");
2434 *res = MOVEUP_EXPR_NULL;
2435 return true;
2436 }
2437 }
2438
2439 return false;
2440 }
2441
2442 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2443 if successful. Write to RES the resulting code for moveup_expr. */
2444 static bool
2445 try_transformation_cache (expr_t expr, insn_t insn,
2446 enum MOVEUP_EXPR_CODE *res)
2447 {
2448 struct transformed_insns *pti
2449 = (struct transformed_insns *)
2450 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2451 &EXPR_VINSN (expr),
2452 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2453 if (pti)
2454 {
2455 /* This EXPR was already moved through this insn and was
2456 changed as a result. Fetch the proper data from
2457 the hashtable. */
2458 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2459 INSN_UID (insn), pti->type,
2460 pti->vinsn_old, pti->vinsn_new,
2461 EXPR_SPEC_DONE_DS (expr));
2462
2463 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2464 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2465 change_vinsn_in_expr (expr, pti->vinsn_new);
2466 if (pti->was_target_conflict)
2467 EXPR_TARGET_AVAILABLE (expr) = false;
2468 if (pti->type == TRANS_SPECULATION)
2469 {
2470 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2471 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2472 }
2473
2474 if (sched_verbose >= 6)
2475 {
2476 sel_print ("changed (cached): ");
2477 dump_expr (expr);
2478 sel_print ("\n");
2479 }
2480
2481 *res = MOVEUP_EXPR_CHANGED;
2482 return true;
2483 }
2484
2485 return false;
2486 }
2487
2488 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2489 static void
2490 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2491 enum MOVEUP_EXPR_CODE res)
2492 {
2493 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2494
2495 /* Do not cache result of propagating jumps through an insn group,
2496 as it is always true, which is not useful outside the group. */
2497 if (inside_insn_group)
2498 return;
2499
2500 if (res == MOVEUP_EXPR_NULL)
2501 {
2502 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2503 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2504 }
2505 else if (res == MOVEUP_EXPR_SAME)
2506 {
2507 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2508 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2509 }
2510 else if (res == MOVEUP_EXPR_AS_RHS)
2511 {
2512 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2513 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2514 }
2515 else
2516 gcc_unreachable ();
2517 }
2518
2519 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2520 and transformation type TRANS_TYPE. */
2521 static void
2522 update_transformation_cache (expr_t expr, insn_t insn,
2523 bool inside_insn_group,
2524 enum local_trans_type trans_type,
2525 vinsn_t expr_old_vinsn)
2526 {
2527 struct transformed_insns *pti;
2528
2529 if (inside_insn_group)
2530 return;
2531
2532 pti = XNEW (struct transformed_insns);
2533 pti->vinsn_old = expr_old_vinsn;
2534 pti->vinsn_new = EXPR_VINSN (expr);
2535 pti->type = trans_type;
2536 pti->was_target_conflict = was_target_conflict;
2537 pti->ds = EXPR_SPEC_DONE_DS (expr);
2538 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2539 vinsn_attach (pti->vinsn_old);
2540 vinsn_attach (pti->vinsn_new);
2541 *((struct transformed_insns **)
2542 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2543 pti, VINSN_HASH_RTX (expr_old_vinsn),
2544 INSERT)) = pti;
2545 }
2546
2547 /* Same as moveup_expr, but first looks up the result of
2548 transformation in caches. */
2549 static enum MOVEUP_EXPR_CODE
2550 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2551 {
2552 enum MOVEUP_EXPR_CODE res;
2553 bool got_answer = false;
2554
2555 if (sched_verbose >= 6)
2556 {
2557 sel_print ("Moving ");
2558 dump_expr (expr);
2559 sel_print (" through %d: ", INSN_UID (insn));
2560 }
2561
2562 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2563 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2564 == EXPR_INSN_RTX (expr)))
2565 /* Don't use cached information for debug insns that are heads of
2566 basic blocks. */;
2567 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2568 /* When inside insn group, we do not want remove stores conflicting
2569 with previosly issued loads. */
2570 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2571 else if (try_transformation_cache (expr, insn, &res))
2572 got_answer = true;
2573
2574 if (! got_answer)
2575 {
2576 /* Invoke moveup_expr and record the results. */
2577 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2578 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2579 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2580 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2581 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2582
2583 /* ??? Invent something better than this. We can't allow old_vinsn
2584 to go, we need it for the history vector. */
2585 vinsn_attach (expr_old_vinsn);
2586
2587 res = moveup_expr (expr, insn, inside_insn_group,
2588 &trans_type);
2589 switch (res)
2590 {
2591 case MOVEUP_EXPR_NULL:
2592 update_bitmap_cache (expr, insn, inside_insn_group, res);
2593 if (sched_verbose >= 6)
2594 sel_print ("removed\n");
2595 break;
2596
2597 case MOVEUP_EXPR_SAME:
2598 update_bitmap_cache (expr, insn, inside_insn_group, res);
2599 if (sched_verbose >= 6)
2600 sel_print ("unchanged\n");
2601 break;
2602
2603 case MOVEUP_EXPR_AS_RHS:
2604 gcc_assert (!unique_p || inside_insn_group);
2605 update_bitmap_cache (expr, insn, inside_insn_group, res);
2606 if (sched_verbose >= 6)
2607 sel_print ("unchanged (as RHS)\n");
2608 break;
2609
2610 case MOVEUP_EXPR_CHANGED:
2611 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2612 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2613 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2614 INSN_UID (insn), trans_type,
2615 expr_old_vinsn, EXPR_VINSN (expr),
2616 expr_old_spec_ds);
2617 update_transformation_cache (expr, insn, inside_insn_group,
2618 trans_type, expr_old_vinsn);
2619 if (sched_verbose >= 6)
2620 {
2621 sel_print ("changed: ");
2622 dump_expr (expr);
2623 sel_print ("\n");
2624 }
2625 break;
2626 default:
2627 gcc_unreachable ();
2628 }
2629
2630 vinsn_detach (expr_old_vinsn);
2631 }
2632
2633 return res;
2634 }
2635
2636 /* Moves an av set AVP up through INSN, performing necessary
2637 transformations. */
2638 static void
2639 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2640 {
2641 av_set_iterator i;
2642 expr_t expr;
2643
2644 FOR_EACH_EXPR_1 (expr, i, avp)
2645 {
2646
2647 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2648 {
2649 case MOVEUP_EXPR_SAME:
2650 case MOVEUP_EXPR_AS_RHS:
2651 break;
2652
2653 case MOVEUP_EXPR_NULL:
2654 av_set_iter_remove (&i);
2655 break;
2656
2657 case MOVEUP_EXPR_CHANGED:
2658 expr = merge_with_other_exprs (avp, &i, expr);
2659 break;
2660
2661 default:
2662 gcc_unreachable ();
2663 }
2664 }
2665 }
2666
2667 /* Moves AVP set along PATH. */
2668 static void
2669 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2670 {
2671 int last_cycle;
2672
2673 if (sched_verbose >= 6)
2674 sel_print ("Moving expressions up in the insn group...\n");
2675 if (! path)
2676 return;
2677 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2678 while (path
2679 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2680 {
2681 moveup_set_expr (avp, ILIST_INSN (path), true);
2682 path = ILIST_NEXT (path);
2683 }
2684 }
2685
2686 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2687 static bool
2688 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2689 {
2690 expr_def _tmp, *tmp = &_tmp;
2691 int last_cycle;
2692 bool res = true;
2693
2694 copy_expr_onside (tmp, expr);
2695 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2696 while (path
2697 && res
2698 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2699 {
2700 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2701 != MOVEUP_EXPR_NULL);
2702 path = ILIST_NEXT (path);
2703 }
2704
2705 if (res)
2706 {
2707 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2708 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2709
2710 if (tmp_vinsn != expr_vliw_vinsn)
2711 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2712 }
2713
2714 clear_expr (tmp);
2715 return res;
2716 }
2717 \f
2718
2719 /* Functions that compute av and lv sets. */
2720
2721 /* Returns true if INSN is not a downward continuation of the given path P in
2722 the current stage. */
2723 static bool
2724 is_ineligible_successor (insn_t insn, ilist_t p)
2725 {
2726 insn_t prev_insn;
2727
2728 /* Check if insn is not deleted. */
2729 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2730 gcc_unreachable ();
2731 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2732 gcc_unreachable ();
2733
2734 /* If it's the first insn visited, then the successor is ok. */
2735 if (!p)
2736 return false;
2737
2738 prev_insn = ILIST_INSN (p);
2739
2740 if (/* a backward edge. */
2741 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2742 /* is already visited. */
2743 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2744 && (ilist_is_in_p (p, insn)
2745 /* We can reach another fence here and still seqno of insn
2746 would be equal to seqno of prev_insn. This is possible
2747 when prev_insn is a previously created bookkeeping copy.
2748 In that case it'd get a seqno of insn. Thus, check here
2749 whether insn is in current fence too. */
2750 || IN_CURRENT_FENCE_P (insn)))
2751 /* Was already scheduled on this round. */
2752 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2753 && IN_CURRENT_FENCE_P (insn))
2754 /* An insn from another fence could also be
2755 scheduled earlier even if this insn is not in
2756 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2757 || (!pipelining_p
2758 && INSN_SCHED_TIMES (insn) > 0))
2759 return true;
2760 else
2761 return false;
2762 }
2763
2764 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2765 of handling multiple successors and properly merging its av_sets. P is
2766 the current path traversed. WS is the size of lookahead window.
2767 Return the av set computed. */
2768 static av_set_t
2769 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2770 {
2771 struct succs_info *sinfo;
2772 av_set_t expr_in_all_succ_branches = NULL;
2773 int is;
2774 insn_t succ, zero_succ = NULL;
2775 av_set_t av1 = NULL;
2776
2777 gcc_assert (sel_bb_end_p (insn));
2778
2779 /* Find different kind of successors needed for correct computing of
2780 SPEC and TARGET_AVAILABLE attributes. */
2781 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2782
2783 /* Debug output. */
2784 if (sched_verbose >= 6)
2785 {
2786 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2787 dump_insn_vector (sinfo->succs_ok);
2788 sel_print ("\n");
2789 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2790 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2791 }
2792
2793 /* Add insn to the tail of current path. */
2794 ilist_add (&p, insn);
2795
2796 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2797 {
2798 av_set_t succ_set;
2799
2800 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2801 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2802
2803 av_set_split_usefulness (succ_set,
2804 sinfo->probs_ok[is],
2805 sinfo->all_prob);
2806
2807 if (sinfo->all_succs_n > 1)
2808 {
2809 /* Find EXPR'es that came from *all* successors and save them
2810 into expr_in_all_succ_branches. This set will be used later
2811 for calculating speculation attributes of EXPR'es. */
2812 if (is == 0)
2813 {
2814 expr_in_all_succ_branches = av_set_copy (succ_set);
2815
2816 /* Remember the first successor for later. */
2817 zero_succ = succ;
2818 }
2819 else
2820 {
2821 av_set_iterator i;
2822 expr_t expr;
2823
2824 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2825 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2826 av_set_iter_remove (&i);
2827 }
2828 }
2829
2830 /* Union the av_sets. Check liveness restrictions on target registers
2831 in special case of two successors. */
2832 if (sinfo->succs_ok_n == 2 && is == 1)
2833 {
2834 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2835 basic_block bb1 = BLOCK_FOR_INSN (succ);
2836
2837 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2838 av_set_union_and_live (&av1, &succ_set,
2839 BB_LV_SET (bb0),
2840 BB_LV_SET (bb1),
2841 insn);
2842 }
2843 else
2844 av_set_union_and_clear (&av1, &succ_set, insn);
2845 }
2846
2847 /* Check liveness restrictions via hard way when there are more than
2848 two successors. */
2849 if (sinfo->succs_ok_n > 2)
2850 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2851 {
2852 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2853
2854 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2855 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2856 BB_LV_SET (succ_bb));
2857 }
2858
2859 /* Finally, check liveness restrictions on paths leaving the region. */
2860 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2861 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2862 mark_unavailable_targets
2863 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2864
2865 if (sinfo->all_succs_n > 1)
2866 {
2867 av_set_iterator i;
2868 expr_t expr;
2869
2870 /* Increase the spec attribute of all EXPR'es that didn't come
2871 from all successors. */
2872 FOR_EACH_EXPR (expr, i, av1)
2873 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2874 EXPR_SPEC (expr)++;
2875
2876 av_set_clear (&expr_in_all_succ_branches);
2877
2878 /* Do not move conditional branches through other
2879 conditional branches. So, remove all conditional
2880 branches from av_set if current operator is a conditional
2881 branch. */
2882 av_set_substract_cond_branches (&av1);
2883 }
2884
2885 ilist_remove (&p);
2886 free_succs_info (sinfo);
2887
2888 if (sched_verbose >= 6)
2889 {
2890 sel_print ("av_succs (%d): ", INSN_UID (insn));
2891 dump_av_set (av1);
2892 sel_print ("\n");
2893 }
2894
2895 return av1;
2896 }
2897
2898 /* This function computes av_set for the FIRST_INSN by dragging valid
2899 av_set through all basic block insns either from the end of basic block
2900 (computed using compute_av_set_at_bb_end) or from the insn on which
2901 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2902 below the basic block and handling conditional branches.
2903 FIRST_INSN - the basic block head, P - path consisting of the insns
2904 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2905 and bb ends are added to the path), WS - current window size,
2906 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2907 static av_set_t
2908 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2909 bool need_copy_p)
2910 {
2911 insn_t cur_insn;
2912 int end_ws = ws;
2913 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2914 insn_t after_bb_end = NEXT_INSN (bb_end);
2915 insn_t last_insn;
2916 av_set_t av = NULL;
2917 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2918
2919 /* Return NULL if insn is not on the legitimate downward path. */
2920 if (is_ineligible_successor (first_insn, p))
2921 {
2922 if (sched_verbose >= 6)
2923 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2924
2925 return NULL;
2926 }
2927
2928 /* If insn already has valid av(insn) computed, just return it. */
2929 if (AV_SET_VALID_P (first_insn))
2930 {
2931 av_set_t av_set;
2932
2933 if (sel_bb_head_p (first_insn))
2934 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2935 else
2936 av_set = NULL;
2937
2938 if (sched_verbose >= 6)
2939 {
2940 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2941 dump_av_set (av_set);
2942 sel_print ("\n");
2943 }
2944
2945 return need_copy_p ? av_set_copy (av_set) : av_set;
2946 }
2947
2948 ilist_add (&p, first_insn);
2949
2950 /* As the result after this loop have completed, in LAST_INSN we'll
2951 have the insn which has valid av_set to start backward computation
2952 from: it either will be NULL because on it the window size was exceeded
2953 or other valid av_set as returned by compute_av_set for the last insn
2954 of the basic block. */
2955 for (last_insn = first_insn; last_insn != after_bb_end;
2956 last_insn = NEXT_INSN (last_insn))
2957 {
2958 /* We may encounter valid av_set not only on bb_head, but also on
2959 those insns on which previously MAX_WS was exceeded. */
2960 if (AV_SET_VALID_P (last_insn))
2961 {
2962 if (sched_verbose >= 6)
2963 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2964 break;
2965 }
2966
2967 /* The special case: the last insn of the BB may be an
2968 ineligible_successor due to its SEQ_NO that was set on
2969 it as a bookkeeping. */
2970 if (last_insn != first_insn
2971 && is_ineligible_successor (last_insn, p))
2972 {
2973 if (sched_verbose >= 6)
2974 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2975 break;
2976 }
2977
2978 if (DEBUG_INSN_P (last_insn))
2979 continue;
2980
2981 if (end_ws > max_ws)
2982 {
2983 /* We can reach max lookahead size at bb_header, so clean av_set
2984 first. */
2985 INSN_WS_LEVEL (last_insn) = global_level;
2986
2987 if (sched_verbose >= 6)
2988 sel_print ("Insn %d is beyond the software lookahead window size\n",
2989 INSN_UID (last_insn));
2990 break;
2991 }
2992
2993 end_ws++;
2994 }
2995
2996 /* Get the valid av_set into AV above the LAST_INSN to start backward
2997 computation from. It either will be empty av_set or av_set computed from
2998 the successors on the last insn of the current bb. */
2999 if (last_insn != after_bb_end)
3000 {
3001 av = NULL;
3002
3003 /* This is needed only to obtain av_sets that are identical to
3004 those computed by the old compute_av_set version. */
3005 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
3006 av_set_add (&av, INSN_EXPR (last_insn));
3007 }
3008 else
3009 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
3010 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
3011
3012 /* Compute av_set in AV starting from below the LAST_INSN up to
3013 location above the FIRST_INSN. */
3014 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
3015 cur_insn = PREV_INSN (cur_insn))
3016 if (!INSN_NOP_P (cur_insn))
3017 {
3018 expr_t expr;
3019
3020 moveup_set_expr (&av, cur_insn, false);
3021
3022 /* If the expression for CUR_INSN is already in the set,
3023 replace it by the new one. */
3024 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3025 if (expr != NULL)
3026 {
3027 clear_expr (expr);
3028 copy_expr (expr, INSN_EXPR (cur_insn));
3029 }
3030 else
3031 av_set_add (&av, INSN_EXPR (cur_insn));
3032 }
3033
3034 /* Clear stale bb_av_set. */
3035 if (sel_bb_head_p (first_insn))
3036 {
3037 av_set_clear (&BB_AV_SET (cur_bb));
3038 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3039 BB_AV_LEVEL (cur_bb) = global_level;
3040 }
3041
3042 if (sched_verbose >= 6)
3043 {
3044 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3045 dump_av_set (av);
3046 sel_print ("\n");
3047 }
3048
3049 ilist_remove (&p);
3050 return av;
3051 }
3052
3053 /* Compute av set before INSN.
3054 INSN - the current operation (actual rtx INSN)
3055 P - the current path, which is list of insns visited so far
3056 WS - software lookahead window size.
3057 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3058 if we want to save computed av_set in s_i_d, we should make a copy of it.
3059
3060 In the resulting set we will have only expressions that don't have delay
3061 stalls and nonsubstitutable dependences. */
3062 static av_set_t
3063 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3064 {
3065 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3066 }
3067
3068 /* Propagate a liveness set LV through INSN. */
3069 static void
3070 propagate_lv_set (regset lv, insn_t insn)
3071 {
3072 gcc_assert (INSN_P (insn));
3073
3074 if (INSN_NOP_P (insn))
3075 return;
3076
3077 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3078 }
3079
3080 /* Return livness set at the end of BB. */
3081 static regset
3082 compute_live_after_bb (basic_block bb)
3083 {
3084 edge e;
3085 edge_iterator ei;
3086 regset lv = get_clear_regset_from_pool ();
3087
3088 gcc_assert (!ignore_first);
3089
3090 FOR_EACH_EDGE (e, ei, bb->succs)
3091 if (sel_bb_empty_p (e->dest))
3092 {
3093 if (! BB_LV_SET_VALID_P (e->dest))
3094 {
3095 gcc_unreachable ();
3096 gcc_assert (BB_LV_SET (e->dest) == NULL);
3097 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3098 BB_LV_SET_VALID_P (e->dest) = true;
3099 }
3100 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3101 }
3102 else
3103 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3104
3105 return lv;
3106 }
3107
3108 /* Compute the set of all live registers at the point before INSN and save
3109 it at INSN if INSN is bb header. */
3110 regset
3111 compute_live (insn_t insn)
3112 {
3113 basic_block bb = BLOCK_FOR_INSN (insn);
3114 insn_t final, temp;
3115 regset lv;
3116
3117 /* Return the valid set if we're already on it. */
3118 if (!ignore_first)
3119 {
3120 regset src = NULL;
3121
3122 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3123 src = BB_LV_SET (bb);
3124 else
3125 {
3126 gcc_assert (in_current_region_p (bb));
3127 if (INSN_LIVE_VALID_P (insn))
3128 src = INSN_LIVE (insn);
3129 }
3130
3131 if (src)
3132 {
3133 lv = get_regset_from_pool ();
3134 COPY_REG_SET (lv, src);
3135
3136 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3137 {
3138 COPY_REG_SET (BB_LV_SET (bb), lv);
3139 BB_LV_SET_VALID_P (bb) = true;
3140 }
3141
3142 return_regset_to_pool (lv);
3143 return lv;
3144 }
3145 }
3146
3147 /* We've skipped the wrong lv_set. Don't skip the right one. */
3148 ignore_first = false;
3149 gcc_assert (in_current_region_p (bb));
3150
3151 /* Find a valid LV set in this block or below, if needed.
3152 Start searching from the next insn: either ignore_first is true, or
3153 INSN doesn't have a correct live set. */
3154 temp = NEXT_INSN (insn);
3155 final = NEXT_INSN (BB_END (bb));
3156 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3157 temp = NEXT_INSN (temp);
3158 if (temp == final)
3159 {
3160 lv = compute_live_after_bb (bb);
3161 temp = PREV_INSN (temp);
3162 }
3163 else
3164 {
3165 lv = get_regset_from_pool ();
3166 COPY_REG_SET (lv, INSN_LIVE (temp));
3167 }
3168
3169 /* Put correct lv sets on the insns which have bad sets. */
3170 final = PREV_INSN (insn);
3171 while (temp != final)
3172 {
3173 propagate_lv_set (lv, temp);
3174 COPY_REG_SET (INSN_LIVE (temp), lv);
3175 INSN_LIVE_VALID_P (temp) = true;
3176 temp = PREV_INSN (temp);
3177 }
3178
3179 /* Also put it in a BB. */
3180 if (sel_bb_head_p (insn))
3181 {
3182 basic_block bb = BLOCK_FOR_INSN (insn);
3183
3184 COPY_REG_SET (BB_LV_SET (bb), lv);
3185 BB_LV_SET_VALID_P (bb) = true;
3186 }
3187
3188 /* We return LV to the pool, but will not clear it there. Thus we can
3189 legimatelly use LV till the next use of regset_pool_get (). */
3190 return_regset_to_pool (lv);
3191 return lv;
3192 }
3193
3194 /* Update liveness sets for INSN. */
3195 static inline void
3196 update_liveness_on_insn (rtx insn)
3197 {
3198 ignore_first = true;
3199 compute_live (insn);
3200 }
3201
3202 /* Compute liveness below INSN and write it into REGS. */
3203 static inline void
3204 compute_live_below_insn (rtx insn, regset regs)
3205 {
3206 rtx succ;
3207 succ_iterator si;
3208
3209 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3210 IOR_REG_SET (regs, compute_live (succ));
3211 }
3212
3213 /* Update the data gathered in av and lv sets starting from INSN. */
3214 static void
3215 update_data_sets (rtx insn)
3216 {
3217 update_liveness_on_insn (insn);
3218 if (sel_bb_head_p (insn))
3219 {
3220 gcc_assert (AV_LEVEL (insn) != 0);
3221 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3222 compute_av_set (insn, NULL, 0, 0);
3223 }
3224 }
3225 \f
3226
3227 /* Helper for move_op () and find_used_regs ().
3228 Return speculation type for which a check should be created on the place
3229 of INSN. EXPR is one of the original ops we are searching for. */
3230 static ds_t
3231 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3232 {
3233 ds_t to_check_ds;
3234 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3235
3236 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3237
3238 if (targetm.sched.get_insn_checked_ds)
3239 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3240
3241 if (spec_info != NULL
3242 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3243 already_checked_ds |= BEGIN_CONTROL;
3244
3245 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3246
3247 to_check_ds &= ~already_checked_ds;
3248
3249 return to_check_ds;
3250 }
3251
3252 /* Find the set of registers that are unavailable for storing expres
3253 while moving ORIG_OPS up on the path starting from INSN due to
3254 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3255
3256 All the original operations found during the traversal are saved in the
3257 ORIGINAL_INSNS list.
3258
3259 REG_RENAME_P denotes the set of hardware registers that
3260 can not be used with renaming due to the register class restrictions,
3261 mode restrictions and other (the register we'll choose should be
3262 compatible class with the original uses, shouldn't be in call_used_regs,
3263 should be HARD_REGNO_RENAME_OK etc).
3264
3265 Returns TRUE if we've found all original insns, FALSE otherwise.
3266
3267 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3268 to traverse the code motion paths. This helper function finds registers
3269 that are not available for storing expres while moving ORIG_OPS up on the
3270 path starting from INSN. A register considered as used on the moving path,
3271 if one of the following conditions is not satisfied:
3272
3273 (1) a register not set or read on any path from xi to an instance of
3274 the original operation,
3275 (2) not among the live registers of the point immediately following the
3276 first original operation on a given downward path, except for the
3277 original target register of the operation,
3278 (3) not live on the other path of any conditional branch that is passed
3279 by the operation, in case original operations are not present on
3280 both paths of the conditional branch.
3281
3282 All the original operations found during the traversal are saved in the
3283 ORIGINAL_INSNS list.
3284
3285 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3286 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3287 to unavailable hard regs at the point original operation is found. */
3288
3289 static bool
3290 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3291 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3292 {
3293 def_list_iterator i;
3294 def_t def;
3295 int res;
3296 bool needs_spec_check_p = false;
3297 expr_t expr;
3298 av_set_iterator expr_iter;
3299 struct fur_static_params sparams;
3300 struct cmpd_local_params lparams;
3301
3302 /* We haven't visited any blocks yet. */
3303 bitmap_clear (code_motion_visited_blocks);
3304
3305 /* Init parameters for code_motion_path_driver. */
3306 sparams.crosses_call = false;
3307 sparams.original_insns = original_insns;
3308 sparams.used_regs = used_regs;
3309
3310 /* Set the appropriate hooks and data. */
3311 code_motion_path_driver_info = &fur_hooks;
3312
3313 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3314
3315 reg_rename_p->crosses_call |= sparams.crosses_call;
3316
3317 gcc_assert (res == 1);
3318 gcc_assert (original_insns && *original_insns);
3319
3320 /* ??? We calculate whether an expression needs a check when computing
3321 av sets. This information is not as precise as it could be due to
3322 merging this bit in merge_expr. We can do better in find_used_regs,
3323 but we want to avoid multiple traversals of the same code motion
3324 paths. */
3325 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3326 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3327
3328 /* Mark hardware regs in REG_RENAME_P that are not suitable
3329 for renaming expr in INSN due to hardware restrictions (register class,
3330 modes compatibility etc). */
3331 FOR_EACH_DEF (def, i, *original_insns)
3332 {
3333 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3334
3335 if (VINSN_SEPARABLE_P (vinsn))
3336 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3337
3338 /* Do not allow clobbering of ld.[sa] address in case some of the
3339 original operations need a check. */
3340 if (needs_spec_check_p)
3341 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3342 }
3343
3344 return true;
3345 }
3346 \f
3347
3348 /* Functions to choose the best insn from available ones. */
3349
3350 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3351 static int
3352 sel_target_adjust_priority (expr_t expr)
3353 {
3354 int priority = EXPR_PRIORITY (expr);
3355 int new_priority;
3356
3357 if (targetm.sched.adjust_priority)
3358 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3359 else
3360 new_priority = priority;
3361
3362 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3363 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3364
3365 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3366
3367 if (sched_verbose >= 4)
3368 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3369 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3370 EXPR_PRIORITY_ADJ (expr), new_priority);
3371
3372 return new_priority;
3373 }
3374
3375 /* Rank two available exprs for schedule. Never return 0 here. */
3376 static int
3377 sel_rank_for_schedule (const void *x, const void *y)
3378 {
3379 expr_t tmp = *(const expr_t *) y;
3380 expr_t tmp2 = *(const expr_t *) x;
3381 insn_t tmp_insn, tmp2_insn;
3382 vinsn_t tmp_vinsn, tmp2_vinsn;
3383 int val;
3384
3385 tmp_vinsn = EXPR_VINSN (tmp);
3386 tmp2_vinsn = EXPR_VINSN (tmp2);
3387 tmp_insn = EXPR_INSN_RTX (tmp);
3388 tmp2_insn = EXPR_INSN_RTX (tmp2);
3389
3390 /* Schedule debug insns as early as possible. */
3391 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3392 return -1;
3393 else if (DEBUG_INSN_P (tmp2_insn))
3394 return 1;
3395
3396 /* Prefer SCHED_GROUP_P insns to any others. */
3397 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3398 {
3399 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3400 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3401
3402 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3403 cannot be cloned. */
3404 if (VINSN_UNIQUE_P (tmp2_vinsn))
3405 return 1;
3406 return -1;
3407 }
3408
3409 /* Discourage scheduling of speculative checks. */
3410 val = (sel_insn_is_speculation_check (tmp_insn)
3411 - sel_insn_is_speculation_check (tmp2_insn));
3412 if (val)
3413 return val;
3414
3415 /* Prefer not scheduled insn over scheduled one. */
3416 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3417 {
3418 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3419 if (val)
3420 return val;
3421 }
3422
3423 /* Prefer jump over non-jump instruction. */
3424 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3425 return -1;
3426 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3427 return 1;
3428
3429 /* Prefer an expr with greater priority. */
3430 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3431 {
3432 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3433 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3434
3435 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3436 }
3437 else
3438 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3439 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3440 if (val)
3441 return val;
3442
3443 if (spec_info != NULL && spec_info->mask != 0)
3444 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3445 {
3446 ds_t ds1, ds2;
3447 dw_t dw1, dw2;
3448 int dw;
3449
3450 ds1 = EXPR_SPEC_DONE_DS (tmp);
3451 if (ds1)
3452 dw1 = ds_weak (ds1);
3453 else
3454 dw1 = NO_DEP_WEAK;
3455
3456 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3457 if (ds2)
3458 dw2 = ds_weak (ds2);
3459 else
3460 dw2 = NO_DEP_WEAK;
3461
3462 dw = dw2 - dw1;
3463 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3464 return dw;
3465 }
3466
3467 /* Prefer an old insn to a bookkeeping insn. */
3468 if (INSN_UID (tmp_insn) < first_emitted_uid
3469 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3470 return -1;
3471 if (INSN_UID (tmp_insn) >= first_emitted_uid
3472 && INSN_UID (tmp2_insn) < first_emitted_uid)
3473 return 1;
3474
3475 /* Prefer an insn with smaller UID, as a last resort.
3476 We can't safely use INSN_LUID as it is defined only for those insns
3477 that are in the stream. */
3478 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3479 }
3480
3481 /* Filter out expressions from av set pointed to by AV_PTR
3482 that are pipelined too many times. */
3483 static void
3484 process_pipelined_exprs (av_set_t *av_ptr)
3485 {
3486 expr_t expr;
3487 av_set_iterator si;
3488
3489 /* Don't pipeline already pipelined code as that would increase
3490 number of unnecessary register moves. */
3491 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3492 {
3493 if (EXPR_SCHED_TIMES (expr)
3494 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3495 av_set_iter_remove (&si);
3496 }
3497 }
3498
3499 /* Filter speculative insns from AV_PTR if we don't want them. */
3500 static void
3501 process_spec_exprs (av_set_t *av_ptr)
3502 {
3503 bool try_data_p = true;
3504 bool try_control_p = true;
3505 expr_t expr;
3506 av_set_iterator si;
3507
3508 if (spec_info == NULL)
3509 return;
3510
3511 /* Scan *AV_PTR to find out if we want to consider speculative
3512 instructions for scheduling. */
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3514 {
3515 ds_t ds;
3516
3517 ds = EXPR_SPEC_DONE_DS (expr);
3518
3519 /* The probability of a success is too low - don't speculate. */
3520 if ((ds & SPECULATIVE)
3521 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3522 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3523 || (pipelining_p && false
3524 && (ds & DATA_SPEC)
3525 && (ds & CONTROL_SPEC))))
3526 {
3527 av_set_iter_remove (&si);
3528 continue;
3529 }
3530
3531 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3532 && !(ds & BEGIN_DATA))
3533 try_data_p = false;
3534
3535 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3536 && !(ds & BEGIN_CONTROL))
3537 try_control_p = false;
3538 }
3539
3540 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3541 {
3542 ds_t ds;
3543
3544 ds = EXPR_SPEC_DONE_DS (expr);
3545
3546 if (ds & SPECULATIVE)
3547 {
3548 if ((ds & BEGIN_DATA) && !try_data_p)
3549 /* We don't want any data speculative instructions right
3550 now. */
3551 av_set_iter_remove (&si);
3552
3553 if ((ds & BEGIN_CONTROL) && !try_control_p)
3554 /* We don't want any control speculative instructions right
3555 now. */
3556 av_set_iter_remove (&si);
3557 }
3558 }
3559 }
3560
3561 /* Search for any use-like insns in AV_PTR and decide on scheduling
3562 them. Return one when found, and NULL otherwise.
3563 Note that we check here whether a USE could be scheduled to avoid
3564 an infinite loop later. */
3565 static expr_t
3566 process_use_exprs (av_set_t *av_ptr)
3567 {
3568 expr_t expr;
3569 av_set_iterator si;
3570 bool uses_present_p = false;
3571 bool try_uses_p = true;
3572
3573 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3574 {
3575 /* This will also initialize INSN_CODE for later use. */
3576 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3577 {
3578 /* If we have a USE in *AV_PTR that was not scheduled yet,
3579 do so because it will do good only. */
3580 if (EXPR_SCHED_TIMES (expr) <= 0)
3581 {
3582 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3583 return expr;
3584
3585 av_set_iter_remove (&si);
3586 }
3587 else
3588 {
3589 gcc_assert (pipelining_p);
3590
3591 uses_present_p = true;
3592 }
3593 }
3594 else
3595 try_uses_p = false;
3596 }
3597
3598 if (uses_present_p)
3599 {
3600 /* If we don't want to schedule any USEs right now and we have some
3601 in *AV_PTR, remove them, else just return the first one found. */
3602 if (!try_uses_p)
3603 {
3604 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3605 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3606 av_set_iter_remove (&si);
3607 }
3608 else
3609 {
3610 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3611 {
3612 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3613
3614 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3615 return expr;
3616
3617 av_set_iter_remove (&si);
3618 }
3619 }
3620 }
3621
3622 return NULL;
3623 }
3624
3625 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3626 EXPR's history of changes. */
3627 static bool
3628 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3629 {
3630 vinsn_t vinsn, expr_vinsn;
3631 int n;
3632 unsigned i;
3633
3634 /* Start with checking expr itself and then proceed with all the old forms
3635 of expr taken from its history vector. */
3636 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3637 expr_vinsn;
3638 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3639 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3640 : NULL))
3641 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3642 if (VINSN_SEPARABLE_P (vinsn))
3643 {
3644 if (vinsn_equal_p (vinsn, expr_vinsn))
3645 return true;
3646 }
3647 else
3648 {
3649 /* For non-separable instructions, the blocking insn can have
3650 another pattern due to substitution, and we can't choose
3651 different register as in the above case. Check all registers
3652 being written instead. */
3653 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3654 VINSN_REG_SETS (expr_vinsn)))
3655 return true;
3656 }
3657
3658 return false;
3659 }
3660
3661 #ifdef ENABLE_CHECKING
3662 /* Return true if either of expressions from ORIG_OPS can be blocked
3663 by previously created bookkeeping code. STATIC_PARAMS points to static
3664 parameters of move_op. */
3665 static bool
3666 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3667 {
3668 expr_t expr;
3669 av_set_iterator iter;
3670 moveop_static_params_p sparams;
3671
3672 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3673 created while scheduling on another fence. */
3674 FOR_EACH_EXPR (expr, iter, orig_ops)
3675 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3676 return true;
3677
3678 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3679 sparams = (moveop_static_params_p) static_params;
3680
3681 /* Expressions can be also blocked by bookkeeping created during current
3682 move_op. */
3683 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3684 FOR_EACH_EXPR (expr, iter, orig_ops)
3685 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3686 return true;
3687
3688 /* Expressions in ORIG_OPS may have wrong destination register due to
3689 renaming. Check with the right register instead. */
3690 if (sparams->dest && REG_P (sparams->dest))
3691 {
3692 rtx reg = sparams->dest;
3693 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3694
3695 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3696 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3697 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3698 return true;
3699 }
3700
3701 return false;
3702 }
3703 #endif
3704
3705 /* Clear VINSN_VEC and detach vinsns. */
3706 static void
3707 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3708 {
3709 unsigned len = vinsn_vec->length ();
3710 if (len > 0)
3711 {
3712 vinsn_t vinsn;
3713 int n;
3714
3715 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3716 vinsn_detach (vinsn);
3717 vinsn_vec->block_remove (0, len);
3718 }
3719 }
3720
3721 /* Add the vinsn of EXPR to the VINSN_VEC. */
3722 static void
3723 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3724 {
3725 vinsn_attach (EXPR_VINSN (expr));
3726 vinsn_vec->safe_push (EXPR_VINSN (expr));
3727 }
3728
3729 /* Free the vector representing blocked expressions. */
3730 static void
3731 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3732 {
3733 vinsn_vec.release ();
3734 }
3735
3736 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3737
3738 void sel_add_to_insn_priority (rtx insn, int amount)
3739 {
3740 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3741
3742 if (sched_verbose >= 2)
3743 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3744 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3745 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3746 }
3747
3748 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3749 true if there is something to schedule. BNDS and FENCE are current
3750 boundaries and fence, respectively. If we need to stall for some cycles
3751 before an expr from AV would become available, write this number to
3752 *PNEED_STALL. */
3753 static bool
3754 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3755 int *pneed_stall)
3756 {
3757 av_set_iterator si;
3758 expr_t expr;
3759 int sched_next_worked = 0, stalled, n;
3760 static int av_max_prio, est_ticks_till_branch;
3761 int min_need_stall = -1;
3762 deps_t dc = BND_DC (BLIST_BND (bnds));
3763
3764 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3765 already scheduled. */
3766 if (av == NULL)
3767 return false;
3768
3769 /* Empty vector from the previous stuff. */
3770 if (vec_av_set.length () > 0)
3771 vec_av_set.block_remove (0, vec_av_set.length ());
3772
3773 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3774 for each insn. */
3775 gcc_assert (vec_av_set.is_empty ());
3776 FOR_EACH_EXPR (expr, si, av)
3777 {
3778 vec_av_set.safe_push (expr);
3779
3780 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3781
3782 /* Adjust priority using target backend hook. */
3783 sel_target_adjust_priority (expr);
3784 }
3785
3786 /* Sort the vector. */
3787 vec_av_set.qsort (sel_rank_for_schedule);
3788
3789 /* We record maximal priority of insns in av set for current instruction
3790 group. */
3791 if (FENCE_STARTS_CYCLE_P (fence))
3792 av_max_prio = est_ticks_till_branch = INT_MIN;
3793
3794 /* Filter out inappropriate expressions. Loop's direction is reversed to
3795 visit "best" instructions first. We assume that vec::unordered_remove
3796 moves last element in place of one being deleted. */
3797 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3798 {
3799 expr_t expr = vec_av_set[n];
3800 insn_t insn = EXPR_INSN_RTX (expr);
3801 signed char target_available;
3802 bool is_orig_reg_p = true;
3803 int need_cycles, new_prio;
3804
3805 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3806 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3807 {
3808 vec_av_set.unordered_remove (n);
3809 continue;
3810 }
3811
3812 /* Set number of sched_next insns (just in case there
3813 could be several). */
3814 if (FENCE_SCHED_NEXT (fence))
3815 sched_next_worked++;
3816
3817 /* Check all liveness requirements and try renaming.
3818 FIXME: try to minimize calls to this. */
3819 target_available = EXPR_TARGET_AVAILABLE (expr);
3820
3821 /* If insn was already scheduled on the current fence,
3822 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3823 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3824 target_available = -1;
3825
3826 /* If the availability of the EXPR is invalidated by the insertion of
3827 bookkeeping earlier, make sure that we won't choose this expr for
3828 scheduling if it's not separable, and if it is separable, then
3829 we have to recompute the set of available registers for it. */
3830 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3831 {
3832 vec_av_set.unordered_remove (n);
3833 if (sched_verbose >= 4)
3834 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838
3839 if (target_available == true)
3840 {
3841 /* Do nothing -- we can use an existing register. */
3842 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3843 }
3844 else if (/* Non-separable instruction will never
3845 get another register. */
3846 (target_available == false
3847 && !EXPR_SEPARABLE_P (expr))
3848 /* Don't try to find a register for low-priority expression. */
3849 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3850 /* ??? FIXME: Don't try to rename data speculation. */
3851 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3852 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3853 {
3854 vec_av_set.unordered_remove (n);
3855 if (sched_verbose >= 4)
3856 sel_print ("Expr %d has no suitable target register\n",
3857 INSN_UID (insn));
3858 continue;
3859 }
3860
3861 /* Filter expressions that need to be renamed or speculated when
3862 pipelining, because compensating register copies or speculation
3863 checks are likely to be placed near the beginning of the loop,
3864 causing a stall. */
3865 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3866 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3867 {
3868 /* Estimation of number of cycles until loop branch for
3869 renaming/speculation to be successful. */
3870 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3871
3872 if ((int) current_loop_nest->ninsns < 9)
3873 {
3874 vec_av_set.unordered_remove (n);
3875 if (sched_verbose >= 4)
3876 sel_print ("Pipelining expr %d will likely cause stall\n",
3877 INSN_UID (insn));
3878 continue;
3879 }
3880
3881 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3882 < need_n_ticks_till_branch * issue_rate / 2
3883 && est_ticks_till_branch < need_n_ticks_till_branch)
3884 {
3885 vec_av_set.unordered_remove (n);
3886 if (sched_verbose >= 4)
3887 sel_print ("Pipelining expr %d will likely cause stall\n",
3888 INSN_UID (insn));
3889 continue;
3890 }
3891 }
3892
3893 /* We want to schedule speculation checks as late as possible. Discard
3894 them from av set if there are instructions with higher priority. */
3895 if (sel_insn_is_speculation_check (insn)
3896 && EXPR_PRIORITY (expr) < av_max_prio)
3897 {
3898 stalled++;
3899 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3900 vec_av_set.unordered_remove (n);
3901 if (sched_verbose >= 4)
3902 sel_print ("Delaying speculation check %d until its first use\n",
3903 INSN_UID (insn));
3904 continue;
3905 }
3906
3907 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3908 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3909 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3910
3911 /* Don't allow any insns whose data is not yet ready.
3912 Check first whether we've already tried them and failed. */
3913 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3914 {
3915 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3916 - FENCE_CYCLE (fence));
3917 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3918 est_ticks_till_branch = MAX (est_ticks_till_branch,
3919 EXPR_PRIORITY (expr) + need_cycles);
3920
3921 if (need_cycles > 0)
3922 {
3923 stalled++;
3924 min_need_stall = (min_need_stall < 0
3925 ? need_cycles
3926 : MIN (min_need_stall, need_cycles));
3927 vec_av_set.unordered_remove (n);
3928
3929 if (sched_verbose >= 4)
3930 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3931 INSN_UID (insn),
3932 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3933 continue;
3934 }
3935 }
3936
3937 /* Now resort to dependence analysis to find whether EXPR might be
3938 stalled due to dependencies from FENCE's context. */
3939 need_cycles = tick_check_p (expr, dc, fence);
3940 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3941
3942 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3943 est_ticks_till_branch = MAX (est_ticks_till_branch,
3944 new_prio);
3945
3946 if (need_cycles > 0)
3947 {
3948 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3949 {
3950 int new_size = INSN_UID (insn) * 3 / 2;
3951
3952 FENCE_READY_TICKS (fence)
3953 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3954 new_size, FENCE_READY_TICKS_SIZE (fence),
3955 sizeof (int));
3956 }
3957 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3958 = FENCE_CYCLE (fence) + need_cycles;
3959
3960 stalled++;
3961 min_need_stall = (min_need_stall < 0
3962 ? need_cycles
3963 : MIN (min_need_stall, need_cycles));
3964
3965 vec_av_set.unordered_remove (n);
3966
3967 if (sched_verbose >= 4)
3968 sel_print ("Expr %d is not ready yet until cycle %d\n",
3969 INSN_UID (insn),
3970 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3971 continue;
3972 }
3973
3974 if (sched_verbose >= 4)
3975 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3976 min_need_stall = 0;
3977 }
3978
3979 /* Clear SCHED_NEXT. */
3980 if (FENCE_SCHED_NEXT (fence))
3981 {
3982 gcc_assert (sched_next_worked == 1);
3983 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3984 }
3985
3986 /* No need to stall if this variable was not initialized. */
3987 if (min_need_stall < 0)
3988 min_need_stall = 0;
3989
3990 if (vec_av_set.is_empty ())
3991 {
3992 /* We need to set *pneed_stall here, because later we skip this code
3993 when ready list is empty. */
3994 *pneed_stall = min_need_stall;
3995 return false;
3996 }
3997 else
3998 gcc_assert (min_need_stall == 0);
3999
4000 /* Sort the vector. */
4001 vec_av_set.qsort (sel_rank_for_schedule);
4002
4003 if (sched_verbose >= 4)
4004 {
4005 sel_print ("Total ready exprs: %d, stalled: %d\n",
4006 vec_av_set.length (), stalled);
4007 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
4008 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4009 dump_expr (expr);
4010 sel_print ("\n");
4011 }
4012
4013 *pneed_stall = 0;
4014 return true;
4015 }
4016
4017 /* Convert a vectored and sorted av set to the ready list that
4018 the rest of the backend wants to see. */
4019 static void
4020 convert_vec_av_set_to_ready (void)
4021 {
4022 int n;
4023 expr_t expr;
4024
4025 /* Allocate and fill the ready list from the sorted vector. */
4026 ready.n_ready = vec_av_set.length ();
4027 ready.first = ready.n_ready - 1;
4028
4029 gcc_assert (ready.n_ready > 0);
4030
4031 if (ready.n_ready > max_issue_size)
4032 {
4033 max_issue_size = ready.n_ready;
4034 sched_extend_ready_list (ready.n_ready);
4035 }
4036
4037 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
4038 {
4039 vinsn_t vi = EXPR_VINSN (expr);
4040 insn_t insn = VINSN_INSN_RTX (vi);
4041
4042 ready_try[n] = 0;
4043 ready.vec[n] = insn;
4044 }
4045 }
4046
4047 /* Initialize ready list from *AV_PTR for the max_issue () call.
4048 If any unrecognizable insn found in *AV_PTR, return it (and skip
4049 max_issue). BND and FENCE are current boundary and fence,
4050 respectively. If we need to stall for some cycles before an expr
4051 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4052 static expr_t
4053 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4054 int *pneed_stall)
4055 {
4056 expr_t expr;
4057
4058 /* We do not support multiple boundaries per fence. */
4059 gcc_assert (BLIST_NEXT (bnds) == NULL);
4060
4061 /* Process expressions required special handling, i.e. pipelined,
4062 speculative and recog() < 0 expressions first. */
4063 process_pipelined_exprs (av_ptr);
4064 process_spec_exprs (av_ptr);
4065
4066 /* A USE could be scheduled immediately. */
4067 expr = process_use_exprs (av_ptr);
4068 if (expr)
4069 {
4070 *pneed_stall = 0;
4071 return expr;
4072 }
4073
4074 /* Turn the av set to a vector for sorting. */
4075 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4076 {
4077 ready.n_ready = 0;
4078 return NULL;
4079 }
4080
4081 /* Build the final ready list. */
4082 convert_vec_av_set_to_ready ();
4083 return NULL;
4084 }
4085
4086 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4087 static bool
4088 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4089 {
4090 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4091 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4092 : FENCE_CYCLE (fence) - 1;
4093 bool res = false;
4094 int sort_p = 0;
4095
4096 if (!targetm.sched.dfa_new_cycle)
4097 return false;
4098
4099 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4100
4101 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4102 insn, last_scheduled_cycle,
4103 FENCE_CYCLE (fence), &sort_p))
4104 {
4105 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4106 advance_one_cycle (fence);
4107 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4108 res = true;
4109 }
4110
4111 return res;
4112 }
4113
4114 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4115 we can issue. FENCE is the current fence. */
4116 static int
4117 invoke_reorder_hooks (fence_t fence)
4118 {
4119 int issue_more;
4120 bool ran_hook = false;
4121
4122 /* Call the reorder hook at the beginning of the cycle, and call
4123 the reorder2 hook in the middle of the cycle. */
4124 if (FENCE_ISSUED_INSNS (fence) == 0)
4125 {
4126 if (targetm.sched.reorder
4127 && !SCHED_GROUP_P (ready_element (&ready, 0))
4128 && ready.n_ready > 1)
4129 {
4130 /* Don't give reorder the most prioritized insn as it can break
4131 pipelining. */
4132 if (pipelining_p)
4133 --ready.n_ready;
4134
4135 issue_more
4136 = targetm.sched.reorder (sched_dump, sched_verbose,
4137 ready_lastpos (&ready),
4138 &ready.n_ready, FENCE_CYCLE (fence));
4139
4140 if (pipelining_p)
4141 ++ready.n_ready;
4142
4143 ran_hook = true;
4144 }
4145 else
4146 /* Initialize can_issue_more for variable_issue. */
4147 issue_more = issue_rate;
4148 }
4149 else if (targetm.sched.reorder2
4150 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4151 {
4152 if (ready.n_ready == 1)
4153 issue_more =
4154 targetm.sched.reorder2 (sched_dump, sched_verbose,
4155 ready_lastpos (&ready),
4156 &ready.n_ready, FENCE_CYCLE (fence));
4157 else
4158 {
4159 if (pipelining_p)
4160 --ready.n_ready;
4161
4162 issue_more =
4163 targetm.sched.reorder2 (sched_dump, sched_verbose,
4164 ready.n_ready
4165 ? ready_lastpos (&ready) : NULL,
4166 &ready.n_ready, FENCE_CYCLE (fence));
4167
4168 if (pipelining_p)
4169 ++ready.n_ready;
4170 }
4171
4172 ran_hook = true;
4173 }
4174 else
4175 issue_more = FENCE_ISSUE_MORE (fence);
4176
4177 /* Ensure that ready list and vec_av_set are in line with each other,
4178 i.e. vec_av_set[i] == ready_element (&ready, i). */
4179 if (issue_more && ran_hook)
4180 {
4181 int i, j, n;
4182 rtx *arr = ready.vec;
4183 expr_t *vec = vec_av_set.address ();
4184
4185 for (i = 0, n = ready.n_ready; i < n; i++)
4186 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4187 {
4188 expr_t tmp;
4189
4190 for (j = i; j < n; j++)
4191 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4192 break;
4193 gcc_assert (j < n);
4194
4195 tmp = vec[i];
4196 vec[i] = vec[j];
4197 vec[j] = tmp;
4198 }
4199 }
4200
4201 return issue_more;
4202 }
4203
4204 /* Return an EXPR corresponding to INDEX element of ready list, if
4205 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4206 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4207 ready.vec otherwise. */
4208 static inline expr_t
4209 find_expr_for_ready (int index, bool follow_ready_element)
4210 {
4211 expr_t expr;
4212 int real_index;
4213
4214 real_index = follow_ready_element ? ready.first - index : index;
4215
4216 expr = vec_av_set[real_index];
4217 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4218
4219 return expr;
4220 }
4221
4222 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4223 of such insns found. */
4224 static int
4225 invoke_dfa_lookahead_guard (void)
4226 {
4227 int i, n;
4228 bool have_hook
4229 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4230
4231 if (sched_verbose >= 2)
4232 sel_print ("ready after reorder: ");
4233
4234 for (i = 0, n = 0; i < ready.n_ready; i++)
4235 {
4236 expr_t expr;
4237 insn_t insn;
4238 int r;
4239
4240 /* In this loop insn is Ith element of the ready list given by
4241 ready_element, not Ith element of ready.vec. */
4242 insn = ready_element (&ready, i);
4243
4244 if (! have_hook || i == 0)
4245 r = 0;
4246 else
4247 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4248
4249 gcc_assert (INSN_CODE (insn) >= 0);
4250
4251 /* Only insns with ready_try = 0 can get here
4252 from fill_ready_list. */
4253 gcc_assert (ready_try [i] == 0);
4254 ready_try[i] = r;
4255 if (!r)
4256 n++;
4257
4258 expr = find_expr_for_ready (i, true);
4259
4260 if (sched_verbose >= 2)
4261 {
4262 dump_vinsn (EXPR_VINSN (expr));
4263 sel_print (":%d; ", ready_try[i]);
4264 }
4265 }
4266
4267 if (sched_verbose >= 2)
4268 sel_print ("\n");
4269 return n;
4270 }
4271
4272 /* Calculate the number of privileged insns and return it. */
4273 static int
4274 calculate_privileged_insns (void)
4275 {
4276 expr_t cur_expr, min_spec_expr = NULL;
4277 int privileged_n = 0, i;
4278
4279 for (i = 0; i < ready.n_ready; i++)
4280 {
4281 if (ready_try[i])
4282 continue;
4283
4284 if (! min_spec_expr)
4285 min_spec_expr = find_expr_for_ready (i, true);
4286
4287 cur_expr = find_expr_for_ready (i, true);
4288
4289 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4290 break;
4291
4292 ++privileged_n;
4293 }
4294
4295 if (i == ready.n_ready)
4296 privileged_n = 0;
4297
4298 if (sched_verbose >= 2)
4299 sel_print ("privileged_n: %d insns with SPEC %d\n",
4300 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4301 return privileged_n;
4302 }
4303
4304 /* Call the rest of the hooks after the choice was made. Return
4305 the number of insns that still can be issued given that the current
4306 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4307 and the insn chosen for scheduling, respectively. */
4308 static int
4309 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4310 {
4311 gcc_assert (INSN_P (best_insn));
4312
4313 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4314 sel_dfa_new_cycle (best_insn, fence);
4315
4316 if (targetm.sched.variable_issue)
4317 {
4318 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4319 issue_more =
4320 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4321 issue_more);
4322 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4323 }
4324 else if (GET_CODE (PATTERN (best_insn)) != USE
4325 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4326 issue_more--;
4327
4328 return issue_more;
4329 }
4330
4331 /* Estimate the cost of issuing INSN on DFA state STATE. */
4332 static int
4333 estimate_insn_cost (rtx insn, state_t state)
4334 {
4335 static state_t temp = NULL;
4336 int cost;
4337
4338 if (!temp)
4339 temp = xmalloc (dfa_state_size);
4340
4341 memcpy (temp, state, dfa_state_size);
4342 cost = state_transition (temp, insn);
4343
4344 if (cost < 0)
4345 return 0;
4346 else if (cost == 0)
4347 return 1;
4348 return cost;
4349 }
4350
4351 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4352 This function properly handles ASMs, USEs etc. */
4353 static int
4354 get_expr_cost (expr_t expr, fence_t fence)
4355 {
4356 rtx insn = EXPR_INSN_RTX (expr);
4357
4358 if (recog_memoized (insn) < 0)
4359 {
4360 if (!FENCE_STARTS_CYCLE_P (fence)
4361 && INSN_ASM_P (insn))
4362 /* This is asm insn which is tryed to be issued on the
4363 cycle not first. Issue it on the next cycle. */
4364 return 1;
4365 else
4366 /* A USE insn, or something else we don't need to
4367 understand. We can't pass these directly to
4368 state_transition because it will trigger a
4369 fatal error for unrecognizable insns. */
4370 return 0;
4371 }
4372 else
4373 return estimate_insn_cost (insn, FENCE_STATE (fence));
4374 }
4375
4376 /* Find the best insn for scheduling, either via max_issue or just take
4377 the most prioritized available. */
4378 static int
4379 choose_best_insn (fence_t fence, int privileged_n, int *index)
4380 {
4381 int can_issue = 0;
4382
4383 if (dfa_lookahead > 0)
4384 {
4385 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4386 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4387 can_issue = max_issue (&ready, privileged_n,
4388 FENCE_STATE (fence), true, index);
4389 if (sched_verbose >= 2)
4390 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4391 can_issue, FENCE_ISSUED_INSNS (fence));
4392 }
4393 else
4394 {
4395 /* We can't use max_issue; just return the first available element. */
4396 int i;
4397
4398 for (i = 0; i < ready.n_ready; i++)
4399 {
4400 expr_t expr = find_expr_for_ready (i, true);
4401
4402 if (get_expr_cost (expr, fence) < 1)
4403 {
4404 can_issue = can_issue_more;
4405 *index = i;
4406
4407 if (sched_verbose >= 2)
4408 sel_print ("using %dth insn from the ready list\n", i + 1);
4409
4410 break;
4411 }
4412 }
4413
4414 if (i == ready.n_ready)
4415 {
4416 can_issue = 0;
4417 *index = -1;
4418 }
4419 }
4420
4421 return can_issue;
4422 }
4423
4424 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4425 BNDS and FENCE are current boundaries and scheduling fence respectively.
4426 Return the expr found and NULL if nothing can be issued atm.
4427 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4428 static expr_t
4429 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4430 int *pneed_stall)
4431 {
4432 expr_t best;
4433
4434 /* Choose the best insn for scheduling via:
4435 1) sorting the ready list based on priority;
4436 2) calling the reorder hook;
4437 3) calling max_issue. */
4438 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4439 if (best == NULL && ready.n_ready > 0)
4440 {
4441 int privileged_n, index;
4442
4443 can_issue_more = invoke_reorder_hooks (fence);
4444 if (can_issue_more > 0)
4445 {
4446 /* Try choosing the best insn until we find one that is could be
4447 scheduled due to liveness restrictions on its destination register.
4448 In the future, we'd like to choose once and then just probe insns
4449 in the order of their priority. */
4450 invoke_dfa_lookahead_guard ();
4451 privileged_n = calculate_privileged_insns ();
4452 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4453 if (can_issue_more)
4454 best = find_expr_for_ready (index, true);
4455 }
4456 /* We had some available insns, so if we can't issue them,
4457 we have a stall. */
4458 if (can_issue_more == 0)
4459 {
4460 best = NULL;
4461 *pneed_stall = 1;
4462 }
4463 }
4464
4465 if (best != NULL)
4466 {
4467 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4468 can_issue_more);
4469 if (targetm.sched.variable_issue
4470 && can_issue_more == 0)
4471 *pneed_stall = 1;
4472 }
4473
4474 if (sched_verbose >= 2)
4475 {
4476 if (best != NULL)
4477 {
4478 sel_print ("Best expression (vliw form): ");
4479 dump_expr (best);
4480 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4481 }
4482 else
4483 sel_print ("No best expr found!\n");
4484 }
4485
4486 return best;
4487 }
4488 \f
4489
4490 /* Functions that implement the core of the scheduler. */
4491
4492
4493 /* Emit an instruction from EXPR with SEQNO and VINSN after
4494 PLACE_TO_INSERT. */
4495 static insn_t
4496 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4497 insn_t place_to_insert)
4498 {
4499 /* This assert fails when we have identical instructions
4500 one of which dominates the other. In this case move_op ()
4501 finds the first instruction and doesn't search for second one.
4502 The solution would be to compute av_set after the first found
4503 insn and, if insn present in that set, continue searching.
4504 For now we workaround this issue in move_op. */
4505 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4506
4507 if (EXPR_WAS_RENAMED (expr))
4508 {
4509 unsigned regno = expr_dest_regno (expr);
4510
4511 if (HARD_REGISTER_NUM_P (regno))
4512 {
4513 df_set_regs_ever_live (regno, true);
4514 reg_rename_tick[regno] = ++reg_rename_this_tick;
4515 }
4516 }
4517
4518 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4519 place_to_insert);
4520 }
4521
4522 /* Return TRUE if BB can hold bookkeeping code. */
4523 static bool
4524 block_valid_for_bookkeeping_p (basic_block bb)
4525 {
4526 insn_t bb_end = BB_END (bb);
4527
4528 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4529 return false;
4530
4531 if (INSN_P (bb_end))
4532 {
4533 if (INSN_SCHED_TIMES (bb_end) > 0)
4534 return false;
4535 }
4536 else
4537 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4538
4539 return true;
4540 }
4541
4542 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4543 into E2->dest, except from E1->src (there may be a sequence of empty basic
4544 blocks between E1->src and E2->dest). Return found block, or NULL if new
4545 one must be created. If LAX holds, don't assume there is a simple path
4546 from E1->src to E2->dest. */
4547 static basic_block
4548 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4549 {
4550 basic_block candidate_block = NULL;
4551 edge e;
4552
4553 /* Loop over edges from E1 to E2, inclusive. */
4554 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4555 {
4556 if (EDGE_COUNT (e->dest->preds) == 2)
4557 {
4558 if (candidate_block == NULL)
4559 candidate_block = (EDGE_PRED (e->dest, 0) == e
4560 ? EDGE_PRED (e->dest, 1)->src
4561 : EDGE_PRED (e->dest, 0)->src);
4562 else
4563 /* Found additional edge leading to path from e1 to e2
4564 from aside. */
4565 return NULL;
4566 }
4567 else if (EDGE_COUNT (e->dest->preds) > 2)
4568 /* Several edges leading to path from e1 to e2 from aside. */
4569 return NULL;
4570
4571 if (e == e2)
4572 return ((!lax || candidate_block)
4573 && block_valid_for_bookkeeping_p (candidate_block)
4574 ? candidate_block
4575 : NULL);
4576
4577 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4578 return NULL;
4579 }
4580
4581 if (lax)
4582 return NULL;
4583
4584 gcc_unreachable ();
4585 }
4586
4587 /* Create new basic block for bookkeeping code for path(s) incoming into
4588 E2->dest, except from E1->src. Return created block. */
4589 static basic_block
4590 create_block_for_bookkeeping (edge e1, edge e2)
4591 {
4592 basic_block new_bb, bb = e2->dest;
4593
4594 /* Check that we don't spoil the loop structure. */
4595 if (current_loop_nest)
4596 {
4597 basic_block latch = current_loop_nest->latch;
4598
4599 /* We do not split header. */
4600 gcc_assert (e2->dest != current_loop_nest->header);
4601
4602 /* We do not redirect the only edge to the latch block. */
4603 gcc_assert (e1->dest != latch
4604 || !single_pred_p (latch)
4605 || e1 != single_pred_edge (latch));
4606 }
4607
4608 /* Split BB to insert BOOK_INSN there. */
4609 new_bb = sched_split_block (bb, NULL);
4610
4611 /* Move note_list from the upper bb. */
4612 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4613 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4614 BB_NOTE_LIST (bb) = NULL_RTX;
4615
4616 gcc_assert (e2->dest == bb);
4617
4618 /* Skip block for bookkeeping copy when leaving E1->src. */
4619 if (e1->flags & EDGE_FALLTHRU)
4620 sel_redirect_edge_and_branch_force (e1, new_bb);
4621 else
4622 sel_redirect_edge_and_branch (e1, new_bb);
4623
4624 gcc_assert (e1->dest == new_bb);
4625 gcc_assert (sel_bb_empty_p (bb));
4626
4627 /* To keep basic block numbers in sync between debug and non-debug
4628 compilations, we have to rotate blocks here. Consider that we
4629 started from (a,b)->d, (c,d)->e, and d contained only debug
4630 insns. It would have been removed before if the debug insns
4631 weren't there, so we'd have split e rather than d. So what we do
4632 now is to swap the block numbers of new_bb and
4633 single_succ(new_bb) == e, so that the insns that were in e before
4634 get the new block number. */
4635
4636 if (MAY_HAVE_DEBUG_INSNS)
4637 {
4638 basic_block succ;
4639 insn_t insn = sel_bb_head (new_bb);
4640 insn_t last;
4641
4642 if (DEBUG_INSN_P (insn)
4643 && single_succ_p (new_bb)
4644 && (succ = single_succ (new_bb))
4645 && succ != EXIT_BLOCK_PTR
4646 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4647 {
4648 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4649 insn = NEXT_INSN (insn);
4650
4651 if (insn == last)
4652 {
4653 sel_global_bb_info_def gbi;
4654 sel_region_bb_info_def rbi;
4655 int i;
4656
4657 if (sched_verbose >= 2)
4658 sel_print ("Swapping block ids %i and %i\n",
4659 new_bb->index, succ->index);
4660
4661 i = new_bb->index;
4662 new_bb->index = succ->index;
4663 succ->index = i;
4664
4665 SET_BASIC_BLOCK (new_bb->index, new_bb);
4666 SET_BASIC_BLOCK (succ->index, succ);
4667
4668 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4669 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4670 sizeof (gbi));
4671 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4672
4673 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4674 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4675 sizeof (rbi));
4676 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4677
4678 i = BLOCK_TO_BB (new_bb->index);
4679 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4680 BLOCK_TO_BB (succ->index) = i;
4681
4682 i = CONTAINING_RGN (new_bb->index);
4683 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4684 CONTAINING_RGN (succ->index) = i;
4685
4686 for (i = 0; i < current_nr_blocks; i++)
4687 if (BB_TO_BLOCK (i) == succ->index)
4688 BB_TO_BLOCK (i) = new_bb->index;
4689 else if (BB_TO_BLOCK (i) == new_bb->index)
4690 BB_TO_BLOCK (i) = succ->index;
4691
4692 FOR_BB_INSNS (new_bb, insn)
4693 if (INSN_P (insn))
4694 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4695
4696 FOR_BB_INSNS (succ, insn)
4697 if (INSN_P (insn))
4698 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4699
4700 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4701 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4702
4703 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4704 && LABEL_P (BB_HEAD (succ)));
4705
4706 if (sched_verbose >= 4)
4707 sel_print ("Swapping code labels %i and %i\n",
4708 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4709 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4710
4711 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4712 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4713 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4714 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4715 }
4716 }
4717 }
4718
4719 return bb;
4720 }
4721
4722 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4723 into E2->dest, except from E1->src. If the returned insn immediately
4724 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4725 static insn_t
4726 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4727 {
4728 insn_t place_to_insert;
4729 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4730 create new basic block, but insert bookkeeping there. */
4731 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4732
4733 if (book_block)
4734 {
4735 place_to_insert = BB_END (book_block);
4736
4737 /* Don't use a block containing only debug insns for
4738 bookkeeping, this causes scheduling differences between debug
4739 and non-debug compilations, for the block would have been
4740 removed already. */
4741 if (DEBUG_INSN_P (place_to_insert))
4742 {
4743 rtx insn = sel_bb_head (book_block);
4744
4745 while (insn != place_to_insert &&
4746 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4747 insn = NEXT_INSN (insn);
4748
4749 if (insn == place_to_insert)
4750 book_block = NULL;
4751 }
4752 }
4753
4754 if (!book_block)
4755 {
4756 book_block = create_block_for_bookkeeping (e1, e2);
4757 place_to_insert = BB_END (book_block);
4758 if (sched_verbose >= 9)
4759 sel_print ("New block is %i, split from bookkeeping block %i\n",
4760 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4761 }
4762 else
4763 {
4764 if (sched_verbose >= 9)
4765 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4766 }
4767
4768 *fence_to_rewind = NULL;
4769 /* If basic block ends with a jump, insert bookkeeping code right before it.
4770 Notice if we are crossing a fence when taking PREV_INSN. */
4771 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4772 {
4773 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4774 place_to_insert = PREV_INSN (place_to_insert);
4775 }
4776
4777 return place_to_insert;
4778 }
4779
4780 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4781 for JOIN_POINT. */
4782 static int
4783 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4784 {
4785 int seqno;
4786 rtx next;
4787
4788 /* Check if we are about to insert bookkeeping copy before a jump, and use
4789 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4790 next = NEXT_INSN (place_to_insert);
4791 if (INSN_P (next)
4792 && JUMP_P (next)
4793 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4794 {
4795 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4796 seqno = INSN_SEQNO (next);
4797 }
4798 else if (INSN_SEQNO (join_point) > 0)
4799 seqno = INSN_SEQNO (join_point);
4800 else
4801 {
4802 seqno = get_seqno_by_preds (place_to_insert);
4803
4804 /* Sometimes the fences can move in such a way that there will be
4805 no instructions with positive seqno around this bookkeeping.
4806 This means that there will be no way to get to it by a regular
4807 fence movement. Never mind because we pick up such pieces for
4808 rescheduling anyways, so any positive value will do for now. */
4809 if (seqno < 0)
4810 {
4811 gcc_assert (pipelining_p);
4812 seqno = 1;
4813 }
4814 }
4815
4816 gcc_assert (seqno > 0);
4817 return seqno;
4818 }
4819
4820 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4821 NEW_SEQNO to it. Return created insn. */
4822 static insn_t
4823 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4824 {
4825 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4826
4827 vinsn_t new_vinsn
4828 = create_vinsn_from_insn_rtx (new_insn_rtx,
4829 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4830
4831 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4832 place_to_insert);
4833
4834 INSN_SCHED_TIMES (new_insn) = 0;
4835 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4836
4837 return new_insn;
4838 }
4839
4840 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4841 E2->dest, except from E1->src (there may be a sequence of empty blocks
4842 between E1->src and E2->dest). Return block containing the copy.
4843 All scheduler data is initialized for the newly created insn. */
4844 static basic_block
4845 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4846 {
4847 insn_t join_point, place_to_insert, new_insn;
4848 int new_seqno;
4849 bool need_to_exchange_data_sets;
4850 fence_t fence_to_rewind;
4851
4852 if (sched_verbose >= 4)
4853 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4854 e2->dest->index);
4855
4856 join_point = sel_bb_head (e2->dest);
4857 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4858 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4859 need_to_exchange_data_sets
4860 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4861
4862 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4863
4864 if (fence_to_rewind)
4865 FENCE_INSN (fence_to_rewind) = new_insn;
4866
4867 /* When inserting bookkeeping insn in new block, av sets should be
4868 following: old basic block (that now holds bookkeeping) data sets are
4869 the same as was before generation of bookkeeping, and new basic block
4870 (that now hold all other insns of old basic block) data sets are
4871 invalid. So exchange data sets for these basic blocks as sel_split_block
4872 mistakenly exchanges them in this case. Cannot do it earlier because
4873 when single instruction is added to new basic block it should hold NULL
4874 lv_set. */
4875 if (need_to_exchange_data_sets)
4876 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4877 BLOCK_FOR_INSN (join_point));
4878
4879 stat_bookkeeping_copies++;
4880 return BLOCK_FOR_INSN (new_insn);
4881 }
4882
4883 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4884 on FENCE, but we are unable to copy them. */
4885 static void
4886 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4887 {
4888 expr_t expr;
4889 av_set_iterator i;
4890
4891 /* An expression does not need bookkeeping if it is available on all paths
4892 from current block to original block and current block dominates
4893 original block. We check availability on all paths by examining
4894 EXPR_SPEC; this is not equivalent, because it may be positive even
4895 if expr is available on all paths (but if expr is not available on
4896 any path, EXPR_SPEC will be positive). */
4897
4898 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4899 {
4900 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4901 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4902 && (EXPR_SPEC (expr)
4903 || !EXPR_ORIG_BB_INDEX (expr)
4904 || !dominated_by_p (CDI_DOMINATORS,
4905 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4906 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4907 {
4908 if (sched_verbose >= 4)
4909 sel_print ("Expr %d removed because it would need bookkeeping, which "
4910 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4911 av_set_iter_remove (&i);
4912 }
4913 }
4914 }
4915
4916 /* Moving conditional jump through some instructions.
4917
4918 Consider example:
4919
4920 ... <- current scheduling point
4921 NOTE BASIC BLOCK: <- bb header
4922 (p8) add r14=r14+0x9;;
4923 (p8) mov [r14]=r23
4924 (!p8) jump L1;;
4925 NOTE BASIC BLOCK:
4926 ...
4927
4928 We can schedule jump one cycle earlier, than mov, because they cannot be
4929 executed together as their predicates are mutually exclusive.
4930
4931 This is done in this way: first, new fallthrough basic block is created
4932 after jump (it is always can be done, because there already should be a
4933 fallthrough block, where control flow goes in case of predicate being true -
4934 in our example; otherwise there should be a dependence between those
4935 instructions and jump and we cannot schedule jump right now);
4936 next, all instructions between jump and current scheduling point are moved
4937 to this new block. And the result is this:
4938
4939 NOTE BASIC BLOCK:
4940 (!p8) jump L1 <- current scheduling point
4941 NOTE BASIC BLOCK: <- bb header
4942 (p8) add r14=r14+0x9;;
4943 (p8) mov [r14]=r23
4944 NOTE BASIC BLOCK:
4945 ...
4946 */
4947 static void
4948 move_cond_jump (rtx insn, bnd_t bnd)
4949 {
4950 edge ft_edge;
4951 basic_block block_from, block_next, block_new, block_bnd, bb;
4952 rtx next, prev, link, head;
4953
4954 block_from = BLOCK_FOR_INSN (insn);
4955 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4956 prev = BND_TO (bnd);
4957
4958 #ifdef ENABLE_CHECKING
4959 /* Moving of jump should not cross any other jumps or beginnings of new
4960 basic blocks. The only exception is when we move a jump through
4961 mutually exclusive insns along fallthru edges. */
4962 if (block_from != block_bnd)
4963 {
4964 bb = block_from;
4965 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4966 link = PREV_INSN (link))
4967 {
4968 if (INSN_P (link))
4969 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4970 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4971 {
4972 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4973 bb = BLOCK_FOR_INSN (link);
4974 }
4975 }
4976 }
4977 #endif
4978
4979 /* Jump is moved to the boundary. */
4980 next = PREV_INSN (insn);
4981 BND_TO (bnd) = insn;
4982
4983 ft_edge = find_fallthru_edge_from (block_from);
4984 block_next = ft_edge->dest;
4985 /* There must be a fallthrough block (or where should go
4986 control flow in case of false jump predicate otherwise?). */
4987 gcc_assert (block_next);
4988
4989 /* Create new empty basic block after source block. */
4990 block_new = sel_split_edge (ft_edge);
4991 gcc_assert (block_new->next_bb == block_next
4992 && block_from->next_bb == block_new);
4993
4994 /* Move all instructions except INSN to BLOCK_NEW. */
4995 bb = block_bnd;
4996 head = BB_HEAD (block_new);
4997 while (bb != block_from->next_bb)
4998 {
4999 rtx from, to;
5000 from = bb == block_bnd ? prev : sel_bb_head (bb);
5001 to = bb == block_from ? next : sel_bb_end (bb);
5002
5003 /* The jump being moved can be the first insn in the block.
5004 In this case we don't have to move anything in this block. */
5005 if (NEXT_INSN (to) != from)
5006 {
5007 reorder_insns (from, to, head);
5008
5009 for (link = to; link != head; link = PREV_INSN (link))
5010 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
5011 head = to;
5012 }
5013
5014 /* Cleanup possibly empty blocks left. */
5015 block_next = bb->next_bb;
5016 if (bb != block_from)
5017 tidy_control_flow (bb, false);
5018 bb = block_next;
5019 }
5020
5021 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
5022 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
5023
5024 gcc_assert (!sel_bb_empty_p (block_from)
5025 && !sel_bb_empty_p (block_new));
5026
5027 /* Update data sets for BLOCK_NEW to represent that INSN and
5028 instructions from the other branch of INSN is no longer
5029 available at BLOCK_NEW. */
5030 BB_AV_LEVEL (block_new) = global_level;
5031 gcc_assert (BB_LV_SET (block_new) == NULL);
5032 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
5033 update_data_sets (sel_bb_head (block_new));
5034
5035 /* INSN is a new basic block header - so prepare its data
5036 structures and update availability and liveness sets. */
5037 update_data_sets (insn);
5038
5039 if (sched_verbose >= 4)
5040 sel_print ("Moving jump %d\n", INSN_UID (insn));
5041 }
5042
5043 /* Remove nops generated during move_op for preventing removal of empty
5044 basic blocks. */
5045 static void
5046 remove_temp_moveop_nops (bool full_tidying)
5047 {
5048 int i;
5049 insn_t insn;
5050
5051 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
5052 {
5053 gcc_assert (INSN_NOP_P (insn));
5054 return_nop_to_pool (insn, full_tidying);
5055 }
5056
5057 /* Empty the vector. */
5058 if (vec_temp_moveop_nops.length () > 0)
5059 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5060 }
5061
5062 /* Records the maximal UID before moving up an instruction. Used for
5063 distinguishing between bookkeeping copies and original insns. */
5064 static int max_uid_before_move_op = 0;
5065
5066 /* Remove from AV_VLIW_P all instructions but next when debug counter
5067 tells us so. Next instruction is fetched from BNDS. */
5068 static void
5069 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5070 {
5071 if (! dbg_cnt (sel_sched_insn_cnt))
5072 /* Leave only the next insn in av_vliw. */
5073 {
5074 av_set_iterator av_it;
5075 expr_t expr;
5076 bnd_t bnd = BLIST_BND (bnds);
5077 insn_t next = BND_TO (bnd);
5078
5079 gcc_assert (BLIST_NEXT (bnds) == NULL);
5080
5081 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5082 if (EXPR_INSN_RTX (expr) != next)
5083 av_set_iter_remove (&av_it);
5084 }
5085 }
5086
5087 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5088 the computed set to *AV_VLIW_P. */
5089 static void
5090 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5091 {
5092 if (sched_verbose >= 2)
5093 {
5094 sel_print ("Boundaries: ");
5095 dump_blist (bnds);
5096 sel_print ("\n");
5097 }
5098
5099 for (; bnds; bnds = BLIST_NEXT (bnds))
5100 {
5101 bnd_t bnd = BLIST_BND (bnds);
5102 av_set_t av1_copy;
5103 insn_t bnd_to = BND_TO (bnd);
5104
5105 /* Rewind BND->TO to the basic block header in case some bookkeeping
5106 instructions were inserted before BND->TO and it needs to be
5107 adjusted. */
5108 if (sel_bb_head_p (bnd_to))
5109 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5110 else
5111 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5112 {
5113 bnd_to = PREV_INSN (bnd_to);
5114 if (sel_bb_head_p (bnd_to))
5115 break;
5116 }
5117
5118 if (BND_TO (bnd) != bnd_to)
5119 {
5120 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5121 FENCE_INSN (fence) = bnd_to;
5122 BND_TO (bnd) = bnd_to;
5123 }
5124
5125 av_set_clear (&BND_AV (bnd));
5126 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5127
5128 av_set_clear (&BND_AV1 (bnd));
5129 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5130
5131 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5132
5133 av1_copy = av_set_copy (BND_AV1 (bnd));
5134 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5135 }
5136
5137 if (sched_verbose >= 2)
5138 {
5139 sel_print ("Available exprs (vliw form): ");
5140 dump_av_set (*av_vliw_p);
5141 sel_print ("\n");
5142 }
5143 }
5144
5145 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5146 expression. When FOR_MOVEOP is true, also replace the register of
5147 expressions found with the register from EXPR_VLIW. */
5148 static av_set_t
5149 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5150 {
5151 av_set_t expr_seq = NULL;
5152 expr_t expr;
5153 av_set_iterator i;
5154
5155 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5156 {
5157 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5158 {
5159 if (for_moveop)
5160 {
5161 /* The sequential expression has the right form to pass
5162 to move_op except when renaming happened. Put the
5163 correct register in EXPR then. */
5164 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5165 {
5166 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5167 {
5168 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5169 stat_renamed_scheduled++;
5170 }
5171 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5172 This is needed when renaming came up with original
5173 register. */
5174 else if (EXPR_TARGET_AVAILABLE (expr)
5175 != EXPR_TARGET_AVAILABLE (expr_vliw))
5176 {
5177 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5178 EXPR_TARGET_AVAILABLE (expr) = 1;
5179 }
5180 }
5181 if (EXPR_WAS_SUBSTITUTED (expr))
5182 stat_substitutions_total++;
5183 }
5184
5185 av_set_add (&expr_seq, expr);
5186
5187 /* With substitution inside insn group, it is possible
5188 that more than one expression in expr_seq will correspond
5189 to expr_vliw. In this case, choose one as the attempt to
5190 move both leads to miscompiles. */
5191 break;
5192 }
5193 }
5194
5195 if (for_moveop && sched_verbose >= 2)
5196 {
5197 sel_print ("Best expression(s) (sequential form): ");
5198 dump_av_set (expr_seq);
5199 sel_print ("\n");
5200 }
5201
5202 return expr_seq;
5203 }
5204
5205
5206 /* Move nop to previous block. */
5207 static void ATTRIBUTE_UNUSED
5208 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5209 {
5210 insn_t prev_insn, next_insn, note;
5211
5212 gcc_assert (sel_bb_head_p (nop)
5213 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5214 note = bb_note (BLOCK_FOR_INSN (nop));
5215 prev_insn = sel_bb_end (prev_bb);
5216 next_insn = NEXT_INSN (nop);
5217 gcc_assert (prev_insn != NULL_RTX
5218 && PREV_INSN (note) == prev_insn);
5219
5220 NEXT_INSN (prev_insn) = nop;
5221 PREV_INSN (nop) = prev_insn;
5222
5223 PREV_INSN (note) = nop;
5224 NEXT_INSN (note) = next_insn;
5225
5226 NEXT_INSN (nop) = note;
5227 PREV_INSN (next_insn) = note;
5228
5229 BB_END (prev_bb) = nop;
5230 BLOCK_FOR_INSN (nop) = prev_bb;
5231 }
5232
5233 /* Prepare a place to insert the chosen expression on BND. */
5234 static insn_t
5235 prepare_place_to_insert (bnd_t bnd)
5236 {
5237 insn_t place_to_insert;
5238
5239 /* Init place_to_insert before calling move_op, as the later
5240 can possibly remove BND_TO (bnd). */
5241 if (/* If this is not the first insn scheduled. */
5242 BND_PTR (bnd))
5243 {
5244 /* Add it after last scheduled. */
5245 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5246 if (DEBUG_INSN_P (place_to_insert))
5247 {
5248 ilist_t l = BND_PTR (bnd);
5249 while ((l = ILIST_NEXT (l)) &&
5250 DEBUG_INSN_P (ILIST_INSN (l)))
5251 ;
5252 if (!l)
5253 place_to_insert = NULL;
5254 }
5255 }
5256 else
5257 place_to_insert = NULL;
5258
5259 if (!place_to_insert)
5260 {
5261 /* Add it before BND_TO. The difference is in the
5262 basic block, where INSN will be added. */
5263 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5264 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5265 == BLOCK_FOR_INSN (BND_TO (bnd)));
5266 }
5267
5268 return place_to_insert;
5269 }
5270
5271 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5272 Return the expression to emit in C_EXPR. */
5273 static bool
5274 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5275 av_set_t expr_seq, expr_t c_expr)
5276 {
5277 bool b, should_move;
5278 unsigned book_uid;
5279 bitmap_iterator bi;
5280 int n_bookkeeping_copies_before_moveop;
5281
5282 /* Make a move. This call will remove the original operation,
5283 insert all necessary bookkeeping instructions and update the
5284 data sets. After that all we have to do is add the operation
5285 at before BND_TO (BND). */
5286 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5287 max_uid_before_move_op = get_max_uid ();
5288 bitmap_clear (current_copies);
5289 bitmap_clear (current_originators);
5290
5291 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5292 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5293
5294 /* We should be able to find the expression we've chosen for
5295 scheduling. */
5296 gcc_assert (b);
5297
5298 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5299 stat_insns_needed_bookkeeping++;
5300
5301 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5302 {
5303 unsigned uid;
5304 bitmap_iterator bi;
5305
5306 /* We allocate these bitmaps lazily. */
5307 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5308 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5309
5310 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5311 current_originators);
5312
5313 /* Transitively add all originators' originators. */
5314 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5315 if (INSN_ORIGINATORS_BY_UID (uid))
5316 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5317 INSN_ORIGINATORS_BY_UID (uid));
5318 }
5319
5320 return should_move;
5321 }
5322
5323
5324 /* Debug a DFA state as an array of bytes. */
5325 static void
5326 debug_state (state_t state)
5327 {
5328 unsigned char *p;
5329 unsigned int i, size = dfa_state_size;
5330
5331 sel_print ("state (%u):", size);
5332 for (i = 0, p = (unsigned char *) state; i < size; i++)
5333 sel_print (" %d", p[i]);
5334 sel_print ("\n");
5335 }
5336
5337 /* Advance state on FENCE with INSN. Return true if INSN is
5338 an ASM, and we should advance state once more. */
5339 static bool
5340 advance_state_on_fence (fence_t fence, insn_t insn)
5341 {
5342 bool asm_p;
5343
5344 if (recog_memoized (insn) >= 0)
5345 {
5346 int res;
5347 state_t temp_state = alloca (dfa_state_size);
5348
5349 gcc_assert (!INSN_ASM_P (insn));
5350 asm_p = false;
5351
5352 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5353 res = state_transition (FENCE_STATE (fence), insn);
5354 gcc_assert (res < 0);
5355
5356 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5357 {
5358 FENCE_ISSUED_INSNS (fence)++;
5359
5360 /* We should never issue more than issue_rate insns. */
5361 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5362 gcc_unreachable ();
5363 }
5364 }
5365 else
5366 {
5367 /* This could be an ASM insn which we'd like to schedule
5368 on the next cycle. */
5369 asm_p = INSN_ASM_P (insn);
5370 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5371 advance_one_cycle (fence);
5372 }
5373
5374 if (sched_verbose >= 2)
5375 debug_state (FENCE_STATE (fence));
5376 if (!DEBUG_INSN_P (insn))
5377 FENCE_STARTS_CYCLE_P (fence) = 0;
5378 FENCE_ISSUE_MORE (fence) = can_issue_more;
5379 return asm_p;
5380 }
5381
5382 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5383 is nonzero if we need to stall after issuing INSN. */
5384 static void
5385 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5386 {
5387 bool asm_p;
5388
5389 /* First, reflect that something is scheduled on this fence. */
5390 asm_p = advance_state_on_fence (fence, insn);
5391 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5392 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5393 if (SCHED_GROUP_P (insn))
5394 {
5395 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5396 SCHED_GROUP_P (insn) = 0;
5397 }
5398 else
5399 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5400 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5401 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5402
5403 /* Set instruction scheduling info. This will be used in bundling,
5404 pipelining, tick computations etc. */
5405 ++INSN_SCHED_TIMES (insn);
5406 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5407 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5408 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5409 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5410
5411 /* This does not account for adjust_cost hooks, just add the biggest
5412 constant the hook may add to the latency. TODO: make this
5413 a target dependent constant. */
5414 INSN_READY_CYCLE (insn)
5415 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5416 ? 1
5417 : maximal_insn_latency (insn) + 1);
5418
5419 /* Change these fields last, as they're used above. */
5420 FENCE_AFTER_STALL_P (fence) = 0;
5421 if (asm_p || need_stall)
5422 advance_one_cycle (fence);
5423
5424 /* Indicate that we've scheduled something on this fence. */
5425 FENCE_SCHEDULED_P (fence) = true;
5426 scheduled_something_on_previous_fence = true;
5427
5428 /* Print debug information when insn's fields are updated. */
5429 if (sched_verbose >= 2)
5430 {
5431 sel_print ("Scheduling insn: ");
5432 dump_insn_1 (insn, 1);
5433 sel_print ("\n");
5434 }
5435 }
5436
5437 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5438 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5439 return it. */
5440 static blist_t *
5441 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5442 blist_t *bnds_tailp)
5443 {
5444 succ_iterator si;
5445 insn_t succ;
5446
5447 advance_deps_context (BND_DC (bnd), insn);
5448 FOR_EACH_SUCC_1 (succ, si, insn,
5449 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5450 {
5451 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5452
5453 ilist_add (&ptr, insn);
5454
5455 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5456 && is_ineligible_successor (succ, ptr))
5457 {
5458 ilist_clear (&ptr);
5459 continue;
5460 }
5461
5462 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5463 {
5464 if (sched_verbose >= 9)
5465 sel_print ("Updating fence insn from %i to %i\n",
5466 INSN_UID (insn), INSN_UID (succ));
5467 FENCE_INSN (fence) = succ;
5468 }
5469 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5470 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5471 }
5472
5473 blist_remove (bndsp);
5474 return bnds_tailp;
5475 }
5476
5477 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5478 static insn_t
5479 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5480 {
5481 av_set_t expr_seq;
5482 expr_t c_expr = XALLOCA (expr_def);
5483 insn_t place_to_insert;
5484 insn_t insn;
5485 bool should_move;
5486
5487 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5488
5489 /* In case of scheduling a jump skipping some other instructions,
5490 prepare CFG. After this, jump is at the boundary and can be
5491 scheduled as usual insn by MOVE_OP. */
5492 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5493 {
5494 insn = EXPR_INSN_RTX (expr_vliw);
5495
5496 /* Speculative jumps are not handled. */
5497 if (insn != BND_TO (bnd)
5498 && !sel_insn_is_speculation_check (insn))
5499 move_cond_jump (insn, bnd);
5500 }
5501
5502 /* Find a place for C_EXPR to schedule. */
5503 place_to_insert = prepare_place_to_insert (bnd);
5504 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5505 clear_expr (c_expr);
5506
5507 /* Add the instruction. The corner case to care about is when
5508 the expr_seq set has more than one expr, and we chose the one that
5509 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5510 we can't use it. Generate the new vinsn. */
5511 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5512 {
5513 vinsn_t vinsn_new;
5514
5515 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5516 change_vinsn_in_expr (expr_vliw, vinsn_new);
5517 should_move = false;
5518 }
5519 if (should_move)
5520 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5521 else
5522 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5523 place_to_insert);
5524
5525 /* Return the nops generated for preserving of data sets back
5526 into pool. */
5527 if (INSN_NOP_P (place_to_insert))
5528 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5529 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5530
5531 av_set_clear (&expr_seq);
5532
5533 /* Save the expression scheduled so to reset target availability if we'll
5534 meet it later on the same fence. */
5535 if (EXPR_WAS_RENAMED (expr_vliw))
5536 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5537
5538 /* Check that the recent movement didn't destroyed loop
5539 structure. */
5540 gcc_assert (!pipelining_p
5541 || current_loop_nest == NULL
5542 || loop_latch_edge (current_loop_nest));
5543 return insn;
5544 }
5545
5546 /* Stall for N cycles on FENCE. */
5547 static void
5548 stall_for_cycles (fence_t fence, int n)
5549 {
5550 int could_more;
5551
5552 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5553 while (n--)
5554 advance_one_cycle (fence);
5555 if (could_more)
5556 FENCE_AFTER_STALL_P (fence) = 1;
5557 }
5558
5559 /* Gather a parallel group of insns at FENCE and assign their seqno
5560 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5561 list for later recalculation of seqnos. */
5562 static void
5563 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5564 {
5565 blist_t bnds = NULL, *bnds_tailp;
5566 av_set_t av_vliw = NULL;
5567 insn_t insn = FENCE_INSN (fence);
5568
5569 if (sched_verbose >= 2)
5570 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5571 INSN_UID (insn), FENCE_CYCLE (fence));
5572
5573 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5574 bnds_tailp = &BLIST_NEXT (bnds);
5575 set_target_context (FENCE_TC (fence));
5576 can_issue_more = FENCE_ISSUE_MORE (fence);
5577 target_bb = INSN_BB (insn);
5578
5579 /* Do while we can add any operation to the current group. */
5580 do
5581 {
5582 blist_t *bnds_tailp1, *bndsp;
5583 expr_t expr_vliw;
5584 int need_stall = false;
5585 int was_stall = 0, scheduled_insns = 0;
5586 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5587 int max_stall = pipelining_p ? 1 : 3;
5588 bool last_insn_was_debug = false;
5589 bool was_debug_bb_end_p = false;
5590
5591 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5592 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5593 remove_insns_for_debug (bnds, &av_vliw);
5594
5595 /* Return early if we have nothing to schedule. */
5596 if (av_vliw == NULL)
5597 break;
5598
5599 /* Choose the best expression and, if needed, destination register
5600 for it. */
5601 do
5602 {
5603 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5604 if (! expr_vliw && need_stall)
5605 {
5606 /* All expressions required a stall. Do not recompute av sets
5607 as we'll get the same answer (modulo the insns between
5608 the fence and its boundary, which will not be available for
5609 pipelining).
5610 If we are going to stall for too long, break to recompute av
5611 sets and bring more insns for pipelining. */
5612 was_stall++;
5613 if (need_stall <= 3)
5614 stall_for_cycles (fence, need_stall);
5615 else
5616 {
5617 stall_for_cycles (fence, 1);
5618 break;
5619 }
5620 }
5621 }
5622 while (! expr_vliw && need_stall);
5623
5624 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5625 if (!expr_vliw)
5626 {
5627 av_set_clear (&av_vliw);
5628 break;
5629 }
5630
5631 bndsp = &bnds;
5632 bnds_tailp1 = bnds_tailp;
5633
5634 do
5635 /* This code will be executed only once until we'd have several
5636 boundaries per fence. */
5637 {
5638 bnd_t bnd = BLIST_BND (*bndsp);
5639
5640 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5641 {
5642 bndsp = &BLIST_NEXT (*bndsp);
5643 continue;
5644 }
5645
5646 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5647 last_insn_was_debug = DEBUG_INSN_P (insn);
5648 if (last_insn_was_debug)
5649 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5650 update_fence_and_insn (fence, insn, need_stall);
5651 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5652
5653 /* Add insn to the list of scheduled on this cycle instructions. */
5654 ilist_add (*scheduled_insns_tailpp, insn);
5655 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5656 }
5657 while (*bndsp != *bnds_tailp1);
5658
5659 av_set_clear (&av_vliw);
5660 if (!last_insn_was_debug)
5661 scheduled_insns++;
5662
5663 /* We currently support information about candidate blocks only for
5664 one 'target_bb' block. Hence we can't schedule after jump insn,
5665 as this will bring two boundaries and, hence, necessity to handle
5666 information for two or more blocks concurrently. */
5667 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5668 || (was_stall
5669 && (was_stall >= max_stall
5670 || scheduled_insns >= max_insns)))
5671 break;
5672 }
5673 while (bnds);
5674
5675 gcc_assert (!FENCE_BNDS (fence));
5676
5677 /* Update boundaries of the FENCE. */
5678 while (bnds)
5679 {
5680 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5681
5682 if (ptr)
5683 {
5684 insn = ILIST_INSN (ptr);
5685
5686 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5687 ilist_add (&FENCE_BNDS (fence), insn);
5688 }
5689
5690 blist_remove (&bnds);
5691 }
5692
5693 /* Update target context on the fence. */
5694 reset_target_context (FENCE_TC (fence), false);
5695 }
5696
5697 /* All exprs in ORIG_OPS must have the same destination register or memory.
5698 Return that destination. */
5699 static rtx
5700 get_dest_from_orig_ops (av_set_t orig_ops)
5701 {
5702 rtx dest = NULL_RTX;
5703 av_set_iterator av_it;
5704 expr_t expr;
5705 bool first_p = true;
5706
5707 FOR_EACH_EXPR (expr, av_it, orig_ops)
5708 {
5709 rtx x = EXPR_LHS (expr);
5710
5711 if (first_p)
5712 {
5713 first_p = false;
5714 dest = x;
5715 }
5716 else
5717 gcc_assert (dest == x
5718 || (dest != NULL_RTX && x != NULL_RTX
5719 && rtx_equal_p (dest, x)));
5720 }
5721
5722 return dest;
5723 }
5724
5725 /* Update data sets for the bookkeeping block and record those expressions
5726 which become no longer available after inserting this bookkeeping. */
5727 static void
5728 update_and_record_unavailable_insns (basic_block book_block)
5729 {
5730 av_set_iterator i;
5731 av_set_t old_av_set = NULL;
5732 expr_t cur_expr;
5733 rtx bb_end = sel_bb_end (book_block);
5734
5735 /* First, get correct liveness in the bookkeeping block. The problem is
5736 the range between the bookeeping insn and the end of block. */
5737 update_liveness_on_insn (bb_end);
5738 if (control_flow_insn_p (bb_end))
5739 update_liveness_on_insn (PREV_INSN (bb_end));
5740
5741 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5742 fence above, where we may choose to schedule an insn which is
5743 actually blocked from moving up with the bookkeeping we create here. */
5744 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5745 {
5746 old_av_set = av_set_copy (BB_AV_SET (book_block));
5747 update_data_sets (sel_bb_head (book_block));
5748
5749 /* Traverse all the expressions in the old av_set and check whether
5750 CUR_EXPR is in new AV_SET. */
5751 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5752 {
5753 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5754 EXPR_VINSN (cur_expr));
5755
5756 if (! new_expr
5757 /* In this case, we can just turn off the E_T_A bit, but we can't
5758 represent this information with the current vector. */
5759 || EXPR_TARGET_AVAILABLE (new_expr)
5760 != EXPR_TARGET_AVAILABLE (cur_expr))
5761 /* Unfortunately, the below code could be also fired up on
5762 separable insns, e.g. when moving insns through the new
5763 speculation check as in PR 53701. */
5764 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5765 }
5766
5767 av_set_clear (&old_av_set);
5768 }
5769 }
5770
5771 /* The main effect of this function is that sparams->c_expr is merged
5772 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5773 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5774 lparams->c_expr_merged is copied back to sparams->c_expr after all
5775 successors has been traversed. lparams->c_expr_local is an expr allocated
5776 on stack in the caller function, and is used if there is more than one
5777 successor.
5778
5779 SUCC is one of the SUCCS_NORMAL successors of INSN,
5780 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5781 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5782 static void
5783 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5784 insn_t succ ATTRIBUTE_UNUSED,
5785 int moveop_drv_call_res,
5786 cmpd_local_params_p lparams, void *static_params)
5787 {
5788 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5789
5790 /* Nothing to do, if original expr wasn't found below. */
5791 if (moveop_drv_call_res != 1)
5792 return;
5793
5794 /* If this is a first successor. */
5795 if (!lparams->c_expr_merged)
5796 {
5797 lparams->c_expr_merged = sparams->c_expr;
5798 sparams->c_expr = lparams->c_expr_local;
5799 }
5800 else
5801 {
5802 /* We must merge all found expressions to get reasonable
5803 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5804 do so then we can first find the expr with epsilon
5805 speculation success probability and only then with the
5806 good probability. As a result the insn will get epsilon
5807 probability and will never be scheduled because of
5808 weakness_cutoff in find_best_expr.
5809
5810 We call merge_expr_data here instead of merge_expr
5811 because due to speculation C_EXPR and X may have the
5812 same insns with different speculation types. And as of
5813 now such insns are considered non-equal.
5814
5815 However, EXPR_SCHED_TIMES is different -- we must get
5816 SCHED_TIMES from a real insn, not a bookkeeping copy.
5817 We force this here. Instead, we may consider merging
5818 SCHED_TIMES to the maximum instead of minimum in the
5819 below function. */
5820 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5821
5822 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5823 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5824 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5825
5826 clear_expr (sparams->c_expr);
5827 }
5828 }
5829
5830 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5831
5832 SUCC is one of the SUCCS_NORMAL successors of INSN,
5833 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5834 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5835 STATIC_PARAMS contain USED_REGS set. */
5836 static void
5837 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5838 int moveop_drv_call_res,
5839 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5840 void *static_params)
5841 {
5842 regset succ_live;
5843 fur_static_params_p sparams = (fur_static_params_p) static_params;
5844
5845 /* Here we compute live regsets only for branches that do not lie
5846 on the code motion paths. These branches correspond to value
5847 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5848 for such branches code_motion_path_driver is not called. */
5849 if (moveop_drv_call_res != 0)
5850 return;
5851
5852 /* Mark all registers that do not meet the following condition:
5853 (3) not live on the other path of any conditional branch
5854 that is passed by the operation, in case original
5855 operations are not present on both paths of the
5856 conditional branch. */
5857 succ_live = compute_live (succ);
5858 IOR_REG_SET (sparams->used_regs, succ_live);
5859 }
5860
5861 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5862 into SP->CEXPR. */
5863 static void
5864 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5865 {
5866 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5867
5868 sp->c_expr = lp->c_expr_merged;
5869 }
5870
5871 /* Track bookkeeping copies created, insns scheduled, and blocks for
5872 rescheduling when INSN is found by move_op. */
5873 static void
5874 track_scheduled_insns_and_blocks (rtx insn)
5875 {
5876 /* Even if this insn can be a copy that will be removed during current move_op,
5877 we still need to count it as an originator. */
5878 bitmap_set_bit (current_originators, INSN_UID (insn));
5879
5880 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5881 {
5882 /* Note that original block needs to be rescheduled, as we pulled an
5883 instruction out of it. */
5884 if (INSN_SCHED_TIMES (insn) > 0)
5885 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5886 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5887 num_insns_scheduled++;
5888 }
5889
5890 /* For instructions we must immediately remove insn from the
5891 stream, so subsequent update_data_sets () won't include this
5892 insn into av_set.
5893 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5894 if (INSN_UID (insn) > max_uid_before_move_op)
5895 stat_bookkeeping_copies--;
5896 }
5897
5898 /* Emit a register-register copy for INSN if needed. Return true if
5899 emitted one. PARAMS is the move_op static parameters. */
5900 static bool
5901 maybe_emit_renaming_copy (rtx insn,
5902 moveop_static_params_p params)
5903 {
5904 bool insn_emitted = false;
5905 rtx cur_reg;
5906
5907 /* Bail out early when expression can not be renamed at all. */
5908 if (!EXPR_SEPARABLE_P (params->c_expr))
5909 return false;
5910
5911 cur_reg = expr_dest_reg (params->c_expr);
5912 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5913
5914 /* If original operation has expr and the register chosen for
5915 that expr is not original operation's dest reg, substitute
5916 operation's right hand side with the register chosen. */
5917 if (REGNO (params->dest) != REGNO (cur_reg))
5918 {
5919 insn_t reg_move_insn, reg_move_insn_rtx;
5920
5921 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5922 params->dest);
5923 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5924 INSN_EXPR (insn),
5925 INSN_SEQNO (insn),
5926 insn);
5927 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5928 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5929
5930 insn_emitted = true;
5931 params->was_renamed = true;
5932 }
5933
5934 return insn_emitted;
5935 }
5936
5937 /* Emit a speculative check for INSN speculated as EXPR if needed.
5938 Return true if we've emitted one. PARAMS is the move_op static
5939 parameters. */
5940 static bool
5941 maybe_emit_speculative_check (rtx insn, expr_t expr,
5942 moveop_static_params_p params)
5943 {
5944 bool insn_emitted = false;
5945 insn_t x;
5946 ds_t check_ds;
5947
5948 check_ds = get_spec_check_type_for_insn (insn, expr);
5949 if (check_ds != 0)
5950 {
5951 /* A speculation check should be inserted. */
5952 x = create_speculation_check (params->c_expr, check_ds, insn);
5953 insn_emitted = true;
5954 }
5955 else
5956 {
5957 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5958 x = insn;
5959 }
5960
5961 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5962 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5963 return insn_emitted;
5964 }
5965
5966 /* Handle transformations that leave an insn in place of original
5967 insn such as renaming/speculation. Return true if one of such
5968 transformations actually happened, and we have emitted this insn. */
5969 static bool
5970 handle_emitting_transformations (rtx insn, expr_t expr,
5971 moveop_static_params_p params)
5972 {
5973 bool insn_emitted = false;
5974
5975 insn_emitted = maybe_emit_renaming_copy (insn, params);
5976 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5977
5978 return insn_emitted;
5979 }
5980
5981 /* If INSN is the only insn in the basic block (not counting JUMP,
5982 which may be a jump to next insn, and DEBUG_INSNs), we want to
5983 leave a NOP there till the return to fill_insns. */
5984
5985 static bool
5986 need_nop_to_preserve_insn_bb (rtx insn)
5987 {
5988 insn_t bb_head, bb_end, bb_next, in_next;
5989 basic_block bb = BLOCK_FOR_INSN (insn);
5990
5991 bb_head = sel_bb_head (bb);
5992 bb_end = sel_bb_end (bb);
5993
5994 if (bb_head == bb_end)
5995 return true;
5996
5997 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5998 bb_head = NEXT_INSN (bb_head);
5999
6000 if (bb_head == bb_end)
6001 return true;
6002
6003 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
6004 bb_end = PREV_INSN (bb_end);
6005
6006 if (bb_head == bb_end)
6007 return true;
6008
6009 bb_next = NEXT_INSN (bb_head);
6010 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
6011 bb_next = NEXT_INSN (bb_next);
6012
6013 if (bb_next == bb_end && JUMP_P (bb_end))
6014 return true;
6015
6016 in_next = NEXT_INSN (insn);
6017 while (DEBUG_INSN_P (in_next))
6018 in_next = NEXT_INSN (in_next);
6019
6020 if (IN_CURRENT_FENCE_P (in_next))
6021 return true;
6022
6023 return false;
6024 }
6025
6026 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
6027 is not removed but reused when INSN is re-emitted. */
6028 static void
6029 remove_insn_from_stream (rtx insn, bool only_disconnect)
6030 {
6031 /* If there's only one insn in the BB, make sure that a nop is
6032 inserted into it, so the basic block won't disappear when we'll
6033 delete INSN below with sel_remove_insn. It should also survive
6034 till the return to fill_insns. */
6035 if (need_nop_to_preserve_insn_bb (insn))
6036 {
6037 insn_t nop = get_nop_from_pool (insn);
6038 gcc_assert (INSN_NOP_P (nop));
6039 vec_temp_moveop_nops.safe_push (nop);
6040 }
6041
6042 sel_remove_insn (insn, only_disconnect, false);
6043 }
6044
6045 /* This function is called when original expr is found.
6046 INSN - current insn traversed, EXPR - the corresponding expr found.
6047 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
6048 is static parameters of move_op. */
6049 static void
6050 move_op_orig_expr_found (insn_t insn, expr_t expr,
6051 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6052 void *static_params)
6053 {
6054 bool only_disconnect;
6055 moveop_static_params_p params = (moveop_static_params_p) static_params;
6056
6057 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6058 track_scheduled_insns_and_blocks (insn);
6059 handle_emitting_transformations (insn, expr, params);
6060 only_disconnect = params->uid == INSN_UID (insn);
6061
6062 /* Mark that we've disconnected an insn. */
6063 if (only_disconnect)
6064 params->uid = -1;
6065 remove_insn_from_stream (insn, only_disconnect);
6066 }
6067
6068 /* The function is called when original expr is found.
6069 INSN - current insn traversed, EXPR - the corresponding expr found,
6070 crosses_call and original_insns in STATIC_PARAMS are updated. */
6071 static void
6072 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6073 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6074 void *static_params)
6075 {
6076 fur_static_params_p params = (fur_static_params_p) static_params;
6077 regset tmp;
6078
6079 if (CALL_P (insn))
6080 params->crosses_call = true;
6081
6082 def_list_add (params->original_insns, insn, params->crosses_call);
6083
6084 /* Mark the registers that do not meet the following condition:
6085 (2) not among the live registers of the point
6086 immediately following the first original operation on
6087 a given downward path, except for the original target
6088 register of the operation. */
6089 tmp = get_clear_regset_from_pool ();
6090 compute_live_below_insn (insn, tmp);
6091 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6092 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6093 IOR_REG_SET (params->used_regs, tmp);
6094 return_regset_to_pool (tmp);
6095
6096 /* (*1) We need to add to USED_REGS registers that are read by
6097 INSN's lhs. This may lead to choosing wrong src register.
6098 E.g. (scheduling const expr enabled):
6099
6100 429: ax=0x0 <- Can't use AX for this expr (0x0)
6101 433: dx=[bp-0x18]
6102 427: [ax+dx+0x1]=ax
6103 REG_DEAD: ax
6104 168: di=dx
6105 REG_DEAD: dx
6106 */
6107 /* FIXME: see comment above and enable MEM_P
6108 in vinsn_separable_p. */
6109 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6110 || !MEM_P (INSN_LHS (insn)));
6111 }
6112
6113 /* This function is called on the ascending pass, before returning from
6114 current basic block. */
6115 static void
6116 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6117 void *static_params)
6118 {
6119 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6120 basic_block book_block = NULL;
6121
6122 /* When we have removed the boundary insn for scheduling, which also
6123 happened to be the end insn in its bb, we don't need to update sets. */
6124 if (!lparams->removed_last_insn
6125 && lparams->e1
6126 && sel_bb_head_p (insn))
6127 {
6128 /* We should generate bookkeeping code only if we are not at the
6129 top level of the move_op. */
6130 if (sel_num_cfg_preds_gt_1 (insn))
6131 book_block = generate_bookkeeping_insn (sparams->c_expr,
6132 lparams->e1, lparams->e2);
6133 /* Update data sets for the current insn. */
6134 update_data_sets (insn);
6135 }
6136
6137 /* If bookkeeping code was inserted, we need to update av sets of basic
6138 block that received bookkeeping. After generation of bookkeeping insn,
6139 bookkeeping block does not contain valid av set because we are not following
6140 the original algorithm in every detail with regards to e.g. renaming
6141 simple reg-reg copies. Consider example:
6142
6143 bookkeeping block scheduling fence
6144 \ /
6145 \ join /
6146 ----------
6147 | |
6148 ----------
6149 / \
6150 / \
6151 r1 := r2 r1 := r3
6152
6153 We try to schedule insn "r1 := r3" on the current
6154 scheduling fence. Also, note that av set of bookkeeping block
6155 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6156 been scheduled, the CFG is as follows:
6157
6158 r1 := r3 r1 := r3
6159 bookkeeping block scheduling fence
6160 \ /
6161 \ join /
6162 ----------
6163 | |
6164 ----------
6165 / \
6166 / \
6167 r1 := r2
6168
6169 Here, insn "r1 := r3" was scheduled at the current scheduling point
6170 and bookkeeping code was generated at the bookeeping block. This
6171 way insn "r1 := r2" is no longer available as a whole instruction
6172 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6173 This situation is handled by calling update_data_sets.
6174
6175 Since update_data_sets is called only on the bookkeeping block, and
6176 it also may have predecessors with av_sets, containing instructions that
6177 are no longer available, we save all such expressions that become
6178 unavailable during data sets update on the bookkeeping block in
6179 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6180 expressions for scheduling. This allows us to avoid recomputation of
6181 av_sets outside the code motion path. */
6182
6183 if (book_block)
6184 update_and_record_unavailable_insns (book_block);
6185
6186 /* If INSN was previously marked for deletion, it's time to do it. */
6187 if (lparams->removed_last_insn)
6188 insn = PREV_INSN (insn);
6189
6190 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6191 kill a block with a single nop in which the insn should be emitted. */
6192 if (lparams->e1)
6193 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6194 }
6195
6196 /* This function is called on the ascending pass, before returning from the
6197 current basic block. */
6198 static void
6199 fur_at_first_insn (insn_t insn,
6200 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6201 void *static_params ATTRIBUTE_UNUSED)
6202 {
6203 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6204 || AV_LEVEL (insn) == -1);
6205 }
6206
6207 /* Called on the backward stage of recursion to call moveup_expr for insn
6208 and sparams->c_expr. */
6209 static void
6210 move_op_ascend (insn_t insn, void *static_params)
6211 {
6212 enum MOVEUP_EXPR_CODE res;
6213 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6214
6215 if (! INSN_NOP_P (insn))
6216 {
6217 res = moveup_expr_cached (sparams->c_expr, insn, false);
6218 gcc_assert (res != MOVEUP_EXPR_NULL);
6219 }
6220
6221 /* Update liveness for this insn as it was invalidated. */
6222 update_liveness_on_insn (insn);
6223 }
6224
6225 /* This function is called on enter to the basic block.
6226 Returns TRUE if this block already have been visited and
6227 code_motion_path_driver should return 1, FALSE otherwise. */
6228 static int
6229 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6230 void *static_params, bool visited_p)
6231 {
6232 fur_static_params_p sparams = (fur_static_params_p) static_params;
6233
6234 if (visited_p)
6235 {
6236 /* If we have found something below this block, there should be at
6237 least one insn in ORIGINAL_INSNS. */
6238 gcc_assert (*sparams->original_insns);
6239
6240 /* Adjust CROSSES_CALL, since we may have come to this block along
6241 different path. */
6242 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6243 |= sparams->crosses_call;
6244 }
6245 else
6246 local_params->old_original_insns = *sparams->original_insns;
6247
6248 return 1;
6249 }
6250
6251 /* Same as above but for move_op. */
6252 static int
6253 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6254 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6255 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6256 {
6257 if (visited_p)
6258 return -1;
6259 return 1;
6260 }
6261
6262 /* This function is called while descending current basic block if current
6263 insn is not the original EXPR we're searching for.
6264
6265 Return value: FALSE, if code_motion_path_driver should perform a local
6266 cleanup and return 0 itself;
6267 TRUE, if code_motion_path_driver should continue. */
6268 static bool
6269 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6270 void *static_params)
6271 {
6272 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6273
6274 #ifdef ENABLE_CHECKING
6275 sparams->failed_insn = insn;
6276 #endif
6277
6278 /* If we're scheduling separate expr, in order to generate correct code
6279 we need to stop the search at bookkeeping code generated with the
6280 same destination register or memory. */
6281 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6282 return false;
6283 return true;
6284 }
6285
6286 /* This function is called while descending current basic block if current
6287 insn is not the original EXPR we're searching for.
6288
6289 Return value: TRUE (code_motion_path_driver should continue). */
6290 static bool
6291 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6292 {
6293 bool mutexed;
6294 expr_t r;
6295 av_set_iterator avi;
6296 fur_static_params_p sparams = (fur_static_params_p) static_params;
6297
6298 if (CALL_P (insn))
6299 sparams->crosses_call = true;
6300 else if (DEBUG_INSN_P (insn))
6301 return true;
6302
6303 /* If current insn we are looking at cannot be executed together
6304 with original insn, then we can skip it safely.
6305
6306 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6307 INSN = (!p6) r14 = r14 + 1;
6308
6309 Here we can schedule ORIG_OP with lhs = r14, though only
6310 looking at the set of used and set registers of INSN we must
6311 forbid it. So, add set/used in INSN registers to the
6312 untouchable set only if there is an insn in ORIG_OPS that can
6313 affect INSN. */
6314 mutexed = true;
6315 FOR_EACH_EXPR (r, avi, orig_ops)
6316 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6317 {
6318 mutexed = false;
6319 break;
6320 }
6321
6322 /* Mark all registers that do not meet the following condition:
6323 (1) Not set or read on any path from xi to an instance of the
6324 original operation. */
6325 if (!mutexed)
6326 {
6327 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6328 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6329 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6330 }
6331
6332 return true;
6333 }
6334
6335 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6336 struct code_motion_path_driver_info_def move_op_hooks = {
6337 move_op_on_enter,
6338 move_op_orig_expr_found,
6339 move_op_orig_expr_not_found,
6340 move_op_merge_succs,
6341 move_op_after_merge_succs,
6342 move_op_ascend,
6343 move_op_at_first_insn,
6344 SUCCS_NORMAL,
6345 "move_op"
6346 };
6347
6348 /* Hooks and data to perform find_used_regs operations
6349 with code_motion_path_driver. */
6350 struct code_motion_path_driver_info_def fur_hooks = {
6351 fur_on_enter,
6352 fur_orig_expr_found,
6353 fur_orig_expr_not_found,
6354 fur_merge_succs,
6355 NULL, /* fur_after_merge_succs */
6356 NULL, /* fur_ascend */
6357 fur_at_first_insn,
6358 SUCCS_ALL,
6359 "find_used_regs"
6360 };
6361
6362 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6363 code_motion_path_driver is called recursively. Original operation
6364 was found at least on one path that is starting with one of INSN's
6365 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6366 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6367 of either move_op or find_used_regs depending on the caller.
6368
6369 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6370 know for sure at this point. */
6371 static int
6372 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6373 ilist_t path, void *static_params)
6374 {
6375 int res = 0;
6376 succ_iterator succ_i;
6377 rtx succ;
6378 basic_block bb;
6379 int old_index;
6380 unsigned old_succs;
6381
6382 struct cmpd_local_params lparams;
6383 expr_def _x;
6384
6385 lparams.c_expr_local = &_x;
6386 lparams.c_expr_merged = NULL;
6387
6388 /* We need to process only NORMAL succs for move_op, and collect live
6389 registers from ALL branches (including those leading out of the
6390 region) for find_used_regs.
6391
6392 In move_op, there can be a case when insn's bb number has changed
6393 due to created bookkeeping. This happens very rare, as we need to
6394 move expression from the beginning to the end of the same block.
6395 Rescan successors in this case. */
6396
6397 rescan:
6398 bb = BLOCK_FOR_INSN (insn);
6399 old_index = bb->index;
6400 old_succs = EDGE_COUNT (bb->succs);
6401
6402 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6403 {
6404 int b;
6405
6406 lparams.e1 = succ_i.e1;
6407 lparams.e2 = succ_i.e2;
6408
6409 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6410 current region). */
6411 if (succ_i.current_flags == SUCCS_NORMAL)
6412 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6413 static_params);
6414 else
6415 b = 0;
6416
6417 /* Merge c_expres found or unify live register sets from different
6418 successors. */
6419 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6420 static_params);
6421 if (b == 1)
6422 res = b;
6423 else if (b == -1 && res != 1)
6424 res = b;
6425
6426 /* We have simplified the control flow below this point. In this case,
6427 the iterator becomes invalid. We need to try again.
6428 If we have removed the insn itself, it could be only an
6429 unconditional jump. Thus, do not rescan but break immediately --
6430 we have already visited the only successor block. */
6431 if (!BLOCK_FOR_INSN (insn))
6432 {
6433 if (sched_verbose >= 6)
6434 sel_print ("Not doing rescan: already visited the only successor"
6435 " of block %d\n", old_index);
6436 break;
6437 }
6438 if (BLOCK_FOR_INSN (insn)->index != old_index
6439 || EDGE_COUNT (bb->succs) != old_succs)
6440 {
6441 if (sched_verbose >= 6)
6442 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6443 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6444 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6445 goto rescan;
6446 }
6447 }
6448
6449 #ifdef ENABLE_CHECKING
6450 /* Here, RES==1 if original expr was found at least for one of the
6451 successors. After the loop, RES may happen to have zero value
6452 only if at some point the expr searched is present in av_set, but is
6453 not found below. In most cases, this situation is an error.
6454 The exception is when the original operation is blocked by
6455 bookkeeping generated for another fence or for another path in current
6456 move_op. */
6457 gcc_assert (res == 1
6458 || (res == 0
6459 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6460 static_params))
6461 || res == -1);
6462 #endif
6463
6464 /* Merge data, clean up, etc. */
6465 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6466 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6467
6468 return res;
6469 }
6470
6471
6472 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6473 is the pointer to the av set with expressions we were looking for,
6474 PATH_P is the pointer to the traversed path. */
6475 static inline void
6476 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6477 {
6478 ilist_remove (path_p);
6479 av_set_clear (orig_ops_p);
6480 }
6481
6482 /* The driver function that implements move_op or find_used_regs
6483 functionality dependent whether code_motion_path_driver_INFO is set to
6484 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6485 of code (CFG traversal etc) that are shared among both functions. INSN
6486 is the insn we're starting the search from, ORIG_OPS are the expressions
6487 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6488 parameters of the driver, and STATIC_PARAMS are static parameters of
6489 the caller.
6490
6491 Returns whether original instructions were found. Note that top-level
6492 code_motion_path_driver always returns true. */
6493 static int
6494 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6495 cmpd_local_params_p local_params_in,
6496 void *static_params)
6497 {
6498 expr_t expr = NULL;
6499 basic_block bb = BLOCK_FOR_INSN (insn);
6500 insn_t first_insn, bb_tail, before_first;
6501 bool removed_last_insn = false;
6502
6503 if (sched_verbose >= 6)
6504 {
6505 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6506 dump_insn (insn);
6507 sel_print (",");
6508 dump_av_set (orig_ops);
6509 sel_print (")\n");
6510 }
6511
6512 gcc_assert (orig_ops);
6513
6514 /* If no original operations exist below this insn, return immediately. */
6515 if (is_ineligible_successor (insn, path))
6516 {
6517 if (sched_verbose >= 6)
6518 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6519 return false;
6520 }
6521
6522 /* The block can have invalid av set, in which case it was created earlier
6523 during move_op. Return immediately. */
6524 if (sel_bb_head_p (insn))
6525 {
6526 if (! AV_SET_VALID_P (insn))
6527 {
6528 if (sched_verbose >= 6)
6529 sel_print ("Returned from block %d as it had invalid av set\n",
6530 bb->index);
6531 return false;
6532 }
6533
6534 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6535 {
6536 /* We have already found an original operation on this branch, do not
6537 go any further and just return TRUE here. If we don't stop here,
6538 function can have exponential behaviour even on the small code
6539 with many different paths (e.g. with data speculation and
6540 recovery blocks). */
6541 if (sched_verbose >= 6)
6542 sel_print ("Block %d already visited in this traversal\n", bb->index);
6543 if (code_motion_path_driver_info->on_enter)
6544 return code_motion_path_driver_info->on_enter (insn,
6545 local_params_in,
6546 static_params,
6547 true);
6548 }
6549 }
6550
6551 if (code_motion_path_driver_info->on_enter)
6552 code_motion_path_driver_info->on_enter (insn, local_params_in,
6553 static_params, false);
6554 orig_ops = av_set_copy (orig_ops);
6555
6556 /* Filter the orig_ops set. */
6557 if (AV_SET_VALID_P (insn))
6558 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6559
6560 /* If no more original ops, return immediately. */
6561 if (!orig_ops)
6562 {
6563 if (sched_verbose >= 6)
6564 sel_print ("No intersection with av set of block %d\n", bb->index);
6565 return false;
6566 }
6567
6568 /* For non-speculative insns we have to leave only one form of the
6569 original operation, because if we don't, we may end up with
6570 different C_EXPRes and, consequently, with bookkeepings for different
6571 expression forms along the same code motion path. That may lead to
6572 generation of incorrect code. So for each code motion we stick to
6573 the single form of the instruction, except for speculative insns
6574 which we need to keep in different forms with all speculation
6575 types. */
6576 av_set_leave_one_nonspec (&orig_ops);
6577
6578 /* It is not possible that all ORIG_OPS are filtered out. */
6579 gcc_assert (orig_ops);
6580
6581 /* It is enough to place only heads and tails of visited basic blocks into
6582 the PATH. */
6583 ilist_add (&path, insn);
6584 first_insn = insn;
6585 bb_tail = sel_bb_end (bb);
6586
6587 /* Descend the basic block in search of the original expr; this part
6588 corresponds to the part of the original move_op procedure executed
6589 before the recursive call. */
6590 for (;;)
6591 {
6592 /* Look at the insn and decide if it could be an ancestor of currently
6593 scheduling operation. If it is so, then the insn "dest = op" could
6594 either be replaced with "dest = reg", because REG now holds the result
6595 of OP, or just removed, if we've scheduled the insn as a whole.
6596
6597 If this insn doesn't contain currently scheduling OP, then proceed
6598 with searching and look at its successors. Operations we're searching
6599 for could have changed when moving up through this insn via
6600 substituting. In this case, perform unsubstitution on them first.
6601
6602 When traversing the DAG below this insn is finished, insert
6603 bookkeeping code, if the insn is a joint point, and remove
6604 leftovers. */
6605
6606 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6607 if (expr)
6608 {
6609 insn_t last_insn = PREV_INSN (insn);
6610
6611 /* We have found the original operation. */
6612 if (sched_verbose >= 6)
6613 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6614
6615 code_motion_path_driver_info->orig_expr_found
6616 (insn, expr, local_params_in, static_params);
6617
6618 /* Step back, so on the way back we'll start traversing from the
6619 previous insn (or we'll see that it's bb_note and skip that
6620 loop). */
6621 if (insn == first_insn)
6622 {
6623 first_insn = NEXT_INSN (last_insn);
6624 removed_last_insn = sel_bb_end_p (last_insn);
6625 }
6626 insn = last_insn;
6627 break;
6628 }
6629 else
6630 {
6631 /* We haven't found the original expr, continue descending the basic
6632 block. */
6633 if (code_motion_path_driver_info->orig_expr_not_found
6634 (insn, orig_ops, static_params))
6635 {
6636 /* Av set ops could have been changed when moving through this
6637 insn. To find them below it, we have to un-substitute them. */
6638 undo_transformations (&orig_ops, insn);
6639 }
6640 else
6641 {
6642 /* Clean up and return, if the hook tells us to do so. It may
6643 happen if we've encountered the previously created
6644 bookkeeping. */
6645 code_motion_path_driver_cleanup (&orig_ops, &path);
6646 return -1;
6647 }
6648
6649 gcc_assert (orig_ops);
6650 }
6651
6652 /* Stop at insn if we got to the end of BB. */
6653 if (insn == bb_tail)
6654 break;
6655
6656 insn = NEXT_INSN (insn);
6657 }
6658
6659 /* Here INSN either points to the insn before the original insn (may be
6660 bb_note, if original insn was a bb_head) or to the bb_end. */
6661 if (!expr)
6662 {
6663 int res;
6664 rtx last_insn = PREV_INSN (insn);
6665 bool added_to_path;
6666
6667 gcc_assert (insn == sel_bb_end (bb));
6668
6669 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6670 it's already in PATH then). */
6671 if (insn != first_insn)
6672 {
6673 ilist_add (&path, insn);
6674 added_to_path = true;
6675 }
6676 else
6677 added_to_path = false;
6678
6679 /* Process_successors should be able to find at least one
6680 successor for which code_motion_path_driver returns TRUE. */
6681 res = code_motion_process_successors (insn, orig_ops,
6682 path, static_params);
6683
6684 /* Jump in the end of basic block could have been removed or replaced
6685 during code_motion_process_successors, so recompute insn as the
6686 last insn in bb. */
6687 if (NEXT_INSN (last_insn) != insn)
6688 {
6689 insn = sel_bb_end (bb);
6690 first_insn = sel_bb_head (bb);
6691 }
6692
6693 /* Remove bb tail from path. */
6694 if (added_to_path)
6695 ilist_remove (&path);
6696
6697 if (res != 1)
6698 {
6699 /* This is the case when one of the original expr is no longer available
6700 due to bookkeeping created on this branch with the same register.
6701 In the original algorithm, which doesn't have update_data_sets call
6702 on a bookkeeping block, it would simply result in returning
6703 FALSE when we've encountered a previously generated bookkeeping
6704 insn in moveop_orig_expr_not_found. */
6705 code_motion_path_driver_cleanup (&orig_ops, &path);
6706 return res;
6707 }
6708 }
6709
6710 /* Don't need it any more. */
6711 av_set_clear (&orig_ops);
6712
6713 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6714 the beginning of the basic block. */
6715 before_first = PREV_INSN (first_insn);
6716 while (insn != before_first)
6717 {
6718 if (code_motion_path_driver_info->ascend)
6719 code_motion_path_driver_info->ascend (insn, static_params);
6720
6721 insn = PREV_INSN (insn);
6722 }
6723
6724 /* Now we're at the bb head. */
6725 insn = first_insn;
6726 ilist_remove (&path);
6727 local_params_in->removed_last_insn = removed_last_insn;
6728 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6729
6730 /* This should be the very last operation as at bb head we could change
6731 the numbering by creating bookkeeping blocks. */
6732 if (removed_last_insn)
6733 insn = PREV_INSN (insn);
6734 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6735 return true;
6736 }
6737
6738 /* Move up the operations from ORIG_OPS set traversing the dag starting
6739 from INSN. PATH represents the edges traversed so far.
6740 DEST is the register chosen for scheduling the current expr. Insert
6741 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6742 C_EXPR is how it looks like at the given cfg point.
6743 Set *SHOULD_MOVE to indicate whether we have only disconnected
6744 one of the insns found.
6745
6746 Returns whether original instructions were found, which is asserted
6747 to be true in the caller. */
6748 static bool
6749 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6750 rtx dest, expr_t c_expr, bool *should_move)
6751 {
6752 struct moveop_static_params sparams;
6753 struct cmpd_local_params lparams;
6754 int res;
6755
6756 /* Init params for code_motion_path_driver. */
6757 sparams.dest = dest;
6758 sparams.c_expr = c_expr;
6759 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6760 #ifdef ENABLE_CHECKING
6761 sparams.failed_insn = NULL;
6762 #endif
6763 sparams.was_renamed = false;
6764 lparams.e1 = NULL;
6765
6766 /* We haven't visited any blocks yet. */
6767 bitmap_clear (code_motion_visited_blocks);
6768
6769 /* Set appropriate hooks and data. */
6770 code_motion_path_driver_info = &move_op_hooks;
6771 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6772
6773 gcc_assert (res != -1);
6774
6775 if (sparams.was_renamed)
6776 EXPR_WAS_RENAMED (expr_vliw) = true;
6777
6778 *should_move = (sparams.uid == -1);
6779
6780 return res;
6781 }
6782 \f
6783
6784 /* Functions that work with regions. */
6785
6786 /* Current number of seqno used in init_seqno and init_seqno_1. */
6787 static int cur_seqno;
6788
6789 /* A helper for init_seqno. Traverse the region starting from BB and
6790 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6791 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6792 static void
6793 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6794 {
6795 int bbi = BLOCK_TO_BB (bb->index);
6796 insn_t insn, note = bb_note (bb);
6797 insn_t succ_insn;
6798 succ_iterator si;
6799
6800 bitmap_set_bit (visited_bbs, bbi);
6801 if (blocks_to_reschedule)
6802 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6803
6804 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6805 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6806 {
6807 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6808 int succ_bbi = BLOCK_TO_BB (succ->index);
6809
6810 gcc_assert (in_current_region_p (succ));
6811
6812 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6813 {
6814 gcc_assert (succ_bbi > bbi);
6815
6816 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6817 }
6818 else if (blocks_to_reschedule)
6819 bitmap_set_bit (forced_ebb_heads, succ->index);
6820 }
6821
6822 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6823 INSN_SEQNO (insn) = cur_seqno--;
6824 }
6825
6826 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6827 blocks on which we're rescheduling when pipelining, FROM is the block where
6828 traversing region begins (it may not be the head of the region when
6829 pipelining, but the head of the loop instead).
6830
6831 Returns the maximal seqno found. */
6832 static int
6833 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6834 {
6835 sbitmap visited_bbs;
6836 bitmap_iterator bi;
6837 unsigned bbi;
6838
6839 visited_bbs = sbitmap_alloc (current_nr_blocks);
6840
6841 if (blocks_to_reschedule)
6842 {
6843 bitmap_ones (visited_bbs);
6844 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6845 {
6846 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6847 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6848 }
6849 }
6850 else
6851 {
6852 bitmap_clear (visited_bbs);
6853 from = EBB_FIRST_BB (0);
6854 }
6855
6856 cur_seqno = sched_max_luid - 1;
6857 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6858
6859 /* cur_seqno may be positive if the number of instructions is less than
6860 sched_max_luid - 1 (when rescheduling or if some instructions have been
6861 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6862 gcc_assert (cur_seqno >= 0);
6863
6864 sbitmap_free (visited_bbs);
6865 return sched_max_luid - 1;
6866 }
6867
6868 /* Initialize scheduling parameters for current region. */
6869 static void
6870 sel_setup_region_sched_flags (void)
6871 {
6872 enable_schedule_as_rhs_p = 1;
6873 bookkeeping_p = 1;
6874 pipelining_p = (bookkeeping_p
6875 && (flag_sel_sched_pipelining != 0)
6876 && current_loop_nest != NULL
6877 && loop_has_exit_edges (current_loop_nest));
6878 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6879 max_ws = MAX_WS;
6880 }
6881
6882 /* Return true if all basic blocks of current region are empty. */
6883 static bool
6884 current_region_empty_p (void)
6885 {
6886 int i;
6887 for (i = 0; i < current_nr_blocks; i++)
6888 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6889 return false;
6890
6891 return true;
6892 }
6893
6894 /* Prepare and verify loop nest for pipelining. */
6895 static void
6896 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6897 {
6898 current_loop_nest = get_loop_nest_for_rgn (rgn);
6899
6900 if (!current_loop_nest)
6901 return;
6902
6903 /* If this loop has any saved loop preheaders from nested loops,
6904 add these basic blocks to the current region. */
6905 sel_add_loop_preheaders (bbs);
6906
6907 /* Check that we're starting with a valid information. */
6908 gcc_assert (loop_latch_edge (current_loop_nest));
6909 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6910 }
6911
6912 /* Compute instruction priorities for current region. */
6913 static void
6914 sel_compute_priorities (int rgn)
6915 {
6916 sched_rgn_compute_dependencies (rgn);
6917
6918 /* Compute insn priorities in haifa style. Then free haifa style
6919 dependencies that we've calculated for this. */
6920 compute_priorities ();
6921
6922 if (sched_verbose >= 5)
6923 debug_rgn_dependencies (0);
6924
6925 free_rgn_deps ();
6926 }
6927
6928 /* Init scheduling data for RGN. Returns true when this region should not
6929 be scheduled. */
6930 static bool
6931 sel_region_init (int rgn)
6932 {
6933 int i;
6934 bb_vec_t bbs;
6935
6936 rgn_setup_region (rgn);
6937
6938 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6939 do region initialization here so the region can be bundled correctly,
6940 but we'll skip the scheduling in sel_sched_region (). */
6941 if (current_region_empty_p ())
6942 return true;
6943
6944 bbs.create (current_nr_blocks);
6945
6946 for (i = 0; i < current_nr_blocks; i++)
6947 bbs.quick_push (BASIC_BLOCK (BB_TO_BLOCK (i)));
6948
6949 sel_init_bbs (bbs);
6950
6951 if (flag_sel_sched_pipelining)
6952 setup_current_loop_nest (rgn, &bbs);
6953
6954 sel_setup_region_sched_flags ();
6955
6956 /* Initialize luids and dependence analysis which both sel-sched and haifa
6957 need. */
6958 sched_init_luids (bbs);
6959 sched_deps_init (false);
6960
6961 /* Initialize haifa data. */
6962 rgn_setup_sched_infos ();
6963 sel_set_sched_flags ();
6964 haifa_init_h_i_d (bbs);
6965
6966 sel_compute_priorities (rgn);
6967 init_deps_global ();
6968
6969 /* Main initialization. */
6970 sel_setup_sched_infos ();
6971 sel_init_global_and_expr (bbs);
6972
6973 bbs.release ();
6974
6975 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6976
6977 /* Init correct liveness sets on each instruction of a single-block loop.
6978 This is the only situation when we can't update liveness when calling
6979 compute_live for the first insn of the loop. */
6980 if (current_loop_nest)
6981 {
6982 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6983 ? 1
6984 : 0);
6985
6986 if (current_nr_blocks == header + 1)
6987 update_liveness_on_insn
6988 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6989 }
6990
6991 /* Set hooks so that no newly generated insn will go out unnoticed. */
6992 sel_register_cfg_hooks ();
6993
6994 /* !!! We call target.sched.init () for the whole region, but we invoke
6995 targetm.sched.finish () for every ebb. */
6996 if (targetm.sched.init)
6997 /* None of the arguments are actually used in any target. */
6998 targetm.sched.init (sched_dump, sched_verbose, -1);
6999
7000 first_emitted_uid = get_max_uid () + 1;
7001 preheader_removed = false;
7002
7003 /* Reset register allocation ticks array. */
7004 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
7005 reg_rename_this_tick = 0;
7006
7007 bitmap_initialize (forced_ebb_heads, 0);
7008 bitmap_clear (forced_ebb_heads);
7009
7010 setup_nop_vinsn ();
7011 current_copies = BITMAP_ALLOC (NULL);
7012 current_originators = BITMAP_ALLOC (NULL);
7013 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
7014
7015 return false;
7016 }
7017
7018 /* Simplify insns after the scheduling. */
7019 static void
7020 simplify_changed_insns (void)
7021 {
7022 int i;
7023
7024 for (i = 0; i < current_nr_blocks; i++)
7025 {
7026 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
7027 rtx insn;
7028
7029 FOR_BB_INSNS (bb, insn)
7030 if (INSN_P (insn))
7031 {
7032 expr_t expr = INSN_EXPR (insn);
7033
7034 if (EXPR_WAS_SUBSTITUTED (expr))
7035 validate_simplify_insn (insn);
7036 }
7037 }
7038 }
7039
7040 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
7041 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
7042 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
7043 static void
7044 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
7045 {
7046 insn_t head, tail;
7047 basic_block bb1 = bb;
7048 if (sched_verbose >= 2)
7049 sel_print ("Finishing schedule in bbs: ");
7050
7051 do
7052 {
7053 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7054
7055 if (sched_verbose >= 2)
7056 sel_print ("%d; ", bb1->index);
7057 }
7058 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7059
7060 if (sched_verbose >= 2)
7061 sel_print ("\n");
7062
7063 get_ebb_head_tail (bb, bb1, &head, &tail);
7064
7065 current_sched_info->head = head;
7066 current_sched_info->tail = tail;
7067 current_sched_info->prev_head = PREV_INSN (head);
7068 current_sched_info->next_tail = NEXT_INSN (tail);
7069 }
7070
7071 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7072 static void
7073 reset_sched_cycles_in_current_ebb (void)
7074 {
7075 int last_clock = 0;
7076 int haifa_last_clock = -1;
7077 int haifa_clock = 0;
7078 int issued_insns = 0;
7079 insn_t insn;
7080
7081 if (targetm.sched.init)
7082 {
7083 /* None of the arguments are actually used in any target.
7084 NB: We should have md_reset () hook for cases like this. */
7085 targetm.sched.init (sched_dump, sched_verbose, -1);
7086 }
7087
7088 state_reset (curr_state);
7089 advance_state (curr_state);
7090
7091 for (insn = current_sched_info->head;
7092 insn != current_sched_info->next_tail;
7093 insn = NEXT_INSN (insn))
7094 {
7095 int cost, haifa_cost;
7096 int sort_p;
7097 bool asm_p, real_insn, after_stall, all_issued;
7098 int clock;
7099
7100 if (!INSN_P (insn))
7101 continue;
7102
7103 asm_p = false;
7104 real_insn = recog_memoized (insn) >= 0;
7105 clock = INSN_SCHED_CYCLE (insn);
7106
7107 cost = clock - last_clock;
7108
7109 /* Initialize HAIFA_COST. */
7110 if (! real_insn)
7111 {
7112 asm_p = INSN_ASM_P (insn);
7113
7114 if (asm_p)
7115 /* This is asm insn which *had* to be scheduled first
7116 on the cycle. */
7117 haifa_cost = 1;
7118 else
7119 /* This is a use/clobber insn. It should not change
7120 cost. */
7121 haifa_cost = 0;
7122 }
7123 else
7124 haifa_cost = estimate_insn_cost (insn, curr_state);
7125
7126 /* Stall for whatever cycles we've stalled before. */
7127 after_stall = 0;
7128 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7129 {
7130 haifa_cost = cost;
7131 after_stall = 1;
7132 }
7133 all_issued = issued_insns == issue_rate;
7134 if (haifa_cost == 0 && all_issued)
7135 haifa_cost = 1;
7136 if (haifa_cost > 0)
7137 {
7138 int i = 0;
7139
7140 while (haifa_cost--)
7141 {
7142 advance_state (curr_state);
7143 issued_insns = 0;
7144 i++;
7145
7146 if (sched_verbose >= 2)
7147 {
7148 sel_print ("advance_state (state_transition)\n");
7149 debug_state (curr_state);
7150 }
7151
7152 /* The DFA may report that e.g. insn requires 2 cycles to be
7153 issued, but on the next cycle it says that insn is ready
7154 to go. Check this here. */
7155 if (!after_stall
7156 && real_insn
7157 && haifa_cost > 0
7158 && estimate_insn_cost (insn, curr_state) == 0)
7159 break;
7160
7161 /* When the data dependency stall is longer than the DFA stall,
7162 and when we have issued exactly issue_rate insns and stalled,
7163 it could be that after this longer stall the insn will again
7164 become unavailable to the DFA restrictions. Looks strange
7165 but happens e.g. on x86-64. So recheck DFA on the last
7166 iteration. */
7167 if ((after_stall || all_issued)
7168 && real_insn
7169 && haifa_cost == 0)
7170 haifa_cost = estimate_insn_cost (insn, curr_state);
7171 }
7172
7173 haifa_clock += i;
7174 if (sched_verbose >= 2)
7175 sel_print ("haifa clock: %d\n", haifa_clock);
7176 }
7177 else
7178 gcc_assert (haifa_cost == 0);
7179
7180 if (sched_verbose >= 2)
7181 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7182
7183 if (targetm.sched.dfa_new_cycle)
7184 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7185 haifa_last_clock, haifa_clock,
7186 &sort_p))
7187 {
7188 advance_state (curr_state);
7189 issued_insns = 0;
7190 haifa_clock++;
7191 if (sched_verbose >= 2)
7192 {
7193 sel_print ("advance_state (dfa_new_cycle)\n");
7194 debug_state (curr_state);
7195 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7196 }
7197 }
7198
7199 if (real_insn)
7200 {
7201 static state_t temp = NULL;
7202
7203 if (!temp)
7204 temp = xmalloc (dfa_state_size);
7205 memcpy (temp, curr_state, dfa_state_size);
7206
7207 cost = state_transition (curr_state, insn);
7208 if (memcmp (temp, curr_state, dfa_state_size))
7209 issued_insns++;
7210
7211 if (sched_verbose >= 2)
7212 {
7213 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7214 haifa_clock + 1);
7215 debug_state (curr_state);
7216 }
7217 gcc_assert (cost < 0);
7218 }
7219
7220 if (targetm.sched.variable_issue)
7221 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7222
7223 INSN_SCHED_CYCLE (insn) = haifa_clock;
7224
7225 last_clock = clock;
7226 haifa_last_clock = haifa_clock;
7227 }
7228 }
7229
7230 /* Put TImode markers on insns starting a new issue group. */
7231 static void
7232 put_TImodes (void)
7233 {
7234 int last_clock = -1;
7235 insn_t insn;
7236
7237 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7238 insn = NEXT_INSN (insn))
7239 {
7240 int cost, clock;
7241
7242 if (!INSN_P (insn))
7243 continue;
7244
7245 clock = INSN_SCHED_CYCLE (insn);
7246 cost = (last_clock == -1) ? 1 : clock - last_clock;
7247
7248 gcc_assert (cost >= 0);
7249
7250 if (issue_rate > 1
7251 && GET_CODE (PATTERN (insn)) != USE
7252 && GET_CODE (PATTERN (insn)) != CLOBBER)
7253 {
7254 if (reload_completed && cost > 0)
7255 PUT_MODE (insn, TImode);
7256
7257 last_clock = clock;
7258 }
7259
7260 if (sched_verbose >= 2)
7261 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7262 }
7263 }
7264
7265 /* Perform MD_FINISH on EBBs comprising current region. When
7266 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7267 to produce correct sched cycles on insns. */
7268 static void
7269 sel_region_target_finish (bool reset_sched_cycles_p)
7270 {
7271 int i;
7272 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7273
7274 for (i = 0; i < current_nr_blocks; i++)
7275 {
7276 if (bitmap_bit_p (scheduled_blocks, i))
7277 continue;
7278
7279 /* While pipelining outer loops, skip bundling for loop
7280 preheaders. Those will be rescheduled in the outer loop. */
7281 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7282 continue;
7283
7284 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7285
7286 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7287 continue;
7288
7289 if (reset_sched_cycles_p)
7290 reset_sched_cycles_in_current_ebb ();
7291
7292 if (targetm.sched.init)
7293 targetm.sched.init (sched_dump, sched_verbose, -1);
7294
7295 put_TImodes ();
7296
7297 if (targetm.sched.finish)
7298 {
7299 targetm.sched.finish (sched_dump, sched_verbose);
7300
7301 /* Extend luids so that insns generated by the target will
7302 get zero luid. */
7303 sched_extend_luids ();
7304 }
7305 }
7306
7307 BITMAP_FREE (scheduled_blocks);
7308 }
7309
7310 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7311 is true, make an additional pass emulating scheduler to get correct insn
7312 cycles for md_finish calls. */
7313 static void
7314 sel_region_finish (bool reset_sched_cycles_p)
7315 {
7316 simplify_changed_insns ();
7317 sched_finish_ready_list ();
7318 free_nop_pool ();
7319
7320 /* Free the vectors. */
7321 vec_av_set.release ();
7322 BITMAP_FREE (current_copies);
7323 BITMAP_FREE (current_originators);
7324 BITMAP_FREE (code_motion_visited_blocks);
7325 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7326 vinsn_vec_free (vec_target_unavailable_vinsns);
7327
7328 /* If LV_SET of the region head should be updated, do it now because
7329 there will be no other chance. */
7330 {
7331 succ_iterator si;
7332 insn_t insn;
7333
7334 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7335 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7336 {
7337 basic_block bb = BLOCK_FOR_INSN (insn);
7338
7339 if (!BB_LV_SET_VALID_P (bb))
7340 compute_live (insn);
7341 }
7342 }
7343
7344 /* Emulate the Haifa scheduler for bundling. */
7345 if (reload_completed)
7346 sel_region_target_finish (reset_sched_cycles_p);
7347
7348 sel_finish_global_and_expr ();
7349
7350 bitmap_clear (forced_ebb_heads);
7351
7352 free_nop_vinsn ();
7353
7354 finish_deps_global ();
7355 sched_finish_luids ();
7356 h_d_i_d.release ();
7357
7358 sel_finish_bbs ();
7359 BITMAP_FREE (blocks_to_reschedule);
7360
7361 sel_unregister_cfg_hooks ();
7362
7363 max_issue_size = 0;
7364 }
7365 \f
7366
7367 /* Functions that implement the scheduler driver. */
7368
7369 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7370 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7371 of insns scheduled -- these would be postprocessed later. */
7372 static void
7373 schedule_on_fences (flist_t fences, int max_seqno,
7374 ilist_t **scheduled_insns_tailpp)
7375 {
7376 flist_t old_fences = fences;
7377
7378 if (sched_verbose >= 1)
7379 {
7380 sel_print ("\nScheduling on fences: ");
7381 dump_flist (fences);
7382 sel_print ("\n");
7383 }
7384
7385 scheduled_something_on_previous_fence = false;
7386 for (; fences; fences = FLIST_NEXT (fences))
7387 {
7388 fence_t fence = NULL;
7389 int seqno = 0;
7390 flist_t fences2;
7391 bool first_p = true;
7392
7393 /* Choose the next fence group to schedule.
7394 The fact that insn can be scheduled only once
7395 on the cycle is guaranteed by two properties:
7396 1. seqnos of parallel groups decrease with each iteration.
7397 2. If is_ineligible_successor () sees the larger seqno, it
7398 checks if candidate insn is_in_current_fence_p (). */
7399 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7400 {
7401 fence_t f = FLIST_FENCE (fences2);
7402
7403 if (!FENCE_PROCESSED_P (f))
7404 {
7405 int i = INSN_SEQNO (FENCE_INSN (f));
7406
7407 if (first_p || i > seqno)
7408 {
7409 seqno = i;
7410 fence = f;
7411 first_p = false;
7412 }
7413 else
7414 /* ??? Seqnos of different groups should be different. */
7415 gcc_assert (1 || i != seqno);
7416 }
7417 }
7418
7419 gcc_assert (fence);
7420
7421 /* As FENCE is nonnull, SEQNO is initialized. */
7422 seqno -= max_seqno + 1;
7423 fill_insns (fence, seqno, scheduled_insns_tailpp);
7424 FENCE_PROCESSED_P (fence) = true;
7425 }
7426
7427 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7428 don't need to keep bookkeeping-invalidated and target-unavailable
7429 vinsns any more. */
7430 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7431 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7432 }
7433
7434 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7435 static void
7436 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7437 {
7438 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7439
7440 /* The first element is already processed. */
7441 while ((fences = FLIST_NEXT (fences)))
7442 {
7443 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7444
7445 if (*min_seqno > seqno)
7446 *min_seqno = seqno;
7447 else if (*max_seqno < seqno)
7448 *max_seqno = seqno;
7449 }
7450 }
7451
7452 /* Calculate new fences from FENCES. */
7453 static flist_t
7454 calculate_new_fences (flist_t fences, int orig_max_seqno)
7455 {
7456 flist_t old_fences = fences;
7457 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7458
7459 flist_tail_init (new_fences);
7460 for (; fences; fences = FLIST_NEXT (fences))
7461 {
7462 fence_t fence = FLIST_FENCE (fences);
7463 insn_t insn;
7464
7465 if (!FENCE_BNDS (fence))
7466 {
7467 /* This fence doesn't have any successors. */
7468 if (!FENCE_SCHEDULED_P (fence))
7469 {
7470 /* Nothing was scheduled on this fence. */
7471 int seqno;
7472
7473 insn = FENCE_INSN (fence);
7474 seqno = INSN_SEQNO (insn);
7475 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7476
7477 if (sched_verbose >= 1)
7478 sel_print ("Fence %d[%d] has not changed\n",
7479 INSN_UID (insn),
7480 BLOCK_NUM (insn));
7481 move_fence_to_fences (fences, new_fences);
7482 }
7483 }
7484 else
7485 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7486 }
7487
7488 flist_clear (&old_fences);
7489 return FLIST_TAIL_HEAD (new_fences);
7490 }
7491
7492 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7493 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7494 the highest seqno used in a region. Return the updated highest seqno. */
7495 static int
7496 update_seqnos_and_stage (int min_seqno, int max_seqno,
7497 int highest_seqno_in_use,
7498 ilist_t *pscheduled_insns)
7499 {
7500 int new_hs;
7501 ilist_iterator ii;
7502 insn_t insn;
7503
7504 /* Actually, new_hs is the seqno of the instruction, that was
7505 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7506 if (*pscheduled_insns)
7507 {
7508 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7509 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7510 gcc_assert (new_hs > highest_seqno_in_use);
7511 }
7512 else
7513 new_hs = highest_seqno_in_use;
7514
7515 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7516 {
7517 gcc_assert (INSN_SEQNO (insn) < 0);
7518 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7519 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7520
7521 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7522 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7523 require > 1GB of memory e.g. on limit-fnargs.c. */
7524 if (! pipelining_p)
7525 free_data_for_scheduled_insn (insn);
7526 }
7527
7528 ilist_clear (pscheduled_insns);
7529 global_level++;
7530
7531 return new_hs;
7532 }
7533
7534 /* The main driver for scheduling a region. This function is responsible
7535 for correct propagation of fences (i.e. scheduling points) and creating
7536 a group of parallel insns at each of them. It also supports
7537 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7538 of scheduling. */
7539 static void
7540 sel_sched_region_2 (int orig_max_seqno)
7541 {
7542 int highest_seqno_in_use = orig_max_seqno;
7543
7544 stat_bookkeeping_copies = 0;
7545 stat_insns_needed_bookkeeping = 0;
7546 stat_renamed_scheduled = 0;
7547 stat_substitutions_total = 0;
7548 num_insns_scheduled = 0;
7549
7550 while (fences)
7551 {
7552 int min_seqno, max_seqno;
7553 ilist_t scheduled_insns = NULL;
7554 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7555
7556 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7557 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7558 fences = calculate_new_fences (fences, orig_max_seqno);
7559 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7560 highest_seqno_in_use,
7561 &scheduled_insns);
7562 }
7563
7564 if (sched_verbose >= 1)
7565 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7566 "bookkeeping, %d insns renamed, %d insns substituted\n",
7567 stat_bookkeeping_copies,
7568 stat_insns_needed_bookkeeping,
7569 stat_renamed_scheduled,
7570 stat_substitutions_total);
7571 }
7572
7573 /* Schedule a region. When pipelining, search for possibly never scheduled
7574 bookkeeping code and schedule it. Reschedule pipelined code without
7575 pipelining after. */
7576 static void
7577 sel_sched_region_1 (void)
7578 {
7579 int orig_max_seqno;
7580
7581 /* Remove empty blocks that might be in the region from the beginning. */
7582 purge_empty_blocks ();
7583
7584 orig_max_seqno = init_seqno (NULL, NULL);
7585 gcc_assert (orig_max_seqno >= 1);
7586
7587 /* When pipelining outer loops, create fences on the loop header,
7588 not preheader. */
7589 fences = NULL;
7590 if (current_loop_nest)
7591 init_fences (BB_END (EBB_FIRST_BB (0)));
7592 else
7593 init_fences (bb_note (EBB_FIRST_BB (0)));
7594 global_level = 1;
7595
7596 sel_sched_region_2 (orig_max_seqno);
7597
7598 gcc_assert (fences == NULL);
7599
7600 if (pipelining_p)
7601 {
7602 int i;
7603 basic_block bb;
7604 struct flist_tail_def _new_fences;
7605 flist_tail_t new_fences = &_new_fences;
7606 bool do_p = true;
7607
7608 pipelining_p = false;
7609 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7610 bookkeeping_p = false;
7611 enable_schedule_as_rhs_p = false;
7612
7613 /* Schedule newly created code, that has not been scheduled yet. */
7614 do_p = true;
7615
7616 while (do_p)
7617 {
7618 do_p = false;
7619
7620 for (i = 0; i < current_nr_blocks; i++)
7621 {
7622 basic_block bb = EBB_FIRST_BB (i);
7623
7624 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7625 {
7626 if (! bb_ends_ebb_p (bb))
7627 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7628 if (sel_bb_empty_p (bb))
7629 {
7630 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7631 continue;
7632 }
7633 clear_outdated_rtx_info (bb);
7634 if (sel_insn_is_speculation_check (BB_END (bb))
7635 && JUMP_P (BB_END (bb)))
7636 bitmap_set_bit (blocks_to_reschedule,
7637 BRANCH_EDGE (bb)->dest->index);
7638 }
7639 else if (! sel_bb_empty_p (bb)
7640 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7641 bitmap_set_bit (blocks_to_reschedule, bb->index);
7642 }
7643
7644 for (i = 0; i < current_nr_blocks; i++)
7645 {
7646 bb = EBB_FIRST_BB (i);
7647
7648 /* While pipelining outer loops, skip bundling for loop
7649 preheaders. Those will be rescheduled in the outer
7650 loop. */
7651 if (sel_is_loop_preheader_p (bb))
7652 {
7653 clear_outdated_rtx_info (bb);
7654 continue;
7655 }
7656
7657 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7658 {
7659 flist_tail_init (new_fences);
7660
7661 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7662
7663 /* Mark BB as head of the new ebb. */
7664 bitmap_set_bit (forced_ebb_heads, bb->index);
7665
7666 gcc_assert (fences == NULL);
7667
7668 init_fences (bb_note (bb));
7669
7670 sel_sched_region_2 (orig_max_seqno);
7671
7672 do_p = true;
7673 break;
7674 }
7675 }
7676 }
7677 }
7678 }
7679
7680 /* Schedule the RGN region. */
7681 void
7682 sel_sched_region (int rgn)
7683 {
7684 bool schedule_p;
7685 bool reset_sched_cycles_p;
7686
7687 if (sel_region_init (rgn))
7688 return;
7689
7690 if (sched_verbose >= 1)
7691 sel_print ("Scheduling region %d\n", rgn);
7692
7693 schedule_p = (!sched_is_disabled_for_current_region_p ()
7694 && dbg_cnt (sel_sched_region_cnt));
7695 reset_sched_cycles_p = pipelining_p;
7696 if (schedule_p)
7697 sel_sched_region_1 ();
7698 else
7699 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7700 reset_sched_cycles_p = true;
7701
7702 sel_region_finish (reset_sched_cycles_p);
7703 }
7704
7705 /* Perform global init for the scheduler. */
7706 static void
7707 sel_global_init (void)
7708 {
7709 calculate_dominance_info (CDI_DOMINATORS);
7710 alloc_sched_pools ();
7711
7712 /* Setup the infos for sched_init. */
7713 sel_setup_sched_infos ();
7714 setup_sched_dump ();
7715
7716 sched_rgn_init (false);
7717 sched_init ();
7718
7719 sched_init_bbs ();
7720 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7721 after_recovery = 0;
7722 can_issue_more = issue_rate;
7723
7724 sched_extend_target ();
7725 sched_deps_init (true);
7726 setup_nop_and_exit_insns ();
7727 sel_extend_global_bb_info ();
7728 init_lv_sets ();
7729 init_hard_regs_data ();
7730 }
7731
7732 /* Free the global data of the scheduler. */
7733 static void
7734 sel_global_finish (void)
7735 {
7736 free_bb_note_pool ();
7737 free_lv_sets ();
7738 sel_finish_global_bb_info ();
7739
7740 free_regset_pool ();
7741 free_nop_and_exit_insns ();
7742
7743 sched_rgn_finish ();
7744 sched_deps_finish ();
7745 sched_finish ();
7746
7747 if (current_loops)
7748 sel_finish_pipelining ();
7749
7750 free_sched_pools ();
7751 free_dominance_info (CDI_DOMINATORS);
7752 }
7753
7754 /* Return true when we need to skip selective scheduling. Used for debugging. */
7755 bool
7756 maybe_skip_selective_scheduling (void)
7757 {
7758 return ! dbg_cnt (sel_sched_cnt);
7759 }
7760
7761 /* The entry point. */
7762 void
7763 run_selective_scheduling (void)
7764 {
7765 int rgn;
7766
7767 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7768 return;
7769
7770 sel_global_init ();
7771
7772 for (rgn = 0; rgn < nr_regions; rgn++)
7773 sel_sched_region (rgn);
7774
7775 sel_global_finish ();
7776 }
7777
7778 #endif