In gcc/testsuite/: 2010-12-19 Nicola Pero <nicola.pero@meta-innovation.com>
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615 edge e;
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
620 e = find_fallthru_edge_from (bb);
621 if (e)
622 bb = e->dest;
623 else
624 return false;
625
626 while (sel_bb_empty_p (bb))
627 bb = bb->next_bb;
628
629 return bb == BLOCK_FOR_INSN (succ);
630 }
631
632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
633 When a successor will continue a ebb, transfer all parameters of a fence
634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
635 of scheduling helping to distinguish between the old and the new code. */
636 static void
637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 int orig_max_seqno)
639 {
640 bool was_here_p = false;
641 insn_t insn = NULL_RTX;
642 insn_t succ;
643 succ_iterator si;
644 ilist_iterator ii;
645 fence_t fence = FLIST_FENCE (old_fences);
646 basic_block bb;
647
648 /* Get the only element of FENCE_BNDS (fence). */
649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650 {
651 gcc_assert (!was_here_p);
652 was_here_p = true;
653 }
654 gcc_assert (was_here_p && insn != NULL_RTX);
655
656 /* When in the "middle" of the block, just move this fence
657 to the new list. */
658 bb = BLOCK_FOR_INSN (insn);
659 if (! sel_bb_end_p (insn)
660 || (single_succ_p (bb)
661 && single_pred_p (single_succ (bb))))
662 {
663 insn_t succ;
664
665 succ = (sel_bb_end_p (insn)
666 ? sel_bb_head (single_succ (bb))
667 : NEXT_INSN (insn));
668
669 if (INSN_SEQNO (succ) > 0
670 && INSN_SEQNO (succ) <= orig_max_seqno
671 && INSN_SCHED_TIMES (succ) <= 0)
672 {
673 FENCE_INSN (fence) = succ;
674 move_fence_to_fences (old_fences, new_fences);
675
676 if (sched_verbose >= 1)
677 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679 }
680 return;
681 }
682
683 /* Otherwise copy fence's structures to (possibly) multiple successors. */
684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685 {
686 int seqno = INSN_SEQNO (succ);
687
688 if (0 < seqno && seqno <= orig_max_seqno
689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690 {
691 bool b = (in_same_ebb_p (insn, succ)
692 || in_fallthru_bb_p (insn, succ));
693
694 if (sched_verbose >= 1)
695 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696 INSN_UID (insn), INSN_UID (succ),
697 BLOCK_NUM (succ), b ? "continue" : "reset");
698
699 if (b)
700 add_dirty_fence_to_fences (new_fences, succ, fence);
701 else
702 {
703 /* Mark block of the SUCC as head of the new ebb. */
704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705 add_clean_fence_to_fences (new_fences, succ, fence);
706 }
707 }
708 }
709 }
710 \f
711
712 /* Functions to support substitution. */
713
714 /* Returns whether INSN with dependence status DS is eligible for
715 substitution, i.e. it's a copy operation x := y, and RHS that is
716 moved up through this insn should be substituted. */
717 static bool
718 can_substitute_through_p (insn_t insn, ds_t ds)
719 {
720 /* We can substitute only true dependencies. */
721 if ((ds & DEP_OUTPUT)
722 || (ds & DEP_ANTI)
723 || ! INSN_RHS (insn)
724 || ! INSN_LHS (insn))
725 return false;
726
727 /* Now we just need to make sure the INSN_RHS consists of only one
728 simple REG rtx. */
729 if (REG_P (INSN_LHS (insn))
730 && REG_P (INSN_RHS (insn)))
731 return true;
732 return false;
733 }
734
735 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
736 source (if INSN is eligible for substitution). Returns TRUE if
737 substitution was actually performed, FALSE otherwise. Substitution might
738 be not performed because it's either EXPR' vinsn doesn't contain INSN's
739 destination or the resulting insn is invalid for the target machine.
740 When UNDO is true, perform unsubstitution instead (the difference is in
741 the part of rtx on which validate_replace_rtx is called). */
742 static bool
743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744 {
745 rtx *where;
746 bool new_insn_valid;
747 vinsn_t *vi = &EXPR_VINSN (expr);
748 bool has_rhs = VINSN_RHS (*vi) != NULL;
749 rtx old, new_rtx;
750
751 /* Do not try to replace in SET_DEST. Although we'll choose new
752 register for the RHS, we don't want to change RHS' original reg.
753 If the insn is not SET, we may still be able to substitute something
754 in it, and if we're here (don't have deps), it doesn't write INSN's
755 dest. */
756 where = (has_rhs
757 ? &VINSN_RHS (*vi)
758 : &PATTERN (VINSN_INSN_RTX (*vi)));
759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760
761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
762 if (rtx_ok_for_substitution_p (old, *where))
763 {
764 rtx new_insn;
765 rtx *where_replace;
766
767 /* We should copy these rtxes before substitution. */
768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770
771 /* Where we'll replace.
772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 used instead of SET_SRC. */
774 where_replace = (has_rhs
775 ? &SET_SRC (PATTERN (new_insn))
776 : &PATTERN (new_insn));
777
778 new_insn_valid
779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
780 new_insn);
781
782 /* ??? Actually, constrain_operands result depends upon choice of
783 destination register. E.g. if we allow single register to be an rhs,
784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
785 in invalid insn dx=dx, so we'll loose this rhs here.
786 Just can't come up with significant testcase for this, so just
787 leaving it for now. */
788 if (new_insn_valid)
789 {
790 change_vinsn_in_expr (expr,
791 create_vinsn_from_insn_rtx (new_insn, false));
792
793 /* Do not allow clobbering the address register of speculative
794 insns. */
795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
796 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
797 expr_dest_regno (expr)))
798 EXPR_TARGET_AVAILABLE (expr) = false;
799
800 return true;
801 }
802 else
803 return false;
804 }
805 else
806 return false;
807 }
808
809 /* Helper function for count_occurences_equiv. */
810 static int
811 count_occurrences_1 (rtx *cur_rtx, void *arg)
812 {
813 rtx_search_arg_p p = (rtx_search_arg_p) arg;
814
815 /* The last param FOR_GCSE is true, because otherwise it performs excessive
816 substitutions like
817 r8 = r33
818 r16 = r33
819 for the last insn it presumes r33 equivalent to r8, so it changes it to
820 r33. Actually, there's no change, but it spoils debugging. */
821 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
822 {
823 /* Bail out if we occupy more than one register. */
824 if (REG_P (*cur_rtx)
825 && HARD_REGISTER_P (*cur_rtx)
826 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
827 {
828 p->n = 0;
829 return 1;
830 }
831
832 p->n++;
833
834 /* Do not traverse subexprs. */
835 return -1;
836 }
837
838 if (GET_CODE (*cur_rtx) == SUBREG
839 && REG_P (p->x)
840 && (!REG_P (SUBREG_REG (*cur_rtx))
841 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
842 {
843 /* ??? Do not support substituting regs inside subregs. In that case,
844 simplify_subreg will be called by validate_replace_rtx, and
845 unsubstitution will fail later. */
846 p->n = 0;
847 return 1;
848 }
849
850 /* Continue search. */
851 return 0;
852 }
853
854 /* Return the number of places WHAT appears within WHERE.
855 Bail out when we found a reference occupying several hard registers. */
856 static int
857 count_occurrences_equiv (rtx what, rtx where)
858 {
859 struct rtx_search_arg arg;
860
861 arg.x = what;
862 arg.n = 0;
863
864 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
865
866 return arg.n;
867 }
868
869 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
870 static bool
871 rtx_ok_for_substitution_p (rtx what, rtx where)
872 {
873 return (count_occurrences_equiv (what, where) > 0);
874 }
875 \f
876
877 /* Functions to support register renaming. */
878
879 /* Substitute VI's set source with REGNO. Returns newly created pattern
880 that has REGNO as its source. */
881 static rtx
882 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
883 {
884 rtx lhs_rtx;
885 rtx pattern;
886 rtx insn_rtx;
887
888 lhs_rtx = copy_rtx (VINSN_LHS (vi));
889
890 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
891 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
892
893 return insn_rtx;
894 }
895
896 /* Returns whether INSN's src can be replaced with register number
897 NEW_SRC_REG. E.g. the following insn is valid for i386:
898
899 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
900 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
901 (reg:SI 0 ax [orig:770 c1 ] [770]))
902 (const_int 288 [0x120])) [0 str S1 A8])
903 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
904 (nil))
905
906 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
907 because of operand constraints:
908
909 (define_insn "*movqi_1"
910 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
911 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
912 )]
913
914 So do constrain_operands here, before choosing NEW_SRC_REG as best
915 reg for rhs. */
916
917 static bool
918 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
919 {
920 vinsn_t vi = INSN_VINSN (insn);
921 enum machine_mode mode;
922 rtx dst_loc;
923 bool res;
924
925 gcc_assert (VINSN_SEPARABLE_P (vi));
926
927 get_dest_and_mode (insn, &dst_loc, &mode);
928 gcc_assert (mode == GET_MODE (new_src_reg));
929
930 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
931 return true;
932
933 /* See whether SET_SRC can be replaced with this register. */
934 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
935 res = verify_changes (0);
936 cancel_changes (0);
937
938 return res;
939 }
940
941 /* Returns whether INSN still be valid after replacing it's DEST with
942 register NEW_REG. */
943 static bool
944 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
945 {
946 vinsn_t vi = INSN_VINSN (insn);
947 bool res;
948
949 /* We should deal here only with separable insns. */
950 gcc_assert (VINSN_SEPARABLE_P (vi));
951 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
952
953 /* See whether SET_DEST can be replaced with this register. */
954 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
955 res = verify_changes (0);
956 cancel_changes (0);
957
958 return res;
959 }
960
961 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
962 static rtx
963 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
964 {
965 rtx rhs_rtx;
966 rtx pattern;
967 rtx insn_rtx;
968
969 rhs_rtx = copy_rtx (VINSN_RHS (vi));
970
971 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
972 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
973
974 return insn_rtx;
975 }
976
977 /* Substitute lhs in the given expression EXPR for the register with number
978 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
979 static void
980 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
981 {
982 rtx insn_rtx;
983 vinsn_t vinsn;
984
985 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
986 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
987
988 change_vinsn_in_expr (expr, vinsn);
989 EXPR_WAS_RENAMED (expr) = 1;
990 EXPR_TARGET_AVAILABLE (expr) = 1;
991 }
992
993 /* Returns whether VI writes either one of the USED_REGS registers or,
994 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
995 static bool
996 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
997 HARD_REG_SET unavailable_hard_regs)
998 {
999 unsigned regno;
1000 reg_set_iterator rsi;
1001
1002 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1003 {
1004 if (REGNO_REG_SET_P (used_regs, regno))
1005 return true;
1006 if (HARD_REGISTER_NUM_P (regno)
1007 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1008 return true;
1009 }
1010
1011 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1012 {
1013 if (REGNO_REG_SET_P (used_regs, regno))
1014 return true;
1015 if (HARD_REGISTER_NUM_P (regno)
1016 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1017 return true;
1018 }
1019
1020 return false;
1021 }
1022
1023 /* Returns register class of the output register in INSN.
1024 Returns NO_REGS for call insns because some targets have constraints on
1025 destination register of a call insn.
1026
1027 Code adopted from regrename.c::build_def_use. */
1028 static enum reg_class
1029 get_reg_class (rtx insn)
1030 {
1031 int alt, i, n_ops;
1032
1033 extract_insn (insn);
1034 if (! constrain_operands (1))
1035 fatal_insn_not_found (insn);
1036 preprocess_constraints ();
1037 alt = which_alternative;
1038 n_ops = recog_data.n_operands;
1039
1040 for (i = 0; i < n_ops; ++i)
1041 {
1042 int matches = recog_op_alt[i][alt].matches;
1043 if (matches >= 0)
1044 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045 }
1046
1047 if (asm_noperands (PATTERN (insn)) > 0)
1048 {
1049 for (i = 0; i < n_ops; i++)
1050 if (recog_data.operand_type[i] == OP_OUT)
1051 {
1052 rtx *loc = recog_data.operand_loc[i];
1053 rtx op = *loc;
1054 enum reg_class cl = recog_op_alt[i][alt].cl;
1055
1056 if (REG_P (op)
1057 && REGNO (op) == ORIGINAL_REGNO (op))
1058 continue;
1059
1060 return cl;
1061 }
1062 }
1063 else if (!CALL_P (insn))
1064 {
1065 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1066 {
1067 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1068 enum reg_class cl = recog_op_alt[opn][alt].cl;
1069
1070 if (recog_data.operand_type[opn] == OP_OUT ||
1071 recog_data.operand_type[opn] == OP_INOUT)
1072 return cl;
1073 }
1074 }
1075
1076 /* Insns like
1077 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1078 may result in returning NO_REGS, cause flags is written implicitly through
1079 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1080 return NO_REGS;
1081 }
1082
1083 #ifdef HARD_REGNO_RENAME_OK
1084 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1085 static void
1086 init_hard_regno_rename (int regno)
1087 {
1088 int cur_reg;
1089
1090 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1091
1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1093 {
1094 /* We are not interested in renaming in other regs. */
1095 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1096 continue;
1097
1098 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1099 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100 }
1101 }
1102 #endif
1103
1104 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1105 data first. */
1106 static inline bool
1107 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1108 {
1109 #ifdef HARD_REGNO_RENAME_OK
1110 /* Check whether this is all calculated. */
1111 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113
1114 init_hard_regno_rename (from);
1115
1116 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1117 #else
1118 return true;
1119 #endif
1120 }
1121
1122 /* Calculate set of registers that are capable of holding MODE. */
1123 static void
1124 init_regs_for_mode (enum machine_mode mode)
1125 {
1126 int cur_reg;
1127
1128 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1130
1131 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1132 {
1133 int nregs = hard_regno_nregs[cur_reg][mode];
1134 int i;
1135
1136 for (i = nregs - 1; i >= 0; --i)
1137 if (fixed_regs[cur_reg + i]
1138 || global_regs[cur_reg + i]
1139 /* Can't use regs which aren't saved by
1140 the prologue. */
1141 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1142 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1143 it affects aliasing globally and invalidates all AV sets. */
1144 || get_reg_base_value (cur_reg + i)
1145 #ifdef LEAF_REGISTERS
1146 /* We can't use a non-leaf register if we're in a
1147 leaf function. */
1148 || (current_function_is_leaf
1149 && !LEAF_REGISTERS[cur_reg + i])
1150 #endif
1151 )
1152 break;
1153
1154 if (i >= 0)
1155 continue;
1156
1157 /* See whether it accepts all modes that occur in
1158 original insns. */
1159 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1160 continue;
1161
1162 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1164 cur_reg);
1165
1166 /* If the CUR_REG passed all the checks above,
1167 then it's ok. */
1168 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1169 }
1170
1171 sel_hrd.regs_for_mode_ok[mode] = true;
1172 }
1173
1174 /* Init all register sets gathered in HRD. */
1175 static void
1176 init_hard_regs_data (void)
1177 {
1178 int cur_reg = 0;
1179 int cur_mode = 0;
1180
1181 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1182 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1183 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1184 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1185
1186 /* Initialize registers that are valid based on mode when this is
1187 really needed. */
1188 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1189 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1190
1191 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1192 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1193 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1194
1195 #ifdef STACK_REGS
1196 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1197
1198 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1199 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1200 #endif
1201 }
1202
1203 /* Mark hardware regs in REG_RENAME_P that are not suitable
1204 for renaming rhs in INSN due to hardware restrictions (register class,
1205 modes compatibility etc). This doesn't affect original insn's dest reg,
1206 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1207 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1208 Registers that are in used_regs are always marked in
1209 unavailable_hard_regs as well. */
1210
1211 static void
1212 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1213 regset used_regs ATTRIBUTE_UNUSED)
1214 {
1215 enum machine_mode mode;
1216 enum reg_class cl = NO_REGS;
1217 rtx orig_dest;
1218 unsigned cur_reg, regno;
1219 hard_reg_set_iterator hrsi;
1220
1221 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1222 gcc_assert (reg_rename_p);
1223
1224 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1225
1226 /* We have decided not to rename 'mem = something;' insns, as 'something'
1227 is usually a register. */
1228 if (!REG_P (orig_dest))
1229 return;
1230
1231 regno = REGNO (orig_dest);
1232
1233 /* If before reload, don't try to work with pseudos. */
1234 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1235 return;
1236
1237 if (reload_completed)
1238 cl = get_reg_class (def->orig_insn);
1239
1240 /* Stop if the original register is one of the fixed_regs, global_regs or
1241 frame pointer, or we could not discover its class. */
1242 if (fixed_regs[regno]
1243 || global_regs[regno]
1244 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1245 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1246 #else
1247 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1248 #endif
1249 || (reload_completed && cl == NO_REGS))
1250 {
1251 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1252
1253 /* Give a chance for original register, if it isn't in used_regs. */
1254 if (!def->crosses_call)
1255 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1256
1257 return;
1258 }
1259
1260 /* If something allocated on stack in this function, mark frame pointer
1261 register unavailable, considering also modes.
1262 FIXME: it is enough to do this once per all original defs. */
1263 if (frame_pointer_needed)
1264 {
1265 int i;
1266
1267 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269 FRAME_POINTER_REGNUM + i);
1270
1271 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1272 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1273 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1274 HARD_FRAME_POINTER_REGNUM + i);
1275 #endif
1276 }
1277
1278 #ifdef STACK_REGS
1279 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1280 is equivalent to as if all stack regs were in this set.
1281 I.e. no stack register can be renamed, and even if it's an original
1282 register here we make sure it won't be lifted over it's previous def
1283 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1284 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1285 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1286 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288 sel_hrd.stack_regs);
1289 #endif
1290
1291 /* If there's a call on this path, make regs from call_used_reg_set
1292 unavailable. */
1293 if (def->crosses_call)
1294 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1295 call_used_reg_set);
1296
1297 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1298 but not register classes. */
1299 if (!reload_completed)
1300 return;
1301
1302 /* Leave regs as 'available' only from the current
1303 register class. */
1304 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1305 reg_class_contents[cl]);
1306
1307 mode = GET_MODE (orig_dest);
1308
1309 /* Leave only registers available for this mode. */
1310 if (!sel_hrd.regs_for_mode_ok[mode])
1311 init_regs_for_mode (mode);
1312 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 sel_hrd.regs_for_mode[mode]);
1314
1315 /* Exclude registers that are partially call clobbered. */
1316 if (def->crosses_call
1317 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1318 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1319 sel_hrd.regs_for_call_clobbered[mode]);
1320
1321 /* Leave only those that are ok to rename. */
1322 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1323 0, cur_reg, hrsi)
1324 {
1325 int nregs;
1326 int i;
1327
1328 nregs = hard_regno_nregs[cur_reg][mode];
1329 gcc_assert (nregs > 0);
1330
1331 for (i = nregs - 1; i >= 0; --i)
1332 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1333 break;
1334
1335 if (i >= 0)
1336 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1337 cur_reg);
1338 }
1339
1340 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1341 reg_rename_p->unavailable_hard_regs);
1342
1343 /* Regno is always ok from the renaming part of view, but it really
1344 could be in *unavailable_hard_regs already, so set it here instead
1345 of there. */
1346 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1347 }
1348
1349 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1350 best register more recently than REG2. */
1351 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1352
1353 /* Indicates the number of times renaming happened before the current one. */
1354 static int reg_rename_this_tick;
1355
1356 /* Choose the register among free, that is suitable for storing
1357 the rhs value.
1358
1359 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1360 originally appears. There could be multiple original operations
1361 for single rhs since we moving it up and merging along different
1362 paths.
1363
1364 Some code is adapted from regrename.c (regrename_optimize).
1365 If original register is available, function returns it.
1366 Otherwise it performs the checks, so the new register should
1367 comply with the following:
1368 - it should not violate any live ranges (such registers are in
1369 REG_RENAME_P->available_for_renaming set);
1370 - it should not be in the HARD_REGS_USED regset;
1371 - it should be in the class compatible with original uses;
1372 - it should not be clobbered through reference with different mode;
1373 - if we're in the leaf function, then the new register should
1374 not be in the LEAF_REGISTERS;
1375 - etc.
1376
1377 If several registers meet the conditions, the register with smallest
1378 tick is returned to achieve more even register allocation.
1379
1380 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1381
1382 If no register satisfies the above conditions, NULL_RTX is returned. */
1383 static rtx
1384 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1385 struct reg_rename *reg_rename_p,
1386 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1387 {
1388 int best_new_reg;
1389 unsigned cur_reg;
1390 enum machine_mode mode = VOIDmode;
1391 unsigned regno, i, n;
1392 hard_reg_set_iterator hrsi;
1393 def_list_iterator di;
1394 def_t def;
1395
1396 /* If original register is available, return it. */
1397 *is_orig_reg_p_ptr = true;
1398
1399 FOR_EACH_DEF (def, di, original_insns)
1400 {
1401 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1402
1403 gcc_assert (REG_P (orig_dest));
1404
1405 /* Check that all original operations have the same mode.
1406 This is done for the next loop; if we'd return from this
1407 loop, we'd check only part of them, but in this case
1408 it doesn't matter. */
1409 if (mode == VOIDmode)
1410 mode = GET_MODE (orig_dest);
1411 gcc_assert (mode == GET_MODE (orig_dest));
1412
1413 regno = REGNO (orig_dest);
1414 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1415 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1416 break;
1417
1418 /* All hard registers are available. */
1419 if (i == n)
1420 {
1421 gcc_assert (mode != VOIDmode);
1422
1423 /* Hard registers should not be shared. */
1424 return gen_rtx_REG (mode, regno);
1425 }
1426 }
1427
1428 *is_orig_reg_p_ptr = false;
1429 best_new_reg = -1;
1430
1431 /* Among all available regs choose the register that was
1432 allocated earliest. */
1433 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1434 0, cur_reg, hrsi)
1435 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1436 {
1437 /* Check that all hard regs for mode are available. */
1438 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1439 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1440 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1441 cur_reg + i))
1442 break;
1443
1444 if (i < n)
1445 continue;
1446
1447 /* All hard registers are available. */
1448 if (best_new_reg < 0
1449 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1450 {
1451 best_new_reg = cur_reg;
1452
1453 /* Return immediately when we know there's no better reg. */
1454 if (! reg_rename_tick[best_new_reg])
1455 break;
1456 }
1457 }
1458
1459 if (best_new_reg >= 0)
1460 {
1461 /* Use the check from the above loop. */
1462 gcc_assert (mode != VOIDmode);
1463 return gen_rtx_REG (mode, best_new_reg);
1464 }
1465
1466 return NULL_RTX;
1467 }
1468
1469 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1470 assumptions about available registers in the function. */
1471 static rtx
1472 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1473 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1474 {
1475 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1476 original_insns, is_orig_reg_p_ptr);
1477
1478 /* FIXME loop over hard_regno_nregs here. */
1479 gcc_assert (best_reg == NULL_RTX
1480 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1481
1482 return best_reg;
1483 }
1484
1485 /* Choose the pseudo register for storing rhs value. As this is supposed
1486 to work before reload, we return either the original register or make
1487 the new one. The parameters are the same that in choose_nest_reg_1
1488 functions, except that USED_REGS may contain pseudos.
1489 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1490
1491 TODO: take into account register pressure while doing this. Up to this
1492 moment, this function would never return NULL for pseudos, but we should
1493 not rely on this. */
1494 static rtx
1495 choose_best_pseudo_reg (regset used_regs,
1496 struct reg_rename *reg_rename_p,
1497 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1498 {
1499 def_list_iterator i;
1500 def_t def;
1501 enum machine_mode mode = VOIDmode;
1502 bool bad_hard_regs = false;
1503
1504 /* We should not use this after reload. */
1505 gcc_assert (!reload_completed);
1506
1507 /* If original register is available, return it. */
1508 *is_orig_reg_p_ptr = true;
1509
1510 FOR_EACH_DEF (def, i, original_insns)
1511 {
1512 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1513 int orig_regno;
1514
1515 gcc_assert (REG_P (dest));
1516
1517 /* Check that all original operations have the same mode. */
1518 if (mode == VOIDmode)
1519 mode = GET_MODE (dest);
1520 else
1521 gcc_assert (mode == GET_MODE (dest));
1522 orig_regno = REGNO (dest);
1523
1524 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1525 {
1526 if (orig_regno < FIRST_PSEUDO_REGISTER)
1527 {
1528 gcc_assert (df_regs_ever_live_p (orig_regno));
1529
1530 /* For hard registers, we have to check hardware imposed
1531 limitations (frame/stack registers, calls crossed). */
1532 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1533 orig_regno))
1534 {
1535 /* Don't let register cross a call if it doesn't already
1536 cross one. This condition is written in accordance with
1537 that in sched-deps.c sched_analyze_reg(). */
1538 if (!reg_rename_p->crosses_call
1539 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1540 return gen_rtx_REG (mode, orig_regno);
1541 }
1542
1543 bad_hard_regs = true;
1544 }
1545 else
1546 return dest;
1547 }
1548 }
1549
1550 *is_orig_reg_p_ptr = false;
1551
1552 /* We had some original hard registers that couldn't be used.
1553 Those were likely special. Don't try to create a pseudo. */
1554 if (bad_hard_regs)
1555 return NULL_RTX;
1556
1557 /* We haven't found a register from original operations. Get a new one.
1558 FIXME: control register pressure somehow. */
1559 {
1560 rtx new_reg = gen_reg_rtx (mode);
1561
1562 gcc_assert (mode != VOIDmode);
1563
1564 max_regno = max_reg_num ();
1565 maybe_extend_reg_info_p ();
1566 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1567
1568 return new_reg;
1569 }
1570 }
1571
1572 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1573 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1574 static void
1575 verify_target_availability (expr_t expr, regset used_regs,
1576 struct reg_rename *reg_rename_p)
1577 {
1578 unsigned n, i, regno;
1579 enum machine_mode mode;
1580 bool target_available, live_available, hard_available;
1581
1582 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1583 return;
1584
1585 regno = expr_dest_regno (expr);
1586 mode = GET_MODE (EXPR_LHS (expr));
1587 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1588 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1589
1590 live_available = hard_available = true;
1591 for (i = 0; i < n; i++)
1592 {
1593 if (bitmap_bit_p (used_regs, regno + i))
1594 live_available = false;
1595 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1596 hard_available = false;
1597 }
1598
1599 /* When target is not available, it may be due to hard register
1600 restrictions, e.g. crosses calls, so we check hard_available too. */
1601 if (target_available)
1602 gcc_assert (live_available);
1603 else
1604 /* Check only if we haven't scheduled something on the previous fence,
1605 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1606 and having more than one fence, we may end having targ_un in a block
1607 in which successors target register is actually available.
1608
1609 The last condition handles the case when a dependence from a call insn
1610 was created in sched-deps.c for insns with destination registers that
1611 never crossed a call before, but do cross one after our code motion.
1612
1613 FIXME: in the latter case, we just uselessly called find_used_regs,
1614 because we can't move this expression with any other register
1615 as well. */
1616 gcc_assert (scheduled_something_on_previous_fence || !live_available
1617 || !hard_available
1618 || (!reload_completed && reg_rename_p->crosses_call
1619 && REG_N_CALLS_CROSSED (regno) == 0));
1620 }
1621
1622 /* Collect unavailable registers due to liveness for EXPR from BNDS
1623 into USED_REGS. Save additional information about available
1624 registers and unavailable due to hardware restriction registers
1625 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1626 list. */
1627 static void
1628 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1629 struct reg_rename *reg_rename_p,
1630 def_list_t *original_insns)
1631 {
1632 for (; bnds; bnds = BLIST_NEXT (bnds))
1633 {
1634 bool res;
1635 av_set_t orig_ops = NULL;
1636 bnd_t bnd = BLIST_BND (bnds);
1637
1638 /* If the chosen best expr doesn't belong to current boundary,
1639 skip it. */
1640 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1641 continue;
1642
1643 /* Put in ORIG_OPS all exprs from this boundary that became
1644 RES on top. */
1645 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1646
1647 /* Compute used regs and OR it into the USED_REGS. */
1648 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1649 reg_rename_p, original_insns);
1650
1651 /* FIXME: the assert is true until we'd have several boundaries. */
1652 gcc_assert (res);
1653 av_set_clear (&orig_ops);
1654 }
1655 }
1656
1657 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1658 If BEST_REG is valid, replace LHS of EXPR with it. */
1659 static bool
1660 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1661 {
1662 /* Try whether we'll be able to generate the insn
1663 'dest := best_reg' at the place of the original operation. */
1664 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1665 {
1666 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1667
1668 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1669
1670 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1671 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1672 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1673 return false;
1674 }
1675
1676 /* Make sure that EXPR has the right destination
1677 register. */
1678 if (expr_dest_regno (expr) != REGNO (best_reg))
1679 replace_dest_with_reg_in_expr (expr, best_reg);
1680 else
1681 EXPR_TARGET_AVAILABLE (expr) = 1;
1682
1683 return true;
1684 }
1685
1686 /* Select and assign best register to EXPR searching from BNDS.
1687 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1688 Return FALSE if no register can be chosen, which could happen when:
1689 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1690 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1691 that are used on the moving path. */
1692 static bool
1693 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1694 {
1695 static struct reg_rename reg_rename_data;
1696
1697 regset used_regs;
1698 def_list_t original_insns = NULL;
1699 bool reg_ok;
1700
1701 *is_orig_reg_p = false;
1702
1703 /* Don't bother to do anything if this insn doesn't set any registers. */
1704 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1705 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1706 return true;
1707
1708 used_regs = get_clear_regset_from_pool ();
1709 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1710
1711 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1712 &original_insns);
1713
1714 #ifdef ENABLE_CHECKING
1715 /* If after reload, make sure we're working with hard regs here. */
1716 if (reload_completed)
1717 {
1718 reg_set_iterator rsi;
1719 unsigned i;
1720
1721 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1722 gcc_unreachable ();
1723 }
1724 #endif
1725
1726 if (EXPR_SEPARABLE_P (expr))
1727 {
1728 rtx best_reg = NULL_RTX;
1729 /* Check that we have computed availability of a target register
1730 correctly. */
1731 verify_target_availability (expr, used_regs, &reg_rename_data);
1732
1733 /* Turn everything in hard regs after reload. */
1734 if (reload_completed)
1735 {
1736 HARD_REG_SET hard_regs_used;
1737 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1738
1739 /* Join hard registers unavailable due to register class
1740 restrictions and live range intersection. */
1741 IOR_HARD_REG_SET (hard_regs_used,
1742 reg_rename_data.unavailable_hard_regs);
1743
1744 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1745 original_insns, is_orig_reg_p);
1746 }
1747 else
1748 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1749 original_insns, is_orig_reg_p);
1750
1751 if (!best_reg)
1752 reg_ok = false;
1753 else if (*is_orig_reg_p)
1754 {
1755 /* In case of unification BEST_REG may be different from EXPR's LHS
1756 when EXPR's LHS is unavailable, and there is another LHS among
1757 ORIGINAL_INSNS. */
1758 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1759 }
1760 else
1761 {
1762 /* Forbid renaming of low-cost insns. */
1763 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1764 reg_ok = false;
1765 else
1766 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1767 }
1768 }
1769 else
1770 {
1771 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1772 any of the HARD_REGS_USED set. */
1773 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1774 reg_rename_data.unavailable_hard_regs))
1775 {
1776 reg_ok = false;
1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1778 }
1779 else
1780 {
1781 reg_ok = true;
1782 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1783 }
1784 }
1785
1786 ilist_clear (&original_insns);
1787 return_regset_to_pool (used_regs);
1788
1789 return reg_ok;
1790 }
1791 \f
1792
1793 /* Return true if dependence described by DS can be overcomed. */
1794 static bool
1795 can_speculate_dep_p (ds_t ds)
1796 {
1797 if (spec_info == NULL)
1798 return false;
1799
1800 /* Leave only speculative data. */
1801 ds &= SPECULATIVE;
1802
1803 if (ds == 0)
1804 return false;
1805
1806 {
1807 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1808 that we can overcome. */
1809 ds_t spec_mask = spec_info->mask;
1810
1811 if ((ds & spec_mask) != ds)
1812 return false;
1813 }
1814
1815 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1816 return false;
1817
1818 return true;
1819 }
1820
1821 /* Get a speculation check instruction.
1822 C_EXPR is a speculative expression,
1823 CHECK_DS describes speculations that should be checked,
1824 ORIG_INSN is the original non-speculative insn in the stream. */
1825 static insn_t
1826 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1827 {
1828 rtx check_pattern;
1829 rtx insn_rtx;
1830 insn_t insn;
1831 basic_block recovery_block;
1832 rtx label;
1833
1834 /* Create a recovery block if target is going to emit branchy check, or if
1835 ORIG_INSN was speculative already. */
1836 if (targetm.sched.needs_block_p (check_ds)
1837 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1838 {
1839 recovery_block = sel_create_recovery_block (orig_insn);
1840 label = BB_HEAD (recovery_block);
1841 }
1842 else
1843 {
1844 recovery_block = NULL;
1845 label = NULL_RTX;
1846 }
1847
1848 /* Get pattern of the check. */
1849 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1850 check_ds);
1851
1852 gcc_assert (check_pattern != NULL);
1853
1854 /* Emit check. */
1855 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1856
1857 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1858 INSN_SEQNO (orig_insn), orig_insn);
1859
1860 /* Make check to be non-speculative. */
1861 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1862 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1863
1864 /* Decrease priority of check by difference of load/check instruction
1865 latencies. */
1866 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1867 - sel_vinsn_cost (INSN_VINSN (insn)));
1868
1869 /* Emit copy of original insn (though with replaced target register,
1870 if needed) to the recovery block. */
1871 if (recovery_block != NULL)
1872 {
1873 rtx twin_rtx;
1874
1875 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1876 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1877 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1878 INSN_EXPR (orig_insn),
1879 INSN_SEQNO (insn),
1880 bb_note (recovery_block));
1881 }
1882
1883 /* If we've generated a data speculation check, make sure
1884 that all the bookkeeping instruction we'll create during
1885 this move_op () will allocate an ALAT entry so that the
1886 check won't fail.
1887 In case of control speculation we must convert C_EXPR to control
1888 speculative mode, because failing to do so will bring us an exception
1889 thrown by the non-control-speculative load. */
1890 check_ds = ds_get_max_dep_weak (check_ds);
1891 speculate_expr (c_expr, check_ds);
1892
1893 return insn;
1894 }
1895
1896 /* True when INSN is a "regN = regN" copy. */
1897 static bool
1898 identical_copy_p (rtx insn)
1899 {
1900 rtx lhs, rhs, pat;
1901
1902 pat = PATTERN (insn);
1903
1904 if (GET_CODE (pat) != SET)
1905 return false;
1906
1907 lhs = SET_DEST (pat);
1908 if (!REG_P (lhs))
1909 return false;
1910
1911 rhs = SET_SRC (pat);
1912 if (!REG_P (rhs))
1913 return false;
1914
1915 return REGNO (lhs) == REGNO (rhs);
1916 }
1917
1918 /* Undo all transformations on *AV_PTR that were done when
1919 moving through INSN. */
1920 static void
1921 undo_transformations (av_set_t *av_ptr, rtx insn)
1922 {
1923 av_set_iterator av_iter;
1924 expr_t expr;
1925 av_set_t new_set = NULL;
1926
1927 /* First, kill any EXPR that uses registers set by an insn. This is
1928 required for correctness. */
1929 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1930 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1931 && bitmap_intersect_p (INSN_REG_SETS (insn),
1932 VINSN_REG_USES (EXPR_VINSN (expr)))
1933 /* When an insn looks like 'r1 = r1', we could substitute through
1934 it, but the above condition will still hold. This happened with
1935 gcc.c-torture/execute/961125-1.c. */
1936 && !identical_copy_p (insn))
1937 {
1938 if (sched_verbose >= 6)
1939 sel_print ("Expr %d removed due to use/set conflict\n",
1940 INSN_UID (EXPR_INSN_RTX (expr)));
1941 av_set_iter_remove (&av_iter);
1942 }
1943
1944 /* Undo transformations looking at the history vector. */
1945 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1946 {
1947 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1948 insn, EXPR_VINSN (expr), true);
1949
1950 if (index >= 0)
1951 {
1952 expr_history_def *phist;
1953
1954 phist = VEC_index (expr_history_def,
1955 EXPR_HISTORY_OF_CHANGES (expr),
1956 index);
1957
1958 switch (phist->type)
1959 {
1960 case TRANS_SPECULATION:
1961 {
1962 ds_t old_ds, new_ds;
1963
1964 /* Compute the difference between old and new speculative
1965 statuses: that's what we need to check.
1966 Earlier we used to assert that the status will really
1967 change. This no longer works because only the probability
1968 bits in the status may have changed during compute_av_set,
1969 and in the case of merging different probabilities of the
1970 same speculative status along different paths we do not
1971 record this in the history vector. */
1972 old_ds = phist->spec_ds;
1973 new_ds = EXPR_SPEC_DONE_DS (expr);
1974
1975 old_ds &= SPECULATIVE;
1976 new_ds &= SPECULATIVE;
1977 new_ds &= ~old_ds;
1978
1979 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1980 break;
1981 }
1982 case TRANS_SUBSTITUTION:
1983 {
1984 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1985 vinsn_t new_vi;
1986 bool add = true;
1987
1988 new_vi = phist->old_expr_vinsn;
1989
1990 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1991 == EXPR_SEPARABLE_P (expr));
1992 copy_expr (tmp_expr, expr);
1993
1994 if (vinsn_equal_p (phist->new_expr_vinsn,
1995 EXPR_VINSN (tmp_expr)))
1996 change_vinsn_in_expr (tmp_expr, new_vi);
1997 else
1998 /* This happens when we're unsubstituting on a bookkeeping
1999 copy, which was in turn substituted. The history is wrong
2000 in this case. Do it the hard way. */
2001 add = substitute_reg_in_expr (tmp_expr, insn, true);
2002 if (add)
2003 av_set_add (&new_set, tmp_expr);
2004 clear_expr (tmp_expr);
2005 break;
2006 }
2007 default:
2008 gcc_unreachable ();
2009 }
2010 }
2011
2012 }
2013
2014 av_set_union_and_clear (av_ptr, &new_set, NULL);
2015 }
2016 \f
2017
2018 /* Moveup_* helpers for code motion and computing av sets. */
2019
2020 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2021 The difference from the below function is that only substitution is
2022 performed. */
2023 static enum MOVEUP_EXPR_CODE
2024 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2025 {
2026 vinsn_t vi = EXPR_VINSN (expr);
2027 ds_t *has_dep_p;
2028 ds_t full_ds;
2029
2030 /* Do this only inside insn group. */
2031 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2032
2033 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2034 if (full_ds == 0)
2035 return MOVEUP_EXPR_SAME;
2036
2037 /* Substitution is the possible choice in this case. */
2038 if (has_dep_p[DEPS_IN_RHS])
2039 {
2040 /* Can't substitute UNIQUE VINSNs. */
2041 gcc_assert (!VINSN_UNIQUE_P (vi));
2042
2043 if (can_substitute_through_p (through_insn,
2044 has_dep_p[DEPS_IN_RHS])
2045 && substitute_reg_in_expr (expr, through_insn, false))
2046 {
2047 EXPR_WAS_SUBSTITUTED (expr) = true;
2048 return MOVEUP_EXPR_CHANGED;
2049 }
2050
2051 /* Don't care about this, as even true dependencies may be allowed
2052 in an insn group. */
2053 return MOVEUP_EXPR_SAME;
2054 }
2055
2056 /* This can catch output dependencies in COND_EXECs. */
2057 if (has_dep_p[DEPS_IN_INSN])
2058 return MOVEUP_EXPR_NULL;
2059
2060 /* This is either an output or an anti dependence, which usually have
2061 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2062 will fix this. */
2063 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2064 return MOVEUP_EXPR_AS_RHS;
2065 }
2066
2067 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2068 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2069 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2070 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2071 && !sel_insn_is_speculation_check (through_insn))
2072
2073 /* True when a conflict on a target register was found during moveup_expr. */
2074 static bool was_target_conflict = false;
2075
2076 /* Return true when moving a debug INSN across THROUGH_INSN will
2077 create a bookkeeping block. We don't want to create such blocks,
2078 for they would cause codegen differences between compilations with
2079 and without debug info. */
2080
2081 static bool
2082 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2083 insn_t through_insn)
2084 {
2085 basic_block bbi, bbt;
2086 edge e1, e2;
2087 edge_iterator ei1, ei2;
2088
2089 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2090 {
2091 if (sched_verbose >= 9)
2092 sel_print ("no bookkeeping required: ");
2093 return FALSE;
2094 }
2095
2096 bbi = BLOCK_FOR_INSN (insn);
2097
2098 if (EDGE_COUNT (bbi->preds) == 1)
2099 {
2100 if (sched_verbose >= 9)
2101 sel_print ("only one pred edge: ");
2102 return TRUE;
2103 }
2104
2105 bbt = BLOCK_FOR_INSN (through_insn);
2106
2107 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2108 {
2109 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2110 {
2111 if (find_block_for_bookkeeping (e1, e2, TRUE))
2112 {
2113 if (sched_verbose >= 9)
2114 sel_print ("found existing block: ");
2115 return FALSE;
2116 }
2117 }
2118 }
2119
2120 if (sched_verbose >= 9)
2121 sel_print ("would create bookkeeping block: ");
2122
2123 return TRUE;
2124 }
2125
2126 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2127 performing necessary transformations. Record the type of transformation
2128 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2129 permit all dependencies except true ones, and try to remove those
2130 too via forward substitution. All cases when a non-eliminable
2131 non-zero cost dependency exists inside an insn group will be fixed
2132 in tick_check_p instead. */
2133 static enum MOVEUP_EXPR_CODE
2134 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2135 enum local_trans_type *ptrans_type)
2136 {
2137 vinsn_t vi = EXPR_VINSN (expr);
2138 insn_t insn = VINSN_INSN_RTX (vi);
2139 bool was_changed = false;
2140 bool as_rhs = false;
2141 ds_t *has_dep_p;
2142 ds_t full_ds;
2143
2144 /* When inside_insn_group, delegate to the helper. */
2145 if (inside_insn_group)
2146 return moveup_expr_inside_insn_group (expr, through_insn);
2147
2148 /* Deal with unique insns and control dependencies. */
2149 if (VINSN_UNIQUE_P (vi))
2150 {
2151 /* We can move jumps without side-effects or jumps that are
2152 mutually exclusive with instruction THROUGH_INSN (all in cases
2153 dependencies allow to do so and jump is not speculative). */
2154 if (control_flow_insn_p (insn))
2155 {
2156 basic_block fallthru_bb;
2157
2158 /* Do not move checks and do not move jumps through other
2159 jumps. */
2160 if (control_flow_insn_p (through_insn)
2161 || sel_insn_is_speculation_check (insn))
2162 return MOVEUP_EXPR_NULL;
2163
2164 /* Don't move jumps through CFG joins. */
2165 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2166 return MOVEUP_EXPR_NULL;
2167
2168 /* The jump should have a clear fallthru block, and
2169 this block should be in the current region. */
2170 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2171 || ! in_current_region_p (fallthru_bb))
2172 return MOVEUP_EXPR_NULL;
2173
2174 /* And it should be mutually exclusive with through_insn, or
2175 be an unconditional jump. */
2176 if (! any_uncondjump_p (insn)
2177 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2178 && ! DEBUG_INSN_P (through_insn))
2179 return MOVEUP_EXPR_NULL;
2180 }
2181
2182 /* Don't move what we can't move. */
2183 if (EXPR_CANT_MOVE (expr)
2184 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2185 return MOVEUP_EXPR_NULL;
2186
2187 /* Don't move SCHED_GROUP instruction through anything.
2188 If we don't force this, then it will be possible to start
2189 scheduling a sched_group before all its dependencies are
2190 resolved.
2191 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2192 as late as possible through rank_for_schedule. */
2193 if (SCHED_GROUP_P (insn))
2194 return MOVEUP_EXPR_NULL;
2195 }
2196 else
2197 gcc_assert (!control_flow_insn_p (insn));
2198
2199 /* Don't move debug insns if this would require bookkeeping. */
2200 if (DEBUG_INSN_P (insn)
2201 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2202 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2203 return MOVEUP_EXPR_NULL;
2204
2205 /* Deal with data dependencies. */
2206 was_target_conflict = false;
2207 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2208 if (full_ds == 0)
2209 {
2210 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2211 return MOVEUP_EXPR_SAME;
2212 }
2213 else
2214 {
2215 /* We can move UNIQUE insn up only as a whole and unchanged,
2216 so it shouldn't have any dependencies. */
2217 if (VINSN_UNIQUE_P (vi))
2218 return MOVEUP_EXPR_NULL;
2219 }
2220
2221 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2222 {
2223 int res;
2224
2225 res = speculate_expr (expr, full_ds);
2226 if (res >= 0)
2227 {
2228 /* Speculation was successful. */
2229 full_ds = 0;
2230 was_changed = (res > 0);
2231 if (res == 2)
2232 was_target_conflict = true;
2233 if (ptrans_type)
2234 *ptrans_type = TRANS_SPECULATION;
2235 sel_clear_has_dependence ();
2236 }
2237 }
2238
2239 if (has_dep_p[DEPS_IN_INSN])
2240 /* We have some dependency that cannot be discarded. */
2241 return MOVEUP_EXPR_NULL;
2242
2243 if (has_dep_p[DEPS_IN_LHS])
2244 {
2245 /* Only separable insns can be moved up with the new register.
2246 Anyways, we should mark that the original register is
2247 unavailable. */
2248 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2249 return MOVEUP_EXPR_NULL;
2250
2251 EXPR_TARGET_AVAILABLE (expr) = false;
2252 was_target_conflict = true;
2253 as_rhs = true;
2254 }
2255
2256 /* At this point we have either separable insns, that will be lifted
2257 up only as RHSes, or non-separable insns with no dependency in lhs.
2258 If dependency is in RHS, then try to perform substitution and move up
2259 substituted RHS:
2260
2261 Ex. 1: Ex.2
2262 y = x; y = x;
2263 z = y*2; y = y*2;
2264
2265 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2266 moved above y=x assignment as z=x*2.
2267
2268 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2269 side can be moved because of the output dependency. The operation was
2270 cropped to its rhs above. */
2271 if (has_dep_p[DEPS_IN_RHS])
2272 {
2273 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2274
2275 /* Can't substitute UNIQUE VINSNs. */
2276 gcc_assert (!VINSN_UNIQUE_P (vi));
2277
2278 if (can_speculate_dep_p (*rhs_dsp))
2279 {
2280 int res;
2281
2282 res = speculate_expr (expr, *rhs_dsp);
2283 if (res >= 0)
2284 {
2285 /* Speculation was successful. */
2286 *rhs_dsp = 0;
2287 was_changed = (res > 0);
2288 if (res == 2)
2289 was_target_conflict = true;
2290 if (ptrans_type)
2291 *ptrans_type = TRANS_SPECULATION;
2292 }
2293 else
2294 return MOVEUP_EXPR_NULL;
2295 }
2296 else if (can_substitute_through_p (through_insn,
2297 *rhs_dsp)
2298 && substitute_reg_in_expr (expr, through_insn, false))
2299 {
2300 /* ??? We cannot perform substitution AND speculation on the same
2301 insn. */
2302 gcc_assert (!was_changed);
2303 was_changed = true;
2304 if (ptrans_type)
2305 *ptrans_type = TRANS_SUBSTITUTION;
2306 EXPR_WAS_SUBSTITUTED (expr) = true;
2307 }
2308 else
2309 return MOVEUP_EXPR_NULL;
2310 }
2311
2312 /* Don't move trapping insns through jumps.
2313 This check should be at the end to give a chance to control speculation
2314 to perform its duties. */
2315 if (CANT_MOVE_TRAPPING (expr, through_insn))
2316 return MOVEUP_EXPR_NULL;
2317
2318 return (was_changed
2319 ? MOVEUP_EXPR_CHANGED
2320 : (as_rhs
2321 ? MOVEUP_EXPR_AS_RHS
2322 : MOVEUP_EXPR_SAME));
2323 }
2324
2325 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2326 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2327 that can exist within a parallel group. Write to RES the resulting
2328 code for moveup_expr. */
2329 static bool
2330 try_bitmap_cache (expr_t expr, insn_t insn,
2331 bool inside_insn_group,
2332 enum MOVEUP_EXPR_CODE *res)
2333 {
2334 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2335
2336 /* First check whether we've analyzed this situation already. */
2337 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2338 {
2339 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2340 {
2341 if (sched_verbose >= 6)
2342 sel_print ("removed (cached)\n");
2343 *res = MOVEUP_EXPR_NULL;
2344 return true;
2345 }
2346 else
2347 {
2348 if (sched_verbose >= 6)
2349 sel_print ("unchanged (cached)\n");
2350 *res = MOVEUP_EXPR_SAME;
2351 return true;
2352 }
2353 }
2354 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2355 {
2356 if (inside_insn_group)
2357 {
2358 if (sched_verbose >= 6)
2359 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2360 *res = MOVEUP_EXPR_SAME;
2361 return true;
2362
2363 }
2364 else
2365 EXPR_TARGET_AVAILABLE (expr) = false;
2366
2367 /* This is the only case when propagation result can change over time,
2368 as we can dynamically switch off scheduling as RHS. In this case,
2369 just check the flag to reach the correct decision. */
2370 if (enable_schedule_as_rhs_p)
2371 {
2372 if (sched_verbose >= 6)
2373 sel_print ("unchanged (as RHS, cached)\n");
2374 *res = MOVEUP_EXPR_AS_RHS;
2375 return true;
2376 }
2377 else
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("removed (cached as RHS, but renaming"
2381 " is now disabled)\n");
2382 *res = MOVEUP_EXPR_NULL;
2383 return true;
2384 }
2385 }
2386
2387 return false;
2388 }
2389
2390 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2391 if successful. Write to RES the resulting code for moveup_expr. */
2392 static bool
2393 try_transformation_cache (expr_t expr, insn_t insn,
2394 enum MOVEUP_EXPR_CODE *res)
2395 {
2396 struct transformed_insns *pti
2397 = (struct transformed_insns *)
2398 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2399 &EXPR_VINSN (expr),
2400 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2401 if (pti)
2402 {
2403 /* This EXPR was already moved through this insn and was
2404 changed as a result. Fetch the proper data from
2405 the hashtable. */
2406 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2407 INSN_UID (insn), pti->type,
2408 pti->vinsn_old, pti->vinsn_new,
2409 EXPR_SPEC_DONE_DS (expr));
2410
2411 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2412 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2413 change_vinsn_in_expr (expr, pti->vinsn_new);
2414 if (pti->was_target_conflict)
2415 EXPR_TARGET_AVAILABLE (expr) = false;
2416 if (pti->type == TRANS_SPECULATION)
2417 {
2418 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2419 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2420 }
2421
2422 if (sched_verbose >= 6)
2423 {
2424 sel_print ("changed (cached): ");
2425 dump_expr (expr);
2426 sel_print ("\n");
2427 }
2428
2429 *res = MOVEUP_EXPR_CHANGED;
2430 return true;
2431 }
2432
2433 return false;
2434 }
2435
2436 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2437 static void
2438 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2439 enum MOVEUP_EXPR_CODE res)
2440 {
2441 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2442
2443 /* Do not cache result of propagating jumps through an insn group,
2444 as it is always true, which is not useful outside the group. */
2445 if (inside_insn_group)
2446 return;
2447
2448 if (res == MOVEUP_EXPR_NULL)
2449 {
2450 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2451 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 }
2453 else if (res == MOVEUP_EXPR_SAME)
2454 {
2455 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2456 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 }
2458 else if (res == MOVEUP_EXPR_AS_RHS)
2459 {
2460 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2461 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2462 }
2463 else
2464 gcc_unreachable ();
2465 }
2466
2467 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2468 and transformation type TRANS_TYPE. */
2469 static void
2470 update_transformation_cache (expr_t expr, insn_t insn,
2471 bool inside_insn_group,
2472 enum local_trans_type trans_type,
2473 vinsn_t expr_old_vinsn)
2474 {
2475 struct transformed_insns *pti;
2476
2477 if (inside_insn_group)
2478 return;
2479
2480 pti = XNEW (struct transformed_insns);
2481 pti->vinsn_old = expr_old_vinsn;
2482 pti->vinsn_new = EXPR_VINSN (expr);
2483 pti->type = trans_type;
2484 pti->was_target_conflict = was_target_conflict;
2485 pti->ds = EXPR_SPEC_DONE_DS (expr);
2486 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2487 vinsn_attach (pti->vinsn_old);
2488 vinsn_attach (pti->vinsn_new);
2489 *((struct transformed_insns **)
2490 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2491 pti, VINSN_HASH_RTX (expr_old_vinsn),
2492 INSERT)) = pti;
2493 }
2494
2495 /* Same as moveup_expr, but first looks up the result of
2496 transformation in caches. */
2497 static enum MOVEUP_EXPR_CODE
2498 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2499 {
2500 enum MOVEUP_EXPR_CODE res;
2501 bool got_answer = false;
2502
2503 if (sched_verbose >= 6)
2504 {
2505 sel_print ("Moving ");
2506 dump_expr (expr);
2507 sel_print (" through %d: ", INSN_UID (insn));
2508 }
2509
2510 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2511 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2512 == EXPR_INSN_RTX (expr)))
2513 /* Don't use cached information for debug insns that are heads of
2514 basic blocks. */;
2515 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2516 /* When inside insn group, we do not want remove stores conflicting
2517 with previosly issued loads. */
2518 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2519 else if (try_transformation_cache (expr, insn, &res))
2520 got_answer = true;
2521
2522 if (! got_answer)
2523 {
2524 /* Invoke moveup_expr and record the results. */
2525 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2526 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2527 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2528 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2529 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2530
2531 /* ??? Invent something better than this. We can't allow old_vinsn
2532 to go, we need it for the history vector. */
2533 vinsn_attach (expr_old_vinsn);
2534
2535 res = moveup_expr (expr, insn, inside_insn_group,
2536 &trans_type);
2537 switch (res)
2538 {
2539 case MOVEUP_EXPR_NULL:
2540 update_bitmap_cache (expr, insn, inside_insn_group, res);
2541 if (sched_verbose >= 6)
2542 sel_print ("removed\n");
2543 break;
2544
2545 case MOVEUP_EXPR_SAME:
2546 update_bitmap_cache (expr, insn, inside_insn_group, res);
2547 if (sched_verbose >= 6)
2548 sel_print ("unchanged\n");
2549 break;
2550
2551 case MOVEUP_EXPR_AS_RHS:
2552 gcc_assert (!unique_p || inside_insn_group);
2553 update_bitmap_cache (expr, insn, inside_insn_group, res);
2554 if (sched_verbose >= 6)
2555 sel_print ("unchanged (as RHS)\n");
2556 break;
2557
2558 case MOVEUP_EXPR_CHANGED:
2559 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2560 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2561 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2562 INSN_UID (insn), trans_type,
2563 expr_old_vinsn, EXPR_VINSN (expr),
2564 expr_old_spec_ds);
2565 update_transformation_cache (expr, insn, inside_insn_group,
2566 trans_type, expr_old_vinsn);
2567 if (sched_verbose >= 6)
2568 {
2569 sel_print ("changed: ");
2570 dump_expr (expr);
2571 sel_print ("\n");
2572 }
2573 break;
2574 default:
2575 gcc_unreachable ();
2576 }
2577
2578 vinsn_detach (expr_old_vinsn);
2579 }
2580
2581 return res;
2582 }
2583
2584 /* Moves an av set AVP up through INSN, performing necessary
2585 transformations. */
2586 static void
2587 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2588 {
2589 av_set_iterator i;
2590 expr_t expr;
2591
2592 FOR_EACH_EXPR_1 (expr, i, avp)
2593 {
2594
2595 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2596 {
2597 case MOVEUP_EXPR_SAME:
2598 case MOVEUP_EXPR_AS_RHS:
2599 break;
2600
2601 case MOVEUP_EXPR_NULL:
2602 av_set_iter_remove (&i);
2603 break;
2604
2605 case MOVEUP_EXPR_CHANGED:
2606 expr = merge_with_other_exprs (avp, &i, expr);
2607 break;
2608
2609 default:
2610 gcc_unreachable ();
2611 }
2612 }
2613 }
2614
2615 /* Moves AVP set along PATH. */
2616 static void
2617 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2618 {
2619 int last_cycle;
2620
2621 if (sched_verbose >= 6)
2622 sel_print ("Moving expressions up in the insn group...\n");
2623 if (! path)
2624 return;
2625 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2626 while (path
2627 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2628 {
2629 moveup_set_expr (avp, ILIST_INSN (path), true);
2630 path = ILIST_NEXT (path);
2631 }
2632 }
2633
2634 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2635 static bool
2636 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2637 {
2638 expr_def _tmp, *tmp = &_tmp;
2639 int last_cycle;
2640 bool res = true;
2641
2642 copy_expr_onside (tmp, expr);
2643 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2644 while (path
2645 && res
2646 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2647 {
2648 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2649 != MOVEUP_EXPR_NULL);
2650 path = ILIST_NEXT (path);
2651 }
2652
2653 if (res)
2654 {
2655 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2656 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2657
2658 if (tmp_vinsn != expr_vliw_vinsn)
2659 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2660 }
2661
2662 clear_expr (tmp);
2663 return res;
2664 }
2665 \f
2666
2667 /* Functions that compute av and lv sets. */
2668
2669 /* Returns true if INSN is not a downward continuation of the given path P in
2670 the current stage. */
2671 static bool
2672 is_ineligible_successor (insn_t insn, ilist_t p)
2673 {
2674 insn_t prev_insn;
2675
2676 /* Check if insn is not deleted. */
2677 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2678 gcc_unreachable ();
2679 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2680 gcc_unreachable ();
2681
2682 /* If it's the first insn visited, then the successor is ok. */
2683 if (!p)
2684 return false;
2685
2686 prev_insn = ILIST_INSN (p);
2687
2688 if (/* a backward edge. */
2689 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2690 /* is already visited. */
2691 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2692 && (ilist_is_in_p (p, insn)
2693 /* We can reach another fence here and still seqno of insn
2694 would be equal to seqno of prev_insn. This is possible
2695 when prev_insn is a previously created bookkeeping copy.
2696 In that case it'd get a seqno of insn. Thus, check here
2697 whether insn is in current fence too. */
2698 || IN_CURRENT_FENCE_P (insn)))
2699 /* Was already scheduled on this round. */
2700 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2701 && IN_CURRENT_FENCE_P (insn))
2702 /* An insn from another fence could also be
2703 scheduled earlier even if this insn is not in
2704 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2705 || (!pipelining_p
2706 && INSN_SCHED_TIMES (insn) > 0))
2707 return true;
2708 else
2709 return false;
2710 }
2711
2712 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2713 of handling multiple successors and properly merging its av_sets. P is
2714 the current path traversed. WS is the size of lookahead window.
2715 Return the av set computed. */
2716 static av_set_t
2717 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2718 {
2719 struct succs_info *sinfo;
2720 av_set_t expr_in_all_succ_branches = NULL;
2721 int is;
2722 insn_t succ, zero_succ = NULL;
2723 av_set_t av1 = NULL;
2724
2725 gcc_assert (sel_bb_end_p (insn));
2726
2727 /* Find different kind of successors needed for correct computing of
2728 SPEC and TARGET_AVAILABLE attributes. */
2729 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2730
2731 /* Debug output. */
2732 if (sched_verbose >= 6)
2733 {
2734 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2735 dump_insn_vector (sinfo->succs_ok);
2736 sel_print ("\n");
2737 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2738 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2739 }
2740
2741 /* Add insn to to the tail of current path. */
2742 ilist_add (&p, insn);
2743
2744 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2745 {
2746 av_set_t succ_set;
2747
2748 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2749 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2750
2751 av_set_split_usefulness (succ_set,
2752 VEC_index (int, sinfo->probs_ok, is),
2753 sinfo->all_prob);
2754
2755 if (sinfo->all_succs_n > 1)
2756 {
2757 /* Find EXPR'es that came from *all* successors and save them
2758 into expr_in_all_succ_branches. This set will be used later
2759 for calculating speculation attributes of EXPR'es. */
2760 if (is == 0)
2761 {
2762 expr_in_all_succ_branches = av_set_copy (succ_set);
2763
2764 /* Remember the first successor for later. */
2765 zero_succ = succ;
2766 }
2767 else
2768 {
2769 av_set_iterator i;
2770 expr_t expr;
2771
2772 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2773 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2774 av_set_iter_remove (&i);
2775 }
2776 }
2777
2778 /* Union the av_sets. Check liveness restrictions on target registers
2779 in special case of two successors. */
2780 if (sinfo->succs_ok_n == 2 && is == 1)
2781 {
2782 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2783 basic_block bb1 = BLOCK_FOR_INSN (succ);
2784
2785 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2786 av_set_union_and_live (&av1, &succ_set,
2787 BB_LV_SET (bb0),
2788 BB_LV_SET (bb1),
2789 insn);
2790 }
2791 else
2792 av_set_union_and_clear (&av1, &succ_set, insn);
2793 }
2794
2795 /* Check liveness restrictions via hard way when there are more than
2796 two successors. */
2797 if (sinfo->succs_ok_n > 2)
2798 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2799 {
2800 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2801
2802 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2803 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2804 BB_LV_SET (succ_bb));
2805 }
2806
2807 /* Finally, check liveness restrictions on paths leaving the region. */
2808 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2809 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2810 mark_unavailable_targets
2811 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2812
2813 if (sinfo->all_succs_n > 1)
2814 {
2815 av_set_iterator i;
2816 expr_t expr;
2817
2818 /* Increase the spec attribute of all EXPR'es that didn't come
2819 from all successors. */
2820 FOR_EACH_EXPR (expr, i, av1)
2821 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2822 EXPR_SPEC (expr)++;
2823
2824 av_set_clear (&expr_in_all_succ_branches);
2825
2826 /* Do not move conditional branches through other
2827 conditional branches. So, remove all conditional
2828 branches from av_set if current operator is a conditional
2829 branch. */
2830 av_set_substract_cond_branches (&av1);
2831 }
2832
2833 ilist_remove (&p);
2834 free_succs_info (sinfo);
2835
2836 if (sched_verbose >= 6)
2837 {
2838 sel_print ("av_succs (%d): ", INSN_UID (insn));
2839 dump_av_set (av1);
2840 sel_print ("\n");
2841 }
2842
2843 return av1;
2844 }
2845
2846 /* This function computes av_set for the FIRST_INSN by dragging valid
2847 av_set through all basic block insns either from the end of basic block
2848 (computed using compute_av_set_at_bb_end) or from the insn on which
2849 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2850 below the basic block and handling conditional branches.
2851 FIRST_INSN - the basic block head, P - path consisting of the insns
2852 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2853 and bb ends are added to the path), WS - current window size,
2854 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2855 static av_set_t
2856 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2857 bool need_copy_p)
2858 {
2859 insn_t cur_insn;
2860 int end_ws = ws;
2861 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2862 insn_t after_bb_end = NEXT_INSN (bb_end);
2863 insn_t last_insn;
2864 av_set_t av = NULL;
2865 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2866
2867 /* Return NULL if insn is not on the legitimate downward path. */
2868 if (is_ineligible_successor (first_insn, p))
2869 {
2870 if (sched_verbose >= 6)
2871 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2872
2873 return NULL;
2874 }
2875
2876 /* If insn already has valid av(insn) computed, just return it. */
2877 if (AV_SET_VALID_P (first_insn))
2878 {
2879 av_set_t av_set;
2880
2881 if (sel_bb_head_p (first_insn))
2882 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2883 else
2884 av_set = NULL;
2885
2886 if (sched_verbose >= 6)
2887 {
2888 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2889 dump_av_set (av_set);
2890 sel_print ("\n");
2891 }
2892
2893 return need_copy_p ? av_set_copy (av_set) : av_set;
2894 }
2895
2896 ilist_add (&p, first_insn);
2897
2898 /* As the result after this loop have completed, in LAST_INSN we'll
2899 have the insn which has valid av_set to start backward computation
2900 from: it either will be NULL because on it the window size was exceeded
2901 or other valid av_set as returned by compute_av_set for the last insn
2902 of the basic block. */
2903 for (last_insn = first_insn; last_insn != after_bb_end;
2904 last_insn = NEXT_INSN (last_insn))
2905 {
2906 /* We may encounter valid av_set not only on bb_head, but also on
2907 those insns on which previously MAX_WS was exceeded. */
2908 if (AV_SET_VALID_P (last_insn))
2909 {
2910 if (sched_verbose >= 6)
2911 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2912 break;
2913 }
2914
2915 /* The special case: the last insn of the BB may be an
2916 ineligible_successor due to its SEQ_NO that was set on
2917 it as a bookkeeping. */
2918 if (last_insn != first_insn
2919 && is_ineligible_successor (last_insn, p))
2920 {
2921 if (sched_verbose >= 6)
2922 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2923 break;
2924 }
2925
2926 if (DEBUG_INSN_P (last_insn))
2927 continue;
2928
2929 if (end_ws > max_ws)
2930 {
2931 /* We can reach max lookahead size at bb_header, so clean av_set
2932 first. */
2933 INSN_WS_LEVEL (last_insn) = global_level;
2934
2935 if (sched_verbose >= 6)
2936 sel_print ("Insn %d is beyond the software lookahead window size\n",
2937 INSN_UID (last_insn));
2938 break;
2939 }
2940
2941 end_ws++;
2942 }
2943
2944 /* Get the valid av_set into AV above the LAST_INSN to start backward
2945 computation from. It either will be empty av_set or av_set computed from
2946 the successors on the last insn of the current bb. */
2947 if (last_insn != after_bb_end)
2948 {
2949 av = NULL;
2950
2951 /* This is needed only to obtain av_sets that are identical to
2952 those computed by the old compute_av_set version. */
2953 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2954 av_set_add (&av, INSN_EXPR (last_insn));
2955 }
2956 else
2957 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2958 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2959
2960 /* Compute av_set in AV starting from below the LAST_INSN up to
2961 location above the FIRST_INSN. */
2962 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2963 cur_insn = PREV_INSN (cur_insn))
2964 if (!INSN_NOP_P (cur_insn))
2965 {
2966 expr_t expr;
2967
2968 moveup_set_expr (&av, cur_insn, false);
2969
2970 /* If the expression for CUR_INSN is already in the set,
2971 replace it by the new one. */
2972 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2973 if (expr != NULL)
2974 {
2975 clear_expr (expr);
2976 copy_expr (expr, INSN_EXPR (cur_insn));
2977 }
2978 else
2979 av_set_add (&av, INSN_EXPR (cur_insn));
2980 }
2981
2982 /* Clear stale bb_av_set. */
2983 if (sel_bb_head_p (first_insn))
2984 {
2985 av_set_clear (&BB_AV_SET (cur_bb));
2986 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2987 BB_AV_LEVEL (cur_bb) = global_level;
2988 }
2989
2990 if (sched_verbose >= 6)
2991 {
2992 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2993 dump_av_set (av);
2994 sel_print ("\n");
2995 }
2996
2997 ilist_remove (&p);
2998 return av;
2999 }
3000
3001 /* Compute av set before INSN.
3002 INSN - the current operation (actual rtx INSN)
3003 P - the current path, which is list of insns visited so far
3004 WS - software lookahead window size.
3005 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3006 if we want to save computed av_set in s_i_d, we should make a copy of it.
3007
3008 In the resulting set we will have only expressions that don't have delay
3009 stalls and nonsubstitutable dependences. */
3010 static av_set_t
3011 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3012 {
3013 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3014 }
3015
3016 /* Propagate a liveness set LV through INSN. */
3017 static void
3018 propagate_lv_set (regset lv, insn_t insn)
3019 {
3020 gcc_assert (INSN_P (insn));
3021
3022 if (INSN_NOP_P (insn))
3023 return;
3024
3025 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3026 }
3027
3028 /* Return livness set at the end of BB. */
3029 static regset
3030 compute_live_after_bb (basic_block bb)
3031 {
3032 edge e;
3033 edge_iterator ei;
3034 regset lv = get_clear_regset_from_pool ();
3035
3036 gcc_assert (!ignore_first);
3037
3038 FOR_EACH_EDGE (e, ei, bb->succs)
3039 if (sel_bb_empty_p (e->dest))
3040 {
3041 if (! BB_LV_SET_VALID_P (e->dest))
3042 {
3043 gcc_unreachable ();
3044 gcc_assert (BB_LV_SET (e->dest) == NULL);
3045 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3046 BB_LV_SET_VALID_P (e->dest) = true;
3047 }
3048 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3049 }
3050 else
3051 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3052
3053 return lv;
3054 }
3055
3056 /* Compute the set of all live registers at the point before INSN and save
3057 it at INSN if INSN is bb header. */
3058 regset
3059 compute_live (insn_t insn)
3060 {
3061 basic_block bb = BLOCK_FOR_INSN (insn);
3062 insn_t final, temp;
3063 regset lv;
3064
3065 /* Return the valid set if we're already on it. */
3066 if (!ignore_first)
3067 {
3068 regset src = NULL;
3069
3070 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3071 src = BB_LV_SET (bb);
3072 else
3073 {
3074 gcc_assert (in_current_region_p (bb));
3075 if (INSN_LIVE_VALID_P (insn))
3076 src = INSN_LIVE (insn);
3077 }
3078
3079 if (src)
3080 {
3081 lv = get_regset_from_pool ();
3082 COPY_REG_SET (lv, src);
3083
3084 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3085 {
3086 COPY_REG_SET (BB_LV_SET (bb), lv);
3087 BB_LV_SET_VALID_P (bb) = true;
3088 }
3089
3090 return_regset_to_pool (lv);
3091 return lv;
3092 }
3093 }
3094
3095 /* We've skipped the wrong lv_set. Don't skip the right one. */
3096 ignore_first = false;
3097 gcc_assert (in_current_region_p (bb));
3098
3099 /* Find a valid LV set in this block or below, if needed.
3100 Start searching from the next insn: either ignore_first is true, or
3101 INSN doesn't have a correct live set. */
3102 temp = NEXT_INSN (insn);
3103 final = NEXT_INSN (BB_END (bb));
3104 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3105 temp = NEXT_INSN (temp);
3106 if (temp == final)
3107 {
3108 lv = compute_live_after_bb (bb);
3109 temp = PREV_INSN (temp);
3110 }
3111 else
3112 {
3113 lv = get_regset_from_pool ();
3114 COPY_REG_SET (lv, INSN_LIVE (temp));
3115 }
3116
3117 /* Put correct lv sets on the insns which have bad sets. */
3118 final = PREV_INSN (insn);
3119 while (temp != final)
3120 {
3121 propagate_lv_set (lv, temp);
3122 COPY_REG_SET (INSN_LIVE (temp), lv);
3123 INSN_LIVE_VALID_P (temp) = true;
3124 temp = PREV_INSN (temp);
3125 }
3126
3127 /* Also put it in a BB. */
3128 if (sel_bb_head_p (insn))
3129 {
3130 basic_block bb = BLOCK_FOR_INSN (insn);
3131
3132 COPY_REG_SET (BB_LV_SET (bb), lv);
3133 BB_LV_SET_VALID_P (bb) = true;
3134 }
3135
3136 /* We return LV to the pool, but will not clear it there. Thus we can
3137 legimatelly use LV till the next use of regset_pool_get (). */
3138 return_regset_to_pool (lv);
3139 return lv;
3140 }
3141
3142 /* Update liveness sets for INSN. */
3143 static inline void
3144 update_liveness_on_insn (rtx insn)
3145 {
3146 ignore_first = true;
3147 compute_live (insn);
3148 }
3149
3150 /* Compute liveness below INSN and write it into REGS. */
3151 static inline void
3152 compute_live_below_insn (rtx insn, regset regs)
3153 {
3154 rtx succ;
3155 succ_iterator si;
3156
3157 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3158 IOR_REG_SET (regs, compute_live (succ));
3159 }
3160
3161 /* Update the data gathered in av and lv sets starting from INSN. */
3162 static void
3163 update_data_sets (rtx insn)
3164 {
3165 update_liveness_on_insn (insn);
3166 if (sel_bb_head_p (insn))
3167 {
3168 gcc_assert (AV_LEVEL (insn) != 0);
3169 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3170 compute_av_set (insn, NULL, 0, 0);
3171 }
3172 }
3173 \f
3174
3175 /* Helper for move_op () and find_used_regs ().
3176 Return speculation type for which a check should be created on the place
3177 of INSN. EXPR is one of the original ops we are searching for. */
3178 static ds_t
3179 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3180 {
3181 ds_t to_check_ds;
3182 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3183
3184 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3185
3186 if (targetm.sched.get_insn_checked_ds)
3187 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3188
3189 if (spec_info != NULL
3190 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3191 already_checked_ds |= BEGIN_CONTROL;
3192
3193 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3194
3195 to_check_ds &= ~already_checked_ds;
3196
3197 return to_check_ds;
3198 }
3199
3200 /* Find the set of registers that are unavailable for storing expres
3201 while moving ORIG_OPS up on the path starting from INSN due to
3202 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3203
3204 All the original operations found during the traversal are saved in the
3205 ORIGINAL_INSNS list.
3206
3207 REG_RENAME_P denotes the set of hardware registers that
3208 can not be used with renaming due to the register class restrictions,
3209 mode restrictions and other (the register we'll choose should be
3210 compatible class with the original uses, shouldn't be in call_used_regs,
3211 should be HARD_REGNO_RENAME_OK etc).
3212
3213 Returns TRUE if we've found all original insns, FALSE otherwise.
3214
3215 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3216 to traverse the code motion paths. This helper function finds registers
3217 that are not available for storing expres while moving ORIG_OPS up on the
3218 path starting from INSN. A register considered as used on the moving path,
3219 if one of the following conditions is not satisfied:
3220
3221 (1) a register not set or read on any path from xi to an instance of
3222 the original operation,
3223 (2) not among the live registers of the point immediately following the
3224 first original operation on a given downward path, except for the
3225 original target register of the operation,
3226 (3) not live on the other path of any conditional branch that is passed
3227 by the operation, in case original operations are not present on
3228 both paths of the conditional branch.
3229
3230 All the original operations found during the traversal are saved in the
3231 ORIGINAL_INSNS list.
3232
3233 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3234 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3235 to unavailable hard regs at the point original operation is found. */
3236
3237 static bool
3238 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3239 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3240 {
3241 def_list_iterator i;
3242 def_t def;
3243 int res;
3244 bool needs_spec_check_p = false;
3245 expr_t expr;
3246 av_set_iterator expr_iter;
3247 struct fur_static_params sparams;
3248 struct cmpd_local_params lparams;
3249
3250 /* We haven't visited any blocks yet. */
3251 bitmap_clear (code_motion_visited_blocks);
3252
3253 /* Init parameters for code_motion_path_driver. */
3254 sparams.crosses_call = false;
3255 sparams.original_insns = original_insns;
3256 sparams.used_regs = used_regs;
3257
3258 /* Set the appropriate hooks and data. */
3259 code_motion_path_driver_info = &fur_hooks;
3260
3261 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3262
3263 reg_rename_p->crosses_call |= sparams.crosses_call;
3264
3265 gcc_assert (res == 1);
3266 gcc_assert (original_insns && *original_insns);
3267
3268 /* ??? We calculate whether an expression needs a check when computing
3269 av sets. This information is not as precise as it could be due to
3270 merging this bit in merge_expr. We can do better in find_used_regs,
3271 but we want to avoid multiple traversals of the same code motion
3272 paths. */
3273 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3274 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3275
3276 /* Mark hardware regs in REG_RENAME_P that are not suitable
3277 for renaming expr in INSN due to hardware restrictions (register class,
3278 modes compatibility etc). */
3279 FOR_EACH_DEF (def, i, *original_insns)
3280 {
3281 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3282
3283 if (VINSN_SEPARABLE_P (vinsn))
3284 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3285
3286 /* Do not allow clobbering of ld.[sa] address in case some of the
3287 original operations need a check. */
3288 if (needs_spec_check_p)
3289 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3290 }
3291
3292 return true;
3293 }
3294 \f
3295
3296 /* Functions to choose the best insn from available ones. */
3297
3298 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3299 static int
3300 sel_target_adjust_priority (expr_t expr)
3301 {
3302 int priority = EXPR_PRIORITY (expr);
3303 int new_priority;
3304
3305 if (targetm.sched.adjust_priority)
3306 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3307 else
3308 new_priority = priority;
3309
3310 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3311 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3312
3313 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3314
3315 if (sched_verbose >= 4)
3316 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3317 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3318 EXPR_PRIORITY_ADJ (expr), new_priority);
3319
3320 return new_priority;
3321 }
3322
3323 /* Rank two available exprs for schedule. Never return 0 here. */
3324 static int
3325 sel_rank_for_schedule (const void *x, const void *y)
3326 {
3327 expr_t tmp = *(const expr_t *) y;
3328 expr_t tmp2 = *(const expr_t *) x;
3329 insn_t tmp_insn, tmp2_insn;
3330 vinsn_t tmp_vinsn, tmp2_vinsn;
3331 int val;
3332
3333 tmp_vinsn = EXPR_VINSN (tmp);
3334 tmp2_vinsn = EXPR_VINSN (tmp2);
3335 tmp_insn = EXPR_INSN_RTX (tmp);
3336 tmp2_insn = EXPR_INSN_RTX (tmp2);
3337
3338 /* Schedule debug insns as early as possible. */
3339 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3340 return -1;
3341 else if (DEBUG_INSN_P (tmp2_insn))
3342 return 1;
3343
3344 /* Prefer SCHED_GROUP_P insns to any others. */
3345 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3346 {
3347 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3348 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3349
3350 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3351 cannot be cloned. */
3352 if (VINSN_UNIQUE_P (tmp2_vinsn))
3353 return 1;
3354 return -1;
3355 }
3356
3357 /* Discourage scheduling of speculative checks. */
3358 val = (sel_insn_is_speculation_check (tmp_insn)
3359 - sel_insn_is_speculation_check (tmp2_insn));
3360 if (val)
3361 return val;
3362
3363 /* Prefer not scheduled insn over scheduled one. */
3364 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3365 {
3366 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3367 if (val)
3368 return val;
3369 }
3370
3371 /* Prefer jump over non-jump instruction. */
3372 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3373 return -1;
3374 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3375 return 1;
3376
3377 /* Prefer an expr with greater priority. */
3378 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3379 {
3380 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3381 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3382
3383 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3384 }
3385 else
3386 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3387 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3388 if (val)
3389 return val;
3390
3391 if (spec_info != NULL && spec_info->mask != 0)
3392 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3393 {
3394 ds_t ds1, ds2;
3395 dw_t dw1, dw2;
3396 int dw;
3397
3398 ds1 = EXPR_SPEC_DONE_DS (tmp);
3399 if (ds1)
3400 dw1 = ds_weak (ds1);
3401 else
3402 dw1 = NO_DEP_WEAK;
3403
3404 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3405 if (ds2)
3406 dw2 = ds_weak (ds2);
3407 else
3408 dw2 = NO_DEP_WEAK;
3409
3410 dw = dw2 - dw1;
3411 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3412 return dw;
3413 }
3414
3415 /* Prefer an old insn to a bookkeeping insn. */
3416 if (INSN_UID (tmp_insn) < first_emitted_uid
3417 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3418 return -1;
3419 if (INSN_UID (tmp_insn) >= first_emitted_uid
3420 && INSN_UID (tmp2_insn) < first_emitted_uid)
3421 return 1;
3422
3423 /* Prefer an insn with smaller UID, as a last resort.
3424 We can't safely use INSN_LUID as it is defined only for those insns
3425 that are in the stream. */
3426 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3427 }
3428
3429 /* Filter out expressions from av set pointed to by AV_PTR
3430 that are pipelined too many times. */
3431 static void
3432 process_pipelined_exprs (av_set_t *av_ptr)
3433 {
3434 expr_t expr;
3435 av_set_iterator si;
3436
3437 /* Don't pipeline already pipelined code as that would increase
3438 number of unnecessary register moves. */
3439 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3440 {
3441 if (EXPR_SCHED_TIMES (expr)
3442 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3443 av_set_iter_remove (&si);
3444 }
3445 }
3446
3447 /* Filter speculative insns from AV_PTR if we don't want them. */
3448 static void
3449 process_spec_exprs (av_set_t *av_ptr)
3450 {
3451 bool try_data_p = true;
3452 bool try_control_p = true;
3453 expr_t expr;
3454 av_set_iterator si;
3455
3456 if (spec_info == NULL)
3457 return;
3458
3459 /* Scan *AV_PTR to find out if we want to consider speculative
3460 instructions for scheduling. */
3461 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3462 {
3463 ds_t ds;
3464
3465 ds = EXPR_SPEC_DONE_DS (expr);
3466
3467 /* The probability of a success is too low - don't speculate. */
3468 if ((ds & SPECULATIVE)
3469 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3470 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3471 || (pipelining_p && false
3472 && (ds & DATA_SPEC)
3473 && (ds & CONTROL_SPEC))))
3474 {
3475 av_set_iter_remove (&si);
3476 continue;
3477 }
3478
3479 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3480 && !(ds & BEGIN_DATA))
3481 try_data_p = false;
3482
3483 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3484 && !(ds & BEGIN_CONTROL))
3485 try_control_p = false;
3486 }
3487
3488 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3489 {
3490 ds_t ds;
3491
3492 ds = EXPR_SPEC_DONE_DS (expr);
3493
3494 if (ds & SPECULATIVE)
3495 {
3496 if ((ds & BEGIN_DATA) && !try_data_p)
3497 /* We don't want any data speculative instructions right
3498 now. */
3499 av_set_iter_remove (&si);
3500
3501 if ((ds & BEGIN_CONTROL) && !try_control_p)
3502 /* We don't want any control speculative instructions right
3503 now. */
3504 av_set_iter_remove (&si);
3505 }
3506 }
3507 }
3508
3509 /* Search for any use-like insns in AV_PTR and decide on scheduling
3510 them. Return one when found, and NULL otherwise.
3511 Note that we check here whether a USE could be scheduled to avoid
3512 an infinite loop later. */
3513 static expr_t
3514 process_use_exprs (av_set_t *av_ptr)
3515 {
3516 expr_t expr;
3517 av_set_iterator si;
3518 bool uses_present_p = false;
3519 bool try_uses_p = true;
3520
3521 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3522 {
3523 /* This will also initialize INSN_CODE for later use. */
3524 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3525 {
3526 /* If we have a USE in *AV_PTR that was not scheduled yet,
3527 do so because it will do good only. */
3528 if (EXPR_SCHED_TIMES (expr) <= 0)
3529 {
3530 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3531 return expr;
3532
3533 av_set_iter_remove (&si);
3534 }
3535 else
3536 {
3537 gcc_assert (pipelining_p);
3538
3539 uses_present_p = true;
3540 }
3541 }
3542 else
3543 try_uses_p = false;
3544 }
3545
3546 if (uses_present_p)
3547 {
3548 /* If we don't want to schedule any USEs right now and we have some
3549 in *AV_PTR, remove them, else just return the first one found. */
3550 if (!try_uses_p)
3551 {
3552 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3553 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3554 av_set_iter_remove (&si);
3555 }
3556 else
3557 {
3558 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3559 {
3560 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3561
3562 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3563 return expr;
3564
3565 av_set_iter_remove (&si);
3566 }
3567 }
3568 }
3569
3570 return NULL;
3571 }
3572
3573 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3574 static bool
3575 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3576 {
3577 vinsn_t vinsn;
3578 int n;
3579
3580 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3581 if (VINSN_SEPARABLE_P (vinsn))
3582 {
3583 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3584 return true;
3585 }
3586 else
3587 {
3588 /* For non-separable instructions, the blocking insn can have
3589 another pattern due to substitution, and we can't choose
3590 different register as in the above case. Check all registers
3591 being written instead. */
3592 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3593 VINSN_REG_SETS (EXPR_VINSN (expr))))
3594 return true;
3595 }
3596
3597 return false;
3598 }
3599
3600 #ifdef ENABLE_CHECKING
3601 /* Return true if either of expressions from ORIG_OPS can be blocked
3602 by previously created bookkeeping code. STATIC_PARAMS points to static
3603 parameters of move_op. */
3604 static bool
3605 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3606 {
3607 expr_t expr;
3608 av_set_iterator iter;
3609 moveop_static_params_p sparams;
3610
3611 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3612 created while scheduling on another fence. */
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3615 return true;
3616
3617 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3618 sparams = (moveop_static_params_p) static_params;
3619
3620 /* Expressions can be also blocked by bookkeeping created during current
3621 move_op. */
3622 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3623 FOR_EACH_EXPR (expr, iter, orig_ops)
3624 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3625 return true;
3626
3627 /* Expressions in ORIG_OPS may have wrong destination register due to
3628 renaming. Check with the right register instead. */
3629 if (sparams->dest && REG_P (sparams->dest))
3630 {
3631 unsigned regno = REGNO (sparams->dest);
3632 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3633
3634 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3635 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3636 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3637 return true;
3638 }
3639
3640 return false;
3641 }
3642 #endif
3643
3644 /* Clear VINSN_VEC and detach vinsns. */
3645 static void
3646 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3647 {
3648 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3649 if (len > 0)
3650 {
3651 vinsn_t vinsn;
3652 int n;
3653
3654 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3655 vinsn_detach (vinsn);
3656 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3657 }
3658 }
3659
3660 /* Add the vinsn of EXPR to the VINSN_VEC. */
3661 static void
3662 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3663 {
3664 vinsn_attach (EXPR_VINSN (expr));
3665 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3666 }
3667
3668 /* Free the vector representing blocked expressions. */
3669 static void
3670 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3671 {
3672 if (*vinsn_vec)
3673 VEC_free (vinsn_t, heap, *vinsn_vec);
3674 }
3675
3676 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3677
3678 void sel_add_to_insn_priority (rtx insn, int amount)
3679 {
3680 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3681
3682 if (sched_verbose >= 2)
3683 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3684 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3685 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3686 }
3687
3688 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3689 true if there is something to schedule. BNDS and FENCE are current
3690 boundaries and fence, respectively. If we need to stall for some cycles
3691 before an expr from AV would become available, write this number to
3692 *PNEED_STALL. */
3693 static bool
3694 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3695 int *pneed_stall)
3696 {
3697 av_set_iterator si;
3698 expr_t expr;
3699 int sched_next_worked = 0, stalled, n;
3700 static int av_max_prio, est_ticks_till_branch;
3701 int min_need_stall = -1;
3702 deps_t dc = BND_DC (BLIST_BND (bnds));
3703
3704 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3705 already scheduled. */
3706 if (av == NULL)
3707 return false;
3708
3709 /* Empty vector from the previous stuff. */
3710 if (VEC_length (expr_t, vec_av_set) > 0)
3711 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3712
3713 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3714 for each insn. */
3715 gcc_assert (VEC_empty (expr_t, vec_av_set));
3716 FOR_EACH_EXPR (expr, si, av)
3717 {
3718 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3719
3720 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3721
3722 /* Adjust priority using target backend hook. */
3723 sel_target_adjust_priority (expr);
3724 }
3725
3726 /* Sort the vector. */
3727 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3728
3729 /* We record maximal priority of insns in av set for current instruction
3730 group. */
3731 if (FENCE_STARTS_CYCLE_P (fence))
3732 av_max_prio = est_ticks_till_branch = INT_MIN;
3733
3734 /* Filter out inappropriate expressions. Loop's direction is reversed to
3735 visit "best" instructions first. We assume that VEC_unordered_remove
3736 moves last element in place of one being deleted. */
3737 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3738 {
3739 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3740 insn_t insn = EXPR_INSN_RTX (expr);
3741 signed char target_available;
3742 bool is_orig_reg_p = true;
3743 int need_cycles, new_prio;
3744
3745 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3746 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3747 {
3748 VEC_unordered_remove (expr_t, vec_av_set, n);
3749 continue;
3750 }
3751
3752 /* Set number of sched_next insns (just in case there
3753 could be several). */
3754 if (FENCE_SCHED_NEXT (fence))
3755 sched_next_worked++;
3756
3757 /* Check all liveness requirements and try renaming.
3758 FIXME: try to minimize calls to this. */
3759 target_available = EXPR_TARGET_AVAILABLE (expr);
3760
3761 /* If insn was already scheduled on the current fence,
3762 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3763 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3764 target_available = -1;
3765
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3771 {
3772 VEC_unordered_remove (expr_t, vec_av_set, n);
3773 if (sched_verbose >= 4)
3774 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3775 INSN_UID (insn));
3776 continue;
3777 }
3778
3779 if (target_available == true)
3780 {
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3783 }
3784 else if (/* Non-separable instruction will never
3785 get another register. */
3786 (target_available == false
3787 && !EXPR_SEPARABLE_P (expr))
3788 /* Don't try to find a register for low-priority expression. */
3789 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3792 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3793 {
3794 VEC_unordered_remove (expr_t, vec_av_set, n);
3795 if (sched_verbose >= 4)
3796 sel_print ("Expr %d has no suitable target register\n",
3797 INSN_UID (insn));
3798 continue;
3799 }
3800
3801 /* Filter expressions that need to be renamed or speculated when
3802 pipelining, because compensating register copies or speculation
3803 checks are likely to be placed near the beginning of the loop,
3804 causing a stall. */
3805 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3806 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3807 {
3808 /* Estimation of number of cycles until loop branch for
3809 renaming/speculation to be successful. */
3810 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3811
3812 if ((int) current_loop_nest->ninsns < 9)
3813 {
3814 VEC_unordered_remove (expr_t, vec_av_set, n);
3815 if (sched_verbose >= 4)
3816 sel_print ("Pipelining expr %d will likely cause stall\n",
3817 INSN_UID (insn));
3818 continue;
3819 }
3820
3821 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3822 < need_n_ticks_till_branch * issue_rate / 2
3823 && est_ticks_till_branch < need_n_ticks_till_branch)
3824 {
3825 VEC_unordered_remove (expr_t, vec_av_set, n);
3826 if (sched_verbose >= 4)
3827 sel_print ("Pipelining expr %d will likely cause stall\n",
3828 INSN_UID (insn));
3829 continue;
3830 }
3831 }
3832
3833 /* We want to schedule speculation checks as late as possible. Discard
3834 them from av set if there are instructions with higher priority. */
3835 if (sel_insn_is_speculation_check (insn)
3836 && EXPR_PRIORITY (expr) < av_max_prio)
3837 {
3838 stalled++;
3839 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3840 VEC_unordered_remove (expr_t, vec_av_set, n);
3841 if (sched_verbose >= 4)
3842 sel_print ("Delaying speculation check %d until its first use\n",
3843 INSN_UID (insn));
3844 continue;
3845 }
3846
3847 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3848 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3849 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3850
3851 /* Don't allow any insns whose data is not yet ready.
3852 Check first whether we've already tried them and failed. */
3853 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3854 {
3855 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3856 - FENCE_CYCLE (fence));
3857 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3858 est_ticks_till_branch = MAX (est_ticks_till_branch,
3859 EXPR_PRIORITY (expr) + need_cycles);
3860
3861 if (need_cycles > 0)
3862 {
3863 stalled++;
3864 min_need_stall = (min_need_stall < 0
3865 ? need_cycles
3866 : MIN (min_need_stall, need_cycles));
3867 VEC_unordered_remove (expr_t, vec_av_set, n);
3868
3869 if (sched_verbose >= 4)
3870 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3871 INSN_UID (insn),
3872 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3873 continue;
3874 }
3875 }
3876
3877 /* Now resort to dependence analysis to find whether EXPR might be
3878 stalled due to dependencies from FENCE's context. */
3879 need_cycles = tick_check_p (expr, dc, fence);
3880 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3881
3882 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3883 est_ticks_till_branch = MAX (est_ticks_till_branch,
3884 new_prio);
3885
3886 if (need_cycles > 0)
3887 {
3888 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3889 {
3890 int new_size = INSN_UID (insn) * 3 / 2;
3891
3892 FENCE_READY_TICKS (fence)
3893 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3894 new_size, FENCE_READY_TICKS_SIZE (fence),
3895 sizeof (int));
3896 }
3897 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3898 = FENCE_CYCLE (fence) + need_cycles;
3899
3900 stalled++;
3901 min_need_stall = (min_need_stall < 0
3902 ? need_cycles
3903 : MIN (min_need_stall, need_cycles));
3904
3905 VEC_unordered_remove (expr_t, vec_av_set, n);
3906
3907 if (sched_verbose >= 4)
3908 sel_print ("Expr %d is not ready yet until cycle %d\n",
3909 INSN_UID (insn),
3910 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3911 continue;
3912 }
3913
3914 if (sched_verbose >= 4)
3915 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3916 min_need_stall = 0;
3917 }
3918
3919 /* Clear SCHED_NEXT. */
3920 if (FENCE_SCHED_NEXT (fence))
3921 {
3922 gcc_assert (sched_next_worked == 1);
3923 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3924 }
3925
3926 /* No need to stall if this variable was not initialized. */
3927 if (min_need_stall < 0)
3928 min_need_stall = 0;
3929
3930 if (VEC_empty (expr_t, vec_av_set))
3931 {
3932 /* We need to set *pneed_stall here, because later we skip this code
3933 when ready list is empty. */
3934 *pneed_stall = min_need_stall;
3935 return false;
3936 }
3937 else
3938 gcc_assert (min_need_stall == 0);
3939
3940 /* Sort the vector. */
3941 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3942
3943 if (sched_verbose >= 4)
3944 {
3945 sel_print ("Total ready exprs: %d, stalled: %d\n",
3946 VEC_length (expr_t, vec_av_set), stalled);
3947 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3948 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3949 dump_expr (expr);
3950 sel_print ("\n");
3951 }
3952
3953 *pneed_stall = 0;
3954 return true;
3955 }
3956
3957 /* Convert a vectored and sorted av set to the ready list that
3958 the rest of the backend wants to see. */
3959 static void
3960 convert_vec_av_set_to_ready (void)
3961 {
3962 int n;
3963 expr_t expr;
3964
3965 /* Allocate and fill the ready list from the sorted vector. */
3966 ready.n_ready = VEC_length (expr_t, vec_av_set);
3967 ready.first = ready.n_ready - 1;
3968
3969 gcc_assert (ready.n_ready > 0);
3970
3971 if (ready.n_ready > max_issue_size)
3972 {
3973 max_issue_size = ready.n_ready;
3974 sched_extend_ready_list (ready.n_ready);
3975 }
3976
3977 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3978 {
3979 vinsn_t vi = EXPR_VINSN (expr);
3980 insn_t insn = VINSN_INSN_RTX (vi);
3981
3982 ready_try[n] = 0;
3983 ready.vec[n] = insn;
3984 }
3985 }
3986
3987 /* Initialize ready list from *AV_PTR for the max_issue () call.
3988 If any unrecognizable insn found in *AV_PTR, return it (and skip
3989 max_issue). BND and FENCE are current boundary and fence,
3990 respectively. If we need to stall for some cycles before an expr
3991 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3992 static expr_t
3993 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3994 int *pneed_stall)
3995 {
3996 expr_t expr;
3997
3998 /* We do not support multiple boundaries per fence. */
3999 gcc_assert (BLIST_NEXT (bnds) == NULL);
4000
4001 /* Process expressions required special handling, i.e. pipelined,
4002 speculative and recog() < 0 expressions first. */
4003 process_pipelined_exprs (av_ptr);
4004 process_spec_exprs (av_ptr);
4005
4006 /* A USE could be scheduled immediately. */
4007 expr = process_use_exprs (av_ptr);
4008 if (expr)
4009 {
4010 *pneed_stall = 0;
4011 return expr;
4012 }
4013
4014 /* Turn the av set to a vector for sorting. */
4015 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4016 {
4017 ready.n_ready = 0;
4018 return NULL;
4019 }
4020
4021 /* Build the final ready list. */
4022 convert_vec_av_set_to_ready ();
4023 return NULL;
4024 }
4025
4026 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4027 static bool
4028 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4029 {
4030 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4031 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4032 : FENCE_CYCLE (fence) - 1;
4033 bool res = false;
4034 int sort_p = 0;
4035
4036 if (!targetm.sched.dfa_new_cycle)
4037 return false;
4038
4039 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4040
4041 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4042 insn, last_scheduled_cycle,
4043 FENCE_CYCLE (fence), &sort_p))
4044 {
4045 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4046 advance_one_cycle (fence);
4047 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4048 res = true;
4049 }
4050
4051 return res;
4052 }
4053
4054 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4055 we can issue. FENCE is the current fence. */
4056 static int
4057 invoke_reorder_hooks (fence_t fence)
4058 {
4059 int issue_more;
4060 bool ran_hook = false;
4061
4062 /* Call the reorder hook at the beginning of the cycle, and call
4063 the reorder2 hook in the middle of the cycle. */
4064 if (FENCE_ISSUED_INSNS (fence) == 0)
4065 {
4066 if (targetm.sched.reorder
4067 && !SCHED_GROUP_P (ready_element (&ready, 0))
4068 && ready.n_ready > 1)
4069 {
4070 /* Don't give reorder the most prioritized insn as it can break
4071 pipelining. */
4072 if (pipelining_p)
4073 --ready.n_ready;
4074
4075 issue_more
4076 = targetm.sched.reorder (sched_dump, sched_verbose,
4077 ready_lastpos (&ready),
4078 &ready.n_ready, FENCE_CYCLE (fence));
4079
4080 if (pipelining_p)
4081 ++ready.n_ready;
4082
4083 ran_hook = true;
4084 }
4085 else
4086 /* Initialize can_issue_more for variable_issue. */
4087 issue_more = issue_rate;
4088 }
4089 else if (targetm.sched.reorder2
4090 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4091 {
4092 if (ready.n_ready == 1)
4093 issue_more =
4094 targetm.sched.reorder2 (sched_dump, sched_verbose,
4095 ready_lastpos (&ready),
4096 &ready.n_ready, FENCE_CYCLE (fence));
4097 else
4098 {
4099 if (pipelining_p)
4100 --ready.n_ready;
4101
4102 issue_more =
4103 targetm.sched.reorder2 (sched_dump, sched_verbose,
4104 ready.n_ready
4105 ? ready_lastpos (&ready) : NULL,
4106 &ready.n_ready, FENCE_CYCLE (fence));
4107
4108 if (pipelining_p)
4109 ++ready.n_ready;
4110 }
4111
4112 ran_hook = true;
4113 }
4114 else
4115 issue_more = FENCE_ISSUE_MORE (fence);
4116
4117 /* Ensure that ready list and vec_av_set are in line with each other,
4118 i.e. vec_av_set[i] == ready_element (&ready, i). */
4119 if (issue_more && ran_hook)
4120 {
4121 int i, j, n;
4122 rtx *arr = ready.vec;
4123 expr_t *vec = VEC_address (expr_t, vec_av_set);
4124
4125 for (i = 0, n = ready.n_ready; i < n; i++)
4126 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4127 {
4128 expr_t tmp;
4129
4130 for (j = i; j < n; j++)
4131 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4132 break;
4133 gcc_assert (j < n);
4134
4135 tmp = vec[i];
4136 vec[i] = vec[j];
4137 vec[j] = tmp;
4138 }
4139 }
4140
4141 return issue_more;
4142 }
4143
4144 /* Return an EXPR correponding to INDEX element of ready list, if
4145 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4146 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4147 ready.vec otherwise. */
4148 static inline expr_t
4149 find_expr_for_ready (int index, bool follow_ready_element)
4150 {
4151 expr_t expr;
4152 int real_index;
4153
4154 real_index = follow_ready_element ? ready.first - index : index;
4155
4156 expr = VEC_index (expr_t, vec_av_set, real_index);
4157 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4158
4159 return expr;
4160 }
4161
4162 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4163 of such insns found. */
4164 static int
4165 invoke_dfa_lookahead_guard (void)
4166 {
4167 int i, n;
4168 bool have_hook
4169 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4170
4171 if (sched_verbose >= 2)
4172 sel_print ("ready after reorder: ");
4173
4174 for (i = 0, n = 0; i < ready.n_ready; i++)
4175 {
4176 expr_t expr;
4177 insn_t insn;
4178 int r;
4179
4180 /* In this loop insn is Ith element of the ready list given by
4181 ready_element, not Ith element of ready.vec. */
4182 insn = ready_element (&ready, i);
4183
4184 if (! have_hook || i == 0)
4185 r = 0;
4186 else
4187 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4188
4189 gcc_assert (INSN_CODE (insn) >= 0);
4190
4191 /* Only insns with ready_try = 0 can get here
4192 from fill_ready_list. */
4193 gcc_assert (ready_try [i] == 0);
4194 ready_try[i] = r;
4195 if (!r)
4196 n++;
4197
4198 expr = find_expr_for_ready (i, true);
4199
4200 if (sched_verbose >= 2)
4201 {
4202 dump_vinsn (EXPR_VINSN (expr));
4203 sel_print (":%d; ", ready_try[i]);
4204 }
4205 }
4206
4207 if (sched_verbose >= 2)
4208 sel_print ("\n");
4209 return n;
4210 }
4211
4212 /* Calculate the number of privileged insns and return it. */
4213 static int
4214 calculate_privileged_insns (void)
4215 {
4216 expr_t cur_expr, min_spec_expr = NULL;
4217 int privileged_n = 0, i;
4218
4219 for (i = 0; i < ready.n_ready; i++)
4220 {
4221 if (ready_try[i])
4222 continue;
4223
4224 if (! min_spec_expr)
4225 min_spec_expr = find_expr_for_ready (i, true);
4226
4227 cur_expr = find_expr_for_ready (i, true);
4228
4229 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4230 break;
4231
4232 ++privileged_n;
4233 }
4234
4235 if (i == ready.n_ready)
4236 privileged_n = 0;
4237
4238 if (sched_verbose >= 2)
4239 sel_print ("privileged_n: %d insns with SPEC %d\n",
4240 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4241 return privileged_n;
4242 }
4243
4244 /* Call the rest of the hooks after the choice was made. Return
4245 the number of insns that still can be issued given that the current
4246 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4247 and the insn chosen for scheduling, respectively. */
4248 static int
4249 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4250 {
4251 gcc_assert (INSN_P (best_insn));
4252
4253 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4254 sel_dfa_new_cycle (best_insn, fence);
4255
4256 if (targetm.sched.variable_issue)
4257 {
4258 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4259 issue_more =
4260 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4261 issue_more);
4262 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4263 }
4264 else if (GET_CODE (PATTERN (best_insn)) != USE
4265 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4266 issue_more--;
4267
4268 return issue_more;
4269 }
4270
4271 /* Estimate the cost of issuing INSN on DFA state STATE. */
4272 static int
4273 estimate_insn_cost (rtx insn, state_t state)
4274 {
4275 static state_t temp = NULL;
4276 int cost;
4277
4278 if (!temp)
4279 temp = xmalloc (dfa_state_size);
4280
4281 memcpy (temp, state, dfa_state_size);
4282 cost = state_transition (temp, insn);
4283
4284 if (cost < 0)
4285 return 0;
4286 else if (cost == 0)
4287 return 1;
4288 return cost;
4289 }
4290
4291 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4292 This function properly handles ASMs, USEs etc. */
4293 static int
4294 get_expr_cost (expr_t expr, fence_t fence)
4295 {
4296 rtx insn = EXPR_INSN_RTX (expr);
4297
4298 if (recog_memoized (insn) < 0)
4299 {
4300 if (!FENCE_STARTS_CYCLE_P (fence)
4301 && INSN_ASM_P (insn))
4302 /* This is asm insn which is tryed to be issued on the
4303 cycle not first. Issue it on the next cycle. */
4304 return 1;
4305 else
4306 /* A USE insn, or something else we don't need to
4307 understand. We can't pass these directly to
4308 state_transition because it will trigger a
4309 fatal error for unrecognizable insns. */
4310 return 0;
4311 }
4312 else
4313 return estimate_insn_cost (insn, FENCE_STATE (fence));
4314 }
4315
4316 /* Find the best insn for scheduling, either via max_issue or just take
4317 the most prioritized available. */
4318 static int
4319 choose_best_insn (fence_t fence, int privileged_n, int *index)
4320 {
4321 int can_issue = 0;
4322
4323 if (dfa_lookahead > 0)
4324 {
4325 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4326 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4327 can_issue = max_issue (&ready, privileged_n,
4328 FENCE_STATE (fence), true, index);
4329 if (sched_verbose >= 2)
4330 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4331 can_issue, FENCE_ISSUED_INSNS (fence));
4332 }
4333 else
4334 {
4335 /* We can't use max_issue; just return the first available element. */
4336 int i;
4337
4338 for (i = 0; i < ready.n_ready; i++)
4339 {
4340 expr_t expr = find_expr_for_ready (i, true);
4341
4342 if (get_expr_cost (expr, fence) < 1)
4343 {
4344 can_issue = can_issue_more;
4345 *index = i;
4346
4347 if (sched_verbose >= 2)
4348 sel_print ("using %dth insn from the ready list\n", i + 1);
4349
4350 break;
4351 }
4352 }
4353
4354 if (i == ready.n_ready)
4355 {
4356 can_issue = 0;
4357 *index = -1;
4358 }
4359 }
4360
4361 return can_issue;
4362 }
4363
4364 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4365 BNDS and FENCE are current boundaries and scheduling fence respectively.
4366 Return the expr found and NULL if nothing can be issued atm.
4367 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4368 static expr_t
4369 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4370 int *pneed_stall)
4371 {
4372 expr_t best;
4373
4374 /* Choose the best insn for scheduling via:
4375 1) sorting the ready list based on priority;
4376 2) calling the reorder hook;
4377 3) calling max_issue. */
4378 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4379 if (best == NULL && ready.n_ready > 0)
4380 {
4381 int privileged_n, index;
4382
4383 can_issue_more = invoke_reorder_hooks (fence);
4384 if (can_issue_more > 0)
4385 {
4386 /* Try choosing the best insn until we find one that is could be
4387 scheduled due to liveness restrictions on its destination register.
4388 In the future, we'd like to choose once and then just probe insns
4389 in the order of their priority. */
4390 invoke_dfa_lookahead_guard ();
4391 privileged_n = calculate_privileged_insns ();
4392 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4393 if (can_issue_more)
4394 best = find_expr_for_ready (index, true);
4395 }
4396 /* We had some available insns, so if we can't issue them,
4397 we have a stall. */
4398 if (can_issue_more == 0)
4399 {
4400 best = NULL;
4401 *pneed_stall = 1;
4402 }
4403 }
4404
4405 if (best != NULL)
4406 {
4407 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4408 can_issue_more);
4409 if (targetm.sched.variable_issue
4410 && can_issue_more == 0)
4411 *pneed_stall = 1;
4412 }
4413
4414 if (sched_verbose >= 2)
4415 {
4416 if (best != NULL)
4417 {
4418 sel_print ("Best expression (vliw form): ");
4419 dump_expr (best);
4420 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4421 }
4422 else
4423 sel_print ("No best expr found!\n");
4424 }
4425
4426 return best;
4427 }
4428 \f
4429
4430 /* Functions that implement the core of the scheduler. */
4431
4432
4433 /* Emit an instruction from EXPR with SEQNO and VINSN after
4434 PLACE_TO_INSERT. */
4435 static insn_t
4436 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4437 insn_t place_to_insert)
4438 {
4439 /* This assert fails when we have identical instructions
4440 one of which dominates the other. In this case move_op ()
4441 finds the first instruction and doesn't search for second one.
4442 The solution would be to compute av_set after the first found
4443 insn and, if insn present in that set, continue searching.
4444 For now we workaround this issue in move_op. */
4445 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4446
4447 if (EXPR_WAS_RENAMED (expr))
4448 {
4449 unsigned regno = expr_dest_regno (expr);
4450
4451 if (HARD_REGISTER_NUM_P (regno))
4452 {
4453 df_set_regs_ever_live (regno, true);
4454 reg_rename_tick[regno] = ++reg_rename_this_tick;
4455 }
4456 }
4457
4458 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4459 place_to_insert);
4460 }
4461
4462 /* Return TRUE if BB can hold bookkeeping code. */
4463 static bool
4464 block_valid_for_bookkeeping_p (basic_block bb)
4465 {
4466 insn_t bb_end = BB_END (bb);
4467
4468 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4469 return false;
4470
4471 if (INSN_P (bb_end))
4472 {
4473 if (INSN_SCHED_TIMES (bb_end) > 0)
4474 return false;
4475 }
4476 else
4477 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4478
4479 return true;
4480 }
4481
4482 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4483 into E2->dest, except from E1->src (there may be a sequence of empty basic
4484 blocks between E1->src and E2->dest). Return found block, or NULL if new
4485 one must be created. If LAX holds, don't assume there is a simple path
4486 from E1->src to E2->dest. */
4487 static basic_block
4488 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4489 {
4490 basic_block candidate_block = NULL;
4491 edge e;
4492
4493 /* Loop over edges from E1 to E2, inclusive. */
4494 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4495 {
4496 if (EDGE_COUNT (e->dest->preds) == 2)
4497 {
4498 if (candidate_block == NULL)
4499 candidate_block = (EDGE_PRED (e->dest, 0) == e
4500 ? EDGE_PRED (e->dest, 1)->src
4501 : EDGE_PRED (e->dest, 0)->src);
4502 else
4503 /* Found additional edge leading to path from e1 to e2
4504 from aside. */
4505 return NULL;
4506 }
4507 else if (EDGE_COUNT (e->dest->preds) > 2)
4508 /* Several edges leading to path from e1 to e2 from aside. */
4509 return NULL;
4510
4511 if (e == e2)
4512 return ((!lax || candidate_block)
4513 && block_valid_for_bookkeeping_p (candidate_block)
4514 ? candidate_block
4515 : NULL);
4516
4517 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4518 return NULL;
4519 }
4520
4521 if (lax)
4522 return NULL;
4523
4524 gcc_unreachable ();
4525 }
4526
4527 /* Create new basic block for bookkeeping code for path(s) incoming into
4528 E2->dest, except from E1->src. Return created block. */
4529 static basic_block
4530 create_block_for_bookkeeping (edge e1, edge e2)
4531 {
4532 basic_block new_bb, bb = e2->dest;
4533
4534 /* Check that we don't spoil the loop structure. */
4535 if (current_loop_nest)
4536 {
4537 basic_block latch = current_loop_nest->latch;
4538
4539 /* We do not split header. */
4540 gcc_assert (e2->dest != current_loop_nest->header);
4541
4542 /* We do not redirect the only edge to the latch block. */
4543 gcc_assert (e1->dest != latch
4544 || !single_pred_p (latch)
4545 || e1 != single_pred_edge (latch));
4546 }
4547
4548 /* Split BB to insert BOOK_INSN there. */
4549 new_bb = sched_split_block (bb, NULL);
4550
4551 /* Move note_list from the upper bb. */
4552 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4553 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4554 BB_NOTE_LIST (bb) = NULL_RTX;
4555
4556 gcc_assert (e2->dest == bb);
4557
4558 /* Skip block for bookkeeping copy when leaving E1->src. */
4559 if (e1->flags & EDGE_FALLTHRU)
4560 sel_redirect_edge_and_branch_force (e1, new_bb);
4561 else
4562 sel_redirect_edge_and_branch (e1, new_bb);
4563
4564 gcc_assert (e1->dest == new_bb);
4565 gcc_assert (sel_bb_empty_p (bb));
4566
4567 /* To keep basic block numbers in sync between debug and non-debug
4568 compilations, we have to rotate blocks here. Consider that we
4569 started from (a,b)->d, (c,d)->e, and d contained only debug
4570 insns. It would have been removed before if the debug insns
4571 weren't there, so we'd have split e rather than d. So what we do
4572 now is to swap the block numbers of new_bb and
4573 single_succ(new_bb) == e, so that the insns that were in e before
4574 get the new block number. */
4575
4576 if (MAY_HAVE_DEBUG_INSNS)
4577 {
4578 basic_block succ;
4579 insn_t insn = sel_bb_head (new_bb);
4580 insn_t last;
4581
4582 if (DEBUG_INSN_P (insn)
4583 && single_succ_p (new_bb)
4584 && (succ = single_succ (new_bb))
4585 && succ != EXIT_BLOCK_PTR
4586 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4587 {
4588 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4589 insn = NEXT_INSN (insn);
4590
4591 if (insn == last)
4592 {
4593 sel_global_bb_info_def gbi;
4594 sel_region_bb_info_def rbi;
4595 int i;
4596
4597 if (sched_verbose >= 2)
4598 sel_print ("Swapping block ids %i and %i\n",
4599 new_bb->index, succ->index);
4600
4601 i = new_bb->index;
4602 new_bb->index = succ->index;
4603 succ->index = i;
4604
4605 SET_BASIC_BLOCK (new_bb->index, new_bb);
4606 SET_BASIC_BLOCK (succ->index, succ);
4607
4608 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4609 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4610 sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4612
4613 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4614 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4615 sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4617
4618 i = BLOCK_TO_BB (new_bb->index);
4619 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4620 BLOCK_TO_BB (succ->index) = i;
4621
4622 i = CONTAINING_RGN (new_bb->index);
4623 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4624 CONTAINING_RGN (succ->index) = i;
4625
4626 for (i = 0; i < current_nr_blocks; i++)
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4631
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4645
4646 if (sched_verbose >= 4)
4647 sel_print ("Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650
4651 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4652 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4653 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4654 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4655 }
4656 }
4657 }
4658
4659 return bb;
4660 }
4661
4662 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4663 into E2->dest, except from E1->src. */
4664 static insn_t
4665 find_place_for_bookkeeping (edge e1, edge e2)
4666 {
4667 insn_t place_to_insert;
4668 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4669 create new basic block, but insert bookkeeping there. */
4670 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4671
4672 if (book_block)
4673 {
4674 place_to_insert = BB_END (book_block);
4675
4676 /* Don't use a block containing only debug insns for
4677 bookkeeping, this causes scheduling differences between debug
4678 and non-debug compilations, for the block would have been
4679 removed already. */
4680 if (DEBUG_INSN_P (place_to_insert))
4681 {
4682 rtx insn = sel_bb_head (book_block);
4683
4684 while (insn != place_to_insert &&
4685 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4686 insn = NEXT_INSN (insn);
4687
4688 if (insn == place_to_insert)
4689 book_block = NULL;
4690 }
4691 }
4692
4693 if (!book_block)
4694 {
4695 book_block = create_block_for_bookkeeping (e1, e2);
4696 place_to_insert = BB_END (book_block);
4697 if (sched_verbose >= 9)
4698 sel_print ("New block is %i, split from bookkeeping block %i\n",
4699 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4700 }
4701 else
4702 {
4703 if (sched_verbose >= 9)
4704 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4705 }
4706
4707 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4708 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4709 place_to_insert = PREV_INSN (place_to_insert);
4710
4711 return place_to_insert;
4712 }
4713
4714 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4715 for JOIN_POINT. */
4716 static int
4717 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4718 {
4719 int seqno;
4720 rtx next;
4721
4722 /* Check if we are about to insert bookkeeping copy before a jump, and use
4723 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4724 next = NEXT_INSN (place_to_insert);
4725 if (INSN_P (next)
4726 && JUMP_P (next)
4727 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4728 {
4729 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4730 seqno = INSN_SEQNO (next);
4731 }
4732 else if (INSN_SEQNO (join_point) > 0)
4733 seqno = INSN_SEQNO (join_point);
4734 else
4735 {
4736 seqno = get_seqno_by_preds (place_to_insert);
4737
4738 /* Sometimes the fences can move in such a way that there will be
4739 no instructions with positive seqno around this bookkeeping.
4740 This means that there will be no way to get to it by a regular
4741 fence movement. Never mind because we pick up such pieces for
4742 rescheduling anyways, so any positive value will do for now. */
4743 if (seqno < 0)
4744 {
4745 gcc_assert (pipelining_p);
4746 seqno = 1;
4747 }
4748 }
4749
4750 gcc_assert (seqno > 0);
4751 return seqno;
4752 }
4753
4754 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4755 NEW_SEQNO to it. Return created insn. */
4756 static insn_t
4757 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4758 {
4759 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4760
4761 vinsn_t new_vinsn
4762 = create_vinsn_from_insn_rtx (new_insn_rtx,
4763 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4764
4765 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4766 place_to_insert);
4767
4768 INSN_SCHED_TIMES (new_insn) = 0;
4769 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4770
4771 return new_insn;
4772 }
4773
4774 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4775 E2->dest, except from E1->src (there may be a sequence of empty blocks
4776 between E1->src and E2->dest). Return block containing the copy.
4777 All scheduler data is initialized for the newly created insn. */
4778 static basic_block
4779 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4780 {
4781 insn_t join_point, place_to_insert, new_insn;
4782 int new_seqno;
4783 bool need_to_exchange_data_sets;
4784
4785 if (sched_verbose >= 4)
4786 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4787 e2->dest->index);
4788
4789 join_point = sel_bb_head (e2->dest);
4790 place_to_insert = find_place_for_bookkeeping (e1, e2);
4791 if (!place_to_insert)
4792 return NULL;
4793 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4794 need_to_exchange_data_sets
4795 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4796
4797 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4798
4799 /* When inserting bookkeeping insn in new block, av sets should be
4800 following: old basic block (that now holds bookkeeping) data sets are
4801 the same as was before generation of bookkeeping, and new basic block
4802 (that now hold all other insns of old basic block) data sets are
4803 invalid. So exchange data sets for these basic blocks as sel_split_block
4804 mistakenly exchanges them in this case. Cannot do it earlier because
4805 when single instruction is added to new basic block it should hold NULL
4806 lv_set. */
4807 if (need_to_exchange_data_sets)
4808 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4809 BLOCK_FOR_INSN (join_point));
4810
4811 stat_bookkeeping_copies++;
4812 return BLOCK_FOR_INSN (new_insn);
4813 }
4814
4815 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4816 on FENCE, but we are unable to copy them. */
4817 static void
4818 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4819 {
4820 expr_t expr;
4821 av_set_iterator i;
4822
4823 /* An expression does not need bookkeeping if it is available on all paths
4824 from current block to original block and current block dominates
4825 original block. We check availability on all paths by examining
4826 EXPR_SPEC; this is not equivalent, because it may be positive even
4827 if expr is available on all paths (but if expr is not available on
4828 any path, EXPR_SPEC will be positive). */
4829
4830 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4831 {
4832 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4833 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4834 && (EXPR_SPEC (expr)
4835 || !EXPR_ORIG_BB_INDEX (expr)
4836 || !dominated_by_p (CDI_DOMINATORS,
4837 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4838 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4839 {
4840 if (sched_verbose >= 4)
4841 sel_print ("Expr %d removed because it would need bookkeeping, which "
4842 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4843 av_set_iter_remove (&i);
4844 }
4845 }
4846 }
4847
4848 /* Moving conditional jump through some instructions.
4849
4850 Consider example:
4851
4852 ... <- current scheduling point
4853 NOTE BASIC BLOCK: <- bb header
4854 (p8) add r14=r14+0x9;;
4855 (p8) mov [r14]=r23
4856 (!p8) jump L1;;
4857 NOTE BASIC BLOCK:
4858 ...
4859
4860 We can schedule jump one cycle earlier, than mov, because they cannot be
4861 executed together as their predicates are mutually exclusive.
4862
4863 This is done in this way: first, new fallthrough basic block is created
4864 after jump (it is always can be done, because there already should be a
4865 fallthrough block, where control flow goes in case of predicate being true -
4866 in our example; otherwise there should be a dependence between those
4867 instructions and jump and we cannot schedule jump right now);
4868 next, all instructions between jump and current scheduling point are moved
4869 to this new block. And the result is this:
4870
4871 NOTE BASIC BLOCK:
4872 (!p8) jump L1 <- current scheduling point
4873 NOTE BASIC BLOCK: <- bb header
4874 (p8) add r14=r14+0x9;;
4875 (p8) mov [r14]=r23
4876 NOTE BASIC BLOCK:
4877 ...
4878 */
4879 static void
4880 move_cond_jump (rtx insn, bnd_t bnd)
4881 {
4882 edge ft_edge;
4883 basic_block block_from, block_next, block_new, block_bnd, bb;
4884 rtx next, prev, link, head;
4885
4886 block_from = BLOCK_FOR_INSN (insn);
4887 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4888 prev = BND_TO (bnd);
4889
4890 #ifdef ENABLE_CHECKING
4891 /* Moving of jump should not cross any other jumps or beginnings of new
4892 basic blocks. The only exception is when we move a jump through
4893 mutually exclusive insns along fallthru edges. */
4894 if (block_from != block_bnd)
4895 {
4896 bb = block_from;
4897 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4898 link = PREV_INSN (link))
4899 {
4900 if (INSN_P (link))
4901 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4902 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4903 {
4904 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4905 bb = BLOCK_FOR_INSN (link);
4906 }
4907 }
4908 }
4909 #endif
4910
4911 /* Jump is moved to the boundary. */
4912 next = PREV_INSN (insn);
4913 BND_TO (bnd) = insn;
4914
4915 ft_edge = find_fallthru_edge_from (block_from);
4916 block_next = ft_edge->dest;
4917 /* There must be a fallthrough block (or where should go
4918 control flow in case of false jump predicate otherwise?). */
4919 gcc_assert (block_next);
4920
4921 /* Create new empty basic block after source block. */
4922 block_new = sel_split_edge (ft_edge);
4923 gcc_assert (block_new->next_bb == block_next
4924 && block_from->next_bb == block_new);
4925
4926 /* Move all instructions except INSN to BLOCK_NEW. */
4927 bb = block_bnd;
4928 head = BB_HEAD (block_new);
4929 while (bb != block_from->next_bb)
4930 {
4931 rtx from, to;
4932 from = bb == block_bnd ? prev : sel_bb_head (bb);
4933 to = bb == block_from ? next : sel_bb_end (bb);
4934
4935 /* The jump being moved can be the first insn in the block.
4936 In this case we don't have to move anything in this block. */
4937 if (NEXT_INSN (to) != from)
4938 {
4939 reorder_insns (from, to, head);
4940
4941 for (link = to; link != head; link = PREV_INSN (link))
4942 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4943 head = to;
4944 }
4945
4946 /* Cleanup possibly empty blocks left. */
4947 block_next = bb->next_bb;
4948 if (bb != block_from)
4949 tidy_control_flow (bb, false);
4950 bb = block_next;
4951 }
4952
4953 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4954 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4955
4956 gcc_assert (!sel_bb_empty_p (block_from)
4957 && !sel_bb_empty_p (block_new));
4958
4959 /* Update data sets for BLOCK_NEW to represent that INSN and
4960 instructions from the other branch of INSN is no longer
4961 available at BLOCK_NEW. */
4962 BB_AV_LEVEL (block_new) = global_level;
4963 gcc_assert (BB_LV_SET (block_new) == NULL);
4964 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4965 update_data_sets (sel_bb_head (block_new));
4966
4967 /* INSN is a new basic block header - so prepare its data
4968 structures and update availability and liveness sets. */
4969 update_data_sets (insn);
4970
4971 if (sched_verbose >= 4)
4972 sel_print ("Moving jump %d\n", INSN_UID (insn));
4973 }
4974
4975 /* Remove nops generated during move_op for preventing removal of empty
4976 basic blocks. */
4977 static void
4978 remove_temp_moveop_nops (bool full_tidying)
4979 {
4980 int i;
4981 insn_t insn;
4982
4983 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4984 {
4985 gcc_assert (INSN_NOP_P (insn));
4986 return_nop_to_pool (insn, full_tidying);
4987 }
4988
4989 /* Empty the vector. */
4990 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4991 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4992 VEC_length (insn_t, vec_temp_moveop_nops));
4993 }
4994
4995 /* Records the maximal UID before moving up an instruction. Used for
4996 distinguishing between bookkeeping copies and original insns. */
4997 static int max_uid_before_move_op = 0;
4998
4999 /* Remove from AV_VLIW_P all instructions but next when debug counter
5000 tells us so. Next instruction is fetched from BNDS. */
5001 static void
5002 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5003 {
5004 if (! dbg_cnt (sel_sched_insn_cnt))
5005 /* Leave only the next insn in av_vliw. */
5006 {
5007 av_set_iterator av_it;
5008 expr_t expr;
5009 bnd_t bnd = BLIST_BND (bnds);
5010 insn_t next = BND_TO (bnd);
5011
5012 gcc_assert (BLIST_NEXT (bnds) == NULL);
5013
5014 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5015 if (EXPR_INSN_RTX (expr) != next)
5016 av_set_iter_remove (&av_it);
5017 }
5018 }
5019
5020 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5021 the computed set to *AV_VLIW_P. */
5022 static void
5023 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5024 {
5025 if (sched_verbose >= 2)
5026 {
5027 sel_print ("Boundaries: ");
5028 dump_blist (bnds);
5029 sel_print ("\n");
5030 }
5031
5032 for (; bnds; bnds = BLIST_NEXT (bnds))
5033 {
5034 bnd_t bnd = BLIST_BND (bnds);
5035 av_set_t av1_copy;
5036 insn_t bnd_to = BND_TO (bnd);
5037
5038 /* Rewind BND->TO to the basic block header in case some bookkeeping
5039 instructions were inserted before BND->TO and it needs to be
5040 adjusted. */
5041 if (sel_bb_head_p (bnd_to))
5042 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5043 else
5044 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5045 {
5046 bnd_to = PREV_INSN (bnd_to);
5047 if (sel_bb_head_p (bnd_to))
5048 break;
5049 }
5050
5051 if (BND_TO (bnd) != bnd_to)
5052 {
5053 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5054 FENCE_INSN (fence) = bnd_to;
5055 BND_TO (bnd) = bnd_to;
5056 }
5057
5058 av_set_clear (&BND_AV (bnd));
5059 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5060
5061 av_set_clear (&BND_AV1 (bnd));
5062 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5063
5064 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5065
5066 av1_copy = av_set_copy (BND_AV1 (bnd));
5067 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5068 }
5069
5070 if (sched_verbose >= 2)
5071 {
5072 sel_print ("Available exprs (vliw form): ");
5073 dump_av_set (*av_vliw_p);
5074 sel_print ("\n");
5075 }
5076 }
5077
5078 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5079 expression. When FOR_MOVEOP is true, also replace the register of
5080 expressions found with the register from EXPR_VLIW. */
5081 static av_set_t
5082 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5083 {
5084 av_set_t expr_seq = NULL;
5085 expr_t expr;
5086 av_set_iterator i;
5087
5088 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5089 {
5090 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5091 {
5092 if (for_moveop)
5093 {
5094 /* The sequential expression has the right form to pass
5095 to move_op except when renaming happened. Put the
5096 correct register in EXPR then. */
5097 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5098 {
5099 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5100 {
5101 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5102 stat_renamed_scheduled++;
5103 }
5104 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5105 This is needed when renaming came up with original
5106 register. */
5107 else if (EXPR_TARGET_AVAILABLE (expr)
5108 != EXPR_TARGET_AVAILABLE (expr_vliw))
5109 {
5110 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5111 EXPR_TARGET_AVAILABLE (expr) = 1;
5112 }
5113 }
5114 if (EXPR_WAS_SUBSTITUTED (expr))
5115 stat_substitutions_total++;
5116 }
5117
5118 av_set_add (&expr_seq, expr);
5119
5120 /* With substitution inside insn group, it is possible
5121 that more than one expression in expr_seq will correspond
5122 to expr_vliw. In this case, choose one as the attempt to
5123 move both leads to miscompiles. */
5124 break;
5125 }
5126 }
5127
5128 if (for_moveop && sched_verbose >= 2)
5129 {
5130 sel_print ("Best expression(s) (sequential form): ");
5131 dump_av_set (expr_seq);
5132 sel_print ("\n");
5133 }
5134
5135 return expr_seq;
5136 }
5137
5138
5139 /* Move nop to previous block. */
5140 static void ATTRIBUTE_UNUSED
5141 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5142 {
5143 insn_t prev_insn, next_insn, note;
5144
5145 gcc_assert (sel_bb_head_p (nop)
5146 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5147 note = bb_note (BLOCK_FOR_INSN (nop));
5148 prev_insn = sel_bb_end (prev_bb);
5149 next_insn = NEXT_INSN (nop);
5150 gcc_assert (prev_insn != NULL_RTX
5151 && PREV_INSN (note) == prev_insn);
5152
5153 NEXT_INSN (prev_insn) = nop;
5154 PREV_INSN (nop) = prev_insn;
5155
5156 PREV_INSN (note) = nop;
5157 NEXT_INSN (note) = next_insn;
5158
5159 NEXT_INSN (nop) = note;
5160 PREV_INSN (next_insn) = note;
5161
5162 BB_END (prev_bb) = nop;
5163 BLOCK_FOR_INSN (nop) = prev_bb;
5164 }
5165
5166 /* Prepare a place to insert the chosen expression on BND. */
5167 static insn_t
5168 prepare_place_to_insert (bnd_t bnd)
5169 {
5170 insn_t place_to_insert;
5171
5172 /* Init place_to_insert before calling move_op, as the later
5173 can possibly remove BND_TO (bnd). */
5174 if (/* If this is not the first insn scheduled. */
5175 BND_PTR (bnd))
5176 {
5177 /* Add it after last scheduled. */
5178 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5179 if (DEBUG_INSN_P (place_to_insert))
5180 {
5181 ilist_t l = BND_PTR (bnd);
5182 while ((l = ILIST_NEXT (l)) &&
5183 DEBUG_INSN_P (ILIST_INSN (l)))
5184 ;
5185 if (!l)
5186 place_to_insert = NULL;
5187 }
5188 }
5189 else
5190 place_to_insert = NULL;
5191
5192 if (!place_to_insert)
5193 {
5194 /* Add it before BND_TO. The difference is in the
5195 basic block, where INSN will be added. */
5196 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5197 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5198 == BLOCK_FOR_INSN (BND_TO (bnd)));
5199 }
5200
5201 return place_to_insert;
5202 }
5203
5204 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5205 Return the expression to emit in C_EXPR. */
5206 static bool
5207 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5208 av_set_t expr_seq, expr_t c_expr)
5209 {
5210 bool b, should_move;
5211 unsigned book_uid;
5212 bitmap_iterator bi;
5213 int n_bookkeeping_copies_before_moveop;
5214
5215 /* Make a move. This call will remove the original operation,
5216 insert all necessary bookkeeping instructions and update the
5217 data sets. After that all we have to do is add the operation
5218 at before BND_TO (BND). */
5219 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5220 max_uid_before_move_op = get_max_uid ();
5221 bitmap_clear (current_copies);
5222 bitmap_clear (current_originators);
5223
5224 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5225 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5226
5227 /* We should be able to find the expression we've chosen for
5228 scheduling. */
5229 gcc_assert (b);
5230
5231 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5232 stat_insns_needed_bookkeeping++;
5233
5234 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5235 {
5236 unsigned uid;
5237 bitmap_iterator bi;
5238
5239 /* We allocate these bitmaps lazily. */
5240 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5241 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5242
5243 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5244 current_originators);
5245
5246 /* Transitively add all originators' originators. */
5247 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5248 if (INSN_ORIGINATORS_BY_UID (uid))
5249 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5250 INSN_ORIGINATORS_BY_UID (uid));
5251 }
5252
5253 return should_move;
5254 }
5255
5256
5257 /* Debug a DFA state as an array of bytes. */
5258 static void
5259 debug_state (state_t state)
5260 {
5261 unsigned char *p;
5262 unsigned int i, size = dfa_state_size;
5263
5264 sel_print ("state (%u):", size);
5265 for (i = 0, p = (unsigned char *) state; i < size; i++)
5266 sel_print (" %d", p[i]);
5267 sel_print ("\n");
5268 }
5269
5270 /* Advance state on FENCE with INSN. Return true if INSN is
5271 an ASM, and we should advance state once more. */
5272 static bool
5273 advance_state_on_fence (fence_t fence, insn_t insn)
5274 {
5275 bool asm_p;
5276
5277 if (recog_memoized (insn) >= 0)
5278 {
5279 int res;
5280 state_t temp_state = alloca (dfa_state_size);
5281
5282 gcc_assert (!INSN_ASM_P (insn));
5283 asm_p = false;
5284
5285 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5286 res = state_transition (FENCE_STATE (fence), insn);
5287 gcc_assert (res < 0);
5288
5289 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5290 {
5291 FENCE_ISSUED_INSNS (fence)++;
5292
5293 /* We should never issue more than issue_rate insns. */
5294 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5295 gcc_unreachable ();
5296 }
5297 }
5298 else
5299 {
5300 /* This could be an ASM insn which we'd like to schedule
5301 on the next cycle. */
5302 asm_p = INSN_ASM_P (insn);
5303 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5304 advance_one_cycle (fence);
5305 }
5306
5307 if (sched_verbose >= 2)
5308 debug_state (FENCE_STATE (fence));
5309 if (!DEBUG_INSN_P (insn))
5310 FENCE_STARTS_CYCLE_P (fence) = 0;
5311 FENCE_ISSUE_MORE (fence) = can_issue_more;
5312 return asm_p;
5313 }
5314
5315 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5316 is nonzero if we need to stall after issuing INSN. */
5317 static void
5318 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5319 {
5320 bool asm_p;
5321
5322 /* First, reflect that something is scheduled on this fence. */
5323 asm_p = advance_state_on_fence (fence, insn);
5324 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5325 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5326 if (SCHED_GROUP_P (insn))
5327 {
5328 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5329 SCHED_GROUP_P (insn) = 0;
5330 }
5331 else
5332 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5333 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5334 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5335
5336 /* Set instruction scheduling info. This will be used in bundling,
5337 pipelining, tick computations etc. */
5338 ++INSN_SCHED_TIMES (insn);
5339 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5340 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5341 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5342 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5343
5344 /* This does not account for adjust_cost hooks, just add the biggest
5345 constant the hook may add to the latency. TODO: make this
5346 a target dependent constant. */
5347 INSN_READY_CYCLE (insn)
5348 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5349 ? 1
5350 : maximal_insn_latency (insn) + 1);
5351
5352 /* Change these fields last, as they're used above. */
5353 FENCE_AFTER_STALL_P (fence) = 0;
5354 if (asm_p || need_stall)
5355 advance_one_cycle (fence);
5356
5357 /* Indicate that we've scheduled something on this fence. */
5358 FENCE_SCHEDULED_P (fence) = true;
5359 scheduled_something_on_previous_fence = true;
5360
5361 /* Print debug information when insn's fields are updated. */
5362 if (sched_verbose >= 2)
5363 {
5364 sel_print ("Scheduling insn: ");
5365 dump_insn_1 (insn, 1);
5366 sel_print ("\n");
5367 }
5368 }
5369
5370 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5371 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5372 return it. */
5373 static blist_t *
5374 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5375 blist_t *bnds_tailp)
5376 {
5377 succ_iterator si;
5378 insn_t succ;
5379
5380 advance_deps_context (BND_DC (bnd), insn);
5381 FOR_EACH_SUCC_1 (succ, si, insn,
5382 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5383 {
5384 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5385
5386 ilist_add (&ptr, insn);
5387
5388 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5389 && is_ineligible_successor (succ, ptr))
5390 {
5391 ilist_clear (&ptr);
5392 continue;
5393 }
5394
5395 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5396 {
5397 if (sched_verbose >= 9)
5398 sel_print ("Updating fence insn from %i to %i\n",
5399 INSN_UID (insn), INSN_UID (succ));
5400 FENCE_INSN (fence) = succ;
5401 }
5402 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5403 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5404 }
5405
5406 blist_remove (bndsp);
5407 return bnds_tailp;
5408 }
5409
5410 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5411 static insn_t
5412 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5413 {
5414 av_set_t expr_seq;
5415 expr_t c_expr = XALLOCA (expr_def);
5416 insn_t place_to_insert;
5417 insn_t insn;
5418 bool should_move;
5419
5420 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5421
5422 /* In case of scheduling a jump skipping some other instructions,
5423 prepare CFG. After this, jump is at the boundary and can be
5424 scheduled as usual insn by MOVE_OP. */
5425 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5426 {
5427 insn = EXPR_INSN_RTX (expr_vliw);
5428
5429 /* Speculative jumps are not handled. */
5430 if (insn != BND_TO (bnd)
5431 && !sel_insn_is_speculation_check (insn))
5432 move_cond_jump (insn, bnd);
5433 }
5434
5435 /* Find a place for C_EXPR to schedule. */
5436 place_to_insert = prepare_place_to_insert (bnd);
5437 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5438 clear_expr (c_expr);
5439
5440 /* Add the instruction. The corner case to care about is when
5441 the expr_seq set has more than one expr, and we chose the one that
5442 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5443 we can't use it. Generate the new vinsn. */
5444 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5445 {
5446 vinsn_t vinsn_new;
5447
5448 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5449 change_vinsn_in_expr (expr_vliw, vinsn_new);
5450 should_move = false;
5451 }
5452 if (should_move)
5453 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5454 else
5455 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5456 place_to_insert);
5457
5458 /* Return the nops generated for preserving of data sets back
5459 into pool. */
5460 if (INSN_NOP_P (place_to_insert))
5461 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5462 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5463
5464 av_set_clear (&expr_seq);
5465
5466 /* Save the expression scheduled so to reset target availability if we'll
5467 meet it later on the same fence. */
5468 if (EXPR_WAS_RENAMED (expr_vliw))
5469 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5470
5471 /* Check that the recent movement didn't destroyed loop
5472 structure. */
5473 gcc_assert (!pipelining_p
5474 || current_loop_nest == NULL
5475 || loop_latch_edge (current_loop_nest));
5476 return insn;
5477 }
5478
5479 /* Stall for N cycles on FENCE. */
5480 static void
5481 stall_for_cycles (fence_t fence, int n)
5482 {
5483 int could_more;
5484
5485 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5486 while (n--)
5487 advance_one_cycle (fence);
5488 if (could_more)
5489 FENCE_AFTER_STALL_P (fence) = 1;
5490 }
5491
5492 /* Gather a parallel group of insns at FENCE and assign their seqno
5493 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5494 list for later recalculation of seqnos. */
5495 static void
5496 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5497 {
5498 blist_t bnds = NULL, *bnds_tailp;
5499 av_set_t av_vliw = NULL;
5500 insn_t insn = FENCE_INSN (fence);
5501
5502 if (sched_verbose >= 2)
5503 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5504 INSN_UID (insn), FENCE_CYCLE (fence));
5505
5506 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5507 bnds_tailp = &BLIST_NEXT (bnds);
5508 set_target_context (FENCE_TC (fence));
5509 can_issue_more = FENCE_ISSUE_MORE (fence);
5510 target_bb = INSN_BB (insn);
5511
5512 /* Do while we can add any operation to the current group. */
5513 do
5514 {
5515 blist_t *bnds_tailp1, *bndsp;
5516 expr_t expr_vliw;
5517 int need_stall;
5518 int was_stall = 0, scheduled_insns = 0;
5519 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5520 int max_stall = pipelining_p ? 1 : 3;
5521 bool last_insn_was_debug = false;
5522 bool was_debug_bb_end_p = false;
5523
5524 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5525 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5526 remove_insns_for_debug (bnds, &av_vliw);
5527
5528 /* Return early if we have nothing to schedule. */
5529 if (av_vliw == NULL)
5530 break;
5531
5532 /* Choose the best expression and, if needed, destination register
5533 for it. */
5534 do
5535 {
5536 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5537 if (! expr_vliw && need_stall)
5538 {
5539 /* All expressions required a stall. Do not recompute av sets
5540 as we'll get the same answer (modulo the insns between
5541 the fence and its boundary, which will not be available for
5542 pipelining).
5543 If we are going to stall for too long, break to recompute av
5544 sets and bring more insns for pipelining. */
5545 was_stall++;
5546 if (need_stall <= 3)
5547 stall_for_cycles (fence, need_stall);
5548 else
5549 {
5550 stall_for_cycles (fence, 1);
5551 break;
5552 }
5553 }
5554 }
5555 while (! expr_vliw && need_stall);
5556
5557 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5558 if (!expr_vliw)
5559 {
5560 av_set_clear (&av_vliw);
5561 break;
5562 }
5563
5564 bndsp = &bnds;
5565 bnds_tailp1 = bnds_tailp;
5566
5567 do
5568 /* This code will be executed only once until we'd have several
5569 boundaries per fence. */
5570 {
5571 bnd_t bnd = BLIST_BND (*bndsp);
5572
5573 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5574 {
5575 bndsp = &BLIST_NEXT (*bndsp);
5576 continue;
5577 }
5578
5579 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5580 last_insn_was_debug = DEBUG_INSN_P (insn);
5581 if (last_insn_was_debug)
5582 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5583 update_fence_and_insn (fence, insn, need_stall);
5584 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5585
5586 /* Add insn to the list of scheduled on this cycle instructions. */
5587 ilist_add (*scheduled_insns_tailpp, insn);
5588 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5589 }
5590 while (*bndsp != *bnds_tailp1);
5591
5592 av_set_clear (&av_vliw);
5593 if (!last_insn_was_debug)
5594 scheduled_insns++;
5595
5596 /* We currently support information about candidate blocks only for
5597 one 'target_bb' block. Hence we can't schedule after jump insn,
5598 as this will bring two boundaries and, hence, necessity to handle
5599 information for two or more blocks concurrently. */
5600 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5601 || (was_stall
5602 && (was_stall >= max_stall
5603 || scheduled_insns >= max_insns)))
5604 break;
5605 }
5606 while (bnds);
5607
5608 gcc_assert (!FENCE_BNDS (fence));
5609
5610 /* Update boundaries of the FENCE. */
5611 while (bnds)
5612 {
5613 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5614
5615 if (ptr)
5616 {
5617 insn = ILIST_INSN (ptr);
5618
5619 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5620 ilist_add (&FENCE_BNDS (fence), insn);
5621 }
5622
5623 blist_remove (&bnds);
5624 }
5625
5626 /* Update target context on the fence. */
5627 reset_target_context (FENCE_TC (fence), false);
5628 }
5629
5630 /* All exprs in ORIG_OPS must have the same destination register or memory.
5631 Return that destination. */
5632 static rtx
5633 get_dest_from_orig_ops (av_set_t orig_ops)
5634 {
5635 rtx dest = NULL_RTX;
5636 av_set_iterator av_it;
5637 expr_t expr;
5638 bool first_p = true;
5639
5640 FOR_EACH_EXPR (expr, av_it, orig_ops)
5641 {
5642 rtx x = EXPR_LHS (expr);
5643
5644 if (first_p)
5645 {
5646 first_p = false;
5647 dest = x;
5648 }
5649 else
5650 gcc_assert (dest == x
5651 || (dest != NULL_RTX && x != NULL_RTX
5652 && rtx_equal_p (dest, x)));
5653 }
5654
5655 return dest;
5656 }
5657
5658 /* Update data sets for the bookkeeping block and record those expressions
5659 which become no longer available after inserting this bookkeeping. */
5660 static void
5661 update_and_record_unavailable_insns (basic_block book_block)
5662 {
5663 av_set_iterator i;
5664 av_set_t old_av_set = NULL;
5665 expr_t cur_expr;
5666 rtx bb_end = sel_bb_end (book_block);
5667
5668 /* First, get correct liveness in the bookkeeping block. The problem is
5669 the range between the bookeeping insn and the end of block. */
5670 update_liveness_on_insn (bb_end);
5671 if (control_flow_insn_p (bb_end))
5672 update_liveness_on_insn (PREV_INSN (bb_end));
5673
5674 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5675 fence above, where we may choose to schedule an insn which is
5676 actually blocked from moving up with the bookkeeping we create here. */
5677 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5678 {
5679 old_av_set = av_set_copy (BB_AV_SET (book_block));
5680 update_data_sets (sel_bb_head (book_block));
5681
5682 /* Traverse all the expressions in the old av_set and check whether
5683 CUR_EXPR is in new AV_SET. */
5684 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5685 {
5686 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5687 EXPR_VINSN (cur_expr));
5688
5689 if (! new_expr
5690 /* In this case, we can just turn off the E_T_A bit, but we can't
5691 represent this information with the current vector. */
5692 || EXPR_TARGET_AVAILABLE (new_expr)
5693 != EXPR_TARGET_AVAILABLE (cur_expr))
5694 /* Unfortunately, the below code could be also fired up on
5695 separable insns.
5696 FIXME: add an example of how this could happen. */
5697 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5698 }
5699
5700 av_set_clear (&old_av_set);
5701 }
5702 }
5703
5704 /* The main effect of this function is that sparams->c_expr is merged
5705 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5706 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5707 lparams->c_expr_merged is copied back to sparams->c_expr after all
5708 successors has been traversed. lparams->c_expr_local is an expr allocated
5709 on stack in the caller function, and is used if there is more than one
5710 successor.
5711
5712 SUCC is one of the SUCCS_NORMAL successors of INSN,
5713 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5714 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5715 static void
5716 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5717 insn_t succ ATTRIBUTE_UNUSED,
5718 int moveop_drv_call_res,
5719 cmpd_local_params_p lparams, void *static_params)
5720 {
5721 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5722
5723 /* Nothing to do, if original expr wasn't found below. */
5724 if (moveop_drv_call_res != 1)
5725 return;
5726
5727 /* If this is a first successor. */
5728 if (!lparams->c_expr_merged)
5729 {
5730 lparams->c_expr_merged = sparams->c_expr;
5731 sparams->c_expr = lparams->c_expr_local;
5732 }
5733 else
5734 {
5735 /* We must merge all found expressions to get reasonable
5736 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5737 do so then we can first find the expr with epsilon
5738 speculation success probability and only then with the
5739 good probability. As a result the insn will get epsilon
5740 probability and will never be scheduled because of
5741 weakness_cutoff in find_best_expr.
5742
5743 We call merge_expr_data here instead of merge_expr
5744 because due to speculation C_EXPR and X may have the
5745 same insns with different speculation types. And as of
5746 now such insns are considered non-equal.
5747
5748 However, EXPR_SCHED_TIMES is different -- we must get
5749 SCHED_TIMES from a real insn, not a bookkeeping copy.
5750 We force this here. Instead, we may consider merging
5751 SCHED_TIMES to the maximum instead of minimum in the
5752 below function. */
5753 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5754
5755 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5756 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5757 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5758
5759 clear_expr (sparams->c_expr);
5760 }
5761 }
5762
5763 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5764
5765 SUCC is one of the SUCCS_NORMAL successors of INSN,
5766 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5767 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5768 STATIC_PARAMS contain USED_REGS set. */
5769 static void
5770 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5771 int moveop_drv_call_res,
5772 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5773 void *static_params)
5774 {
5775 regset succ_live;
5776 fur_static_params_p sparams = (fur_static_params_p) static_params;
5777
5778 /* Here we compute live regsets only for branches that do not lie
5779 on the code motion paths. These branches correspond to value
5780 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5781 for such branches code_motion_path_driver is not called. */
5782 if (moveop_drv_call_res != 0)
5783 return;
5784
5785 /* Mark all registers that do not meet the following condition:
5786 (3) not live on the other path of any conditional branch
5787 that is passed by the operation, in case original
5788 operations are not present on both paths of the
5789 conditional branch. */
5790 succ_live = compute_live (succ);
5791 IOR_REG_SET (sparams->used_regs, succ_live);
5792 }
5793
5794 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5795 into SP->CEXPR. */
5796 static void
5797 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5798 {
5799 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5800
5801 sp->c_expr = lp->c_expr_merged;
5802 }
5803
5804 /* Track bookkeeping copies created, insns scheduled, and blocks for
5805 rescheduling when INSN is found by move_op. */
5806 static void
5807 track_scheduled_insns_and_blocks (rtx insn)
5808 {
5809 /* Even if this insn can be a copy that will be removed during current move_op,
5810 we still need to count it as an originator. */
5811 bitmap_set_bit (current_originators, INSN_UID (insn));
5812
5813 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5814 {
5815 /* Note that original block needs to be rescheduled, as we pulled an
5816 instruction out of it. */
5817 if (INSN_SCHED_TIMES (insn) > 0)
5818 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5819 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5820 num_insns_scheduled++;
5821 }
5822
5823 /* For instructions we must immediately remove insn from the
5824 stream, so subsequent update_data_sets () won't include this
5825 insn into av_set.
5826 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5827 if (INSN_UID (insn) > max_uid_before_move_op)
5828 stat_bookkeeping_copies--;
5829 }
5830
5831 /* Emit a register-register copy for INSN if needed. Return true if
5832 emitted one. PARAMS is the move_op static parameters. */
5833 static bool
5834 maybe_emit_renaming_copy (rtx insn,
5835 moveop_static_params_p params)
5836 {
5837 bool insn_emitted = false;
5838 rtx cur_reg;
5839
5840 /* Bail out early when expression can not be renamed at all. */
5841 if (!EXPR_SEPARABLE_P (params->c_expr))
5842 return false;
5843
5844 cur_reg = expr_dest_reg (params->c_expr);
5845 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5846
5847 /* If original operation has expr and the register chosen for
5848 that expr is not original operation's dest reg, substitute
5849 operation's right hand side with the register chosen. */
5850 if (REGNO (params->dest) != REGNO (cur_reg))
5851 {
5852 insn_t reg_move_insn, reg_move_insn_rtx;
5853
5854 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5855 params->dest);
5856 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5857 INSN_EXPR (insn),
5858 INSN_SEQNO (insn),
5859 insn);
5860 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5861 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5862
5863 insn_emitted = true;
5864 params->was_renamed = true;
5865 }
5866
5867 return insn_emitted;
5868 }
5869
5870 /* Emit a speculative check for INSN speculated as EXPR if needed.
5871 Return true if we've emitted one. PARAMS is the move_op static
5872 parameters. */
5873 static bool
5874 maybe_emit_speculative_check (rtx insn, expr_t expr,
5875 moveop_static_params_p params)
5876 {
5877 bool insn_emitted = false;
5878 insn_t x;
5879 ds_t check_ds;
5880
5881 check_ds = get_spec_check_type_for_insn (insn, expr);
5882 if (check_ds != 0)
5883 {
5884 /* A speculation check should be inserted. */
5885 x = create_speculation_check (params->c_expr, check_ds, insn);
5886 insn_emitted = true;
5887 }
5888 else
5889 {
5890 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5891 x = insn;
5892 }
5893
5894 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5895 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5896 return insn_emitted;
5897 }
5898
5899 /* Handle transformations that leave an insn in place of original
5900 insn such as renaming/speculation. Return true if one of such
5901 transformations actually happened, and we have emitted this insn. */
5902 static bool
5903 handle_emitting_transformations (rtx insn, expr_t expr,
5904 moveop_static_params_p params)
5905 {
5906 bool insn_emitted = false;
5907
5908 insn_emitted = maybe_emit_renaming_copy (insn, params);
5909 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5910
5911 return insn_emitted;
5912 }
5913
5914 /* If INSN is the only insn in the basic block (not counting JUMP,
5915 which may be a jump to next insn, and DEBUG_INSNs), we want to
5916 leave a NOP there till the return to fill_insns. */
5917
5918 static bool
5919 need_nop_to_preserve_insn_bb (rtx insn)
5920 {
5921 insn_t bb_head, bb_end, bb_next, in_next;
5922 basic_block bb = BLOCK_FOR_INSN (insn);
5923
5924 bb_head = sel_bb_head (bb);
5925 bb_end = sel_bb_end (bb);
5926
5927 if (bb_head == bb_end)
5928 return true;
5929
5930 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5931 bb_head = NEXT_INSN (bb_head);
5932
5933 if (bb_head == bb_end)
5934 return true;
5935
5936 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5937 bb_end = PREV_INSN (bb_end);
5938
5939 if (bb_head == bb_end)
5940 return true;
5941
5942 bb_next = NEXT_INSN (bb_head);
5943 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5944 bb_next = NEXT_INSN (bb_next);
5945
5946 if (bb_next == bb_end && JUMP_P (bb_end))
5947 return true;
5948
5949 in_next = NEXT_INSN (insn);
5950 while (DEBUG_INSN_P (in_next))
5951 in_next = NEXT_INSN (in_next);
5952
5953 if (IN_CURRENT_FENCE_P (in_next))
5954 return true;
5955
5956 return false;
5957 }
5958
5959 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5960 is not removed but reused when INSN is re-emitted. */
5961 static void
5962 remove_insn_from_stream (rtx insn, bool only_disconnect)
5963 {
5964 /* If there's only one insn in the BB, make sure that a nop is
5965 inserted into it, so the basic block won't disappear when we'll
5966 delete INSN below with sel_remove_insn. It should also survive
5967 till the return to fill_insns. */
5968 if (need_nop_to_preserve_insn_bb (insn))
5969 {
5970 insn_t nop = get_nop_from_pool (insn);
5971 gcc_assert (INSN_NOP_P (nop));
5972 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5973 }
5974
5975 sel_remove_insn (insn, only_disconnect, false);
5976 }
5977
5978 /* This function is called when original expr is found.
5979 INSN - current insn traversed, EXPR - the corresponding expr found.
5980 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5981 is static parameters of move_op. */
5982 static void
5983 move_op_orig_expr_found (insn_t insn, expr_t expr,
5984 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5985 void *static_params)
5986 {
5987 bool only_disconnect, insn_emitted;
5988 moveop_static_params_p params = (moveop_static_params_p) static_params;
5989
5990 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5991 track_scheduled_insns_and_blocks (insn);
5992 insn_emitted = handle_emitting_transformations (insn, expr, params);
5993 only_disconnect = (params->uid == INSN_UID (insn)
5994 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5995
5996 /* Mark that we've disconnected an insn. */
5997 if (only_disconnect)
5998 params->uid = -1;
5999 remove_insn_from_stream (insn, only_disconnect);
6000 }
6001
6002 /* The function is called when original expr is found.
6003 INSN - current insn traversed, EXPR - the corresponding expr found,
6004 crosses_call and original_insns in STATIC_PARAMS are updated. */
6005 static void
6006 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6007 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6008 void *static_params)
6009 {
6010 fur_static_params_p params = (fur_static_params_p) static_params;
6011 regset tmp;
6012
6013 if (CALL_P (insn))
6014 params->crosses_call = true;
6015
6016 def_list_add (params->original_insns, insn, params->crosses_call);
6017
6018 /* Mark the registers that do not meet the following condition:
6019 (2) not among the live registers of the point
6020 immediately following the first original operation on
6021 a given downward path, except for the original target
6022 register of the operation. */
6023 tmp = get_clear_regset_from_pool ();
6024 compute_live_below_insn (insn, tmp);
6025 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6026 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6027 IOR_REG_SET (params->used_regs, tmp);
6028 return_regset_to_pool (tmp);
6029
6030 /* (*1) We need to add to USED_REGS registers that are read by
6031 INSN's lhs. This may lead to choosing wrong src register.
6032 E.g. (scheduling const expr enabled):
6033
6034 429: ax=0x0 <- Can't use AX for this expr (0x0)
6035 433: dx=[bp-0x18]
6036 427: [ax+dx+0x1]=ax
6037 REG_DEAD: ax
6038 168: di=dx
6039 REG_DEAD: dx
6040 */
6041 /* FIXME: see comment above and enable MEM_P
6042 in vinsn_separable_p. */
6043 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6044 || !MEM_P (INSN_LHS (insn)));
6045 }
6046
6047 /* This function is called on the ascending pass, before returning from
6048 current basic block. */
6049 static void
6050 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6051 void *static_params)
6052 {
6053 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6054 basic_block book_block = NULL;
6055
6056 /* When we have removed the boundary insn for scheduling, which also
6057 happened to be the end insn in its bb, we don't need to update sets. */
6058 if (!lparams->removed_last_insn
6059 && lparams->e1
6060 && sel_bb_head_p (insn))
6061 {
6062 /* We should generate bookkeeping code only if we are not at the
6063 top level of the move_op. */
6064 if (sel_num_cfg_preds_gt_1 (insn))
6065 book_block = generate_bookkeeping_insn (sparams->c_expr,
6066 lparams->e1, lparams->e2);
6067 /* Update data sets for the current insn. */
6068 update_data_sets (insn);
6069 }
6070
6071 /* If bookkeeping code was inserted, we need to update av sets of basic
6072 block that received bookkeeping. After generation of bookkeeping insn,
6073 bookkeeping block does not contain valid av set because we are not following
6074 the original algorithm in every detail with regards to e.g. renaming
6075 simple reg-reg copies. Consider example:
6076
6077 bookkeeping block scheduling fence
6078 \ /
6079 \ join /
6080 ----------
6081 | |
6082 ----------
6083 / \
6084 / \
6085 r1 := r2 r1 := r3
6086
6087 We try to schedule insn "r1 := r3" on the current
6088 scheduling fence. Also, note that av set of bookkeeping block
6089 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6090 been scheduled, the CFG is as follows:
6091
6092 r1 := r3 r1 := r3
6093 bookkeeping block scheduling fence
6094 \ /
6095 \ join /
6096 ----------
6097 | |
6098 ----------
6099 / \
6100 / \
6101 r1 := r2
6102
6103 Here, insn "r1 := r3" was scheduled at the current scheduling point
6104 and bookkeeping code was generated at the bookeeping block. This
6105 way insn "r1 := r2" is no longer available as a whole instruction
6106 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6107 This situation is handled by calling update_data_sets.
6108
6109 Since update_data_sets is called only on the bookkeeping block, and
6110 it also may have predecessors with av_sets, containing instructions that
6111 are no longer available, we save all such expressions that become
6112 unavailable during data sets update on the bookkeeping block in
6113 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6114 expressions for scheduling. This allows us to avoid recomputation of
6115 av_sets outside the code motion path. */
6116
6117 if (book_block)
6118 update_and_record_unavailable_insns (book_block);
6119
6120 /* If INSN was previously marked for deletion, it's time to do it. */
6121 if (lparams->removed_last_insn)
6122 insn = PREV_INSN (insn);
6123
6124 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6125 kill a block with a single nop in which the insn should be emitted. */
6126 if (lparams->e1)
6127 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6128 }
6129
6130 /* This function is called on the ascending pass, before returning from the
6131 current basic block. */
6132 static void
6133 fur_at_first_insn (insn_t insn,
6134 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6135 void *static_params ATTRIBUTE_UNUSED)
6136 {
6137 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6138 || AV_LEVEL (insn) == -1);
6139 }
6140
6141 /* Called on the backward stage of recursion to call moveup_expr for insn
6142 and sparams->c_expr. */
6143 static void
6144 move_op_ascend (insn_t insn, void *static_params)
6145 {
6146 enum MOVEUP_EXPR_CODE res;
6147 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6148
6149 if (! INSN_NOP_P (insn))
6150 {
6151 res = moveup_expr_cached (sparams->c_expr, insn, false);
6152 gcc_assert (res != MOVEUP_EXPR_NULL);
6153 }
6154
6155 /* Update liveness for this insn as it was invalidated. */
6156 update_liveness_on_insn (insn);
6157 }
6158
6159 /* This function is called on enter to the basic block.
6160 Returns TRUE if this block already have been visited and
6161 code_motion_path_driver should return 1, FALSE otherwise. */
6162 static int
6163 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6164 void *static_params, bool visited_p)
6165 {
6166 fur_static_params_p sparams = (fur_static_params_p) static_params;
6167
6168 if (visited_p)
6169 {
6170 /* If we have found something below this block, there should be at
6171 least one insn in ORIGINAL_INSNS. */
6172 gcc_assert (*sparams->original_insns);
6173
6174 /* Adjust CROSSES_CALL, since we may have come to this block along
6175 different path. */
6176 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6177 |= sparams->crosses_call;
6178 }
6179 else
6180 local_params->old_original_insns = *sparams->original_insns;
6181
6182 return 1;
6183 }
6184
6185 /* Same as above but for move_op. */
6186 static int
6187 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6188 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6189 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6190 {
6191 if (visited_p)
6192 return -1;
6193 return 1;
6194 }
6195
6196 /* This function is called while descending current basic block if current
6197 insn is not the original EXPR we're searching for.
6198
6199 Return value: FALSE, if code_motion_path_driver should perform a local
6200 cleanup and return 0 itself;
6201 TRUE, if code_motion_path_driver should continue. */
6202 static bool
6203 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6204 void *static_params)
6205 {
6206 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6207
6208 #ifdef ENABLE_CHECKING
6209 sparams->failed_insn = insn;
6210 #endif
6211
6212 /* If we're scheduling separate expr, in order to generate correct code
6213 we need to stop the search at bookkeeping code generated with the
6214 same destination register or memory. */
6215 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6216 return false;
6217 return true;
6218 }
6219
6220 /* This function is called while descending current basic block if current
6221 insn is not the original EXPR we're searching for.
6222
6223 Return value: TRUE (code_motion_path_driver should continue). */
6224 static bool
6225 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6226 {
6227 bool mutexed;
6228 expr_t r;
6229 av_set_iterator avi;
6230 fur_static_params_p sparams = (fur_static_params_p) static_params;
6231
6232 if (CALL_P (insn))
6233 sparams->crosses_call = true;
6234 else if (DEBUG_INSN_P (insn))
6235 return true;
6236
6237 /* If current insn we are looking at cannot be executed together
6238 with original insn, then we can skip it safely.
6239
6240 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6241 INSN = (!p6) r14 = r14 + 1;
6242
6243 Here we can schedule ORIG_OP with lhs = r14, though only
6244 looking at the set of used and set registers of INSN we must
6245 forbid it. So, add set/used in INSN registers to the
6246 untouchable set only if there is an insn in ORIG_OPS that can
6247 affect INSN. */
6248 mutexed = true;
6249 FOR_EACH_EXPR (r, avi, orig_ops)
6250 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6251 {
6252 mutexed = false;
6253 break;
6254 }
6255
6256 /* Mark all registers that do not meet the following condition:
6257 (1) Not set or read on any path from xi to an instance of the
6258 original operation. */
6259 if (!mutexed)
6260 {
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6264 }
6265
6266 return true;
6267 }
6268
6269 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6270 struct code_motion_path_driver_info_def move_op_hooks = {
6271 move_op_on_enter,
6272 move_op_orig_expr_found,
6273 move_op_orig_expr_not_found,
6274 move_op_merge_succs,
6275 move_op_after_merge_succs,
6276 move_op_ascend,
6277 move_op_at_first_insn,
6278 SUCCS_NORMAL,
6279 "move_op"
6280 };
6281
6282 /* Hooks and data to perform find_used_regs operations
6283 with code_motion_path_driver. */
6284 struct code_motion_path_driver_info_def fur_hooks = {
6285 fur_on_enter,
6286 fur_orig_expr_found,
6287 fur_orig_expr_not_found,
6288 fur_merge_succs,
6289 NULL, /* fur_after_merge_succs */
6290 NULL, /* fur_ascend */
6291 fur_at_first_insn,
6292 SUCCS_ALL,
6293 "find_used_regs"
6294 };
6295
6296 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6297 code_motion_path_driver is called recursively. Original operation
6298 was found at least on one path that is starting with one of INSN's
6299 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6300 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6301 of either move_op or find_used_regs depending on the caller.
6302
6303 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6304 know for sure at this point. */
6305 static int
6306 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6307 ilist_t path, void *static_params)
6308 {
6309 int res = 0;
6310 succ_iterator succ_i;
6311 rtx succ;
6312 basic_block bb;
6313 int old_index;
6314 unsigned old_succs;
6315
6316 struct cmpd_local_params lparams;
6317 expr_def _x;
6318
6319 lparams.c_expr_local = &_x;
6320 lparams.c_expr_merged = NULL;
6321
6322 /* We need to process only NORMAL succs for move_op, and collect live
6323 registers from ALL branches (including those leading out of the
6324 region) for find_used_regs.
6325
6326 In move_op, there can be a case when insn's bb number has changed
6327 due to created bookkeeping. This happens very rare, as we need to
6328 move expression from the beginning to the end of the same block.
6329 Rescan successors in this case. */
6330
6331 rescan:
6332 bb = BLOCK_FOR_INSN (insn);
6333 old_index = bb->index;
6334 old_succs = EDGE_COUNT (bb->succs);
6335
6336 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6337 {
6338 int b;
6339
6340 lparams.e1 = succ_i.e1;
6341 lparams.e2 = succ_i.e2;
6342
6343 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 current region). */
6345 if (succ_i.current_flags == SUCCS_NORMAL)
6346 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6347 static_params);
6348 else
6349 b = 0;
6350
6351 /* Merge c_expres found or unify live register sets from different
6352 successors. */
6353 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6354 static_params);
6355 if (b == 1)
6356 res = b;
6357 else if (b == -1 && res != 1)
6358 res = b;
6359
6360 /* We have simplified the control flow below this point. In this case,
6361 the iterator becomes invalid. We need to try again. */
6362 if (BLOCK_FOR_INSN (insn)->index != old_index
6363 || EDGE_COUNT (bb->succs) != old_succs)
6364 goto rescan;
6365 }
6366
6367 #ifdef ENABLE_CHECKING
6368 /* Here, RES==1 if original expr was found at least for one of the
6369 successors. After the loop, RES may happen to have zero value
6370 only if at some point the expr searched is present in av_set, but is
6371 not found below. In most cases, this situation is an error.
6372 The exception is when the original operation is blocked by
6373 bookkeeping generated for another fence or for another path in current
6374 move_op. */
6375 gcc_assert (res == 1
6376 || (res == 0
6377 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6378 static_params))
6379 || res == -1);
6380 #endif
6381
6382 /* Merge data, clean up, etc. */
6383 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6384 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6385
6386 return res;
6387 }
6388
6389
6390 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6391 is the pointer to the av set with expressions we were looking for,
6392 PATH_P is the pointer to the traversed path. */
6393 static inline void
6394 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6395 {
6396 ilist_remove (path_p);
6397 av_set_clear (orig_ops_p);
6398 }
6399
6400 /* The driver function that implements move_op or find_used_regs
6401 functionality dependent whether code_motion_path_driver_INFO is set to
6402 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6403 of code (CFG traversal etc) that are shared among both functions. INSN
6404 is the insn we're starting the search from, ORIG_OPS are the expressions
6405 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6406 parameters of the driver, and STATIC_PARAMS are static parameters of
6407 the caller.
6408
6409 Returns whether original instructions were found. Note that top-level
6410 code_motion_path_driver always returns true. */
6411 static int
6412 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6413 cmpd_local_params_p local_params_in,
6414 void *static_params)
6415 {
6416 expr_t expr = NULL;
6417 basic_block bb = BLOCK_FOR_INSN (insn);
6418 insn_t first_insn, bb_tail, before_first;
6419 bool removed_last_insn = false;
6420
6421 if (sched_verbose >= 6)
6422 {
6423 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6424 dump_insn (insn);
6425 sel_print (",");
6426 dump_av_set (orig_ops);
6427 sel_print (")\n");
6428 }
6429
6430 gcc_assert (orig_ops);
6431
6432 /* If no original operations exist below this insn, return immediately. */
6433 if (is_ineligible_successor (insn, path))
6434 {
6435 if (sched_verbose >= 6)
6436 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6437 return false;
6438 }
6439
6440 /* The block can have invalid av set, in which case it was created earlier
6441 during move_op. Return immediately. */
6442 if (sel_bb_head_p (insn))
6443 {
6444 if (! AV_SET_VALID_P (insn))
6445 {
6446 if (sched_verbose >= 6)
6447 sel_print ("Returned from block %d as it had invalid av set\n",
6448 bb->index);
6449 return false;
6450 }
6451
6452 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6453 {
6454 /* We have already found an original operation on this branch, do not
6455 go any further and just return TRUE here. If we don't stop here,
6456 function can have exponential behaviour even on the small code
6457 with many different paths (e.g. with data speculation and
6458 recovery blocks). */
6459 if (sched_verbose >= 6)
6460 sel_print ("Block %d already visited in this traversal\n", bb->index);
6461 if (code_motion_path_driver_info->on_enter)
6462 return code_motion_path_driver_info->on_enter (insn,
6463 local_params_in,
6464 static_params,
6465 true);
6466 }
6467 }
6468
6469 if (code_motion_path_driver_info->on_enter)
6470 code_motion_path_driver_info->on_enter (insn, local_params_in,
6471 static_params, false);
6472 orig_ops = av_set_copy (orig_ops);
6473
6474 /* Filter the orig_ops set. */
6475 if (AV_SET_VALID_P (insn))
6476 av_set_intersect (&orig_ops, AV_SET (insn));
6477
6478 /* If no more original ops, return immediately. */
6479 if (!orig_ops)
6480 {
6481 if (sched_verbose >= 6)
6482 sel_print ("No intersection with av set of block %d\n", bb->index);
6483 return false;
6484 }
6485
6486 /* For non-speculative insns we have to leave only one form of the
6487 original operation, because if we don't, we may end up with
6488 different C_EXPRes and, consequently, with bookkeepings for different
6489 expression forms along the same code motion path. That may lead to
6490 generation of incorrect code. So for each code motion we stick to
6491 the single form of the instruction, except for speculative insns
6492 which we need to keep in different forms with all speculation
6493 types. */
6494 av_set_leave_one_nonspec (&orig_ops);
6495
6496 /* It is not possible that all ORIG_OPS are filtered out. */
6497 gcc_assert (orig_ops);
6498
6499 /* It is enough to place only heads and tails of visited basic blocks into
6500 the PATH. */
6501 ilist_add (&path, insn);
6502 first_insn = insn;
6503 bb_tail = sel_bb_end (bb);
6504
6505 /* Descend the basic block in search of the original expr; this part
6506 corresponds to the part of the original move_op procedure executed
6507 before the recursive call. */
6508 for (;;)
6509 {
6510 /* Look at the insn and decide if it could be an ancestor of currently
6511 scheduling operation. If it is so, then the insn "dest = op" could
6512 either be replaced with "dest = reg", because REG now holds the result
6513 of OP, or just removed, if we've scheduled the insn as a whole.
6514
6515 If this insn doesn't contain currently scheduling OP, then proceed
6516 with searching and look at its successors. Operations we're searching
6517 for could have changed when moving up through this insn via
6518 substituting. In this case, perform unsubstitution on them first.
6519
6520 When traversing the DAG below this insn is finished, insert
6521 bookkeeping code, if the insn is a joint point, and remove
6522 leftovers. */
6523
6524 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6525 if (expr)
6526 {
6527 insn_t last_insn = PREV_INSN (insn);
6528
6529 /* We have found the original operation. */
6530 if (sched_verbose >= 6)
6531 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6532
6533 code_motion_path_driver_info->orig_expr_found
6534 (insn, expr, local_params_in, static_params);
6535
6536 /* Step back, so on the way back we'll start traversing from the
6537 previous insn (or we'll see that it's bb_note and skip that
6538 loop). */
6539 if (insn == first_insn)
6540 {
6541 first_insn = NEXT_INSN (last_insn);
6542 removed_last_insn = sel_bb_end_p (last_insn);
6543 }
6544 insn = last_insn;
6545 break;
6546 }
6547 else
6548 {
6549 /* We haven't found the original expr, continue descending the basic
6550 block. */
6551 if (code_motion_path_driver_info->orig_expr_not_found
6552 (insn, orig_ops, static_params))
6553 {
6554 /* Av set ops could have been changed when moving through this
6555 insn. To find them below it, we have to un-substitute them. */
6556 undo_transformations (&orig_ops, insn);
6557 }
6558 else
6559 {
6560 /* Clean up and return, if the hook tells us to do so. It may
6561 happen if we've encountered the previously created
6562 bookkeeping. */
6563 code_motion_path_driver_cleanup (&orig_ops, &path);
6564 return -1;
6565 }
6566
6567 gcc_assert (orig_ops);
6568 }
6569
6570 /* Stop at insn if we got to the end of BB. */
6571 if (insn == bb_tail)
6572 break;
6573
6574 insn = NEXT_INSN (insn);
6575 }
6576
6577 /* Here INSN either points to the insn before the original insn (may be
6578 bb_note, if original insn was a bb_head) or to the bb_end. */
6579 if (!expr)
6580 {
6581 int res;
6582
6583 gcc_assert (insn == sel_bb_end (bb));
6584
6585 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6586 it's already in PATH then). */
6587 if (insn != first_insn)
6588 ilist_add (&path, insn);
6589
6590 /* Process_successors should be able to find at least one
6591 successor for which code_motion_path_driver returns TRUE. */
6592 res = code_motion_process_successors (insn, orig_ops,
6593 path, static_params);
6594
6595 /* Remove bb tail from path. */
6596 if (insn != first_insn)
6597 ilist_remove (&path);
6598
6599 if (res != 1)
6600 {
6601 /* This is the case when one of the original expr is no longer available
6602 due to bookkeeping created on this branch with the same register.
6603 In the original algorithm, which doesn't have update_data_sets call
6604 on a bookkeeping block, it would simply result in returning
6605 FALSE when we've encountered a previously generated bookkeeping
6606 insn in moveop_orig_expr_not_found. */
6607 code_motion_path_driver_cleanup (&orig_ops, &path);
6608 return res;
6609 }
6610 }
6611
6612 /* Don't need it any more. */
6613 av_set_clear (&orig_ops);
6614
6615 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6616 the beginning of the basic block. */
6617 before_first = PREV_INSN (first_insn);
6618 while (insn != before_first)
6619 {
6620 if (code_motion_path_driver_info->ascend)
6621 code_motion_path_driver_info->ascend (insn, static_params);
6622
6623 insn = PREV_INSN (insn);
6624 }
6625
6626 /* Now we're at the bb head. */
6627 insn = first_insn;
6628 ilist_remove (&path);
6629 local_params_in->removed_last_insn = removed_last_insn;
6630 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6631
6632 /* This should be the very last operation as at bb head we could change
6633 the numbering by creating bookkeeping blocks. */
6634 if (removed_last_insn)
6635 insn = PREV_INSN (insn);
6636 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6637 return true;
6638 }
6639
6640 /* Move up the operations from ORIG_OPS set traversing the dag starting
6641 from INSN. PATH represents the edges traversed so far.
6642 DEST is the register chosen for scheduling the current expr. Insert
6643 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6644 C_EXPR is how it looks like at the given cfg point.
6645 Set *SHOULD_MOVE to indicate whether we have only disconnected
6646 one of the insns found.
6647
6648 Returns whether original instructions were found, which is asserted
6649 to be true in the caller. */
6650 static bool
6651 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6652 rtx dest, expr_t c_expr, bool *should_move)
6653 {
6654 struct moveop_static_params sparams;
6655 struct cmpd_local_params lparams;
6656 bool res;
6657
6658 /* Init params for code_motion_path_driver. */
6659 sparams.dest = dest;
6660 sparams.c_expr = c_expr;
6661 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6662 #ifdef ENABLE_CHECKING
6663 sparams.failed_insn = NULL;
6664 #endif
6665 sparams.was_renamed = false;
6666 lparams.e1 = NULL;
6667
6668 /* We haven't visited any blocks yet. */
6669 bitmap_clear (code_motion_visited_blocks);
6670
6671 /* Set appropriate hooks and data. */
6672 code_motion_path_driver_info = &move_op_hooks;
6673 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6674
6675 if (sparams.was_renamed)
6676 EXPR_WAS_RENAMED (expr_vliw) = true;
6677
6678 *should_move = (sparams.uid == -1);
6679
6680 return res;
6681 }
6682 \f
6683
6684 /* Functions that work with regions. */
6685
6686 /* Current number of seqno used in init_seqno and init_seqno_1. */
6687 static int cur_seqno;
6688
6689 /* A helper for init_seqno. Traverse the region starting from BB and
6690 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6691 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6692 static void
6693 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6694 {
6695 int bbi = BLOCK_TO_BB (bb->index);
6696 insn_t insn, note = bb_note (bb);
6697 insn_t succ_insn;
6698 succ_iterator si;
6699
6700 SET_BIT (visited_bbs, bbi);
6701 if (blocks_to_reschedule)
6702 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6703
6704 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6705 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6706 {
6707 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6708 int succ_bbi = BLOCK_TO_BB (succ->index);
6709
6710 gcc_assert (in_current_region_p (succ));
6711
6712 if (!TEST_BIT (visited_bbs, succ_bbi))
6713 {
6714 gcc_assert (succ_bbi > bbi);
6715
6716 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6717 }
6718 else if (blocks_to_reschedule)
6719 bitmap_set_bit (forced_ebb_heads, succ->index);
6720 }
6721
6722 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6723 INSN_SEQNO (insn) = cur_seqno--;
6724 }
6725
6726 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6727 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6728 which we're rescheduling when pipelining, FROM is the block where
6729 traversing region begins (it may not be the head of the region when
6730 pipelining, but the head of the loop instead).
6731
6732 Returns the maximal seqno found. */
6733 static int
6734 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6735 {
6736 sbitmap visited_bbs;
6737 bitmap_iterator bi;
6738 unsigned bbi;
6739
6740 visited_bbs = sbitmap_alloc (current_nr_blocks);
6741
6742 if (blocks_to_reschedule)
6743 {
6744 sbitmap_ones (visited_bbs);
6745 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6746 {
6747 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6748 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6749 }
6750 }
6751 else
6752 {
6753 sbitmap_zero (visited_bbs);
6754 from = EBB_FIRST_BB (0);
6755 }
6756
6757 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6758 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6759 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6760
6761 sbitmap_free (visited_bbs);
6762 return sched_max_luid - 1;
6763 }
6764
6765 /* Initialize scheduling parameters for current region. */
6766 static void
6767 sel_setup_region_sched_flags (void)
6768 {
6769 enable_schedule_as_rhs_p = 1;
6770 bookkeeping_p = 1;
6771 pipelining_p = (bookkeeping_p
6772 && (flag_sel_sched_pipelining != 0)
6773 && current_loop_nest != NULL);
6774 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6775 max_ws = MAX_WS;
6776 }
6777
6778 /* Return true if all basic blocks of current region are empty. */
6779 static bool
6780 current_region_empty_p (void)
6781 {
6782 int i;
6783 for (i = 0; i < current_nr_blocks; i++)
6784 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6785 return false;
6786
6787 return true;
6788 }
6789
6790 /* Prepare and verify loop nest for pipelining. */
6791 static void
6792 setup_current_loop_nest (int rgn)
6793 {
6794 current_loop_nest = get_loop_nest_for_rgn (rgn);
6795
6796 if (!current_loop_nest)
6797 return;
6798
6799 /* If this loop has any saved loop preheaders from nested loops,
6800 add these basic blocks to the current region. */
6801 sel_add_loop_preheaders ();
6802
6803 /* Check that we're starting with a valid information. */
6804 gcc_assert (loop_latch_edge (current_loop_nest));
6805 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6806 }
6807
6808 /* Compute instruction priorities for current region. */
6809 static void
6810 sel_compute_priorities (int rgn)
6811 {
6812 sched_rgn_compute_dependencies (rgn);
6813
6814 /* Compute insn priorities in haifa style. Then free haifa style
6815 dependencies that we've calculated for this. */
6816 compute_priorities ();
6817
6818 if (sched_verbose >= 5)
6819 debug_rgn_dependencies (0);
6820
6821 free_rgn_deps ();
6822 }
6823
6824 /* Init scheduling data for RGN. Returns true when this region should not
6825 be scheduled. */
6826 static bool
6827 sel_region_init (int rgn)
6828 {
6829 int i;
6830 bb_vec_t bbs;
6831
6832 rgn_setup_region (rgn);
6833
6834 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6835 do region initialization here so the region can be bundled correctly,
6836 but we'll skip the scheduling in sel_sched_region (). */
6837 if (current_region_empty_p ())
6838 return true;
6839
6840 if (flag_sel_sched_pipelining)
6841 setup_current_loop_nest (rgn);
6842
6843 sel_setup_region_sched_flags ();
6844
6845 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6846
6847 for (i = 0; i < current_nr_blocks; i++)
6848 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6849
6850 sel_init_bbs (bbs, NULL);
6851
6852 /* Initialize luids and dependence analysis which both sel-sched and haifa
6853 need. */
6854 sched_init_luids (bbs, NULL, NULL, NULL);
6855 sched_deps_init (false);
6856
6857 /* Initialize haifa data. */
6858 rgn_setup_sched_infos ();
6859 sel_set_sched_flags ();
6860 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6861
6862 sel_compute_priorities (rgn);
6863 init_deps_global ();
6864
6865 /* Main initialization. */
6866 sel_setup_sched_infos ();
6867 sel_init_global_and_expr (bbs);
6868
6869 VEC_free (basic_block, heap, bbs);
6870
6871 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6872
6873 /* Init correct liveness sets on each instruction of a single-block loop.
6874 This is the only situation when we can't update liveness when calling
6875 compute_live for the first insn of the loop. */
6876 if (current_loop_nest)
6877 {
6878 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6879 ? 1
6880 : 0);
6881
6882 if (current_nr_blocks == header + 1)
6883 update_liveness_on_insn
6884 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6885 }
6886
6887 /* Set hooks so that no newly generated insn will go out unnoticed. */
6888 sel_register_cfg_hooks ();
6889
6890 /* !!! We call target.sched.init () for the whole region, but we invoke
6891 targetm.sched.finish () for every ebb. */
6892 if (targetm.sched.init)
6893 /* None of the arguments are actually used in any target. */
6894 targetm.sched.init (sched_dump, sched_verbose, -1);
6895
6896 first_emitted_uid = get_max_uid () + 1;
6897 preheader_removed = false;
6898
6899 /* Reset register allocation ticks array. */
6900 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6901 reg_rename_this_tick = 0;
6902
6903 bitmap_initialize (forced_ebb_heads, 0);
6904 bitmap_clear (forced_ebb_heads);
6905
6906 setup_nop_vinsn ();
6907 current_copies = BITMAP_ALLOC (NULL);
6908 current_originators = BITMAP_ALLOC (NULL);
6909 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6910
6911 return false;
6912 }
6913
6914 /* Simplify insns after the scheduling. */
6915 static void
6916 simplify_changed_insns (void)
6917 {
6918 int i;
6919
6920 for (i = 0; i < current_nr_blocks; i++)
6921 {
6922 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6923 rtx insn;
6924
6925 FOR_BB_INSNS (bb, insn)
6926 if (INSN_P (insn))
6927 {
6928 expr_t expr = INSN_EXPR (insn);
6929
6930 if (EXPR_WAS_SUBSTITUTED (expr))
6931 validate_simplify_insn (insn);
6932 }
6933 }
6934 }
6935
6936 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6937 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6938 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6939 static void
6940 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6941 {
6942 insn_t head, tail;
6943 basic_block bb1 = bb;
6944 if (sched_verbose >= 2)
6945 sel_print ("Finishing schedule in bbs: ");
6946
6947 do
6948 {
6949 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6950
6951 if (sched_verbose >= 2)
6952 sel_print ("%d; ", bb1->index);
6953 }
6954 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6955
6956 if (sched_verbose >= 2)
6957 sel_print ("\n");
6958
6959 get_ebb_head_tail (bb, bb1, &head, &tail);
6960
6961 current_sched_info->head = head;
6962 current_sched_info->tail = tail;
6963 current_sched_info->prev_head = PREV_INSN (head);
6964 current_sched_info->next_tail = NEXT_INSN (tail);
6965 }
6966
6967 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6968 static void
6969 reset_sched_cycles_in_current_ebb (void)
6970 {
6971 int last_clock = 0;
6972 int haifa_last_clock = -1;
6973 int haifa_clock = 0;
6974 int issued_insns = 0;
6975 insn_t insn;
6976
6977 if (targetm.sched.init)
6978 {
6979 /* None of the arguments are actually used in any target.
6980 NB: We should have md_reset () hook for cases like this. */
6981 targetm.sched.init (sched_dump, sched_verbose, -1);
6982 }
6983
6984 state_reset (curr_state);
6985 advance_state (curr_state);
6986
6987 for (insn = current_sched_info->head;
6988 insn != current_sched_info->next_tail;
6989 insn = NEXT_INSN (insn))
6990 {
6991 int cost, haifa_cost;
6992 int sort_p;
6993 bool asm_p, real_insn, after_stall;
6994 int clock;
6995
6996 if (!INSN_P (insn))
6997 continue;
6998
6999 asm_p = false;
7000 real_insn = recog_memoized (insn) >= 0;
7001 clock = INSN_SCHED_CYCLE (insn);
7002
7003 cost = clock - last_clock;
7004
7005 /* Initialize HAIFA_COST. */
7006 if (! real_insn)
7007 {
7008 asm_p = INSN_ASM_P (insn);
7009
7010 if (asm_p)
7011 /* This is asm insn which *had* to be scheduled first
7012 on the cycle. */
7013 haifa_cost = 1;
7014 else
7015 /* This is a use/clobber insn. It should not change
7016 cost. */
7017 haifa_cost = 0;
7018 }
7019 else
7020 haifa_cost = estimate_insn_cost (insn, curr_state);
7021
7022 /* Stall for whatever cycles we've stalled before. */
7023 after_stall = 0;
7024 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7025 {
7026 haifa_cost = cost;
7027 after_stall = 1;
7028 }
7029 if (haifa_cost == 0
7030 && issued_insns == issue_rate)
7031 haifa_cost = 1;
7032 if (haifa_cost > 0)
7033 {
7034 int i = 0;
7035
7036 while (haifa_cost--)
7037 {
7038 advance_state (curr_state);
7039 issued_insns = 0;
7040 i++;
7041
7042 if (sched_verbose >= 2)
7043 {
7044 sel_print ("advance_state (state_transition)\n");
7045 debug_state (curr_state);
7046 }
7047
7048 /* The DFA may report that e.g. insn requires 2 cycles to be
7049 issued, but on the next cycle it says that insn is ready
7050 to go. Check this here. */
7051 if (!after_stall
7052 && real_insn
7053 && haifa_cost > 0
7054 && estimate_insn_cost (insn, curr_state) == 0)
7055 break;
7056 }
7057
7058 haifa_clock += i;
7059 if (sched_verbose >= 2)
7060 sel_print ("haifa clock: %d\n", haifa_clock);
7061 }
7062 else
7063 gcc_assert (haifa_cost == 0);
7064
7065 if (sched_verbose >= 2)
7066 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7067
7068 if (targetm.sched.dfa_new_cycle)
7069 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7070 haifa_last_clock, haifa_clock,
7071 &sort_p))
7072 {
7073 advance_state (curr_state);
7074 issued_insns = 0;
7075 haifa_clock++;
7076 if (sched_verbose >= 2)
7077 {
7078 sel_print ("advance_state (dfa_new_cycle)\n");
7079 debug_state (curr_state);
7080 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7081 }
7082 }
7083
7084 if (real_insn)
7085 {
7086 cost = state_transition (curr_state, insn);
7087 issued_insns++;
7088
7089 if (sched_verbose >= 2)
7090 {
7091 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7092 haifa_clock + 1);
7093 debug_state (curr_state);
7094 }
7095 gcc_assert (cost < 0);
7096 }
7097
7098 if (targetm.sched.variable_issue)
7099 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7100
7101 INSN_SCHED_CYCLE (insn) = haifa_clock;
7102
7103 last_clock = clock;
7104 haifa_last_clock = haifa_clock;
7105 }
7106 }
7107
7108 /* Put TImode markers on insns starting a new issue group. */
7109 static void
7110 put_TImodes (void)
7111 {
7112 int last_clock = -1;
7113 insn_t insn;
7114
7115 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7116 insn = NEXT_INSN (insn))
7117 {
7118 int cost, clock;
7119
7120 if (!INSN_P (insn))
7121 continue;
7122
7123 clock = INSN_SCHED_CYCLE (insn);
7124 cost = (last_clock == -1) ? 1 : clock - last_clock;
7125
7126 gcc_assert (cost >= 0);
7127
7128 if (issue_rate > 1
7129 && GET_CODE (PATTERN (insn)) != USE
7130 && GET_CODE (PATTERN (insn)) != CLOBBER)
7131 {
7132 if (reload_completed && cost > 0)
7133 PUT_MODE (insn, TImode);
7134
7135 last_clock = clock;
7136 }
7137
7138 if (sched_verbose >= 2)
7139 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7140 }
7141 }
7142
7143 /* Perform MD_FINISH on EBBs comprising current region. When
7144 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7145 to produce correct sched cycles on insns. */
7146 static void
7147 sel_region_target_finish (bool reset_sched_cycles_p)
7148 {
7149 int i;
7150 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7151
7152 for (i = 0; i < current_nr_blocks; i++)
7153 {
7154 if (bitmap_bit_p (scheduled_blocks, i))
7155 continue;
7156
7157 /* While pipelining outer loops, skip bundling for loop
7158 preheaders. Those will be rescheduled in the outer loop. */
7159 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7160 continue;
7161
7162 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7163
7164 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7165 continue;
7166
7167 if (reset_sched_cycles_p)
7168 reset_sched_cycles_in_current_ebb ();
7169
7170 if (targetm.sched.init)
7171 targetm.sched.init (sched_dump, sched_verbose, -1);
7172
7173 put_TImodes ();
7174
7175 if (targetm.sched.finish)
7176 {
7177 targetm.sched.finish (sched_dump, sched_verbose);
7178
7179 /* Extend luids so that insns generated by the target will
7180 get zero luid. */
7181 sched_init_luids (NULL, NULL, NULL, NULL);
7182 }
7183 }
7184
7185 BITMAP_FREE (scheduled_blocks);
7186 }
7187
7188 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7189 is true, make an additional pass emulating scheduler to get correct insn
7190 cycles for md_finish calls. */
7191 static void
7192 sel_region_finish (bool reset_sched_cycles_p)
7193 {
7194 simplify_changed_insns ();
7195 sched_finish_ready_list ();
7196 free_nop_pool ();
7197
7198 /* Free the vectors. */
7199 if (vec_av_set)
7200 VEC_free (expr_t, heap, vec_av_set);
7201 BITMAP_FREE (current_copies);
7202 BITMAP_FREE (current_originators);
7203 BITMAP_FREE (code_motion_visited_blocks);
7204 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7205 vinsn_vec_free (&vec_target_unavailable_vinsns);
7206
7207 /* If LV_SET of the region head should be updated, do it now because
7208 there will be no other chance. */
7209 {
7210 succ_iterator si;
7211 insn_t insn;
7212
7213 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7214 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7215 {
7216 basic_block bb = BLOCK_FOR_INSN (insn);
7217
7218 if (!BB_LV_SET_VALID_P (bb))
7219 compute_live (insn);
7220 }
7221 }
7222
7223 /* Emulate the Haifa scheduler for bundling. */
7224 if (reload_completed)
7225 sel_region_target_finish (reset_sched_cycles_p);
7226
7227 sel_finish_global_and_expr ();
7228
7229 bitmap_clear (forced_ebb_heads);
7230
7231 free_nop_vinsn ();
7232
7233 finish_deps_global ();
7234 sched_finish_luids ();
7235
7236 sel_finish_bbs ();
7237 BITMAP_FREE (blocks_to_reschedule);
7238
7239 sel_unregister_cfg_hooks ();
7240
7241 max_issue_size = 0;
7242 }
7243 \f
7244
7245 /* Functions that implement the scheduler driver. */
7246
7247 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7248 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7249 of insns scheduled -- these would be postprocessed later. */
7250 static void
7251 schedule_on_fences (flist_t fences, int max_seqno,
7252 ilist_t **scheduled_insns_tailpp)
7253 {
7254 flist_t old_fences = fences;
7255
7256 if (sched_verbose >= 1)
7257 {
7258 sel_print ("\nScheduling on fences: ");
7259 dump_flist (fences);
7260 sel_print ("\n");
7261 }
7262
7263 scheduled_something_on_previous_fence = false;
7264 for (; fences; fences = FLIST_NEXT (fences))
7265 {
7266 fence_t fence = NULL;
7267 int seqno = 0;
7268 flist_t fences2;
7269 bool first_p = true;
7270
7271 /* Choose the next fence group to schedule.
7272 The fact that insn can be scheduled only once
7273 on the cycle is guaranteed by two properties:
7274 1. seqnos of parallel groups decrease with each iteration.
7275 2. If is_ineligible_successor () sees the larger seqno, it
7276 checks if candidate insn is_in_current_fence_p (). */
7277 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7278 {
7279 fence_t f = FLIST_FENCE (fences2);
7280
7281 if (!FENCE_PROCESSED_P (f))
7282 {
7283 int i = INSN_SEQNO (FENCE_INSN (f));
7284
7285 if (first_p || i > seqno)
7286 {
7287 seqno = i;
7288 fence = f;
7289 first_p = false;
7290 }
7291 else
7292 /* ??? Seqnos of different groups should be different. */
7293 gcc_assert (1 || i != seqno);
7294 }
7295 }
7296
7297 gcc_assert (fence);
7298
7299 /* As FENCE is nonnull, SEQNO is initialized. */
7300 seqno -= max_seqno + 1;
7301 fill_insns (fence, seqno, scheduled_insns_tailpp);
7302 FENCE_PROCESSED_P (fence) = true;
7303 }
7304
7305 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7306 don't need to keep bookkeeping-invalidated and target-unavailable
7307 vinsns any more. */
7308 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7309 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7310 }
7311
7312 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7313 static void
7314 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7315 {
7316 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7317
7318 /* The first element is already processed. */
7319 while ((fences = FLIST_NEXT (fences)))
7320 {
7321 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7322
7323 if (*min_seqno > seqno)
7324 *min_seqno = seqno;
7325 else if (*max_seqno < seqno)
7326 *max_seqno = seqno;
7327 }
7328 }
7329
7330 /* Calculate new fences from FENCES. */
7331 static flist_t
7332 calculate_new_fences (flist_t fences, int orig_max_seqno)
7333 {
7334 flist_t old_fences = fences;
7335 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7336
7337 flist_tail_init (new_fences);
7338 for (; fences; fences = FLIST_NEXT (fences))
7339 {
7340 fence_t fence = FLIST_FENCE (fences);
7341 insn_t insn;
7342
7343 if (!FENCE_BNDS (fence))
7344 {
7345 /* This fence doesn't have any successors. */
7346 if (!FENCE_SCHEDULED_P (fence))
7347 {
7348 /* Nothing was scheduled on this fence. */
7349 int seqno;
7350
7351 insn = FENCE_INSN (fence);
7352 seqno = INSN_SEQNO (insn);
7353 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7354
7355 if (sched_verbose >= 1)
7356 sel_print ("Fence %d[%d] has not changed\n",
7357 INSN_UID (insn),
7358 BLOCK_NUM (insn));
7359 move_fence_to_fences (fences, new_fences);
7360 }
7361 }
7362 else
7363 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7364 }
7365
7366 flist_clear (&old_fences);
7367 return FLIST_TAIL_HEAD (new_fences);
7368 }
7369
7370 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7371 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7372 the highest seqno used in a region. Return the updated highest seqno. */
7373 static int
7374 update_seqnos_and_stage (int min_seqno, int max_seqno,
7375 int highest_seqno_in_use,
7376 ilist_t *pscheduled_insns)
7377 {
7378 int new_hs;
7379 ilist_iterator ii;
7380 insn_t insn;
7381
7382 /* Actually, new_hs is the seqno of the instruction, that was
7383 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7384 if (*pscheduled_insns)
7385 {
7386 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7387 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7388 gcc_assert (new_hs > highest_seqno_in_use);
7389 }
7390 else
7391 new_hs = highest_seqno_in_use;
7392
7393 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7394 {
7395 gcc_assert (INSN_SEQNO (insn) < 0);
7396 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7397 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7398
7399 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7400 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7401 require > 1GB of memory e.g. on limit-fnargs.c. */
7402 if (! pipelining_p)
7403 free_data_for_scheduled_insn (insn);
7404 }
7405
7406 ilist_clear (pscheduled_insns);
7407 global_level++;
7408
7409 return new_hs;
7410 }
7411
7412 /* The main driver for scheduling a region. This function is responsible
7413 for correct propagation of fences (i.e. scheduling points) and creating
7414 a group of parallel insns at each of them. It also supports
7415 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7416 of scheduling. */
7417 static void
7418 sel_sched_region_2 (int orig_max_seqno)
7419 {
7420 int highest_seqno_in_use = orig_max_seqno;
7421
7422 stat_bookkeeping_copies = 0;
7423 stat_insns_needed_bookkeeping = 0;
7424 stat_renamed_scheduled = 0;
7425 stat_substitutions_total = 0;
7426 num_insns_scheduled = 0;
7427
7428 while (fences)
7429 {
7430 int min_seqno, max_seqno;
7431 ilist_t scheduled_insns = NULL;
7432 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7433
7434 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7435 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7436 fences = calculate_new_fences (fences, orig_max_seqno);
7437 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7438 highest_seqno_in_use,
7439 &scheduled_insns);
7440 }
7441
7442 if (sched_verbose >= 1)
7443 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7444 "bookkeeping, %d insns renamed, %d insns substituted\n",
7445 stat_bookkeeping_copies,
7446 stat_insns_needed_bookkeeping,
7447 stat_renamed_scheduled,
7448 stat_substitutions_total);
7449 }
7450
7451 /* Schedule a region. When pipelining, search for possibly never scheduled
7452 bookkeeping code and schedule it. Reschedule pipelined code without
7453 pipelining after. */
7454 static void
7455 sel_sched_region_1 (void)
7456 {
7457 int number_of_insns;
7458 int orig_max_seqno;
7459
7460 /* Remove empty blocks that might be in the region from the beginning.
7461 We need to do save sched_max_luid before that, as it actually shows
7462 the number of insns in the region, and purge_empty_blocks can
7463 alter it. */
7464 number_of_insns = sched_max_luid - 1;
7465 purge_empty_blocks ();
7466
7467 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7468 gcc_assert (orig_max_seqno >= 1);
7469
7470 /* When pipelining outer loops, create fences on the loop header,
7471 not preheader. */
7472 fences = NULL;
7473 if (current_loop_nest)
7474 init_fences (BB_END (EBB_FIRST_BB (0)));
7475 else
7476 init_fences (bb_note (EBB_FIRST_BB (0)));
7477 global_level = 1;
7478
7479 sel_sched_region_2 (orig_max_seqno);
7480
7481 gcc_assert (fences == NULL);
7482
7483 if (pipelining_p)
7484 {
7485 int i;
7486 basic_block bb;
7487 struct flist_tail_def _new_fences;
7488 flist_tail_t new_fences = &_new_fences;
7489 bool do_p = true;
7490
7491 pipelining_p = false;
7492 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7493 bookkeeping_p = false;
7494 enable_schedule_as_rhs_p = false;
7495
7496 /* Schedule newly created code, that has not been scheduled yet. */
7497 do_p = true;
7498
7499 while (do_p)
7500 {
7501 do_p = false;
7502
7503 for (i = 0; i < current_nr_blocks; i++)
7504 {
7505 basic_block bb = EBB_FIRST_BB (i);
7506
7507 if (sel_bb_empty_p (bb))
7508 {
7509 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7510 continue;
7511 }
7512
7513 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7514 {
7515 clear_outdated_rtx_info (bb);
7516 if (sel_insn_is_speculation_check (BB_END (bb))
7517 && JUMP_P (BB_END (bb)))
7518 bitmap_set_bit (blocks_to_reschedule,
7519 BRANCH_EDGE (bb)->dest->index);
7520 }
7521 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7522 bitmap_set_bit (blocks_to_reschedule, bb->index);
7523 }
7524
7525 for (i = 0; i < current_nr_blocks; i++)
7526 {
7527 bb = EBB_FIRST_BB (i);
7528
7529 /* While pipelining outer loops, skip bundling for loop
7530 preheaders. Those will be rescheduled in the outer
7531 loop. */
7532 if (sel_is_loop_preheader_p (bb))
7533 {
7534 clear_outdated_rtx_info (bb);
7535 continue;
7536 }
7537
7538 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7539 {
7540 flist_tail_init (new_fences);
7541
7542 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7543
7544 /* Mark BB as head of the new ebb. */
7545 bitmap_set_bit (forced_ebb_heads, bb->index);
7546
7547 gcc_assert (fences == NULL);
7548
7549 init_fences (bb_note (bb));
7550
7551 sel_sched_region_2 (orig_max_seqno);
7552
7553 do_p = true;
7554 break;
7555 }
7556 }
7557 }
7558 }
7559 }
7560
7561 /* Schedule the RGN region. */
7562 void
7563 sel_sched_region (int rgn)
7564 {
7565 bool schedule_p;
7566 bool reset_sched_cycles_p;
7567
7568 if (sel_region_init (rgn))
7569 return;
7570
7571 if (sched_verbose >= 1)
7572 sel_print ("Scheduling region %d\n", rgn);
7573
7574 schedule_p = (!sched_is_disabled_for_current_region_p ()
7575 && dbg_cnt (sel_sched_region_cnt));
7576 reset_sched_cycles_p = pipelining_p;
7577 if (schedule_p)
7578 sel_sched_region_1 ();
7579 else
7580 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7581 reset_sched_cycles_p = true;
7582
7583 sel_region_finish (reset_sched_cycles_p);
7584 }
7585
7586 /* Perform global init for the scheduler. */
7587 static void
7588 sel_global_init (void)
7589 {
7590 calculate_dominance_info (CDI_DOMINATORS);
7591 alloc_sched_pools ();
7592
7593 /* Setup the infos for sched_init. */
7594 sel_setup_sched_infos ();
7595 setup_sched_dump ();
7596
7597 sched_rgn_init (false);
7598 sched_init ();
7599
7600 sched_init_bbs ();
7601 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7602 after_recovery = 0;
7603 can_issue_more = issue_rate;
7604
7605 sched_extend_target ();
7606 sched_deps_init (true);
7607 setup_nop_and_exit_insns ();
7608 sel_extend_global_bb_info ();
7609 init_lv_sets ();
7610 init_hard_regs_data ();
7611 }
7612
7613 /* Free the global data of the scheduler. */
7614 static void
7615 sel_global_finish (void)
7616 {
7617 free_bb_note_pool ();
7618 free_lv_sets ();
7619 sel_finish_global_bb_info ();
7620
7621 free_regset_pool ();
7622 free_nop_and_exit_insns ();
7623
7624 sched_rgn_finish ();
7625 sched_deps_finish ();
7626 sched_finish ();
7627
7628 if (current_loops)
7629 sel_finish_pipelining ();
7630
7631 free_sched_pools ();
7632 free_dominance_info (CDI_DOMINATORS);
7633 }
7634
7635 /* Return true when we need to skip selective scheduling. Used for debugging. */
7636 bool
7637 maybe_skip_selective_scheduling (void)
7638 {
7639 return ! dbg_cnt (sel_sched_cnt);
7640 }
7641
7642 /* The entry point. */
7643 void
7644 run_selective_scheduling (void)
7645 {
7646 int rgn;
7647
7648 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7649 return;
7650
7651 sel_global_init ();
7652
7653 for (rgn = 0; rgn < nr_regions; rgn++)
7654 sel_sched_region (rgn);
7655
7656 sel_global_finish ();
7657 }
7658
7659 #endif