compiler: identify array index expressions in lvalue context
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "params.h"
34 #include "target.h"
35 #include "sched-int.h"
36 #include "rtlhooks-def.h"
37 #include "ira.h"
38 #include "ira-int.h"
39 #include "rtl-iter.h"
40
41 #ifdef INSN_SCHEDULING
42 #include "regset.h"
43 #include "cfgloop.h"
44 #include "sel-sched-ir.h"
45 #include "sel-sched-dump.h"
46 #include "sel-sched.h"
47 #include "dbgcnt.h"
48
49 /* Implementation of selective scheduling approach.
50 The below implementation follows the original approach with the following
51 changes:
52
53 o the scheduler works after register allocation (but can be also tuned
54 to work before RA);
55 o some instructions are not copied or register renamed;
56 o conditional jumps are not moved with code duplication;
57 o several jumps in one parallel group are not supported;
58 o when pipelining outer loops, code motion through inner loops
59 is not supported;
60 o control and data speculation are supported;
61 o some improvements for better compile time/performance were made.
62
63 Terminology
64 ===========
65
66 A vinsn, or virtual insn, is an insn with additional data characterizing
67 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
68 Vinsns also act as smart pointers to save memory by reusing them in
69 different expressions. A vinsn is described by vinsn_t type.
70
71 An expression is a vinsn with additional data characterizing its properties
72 at some point in the control flow graph. The data may be its usefulness,
73 priority, speculative status, whether it was renamed/subsituted, etc.
74 An expression is described by expr_t type.
75
76 Availability set (av_set) is a set of expressions at a given control flow
77 point. It is represented as av_set_t. The expressions in av sets are kept
78 sorted in the terms of expr_greater_p function. It allows to truncate
79 the set while leaving the best expressions.
80
81 A fence is a point through which code motion is prohibited. On each step,
82 we gather a parallel group of insns at a fence. It is possible to have
83 multiple fences. A fence is represented via fence_t.
84
85 A boundary is the border between the fence group and the rest of the code.
86 Currently, we never have more than one boundary per fence, as we finalize
87 the fence group when a jump is scheduled. A boundary is represented
88 via bnd_t.
89
90 High-level overview
91 ===================
92
93 The scheduler finds regions to schedule, schedules each one, and finalizes.
94 The regions are formed starting from innermost loops, so that when the inner
95 loop is pipelined, its prologue can be scheduled together with yet unprocessed
96 outer loop. The rest of acyclic regions are found using extend_rgns:
97 the blocks that are not yet allocated to any regions are traversed in top-down
98 order, and a block is added to a region to which all its predecessors belong;
99 otherwise, the block starts its own region.
100
101 The main scheduling loop (sel_sched_region_2) consists of just
102 scheduling on each fence and updating fences. For each fence,
103 we fill a parallel group of insns (fill_insns) until some insns can be added.
104 First, we compute available exprs (av-set) at the boundary of the current
105 group. Second, we choose the best expression from it. If the stall is
106 required to schedule any of the expressions, we advance the current cycle
107 appropriately. So, the final group does not exactly correspond to a VLIW
108 word. Third, we move the chosen expression to the boundary (move_op)
109 and update the intermediate av sets and liveness sets. We quit fill_insns
110 when either no insns left for scheduling or we have scheduled enough insns
111 so we feel like advancing a scheduling point.
112
113 Computing available expressions
114 ===============================
115
116 The computation (compute_av_set) is a bottom-up traversal. At each insn,
117 we're moving the union of its successors' sets through it via
118 moveup_expr_set. The dependent expressions are removed. Local
119 transformations (substitution, speculation) are applied to move more
120 exprs. Then the expr corresponding to the current insn is added.
121 The result is saved on each basic block header.
122
123 When traversing the CFG, we're moving down for no more than max_ws insns.
124 Also, we do not move down to ineligible successors (is_ineligible_successor),
125 which include moving along a back-edge, moving to already scheduled code,
126 and moving to another fence. The first two restrictions are lifted during
127 pipelining, which allows us to move insns along a back-edge. We always have
128 an acyclic region for scheduling because we forbid motion through fences.
129
130 Choosing the best expression
131 ============================
132
133 We sort the final availability set via sel_rank_for_schedule, then we remove
134 expressions which are not yet ready (tick_check_p) or which dest registers
135 cannot be used. For some of them, we choose another register via
136 find_best_reg. To do this, we run find_used_regs to calculate the set of
137 registers which cannot be used. The find_used_regs function performs
138 a traversal of code motion paths for an expr. We consider for renaming
139 only registers which are from the same regclass as the original one and
140 using which does not interfere with any live ranges. Finally, we convert
141 the resulting set to the ready list format and use max_issue and reorder*
142 hooks similarly to the Haifa scheduler.
143
144 Scheduling the best expression
145 ==============================
146
147 We run the move_op routine to perform the same type of code motion paths
148 traversal as in find_used_regs. (These are working via the same driver,
149 code_motion_path_driver.) When moving down the CFG, we look for original
150 instruction that gave birth to a chosen expression. We undo
151 the transformations performed on an expression via the history saved in it.
152 When found, we remove the instruction or leave a reg-reg copy/speculation
153 check if needed. On a way up, we insert bookkeeping copies at each join
154 point. If a copy is not needed, it will be removed later during this
155 traversal. We update the saved av sets and liveness sets on the way up, too.
156
157 Finalizing the schedule
158 =======================
159
160 When pipelining, we reschedule the blocks from which insns were pipelined
161 to get a tighter schedule. On Itanium, we also perform bundling via
162 the same routine from ia64.c.
163
164 Dependence analysis changes
165 ===========================
166
167 We augmented the sched-deps.c with hooks that get called when a particular
168 dependence is found in a particular part of an insn. Using these hooks, we
169 can do several actions such as: determine whether an insn can be moved through
170 another (has_dependence_p, moveup_expr); find out whether an insn can be
171 scheduled on the current cycle (tick_check_p); find out registers that
172 are set/used/clobbered by an insn and find out all the strange stuff that
173 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
174 init_global_and_expr_for_insn).
175
176 Initialization changes
177 ======================
178
179 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
180 reused in all of the schedulers. We have split up the initialization of data
181 of such parts into different functions prefixed with scheduler type and
182 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
183 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
184 The same splitting is done with current_sched_info structure:
185 dependence-related parts are in sched_deps_info, common part is in
186 common_sched_info, and haifa/sel/etc part is in current_sched_info.
187
188 Target contexts
189 ===============
190
191 As we now have multiple-point scheduling, this would not work with backends
192 which save some of the scheduler state to use it in the target hooks.
193 For this purpose, we introduce a concept of target contexts, which
194 encapsulate such information. The backend should implement simple routines
195 of allocating/freeing/setting such a context. The scheduler calls these
196 as target hooks and handles the target context as an opaque pointer (similar
197 to the DFA state type, state_t).
198
199 Various speedups
200 ================
201
202 As the correct data dependence graph is not supported during scheduling (which
203 is to be changed in mid-term), we cache as much of the dependence analysis
204 results as possible to avoid reanalyzing. This includes: bitmap caches on
205 each insn in stream of the region saying yes/no for a query with a pair of
206 UIDs; hashtables with the previously done transformations on each insn in
207 stream; a vector keeping a history of transformations on each expr.
208
209 Also, we try to minimize the dependence context used on each fence to check
210 whether the given expression is ready for scheduling by removing from it
211 insns that are definitely completed the execution. The results of
212 tick_check_p checks are also cached in a vector on each fence.
213
214 We keep a valid liveness set on each insn in a region to avoid the high
215 cost of recomputation on large basic blocks.
216
217 Finally, we try to minimize the number of needed updates to the availability
218 sets. The updates happen in two cases: when fill_insns terminates,
219 we advance all fences and increase the stage number to show that the region
220 has changed and the sets are to be recomputed; and when the next iteration
221 of a loop in fill_insns happens (but this one reuses the saved av sets
222 on bb headers.) Thus, we try to break the fill_insns loop only when
223 "significant" number of insns from the current scheduling window was
224 scheduled. This should be made a target param.
225
226
227 TODO: correctly support the data dependence graph at all stages and get rid
228 of all caches. This should speed up the scheduler.
229 TODO: implement moving cond jumps with bookkeeping copies on both targets.
230 TODO: tune the scheduler before RA so it does not create too much pseudos.
231
232
233 References:
234 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
235 selective scheduling and software pipelining.
236 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
237
238 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
239 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
240 for GCC. In Proceedings of GCC Developers' Summit 2006.
241
242 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
243 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
244 http://rogue.colorado.edu/EPIC7/.
245
246 */
247
248 /* True when pipelining is enabled. */
249 bool pipelining_p;
250
251 /* True if bookkeeping is enabled. */
252 bool bookkeeping_p;
253
254 /* Maximum number of insns that are eligible for renaming. */
255 int max_insns_to_rename;
256 \f
257
258 /* Definitions of local types and macros. */
259
260 /* Represents possible outcomes of moving an expression through an insn. */
261 enum MOVEUP_EXPR_CODE
262 {
263 /* The expression is not changed. */
264 MOVEUP_EXPR_SAME,
265
266 /* Not changed, but requires a new destination register. */
267 MOVEUP_EXPR_AS_RHS,
268
269 /* Cannot be moved. */
270 MOVEUP_EXPR_NULL,
271
272 /* Changed (substituted or speculated). */
273 MOVEUP_EXPR_CHANGED
274 };
275
276 /* The container to be passed into rtx search & replace functions. */
277 struct rtx_search_arg
278 {
279 /* What we are searching for. */
280 rtx x;
281
282 /* The occurrence counter. */
283 int n;
284 };
285
286 typedef struct rtx_search_arg *rtx_search_arg_p;
287
288 /* This struct contains precomputed hard reg sets that are needed when
289 computing registers available for renaming. */
290 struct hard_regs_data
291 {
292 /* For every mode, this stores registers available for use with
293 that mode. */
294 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
295
296 /* True when regs_for_mode[mode] is initialized. */
297 bool regs_for_mode_ok[NUM_MACHINE_MODES];
298
299 /* For every register, it has regs that are ok to rename into it.
300 The register in question is always set. If not, this means
301 that the whole set is not computed yet. */
302 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
303
304 /* For every mode, this stores registers not available due to
305 call clobbering. */
306 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
307
308 /* All registers that are used or call used. */
309 HARD_REG_SET regs_ever_used;
310
311 #ifdef STACK_REGS
312 /* Stack registers. */
313 HARD_REG_SET stack_regs;
314 #endif
315 };
316
317 /* Holds the results of computation of available for renaming and
318 unavailable hard registers. */
319 struct reg_rename
320 {
321 /* These are unavailable due to calls crossing, globalness, etc. */
322 HARD_REG_SET unavailable_hard_regs;
323
324 /* These are *available* for renaming. */
325 HARD_REG_SET available_for_renaming;
326
327 /* Whether this code motion path crosses a call. */
328 bool crosses_call;
329 };
330
331 /* A global structure that contains the needed information about harg
332 regs. */
333 static struct hard_regs_data sel_hrd;
334 \f
335
336 /* This structure holds local data used in code_motion_path_driver hooks on
337 the same or adjacent levels of recursion. Here we keep those parameters
338 that are not used in code_motion_path_driver routine itself, but only in
339 its hooks. Moreover, all parameters that can be modified in hooks are
340 in this structure, so all other parameters passed explicitly to hooks are
341 read-only. */
342 struct cmpd_local_params
343 {
344 /* Local params used in move_op_* functions. */
345
346 /* Edges for bookkeeping generation. */
347 edge e1, e2;
348
349 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
350 expr_t c_expr_merged, c_expr_local;
351
352 /* Local params used in fur_* functions. */
353 /* Copy of the ORIGINAL_INSN list, stores the original insns already
354 found before entering the current level of code_motion_path_driver. */
355 def_list_t old_original_insns;
356
357 /* Local params used in move_op_* functions. */
358 /* True when we have removed last insn in the block which was
359 also a boundary. Do not update anything or create bookkeeping copies. */
360 BOOL_BITFIELD removed_last_insn : 1;
361 };
362
363 /* Stores the static parameters for move_op_* calls. */
364 struct moveop_static_params
365 {
366 /* Destination register. */
367 rtx dest;
368
369 /* Current C_EXPR. */
370 expr_t c_expr;
371
372 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
373 they are to be removed. */
374 int uid;
375
376 /* This is initialized to the insn on which the driver stopped its traversal. */
377 insn_t failed_insn;
378
379 /* True if we scheduled an insn with different register. */
380 bool was_renamed;
381 };
382
383 /* Stores the static parameters for fur_* calls. */
384 struct fur_static_params
385 {
386 /* Set of registers unavailable on the code motion path. */
387 regset used_regs;
388
389 /* Pointer to the list of original insns definitions. */
390 def_list_t *original_insns;
391
392 /* True if a code motion path contains a CALL insn. */
393 bool crosses_call;
394 };
395
396 typedef struct fur_static_params *fur_static_params_p;
397 typedef struct cmpd_local_params *cmpd_local_params_p;
398 typedef struct moveop_static_params *moveop_static_params_p;
399
400 /* Set of hooks and parameters that determine behavior specific to
401 move_op or find_used_regs functions. */
402 struct code_motion_path_driver_info_def
403 {
404 /* Called on enter to the basic block. */
405 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
406
407 /* Called when original expr is found. */
408 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
409
410 /* Called while descending current basic block if current insn is not
411 the original EXPR we're searching for. */
412 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
413
414 /* Function to merge C_EXPRes from different successors. */
415 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
416
417 /* Function to finalize merge from different successors and possibly
418 deallocate temporary data structures used for merging. */
419 void (*after_merge_succs) (cmpd_local_params_p, void *);
420
421 /* Called on the backward stage of recursion to do moveup_expr.
422 Used only with move_op_*. */
423 void (*ascend) (insn_t, void *);
424
425 /* Called on the ascending pass, before returning from the current basic
426 block or from the whole traversal. */
427 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
428
429 /* When processing successors in move_op we need only descend into
430 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
431 int succ_flags;
432
433 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
434 const char *routine_name;
435 };
436
437 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
438 FUR_HOOKS. */
439 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
440
441 /* Set of hooks for performing move_op and find_used_regs routines with
442 code_motion_path_driver. */
443 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
444
445 /* True if/when we want to emulate Haifa scheduler in the common code.
446 This is used in sched_rgn_local_init and in various places in
447 sched-deps.c. */
448 int sched_emulate_haifa_p;
449
450 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
451 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
452 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
453 scheduling window. */
454 int global_level;
455
456 /* Current fences. */
457 flist_t fences;
458
459 /* True when separable insns should be scheduled as RHSes. */
460 static bool enable_schedule_as_rhs_p;
461
462 /* Used in verify_target_availability to assert that target reg is reported
463 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
464 we haven't scheduled anything on the previous fence.
465 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
466 have more conservative value than the one returned by the
467 find_used_regs, thus we shouldn't assert that these values are equal. */
468 static bool scheduled_something_on_previous_fence;
469
470 /* All newly emitted insns will have their uids greater than this value. */
471 static int first_emitted_uid;
472
473 /* Set of basic blocks that are forced to start new ebbs. This is a subset
474 of all the ebb heads. */
475 static bitmap_head _forced_ebb_heads;
476 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
477
478 /* Blocks that need to be rescheduled after pipelining. */
479 bitmap blocks_to_reschedule = NULL;
480
481 /* True when the first lv set should be ignored when updating liveness. */
482 static bool ignore_first = false;
483
484 /* Number of insns max_issue has initialized data structures for. */
485 static int max_issue_size = 0;
486
487 /* Whether we can issue more instructions. */
488 static int can_issue_more;
489
490 /* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492 static int max_ws;
493
494 /* Number of insns scheduled in current region. */
495 static int num_insns_scheduled;
496
497 /* A vector of expressions is used to be able to sort them. */
498 static vec<expr_t> vec_av_set;
499
500 /* A vector of vinsns is used to hold temporary lists of vinsns. */
501 typedef vec<vinsn_t> vinsn_vec_t;
502
503 /* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
507 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
508
509 /* This vector has vinsns which are scheduled with renaming on the first fence
510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
512 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
513
514 /* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
516 static vec<insn_t> vec_temp_moveop_nops;
517
518 /* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
520 static bitmap current_originators = NULL;
521 static bitmap current_copies = NULL;
522
523 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525 static bitmap code_motion_visited_blocks = NULL;
526
527 /* Variables to accumulate different statistics. */
528
529 /* The number of bookkeeping copies created. */
530 static int stat_bookkeeping_copies;
531
532 /* The number of insns that required bookkeeiping for their scheduling. */
533 static int stat_insns_needed_bookkeeping;
534
535 /* The number of insns that got renamed. */
536 static int stat_renamed_scheduled;
537
538 /* The number of substitutions made during scheduling. */
539 static int stat_substitutions_total;
540 \f
541
542 /* Forward declarations of static functions. */
543 static bool rtx_ok_for_substitution_p (rtx, rtx);
544 static int sel_rank_for_schedule (const void *, const void *);
545 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
546 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
547
548 static rtx get_dest_from_orig_ops (av_set_t);
549 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
550 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
551 def_list_t *);
552 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
555 static void sel_sched_region_1 (void);
556 static void sel_sched_region_2 (int);
557 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
558
559 static void debug_state (state_t);
560 \f
561
562 /* Functions that work with fences. */
563
564 /* Advance one cycle on FENCE. */
565 static void
566 advance_one_cycle (fence_t fence)
567 {
568 unsigned i;
569 int cycle;
570 rtx_insn *insn;
571
572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
577 FENCE_ISSUE_MORE (fence) = can_issue_more;
578
579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
580 {
581 if (INSN_READY_CYCLE (insn) < cycle)
582 {
583 remove_from_deps (FENCE_DC (fence), insn);
584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
585 continue;
586 }
587 i++;
588 }
589 if (sched_verbose >= 2)
590 {
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
593 }
594 }
595
596 /* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598 static bool
599 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
600 {
601 basic_block bb = BLOCK_FOR_INSN (insn);
602 edge e;
603
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
606
607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
610 else
611 return false;
612
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
615
616 return bb == BLOCK_FOR_INSN (succ);
617 }
618
619 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623 static void
624 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
626 {
627 bool was_here_p = false;
628 insn_t insn = NULL;
629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
634
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
637 {
638 gcc_assert (!was_here_p);
639 was_here_p = true;
640 }
641 gcc_assert (was_here_p && insn != NULL_RTX);
642
643 /* When in the "middle" of the block, just move this fence
644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
647 || (single_succ_p (bb)
648 && single_pred_p (single_succ (bb))))
649 {
650 insn_t succ;
651
652 succ = (sel_bb_end_p (insn)
653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
655
656 if (INSN_SEQNO (succ) > 0
657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
659 {
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
662
663 if (sched_verbose >= 1)
664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
666 }
667 return;
668 }
669
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
672 {
673 int seqno = INSN_SEQNO (succ);
674
675 if (0 < seqno && seqno <= orig_max_seqno
676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
677 {
678 bool b = (in_same_ebb_p (insn, succ)
679 || in_fallthru_bb_p (insn, succ));
680
681 if (sched_verbose >= 1)
682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
684 BLOCK_NUM (succ), b ? "continue" : "reset");
685
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
689 {
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
693 }
694 }
695 }
696 }
697 \f
698
699 /* Functions to support substitution. */
700
701 /* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
703 moved up through this insn should be substituted. */
704 static bool
705 can_substitute_through_p (insn_t insn, ds_t ds)
706 {
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
713
714 /* Now we just need to make sure the INSN_RHS consists of only one
715 simple REG rtx. */
716 if (REG_P (INSN_LHS (insn))
717 && REG_P (INSN_RHS (insn)))
718 return true;
719 return false;
720 }
721
722 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
726 destination or the resulting insn is invalid for the target machine.
727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729 static bool
730 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
731 {
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
737
738 /* Do not try to replace in SET_DEST. Although we'll choose new
739 register for the RHS, we don't want to change RHS' original reg.
740 If the insn is not SET, we may still be able to substitute something
741 in it, and if we're here (don't have deps), it doesn't write INSN's
742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
747
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
750 {
751 rtx_insn *new_insn;
752 rtx *where_replace;
753
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
757
758 /* Where we'll replace.
759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
764
765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
767 new_insn);
768
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
776 {
777 change_vinsn_in_expr (expr,
778 create_vinsn_from_insn_rtx (new_insn, false));
779
780 /* Do not allow clobbering the address register of speculative
781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
785 EXPR_TARGET_AVAILABLE (expr) = false;
786
787 return true;
788 }
789 else
790 return false;
791 }
792 else
793 return false;
794 }
795
796 /* Return the number of places WHAT appears within WHERE.
797 Bail out when we found a reference occupying several hard registers. */
798 static int
799 count_occurrences_equiv (const_rtx what, const_rtx where)
800 {
801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
804 {
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
807 {
808 /* Bail out if mode is different or more than one register is
809 used. */
810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
811 return 0;
812 count += 1;
813 }
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
821 }
822 return count;
823 }
824
825 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
826 static bool
827 rtx_ok_for_substitution_p (rtx what, rtx where)
828 {
829 return (count_occurrences_equiv (what, where) > 0);
830 }
831 \f
832
833 /* Functions to support register renaming. */
834
835 /* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
837 static rtx_insn *
838 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
839 {
840 rtx lhs_rtx;
841 rtx pattern;
842 rtx_insn *insn_rtx;
843
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
845
846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
848
849 return insn_rtx;
850 }
851
852 /* Returns whether INSN's src can be replaced with register number
853 NEW_SRC_REG. E.g. the following insn is valid for i386:
854
855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
861
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
863 because of operand constraints:
864
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
868 )]
869
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
871 reg for rhs. */
872
873 static bool
874 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
875 {
876 vinsn_t vi = INSN_VINSN (insn);
877 machine_mode mode;
878 rtx dst_loc;
879 bool res;
880
881 gcc_assert (VINSN_SEPARABLE_P (vi));
882
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
885
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
888
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
893
894 return res;
895 }
896
897 /* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899 static bool
900 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
901 {
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
904
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
908
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
913
914 return res;
915 }
916
917 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
918 static rtx_insn *
919 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
920 {
921 rtx rhs_rtx;
922 rtx pattern;
923 rtx_insn *insn_rtx;
924
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
926
927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
929
930 return insn_rtx;
931 }
932
933 /* Substitute lhs in the given expression EXPR for the register with number
934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935 static void
936 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
937 {
938 rtx_insn *insn_rtx;
939 vinsn_t vinsn;
940
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
943
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
947 }
948
949 /* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951 static bool
952 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
953 HARD_REG_SET unavailable_hard_regs)
954 {
955 unsigned regno;
956 reg_set_iterator rsi;
957
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
959 {
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
965 }
966
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
968 {
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
974 }
975
976 return false;
977 }
978
979 /* Returns register class of the output register in INSN.
980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
982
983 Code adopted from regrename.c::build_def_use. */
984 static enum reg_class
985 get_reg_class (rtx_insn *insn)
986 {
987 int i, n_ops;
988
989 extract_constrain_insn (insn);
990 preprocess_constraints (insn);
991 n_ops = recog_data.n_operands;
992
993 const operand_alternative *op_alt = which_op_alt ();
994 if (asm_noperands (PATTERN (insn)) > 0)
995 {
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
998 {
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
1001 enum reg_class cl = alternative_class (op_alt, i);
1002
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1006
1007 return cl;
1008 }
1009 }
1010 else if (!CALL_P (insn))
1011 {
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1013 {
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1015 enum reg_class cl = alternative_class (op_alt, opn);
1016
1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1020 }
1021 }
1022
1023 /* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1028 }
1029
1030 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031 static void
1032 init_hard_regno_rename (int regno)
1033 {
1034 int cur_reg;
1035
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1037
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1039 {
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1043
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1046 }
1047 }
1048
1049 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1050 data first. */
1051 static inline bool
1052 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1053 {
1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057
1058 init_hard_regno_rename (from);
1059
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1061 }
1062
1063 /* Calculate set of registers that are capable of holding MODE. */
1064 static void
1065 init_regs_for_mode (machine_mode mode)
1066 {
1067 int cur_reg;
1068
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1071
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 {
1074 int nregs;
1075 int i;
1076
1077 /* See whether it accepts all modes that occur in
1078 original insns. */
1079 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1080 continue;
1081
1082 nregs = hard_regno_nregs[cur_reg][mode];
1083
1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
1087 /* Can't use regs which aren't saved by
1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
1093 #ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
1096 || (crtl->is_leaf
1097 && !LEAF_REGISTERS[cur_reg + i])
1098 #endif
1099 )
1100 break;
1101
1102 if (i >= 0)
1103 continue;
1104
1105 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1107 cur_reg);
1108
1109 /* If the CUR_REG passed all the checks above,
1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1112 }
1113
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1115 }
1116
1117 /* Init all register sets gathered in HRD. */
1118 static void
1119 init_hard_regs_data (void)
1120 {
1121 int cur_reg = 0;
1122 int cur_mode = 0;
1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1128
1129 /* Initialize registers that are valid based on mode when this is
1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1133
1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1137
1138 #ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1140
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143 #endif
1144 }
1145
1146 /* Mark hardware regs in REG_RENAME_P that are not suitable
1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1153
1154 static void
1155 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1157 {
1158 machine_mode mode;
1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1163
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1166
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1168
1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1173
1174 regno = REGNO (orig_dest);
1175
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1179
1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
1182
1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
1185 if (fixed_regs[regno]
1186 || global_regs[regno]
1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1190 && regno == FRAME_POINTER_REGNUM)
1191 || (reload_completed && cl == NO_REGS))
1192 {
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1194
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1198
1199 return;
1200 }
1201
1202 /* If something allocated on stack in this function, mark frame pointer
1203 register unavailable, considering also modes.
1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1206 {
1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
1209
1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1212 Pmode, HARD_FRAME_POINTER_REGNUM);
1213 }
1214
1215 #ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1225 sel_hrd.stack_regs);
1226 #endif
1227
1228 /* If there's a call on this path, make regs from call_used_reg_set
1229 unavailable. */
1230 if (def->crosses_call)
1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1232 call_used_reg_set);
1233
1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1238
1239 /* Leave regs as 'available' only from the current
1240 register class. */
1241 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1242 reg_class_contents[cl]);
1243
1244 mode = GET_MODE (orig_dest);
1245
1246 /* Leave only registers available for this mode. */
1247 if (!sel_hrd.regs_for_mode_ok[mode])
1248 init_regs_for_mode (mode);
1249 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1250 sel_hrd.regs_for_mode[mode]);
1251
1252 /* Exclude registers that are partially call clobbered. */
1253 if (def->crosses_call
1254 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1255 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1256 sel_hrd.regs_for_call_clobbered[mode]);
1257
1258 /* Leave only those that are ok to rename. */
1259 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1260 0, cur_reg, hrsi)
1261 {
1262 int nregs;
1263 int i;
1264
1265 nregs = hard_regno_nregs[cur_reg][mode];
1266 gcc_assert (nregs > 0);
1267
1268 for (i = nregs - 1; i >= 0; --i)
1269 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1270 break;
1271
1272 if (i >= 0)
1273 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1274 cur_reg);
1275 }
1276
1277 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1278 reg_rename_p->unavailable_hard_regs);
1279
1280 /* Regno is always ok from the renaming part of view, but it really
1281 could be in *unavailable_hard_regs already, so set it here instead
1282 of there. */
1283 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1284 }
1285
1286 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1287 best register more recently than REG2. */
1288 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1289
1290 /* Indicates the number of times renaming happened before the current one. */
1291 static int reg_rename_this_tick;
1292
1293 /* Choose the register among free, that is suitable for storing
1294 the rhs value.
1295
1296 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1297 originally appears. There could be multiple original operations
1298 for single rhs since we moving it up and merging along different
1299 paths.
1300
1301 Some code is adapted from regrename.c (regrename_optimize).
1302 If original register is available, function returns it.
1303 Otherwise it performs the checks, so the new register should
1304 comply with the following:
1305 - it should not violate any live ranges (such registers are in
1306 REG_RENAME_P->available_for_renaming set);
1307 - it should not be in the HARD_REGS_USED regset;
1308 - it should be in the class compatible with original uses;
1309 - it should not be clobbered through reference with different mode;
1310 - if we're in the leaf function, then the new register should
1311 not be in the LEAF_REGISTERS;
1312 - etc.
1313
1314 If several registers meet the conditions, the register with smallest
1315 tick is returned to achieve more even register allocation.
1316
1317 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1318
1319 If no register satisfies the above conditions, NULL_RTX is returned. */
1320 static rtx
1321 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1322 struct reg_rename *reg_rename_p,
1323 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1324 {
1325 int best_new_reg;
1326 unsigned cur_reg;
1327 machine_mode mode = VOIDmode;
1328 unsigned regno, i, n;
1329 hard_reg_set_iterator hrsi;
1330 def_list_iterator di;
1331 def_t def;
1332
1333 /* If original register is available, return it. */
1334 *is_orig_reg_p_ptr = true;
1335
1336 FOR_EACH_DEF (def, di, original_insns)
1337 {
1338 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1339
1340 gcc_assert (REG_P (orig_dest));
1341
1342 /* Check that all original operations have the same mode.
1343 This is done for the next loop; if we'd return from this
1344 loop, we'd check only part of them, but in this case
1345 it doesn't matter. */
1346 if (mode == VOIDmode)
1347 mode = GET_MODE (orig_dest);
1348 gcc_assert (mode == GET_MODE (orig_dest));
1349
1350 regno = REGNO (orig_dest);
1351 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1352 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1353 break;
1354
1355 /* All hard registers are available. */
1356 if (i == n)
1357 {
1358 gcc_assert (mode != VOIDmode);
1359
1360 /* Hard registers should not be shared. */
1361 return gen_rtx_REG (mode, regno);
1362 }
1363 }
1364
1365 *is_orig_reg_p_ptr = false;
1366 best_new_reg = -1;
1367
1368 /* Among all available regs choose the register that was
1369 allocated earliest. */
1370 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1371 0, cur_reg, hrsi)
1372 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1373 {
1374 /* Check that all hard regs for mode are available. */
1375 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1376 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1377 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1378 cur_reg + i))
1379 break;
1380
1381 if (i < n)
1382 continue;
1383
1384 /* All hard registers are available. */
1385 if (best_new_reg < 0
1386 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1387 {
1388 best_new_reg = cur_reg;
1389
1390 /* Return immediately when we know there's no better reg. */
1391 if (! reg_rename_tick[best_new_reg])
1392 break;
1393 }
1394 }
1395
1396 if (best_new_reg >= 0)
1397 {
1398 /* Use the check from the above loop. */
1399 gcc_assert (mode != VOIDmode);
1400 return gen_rtx_REG (mode, best_new_reg);
1401 }
1402
1403 return NULL_RTX;
1404 }
1405
1406 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1407 assumptions about available registers in the function. */
1408 static rtx
1409 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1410 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1411 {
1412 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1413 original_insns, is_orig_reg_p_ptr);
1414
1415 /* FIXME loop over hard_regno_nregs here. */
1416 gcc_assert (best_reg == NULL_RTX
1417 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1418
1419 return best_reg;
1420 }
1421
1422 /* Choose the pseudo register for storing rhs value. As this is supposed
1423 to work before reload, we return either the original register or make
1424 the new one. The parameters are the same that in choose_nest_reg_1
1425 functions, except that USED_REGS may contain pseudos.
1426 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1427
1428 TODO: take into account register pressure while doing this. Up to this
1429 moment, this function would never return NULL for pseudos, but we should
1430 not rely on this. */
1431 static rtx
1432 choose_best_pseudo_reg (regset used_regs,
1433 struct reg_rename *reg_rename_p,
1434 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1435 {
1436 def_list_iterator i;
1437 def_t def;
1438 machine_mode mode = VOIDmode;
1439 bool bad_hard_regs = false;
1440
1441 /* We should not use this after reload. */
1442 gcc_assert (!reload_completed);
1443
1444 /* If original register is available, return it. */
1445 *is_orig_reg_p_ptr = true;
1446
1447 FOR_EACH_DEF (def, i, original_insns)
1448 {
1449 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1450 int orig_regno;
1451
1452 gcc_assert (REG_P (dest));
1453
1454 /* Check that all original operations have the same mode. */
1455 if (mode == VOIDmode)
1456 mode = GET_MODE (dest);
1457 else
1458 gcc_assert (mode == GET_MODE (dest));
1459 orig_regno = REGNO (dest);
1460
1461 /* Check that nothing in used_regs intersects with orig_regno. When
1462 we have a hard reg here, still loop over hard_regno_nregs. */
1463 if (HARD_REGISTER_NUM_P (orig_regno))
1464 {
1465 int j, n;
1466 for (j = 0, n = hard_regno_nregs[orig_regno][mode]; j < n; j++)
1467 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1468 break;
1469 if (j < n)
1470 continue;
1471 }
1472 else
1473 {
1474 if (REGNO_REG_SET_P (used_regs, orig_regno))
1475 continue;
1476 }
1477 if (HARD_REGISTER_NUM_P (orig_regno))
1478 {
1479 gcc_assert (df_regs_ever_live_p (orig_regno));
1480
1481 /* For hard registers, we have to check hardware imposed
1482 limitations (frame/stack registers, calls crossed). */
1483 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1484 orig_regno))
1485 {
1486 /* Don't let register cross a call if it doesn't already
1487 cross one. This condition is written in accordance with
1488 that in sched-deps.c sched_analyze_reg(). */
1489 if (!reg_rename_p->crosses_call
1490 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1491 return gen_rtx_REG (mode, orig_regno);
1492 }
1493
1494 bad_hard_regs = true;
1495 }
1496 else
1497 return dest;
1498 }
1499
1500 *is_orig_reg_p_ptr = false;
1501
1502 /* We had some original hard registers that couldn't be used.
1503 Those were likely special. Don't try to create a pseudo. */
1504 if (bad_hard_regs)
1505 return NULL_RTX;
1506
1507 /* We haven't found a register from original operations. Get a new one.
1508 FIXME: control register pressure somehow. */
1509 {
1510 rtx new_reg = gen_reg_rtx (mode);
1511
1512 gcc_assert (mode != VOIDmode);
1513
1514 max_regno = max_reg_num ();
1515 maybe_extend_reg_info_p ();
1516 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1517
1518 return new_reg;
1519 }
1520 }
1521
1522 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1523 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1524 static void
1525 verify_target_availability (expr_t expr, regset used_regs,
1526 struct reg_rename *reg_rename_p)
1527 {
1528 unsigned n, i, regno;
1529 machine_mode mode;
1530 bool target_available, live_available, hard_available;
1531
1532 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1533 return;
1534
1535 regno = expr_dest_regno (expr);
1536 mode = GET_MODE (EXPR_LHS (expr));
1537 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1538 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1539
1540 live_available = hard_available = true;
1541 for (i = 0; i < n; i++)
1542 {
1543 if (bitmap_bit_p (used_regs, regno + i))
1544 live_available = false;
1545 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1546 hard_available = false;
1547 }
1548
1549 /* When target is not available, it may be due to hard register
1550 restrictions, e.g. crosses calls, so we check hard_available too. */
1551 if (target_available)
1552 gcc_assert (live_available);
1553 else
1554 /* Check only if we haven't scheduled something on the previous fence,
1555 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1556 and having more than one fence, we may end having targ_un in a block
1557 in which successors target register is actually available.
1558
1559 The last condition handles the case when a dependence from a call insn
1560 was created in sched-deps.c for insns with destination registers that
1561 never crossed a call before, but do cross one after our code motion.
1562
1563 FIXME: in the latter case, we just uselessly called find_used_regs,
1564 because we can't move this expression with any other register
1565 as well. */
1566 gcc_assert (scheduled_something_on_previous_fence || !live_available
1567 || !hard_available
1568 || (!reload_completed && reg_rename_p->crosses_call
1569 && REG_N_CALLS_CROSSED (regno) == 0));
1570 }
1571
1572 /* Collect unavailable registers due to liveness for EXPR from BNDS
1573 into USED_REGS. Save additional information about available
1574 registers and unavailable due to hardware restriction registers
1575 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1576 list. */
1577 static void
1578 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1579 struct reg_rename *reg_rename_p,
1580 def_list_t *original_insns)
1581 {
1582 for (; bnds; bnds = BLIST_NEXT (bnds))
1583 {
1584 bool res;
1585 av_set_t orig_ops = NULL;
1586 bnd_t bnd = BLIST_BND (bnds);
1587
1588 /* If the chosen best expr doesn't belong to current boundary,
1589 skip it. */
1590 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1591 continue;
1592
1593 /* Put in ORIG_OPS all exprs from this boundary that became
1594 RES on top. */
1595 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1596
1597 /* Compute used regs and OR it into the USED_REGS. */
1598 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1599 reg_rename_p, original_insns);
1600
1601 /* FIXME: the assert is true until we'd have several boundaries. */
1602 gcc_assert (res);
1603 av_set_clear (&orig_ops);
1604 }
1605 }
1606
1607 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1608 If BEST_REG is valid, replace LHS of EXPR with it. */
1609 static bool
1610 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1611 {
1612 /* Try whether we'll be able to generate the insn
1613 'dest := best_reg' at the place of the original operation. */
1614 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1615 {
1616 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1617
1618 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1619
1620 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1621 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1622 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1623 return false;
1624 }
1625
1626 /* Make sure that EXPR has the right destination
1627 register. */
1628 if (expr_dest_regno (expr) != REGNO (best_reg))
1629 replace_dest_with_reg_in_expr (expr, best_reg);
1630 else
1631 EXPR_TARGET_AVAILABLE (expr) = 1;
1632
1633 return true;
1634 }
1635
1636 /* Select and assign best register to EXPR searching from BNDS.
1637 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1638 Return FALSE if no register can be chosen, which could happen when:
1639 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1640 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1641 that are used on the moving path. */
1642 static bool
1643 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1644 {
1645 static struct reg_rename reg_rename_data;
1646
1647 regset used_regs;
1648 def_list_t original_insns = NULL;
1649 bool reg_ok;
1650
1651 *is_orig_reg_p = false;
1652
1653 /* Don't bother to do anything if this insn doesn't set any registers. */
1654 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1655 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1656 return true;
1657
1658 used_regs = get_clear_regset_from_pool ();
1659 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1660
1661 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1662 &original_insns);
1663
1664 /* If after reload, make sure we're working with hard regs here. */
1665 if (flag_checking && reload_completed)
1666 {
1667 reg_set_iterator rsi;
1668 unsigned i;
1669
1670 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1671 gcc_unreachable ();
1672 }
1673
1674 if (EXPR_SEPARABLE_P (expr))
1675 {
1676 rtx best_reg = NULL_RTX;
1677 /* Check that we have computed availability of a target register
1678 correctly. */
1679 verify_target_availability (expr, used_regs, &reg_rename_data);
1680
1681 /* Turn everything in hard regs after reload. */
1682 if (reload_completed)
1683 {
1684 HARD_REG_SET hard_regs_used;
1685 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1686
1687 /* Join hard registers unavailable due to register class
1688 restrictions and live range intersection. */
1689 IOR_HARD_REG_SET (hard_regs_used,
1690 reg_rename_data.unavailable_hard_regs);
1691
1692 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1693 original_insns, is_orig_reg_p);
1694 }
1695 else
1696 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1697 original_insns, is_orig_reg_p);
1698
1699 if (!best_reg)
1700 reg_ok = false;
1701 else if (*is_orig_reg_p)
1702 {
1703 /* In case of unification BEST_REG may be different from EXPR's LHS
1704 when EXPR's LHS is unavailable, and there is another LHS among
1705 ORIGINAL_INSNS. */
1706 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1707 }
1708 else
1709 {
1710 /* Forbid renaming of low-cost insns. */
1711 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1712 reg_ok = false;
1713 else
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 }
1717 else
1718 {
1719 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1720 any of the HARD_REGS_USED set. */
1721 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1722 reg_rename_data.unavailable_hard_regs))
1723 {
1724 reg_ok = false;
1725 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1726 }
1727 else
1728 {
1729 reg_ok = true;
1730 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1731 }
1732 }
1733
1734 ilist_clear (&original_insns);
1735 return_regset_to_pool (used_regs);
1736
1737 return reg_ok;
1738 }
1739 \f
1740
1741 /* Return true if dependence described by DS can be overcomed. */
1742 static bool
1743 can_speculate_dep_p (ds_t ds)
1744 {
1745 if (spec_info == NULL)
1746 return false;
1747
1748 /* Leave only speculative data. */
1749 ds &= SPECULATIVE;
1750
1751 if (ds == 0)
1752 return false;
1753
1754 {
1755 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1756 that we can overcome. */
1757 ds_t spec_mask = spec_info->mask;
1758
1759 if ((ds & spec_mask) != ds)
1760 return false;
1761 }
1762
1763 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1764 return false;
1765
1766 return true;
1767 }
1768
1769 /* Get a speculation check instruction.
1770 C_EXPR is a speculative expression,
1771 CHECK_DS describes speculations that should be checked,
1772 ORIG_INSN is the original non-speculative insn in the stream. */
1773 static insn_t
1774 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1775 {
1776 rtx check_pattern;
1777 rtx_insn *insn_rtx;
1778 insn_t insn;
1779 basic_block recovery_block;
1780 rtx_insn *label;
1781
1782 /* Create a recovery block if target is going to emit branchy check, or if
1783 ORIG_INSN was speculative already. */
1784 if (targetm.sched.needs_block_p (check_ds)
1785 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1786 {
1787 recovery_block = sel_create_recovery_block (orig_insn);
1788 label = BB_HEAD (recovery_block);
1789 }
1790 else
1791 {
1792 recovery_block = NULL;
1793 label = NULL;
1794 }
1795
1796 /* Get pattern of the check. */
1797 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1798 check_ds);
1799
1800 gcc_assert (check_pattern != NULL);
1801
1802 /* Emit check. */
1803 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1804
1805 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1806 INSN_SEQNO (orig_insn), orig_insn);
1807
1808 /* Make check to be non-speculative. */
1809 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1810 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1811
1812 /* Decrease priority of check by difference of load/check instruction
1813 latencies. */
1814 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1815 - sel_vinsn_cost (INSN_VINSN (insn)));
1816
1817 /* Emit copy of original insn (though with replaced target register,
1818 if needed) to the recovery block. */
1819 if (recovery_block != NULL)
1820 {
1821 rtx twin_rtx;
1822
1823 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1824 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1825 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1826 INSN_EXPR (orig_insn),
1827 INSN_SEQNO (insn),
1828 bb_note (recovery_block));
1829 }
1830
1831 /* If we've generated a data speculation check, make sure
1832 that all the bookkeeping instruction we'll create during
1833 this move_op () will allocate an ALAT entry so that the
1834 check won't fail.
1835 In case of control speculation we must convert C_EXPR to control
1836 speculative mode, because failing to do so will bring us an exception
1837 thrown by the non-control-speculative load. */
1838 check_ds = ds_get_max_dep_weak (check_ds);
1839 speculate_expr (c_expr, check_ds);
1840
1841 return insn;
1842 }
1843
1844 /* True when INSN is a "regN = regN" copy. */
1845 static bool
1846 identical_copy_p (rtx_insn *insn)
1847 {
1848 rtx lhs, rhs, pat;
1849
1850 pat = PATTERN (insn);
1851
1852 if (GET_CODE (pat) != SET)
1853 return false;
1854
1855 lhs = SET_DEST (pat);
1856 if (!REG_P (lhs))
1857 return false;
1858
1859 rhs = SET_SRC (pat);
1860 if (!REG_P (rhs))
1861 return false;
1862
1863 return REGNO (lhs) == REGNO (rhs);
1864 }
1865
1866 /* Undo all transformations on *AV_PTR that were done when
1867 moving through INSN. */
1868 static void
1869 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1870 {
1871 av_set_iterator av_iter;
1872 expr_t expr;
1873 av_set_t new_set = NULL;
1874
1875 /* First, kill any EXPR that uses registers set by an insn. This is
1876 required for correctness. */
1877 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1878 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1879 && bitmap_intersect_p (INSN_REG_SETS (insn),
1880 VINSN_REG_USES (EXPR_VINSN (expr)))
1881 /* When an insn looks like 'r1 = r1', we could substitute through
1882 it, but the above condition will still hold. This happened with
1883 gcc.c-torture/execute/961125-1.c. */
1884 && !identical_copy_p (insn))
1885 {
1886 if (sched_verbose >= 6)
1887 sel_print ("Expr %d removed due to use/set conflict\n",
1888 INSN_UID (EXPR_INSN_RTX (expr)));
1889 av_set_iter_remove (&av_iter);
1890 }
1891
1892 /* Undo transformations looking at the history vector. */
1893 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1894 {
1895 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1896 insn, EXPR_VINSN (expr), true);
1897
1898 if (index >= 0)
1899 {
1900 expr_history_def *phist;
1901
1902 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1903
1904 switch (phist->type)
1905 {
1906 case TRANS_SPECULATION:
1907 {
1908 ds_t old_ds, new_ds;
1909
1910 /* Compute the difference between old and new speculative
1911 statuses: that's what we need to check.
1912 Earlier we used to assert that the status will really
1913 change. This no longer works because only the probability
1914 bits in the status may have changed during compute_av_set,
1915 and in the case of merging different probabilities of the
1916 same speculative status along different paths we do not
1917 record this in the history vector. */
1918 old_ds = phist->spec_ds;
1919 new_ds = EXPR_SPEC_DONE_DS (expr);
1920
1921 old_ds &= SPECULATIVE;
1922 new_ds &= SPECULATIVE;
1923 new_ds &= ~old_ds;
1924
1925 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1926 break;
1927 }
1928 case TRANS_SUBSTITUTION:
1929 {
1930 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1931 vinsn_t new_vi;
1932 bool add = true;
1933
1934 new_vi = phist->old_expr_vinsn;
1935
1936 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1937 == EXPR_SEPARABLE_P (expr));
1938 copy_expr (tmp_expr, expr);
1939
1940 if (vinsn_equal_p (phist->new_expr_vinsn,
1941 EXPR_VINSN (tmp_expr)))
1942 change_vinsn_in_expr (tmp_expr, new_vi);
1943 else
1944 /* This happens when we're unsubstituting on a bookkeeping
1945 copy, which was in turn substituted. The history is wrong
1946 in this case. Do it the hard way. */
1947 add = substitute_reg_in_expr (tmp_expr, insn, true);
1948 if (add)
1949 av_set_add (&new_set, tmp_expr);
1950 clear_expr (tmp_expr);
1951 break;
1952 }
1953 default:
1954 gcc_unreachable ();
1955 }
1956 }
1957
1958 }
1959
1960 av_set_union_and_clear (av_ptr, &new_set, NULL);
1961 }
1962 \f
1963
1964 /* Moveup_* helpers for code motion and computing av sets. */
1965
1966 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1967 The difference from the below function is that only substitution is
1968 performed. */
1969 static enum MOVEUP_EXPR_CODE
1970 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1971 {
1972 vinsn_t vi = EXPR_VINSN (expr);
1973 ds_t *has_dep_p;
1974 ds_t full_ds;
1975
1976 /* Do this only inside insn group. */
1977 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1978
1979 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1980 if (full_ds == 0)
1981 return MOVEUP_EXPR_SAME;
1982
1983 /* Substitution is the possible choice in this case. */
1984 if (has_dep_p[DEPS_IN_RHS])
1985 {
1986 /* Can't substitute UNIQUE VINSNs. */
1987 gcc_assert (!VINSN_UNIQUE_P (vi));
1988
1989 if (can_substitute_through_p (through_insn,
1990 has_dep_p[DEPS_IN_RHS])
1991 && substitute_reg_in_expr (expr, through_insn, false))
1992 {
1993 EXPR_WAS_SUBSTITUTED (expr) = true;
1994 return MOVEUP_EXPR_CHANGED;
1995 }
1996
1997 /* Don't care about this, as even true dependencies may be allowed
1998 in an insn group. */
1999 return MOVEUP_EXPR_SAME;
2000 }
2001
2002 /* This can catch output dependencies in COND_EXECs. */
2003 if (has_dep_p[DEPS_IN_INSN])
2004 return MOVEUP_EXPR_NULL;
2005
2006 /* This is either an output or an anti dependence, which usually have
2007 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2008 will fix this. */
2009 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2010 return MOVEUP_EXPR_AS_RHS;
2011 }
2012
2013 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2014 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2015 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2016 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2017 && !sel_insn_is_speculation_check (through_insn))
2018
2019 /* True when a conflict on a target register was found during moveup_expr. */
2020 static bool was_target_conflict = false;
2021
2022 /* Return true when moving a debug INSN across THROUGH_INSN will
2023 create a bookkeeping block. We don't want to create such blocks,
2024 for they would cause codegen differences between compilations with
2025 and without debug info. */
2026
2027 static bool
2028 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2029 insn_t through_insn)
2030 {
2031 basic_block bbi, bbt;
2032 edge e1, e2;
2033 edge_iterator ei1, ei2;
2034
2035 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2036 {
2037 if (sched_verbose >= 9)
2038 sel_print ("no bookkeeping required: ");
2039 return FALSE;
2040 }
2041
2042 bbi = BLOCK_FOR_INSN (insn);
2043
2044 if (EDGE_COUNT (bbi->preds) == 1)
2045 {
2046 if (sched_verbose >= 9)
2047 sel_print ("only one pred edge: ");
2048 return TRUE;
2049 }
2050
2051 bbt = BLOCK_FOR_INSN (through_insn);
2052
2053 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2054 {
2055 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2056 {
2057 if (find_block_for_bookkeeping (e1, e2, TRUE))
2058 {
2059 if (sched_verbose >= 9)
2060 sel_print ("found existing block: ");
2061 return FALSE;
2062 }
2063 }
2064 }
2065
2066 if (sched_verbose >= 9)
2067 sel_print ("would create bookkeeping block: ");
2068
2069 return TRUE;
2070 }
2071
2072 /* Return true when the conflict with newly created implicit clobbers
2073 between EXPR and THROUGH_INSN is found because of renaming. */
2074 static bool
2075 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2076 {
2077 HARD_REG_SET temp;
2078 rtx_insn *insn;
2079 rtx reg, rhs, pat;
2080 hard_reg_set_iterator hrsi;
2081 unsigned regno;
2082 bool valid;
2083
2084 /* Make a new pseudo register. */
2085 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2086 max_regno = max_reg_num ();
2087 maybe_extend_reg_info_p ();
2088
2089 /* Validate a change and bail out early. */
2090 insn = EXPR_INSN_RTX (expr);
2091 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2092 valid = verify_changes (0);
2093 cancel_changes (0);
2094 if (!valid)
2095 {
2096 if (sched_verbose >= 6)
2097 sel_print ("implicit clobbers failed validation, ");
2098 return true;
2099 }
2100
2101 /* Make a new insn with it. */
2102 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2103 pat = gen_rtx_SET (reg, rhs);
2104 start_sequence ();
2105 insn = emit_insn (pat);
2106 end_sequence ();
2107
2108 /* Calculate implicit clobbers. */
2109 extract_insn (insn);
2110 preprocess_constraints (insn);
2111 alternative_mask prefrred = get_preferred_alternatives (insn);
2112 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2113 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2114
2115 /* If any implicit clobber registers intersect with regular ones in
2116 through_insn, we have a dependency and thus bail out. */
2117 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2118 {
2119 vinsn_t vi = INSN_VINSN (through_insn);
2120 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2122 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2123 return true;
2124 }
2125
2126 return false;
2127 }
2128
2129 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2130 performing necessary transformations. Record the type of transformation
2131 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2132 permit all dependencies except true ones, and try to remove those
2133 too via forward substitution. All cases when a non-eliminable
2134 non-zero cost dependency exists inside an insn group will be fixed
2135 in tick_check_p instead. */
2136 static enum MOVEUP_EXPR_CODE
2137 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2138 enum local_trans_type *ptrans_type)
2139 {
2140 vinsn_t vi = EXPR_VINSN (expr);
2141 insn_t insn = VINSN_INSN_RTX (vi);
2142 bool was_changed = false;
2143 bool as_rhs = false;
2144 ds_t *has_dep_p;
2145 ds_t full_ds;
2146
2147 /* ??? We use dependencies of non-debug insns on debug insns to
2148 indicate that the debug insns need to be reset if the non-debug
2149 insn is pulled ahead of it. It's hard to figure out how to
2150 introduce such a notion in sel-sched, but it already fails to
2151 support debug insns in other ways, so we just go ahead and
2152 let the deug insns go corrupt for now. */
2153 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2154 return MOVEUP_EXPR_SAME;
2155
2156 /* When inside_insn_group, delegate to the helper. */
2157 if (inside_insn_group)
2158 return moveup_expr_inside_insn_group (expr, through_insn);
2159
2160 /* Deal with unique insns and control dependencies. */
2161 if (VINSN_UNIQUE_P (vi))
2162 {
2163 /* We can move jumps without side-effects or jumps that are
2164 mutually exclusive with instruction THROUGH_INSN (all in cases
2165 dependencies allow to do so and jump is not speculative). */
2166 if (control_flow_insn_p (insn))
2167 {
2168 basic_block fallthru_bb;
2169
2170 /* Do not move checks and do not move jumps through other
2171 jumps. */
2172 if (control_flow_insn_p (through_insn)
2173 || sel_insn_is_speculation_check (insn))
2174 return MOVEUP_EXPR_NULL;
2175
2176 /* Don't move jumps through CFG joins. */
2177 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2178 return MOVEUP_EXPR_NULL;
2179
2180 /* The jump should have a clear fallthru block, and
2181 this block should be in the current region. */
2182 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2183 || ! in_current_region_p (fallthru_bb))
2184 return MOVEUP_EXPR_NULL;
2185
2186 /* And it should be mutually exclusive with through_insn. */
2187 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2188 && ! DEBUG_INSN_P (through_insn))
2189 return MOVEUP_EXPR_NULL;
2190 }
2191
2192 /* Don't move what we can't move. */
2193 if (EXPR_CANT_MOVE (expr)
2194 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2195 return MOVEUP_EXPR_NULL;
2196
2197 /* Don't move SCHED_GROUP instruction through anything.
2198 If we don't force this, then it will be possible to start
2199 scheduling a sched_group before all its dependencies are
2200 resolved.
2201 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2202 as late as possible through rank_for_schedule. */
2203 if (SCHED_GROUP_P (insn))
2204 return MOVEUP_EXPR_NULL;
2205 }
2206 else
2207 gcc_assert (!control_flow_insn_p (insn));
2208
2209 /* Don't move debug insns if this would require bookkeeping. */
2210 if (DEBUG_INSN_P (insn)
2211 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2212 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2213 return MOVEUP_EXPR_NULL;
2214
2215 /* Deal with data dependencies. */
2216 was_target_conflict = false;
2217 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2218 if (full_ds == 0)
2219 {
2220 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2221 return MOVEUP_EXPR_SAME;
2222 }
2223 else
2224 {
2225 /* We can move UNIQUE insn up only as a whole and unchanged,
2226 so it shouldn't have any dependencies. */
2227 if (VINSN_UNIQUE_P (vi))
2228 return MOVEUP_EXPR_NULL;
2229 }
2230
2231 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2232 {
2233 int res;
2234
2235 res = speculate_expr (expr, full_ds);
2236 if (res >= 0)
2237 {
2238 /* Speculation was successful. */
2239 full_ds = 0;
2240 was_changed = (res > 0);
2241 if (res == 2)
2242 was_target_conflict = true;
2243 if (ptrans_type)
2244 *ptrans_type = TRANS_SPECULATION;
2245 sel_clear_has_dependence ();
2246 }
2247 }
2248
2249 if (has_dep_p[DEPS_IN_INSN])
2250 /* We have some dependency that cannot be discarded. */
2251 return MOVEUP_EXPR_NULL;
2252
2253 if (has_dep_p[DEPS_IN_LHS])
2254 {
2255 /* Only separable insns can be moved up with the new register.
2256 Anyways, we should mark that the original register is
2257 unavailable. */
2258 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2259 return MOVEUP_EXPR_NULL;
2260
2261 /* When renaming a hard register to a pseudo before reload, extra
2262 dependencies can occur from the implicit clobbers of the insn.
2263 Filter out such cases here. */
2264 if (!reload_completed && REG_P (EXPR_LHS (expr))
2265 && HARD_REGISTER_P (EXPR_LHS (expr))
2266 && implicit_clobber_conflict_p (through_insn, expr))
2267 {
2268 if (sched_verbose >= 6)
2269 sel_print ("implicit clobbers conflict detected, ");
2270 return MOVEUP_EXPR_NULL;
2271 }
2272 EXPR_TARGET_AVAILABLE (expr) = false;
2273 was_target_conflict = true;
2274 as_rhs = true;
2275 }
2276
2277 /* At this point we have either separable insns, that will be lifted
2278 up only as RHSes, or non-separable insns with no dependency in lhs.
2279 If dependency is in RHS, then try to perform substitution and move up
2280 substituted RHS:
2281
2282 Ex. 1: Ex.2
2283 y = x; y = x;
2284 z = y*2; y = y*2;
2285
2286 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2287 moved above y=x assignment as z=x*2.
2288
2289 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2290 side can be moved because of the output dependency. The operation was
2291 cropped to its rhs above. */
2292 if (has_dep_p[DEPS_IN_RHS])
2293 {
2294 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2295
2296 /* Can't substitute UNIQUE VINSNs. */
2297 gcc_assert (!VINSN_UNIQUE_P (vi));
2298
2299 if (can_speculate_dep_p (*rhs_dsp))
2300 {
2301 int res;
2302
2303 res = speculate_expr (expr, *rhs_dsp);
2304 if (res >= 0)
2305 {
2306 /* Speculation was successful. */
2307 *rhs_dsp = 0;
2308 was_changed = (res > 0);
2309 if (res == 2)
2310 was_target_conflict = true;
2311 if (ptrans_type)
2312 *ptrans_type = TRANS_SPECULATION;
2313 }
2314 else
2315 return MOVEUP_EXPR_NULL;
2316 }
2317 else if (can_substitute_through_p (through_insn,
2318 *rhs_dsp)
2319 && substitute_reg_in_expr (expr, through_insn, false))
2320 {
2321 /* ??? We cannot perform substitution AND speculation on the same
2322 insn. */
2323 gcc_assert (!was_changed);
2324 was_changed = true;
2325 if (ptrans_type)
2326 *ptrans_type = TRANS_SUBSTITUTION;
2327 EXPR_WAS_SUBSTITUTED (expr) = true;
2328 }
2329 else
2330 return MOVEUP_EXPR_NULL;
2331 }
2332
2333 /* Don't move trapping insns through jumps.
2334 This check should be at the end to give a chance to control speculation
2335 to perform its duties. */
2336 if (CANT_MOVE_TRAPPING (expr, through_insn))
2337 return MOVEUP_EXPR_NULL;
2338
2339 return (was_changed
2340 ? MOVEUP_EXPR_CHANGED
2341 : (as_rhs
2342 ? MOVEUP_EXPR_AS_RHS
2343 : MOVEUP_EXPR_SAME));
2344 }
2345
2346 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2347 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2348 that can exist within a parallel group. Write to RES the resulting
2349 code for moveup_expr. */
2350 static bool
2351 try_bitmap_cache (expr_t expr, insn_t insn,
2352 bool inside_insn_group,
2353 enum MOVEUP_EXPR_CODE *res)
2354 {
2355 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2356
2357 /* First check whether we've analyzed this situation already. */
2358 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2359 {
2360 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2361 {
2362 if (sched_verbose >= 6)
2363 sel_print ("removed (cached)\n");
2364 *res = MOVEUP_EXPR_NULL;
2365 return true;
2366 }
2367 else
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (cached)\n");
2371 *res = MOVEUP_EXPR_SAME;
2372 return true;
2373 }
2374 }
2375 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2376 {
2377 if (inside_insn_group)
2378 {
2379 if (sched_verbose >= 6)
2380 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2381 *res = MOVEUP_EXPR_SAME;
2382 return true;
2383
2384 }
2385 else
2386 EXPR_TARGET_AVAILABLE (expr) = false;
2387
2388 /* This is the only case when propagation result can change over time,
2389 as we can dynamically switch off scheduling as RHS. In this case,
2390 just check the flag to reach the correct decision. */
2391 if (enable_schedule_as_rhs_p)
2392 {
2393 if (sched_verbose >= 6)
2394 sel_print ("unchanged (as RHS, cached)\n");
2395 *res = MOVEUP_EXPR_AS_RHS;
2396 return true;
2397 }
2398 else
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("removed (cached as RHS, but renaming"
2402 " is now disabled)\n");
2403 *res = MOVEUP_EXPR_NULL;
2404 return true;
2405 }
2406 }
2407
2408 return false;
2409 }
2410
2411 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2412 if successful. Write to RES the resulting code for moveup_expr. */
2413 static bool
2414 try_transformation_cache (expr_t expr, insn_t insn,
2415 enum MOVEUP_EXPR_CODE *res)
2416 {
2417 struct transformed_insns *pti
2418 = (struct transformed_insns *)
2419 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2420 &EXPR_VINSN (expr),
2421 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2422 if (pti)
2423 {
2424 /* This EXPR was already moved through this insn and was
2425 changed as a result. Fetch the proper data from
2426 the hashtable. */
2427 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2428 INSN_UID (insn), pti->type,
2429 pti->vinsn_old, pti->vinsn_new,
2430 EXPR_SPEC_DONE_DS (expr));
2431
2432 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2433 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2434 change_vinsn_in_expr (expr, pti->vinsn_new);
2435 if (pti->was_target_conflict)
2436 EXPR_TARGET_AVAILABLE (expr) = false;
2437 if (pti->type == TRANS_SPECULATION)
2438 {
2439 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2440 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2441 }
2442
2443 if (sched_verbose >= 6)
2444 {
2445 sel_print ("changed (cached): ");
2446 dump_expr (expr);
2447 sel_print ("\n");
2448 }
2449
2450 *res = MOVEUP_EXPR_CHANGED;
2451 return true;
2452 }
2453
2454 return false;
2455 }
2456
2457 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2458 static void
2459 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2460 enum MOVEUP_EXPR_CODE res)
2461 {
2462 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2463
2464 /* Do not cache result of propagating jumps through an insn group,
2465 as it is always true, which is not useful outside the group. */
2466 if (inside_insn_group)
2467 return;
2468
2469 if (res == MOVEUP_EXPR_NULL)
2470 {
2471 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2472 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2473 }
2474 else if (res == MOVEUP_EXPR_SAME)
2475 {
2476 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2477 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2478 }
2479 else if (res == MOVEUP_EXPR_AS_RHS)
2480 {
2481 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2482 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2483 }
2484 else
2485 gcc_unreachable ();
2486 }
2487
2488 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2489 and transformation type TRANS_TYPE. */
2490 static void
2491 update_transformation_cache (expr_t expr, insn_t insn,
2492 bool inside_insn_group,
2493 enum local_trans_type trans_type,
2494 vinsn_t expr_old_vinsn)
2495 {
2496 struct transformed_insns *pti;
2497
2498 if (inside_insn_group)
2499 return;
2500
2501 pti = XNEW (struct transformed_insns);
2502 pti->vinsn_old = expr_old_vinsn;
2503 pti->vinsn_new = EXPR_VINSN (expr);
2504 pti->type = trans_type;
2505 pti->was_target_conflict = was_target_conflict;
2506 pti->ds = EXPR_SPEC_DONE_DS (expr);
2507 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2508 vinsn_attach (pti->vinsn_old);
2509 vinsn_attach (pti->vinsn_new);
2510 *((struct transformed_insns **)
2511 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2512 pti, VINSN_HASH_RTX (expr_old_vinsn),
2513 INSERT)) = pti;
2514 }
2515
2516 /* Same as moveup_expr, but first looks up the result of
2517 transformation in caches. */
2518 static enum MOVEUP_EXPR_CODE
2519 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2520 {
2521 enum MOVEUP_EXPR_CODE res;
2522 bool got_answer = false;
2523
2524 if (sched_verbose >= 6)
2525 {
2526 sel_print ("Moving ");
2527 dump_expr (expr);
2528 sel_print (" through %d: ", INSN_UID (insn));
2529 }
2530
2531 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2532 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2533 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2534 == EXPR_INSN_RTX (expr)))
2535 /* Don't use cached information for debug insns that are heads of
2536 basic blocks. */;
2537 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2538 /* When inside insn group, we do not want remove stores conflicting
2539 with previosly issued loads. */
2540 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2541 else if (try_transformation_cache (expr, insn, &res))
2542 got_answer = true;
2543
2544 if (! got_answer)
2545 {
2546 /* Invoke moveup_expr and record the results. */
2547 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2548 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2549 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2550 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2551 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2552
2553 /* ??? Invent something better than this. We can't allow old_vinsn
2554 to go, we need it for the history vector. */
2555 vinsn_attach (expr_old_vinsn);
2556
2557 res = moveup_expr (expr, insn, inside_insn_group,
2558 &trans_type);
2559 switch (res)
2560 {
2561 case MOVEUP_EXPR_NULL:
2562 update_bitmap_cache (expr, insn, inside_insn_group, res);
2563 if (sched_verbose >= 6)
2564 sel_print ("removed\n");
2565 break;
2566
2567 case MOVEUP_EXPR_SAME:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("unchanged\n");
2571 break;
2572
2573 case MOVEUP_EXPR_AS_RHS:
2574 gcc_assert (!unique_p || inside_insn_group);
2575 update_bitmap_cache (expr, insn, inside_insn_group, res);
2576 if (sched_verbose >= 6)
2577 sel_print ("unchanged (as RHS)\n");
2578 break;
2579
2580 case MOVEUP_EXPR_CHANGED:
2581 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2582 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2583 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2584 INSN_UID (insn), trans_type,
2585 expr_old_vinsn, EXPR_VINSN (expr),
2586 expr_old_spec_ds);
2587 update_transformation_cache (expr, insn, inside_insn_group,
2588 trans_type, expr_old_vinsn);
2589 if (sched_verbose >= 6)
2590 {
2591 sel_print ("changed: ");
2592 dump_expr (expr);
2593 sel_print ("\n");
2594 }
2595 break;
2596 default:
2597 gcc_unreachable ();
2598 }
2599
2600 vinsn_detach (expr_old_vinsn);
2601 }
2602
2603 return res;
2604 }
2605
2606 /* Moves an av set AVP up through INSN, performing necessary
2607 transformations. */
2608 static void
2609 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2610 {
2611 av_set_iterator i;
2612 expr_t expr;
2613
2614 FOR_EACH_EXPR_1 (expr, i, avp)
2615 {
2616
2617 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2618 {
2619 case MOVEUP_EXPR_SAME:
2620 case MOVEUP_EXPR_AS_RHS:
2621 break;
2622
2623 case MOVEUP_EXPR_NULL:
2624 av_set_iter_remove (&i);
2625 break;
2626
2627 case MOVEUP_EXPR_CHANGED:
2628 expr = merge_with_other_exprs (avp, &i, expr);
2629 break;
2630
2631 default:
2632 gcc_unreachable ();
2633 }
2634 }
2635 }
2636
2637 /* Moves AVP set along PATH. */
2638 static void
2639 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2640 {
2641 int last_cycle;
2642
2643 if (sched_verbose >= 6)
2644 sel_print ("Moving expressions up in the insn group...\n");
2645 if (! path)
2646 return;
2647 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2648 while (path
2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 {
2651 moveup_set_expr (avp, ILIST_INSN (path), true);
2652 path = ILIST_NEXT (path);
2653 }
2654 }
2655
2656 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2657 static bool
2658 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2659 {
2660 expr_def _tmp, *tmp = &_tmp;
2661 int last_cycle;
2662 bool res = true;
2663
2664 copy_expr_onside (tmp, expr);
2665 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2666 while (path
2667 && res
2668 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2669 {
2670 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2671 != MOVEUP_EXPR_NULL);
2672 path = ILIST_NEXT (path);
2673 }
2674
2675 if (res)
2676 {
2677 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2678 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2679
2680 if (tmp_vinsn != expr_vliw_vinsn)
2681 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2682 }
2683
2684 clear_expr (tmp);
2685 return res;
2686 }
2687 \f
2688
2689 /* Functions that compute av and lv sets. */
2690
2691 /* Returns true if INSN is not a downward continuation of the given path P in
2692 the current stage. */
2693 static bool
2694 is_ineligible_successor (insn_t insn, ilist_t p)
2695 {
2696 insn_t prev_insn;
2697
2698 /* Check if insn is not deleted. */
2699 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2700 gcc_unreachable ();
2701 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2702 gcc_unreachable ();
2703
2704 /* If it's the first insn visited, then the successor is ok. */
2705 if (!p)
2706 return false;
2707
2708 prev_insn = ILIST_INSN (p);
2709
2710 if (/* a backward edge. */
2711 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2712 /* is already visited. */
2713 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2714 && (ilist_is_in_p (p, insn)
2715 /* We can reach another fence here and still seqno of insn
2716 would be equal to seqno of prev_insn. This is possible
2717 when prev_insn is a previously created bookkeeping copy.
2718 In that case it'd get a seqno of insn. Thus, check here
2719 whether insn is in current fence too. */
2720 || IN_CURRENT_FENCE_P (insn)))
2721 /* Was already scheduled on this round. */
2722 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2723 && IN_CURRENT_FENCE_P (insn))
2724 /* An insn from another fence could also be
2725 scheduled earlier even if this insn is not in
2726 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2727 || (!pipelining_p
2728 && INSN_SCHED_TIMES (insn) > 0))
2729 return true;
2730 else
2731 return false;
2732 }
2733
2734 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2735 of handling multiple successors and properly merging its av_sets. P is
2736 the current path traversed. WS is the size of lookahead window.
2737 Return the av set computed. */
2738 static av_set_t
2739 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2740 {
2741 struct succs_info *sinfo;
2742 av_set_t expr_in_all_succ_branches = NULL;
2743 int is;
2744 insn_t succ, zero_succ = NULL;
2745 av_set_t av1 = NULL;
2746
2747 gcc_assert (sel_bb_end_p (insn));
2748
2749 /* Find different kind of successors needed for correct computing of
2750 SPEC and TARGET_AVAILABLE attributes. */
2751 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2752
2753 /* Debug output. */
2754 if (sched_verbose >= 6)
2755 {
2756 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2757 dump_insn_vector (sinfo->succs_ok);
2758 sel_print ("\n");
2759 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2760 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2761 }
2762
2763 /* Add insn to the tail of current path. */
2764 ilist_add (&p, insn);
2765
2766 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2767 {
2768 av_set_t succ_set;
2769
2770 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2771 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2772
2773 av_set_split_usefulness (succ_set,
2774 sinfo->probs_ok[is],
2775 sinfo->all_prob);
2776
2777 if (sinfo->all_succs_n > 1)
2778 {
2779 /* Find EXPR'es that came from *all* successors and save them
2780 into expr_in_all_succ_branches. This set will be used later
2781 for calculating speculation attributes of EXPR'es. */
2782 if (is == 0)
2783 {
2784 expr_in_all_succ_branches = av_set_copy (succ_set);
2785
2786 /* Remember the first successor for later. */
2787 zero_succ = succ;
2788 }
2789 else
2790 {
2791 av_set_iterator i;
2792 expr_t expr;
2793
2794 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2795 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2796 av_set_iter_remove (&i);
2797 }
2798 }
2799
2800 /* Union the av_sets. Check liveness restrictions on target registers
2801 in special case of two successors. */
2802 if (sinfo->succs_ok_n == 2 && is == 1)
2803 {
2804 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2805 basic_block bb1 = BLOCK_FOR_INSN (succ);
2806
2807 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2808 av_set_union_and_live (&av1, &succ_set,
2809 BB_LV_SET (bb0),
2810 BB_LV_SET (bb1),
2811 insn);
2812 }
2813 else
2814 av_set_union_and_clear (&av1, &succ_set, insn);
2815 }
2816
2817 /* Check liveness restrictions via hard way when there are more than
2818 two successors. */
2819 if (sinfo->succs_ok_n > 2)
2820 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2821 {
2822 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2823
2824 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2825 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2826 BB_LV_SET (succ_bb));
2827 }
2828
2829 /* Finally, check liveness restrictions on paths leaving the region. */
2830 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2831 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2832 mark_unavailable_targets
2833 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2834
2835 if (sinfo->all_succs_n > 1)
2836 {
2837 av_set_iterator i;
2838 expr_t expr;
2839
2840 /* Increase the spec attribute of all EXPR'es that didn't come
2841 from all successors. */
2842 FOR_EACH_EXPR (expr, i, av1)
2843 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2844 EXPR_SPEC (expr)++;
2845
2846 av_set_clear (&expr_in_all_succ_branches);
2847
2848 /* Do not move conditional branches through other
2849 conditional branches. So, remove all conditional
2850 branches from av_set if current operator is a conditional
2851 branch. */
2852 av_set_substract_cond_branches (&av1);
2853 }
2854
2855 ilist_remove (&p);
2856 free_succs_info (sinfo);
2857
2858 if (sched_verbose >= 6)
2859 {
2860 sel_print ("av_succs (%d): ", INSN_UID (insn));
2861 dump_av_set (av1);
2862 sel_print ("\n");
2863 }
2864
2865 return av1;
2866 }
2867
2868 /* This function computes av_set for the FIRST_INSN by dragging valid
2869 av_set through all basic block insns either from the end of basic block
2870 (computed using compute_av_set_at_bb_end) or from the insn on which
2871 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2872 below the basic block and handling conditional branches.
2873 FIRST_INSN - the basic block head, P - path consisting of the insns
2874 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2875 and bb ends are added to the path), WS - current window size,
2876 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2877 static av_set_t
2878 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2879 bool need_copy_p)
2880 {
2881 insn_t cur_insn;
2882 int end_ws = ws;
2883 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2884 insn_t after_bb_end = NEXT_INSN (bb_end);
2885 insn_t last_insn;
2886 av_set_t av = NULL;
2887 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2888
2889 /* Return NULL if insn is not on the legitimate downward path. */
2890 if (is_ineligible_successor (first_insn, p))
2891 {
2892 if (sched_verbose >= 6)
2893 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2894
2895 return NULL;
2896 }
2897
2898 /* If insn already has valid av(insn) computed, just return it. */
2899 if (AV_SET_VALID_P (first_insn))
2900 {
2901 av_set_t av_set;
2902
2903 if (sel_bb_head_p (first_insn))
2904 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2905 else
2906 av_set = NULL;
2907
2908 if (sched_verbose >= 6)
2909 {
2910 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2911 dump_av_set (av_set);
2912 sel_print ("\n");
2913 }
2914
2915 return need_copy_p ? av_set_copy (av_set) : av_set;
2916 }
2917
2918 ilist_add (&p, first_insn);
2919
2920 /* As the result after this loop have completed, in LAST_INSN we'll
2921 have the insn which has valid av_set to start backward computation
2922 from: it either will be NULL because on it the window size was exceeded
2923 or other valid av_set as returned by compute_av_set for the last insn
2924 of the basic block. */
2925 for (last_insn = first_insn; last_insn != after_bb_end;
2926 last_insn = NEXT_INSN (last_insn))
2927 {
2928 /* We may encounter valid av_set not only on bb_head, but also on
2929 those insns on which previously MAX_WS was exceeded. */
2930 if (AV_SET_VALID_P (last_insn))
2931 {
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2934 break;
2935 }
2936
2937 /* The special case: the last insn of the BB may be an
2938 ineligible_successor due to its SEQ_NO that was set on
2939 it as a bookkeeping. */
2940 if (last_insn != first_insn
2941 && is_ineligible_successor (last_insn, p))
2942 {
2943 if (sched_verbose >= 6)
2944 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2945 break;
2946 }
2947
2948 if (DEBUG_INSN_P (last_insn))
2949 continue;
2950
2951 if (end_ws > max_ws)
2952 {
2953 /* We can reach max lookahead size at bb_header, so clean av_set
2954 first. */
2955 INSN_WS_LEVEL (last_insn) = global_level;
2956
2957 if (sched_verbose >= 6)
2958 sel_print ("Insn %d is beyond the software lookahead window size\n",
2959 INSN_UID (last_insn));
2960 break;
2961 }
2962
2963 end_ws++;
2964 }
2965
2966 /* Get the valid av_set into AV above the LAST_INSN to start backward
2967 computation from. It either will be empty av_set or av_set computed from
2968 the successors on the last insn of the current bb. */
2969 if (last_insn != after_bb_end)
2970 {
2971 av = NULL;
2972
2973 /* This is needed only to obtain av_sets that are identical to
2974 those computed by the old compute_av_set version. */
2975 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2976 av_set_add (&av, INSN_EXPR (last_insn));
2977 }
2978 else
2979 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2980 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2981
2982 /* Compute av_set in AV starting from below the LAST_INSN up to
2983 location above the FIRST_INSN. */
2984 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2985 cur_insn = PREV_INSN (cur_insn))
2986 if (!INSN_NOP_P (cur_insn))
2987 {
2988 expr_t expr;
2989
2990 moveup_set_expr (&av, cur_insn, false);
2991
2992 /* If the expression for CUR_INSN is already in the set,
2993 replace it by the new one. */
2994 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2995 if (expr != NULL)
2996 {
2997 clear_expr (expr);
2998 copy_expr (expr, INSN_EXPR (cur_insn));
2999 }
3000 else
3001 av_set_add (&av, INSN_EXPR (cur_insn));
3002 }
3003
3004 /* Clear stale bb_av_set. */
3005 if (sel_bb_head_p (first_insn))
3006 {
3007 av_set_clear (&BB_AV_SET (cur_bb));
3008 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3009 BB_AV_LEVEL (cur_bb) = global_level;
3010 }
3011
3012 if (sched_verbose >= 6)
3013 {
3014 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3015 dump_av_set (av);
3016 sel_print ("\n");
3017 }
3018
3019 ilist_remove (&p);
3020 return av;
3021 }
3022
3023 /* Compute av set before INSN.
3024 INSN - the current operation (actual rtx INSN)
3025 P - the current path, which is list of insns visited so far
3026 WS - software lookahead window size.
3027 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3028 if we want to save computed av_set in s_i_d, we should make a copy of it.
3029
3030 In the resulting set we will have only expressions that don't have delay
3031 stalls and nonsubstitutable dependences. */
3032 static av_set_t
3033 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3034 {
3035 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3036 }
3037
3038 /* Propagate a liveness set LV through INSN. */
3039 static void
3040 propagate_lv_set (regset lv, insn_t insn)
3041 {
3042 gcc_assert (INSN_P (insn));
3043
3044 if (INSN_NOP_P (insn))
3045 return;
3046
3047 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3048 }
3049
3050 /* Return livness set at the end of BB. */
3051 static regset
3052 compute_live_after_bb (basic_block bb)
3053 {
3054 edge e;
3055 edge_iterator ei;
3056 regset lv = get_clear_regset_from_pool ();
3057
3058 gcc_assert (!ignore_first);
3059
3060 FOR_EACH_EDGE (e, ei, bb->succs)
3061 if (sel_bb_empty_p (e->dest))
3062 {
3063 if (! BB_LV_SET_VALID_P (e->dest))
3064 {
3065 gcc_unreachable ();
3066 gcc_assert (BB_LV_SET (e->dest) == NULL);
3067 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3068 BB_LV_SET_VALID_P (e->dest) = true;
3069 }
3070 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3071 }
3072 else
3073 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3074
3075 return lv;
3076 }
3077
3078 /* Compute the set of all live registers at the point before INSN and save
3079 it at INSN if INSN is bb header. */
3080 regset
3081 compute_live (insn_t insn)
3082 {
3083 basic_block bb = BLOCK_FOR_INSN (insn);
3084 insn_t final, temp;
3085 regset lv;
3086
3087 /* Return the valid set if we're already on it. */
3088 if (!ignore_first)
3089 {
3090 regset src = NULL;
3091
3092 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3093 src = BB_LV_SET (bb);
3094 else
3095 {
3096 gcc_assert (in_current_region_p (bb));
3097 if (INSN_LIVE_VALID_P (insn))
3098 src = INSN_LIVE (insn);
3099 }
3100
3101 if (src)
3102 {
3103 lv = get_regset_from_pool ();
3104 COPY_REG_SET (lv, src);
3105
3106 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3107 {
3108 COPY_REG_SET (BB_LV_SET (bb), lv);
3109 BB_LV_SET_VALID_P (bb) = true;
3110 }
3111
3112 return_regset_to_pool (lv);
3113 return lv;
3114 }
3115 }
3116
3117 /* We've skipped the wrong lv_set. Don't skip the right one. */
3118 ignore_first = false;
3119 gcc_assert (in_current_region_p (bb));
3120
3121 /* Find a valid LV set in this block or below, if needed.
3122 Start searching from the next insn: either ignore_first is true, or
3123 INSN doesn't have a correct live set. */
3124 temp = NEXT_INSN (insn);
3125 final = NEXT_INSN (BB_END (bb));
3126 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3127 temp = NEXT_INSN (temp);
3128 if (temp == final)
3129 {
3130 lv = compute_live_after_bb (bb);
3131 temp = PREV_INSN (temp);
3132 }
3133 else
3134 {
3135 lv = get_regset_from_pool ();
3136 COPY_REG_SET (lv, INSN_LIVE (temp));
3137 }
3138
3139 /* Put correct lv sets on the insns which have bad sets. */
3140 final = PREV_INSN (insn);
3141 while (temp != final)
3142 {
3143 propagate_lv_set (lv, temp);
3144 COPY_REG_SET (INSN_LIVE (temp), lv);
3145 INSN_LIVE_VALID_P (temp) = true;
3146 temp = PREV_INSN (temp);
3147 }
3148
3149 /* Also put it in a BB. */
3150 if (sel_bb_head_p (insn))
3151 {
3152 basic_block bb = BLOCK_FOR_INSN (insn);
3153
3154 COPY_REG_SET (BB_LV_SET (bb), lv);
3155 BB_LV_SET_VALID_P (bb) = true;
3156 }
3157
3158 /* We return LV to the pool, but will not clear it there. Thus we can
3159 legimatelly use LV till the next use of regset_pool_get (). */
3160 return_regset_to_pool (lv);
3161 return lv;
3162 }
3163
3164 /* Update liveness sets for INSN. */
3165 static inline void
3166 update_liveness_on_insn (rtx_insn *insn)
3167 {
3168 ignore_first = true;
3169 compute_live (insn);
3170 }
3171
3172 /* Compute liveness below INSN and write it into REGS. */
3173 static inline void
3174 compute_live_below_insn (rtx_insn *insn, regset regs)
3175 {
3176 rtx_insn *succ;
3177 succ_iterator si;
3178
3179 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3180 IOR_REG_SET (regs, compute_live (succ));
3181 }
3182
3183 /* Update the data gathered in av and lv sets starting from INSN. */
3184 static void
3185 update_data_sets (rtx_insn *insn)
3186 {
3187 update_liveness_on_insn (insn);
3188 if (sel_bb_head_p (insn))
3189 {
3190 gcc_assert (AV_LEVEL (insn) != 0);
3191 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3192 compute_av_set (insn, NULL, 0, 0);
3193 }
3194 }
3195 \f
3196
3197 /* Helper for move_op () and find_used_regs ().
3198 Return speculation type for which a check should be created on the place
3199 of INSN. EXPR is one of the original ops we are searching for. */
3200 static ds_t
3201 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3202 {
3203 ds_t to_check_ds;
3204 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3205
3206 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3207
3208 if (targetm.sched.get_insn_checked_ds)
3209 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3210
3211 if (spec_info != NULL
3212 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3213 already_checked_ds |= BEGIN_CONTROL;
3214
3215 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3216
3217 to_check_ds &= ~already_checked_ds;
3218
3219 return to_check_ds;
3220 }
3221
3222 /* Find the set of registers that are unavailable for storing expres
3223 while moving ORIG_OPS up on the path starting from INSN due to
3224 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3225
3226 All the original operations found during the traversal are saved in the
3227 ORIGINAL_INSNS list.
3228
3229 REG_RENAME_P denotes the set of hardware registers that
3230 can not be used with renaming due to the register class restrictions,
3231 mode restrictions and other (the register we'll choose should be
3232 compatible class with the original uses, shouldn't be in call_used_regs,
3233 should be HARD_REGNO_RENAME_OK etc).
3234
3235 Returns TRUE if we've found all original insns, FALSE otherwise.
3236
3237 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3238 to traverse the code motion paths. This helper function finds registers
3239 that are not available for storing expres while moving ORIG_OPS up on the
3240 path starting from INSN. A register considered as used on the moving path,
3241 if one of the following conditions is not satisfied:
3242
3243 (1) a register not set or read on any path from xi to an instance of
3244 the original operation,
3245 (2) not among the live registers of the point immediately following the
3246 first original operation on a given downward path, except for the
3247 original target register of the operation,
3248 (3) not live on the other path of any conditional branch that is passed
3249 by the operation, in case original operations are not present on
3250 both paths of the conditional branch.
3251
3252 All the original operations found during the traversal are saved in the
3253 ORIGINAL_INSNS list.
3254
3255 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3256 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3257 to unavailable hard regs at the point original operation is found. */
3258
3259 static bool
3260 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3261 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3262 {
3263 def_list_iterator i;
3264 def_t def;
3265 int res;
3266 bool needs_spec_check_p = false;
3267 expr_t expr;
3268 av_set_iterator expr_iter;
3269 struct fur_static_params sparams;
3270 struct cmpd_local_params lparams;
3271
3272 /* We haven't visited any blocks yet. */
3273 bitmap_clear (code_motion_visited_blocks);
3274
3275 /* Init parameters for code_motion_path_driver. */
3276 sparams.crosses_call = false;
3277 sparams.original_insns = original_insns;
3278 sparams.used_regs = used_regs;
3279
3280 /* Set the appropriate hooks and data. */
3281 code_motion_path_driver_info = &fur_hooks;
3282
3283 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3284
3285 reg_rename_p->crosses_call |= sparams.crosses_call;
3286
3287 gcc_assert (res == 1);
3288 gcc_assert (original_insns && *original_insns);
3289
3290 /* ??? We calculate whether an expression needs a check when computing
3291 av sets. This information is not as precise as it could be due to
3292 merging this bit in merge_expr. We can do better in find_used_regs,
3293 but we want to avoid multiple traversals of the same code motion
3294 paths. */
3295 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3296 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3297
3298 /* Mark hardware regs in REG_RENAME_P that are not suitable
3299 for renaming expr in INSN due to hardware restrictions (register class,
3300 modes compatibility etc). */
3301 FOR_EACH_DEF (def, i, *original_insns)
3302 {
3303 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3304
3305 if (VINSN_SEPARABLE_P (vinsn))
3306 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3307
3308 /* Do not allow clobbering of ld.[sa] address in case some of the
3309 original operations need a check. */
3310 if (needs_spec_check_p)
3311 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3312 }
3313
3314 return true;
3315 }
3316 \f
3317
3318 /* Functions to choose the best insn from available ones. */
3319
3320 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3321 static int
3322 sel_target_adjust_priority (expr_t expr)
3323 {
3324 int priority = EXPR_PRIORITY (expr);
3325 int new_priority;
3326
3327 if (targetm.sched.adjust_priority)
3328 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3329 else
3330 new_priority = priority;
3331
3332 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3333 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3334
3335 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3336
3337 if (sched_verbose >= 4)
3338 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3339 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3340 EXPR_PRIORITY_ADJ (expr), new_priority);
3341
3342 return new_priority;
3343 }
3344
3345 /* Rank two available exprs for schedule. Never return 0 here. */
3346 static int
3347 sel_rank_for_schedule (const void *x, const void *y)
3348 {
3349 expr_t tmp = *(const expr_t *) y;
3350 expr_t tmp2 = *(const expr_t *) x;
3351 insn_t tmp_insn, tmp2_insn;
3352 vinsn_t tmp_vinsn, tmp2_vinsn;
3353 int val;
3354
3355 tmp_vinsn = EXPR_VINSN (tmp);
3356 tmp2_vinsn = EXPR_VINSN (tmp2);
3357 tmp_insn = EXPR_INSN_RTX (tmp);
3358 tmp2_insn = EXPR_INSN_RTX (tmp2);
3359
3360 /* Schedule debug insns as early as possible. */
3361 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3362 return -1;
3363 else if (DEBUG_INSN_P (tmp2_insn))
3364 return 1;
3365
3366 /* Prefer SCHED_GROUP_P insns to any others. */
3367 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3368 {
3369 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3370 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3371
3372 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3373 cannot be cloned. */
3374 if (VINSN_UNIQUE_P (tmp2_vinsn))
3375 return 1;
3376 return -1;
3377 }
3378
3379 /* Discourage scheduling of speculative checks. */
3380 val = (sel_insn_is_speculation_check (tmp_insn)
3381 - sel_insn_is_speculation_check (tmp2_insn));
3382 if (val)
3383 return val;
3384
3385 /* Prefer not scheduled insn over scheduled one. */
3386 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3387 {
3388 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3389 if (val)
3390 return val;
3391 }
3392
3393 /* Prefer jump over non-jump instruction. */
3394 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3395 return -1;
3396 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3397 return 1;
3398
3399 /* Prefer an expr with greater priority. */
3400 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3401 {
3402 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3403 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3404
3405 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3406 }
3407 else
3408 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3409 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3410 if (val)
3411 return val;
3412
3413 if (spec_info != NULL && spec_info->mask != 0)
3414 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3415 {
3416 ds_t ds1, ds2;
3417 dw_t dw1, dw2;
3418 int dw;
3419
3420 ds1 = EXPR_SPEC_DONE_DS (tmp);
3421 if (ds1)
3422 dw1 = ds_weak (ds1);
3423 else
3424 dw1 = NO_DEP_WEAK;
3425
3426 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3427 if (ds2)
3428 dw2 = ds_weak (ds2);
3429 else
3430 dw2 = NO_DEP_WEAK;
3431
3432 dw = dw2 - dw1;
3433 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3434 return dw;
3435 }
3436
3437 /* Prefer an old insn to a bookkeeping insn. */
3438 if (INSN_UID (tmp_insn) < first_emitted_uid
3439 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3440 return -1;
3441 if (INSN_UID (tmp_insn) >= first_emitted_uid
3442 && INSN_UID (tmp2_insn) < first_emitted_uid)
3443 return 1;
3444
3445 /* Prefer an insn with smaller UID, as a last resort.
3446 We can't safely use INSN_LUID as it is defined only for those insns
3447 that are in the stream. */
3448 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3449 }
3450
3451 /* Filter out expressions from av set pointed to by AV_PTR
3452 that are pipelined too many times. */
3453 static void
3454 process_pipelined_exprs (av_set_t *av_ptr)
3455 {
3456 expr_t expr;
3457 av_set_iterator si;
3458
3459 /* Don't pipeline already pipelined code as that would increase
3460 number of unnecessary register moves. */
3461 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3462 {
3463 if (EXPR_SCHED_TIMES (expr)
3464 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3465 av_set_iter_remove (&si);
3466 }
3467 }
3468
3469 /* Filter speculative insns from AV_PTR if we don't want them. */
3470 static void
3471 process_spec_exprs (av_set_t *av_ptr)
3472 {
3473 expr_t expr;
3474 av_set_iterator si;
3475
3476 if (spec_info == NULL)
3477 return;
3478
3479 /* Scan *AV_PTR to find out if we want to consider speculative
3480 instructions for scheduling. */
3481 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3482 {
3483 ds_t ds;
3484
3485 ds = EXPR_SPEC_DONE_DS (expr);
3486
3487 /* The probability of a success is too low - don't speculate. */
3488 if ((ds & SPECULATIVE)
3489 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3490 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3491 || (pipelining_p && false
3492 && (ds & DATA_SPEC)
3493 && (ds & CONTROL_SPEC))))
3494 {
3495 av_set_iter_remove (&si);
3496 continue;
3497 }
3498 }
3499 }
3500
3501 /* Search for any use-like insns in AV_PTR and decide on scheduling
3502 them. Return one when found, and NULL otherwise.
3503 Note that we check here whether a USE could be scheduled to avoid
3504 an infinite loop later. */
3505 static expr_t
3506 process_use_exprs (av_set_t *av_ptr)
3507 {
3508 expr_t expr;
3509 av_set_iterator si;
3510 bool uses_present_p = false;
3511 bool try_uses_p = true;
3512
3513 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3514 {
3515 /* This will also initialize INSN_CODE for later use. */
3516 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3517 {
3518 /* If we have a USE in *AV_PTR that was not scheduled yet,
3519 do so because it will do good only. */
3520 if (EXPR_SCHED_TIMES (expr) <= 0)
3521 {
3522 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3523 return expr;
3524
3525 av_set_iter_remove (&si);
3526 }
3527 else
3528 {
3529 gcc_assert (pipelining_p);
3530
3531 uses_present_p = true;
3532 }
3533 }
3534 else
3535 try_uses_p = false;
3536 }
3537
3538 if (uses_present_p)
3539 {
3540 /* If we don't want to schedule any USEs right now and we have some
3541 in *AV_PTR, remove them, else just return the first one found. */
3542 if (!try_uses_p)
3543 {
3544 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3545 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3546 av_set_iter_remove (&si);
3547 }
3548 else
3549 {
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 {
3552 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3553
3554 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3555 return expr;
3556
3557 av_set_iter_remove (&si);
3558 }
3559 }
3560 }
3561
3562 return NULL;
3563 }
3564
3565 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3566 EXPR's history of changes. */
3567 static bool
3568 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3569 {
3570 vinsn_t vinsn, expr_vinsn;
3571 int n;
3572 unsigned i;
3573
3574 /* Start with checking expr itself and then proceed with all the old forms
3575 of expr taken from its history vector. */
3576 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3577 expr_vinsn;
3578 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3579 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3580 : NULL))
3581 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3582 if (VINSN_SEPARABLE_P (vinsn))
3583 {
3584 if (vinsn_equal_p (vinsn, expr_vinsn))
3585 return true;
3586 }
3587 else
3588 {
3589 /* For non-separable instructions, the blocking insn can have
3590 another pattern due to substitution, and we can't choose
3591 different register as in the above case. Check all registers
3592 being written instead. */
3593 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3594 VINSN_REG_SETS (expr_vinsn)))
3595 return true;
3596 }
3597
3598 return false;
3599 }
3600
3601 /* Return true if either of expressions from ORIG_OPS can be blocked
3602 by previously created bookkeeping code. STATIC_PARAMS points to static
3603 parameters of move_op. */
3604 static bool
3605 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3606 {
3607 expr_t expr;
3608 av_set_iterator iter;
3609 moveop_static_params_p sparams;
3610
3611 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3612 created while scheduling on another fence. */
3613 FOR_EACH_EXPR (expr, iter, orig_ops)
3614 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3615 return true;
3616
3617 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3618 sparams = (moveop_static_params_p) static_params;
3619
3620 /* Expressions can be also blocked by bookkeeping created during current
3621 move_op. */
3622 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3623 FOR_EACH_EXPR (expr, iter, orig_ops)
3624 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3625 return true;
3626
3627 /* Expressions in ORIG_OPS may have wrong destination register due to
3628 renaming. Check with the right register instead. */
3629 if (sparams->dest && REG_P (sparams->dest))
3630 {
3631 rtx reg = sparams->dest;
3632 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3633
3634 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3635 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3636 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3637 return true;
3638 }
3639
3640 return false;
3641 }
3642
3643 /* Clear VINSN_VEC and detach vinsns. */
3644 static void
3645 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3646 {
3647 unsigned len = vinsn_vec->length ();
3648 if (len > 0)
3649 {
3650 vinsn_t vinsn;
3651 int n;
3652
3653 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3654 vinsn_detach (vinsn);
3655 vinsn_vec->block_remove (0, len);
3656 }
3657 }
3658
3659 /* Add the vinsn of EXPR to the VINSN_VEC. */
3660 static void
3661 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3662 {
3663 vinsn_attach (EXPR_VINSN (expr));
3664 vinsn_vec->safe_push (EXPR_VINSN (expr));
3665 }
3666
3667 /* Free the vector representing blocked expressions. */
3668 static void
3669 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3670 {
3671 vinsn_vec.release ();
3672 }
3673
3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675
3676 void sel_add_to_insn_priority (rtx insn, int amount)
3677 {
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679
3680 if (sched_verbose >= 2)
3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684 }
3685
3686 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
3689 before an expr from AV would become available, write this number to
3690 *PNEED_STALL. */
3691 static bool
3692 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693 int *pneed_stall)
3694 {
3695 av_set_iterator si;
3696 expr_t expr;
3697 int sched_next_worked = 0, stalled, n;
3698 static int av_max_prio, est_ticks_till_branch;
3699 int min_need_stall = -1;
3700 deps_t dc = BND_DC (BLIST_BND (bnds));
3701
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3704 if (av == NULL)
3705 return false;
3706
3707 /* Empty vector from the previous stuff. */
3708 if (vec_av_set.length () > 0)
3709 vec_av_set.block_remove (0, vec_av_set.length ());
3710
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712 for each insn. */
3713 gcc_assert (vec_av_set.is_empty ());
3714 FOR_EACH_EXPR (expr, si, av)
3715 {
3716 vec_av_set.safe_push (expr);
3717
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr);
3722 }
3723
3724 /* Sort the vector. */
3725 vec_av_set.qsort (sel_rank_for_schedule);
3726
3727 /* We record maximal priority of insns in av set for current instruction
3728 group. */
3729 if (FENCE_STARTS_CYCLE_P (fence))
3730 av_max_prio = est_ticks_till_branch = INT_MIN;
3731
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
3733 visit "best" instructions first. We assume that vec::unordered_remove
3734 moves last element in place of one being deleted. */
3735 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3736 {
3737 expr_t expr = vec_av_set[n];
3738 insn_t insn = EXPR_INSN_RTX (expr);
3739 signed char target_available;
3740 bool is_orig_reg_p = true;
3741 int need_cycles, new_prio;
3742 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3743
3744 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3745 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3746 {
3747 vec_av_set.unordered_remove (n);
3748 continue;
3749 }
3750
3751 /* Set number of sched_next insns (just in case there
3752 could be several). */
3753 if (FENCE_SCHED_NEXT (fence))
3754 sched_next_worked++;
3755
3756 /* Check all liveness requirements and try renaming.
3757 FIXME: try to minimize calls to this. */
3758 target_available = EXPR_TARGET_AVAILABLE (expr);
3759
3760 /* If insn was already scheduled on the current fence,
3761 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3762 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3763 && !fence_insn_p)
3764 target_available = -1;
3765
3766 /* If the availability of the EXPR is invalidated by the insertion of
3767 bookkeeping earlier, make sure that we won't choose this expr for
3768 scheduling if it's not separable, and if it is separable, then
3769 we have to recompute the set of available registers for it. */
3770 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3771 {
3772 vec_av_set.unordered_remove (n);
3773 if (sched_verbose >= 4)
3774 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3775 INSN_UID (insn));
3776 continue;
3777 }
3778
3779 if (target_available == true)
3780 {
3781 /* Do nothing -- we can use an existing register. */
3782 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3783 }
3784 else if (/* Non-separable instruction will never
3785 get another register. */
3786 (target_available == false
3787 && !EXPR_SEPARABLE_P (expr))
3788 /* Don't try to find a register for low-priority expression. */
3789 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3790 /* ??? FIXME: Don't try to rename data speculation. */
3791 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3792 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3793 {
3794 vec_av_set.unordered_remove (n);
3795 if (sched_verbose >= 4)
3796 sel_print ("Expr %d has no suitable target register\n",
3797 INSN_UID (insn));
3798
3799 /* A fence insn should not get here. */
3800 gcc_assert (!fence_insn_p);
3801 continue;
3802 }
3803
3804 /* At this point a fence insn should always be available. */
3805 gcc_assert (!fence_insn_p
3806 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3807
3808 /* Filter expressions that need to be renamed or speculated when
3809 pipelining, because compensating register copies or speculation
3810 checks are likely to be placed near the beginning of the loop,
3811 causing a stall. */
3812 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3813 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3814 {
3815 /* Estimation of number of cycles until loop branch for
3816 renaming/speculation to be successful. */
3817 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3818
3819 if ((int) current_loop_nest->ninsns < 9)
3820 {
3821 vec_av_set.unordered_remove (n);
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827
3828 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3829 < need_n_ticks_till_branch * issue_rate / 2
3830 && est_ticks_till_branch < need_n_ticks_till_branch)
3831 {
3832 vec_av_set.unordered_remove (n);
3833 if (sched_verbose >= 4)
3834 sel_print ("Pipelining expr %d will likely cause stall\n",
3835 INSN_UID (insn));
3836 continue;
3837 }
3838 }
3839
3840 /* We want to schedule speculation checks as late as possible. Discard
3841 them from av set if there are instructions with higher priority. */
3842 if (sel_insn_is_speculation_check (insn)
3843 && EXPR_PRIORITY (expr) < av_max_prio)
3844 {
3845 stalled++;
3846 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3847 vec_av_set.unordered_remove (n);
3848 if (sched_verbose >= 4)
3849 sel_print ("Delaying speculation check %d until its first use\n",
3850 INSN_UID (insn));
3851 continue;
3852 }
3853
3854 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3855 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3856 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3857
3858 /* Don't allow any insns whose data is not yet ready.
3859 Check first whether we've already tried them and failed. */
3860 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3861 {
3862 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3863 - FENCE_CYCLE (fence));
3864 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3865 est_ticks_till_branch = MAX (est_ticks_till_branch,
3866 EXPR_PRIORITY (expr) + need_cycles);
3867
3868 if (need_cycles > 0)
3869 {
3870 stalled++;
3871 min_need_stall = (min_need_stall < 0
3872 ? need_cycles
3873 : MIN (min_need_stall, need_cycles));
3874 vec_av_set.unordered_remove (n);
3875
3876 if (sched_verbose >= 4)
3877 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3878 INSN_UID (insn),
3879 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3880 continue;
3881 }
3882 }
3883
3884 /* Now resort to dependence analysis to find whether EXPR might be
3885 stalled due to dependencies from FENCE's context. */
3886 need_cycles = tick_check_p (expr, dc, fence);
3887 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3888
3889 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3890 est_ticks_till_branch = MAX (est_ticks_till_branch,
3891 new_prio);
3892
3893 if (need_cycles > 0)
3894 {
3895 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3896 {
3897 int new_size = INSN_UID (insn) * 3 / 2;
3898
3899 FENCE_READY_TICKS (fence)
3900 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3901 new_size, FENCE_READY_TICKS_SIZE (fence),
3902 sizeof (int));
3903 }
3904 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3905 = FENCE_CYCLE (fence) + need_cycles;
3906
3907 stalled++;
3908 min_need_stall = (min_need_stall < 0
3909 ? need_cycles
3910 : MIN (min_need_stall, need_cycles));
3911
3912 vec_av_set.unordered_remove (n);
3913
3914 if (sched_verbose >= 4)
3915 sel_print ("Expr %d is not ready yet until cycle %d\n",
3916 INSN_UID (insn),
3917 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3918 continue;
3919 }
3920
3921 if (sched_verbose >= 4)
3922 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3923 min_need_stall = 0;
3924 }
3925
3926 /* Clear SCHED_NEXT. */
3927 if (FENCE_SCHED_NEXT (fence))
3928 {
3929 gcc_assert (sched_next_worked == 1);
3930 FENCE_SCHED_NEXT (fence) = NULL;
3931 }
3932
3933 /* No need to stall if this variable was not initialized. */
3934 if (min_need_stall < 0)
3935 min_need_stall = 0;
3936
3937 if (vec_av_set.is_empty ())
3938 {
3939 /* We need to set *pneed_stall here, because later we skip this code
3940 when ready list is empty. */
3941 *pneed_stall = min_need_stall;
3942 return false;
3943 }
3944 else
3945 gcc_assert (min_need_stall == 0);
3946
3947 /* Sort the vector. */
3948 vec_av_set.qsort (sel_rank_for_schedule);
3949
3950 if (sched_verbose >= 4)
3951 {
3952 sel_print ("Total ready exprs: %d, stalled: %d\n",
3953 vec_av_set.length (), stalled);
3954 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3955 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3956 dump_expr (expr);
3957 sel_print ("\n");
3958 }
3959
3960 *pneed_stall = 0;
3961 return true;
3962 }
3963
3964 /* Convert a vectored and sorted av set to the ready list that
3965 the rest of the backend wants to see. */
3966 static void
3967 convert_vec_av_set_to_ready (void)
3968 {
3969 int n;
3970 expr_t expr;
3971
3972 /* Allocate and fill the ready list from the sorted vector. */
3973 ready.n_ready = vec_av_set.length ();
3974 ready.first = ready.n_ready - 1;
3975
3976 gcc_assert (ready.n_ready > 0);
3977
3978 if (ready.n_ready > max_issue_size)
3979 {
3980 max_issue_size = ready.n_ready;
3981 sched_extend_ready_list (ready.n_ready);
3982 }
3983
3984 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3985 {
3986 vinsn_t vi = EXPR_VINSN (expr);
3987 insn_t insn = VINSN_INSN_RTX (vi);
3988
3989 ready_try[n] = 0;
3990 ready.vec[n] = insn;
3991 }
3992 }
3993
3994 /* Initialize ready list from *AV_PTR for the max_issue () call.
3995 If any unrecognizable insn found in *AV_PTR, return it (and skip
3996 max_issue). BND and FENCE are current boundary and fence,
3997 respectively. If we need to stall for some cycles before an expr
3998 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3999 static expr_t
4000 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4001 int *pneed_stall)
4002 {
4003 expr_t expr;
4004
4005 /* We do not support multiple boundaries per fence. */
4006 gcc_assert (BLIST_NEXT (bnds) == NULL);
4007
4008 /* Process expressions required special handling, i.e. pipelined,
4009 speculative and recog() < 0 expressions first. */
4010 process_pipelined_exprs (av_ptr);
4011 process_spec_exprs (av_ptr);
4012
4013 /* A USE could be scheduled immediately. */
4014 expr = process_use_exprs (av_ptr);
4015 if (expr)
4016 {
4017 *pneed_stall = 0;
4018 return expr;
4019 }
4020
4021 /* Turn the av set to a vector for sorting. */
4022 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4023 {
4024 ready.n_ready = 0;
4025 return NULL;
4026 }
4027
4028 /* Build the final ready list. */
4029 convert_vec_av_set_to_ready ();
4030 return NULL;
4031 }
4032
4033 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4034 static bool
4035 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4036 {
4037 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4038 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4039 : FENCE_CYCLE (fence) - 1;
4040 bool res = false;
4041 int sort_p = 0;
4042
4043 if (!targetm.sched.dfa_new_cycle)
4044 return false;
4045
4046 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4047
4048 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4049 insn, last_scheduled_cycle,
4050 FENCE_CYCLE (fence), &sort_p))
4051 {
4052 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4053 advance_one_cycle (fence);
4054 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4055 res = true;
4056 }
4057
4058 return res;
4059 }
4060
4061 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4062 we can issue. FENCE is the current fence. */
4063 static int
4064 invoke_reorder_hooks (fence_t fence)
4065 {
4066 int issue_more;
4067 bool ran_hook = false;
4068
4069 /* Call the reorder hook at the beginning of the cycle, and call
4070 the reorder2 hook in the middle of the cycle. */
4071 if (FENCE_ISSUED_INSNS (fence) == 0)
4072 {
4073 if (targetm.sched.reorder
4074 && !SCHED_GROUP_P (ready_element (&ready, 0))
4075 && ready.n_ready > 1)
4076 {
4077 /* Don't give reorder the most prioritized insn as it can break
4078 pipelining. */
4079 if (pipelining_p)
4080 --ready.n_ready;
4081
4082 issue_more
4083 = targetm.sched.reorder (sched_dump, sched_verbose,
4084 ready_lastpos (&ready),
4085 &ready.n_ready, FENCE_CYCLE (fence));
4086
4087 if (pipelining_p)
4088 ++ready.n_ready;
4089
4090 ran_hook = true;
4091 }
4092 else
4093 /* Initialize can_issue_more for variable_issue. */
4094 issue_more = issue_rate;
4095 }
4096 else if (targetm.sched.reorder2
4097 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4098 {
4099 if (ready.n_ready == 1)
4100 issue_more =
4101 targetm.sched.reorder2 (sched_dump, sched_verbose,
4102 ready_lastpos (&ready),
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104 else
4105 {
4106 if (pipelining_p)
4107 --ready.n_ready;
4108
4109 issue_more =
4110 targetm.sched.reorder2 (sched_dump, sched_verbose,
4111 ready.n_ready
4112 ? ready_lastpos (&ready) : NULL,
4113 &ready.n_ready, FENCE_CYCLE (fence));
4114
4115 if (pipelining_p)
4116 ++ready.n_ready;
4117 }
4118
4119 ran_hook = true;
4120 }
4121 else
4122 issue_more = FENCE_ISSUE_MORE (fence);
4123
4124 /* Ensure that ready list and vec_av_set are in line with each other,
4125 i.e. vec_av_set[i] == ready_element (&ready, i). */
4126 if (issue_more && ran_hook)
4127 {
4128 int i, j, n;
4129 rtx_insn **arr = ready.vec;
4130 expr_t *vec = vec_av_set.address ();
4131
4132 for (i = 0, n = ready.n_ready; i < n; i++)
4133 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4134 {
4135 for (j = i; j < n; j++)
4136 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4137 break;
4138 gcc_assert (j < n);
4139
4140 std::swap (vec[i], vec[j]);
4141 }
4142 }
4143
4144 return issue_more;
4145 }
4146
4147 /* Return an EXPR corresponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151 static inline expr_t
4152 find_expr_for_ready (int index, bool follow_ready_element)
4153 {
4154 expr_t expr;
4155 int real_index;
4156
4157 real_index = follow_ready_element ? ready.first - index : index;
4158
4159 expr = vec_av_set[real_index];
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4161
4162 return expr;
4163 }
4164
4165 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167 static int
4168 invoke_dfa_lookahead_guard (void)
4169 {
4170 int i, n;
4171 bool have_hook
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4173
4174 if (sched_verbose >= 2)
4175 sel_print ("ready after reorder: ");
4176
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4178 {
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4182
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
4186
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4190 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4191
4192 gcc_assert (INSN_CODE (insn) >= 0);
4193
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4200
4201 expr = find_expr_for_ready (i, true);
4202
4203 if (sched_verbose >= 2)
4204 {
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (":%d; ", ready_try[i]);
4207 }
4208 }
4209
4210 if (sched_verbose >= 2)
4211 sel_print ("\n");
4212 return n;
4213 }
4214
4215 /* Calculate the number of privileged insns and return it. */
4216 static int
4217 calculate_privileged_insns (void)
4218 {
4219 expr_t cur_expr, min_spec_expr = NULL;
4220 int privileged_n = 0, i;
4221
4222 for (i = 0; i < ready.n_ready; i++)
4223 {
4224 if (ready_try[i])
4225 continue;
4226
4227 if (! min_spec_expr)
4228 min_spec_expr = find_expr_for_ready (i, true);
4229
4230 cur_expr = find_expr_for_ready (i, true);
4231
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4234
4235 ++privileged_n;
4236 }
4237
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4240
4241 if (sched_verbose >= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4245 }
4246
4247 /* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251 static int
4252 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4253 {
4254 gcc_assert (INSN_P (best_insn));
4255
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn, fence);
4258
4259 if (targetm.sched.variable_issue)
4260 {
4261 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4262 issue_more =
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4266 }
4267 else if (!DEBUG_INSN_P (best_insn)
4268 && GET_CODE (PATTERN (best_insn)) != USE
4269 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4270 issue_more--;
4271
4272 return issue_more;
4273 }
4274
4275 /* Estimate the cost of issuing INSN on DFA state STATE. */
4276 static int
4277 estimate_insn_cost (rtx_insn *insn, state_t state)
4278 {
4279 static state_t temp = NULL;
4280 int cost;
4281
4282 if (!temp)
4283 temp = xmalloc (dfa_state_size);
4284
4285 memcpy (temp, state, dfa_state_size);
4286 cost = state_transition (temp, insn);
4287
4288 if (cost < 0)
4289 return 0;
4290 else if (cost == 0)
4291 return 1;
4292 return cost;
4293 }
4294
4295 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4296 This function properly handles ASMs, USEs etc. */
4297 static int
4298 get_expr_cost (expr_t expr, fence_t fence)
4299 {
4300 rtx_insn *insn = EXPR_INSN_RTX (expr);
4301
4302 if (recog_memoized (insn) < 0)
4303 {
4304 if (!FENCE_STARTS_CYCLE_P (fence)
4305 && INSN_ASM_P (insn))
4306 /* This is asm insn which is tryed to be issued on the
4307 cycle not first. Issue it on the next cycle. */
4308 return 1;
4309 else
4310 /* A USE insn, or something else we don't need to
4311 understand. We can't pass these directly to
4312 state_transition because it will trigger a
4313 fatal error for unrecognizable insns. */
4314 return 0;
4315 }
4316 else
4317 return estimate_insn_cost (insn, FENCE_STATE (fence));
4318 }
4319
4320 /* Find the best insn for scheduling, either via max_issue or just take
4321 the most prioritized available. */
4322 static int
4323 choose_best_insn (fence_t fence, int privileged_n, int *index)
4324 {
4325 int can_issue = 0;
4326
4327 if (dfa_lookahead > 0)
4328 {
4329 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4330 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4331 can_issue = max_issue (&ready, privileged_n,
4332 FENCE_STATE (fence), true, index);
4333 if (sched_verbose >= 2)
4334 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4335 can_issue, FENCE_ISSUED_INSNS (fence));
4336 }
4337 else
4338 {
4339 /* We can't use max_issue; just return the first available element. */
4340 int i;
4341
4342 for (i = 0; i < ready.n_ready; i++)
4343 {
4344 expr_t expr = find_expr_for_ready (i, true);
4345
4346 if (get_expr_cost (expr, fence) < 1)
4347 {
4348 can_issue = can_issue_more;
4349 *index = i;
4350
4351 if (sched_verbose >= 2)
4352 sel_print ("using %dth insn from the ready list\n", i + 1);
4353
4354 break;
4355 }
4356 }
4357
4358 if (i == ready.n_ready)
4359 {
4360 can_issue = 0;
4361 *index = -1;
4362 }
4363 }
4364
4365 return can_issue;
4366 }
4367
4368 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4369 BNDS and FENCE are current boundaries and scheduling fence respectively.
4370 Return the expr found and NULL if nothing can be issued atm.
4371 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4372 static expr_t
4373 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4374 int *pneed_stall)
4375 {
4376 expr_t best;
4377
4378 /* Choose the best insn for scheduling via:
4379 1) sorting the ready list based on priority;
4380 2) calling the reorder hook;
4381 3) calling max_issue. */
4382 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4383 if (best == NULL && ready.n_ready > 0)
4384 {
4385 int privileged_n, index;
4386
4387 can_issue_more = invoke_reorder_hooks (fence);
4388 if (can_issue_more > 0)
4389 {
4390 /* Try choosing the best insn until we find one that is could be
4391 scheduled due to liveness restrictions on its destination register.
4392 In the future, we'd like to choose once and then just probe insns
4393 in the order of their priority. */
4394 invoke_dfa_lookahead_guard ();
4395 privileged_n = calculate_privileged_insns ();
4396 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4397 if (can_issue_more)
4398 best = find_expr_for_ready (index, true);
4399 }
4400 /* We had some available insns, so if we can't issue them,
4401 we have a stall. */
4402 if (can_issue_more == 0)
4403 {
4404 best = NULL;
4405 *pneed_stall = 1;
4406 }
4407 }
4408
4409 if (best != NULL)
4410 {
4411 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4412 can_issue_more);
4413 if (targetm.sched.variable_issue
4414 && can_issue_more == 0)
4415 *pneed_stall = 1;
4416 }
4417
4418 if (sched_verbose >= 2)
4419 {
4420 if (best != NULL)
4421 {
4422 sel_print ("Best expression (vliw form): ");
4423 dump_expr (best);
4424 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4425 }
4426 else
4427 sel_print ("No best expr found!\n");
4428 }
4429
4430 return best;
4431 }
4432 \f
4433
4434 /* Functions that implement the core of the scheduler. */
4435
4436
4437 /* Emit an instruction from EXPR with SEQNO and VINSN after
4438 PLACE_TO_INSERT. */
4439 static insn_t
4440 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4441 insn_t place_to_insert)
4442 {
4443 /* This assert fails when we have identical instructions
4444 one of which dominates the other. In this case move_op ()
4445 finds the first instruction and doesn't search for second one.
4446 The solution would be to compute av_set after the first found
4447 insn and, if insn present in that set, continue searching.
4448 For now we workaround this issue in move_op. */
4449 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4450
4451 if (EXPR_WAS_RENAMED (expr))
4452 {
4453 unsigned regno = expr_dest_regno (expr);
4454
4455 if (HARD_REGISTER_NUM_P (regno))
4456 {
4457 df_set_regs_ever_live (regno, true);
4458 reg_rename_tick[regno] = ++reg_rename_this_tick;
4459 }
4460 }
4461
4462 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4463 place_to_insert);
4464 }
4465
4466 /* Return TRUE if BB can hold bookkeeping code. */
4467 static bool
4468 block_valid_for_bookkeeping_p (basic_block bb)
4469 {
4470 insn_t bb_end = BB_END (bb);
4471
4472 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4473 return false;
4474
4475 if (INSN_P (bb_end))
4476 {
4477 if (INSN_SCHED_TIMES (bb_end) > 0)
4478 return false;
4479 }
4480 else
4481 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4482
4483 return true;
4484 }
4485
4486 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4487 into E2->dest, except from E1->src (there may be a sequence of empty basic
4488 blocks between E1->src and E2->dest). Return found block, or NULL if new
4489 one must be created. If LAX holds, don't assume there is a simple path
4490 from E1->src to E2->dest. */
4491 static basic_block
4492 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4493 {
4494 basic_block candidate_block = NULL;
4495 edge e;
4496
4497 /* Loop over edges from E1 to E2, inclusive. */
4498 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4499 EDGE_SUCC (e->dest, 0))
4500 {
4501 if (EDGE_COUNT (e->dest->preds) == 2)
4502 {
4503 if (candidate_block == NULL)
4504 candidate_block = (EDGE_PRED (e->dest, 0) == e
4505 ? EDGE_PRED (e->dest, 1)->src
4506 : EDGE_PRED (e->dest, 0)->src);
4507 else
4508 /* Found additional edge leading to path from e1 to e2
4509 from aside. */
4510 return NULL;
4511 }
4512 else if (EDGE_COUNT (e->dest->preds) > 2)
4513 /* Several edges leading to path from e1 to e2 from aside. */
4514 return NULL;
4515
4516 if (e == e2)
4517 return ((!lax || candidate_block)
4518 && block_valid_for_bookkeeping_p (candidate_block)
4519 ? candidate_block
4520 : NULL);
4521
4522 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4523 return NULL;
4524 }
4525
4526 if (lax)
4527 return NULL;
4528
4529 gcc_unreachable ();
4530 }
4531
4532 /* Create new basic block for bookkeeping code for path(s) incoming into
4533 E2->dest, except from E1->src. Return created block. */
4534 static basic_block
4535 create_block_for_bookkeeping (edge e1, edge e2)
4536 {
4537 basic_block new_bb, bb = e2->dest;
4538
4539 /* Check that we don't spoil the loop structure. */
4540 if (current_loop_nest)
4541 {
4542 basic_block latch = current_loop_nest->latch;
4543
4544 /* We do not split header. */
4545 gcc_assert (e2->dest != current_loop_nest->header);
4546
4547 /* We do not redirect the only edge to the latch block. */
4548 gcc_assert (e1->dest != latch
4549 || !single_pred_p (latch)
4550 || e1 != single_pred_edge (latch));
4551 }
4552
4553 /* Split BB to insert BOOK_INSN there. */
4554 new_bb = sched_split_block (bb, NULL);
4555
4556 /* Move note_list from the upper bb. */
4557 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4558 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4559 BB_NOTE_LIST (bb) = NULL;
4560
4561 gcc_assert (e2->dest == bb);
4562
4563 /* Skip block for bookkeeping copy when leaving E1->src. */
4564 if (e1->flags & EDGE_FALLTHRU)
4565 sel_redirect_edge_and_branch_force (e1, new_bb);
4566 else
4567 sel_redirect_edge_and_branch (e1, new_bb);
4568
4569 gcc_assert (e1->dest == new_bb);
4570 gcc_assert (sel_bb_empty_p (bb));
4571
4572 /* To keep basic block numbers in sync between debug and non-debug
4573 compilations, we have to rotate blocks here. Consider that we
4574 started from (a,b)->d, (c,d)->e, and d contained only debug
4575 insns. It would have been removed before if the debug insns
4576 weren't there, so we'd have split e rather than d. So what we do
4577 now is to swap the block numbers of new_bb and
4578 single_succ(new_bb) == e, so that the insns that were in e before
4579 get the new block number. */
4580
4581 if (MAY_HAVE_DEBUG_INSNS)
4582 {
4583 basic_block succ;
4584 insn_t insn = sel_bb_head (new_bb);
4585 insn_t last;
4586
4587 if (DEBUG_INSN_P (insn)
4588 && single_succ_p (new_bb)
4589 && (succ = single_succ (new_bb))
4590 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4591 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4592 {
4593 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4594 insn = NEXT_INSN (insn);
4595
4596 if (insn == last)
4597 {
4598 sel_global_bb_info_def gbi;
4599 sel_region_bb_info_def rbi;
4600
4601 if (sched_verbose >= 2)
4602 sel_print ("Swapping block ids %i and %i\n",
4603 new_bb->index, succ->index);
4604
4605 std::swap (new_bb->index, succ->index);
4606
4607 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4608 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4609
4610 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4612 sizeof (gbi));
4613 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4614
4615 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4617 sizeof (rbi));
4618 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4619
4620 std::swap (BLOCK_TO_BB (new_bb->index),
4621 BLOCK_TO_BB (succ->index));
4622
4623 std::swap (CONTAINING_RGN (new_bb->index),
4624 CONTAINING_RGN (succ->index));
4625
4626 for (int i = 0; i < current_nr_blocks; i++)
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4631
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4645
4646 if (sched_verbose >= 4)
4647 sel_print ("Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650
4651 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4653 }
4654 }
4655 }
4656
4657 return bb;
4658 }
4659
4660 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4661 into E2->dest, except from E1->src. If the returned insn immediately
4662 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4663 static insn_t
4664 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4665 {
4666 insn_t place_to_insert;
4667 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4668 create new basic block, but insert bookkeeping there. */
4669 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4670
4671 if (book_block)
4672 {
4673 place_to_insert = BB_END (book_block);
4674
4675 /* Don't use a block containing only debug insns for
4676 bookkeeping, this causes scheduling differences between debug
4677 and non-debug compilations, for the block would have been
4678 removed already. */
4679 if (DEBUG_INSN_P (place_to_insert))
4680 {
4681 rtx_insn *insn = sel_bb_head (book_block);
4682
4683 while (insn != place_to_insert &&
4684 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4685 insn = NEXT_INSN (insn);
4686
4687 if (insn == place_to_insert)
4688 book_block = NULL;
4689 }
4690 }
4691
4692 if (!book_block)
4693 {
4694 book_block = create_block_for_bookkeeping (e1, e2);
4695 place_to_insert = BB_END (book_block);
4696 if (sched_verbose >= 9)
4697 sel_print ("New block is %i, split from bookkeeping block %i\n",
4698 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4699 }
4700 else
4701 {
4702 if (sched_verbose >= 9)
4703 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4704 }
4705
4706 *fence_to_rewind = NULL;
4707 /* If basic block ends with a jump, insert bookkeeping code right before it.
4708 Notice if we are crossing a fence when taking PREV_INSN. */
4709 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4710 {
4711 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4712 place_to_insert = PREV_INSN (place_to_insert);
4713 }
4714
4715 return place_to_insert;
4716 }
4717
4718 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4719 for JOIN_POINT. */
4720 static int
4721 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4722 {
4723 int seqno;
4724
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 rtx_insn *next = NEXT_INSN (place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4731 {
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4734 }
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4738 {
4739 seqno = get_seqno_by_preds (place_to_insert);
4740
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4747 {
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4750 }
4751 }
4752
4753 gcc_assert (seqno > 0);
4754 return seqno;
4755 }
4756
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761 {
4762 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4770
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773
4774 return new_insn;
4775 }
4776
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783 {
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4787 fence_t fence_to_rewind;
4788
4789 if (sched_verbose >= 4)
4790 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4791 e2->dest->index);
4792
4793 join_point = sel_bb_head (e2->dest);
4794 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4795 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4796 need_to_exchange_data_sets
4797 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4798
4799 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4800
4801 if (fence_to_rewind)
4802 FENCE_INSN (fence_to_rewind) = new_insn;
4803
4804 /* When inserting bookkeeping insn in new block, av sets should be
4805 following: old basic block (that now holds bookkeeping) data sets are
4806 the same as was before generation of bookkeeping, and new basic block
4807 (that now hold all other insns of old basic block) data sets are
4808 invalid. So exchange data sets for these basic blocks as sel_split_block
4809 mistakenly exchanges them in this case. Cannot do it earlier because
4810 when single instruction is added to new basic block it should hold NULL
4811 lv_set. */
4812 if (need_to_exchange_data_sets)
4813 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4814 BLOCK_FOR_INSN (join_point));
4815
4816 stat_bookkeeping_copies++;
4817 return BLOCK_FOR_INSN (new_insn);
4818 }
4819
4820 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4821 on FENCE, but we are unable to copy them. */
4822 static void
4823 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4824 {
4825 expr_t expr;
4826 av_set_iterator i;
4827
4828 /* An expression does not need bookkeeping if it is available on all paths
4829 from current block to original block and current block dominates
4830 original block. We check availability on all paths by examining
4831 EXPR_SPEC; this is not equivalent, because it may be positive even
4832 if expr is available on all paths (but if expr is not available on
4833 any path, EXPR_SPEC will be positive). */
4834
4835 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4836 {
4837 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4838 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4839 && (EXPR_SPEC (expr)
4840 || !EXPR_ORIG_BB_INDEX (expr)
4841 || !dominated_by_p (CDI_DOMINATORS,
4842 BASIC_BLOCK_FOR_FN (cfun,
4843 EXPR_ORIG_BB_INDEX (expr)),
4844 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4845 {
4846 if (sched_verbose >= 4)
4847 sel_print ("Expr %d removed because it would need bookkeeping, which "
4848 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4849 av_set_iter_remove (&i);
4850 }
4851 }
4852 }
4853
4854 /* Moving conditional jump through some instructions.
4855
4856 Consider example:
4857
4858 ... <- current scheduling point
4859 NOTE BASIC BLOCK: <- bb header
4860 (p8) add r14=r14+0x9;;
4861 (p8) mov [r14]=r23
4862 (!p8) jump L1;;
4863 NOTE BASIC BLOCK:
4864 ...
4865
4866 We can schedule jump one cycle earlier, than mov, because they cannot be
4867 executed together as their predicates are mutually exclusive.
4868
4869 This is done in this way: first, new fallthrough basic block is created
4870 after jump (it is always can be done, because there already should be a
4871 fallthrough block, where control flow goes in case of predicate being true -
4872 in our example; otherwise there should be a dependence between those
4873 instructions and jump and we cannot schedule jump right now);
4874 next, all instructions between jump and current scheduling point are moved
4875 to this new block. And the result is this:
4876
4877 NOTE BASIC BLOCK:
4878 (!p8) jump L1 <- current scheduling point
4879 NOTE BASIC BLOCK: <- bb header
4880 (p8) add r14=r14+0x9;;
4881 (p8) mov [r14]=r23
4882 NOTE BASIC BLOCK:
4883 ...
4884 */
4885 static void
4886 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4887 {
4888 edge ft_edge;
4889 basic_block block_from, block_next, block_new, block_bnd, bb;
4890 rtx_insn *next, *prev, *link, *head;
4891
4892 block_from = BLOCK_FOR_INSN (insn);
4893 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4894 prev = BND_TO (bnd);
4895
4896 /* Moving of jump should not cross any other jumps or beginnings of new
4897 basic blocks. The only exception is when we move a jump through
4898 mutually exclusive insns along fallthru edges. */
4899 if (flag_checking && block_from != block_bnd)
4900 {
4901 bb = block_from;
4902 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4903 link = PREV_INSN (link))
4904 {
4905 if (INSN_P (link))
4906 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4907 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4908 {
4909 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4910 bb = BLOCK_FOR_INSN (link);
4911 }
4912 }
4913 }
4914
4915 /* Jump is moved to the boundary. */
4916 next = PREV_INSN (insn);
4917 BND_TO (bnd) = insn;
4918
4919 ft_edge = find_fallthru_edge_from (block_from);
4920 block_next = ft_edge->dest;
4921 /* There must be a fallthrough block (or where should go
4922 control flow in case of false jump predicate otherwise?). */
4923 gcc_assert (block_next);
4924
4925 /* Create new empty basic block after source block. */
4926 block_new = sel_split_edge (ft_edge);
4927 gcc_assert (block_new->next_bb == block_next
4928 && block_from->next_bb == block_new);
4929
4930 /* Move all instructions except INSN to BLOCK_NEW. */
4931 bb = block_bnd;
4932 head = BB_HEAD (block_new);
4933 while (bb != block_from->next_bb)
4934 {
4935 rtx_insn *from, *to;
4936 from = bb == block_bnd ? prev : sel_bb_head (bb);
4937 to = bb == block_from ? next : sel_bb_end (bb);
4938
4939 /* The jump being moved can be the first insn in the block.
4940 In this case we don't have to move anything in this block. */
4941 if (NEXT_INSN (to) != from)
4942 {
4943 reorder_insns (from, to, head);
4944
4945 for (link = to; link != head; link = PREV_INSN (link))
4946 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4947 head = to;
4948 }
4949
4950 /* Cleanup possibly empty blocks left. */
4951 block_next = bb->next_bb;
4952 if (bb != block_from)
4953 tidy_control_flow (bb, false);
4954 bb = block_next;
4955 }
4956
4957 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4958 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4959
4960 gcc_assert (!sel_bb_empty_p (block_from)
4961 && !sel_bb_empty_p (block_new));
4962
4963 /* Update data sets for BLOCK_NEW to represent that INSN and
4964 instructions from the other branch of INSN is no longer
4965 available at BLOCK_NEW. */
4966 BB_AV_LEVEL (block_new) = global_level;
4967 gcc_assert (BB_LV_SET (block_new) == NULL);
4968 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4969 update_data_sets (sel_bb_head (block_new));
4970
4971 /* INSN is a new basic block header - so prepare its data
4972 structures and update availability and liveness sets. */
4973 update_data_sets (insn);
4974
4975 if (sched_verbose >= 4)
4976 sel_print ("Moving jump %d\n", INSN_UID (insn));
4977 }
4978
4979 /* Remove nops generated during move_op for preventing removal of empty
4980 basic blocks. */
4981 static void
4982 remove_temp_moveop_nops (bool full_tidying)
4983 {
4984 int i;
4985 insn_t insn;
4986
4987 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4988 {
4989 gcc_assert (INSN_NOP_P (insn));
4990 return_nop_to_pool (insn, full_tidying);
4991 }
4992
4993 /* Empty the vector. */
4994 if (vec_temp_moveop_nops.length () > 0)
4995 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4996 }
4997
4998 /* Records the maximal UID before moving up an instruction. Used for
4999 distinguishing between bookkeeping copies and original insns. */
5000 static int max_uid_before_move_op = 0;
5001
5002 /* Remove from AV_VLIW_P all instructions but next when debug counter
5003 tells us so. Next instruction is fetched from BNDS. */
5004 static void
5005 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5006 {
5007 if (! dbg_cnt (sel_sched_insn_cnt))
5008 /* Leave only the next insn in av_vliw. */
5009 {
5010 av_set_iterator av_it;
5011 expr_t expr;
5012 bnd_t bnd = BLIST_BND (bnds);
5013 insn_t next = BND_TO (bnd);
5014
5015 gcc_assert (BLIST_NEXT (bnds) == NULL);
5016
5017 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5018 if (EXPR_INSN_RTX (expr) != next)
5019 av_set_iter_remove (&av_it);
5020 }
5021 }
5022
5023 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5024 the computed set to *AV_VLIW_P. */
5025 static void
5026 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5027 {
5028 if (sched_verbose >= 2)
5029 {
5030 sel_print ("Boundaries: ");
5031 dump_blist (bnds);
5032 sel_print ("\n");
5033 }
5034
5035 for (; bnds; bnds = BLIST_NEXT (bnds))
5036 {
5037 bnd_t bnd = BLIST_BND (bnds);
5038 av_set_t av1_copy;
5039 insn_t bnd_to = BND_TO (bnd);
5040
5041 /* Rewind BND->TO to the basic block header in case some bookkeeping
5042 instructions were inserted before BND->TO and it needs to be
5043 adjusted. */
5044 if (sel_bb_head_p (bnd_to))
5045 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5046 else
5047 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5048 {
5049 bnd_to = PREV_INSN (bnd_to);
5050 if (sel_bb_head_p (bnd_to))
5051 break;
5052 }
5053
5054 if (BND_TO (bnd) != bnd_to)
5055 {
5056 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5057 FENCE_INSN (fence) = bnd_to;
5058 BND_TO (bnd) = bnd_to;
5059 }
5060
5061 av_set_clear (&BND_AV (bnd));
5062 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5063
5064 av_set_clear (&BND_AV1 (bnd));
5065 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5066
5067 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5068
5069 av1_copy = av_set_copy (BND_AV1 (bnd));
5070 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5071 }
5072
5073 if (sched_verbose >= 2)
5074 {
5075 sel_print ("Available exprs (vliw form): ");
5076 dump_av_set (*av_vliw_p);
5077 sel_print ("\n");
5078 }
5079 }
5080
5081 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5082 expression. When FOR_MOVEOP is true, also replace the register of
5083 expressions found with the register from EXPR_VLIW. */
5084 static av_set_t
5085 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5086 {
5087 av_set_t expr_seq = NULL;
5088 expr_t expr;
5089 av_set_iterator i;
5090
5091 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5092 {
5093 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5094 {
5095 if (for_moveop)
5096 {
5097 /* The sequential expression has the right form to pass
5098 to move_op except when renaming happened. Put the
5099 correct register in EXPR then. */
5100 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5101 {
5102 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5103 {
5104 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5105 stat_renamed_scheduled++;
5106 }
5107 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5108 This is needed when renaming came up with original
5109 register. */
5110 else if (EXPR_TARGET_AVAILABLE (expr)
5111 != EXPR_TARGET_AVAILABLE (expr_vliw))
5112 {
5113 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5114 EXPR_TARGET_AVAILABLE (expr) = 1;
5115 }
5116 }
5117 if (EXPR_WAS_SUBSTITUTED (expr))
5118 stat_substitutions_total++;
5119 }
5120
5121 av_set_add (&expr_seq, expr);
5122
5123 /* With substitution inside insn group, it is possible
5124 that more than one expression in expr_seq will correspond
5125 to expr_vliw. In this case, choose one as the attempt to
5126 move both leads to miscompiles. */
5127 break;
5128 }
5129 }
5130
5131 if (for_moveop && sched_verbose >= 2)
5132 {
5133 sel_print ("Best expression(s) (sequential form): ");
5134 dump_av_set (expr_seq);
5135 sel_print ("\n");
5136 }
5137
5138 return expr_seq;
5139 }
5140
5141
5142 /* Move nop to previous block. */
5143 static void ATTRIBUTE_UNUSED
5144 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5145 {
5146 insn_t prev_insn, next_insn;
5147
5148 gcc_assert (sel_bb_head_p (nop)
5149 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5150 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5151 prev_insn = sel_bb_end (prev_bb);
5152 next_insn = NEXT_INSN (nop);
5153 gcc_assert (prev_insn != NULL_RTX
5154 && PREV_INSN (note) == prev_insn);
5155
5156 SET_NEXT_INSN (prev_insn) = nop;
5157 SET_PREV_INSN (nop) = prev_insn;
5158
5159 SET_PREV_INSN (note) = nop;
5160 SET_NEXT_INSN (note) = next_insn;
5161
5162 SET_NEXT_INSN (nop) = note;
5163 SET_PREV_INSN (next_insn) = note;
5164
5165 BB_END (prev_bb) = nop;
5166 BLOCK_FOR_INSN (nop) = prev_bb;
5167 }
5168
5169 /* Prepare a place to insert the chosen expression on BND. */
5170 static insn_t
5171 prepare_place_to_insert (bnd_t bnd)
5172 {
5173 insn_t place_to_insert;
5174
5175 /* Init place_to_insert before calling move_op, as the later
5176 can possibly remove BND_TO (bnd). */
5177 if (/* If this is not the first insn scheduled. */
5178 BND_PTR (bnd))
5179 {
5180 /* Add it after last scheduled. */
5181 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5182 if (DEBUG_INSN_P (place_to_insert))
5183 {
5184 ilist_t l = BND_PTR (bnd);
5185 while ((l = ILIST_NEXT (l)) &&
5186 DEBUG_INSN_P (ILIST_INSN (l)))
5187 ;
5188 if (!l)
5189 place_to_insert = NULL;
5190 }
5191 }
5192 else
5193 place_to_insert = NULL;
5194
5195 if (!place_to_insert)
5196 {
5197 /* Add it before BND_TO. The difference is in the
5198 basic block, where INSN will be added. */
5199 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5200 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5201 == BLOCK_FOR_INSN (BND_TO (bnd)));
5202 }
5203
5204 return place_to_insert;
5205 }
5206
5207 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5208 Return the expression to emit in C_EXPR. */
5209 static bool
5210 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5211 av_set_t expr_seq, expr_t c_expr)
5212 {
5213 bool b, should_move;
5214 unsigned book_uid;
5215 bitmap_iterator bi;
5216 int n_bookkeeping_copies_before_moveop;
5217
5218 /* Make a move. This call will remove the original operation,
5219 insert all necessary bookkeeping instructions and update the
5220 data sets. After that all we have to do is add the operation
5221 at before BND_TO (BND). */
5222 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5223 max_uid_before_move_op = get_max_uid ();
5224 bitmap_clear (current_copies);
5225 bitmap_clear (current_originators);
5226
5227 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5228 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5229
5230 /* We should be able to find the expression we've chosen for
5231 scheduling. */
5232 gcc_assert (b);
5233
5234 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5235 stat_insns_needed_bookkeeping++;
5236
5237 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5238 {
5239 unsigned uid;
5240 bitmap_iterator bi;
5241
5242 /* We allocate these bitmaps lazily. */
5243 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5244 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5245
5246 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5247 current_originators);
5248
5249 /* Transitively add all originators' originators. */
5250 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5251 if (INSN_ORIGINATORS_BY_UID (uid))
5252 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5253 INSN_ORIGINATORS_BY_UID (uid));
5254 }
5255
5256 return should_move;
5257 }
5258
5259
5260 /* Debug a DFA state as an array of bytes. */
5261 static void
5262 debug_state (state_t state)
5263 {
5264 unsigned char *p;
5265 unsigned int i, size = dfa_state_size;
5266
5267 sel_print ("state (%u):", size);
5268 for (i = 0, p = (unsigned char *) state; i < size; i++)
5269 sel_print (" %d", p[i]);
5270 sel_print ("\n");
5271 }
5272
5273 /* Advance state on FENCE with INSN. Return true if INSN is
5274 an ASM, and we should advance state once more. */
5275 static bool
5276 advance_state_on_fence (fence_t fence, insn_t insn)
5277 {
5278 bool asm_p;
5279
5280 if (recog_memoized (insn) >= 0)
5281 {
5282 int res;
5283 state_t temp_state = alloca (dfa_state_size);
5284
5285 gcc_assert (!INSN_ASM_P (insn));
5286 asm_p = false;
5287
5288 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5289 res = state_transition (FENCE_STATE (fence), insn);
5290 gcc_assert (res < 0);
5291
5292 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5293 {
5294 FENCE_ISSUED_INSNS (fence)++;
5295
5296 /* We should never issue more than issue_rate insns. */
5297 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5298 gcc_unreachable ();
5299 }
5300 }
5301 else
5302 {
5303 /* This could be an ASM insn which we'd like to schedule
5304 on the next cycle. */
5305 asm_p = INSN_ASM_P (insn);
5306 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5307 advance_one_cycle (fence);
5308 }
5309
5310 if (sched_verbose >= 2)
5311 debug_state (FENCE_STATE (fence));
5312 if (!DEBUG_INSN_P (insn))
5313 FENCE_STARTS_CYCLE_P (fence) = 0;
5314 FENCE_ISSUE_MORE (fence) = can_issue_more;
5315 return asm_p;
5316 }
5317
5318 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5319 is nonzero if we need to stall after issuing INSN. */
5320 static void
5321 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5322 {
5323 bool asm_p;
5324
5325 /* First, reflect that something is scheduled on this fence. */
5326 asm_p = advance_state_on_fence (fence, insn);
5327 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5328 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5329 if (SCHED_GROUP_P (insn))
5330 {
5331 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5332 SCHED_GROUP_P (insn) = 0;
5333 }
5334 else
5335 FENCE_SCHED_NEXT (fence) = NULL;
5336 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5337 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5338
5339 /* Set instruction scheduling info. This will be used in bundling,
5340 pipelining, tick computations etc. */
5341 ++INSN_SCHED_TIMES (insn);
5342 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5343 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5344 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5345 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5346
5347 /* This does not account for adjust_cost hooks, just add the biggest
5348 constant the hook may add to the latency. TODO: make this
5349 a target dependent constant. */
5350 INSN_READY_CYCLE (insn)
5351 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5352 ? 1
5353 : maximal_insn_latency (insn) + 1);
5354
5355 /* Change these fields last, as they're used above. */
5356 FENCE_AFTER_STALL_P (fence) = 0;
5357 if (asm_p || need_stall)
5358 advance_one_cycle (fence);
5359
5360 /* Indicate that we've scheduled something on this fence. */
5361 FENCE_SCHEDULED_P (fence) = true;
5362 scheduled_something_on_previous_fence = true;
5363
5364 /* Print debug information when insn's fields are updated. */
5365 if (sched_verbose >= 2)
5366 {
5367 sel_print ("Scheduling insn: ");
5368 dump_insn_1 (insn, 1);
5369 sel_print ("\n");
5370 }
5371 }
5372
5373 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5374 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5375 return it. */
5376 static blist_t *
5377 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5378 blist_t *bnds_tailp)
5379 {
5380 succ_iterator si;
5381 insn_t succ;
5382
5383 advance_deps_context (BND_DC (bnd), insn);
5384 FOR_EACH_SUCC_1 (succ, si, insn,
5385 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5386 {
5387 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5388
5389 ilist_add (&ptr, insn);
5390
5391 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5392 && is_ineligible_successor (succ, ptr))
5393 {
5394 ilist_clear (&ptr);
5395 continue;
5396 }
5397
5398 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5399 {
5400 if (sched_verbose >= 9)
5401 sel_print ("Updating fence insn from %i to %i\n",
5402 INSN_UID (insn), INSN_UID (succ));
5403 FENCE_INSN (fence) = succ;
5404 }
5405 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5406 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5407 }
5408
5409 blist_remove (bndsp);
5410 return bnds_tailp;
5411 }
5412
5413 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5414 static insn_t
5415 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5416 {
5417 av_set_t expr_seq;
5418 expr_t c_expr = XALLOCA (expr_def);
5419 insn_t place_to_insert;
5420 insn_t insn;
5421 bool should_move;
5422
5423 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5424
5425 /* In case of scheduling a jump skipping some other instructions,
5426 prepare CFG. After this, jump is at the boundary and can be
5427 scheduled as usual insn by MOVE_OP. */
5428 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5429 {
5430 insn = EXPR_INSN_RTX (expr_vliw);
5431
5432 /* Speculative jumps are not handled. */
5433 if (insn != BND_TO (bnd)
5434 && !sel_insn_is_speculation_check (insn))
5435 move_cond_jump (insn, bnd);
5436 }
5437
5438 /* Find a place for C_EXPR to schedule. */
5439 place_to_insert = prepare_place_to_insert (bnd);
5440 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5441 clear_expr (c_expr);
5442
5443 /* Add the instruction. The corner case to care about is when
5444 the expr_seq set has more than one expr, and we chose the one that
5445 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5446 we can't use it. Generate the new vinsn. */
5447 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5448 {
5449 vinsn_t vinsn_new;
5450
5451 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5452 change_vinsn_in_expr (expr_vliw, vinsn_new);
5453 should_move = false;
5454 }
5455 if (should_move)
5456 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5457 else
5458 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5459 place_to_insert);
5460
5461 /* Return the nops generated for preserving of data sets back
5462 into pool. */
5463 if (INSN_NOP_P (place_to_insert))
5464 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5465 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5466
5467 av_set_clear (&expr_seq);
5468
5469 /* Save the expression scheduled so to reset target availability if we'll
5470 meet it later on the same fence. */
5471 if (EXPR_WAS_RENAMED (expr_vliw))
5472 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5473
5474 /* Check that the recent movement didn't destroyed loop
5475 structure. */
5476 gcc_assert (!pipelining_p
5477 || current_loop_nest == NULL
5478 || loop_latch_edge (current_loop_nest));
5479 return insn;
5480 }
5481
5482 /* Stall for N cycles on FENCE. */
5483 static void
5484 stall_for_cycles (fence_t fence, int n)
5485 {
5486 int could_more;
5487
5488 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5489 while (n--)
5490 advance_one_cycle (fence);
5491 if (could_more)
5492 FENCE_AFTER_STALL_P (fence) = 1;
5493 }
5494
5495 /* Gather a parallel group of insns at FENCE and assign their seqno
5496 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5497 list for later recalculation of seqnos. */
5498 static void
5499 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5500 {
5501 blist_t bnds = NULL, *bnds_tailp;
5502 av_set_t av_vliw = NULL;
5503 insn_t insn = FENCE_INSN (fence);
5504
5505 if (sched_verbose >= 2)
5506 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5507 INSN_UID (insn), FENCE_CYCLE (fence));
5508
5509 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5510 bnds_tailp = &BLIST_NEXT (bnds);
5511 set_target_context (FENCE_TC (fence));
5512 can_issue_more = FENCE_ISSUE_MORE (fence);
5513 target_bb = INSN_BB (insn);
5514
5515 /* Do while we can add any operation to the current group. */
5516 do
5517 {
5518 blist_t *bnds_tailp1, *bndsp;
5519 expr_t expr_vliw;
5520 int need_stall = false;
5521 int was_stall = 0, scheduled_insns = 0;
5522 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5523 int max_stall = pipelining_p ? 1 : 3;
5524 bool last_insn_was_debug = false;
5525 bool was_debug_bb_end_p = false;
5526
5527 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5528 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5529 remove_insns_for_debug (bnds, &av_vliw);
5530
5531 /* Return early if we have nothing to schedule. */
5532 if (av_vliw == NULL)
5533 break;
5534
5535 /* Choose the best expression and, if needed, destination register
5536 for it. */
5537 do
5538 {
5539 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5540 if (! expr_vliw && need_stall)
5541 {
5542 /* All expressions required a stall. Do not recompute av sets
5543 as we'll get the same answer (modulo the insns between
5544 the fence and its boundary, which will not be available for
5545 pipelining).
5546 If we are going to stall for too long, break to recompute av
5547 sets and bring more insns for pipelining. */
5548 was_stall++;
5549 if (need_stall <= 3)
5550 stall_for_cycles (fence, need_stall);
5551 else
5552 {
5553 stall_for_cycles (fence, 1);
5554 break;
5555 }
5556 }
5557 }
5558 while (! expr_vliw && need_stall);
5559
5560 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5561 if (!expr_vliw)
5562 {
5563 av_set_clear (&av_vliw);
5564 break;
5565 }
5566
5567 bndsp = &bnds;
5568 bnds_tailp1 = bnds_tailp;
5569
5570 do
5571 /* This code will be executed only once until we'd have several
5572 boundaries per fence. */
5573 {
5574 bnd_t bnd = BLIST_BND (*bndsp);
5575
5576 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5577 {
5578 bndsp = &BLIST_NEXT (*bndsp);
5579 continue;
5580 }
5581
5582 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5583 last_insn_was_debug = DEBUG_INSN_P (insn);
5584 if (last_insn_was_debug)
5585 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5586 update_fence_and_insn (fence, insn, need_stall);
5587 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5588
5589 /* Add insn to the list of scheduled on this cycle instructions. */
5590 ilist_add (*scheduled_insns_tailpp, insn);
5591 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5592 }
5593 while (*bndsp != *bnds_tailp1);
5594
5595 av_set_clear (&av_vliw);
5596 if (!last_insn_was_debug)
5597 scheduled_insns++;
5598
5599 /* We currently support information about candidate blocks only for
5600 one 'target_bb' block. Hence we can't schedule after jump insn,
5601 as this will bring two boundaries and, hence, necessity to handle
5602 information for two or more blocks concurrently. */
5603 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5604 || (was_stall
5605 && (was_stall >= max_stall
5606 || scheduled_insns >= max_insns)))
5607 break;
5608 }
5609 while (bnds);
5610
5611 gcc_assert (!FENCE_BNDS (fence));
5612
5613 /* Update boundaries of the FENCE. */
5614 while (bnds)
5615 {
5616 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5617
5618 if (ptr)
5619 {
5620 insn = ILIST_INSN (ptr);
5621
5622 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5623 ilist_add (&FENCE_BNDS (fence), insn);
5624 }
5625
5626 blist_remove (&bnds);
5627 }
5628
5629 /* Update target context on the fence. */
5630 reset_target_context (FENCE_TC (fence), false);
5631 }
5632
5633 /* All exprs in ORIG_OPS must have the same destination register or memory.
5634 Return that destination. */
5635 static rtx
5636 get_dest_from_orig_ops (av_set_t orig_ops)
5637 {
5638 rtx dest = NULL_RTX;
5639 av_set_iterator av_it;
5640 expr_t expr;
5641 bool first_p = true;
5642
5643 FOR_EACH_EXPR (expr, av_it, orig_ops)
5644 {
5645 rtx x = EXPR_LHS (expr);
5646
5647 if (first_p)
5648 {
5649 first_p = false;
5650 dest = x;
5651 }
5652 else
5653 gcc_assert (dest == x
5654 || (dest != NULL_RTX && x != NULL_RTX
5655 && rtx_equal_p (dest, x)));
5656 }
5657
5658 return dest;
5659 }
5660
5661 /* Update data sets for the bookkeeping block and record those expressions
5662 which become no longer available after inserting this bookkeeping. */
5663 static void
5664 update_and_record_unavailable_insns (basic_block book_block)
5665 {
5666 av_set_iterator i;
5667 av_set_t old_av_set = NULL;
5668 expr_t cur_expr;
5669 rtx_insn *bb_end = sel_bb_end (book_block);
5670
5671 /* First, get correct liveness in the bookkeeping block. The problem is
5672 the range between the bookeeping insn and the end of block. */
5673 update_liveness_on_insn (bb_end);
5674 if (control_flow_insn_p (bb_end))
5675 update_liveness_on_insn (PREV_INSN (bb_end));
5676
5677 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5678 fence above, where we may choose to schedule an insn which is
5679 actually blocked from moving up with the bookkeeping we create here. */
5680 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5681 {
5682 old_av_set = av_set_copy (BB_AV_SET (book_block));
5683 update_data_sets (sel_bb_head (book_block));
5684
5685 /* Traverse all the expressions in the old av_set and check whether
5686 CUR_EXPR is in new AV_SET. */
5687 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5688 {
5689 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5690 EXPR_VINSN (cur_expr));
5691
5692 if (! new_expr
5693 /* In this case, we can just turn off the E_T_A bit, but we can't
5694 represent this information with the current vector. */
5695 || EXPR_TARGET_AVAILABLE (new_expr)
5696 != EXPR_TARGET_AVAILABLE (cur_expr))
5697 /* Unfortunately, the below code could be also fired up on
5698 separable insns, e.g. when moving insns through the new
5699 speculation check as in PR 53701. */
5700 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5701 }
5702
5703 av_set_clear (&old_av_set);
5704 }
5705 }
5706
5707 /* The main effect of this function is that sparams->c_expr is merged
5708 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5709 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5710 lparams->c_expr_merged is copied back to sparams->c_expr after all
5711 successors has been traversed. lparams->c_expr_local is an expr allocated
5712 on stack in the caller function, and is used if there is more than one
5713 successor.
5714
5715 SUCC is one of the SUCCS_NORMAL successors of INSN,
5716 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5717 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5718 static void
5719 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5720 insn_t succ ATTRIBUTE_UNUSED,
5721 int moveop_drv_call_res,
5722 cmpd_local_params_p lparams, void *static_params)
5723 {
5724 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5725
5726 /* Nothing to do, if original expr wasn't found below. */
5727 if (moveop_drv_call_res != 1)
5728 return;
5729
5730 /* If this is a first successor. */
5731 if (!lparams->c_expr_merged)
5732 {
5733 lparams->c_expr_merged = sparams->c_expr;
5734 sparams->c_expr = lparams->c_expr_local;
5735 }
5736 else
5737 {
5738 /* We must merge all found expressions to get reasonable
5739 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5740 do so then we can first find the expr with epsilon
5741 speculation success probability and only then with the
5742 good probability. As a result the insn will get epsilon
5743 probability and will never be scheduled because of
5744 weakness_cutoff in find_best_expr.
5745
5746 We call merge_expr_data here instead of merge_expr
5747 because due to speculation C_EXPR and X may have the
5748 same insns with different speculation types. And as of
5749 now such insns are considered non-equal.
5750
5751 However, EXPR_SCHED_TIMES is different -- we must get
5752 SCHED_TIMES from a real insn, not a bookkeeping copy.
5753 We force this here. Instead, we may consider merging
5754 SCHED_TIMES to the maximum instead of minimum in the
5755 below function. */
5756 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5757
5758 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5759 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5760 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5761
5762 clear_expr (sparams->c_expr);
5763 }
5764 }
5765
5766 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5767
5768 SUCC is one of the SUCCS_NORMAL successors of INSN,
5769 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5770 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5771 STATIC_PARAMS contain USED_REGS set. */
5772 static void
5773 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5774 int moveop_drv_call_res,
5775 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5776 void *static_params)
5777 {
5778 regset succ_live;
5779 fur_static_params_p sparams = (fur_static_params_p) static_params;
5780
5781 /* Here we compute live regsets only for branches that do not lie
5782 on the code motion paths. These branches correspond to value
5783 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5784 for such branches code_motion_path_driver is not called. */
5785 if (moveop_drv_call_res != 0)
5786 return;
5787
5788 /* Mark all registers that do not meet the following condition:
5789 (3) not live on the other path of any conditional branch
5790 that is passed by the operation, in case original
5791 operations are not present on both paths of the
5792 conditional branch. */
5793 succ_live = compute_live (succ);
5794 IOR_REG_SET (sparams->used_regs, succ_live);
5795 }
5796
5797 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5798 into SP->CEXPR. */
5799 static void
5800 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5801 {
5802 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5803
5804 sp->c_expr = lp->c_expr_merged;
5805 }
5806
5807 /* Track bookkeeping copies created, insns scheduled, and blocks for
5808 rescheduling when INSN is found by move_op. */
5809 static void
5810 track_scheduled_insns_and_blocks (rtx_insn *insn)
5811 {
5812 /* Even if this insn can be a copy that will be removed during current move_op,
5813 we still need to count it as an originator. */
5814 bitmap_set_bit (current_originators, INSN_UID (insn));
5815
5816 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5817 {
5818 /* Note that original block needs to be rescheduled, as we pulled an
5819 instruction out of it. */
5820 if (INSN_SCHED_TIMES (insn) > 0)
5821 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5822 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5823 num_insns_scheduled++;
5824 }
5825
5826 /* For instructions we must immediately remove insn from the
5827 stream, so subsequent update_data_sets () won't include this
5828 insn into av_set.
5829 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5830 if (INSN_UID (insn) > max_uid_before_move_op)
5831 stat_bookkeeping_copies--;
5832 }
5833
5834 /* Emit a register-register copy for INSN if needed. Return true if
5835 emitted one. PARAMS is the move_op static parameters. */
5836 static bool
5837 maybe_emit_renaming_copy (rtx_insn *insn,
5838 moveop_static_params_p params)
5839 {
5840 bool insn_emitted = false;
5841 rtx cur_reg;
5842
5843 /* Bail out early when expression can not be renamed at all. */
5844 if (!EXPR_SEPARABLE_P (params->c_expr))
5845 return false;
5846
5847 cur_reg = expr_dest_reg (params->c_expr);
5848 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5849
5850 /* If original operation has expr and the register chosen for
5851 that expr is not original operation's dest reg, substitute
5852 operation's right hand side with the register chosen. */
5853 if (REGNO (params->dest) != REGNO (cur_reg))
5854 {
5855 insn_t reg_move_insn, reg_move_insn_rtx;
5856
5857 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5858 params->dest);
5859 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5860 INSN_EXPR (insn),
5861 INSN_SEQNO (insn),
5862 insn);
5863 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5864 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5865
5866 insn_emitted = true;
5867 params->was_renamed = true;
5868 }
5869
5870 return insn_emitted;
5871 }
5872
5873 /* Emit a speculative check for INSN speculated as EXPR if needed.
5874 Return true if we've emitted one. PARAMS is the move_op static
5875 parameters. */
5876 static bool
5877 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5878 moveop_static_params_p params)
5879 {
5880 bool insn_emitted = false;
5881 insn_t x;
5882 ds_t check_ds;
5883
5884 check_ds = get_spec_check_type_for_insn (insn, expr);
5885 if (check_ds != 0)
5886 {
5887 /* A speculation check should be inserted. */
5888 x = create_speculation_check (params->c_expr, check_ds, insn);
5889 insn_emitted = true;
5890 }
5891 else
5892 {
5893 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5894 x = insn;
5895 }
5896
5897 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5898 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5899 return insn_emitted;
5900 }
5901
5902 /* Handle transformations that leave an insn in place of original
5903 insn such as renaming/speculation. Return true if one of such
5904 transformations actually happened, and we have emitted this insn. */
5905 static bool
5906 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5907 moveop_static_params_p params)
5908 {
5909 bool insn_emitted = false;
5910
5911 insn_emitted = maybe_emit_renaming_copy (insn, params);
5912 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5913
5914 return insn_emitted;
5915 }
5916
5917 /* If INSN is the only insn in the basic block (not counting JUMP,
5918 which may be a jump to next insn, and DEBUG_INSNs), we want to
5919 leave a NOP there till the return to fill_insns. */
5920
5921 static bool
5922 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5923 {
5924 insn_t bb_head, bb_end, bb_next, in_next;
5925 basic_block bb = BLOCK_FOR_INSN (insn);
5926
5927 bb_head = sel_bb_head (bb);
5928 bb_end = sel_bb_end (bb);
5929
5930 if (bb_head == bb_end)
5931 return true;
5932
5933 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5934 bb_head = NEXT_INSN (bb_head);
5935
5936 if (bb_head == bb_end)
5937 return true;
5938
5939 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5940 bb_end = PREV_INSN (bb_end);
5941
5942 if (bb_head == bb_end)
5943 return true;
5944
5945 bb_next = NEXT_INSN (bb_head);
5946 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5947 bb_next = NEXT_INSN (bb_next);
5948
5949 if (bb_next == bb_end && JUMP_P (bb_end))
5950 return true;
5951
5952 in_next = NEXT_INSN (insn);
5953 while (DEBUG_INSN_P (in_next))
5954 in_next = NEXT_INSN (in_next);
5955
5956 if (IN_CURRENT_FENCE_P (in_next))
5957 return true;
5958
5959 return false;
5960 }
5961
5962 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5963 is not removed but reused when INSN is re-emitted. */
5964 static void
5965 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5966 {
5967 /* If there's only one insn in the BB, make sure that a nop is
5968 inserted into it, so the basic block won't disappear when we'll
5969 delete INSN below with sel_remove_insn. It should also survive
5970 till the return to fill_insns. */
5971 if (need_nop_to_preserve_insn_bb (insn))
5972 {
5973 insn_t nop = get_nop_from_pool (insn);
5974 gcc_assert (INSN_NOP_P (nop));
5975 vec_temp_moveop_nops.safe_push (nop);
5976 }
5977
5978 sel_remove_insn (insn, only_disconnect, false);
5979 }
5980
5981 /* This function is called when original expr is found.
5982 INSN - current insn traversed, EXPR - the corresponding expr found.
5983 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5984 is static parameters of move_op. */
5985 static void
5986 move_op_orig_expr_found (insn_t insn, expr_t expr,
5987 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5988 void *static_params)
5989 {
5990 bool only_disconnect;
5991 moveop_static_params_p params = (moveop_static_params_p) static_params;
5992
5993 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5994 track_scheduled_insns_and_blocks (insn);
5995 handle_emitting_transformations (insn, expr, params);
5996 only_disconnect = params->uid == INSN_UID (insn);
5997
5998 /* Mark that we've disconnected an insn. */
5999 if (only_disconnect)
6000 params->uid = -1;
6001 remove_insn_from_stream (insn, only_disconnect);
6002 }
6003
6004 /* The function is called when original expr is found.
6005 INSN - current insn traversed, EXPR - the corresponding expr found,
6006 crosses_call and original_insns in STATIC_PARAMS are updated. */
6007 static void
6008 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6009 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6010 void *static_params)
6011 {
6012 fur_static_params_p params = (fur_static_params_p) static_params;
6013 regset tmp;
6014
6015 if (CALL_P (insn))
6016 params->crosses_call = true;
6017
6018 def_list_add (params->original_insns, insn, params->crosses_call);
6019
6020 /* Mark the registers that do not meet the following condition:
6021 (2) not among the live registers of the point
6022 immediately following the first original operation on
6023 a given downward path, except for the original target
6024 register of the operation. */
6025 tmp = get_clear_regset_from_pool ();
6026 compute_live_below_insn (insn, tmp);
6027 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6028 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6029 IOR_REG_SET (params->used_regs, tmp);
6030 return_regset_to_pool (tmp);
6031
6032 /* (*1) We need to add to USED_REGS registers that are read by
6033 INSN's lhs. This may lead to choosing wrong src register.
6034 E.g. (scheduling const expr enabled):
6035
6036 429: ax=0x0 <- Can't use AX for this expr (0x0)
6037 433: dx=[bp-0x18]
6038 427: [ax+dx+0x1]=ax
6039 REG_DEAD: ax
6040 168: di=dx
6041 REG_DEAD: dx
6042 */
6043 /* FIXME: see comment above and enable MEM_P
6044 in vinsn_separable_p. */
6045 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6046 || !MEM_P (INSN_LHS (insn)));
6047 }
6048
6049 /* This function is called on the ascending pass, before returning from
6050 current basic block. */
6051 static void
6052 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6053 void *static_params)
6054 {
6055 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6056 basic_block book_block = NULL;
6057
6058 /* When we have removed the boundary insn for scheduling, which also
6059 happened to be the end insn in its bb, we don't need to update sets. */
6060 if (!lparams->removed_last_insn
6061 && lparams->e1
6062 && sel_bb_head_p (insn))
6063 {
6064 /* We should generate bookkeeping code only if we are not at the
6065 top level of the move_op. */
6066 if (sel_num_cfg_preds_gt_1 (insn))
6067 book_block = generate_bookkeeping_insn (sparams->c_expr,
6068 lparams->e1, lparams->e2);
6069 /* Update data sets for the current insn. */
6070 update_data_sets (insn);
6071 }
6072
6073 /* If bookkeeping code was inserted, we need to update av sets of basic
6074 block that received bookkeeping. After generation of bookkeeping insn,
6075 bookkeeping block does not contain valid av set because we are not following
6076 the original algorithm in every detail with regards to e.g. renaming
6077 simple reg-reg copies. Consider example:
6078
6079 bookkeeping block scheduling fence
6080 \ /
6081 \ join /
6082 ----------
6083 | |
6084 ----------
6085 / \
6086 / \
6087 r1 := r2 r1 := r3
6088
6089 We try to schedule insn "r1 := r3" on the current
6090 scheduling fence. Also, note that av set of bookkeeping block
6091 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6092 been scheduled, the CFG is as follows:
6093
6094 r1 := r3 r1 := r3
6095 bookkeeping block scheduling fence
6096 \ /
6097 \ join /
6098 ----------
6099 | |
6100 ----------
6101 / \
6102 / \
6103 r1 := r2
6104
6105 Here, insn "r1 := r3" was scheduled at the current scheduling point
6106 and bookkeeping code was generated at the bookeeping block. This
6107 way insn "r1 := r2" is no longer available as a whole instruction
6108 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6109 This situation is handled by calling update_data_sets.
6110
6111 Since update_data_sets is called only on the bookkeeping block, and
6112 it also may have predecessors with av_sets, containing instructions that
6113 are no longer available, we save all such expressions that become
6114 unavailable during data sets update on the bookkeeping block in
6115 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6116 expressions for scheduling. This allows us to avoid recomputation of
6117 av_sets outside the code motion path. */
6118
6119 if (book_block)
6120 update_and_record_unavailable_insns (book_block);
6121
6122 /* If INSN was previously marked for deletion, it's time to do it. */
6123 if (lparams->removed_last_insn)
6124 insn = PREV_INSN (insn);
6125
6126 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6127 kill a block with a single nop in which the insn should be emitted. */
6128 if (lparams->e1)
6129 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6130 }
6131
6132 /* This function is called on the ascending pass, before returning from the
6133 current basic block. */
6134 static void
6135 fur_at_first_insn (insn_t insn,
6136 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6137 void *static_params ATTRIBUTE_UNUSED)
6138 {
6139 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6140 || AV_LEVEL (insn) == -1);
6141 }
6142
6143 /* Called on the backward stage of recursion to call moveup_expr for insn
6144 and sparams->c_expr. */
6145 static void
6146 move_op_ascend (insn_t insn, void *static_params)
6147 {
6148 enum MOVEUP_EXPR_CODE res;
6149 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6150
6151 if (! INSN_NOP_P (insn))
6152 {
6153 res = moveup_expr_cached (sparams->c_expr, insn, false);
6154 gcc_assert (res != MOVEUP_EXPR_NULL);
6155 }
6156
6157 /* Update liveness for this insn as it was invalidated. */
6158 update_liveness_on_insn (insn);
6159 }
6160
6161 /* This function is called on enter to the basic block.
6162 Returns TRUE if this block already have been visited and
6163 code_motion_path_driver should return 1, FALSE otherwise. */
6164 static int
6165 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6166 void *static_params, bool visited_p)
6167 {
6168 fur_static_params_p sparams = (fur_static_params_p) static_params;
6169
6170 if (visited_p)
6171 {
6172 /* If we have found something below this block, there should be at
6173 least one insn in ORIGINAL_INSNS. */
6174 gcc_assert (*sparams->original_insns);
6175
6176 /* Adjust CROSSES_CALL, since we may have come to this block along
6177 different path. */
6178 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6179 |= sparams->crosses_call;
6180 }
6181 else
6182 local_params->old_original_insns = *sparams->original_insns;
6183
6184 return 1;
6185 }
6186
6187 /* Same as above but for move_op. */
6188 static int
6189 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6190 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6191 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6192 {
6193 if (visited_p)
6194 return -1;
6195 return 1;
6196 }
6197
6198 /* This function is called while descending current basic block if current
6199 insn is not the original EXPR we're searching for.
6200
6201 Return value: FALSE, if code_motion_path_driver should perform a local
6202 cleanup and return 0 itself;
6203 TRUE, if code_motion_path_driver should continue. */
6204 static bool
6205 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6206 void *static_params)
6207 {
6208 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6209
6210 sparams->failed_insn = insn;
6211
6212 /* If we're scheduling separate expr, in order to generate correct code
6213 we need to stop the search at bookkeeping code generated with the
6214 same destination register or memory. */
6215 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6216 return false;
6217 return true;
6218 }
6219
6220 /* This function is called while descending current basic block if current
6221 insn is not the original EXPR we're searching for.
6222
6223 Return value: TRUE (code_motion_path_driver should continue). */
6224 static bool
6225 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6226 {
6227 bool mutexed;
6228 expr_t r;
6229 av_set_iterator avi;
6230 fur_static_params_p sparams = (fur_static_params_p) static_params;
6231
6232 if (CALL_P (insn))
6233 sparams->crosses_call = true;
6234 else if (DEBUG_INSN_P (insn))
6235 return true;
6236
6237 /* If current insn we are looking at cannot be executed together
6238 with original insn, then we can skip it safely.
6239
6240 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6241 INSN = (!p6) r14 = r14 + 1;
6242
6243 Here we can schedule ORIG_OP with lhs = r14, though only
6244 looking at the set of used and set registers of INSN we must
6245 forbid it. So, add set/used in INSN registers to the
6246 untouchable set only if there is an insn in ORIG_OPS that can
6247 affect INSN. */
6248 mutexed = true;
6249 FOR_EACH_EXPR (r, avi, orig_ops)
6250 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6251 {
6252 mutexed = false;
6253 break;
6254 }
6255
6256 /* Mark all registers that do not meet the following condition:
6257 (1) Not set or read on any path from xi to an instance of the
6258 original operation. */
6259 if (!mutexed)
6260 {
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6264 }
6265
6266 return true;
6267 }
6268
6269 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6270 struct code_motion_path_driver_info_def move_op_hooks = {
6271 move_op_on_enter,
6272 move_op_orig_expr_found,
6273 move_op_orig_expr_not_found,
6274 move_op_merge_succs,
6275 move_op_after_merge_succs,
6276 move_op_ascend,
6277 move_op_at_first_insn,
6278 SUCCS_NORMAL,
6279 "move_op"
6280 };
6281
6282 /* Hooks and data to perform find_used_regs operations
6283 with code_motion_path_driver. */
6284 struct code_motion_path_driver_info_def fur_hooks = {
6285 fur_on_enter,
6286 fur_orig_expr_found,
6287 fur_orig_expr_not_found,
6288 fur_merge_succs,
6289 NULL, /* fur_after_merge_succs */
6290 NULL, /* fur_ascend */
6291 fur_at_first_insn,
6292 SUCCS_ALL,
6293 "find_used_regs"
6294 };
6295
6296 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6297 code_motion_path_driver is called recursively. Original operation
6298 was found at least on one path that is starting with one of INSN's
6299 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6300 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6301 of either move_op or find_used_regs depending on the caller.
6302
6303 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6304 know for sure at this point. */
6305 static int
6306 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6307 ilist_t path, void *static_params)
6308 {
6309 int res = 0;
6310 succ_iterator succ_i;
6311 insn_t succ;
6312 basic_block bb;
6313 int old_index;
6314 unsigned old_succs;
6315
6316 struct cmpd_local_params lparams;
6317 expr_def _x;
6318
6319 lparams.c_expr_local = &_x;
6320 lparams.c_expr_merged = NULL;
6321
6322 /* We need to process only NORMAL succs for move_op, and collect live
6323 registers from ALL branches (including those leading out of the
6324 region) for find_used_regs.
6325
6326 In move_op, there can be a case when insn's bb number has changed
6327 due to created bookkeeping. This happens very rare, as we need to
6328 move expression from the beginning to the end of the same block.
6329 Rescan successors in this case. */
6330
6331 rescan:
6332 bb = BLOCK_FOR_INSN (insn);
6333 old_index = bb->index;
6334 old_succs = EDGE_COUNT (bb->succs);
6335
6336 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6337 {
6338 int b;
6339
6340 lparams.e1 = succ_i.e1;
6341 lparams.e2 = succ_i.e2;
6342
6343 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6344 current region). */
6345 if (succ_i.current_flags == SUCCS_NORMAL)
6346 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6347 static_params);
6348 else
6349 b = 0;
6350
6351 /* Merge c_expres found or unify live register sets from different
6352 successors. */
6353 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6354 static_params);
6355 if (b == 1)
6356 res = b;
6357 else if (b == -1 && res != 1)
6358 res = b;
6359
6360 /* We have simplified the control flow below this point. In this case,
6361 the iterator becomes invalid. We need to try again.
6362 If we have removed the insn itself, it could be only an
6363 unconditional jump. Thus, do not rescan but break immediately --
6364 we have already visited the only successor block. */
6365 if (!BLOCK_FOR_INSN (insn))
6366 {
6367 if (sched_verbose >= 6)
6368 sel_print ("Not doing rescan: already visited the only successor"
6369 " of block %d\n", old_index);
6370 break;
6371 }
6372 if (BLOCK_FOR_INSN (insn)->index != old_index
6373 || EDGE_COUNT (bb->succs) != old_succs)
6374 {
6375 if (sched_verbose >= 6)
6376 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6377 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6378 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6379 goto rescan;
6380 }
6381 }
6382
6383 /* Here, RES==1 if original expr was found at least for one of the
6384 successors. After the loop, RES may happen to have zero value
6385 only if at some point the expr searched is present in av_set, but is
6386 not found below. In most cases, this situation is an error.
6387 The exception is when the original operation is blocked by
6388 bookkeeping generated for another fence or for another path in current
6389 move_op. */
6390 gcc_checking_assert (res == 1
6391 || (res == 0
6392 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6393 || res == -1);
6394
6395 /* Merge data, clean up, etc. */
6396 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6397 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6398
6399 return res;
6400 }
6401
6402
6403 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6404 is the pointer to the av set with expressions we were looking for,
6405 PATH_P is the pointer to the traversed path. */
6406 static inline void
6407 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6408 {
6409 ilist_remove (path_p);
6410 av_set_clear (orig_ops_p);
6411 }
6412
6413 /* The driver function that implements move_op or find_used_regs
6414 functionality dependent whether code_motion_path_driver_INFO is set to
6415 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6416 of code (CFG traversal etc) that are shared among both functions. INSN
6417 is the insn we're starting the search from, ORIG_OPS are the expressions
6418 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6419 parameters of the driver, and STATIC_PARAMS are static parameters of
6420 the caller.
6421
6422 Returns whether original instructions were found. Note that top-level
6423 code_motion_path_driver always returns true. */
6424 static int
6425 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6426 cmpd_local_params_p local_params_in,
6427 void *static_params)
6428 {
6429 expr_t expr = NULL;
6430 basic_block bb = BLOCK_FOR_INSN (insn);
6431 insn_t first_insn, bb_tail, before_first;
6432 bool removed_last_insn = false;
6433
6434 if (sched_verbose >= 6)
6435 {
6436 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6437 dump_insn (insn);
6438 sel_print (",");
6439 dump_av_set (orig_ops);
6440 sel_print (")\n");
6441 }
6442
6443 gcc_assert (orig_ops);
6444
6445 /* If no original operations exist below this insn, return immediately. */
6446 if (is_ineligible_successor (insn, path))
6447 {
6448 if (sched_verbose >= 6)
6449 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6450 return false;
6451 }
6452
6453 /* The block can have invalid av set, in which case it was created earlier
6454 during move_op. Return immediately. */
6455 if (sel_bb_head_p (insn))
6456 {
6457 if (! AV_SET_VALID_P (insn))
6458 {
6459 if (sched_verbose >= 6)
6460 sel_print ("Returned from block %d as it had invalid av set\n",
6461 bb->index);
6462 return false;
6463 }
6464
6465 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6466 {
6467 /* We have already found an original operation on this branch, do not
6468 go any further and just return TRUE here. If we don't stop here,
6469 function can have exponential behavior even on the small code
6470 with many different paths (e.g. with data speculation and
6471 recovery blocks). */
6472 if (sched_verbose >= 6)
6473 sel_print ("Block %d already visited in this traversal\n", bb->index);
6474 if (code_motion_path_driver_info->on_enter)
6475 return code_motion_path_driver_info->on_enter (insn,
6476 local_params_in,
6477 static_params,
6478 true);
6479 }
6480 }
6481
6482 if (code_motion_path_driver_info->on_enter)
6483 code_motion_path_driver_info->on_enter (insn, local_params_in,
6484 static_params, false);
6485 orig_ops = av_set_copy (orig_ops);
6486
6487 /* Filter the orig_ops set. */
6488 if (AV_SET_VALID_P (insn))
6489 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6490
6491 /* If no more original ops, return immediately. */
6492 if (!orig_ops)
6493 {
6494 if (sched_verbose >= 6)
6495 sel_print ("No intersection with av set of block %d\n", bb->index);
6496 return false;
6497 }
6498
6499 /* For non-speculative insns we have to leave only one form of the
6500 original operation, because if we don't, we may end up with
6501 different C_EXPRes and, consequently, with bookkeepings for different
6502 expression forms along the same code motion path. That may lead to
6503 generation of incorrect code. So for each code motion we stick to
6504 the single form of the instruction, except for speculative insns
6505 which we need to keep in different forms with all speculation
6506 types. */
6507 av_set_leave_one_nonspec (&orig_ops);
6508
6509 /* It is not possible that all ORIG_OPS are filtered out. */
6510 gcc_assert (orig_ops);
6511
6512 /* It is enough to place only heads and tails of visited basic blocks into
6513 the PATH. */
6514 ilist_add (&path, insn);
6515 first_insn = insn;
6516 bb_tail = sel_bb_end (bb);
6517
6518 /* Descend the basic block in search of the original expr; this part
6519 corresponds to the part of the original move_op procedure executed
6520 before the recursive call. */
6521 for (;;)
6522 {
6523 /* Look at the insn and decide if it could be an ancestor of currently
6524 scheduling operation. If it is so, then the insn "dest = op" could
6525 either be replaced with "dest = reg", because REG now holds the result
6526 of OP, or just removed, if we've scheduled the insn as a whole.
6527
6528 If this insn doesn't contain currently scheduling OP, then proceed
6529 with searching and look at its successors. Operations we're searching
6530 for could have changed when moving up through this insn via
6531 substituting. In this case, perform unsubstitution on them first.
6532
6533 When traversing the DAG below this insn is finished, insert
6534 bookkeeping code, if the insn is a joint point, and remove
6535 leftovers. */
6536
6537 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6538 if (expr)
6539 {
6540 insn_t last_insn = PREV_INSN (insn);
6541
6542 /* We have found the original operation. */
6543 if (sched_verbose >= 6)
6544 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6545
6546 code_motion_path_driver_info->orig_expr_found
6547 (insn, expr, local_params_in, static_params);
6548
6549 /* Step back, so on the way back we'll start traversing from the
6550 previous insn (or we'll see that it's bb_note and skip that
6551 loop). */
6552 if (insn == first_insn)
6553 {
6554 first_insn = NEXT_INSN (last_insn);
6555 removed_last_insn = sel_bb_end_p (last_insn);
6556 }
6557 insn = last_insn;
6558 break;
6559 }
6560 else
6561 {
6562 /* We haven't found the original expr, continue descending the basic
6563 block. */
6564 if (code_motion_path_driver_info->orig_expr_not_found
6565 (insn, orig_ops, static_params))
6566 {
6567 /* Av set ops could have been changed when moving through this
6568 insn. To find them below it, we have to un-substitute them. */
6569 undo_transformations (&orig_ops, insn);
6570 }
6571 else
6572 {
6573 /* Clean up and return, if the hook tells us to do so. It may
6574 happen if we've encountered the previously created
6575 bookkeeping. */
6576 code_motion_path_driver_cleanup (&orig_ops, &path);
6577 return -1;
6578 }
6579
6580 gcc_assert (orig_ops);
6581 }
6582
6583 /* Stop at insn if we got to the end of BB. */
6584 if (insn == bb_tail)
6585 break;
6586
6587 insn = NEXT_INSN (insn);
6588 }
6589
6590 /* Here INSN either points to the insn before the original insn (may be
6591 bb_note, if original insn was a bb_head) or to the bb_end. */
6592 if (!expr)
6593 {
6594 int res;
6595 rtx_insn *last_insn = PREV_INSN (insn);
6596 bool added_to_path;
6597
6598 gcc_assert (insn == sel_bb_end (bb));
6599
6600 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6601 it's already in PATH then). */
6602 if (insn != first_insn)
6603 {
6604 ilist_add (&path, insn);
6605 added_to_path = true;
6606 }
6607 else
6608 added_to_path = false;
6609
6610 /* Process_successors should be able to find at least one
6611 successor for which code_motion_path_driver returns TRUE. */
6612 res = code_motion_process_successors (insn, orig_ops,
6613 path, static_params);
6614
6615 /* Jump in the end of basic block could have been removed or replaced
6616 during code_motion_process_successors, so recompute insn as the
6617 last insn in bb. */
6618 if (NEXT_INSN (last_insn) != insn)
6619 {
6620 insn = sel_bb_end (bb);
6621 first_insn = sel_bb_head (bb);
6622 }
6623
6624 /* Remove bb tail from path. */
6625 if (added_to_path)
6626 ilist_remove (&path);
6627
6628 if (res != 1)
6629 {
6630 /* This is the case when one of the original expr is no longer available
6631 due to bookkeeping created on this branch with the same register.
6632 In the original algorithm, which doesn't have update_data_sets call
6633 on a bookkeeping block, it would simply result in returning
6634 FALSE when we've encountered a previously generated bookkeeping
6635 insn in moveop_orig_expr_not_found. */
6636 code_motion_path_driver_cleanup (&orig_ops, &path);
6637 return res;
6638 }
6639 }
6640
6641 /* Don't need it any more. */
6642 av_set_clear (&orig_ops);
6643
6644 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6645 the beginning of the basic block. */
6646 before_first = PREV_INSN (first_insn);
6647 while (insn != before_first)
6648 {
6649 if (code_motion_path_driver_info->ascend)
6650 code_motion_path_driver_info->ascend (insn, static_params);
6651
6652 insn = PREV_INSN (insn);
6653 }
6654
6655 /* Now we're at the bb head. */
6656 insn = first_insn;
6657 ilist_remove (&path);
6658 local_params_in->removed_last_insn = removed_last_insn;
6659 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6660
6661 /* This should be the very last operation as at bb head we could change
6662 the numbering by creating bookkeeping blocks. */
6663 if (removed_last_insn)
6664 insn = PREV_INSN (insn);
6665
6666 /* If we have simplified the control flow and removed the first jump insn,
6667 there's no point in marking this block in the visited blocks bitmap. */
6668 if (BLOCK_FOR_INSN (insn))
6669 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6670 return true;
6671 }
6672
6673 /* Move up the operations from ORIG_OPS set traversing the dag starting
6674 from INSN. PATH represents the edges traversed so far.
6675 DEST is the register chosen for scheduling the current expr. Insert
6676 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6677 C_EXPR is how it looks like at the given cfg point.
6678 Set *SHOULD_MOVE to indicate whether we have only disconnected
6679 one of the insns found.
6680
6681 Returns whether original instructions were found, which is asserted
6682 to be true in the caller. */
6683 static bool
6684 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6685 rtx dest, expr_t c_expr, bool *should_move)
6686 {
6687 struct moveop_static_params sparams;
6688 struct cmpd_local_params lparams;
6689 int res;
6690
6691 /* Init params for code_motion_path_driver. */
6692 sparams.dest = dest;
6693 sparams.c_expr = c_expr;
6694 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6695 sparams.failed_insn = NULL;
6696 sparams.was_renamed = false;
6697 lparams.e1 = NULL;
6698
6699 /* We haven't visited any blocks yet. */
6700 bitmap_clear (code_motion_visited_blocks);
6701
6702 /* Set appropriate hooks and data. */
6703 code_motion_path_driver_info = &move_op_hooks;
6704 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6705
6706 gcc_assert (res != -1);
6707
6708 if (sparams.was_renamed)
6709 EXPR_WAS_RENAMED (expr_vliw) = true;
6710
6711 *should_move = (sparams.uid == -1);
6712
6713 return res;
6714 }
6715 \f
6716
6717 /* Functions that work with regions. */
6718
6719 /* Current number of seqno used in init_seqno and init_seqno_1. */
6720 static int cur_seqno;
6721
6722 /* A helper for init_seqno. Traverse the region starting from BB and
6723 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6724 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6725 static void
6726 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6727 {
6728 int bbi = BLOCK_TO_BB (bb->index);
6729 insn_t insn;
6730 insn_t succ_insn;
6731 succ_iterator si;
6732
6733 rtx_note *note = bb_note (bb);
6734 bitmap_set_bit (visited_bbs, bbi);
6735 if (blocks_to_reschedule)
6736 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6737
6738 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6739 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6740 {
6741 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6742 int succ_bbi = BLOCK_TO_BB (succ->index);
6743
6744 gcc_assert (in_current_region_p (succ));
6745
6746 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6747 {
6748 gcc_assert (succ_bbi > bbi);
6749
6750 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6751 }
6752 else if (blocks_to_reschedule)
6753 bitmap_set_bit (forced_ebb_heads, succ->index);
6754 }
6755
6756 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6757 INSN_SEQNO (insn) = cur_seqno--;
6758 }
6759
6760 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6761 blocks on which we're rescheduling when pipelining, FROM is the block where
6762 traversing region begins (it may not be the head of the region when
6763 pipelining, but the head of the loop instead).
6764
6765 Returns the maximal seqno found. */
6766 static int
6767 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6768 {
6769 bitmap_iterator bi;
6770 unsigned bbi;
6771
6772 auto_sbitmap visited_bbs (current_nr_blocks);
6773
6774 if (blocks_to_reschedule)
6775 {
6776 bitmap_ones (visited_bbs);
6777 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6778 {
6779 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6780 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6781 }
6782 }
6783 else
6784 {
6785 bitmap_clear (visited_bbs);
6786 from = EBB_FIRST_BB (0);
6787 }
6788
6789 cur_seqno = sched_max_luid - 1;
6790 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6791
6792 /* cur_seqno may be positive if the number of instructions is less than
6793 sched_max_luid - 1 (when rescheduling or if some instructions have been
6794 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6795 gcc_assert (cur_seqno >= 0);
6796
6797 return sched_max_luid - 1;
6798 }
6799
6800 /* Initialize scheduling parameters for current region. */
6801 static void
6802 sel_setup_region_sched_flags (void)
6803 {
6804 enable_schedule_as_rhs_p = 1;
6805 bookkeeping_p = 1;
6806 pipelining_p = (bookkeeping_p
6807 && (flag_sel_sched_pipelining != 0)
6808 && current_loop_nest != NULL
6809 && loop_has_exit_edges (current_loop_nest));
6810 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6811 max_ws = MAX_WS;
6812 }
6813
6814 /* Return true if all basic blocks of current region are empty. */
6815 static bool
6816 current_region_empty_p (void)
6817 {
6818 int i;
6819 for (i = 0; i < current_nr_blocks; i++)
6820 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6821 return false;
6822
6823 return true;
6824 }
6825
6826 /* Prepare and verify loop nest for pipelining. */
6827 static void
6828 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6829 {
6830 current_loop_nest = get_loop_nest_for_rgn (rgn);
6831
6832 if (!current_loop_nest)
6833 return;
6834
6835 /* If this loop has any saved loop preheaders from nested loops,
6836 add these basic blocks to the current region. */
6837 sel_add_loop_preheaders (bbs);
6838
6839 /* Check that we're starting with a valid information. */
6840 gcc_assert (loop_latch_edge (current_loop_nest));
6841 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6842 }
6843
6844 /* Compute instruction priorities for current region. */
6845 static void
6846 sel_compute_priorities (int rgn)
6847 {
6848 sched_rgn_compute_dependencies (rgn);
6849
6850 /* Compute insn priorities in haifa style. Then free haifa style
6851 dependencies that we've calculated for this. */
6852 compute_priorities ();
6853
6854 if (sched_verbose >= 5)
6855 debug_rgn_dependencies (0);
6856
6857 free_rgn_deps ();
6858 }
6859
6860 /* Init scheduling data for RGN. Returns true when this region should not
6861 be scheduled. */
6862 static bool
6863 sel_region_init (int rgn)
6864 {
6865 int i;
6866 bb_vec_t bbs;
6867
6868 rgn_setup_region (rgn);
6869
6870 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6871 do region initialization here so the region can be bundled correctly,
6872 but we'll skip the scheduling in sel_sched_region (). */
6873 if (current_region_empty_p ())
6874 return true;
6875
6876 bbs.create (current_nr_blocks);
6877
6878 for (i = 0; i < current_nr_blocks; i++)
6879 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6880
6881 sel_init_bbs (bbs);
6882
6883 if (flag_sel_sched_pipelining)
6884 setup_current_loop_nest (rgn, &bbs);
6885
6886 sel_setup_region_sched_flags ();
6887
6888 /* Initialize luids and dependence analysis which both sel-sched and haifa
6889 need. */
6890 sched_init_luids (bbs);
6891 sched_deps_init (false);
6892
6893 /* Initialize haifa data. */
6894 rgn_setup_sched_infos ();
6895 sel_set_sched_flags ();
6896 haifa_init_h_i_d (bbs);
6897
6898 sel_compute_priorities (rgn);
6899 init_deps_global ();
6900
6901 /* Main initialization. */
6902 sel_setup_sched_infos ();
6903 sel_init_global_and_expr (bbs);
6904
6905 bbs.release ();
6906
6907 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6908
6909 /* Init correct liveness sets on each instruction of a single-block loop.
6910 This is the only situation when we can't update liveness when calling
6911 compute_live for the first insn of the loop. */
6912 if (current_loop_nest)
6913 {
6914 int header =
6915 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6916 ? 1
6917 : 0);
6918
6919 if (current_nr_blocks == header + 1)
6920 update_liveness_on_insn
6921 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6922 }
6923
6924 /* Set hooks so that no newly generated insn will go out unnoticed. */
6925 sel_register_cfg_hooks ();
6926
6927 /* !!! We call target.sched.init () for the whole region, but we invoke
6928 targetm.sched.finish () for every ebb. */
6929 if (targetm.sched.init)
6930 /* None of the arguments are actually used in any target. */
6931 targetm.sched.init (sched_dump, sched_verbose, -1);
6932
6933 first_emitted_uid = get_max_uid () + 1;
6934 preheader_removed = false;
6935
6936 /* Reset register allocation ticks array. */
6937 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6938 reg_rename_this_tick = 0;
6939
6940 bitmap_initialize (forced_ebb_heads, 0);
6941 bitmap_clear (forced_ebb_heads);
6942
6943 setup_nop_vinsn ();
6944 current_copies = BITMAP_ALLOC (NULL);
6945 current_originators = BITMAP_ALLOC (NULL);
6946 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6947
6948 return false;
6949 }
6950
6951 /* Simplify insns after the scheduling. */
6952 static void
6953 simplify_changed_insns (void)
6954 {
6955 int i;
6956
6957 for (i = 0; i < current_nr_blocks; i++)
6958 {
6959 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6960 rtx_insn *insn;
6961
6962 FOR_BB_INSNS (bb, insn)
6963 if (INSN_P (insn))
6964 {
6965 expr_t expr = INSN_EXPR (insn);
6966
6967 if (EXPR_WAS_SUBSTITUTED (expr))
6968 validate_simplify_insn (insn);
6969 }
6970 }
6971 }
6972
6973 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6974 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6975 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6976 static void
6977 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6978 {
6979 rtx_insn *head, *tail;
6980 basic_block bb1 = bb;
6981 if (sched_verbose >= 2)
6982 sel_print ("Finishing schedule in bbs: ");
6983
6984 do
6985 {
6986 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6987
6988 if (sched_verbose >= 2)
6989 sel_print ("%d; ", bb1->index);
6990 }
6991 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6992
6993 if (sched_verbose >= 2)
6994 sel_print ("\n");
6995
6996 get_ebb_head_tail (bb, bb1, &head, &tail);
6997
6998 current_sched_info->head = head;
6999 current_sched_info->tail = tail;
7000 current_sched_info->prev_head = PREV_INSN (head);
7001 current_sched_info->next_tail = NEXT_INSN (tail);
7002 }
7003
7004 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7005 static void
7006 reset_sched_cycles_in_current_ebb (void)
7007 {
7008 int last_clock = 0;
7009 int haifa_last_clock = -1;
7010 int haifa_clock = 0;
7011 int issued_insns = 0;
7012 insn_t insn;
7013
7014 if (targetm.sched.init)
7015 {
7016 /* None of the arguments are actually used in any target.
7017 NB: We should have md_reset () hook for cases like this. */
7018 targetm.sched.init (sched_dump, sched_verbose, -1);
7019 }
7020
7021 state_reset (curr_state);
7022 advance_state (curr_state);
7023
7024 for (insn = current_sched_info->head;
7025 insn != current_sched_info->next_tail;
7026 insn = NEXT_INSN (insn))
7027 {
7028 int cost, haifa_cost;
7029 int sort_p;
7030 bool asm_p, real_insn, after_stall, all_issued;
7031 int clock;
7032
7033 if (!INSN_P (insn))
7034 continue;
7035
7036 asm_p = false;
7037 real_insn = recog_memoized (insn) >= 0;
7038 clock = INSN_SCHED_CYCLE (insn);
7039
7040 cost = clock - last_clock;
7041
7042 /* Initialize HAIFA_COST. */
7043 if (! real_insn)
7044 {
7045 asm_p = INSN_ASM_P (insn);
7046
7047 if (asm_p)
7048 /* This is asm insn which *had* to be scheduled first
7049 on the cycle. */
7050 haifa_cost = 1;
7051 else
7052 /* This is a use/clobber insn. It should not change
7053 cost. */
7054 haifa_cost = 0;
7055 }
7056 else
7057 haifa_cost = estimate_insn_cost (insn, curr_state);
7058
7059 /* Stall for whatever cycles we've stalled before. */
7060 after_stall = 0;
7061 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7062 {
7063 haifa_cost = cost;
7064 after_stall = 1;
7065 }
7066 all_issued = issued_insns == issue_rate;
7067 if (haifa_cost == 0 && all_issued)
7068 haifa_cost = 1;
7069 if (haifa_cost > 0)
7070 {
7071 int i = 0;
7072
7073 while (haifa_cost--)
7074 {
7075 advance_state (curr_state);
7076 issued_insns = 0;
7077 i++;
7078
7079 if (sched_verbose >= 2)
7080 {
7081 sel_print ("advance_state (state_transition)\n");
7082 debug_state (curr_state);
7083 }
7084
7085 /* The DFA may report that e.g. insn requires 2 cycles to be
7086 issued, but on the next cycle it says that insn is ready
7087 to go. Check this here. */
7088 if (!after_stall
7089 && real_insn
7090 && haifa_cost > 0
7091 && estimate_insn_cost (insn, curr_state) == 0)
7092 break;
7093
7094 /* When the data dependency stall is longer than the DFA stall,
7095 and when we have issued exactly issue_rate insns and stalled,
7096 it could be that after this longer stall the insn will again
7097 become unavailable to the DFA restrictions. Looks strange
7098 but happens e.g. on x86-64. So recheck DFA on the last
7099 iteration. */
7100 if ((after_stall || all_issued)
7101 && real_insn
7102 && haifa_cost == 0)
7103 haifa_cost = estimate_insn_cost (insn, curr_state);
7104 }
7105
7106 haifa_clock += i;
7107 if (sched_verbose >= 2)
7108 sel_print ("haifa clock: %d\n", haifa_clock);
7109 }
7110 else
7111 gcc_assert (haifa_cost == 0);
7112
7113 if (sched_verbose >= 2)
7114 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7115
7116 if (targetm.sched.dfa_new_cycle)
7117 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7118 haifa_last_clock, haifa_clock,
7119 &sort_p))
7120 {
7121 advance_state (curr_state);
7122 issued_insns = 0;
7123 haifa_clock++;
7124 if (sched_verbose >= 2)
7125 {
7126 sel_print ("advance_state (dfa_new_cycle)\n");
7127 debug_state (curr_state);
7128 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7129 }
7130 }
7131
7132 if (real_insn)
7133 {
7134 static state_t temp = NULL;
7135
7136 if (!temp)
7137 temp = xmalloc (dfa_state_size);
7138 memcpy (temp, curr_state, dfa_state_size);
7139
7140 cost = state_transition (curr_state, insn);
7141 if (memcmp (temp, curr_state, dfa_state_size))
7142 issued_insns++;
7143
7144 if (sched_verbose >= 2)
7145 {
7146 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7147 haifa_clock + 1);
7148 debug_state (curr_state);
7149 }
7150 gcc_assert (cost < 0);
7151 }
7152
7153 if (targetm.sched.variable_issue)
7154 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7155
7156 INSN_SCHED_CYCLE (insn) = haifa_clock;
7157
7158 last_clock = clock;
7159 haifa_last_clock = haifa_clock;
7160 }
7161 }
7162
7163 /* Put TImode markers on insns starting a new issue group. */
7164 static void
7165 put_TImodes (void)
7166 {
7167 int last_clock = -1;
7168 insn_t insn;
7169
7170 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7171 insn = NEXT_INSN (insn))
7172 {
7173 int cost, clock;
7174
7175 if (!INSN_P (insn))
7176 continue;
7177
7178 clock = INSN_SCHED_CYCLE (insn);
7179 cost = (last_clock == -1) ? 1 : clock - last_clock;
7180
7181 gcc_assert (cost >= 0);
7182
7183 if (issue_rate > 1
7184 && GET_CODE (PATTERN (insn)) != USE
7185 && GET_CODE (PATTERN (insn)) != CLOBBER)
7186 {
7187 if (reload_completed && cost > 0)
7188 PUT_MODE (insn, TImode);
7189
7190 last_clock = clock;
7191 }
7192
7193 if (sched_verbose >= 2)
7194 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7195 }
7196 }
7197
7198 /* Perform MD_FINISH on EBBs comprising current region. When
7199 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7200 to produce correct sched cycles on insns. */
7201 static void
7202 sel_region_target_finish (bool reset_sched_cycles_p)
7203 {
7204 int i;
7205 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7206
7207 for (i = 0; i < current_nr_blocks; i++)
7208 {
7209 if (bitmap_bit_p (scheduled_blocks, i))
7210 continue;
7211
7212 /* While pipelining outer loops, skip bundling for loop
7213 preheaders. Those will be rescheduled in the outer loop. */
7214 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7215 continue;
7216
7217 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7218
7219 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7220 continue;
7221
7222 if (reset_sched_cycles_p)
7223 reset_sched_cycles_in_current_ebb ();
7224
7225 if (targetm.sched.init)
7226 targetm.sched.init (sched_dump, sched_verbose, -1);
7227
7228 put_TImodes ();
7229
7230 if (targetm.sched.finish)
7231 {
7232 targetm.sched.finish (sched_dump, sched_verbose);
7233
7234 /* Extend luids so that insns generated by the target will
7235 get zero luid. */
7236 sched_extend_luids ();
7237 }
7238 }
7239
7240 BITMAP_FREE (scheduled_blocks);
7241 }
7242
7243 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7244 is true, make an additional pass emulating scheduler to get correct insn
7245 cycles for md_finish calls. */
7246 static void
7247 sel_region_finish (bool reset_sched_cycles_p)
7248 {
7249 simplify_changed_insns ();
7250 sched_finish_ready_list ();
7251 free_nop_pool ();
7252
7253 /* Free the vectors. */
7254 vec_av_set.release ();
7255 BITMAP_FREE (current_copies);
7256 BITMAP_FREE (current_originators);
7257 BITMAP_FREE (code_motion_visited_blocks);
7258 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7259 vinsn_vec_free (vec_target_unavailable_vinsns);
7260
7261 /* If LV_SET of the region head should be updated, do it now because
7262 there will be no other chance. */
7263 {
7264 succ_iterator si;
7265 insn_t insn;
7266
7267 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7268 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7269 {
7270 basic_block bb = BLOCK_FOR_INSN (insn);
7271
7272 if (!BB_LV_SET_VALID_P (bb))
7273 compute_live (insn);
7274 }
7275 }
7276
7277 /* Emulate the Haifa scheduler for bundling. */
7278 if (reload_completed)
7279 sel_region_target_finish (reset_sched_cycles_p);
7280
7281 sel_finish_global_and_expr ();
7282
7283 bitmap_clear (forced_ebb_heads);
7284
7285 free_nop_vinsn ();
7286
7287 finish_deps_global ();
7288 sched_finish_luids ();
7289 h_d_i_d.release ();
7290
7291 sel_finish_bbs ();
7292 BITMAP_FREE (blocks_to_reschedule);
7293
7294 sel_unregister_cfg_hooks ();
7295
7296 max_issue_size = 0;
7297 }
7298 \f
7299
7300 /* Functions that implement the scheduler driver. */
7301
7302 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7303 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7304 of insns scheduled -- these would be postprocessed later. */
7305 static void
7306 schedule_on_fences (flist_t fences, int max_seqno,
7307 ilist_t **scheduled_insns_tailpp)
7308 {
7309 flist_t old_fences = fences;
7310
7311 if (sched_verbose >= 1)
7312 {
7313 sel_print ("\nScheduling on fences: ");
7314 dump_flist (fences);
7315 sel_print ("\n");
7316 }
7317
7318 scheduled_something_on_previous_fence = false;
7319 for (; fences; fences = FLIST_NEXT (fences))
7320 {
7321 fence_t fence = NULL;
7322 int seqno = 0;
7323 flist_t fences2;
7324 bool first_p = true;
7325
7326 /* Choose the next fence group to schedule.
7327 The fact that insn can be scheduled only once
7328 on the cycle is guaranteed by two properties:
7329 1. seqnos of parallel groups decrease with each iteration.
7330 2. If is_ineligible_successor () sees the larger seqno, it
7331 checks if candidate insn is_in_current_fence_p (). */
7332 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7333 {
7334 fence_t f = FLIST_FENCE (fences2);
7335
7336 if (!FENCE_PROCESSED_P (f))
7337 {
7338 int i = INSN_SEQNO (FENCE_INSN (f));
7339
7340 if (first_p || i > seqno)
7341 {
7342 seqno = i;
7343 fence = f;
7344 first_p = false;
7345 }
7346 else
7347 /* ??? Seqnos of different groups should be different. */
7348 gcc_assert (1 || i != seqno);
7349 }
7350 }
7351
7352 gcc_assert (fence);
7353
7354 /* As FENCE is nonnull, SEQNO is initialized. */
7355 seqno -= max_seqno + 1;
7356 fill_insns (fence, seqno, scheduled_insns_tailpp);
7357 FENCE_PROCESSED_P (fence) = true;
7358 }
7359
7360 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7361 don't need to keep bookkeeping-invalidated and target-unavailable
7362 vinsns any more. */
7363 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7364 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7365 }
7366
7367 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7368 static void
7369 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7370 {
7371 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7372
7373 /* The first element is already processed. */
7374 while ((fences = FLIST_NEXT (fences)))
7375 {
7376 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7377
7378 if (*min_seqno > seqno)
7379 *min_seqno = seqno;
7380 else if (*max_seqno < seqno)
7381 *max_seqno = seqno;
7382 }
7383 }
7384
7385 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7386 static flist_t
7387 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7388 {
7389 flist_t old_fences = fences;
7390 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7391 int max_time = 0;
7392
7393 flist_tail_init (new_fences);
7394 for (; fences; fences = FLIST_NEXT (fences))
7395 {
7396 fence_t fence = FLIST_FENCE (fences);
7397 insn_t insn;
7398
7399 if (!FENCE_BNDS (fence))
7400 {
7401 /* This fence doesn't have any successors. */
7402 if (!FENCE_SCHEDULED_P (fence))
7403 {
7404 /* Nothing was scheduled on this fence. */
7405 int seqno;
7406
7407 insn = FENCE_INSN (fence);
7408 seqno = INSN_SEQNO (insn);
7409 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7410
7411 if (sched_verbose >= 1)
7412 sel_print ("Fence %d[%d] has not changed\n",
7413 INSN_UID (insn),
7414 BLOCK_NUM (insn));
7415 move_fence_to_fences (fences, new_fences);
7416 }
7417 }
7418 else
7419 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7420 max_time = MAX (max_time, FENCE_CYCLE (fence));
7421 }
7422
7423 flist_clear (&old_fences);
7424 *ptime = max_time;
7425 return FLIST_TAIL_HEAD (new_fences);
7426 }
7427
7428 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7429 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7430 the highest seqno used in a region. Return the updated highest seqno. */
7431 static int
7432 update_seqnos_and_stage (int min_seqno, int max_seqno,
7433 int highest_seqno_in_use,
7434 ilist_t *pscheduled_insns)
7435 {
7436 int new_hs;
7437 ilist_iterator ii;
7438 insn_t insn;
7439
7440 /* Actually, new_hs is the seqno of the instruction, that was
7441 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7442 if (*pscheduled_insns)
7443 {
7444 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7445 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7446 gcc_assert (new_hs > highest_seqno_in_use);
7447 }
7448 else
7449 new_hs = highest_seqno_in_use;
7450
7451 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7452 {
7453 gcc_assert (INSN_SEQNO (insn) < 0);
7454 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7455 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7456
7457 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7458 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7459 require > 1GB of memory e.g. on limit-fnargs.c. */
7460 if (! pipelining_p)
7461 free_data_for_scheduled_insn (insn);
7462 }
7463
7464 ilist_clear (pscheduled_insns);
7465 global_level++;
7466
7467 return new_hs;
7468 }
7469
7470 /* The main driver for scheduling a region. This function is responsible
7471 for correct propagation of fences (i.e. scheduling points) and creating
7472 a group of parallel insns at each of them. It also supports
7473 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7474 of scheduling. */
7475 static void
7476 sel_sched_region_2 (int orig_max_seqno)
7477 {
7478 int highest_seqno_in_use = orig_max_seqno;
7479 int max_time = 0;
7480
7481 stat_bookkeeping_copies = 0;
7482 stat_insns_needed_bookkeeping = 0;
7483 stat_renamed_scheduled = 0;
7484 stat_substitutions_total = 0;
7485 num_insns_scheduled = 0;
7486
7487 while (fences)
7488 {
7489 int min_seqno, max_seqno;
7490 ilist_t scheduled_insns = NULL;
7491 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7492
7493 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7494 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7495 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7496 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7497 highest_seqno_in_use,
7498 &scheduled_insns);
7499 }
7500
7501 if (sched_verbose >= 1)
7502 {
7503 sel_print ("Total scheduling time: %d cycles\n", max_time);
7504 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7505 "bookkeeping, %d insns renamed, %d insns substituted\n",
7506 stat_bookkeeping_copies,
7507 stat_insns_needed_bookkeeping,
7508 stat_renamed_scheduled,
7509 stat_substitutions_total);
7510 }
7511 }
7512
7513 /* Schedule a region. When pipelining, search for possibly never scheduled
7514 bookkeeping code and schedule it. Reschedule pipelined code without
7515 pipelining after. */
7516 static void
7517 sel_sched_region_1 (void)
7518 {
7519 int orig_max_seqno;
7520
7521 /* Remove empty blocks that might be in the region from the beginning. */
7522 purge_empty_blocks ();
7523
7524 orig_max_seqno = init_seqno (NULL, NULL);
7525 gcc_assert (orig_max_seqno >= 1);
7526
7527 /* When pipelining outer loops, create fences on the loop header,
7528 not preheader. */
7529 fences = NULL;
7530 if (current_loop_nest)
7531 init_fences (BB_END (EBB_FIRST_BB (0)));
7532 else
7533 init_fences (bb_note (EBB_FIRST_BB (0)));
7534 global_level = 1;
7535
7536 sel_sched_region_2 (orig_max_seqno);
7537
7538 gcc_assert (fences == NULL);
7539
7540 if (pipelining_p)
7541 {
7542 int i;
7543 basic_block bb;
7544 struct flist_tail_def _new_fences;
7545 flist_tail_t new_fences = &_new_fences;
7546 bool do_p = true;
7547
7548 pipelining_p = false;
7549 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7550 bookkeeping_p = false;
7551 enable_schedule_as_rhs_p = false;
7552
7553 /* Schedule newly created code, that has not been scheduled yet. */
7554 do_p = true;
7555
7556 while (do_p)
7557 {
7558 do_p = false;
7559
7560 for (i = 0; i < current_nr_blocks; i++)
7561 {
7562 basic_block bb = EBB_FIRST_BB (i);
7563
7564 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7565 {
7566 if (! bb_ends_ebb_p (bb))
7567 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7568 if (sel_bb_empty_p (bb))
7569 {
7570 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7571 continue;
7572 }
7573 clear_outdated_rtx_info (bb);
7574 if (sel_insn_is_speculation_check (BB_END (bb))
7575 && JUMP_P (BB_END (bb)))
7576 bitmap_set_bit (blocks_to_reschedule,
7577 BRANCH_EDGE (bb)->dest->index);
7578 }
7579 else if (! sel_bb_empty_p (bb)
7580 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7581 bitmap_set_bit (blocks_to_reschedule, bb->index);
7582 }
7583
7584 for (i = 0; i < current_nr_blocks; i++)
7585 {
7586 bb = EBB_FIRST_BB (i);
7587
7588 /* While pipelining outer loops, skip bundling for loop
7589 preheaders. Those will be rescheduled in the outer
7590 loop. */
7591 if (sel_is_loop_preheader_p (bb))
7592 {
7593 clear_outdated_rtx_info (bb);
7594 continue;
7595 }
7596
7597 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7598 {
7599 flist_tail_init (new_fences);
7600
7601 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7602
7603 /* Mark BB as head of the new ebb. */
7604 bitmap_set_bit (forced_ebb_heads, bb->index);
7605
7606 gcc_assert (fences == NULL);
7607
7608 init_fences (bb_note (bb));
7609
7610 sel_sched_region_2 (orig_max_seqno);
7611
7612 do_p = true;
7613 break;
7614 }
7615 }
7616 }
7617 }
7618 }
7619
7620 /* Schedule the RGN region. */
7621 void
7622 sel_sched_region (int rgn)
7623 {
7624 bool schedule_p;
7625 bool reset_sched_cycles_p;
7626
7627 if (sel_region_init (rgn))
7628 return;
7629
7630 if (sched_verbose >= 1)
7631 sel_print ("Scheduling region %d\n", rgn);
7632
7633 schedule_p = (!sched_is_disabled_for_current_region_p ()
7634 && dbg_cnt (sel_sched_region_cnt));
7635 reset_sched_cycles_p = pipelining_p;
7636 if (schedule_p)
7637 sel_sched_region_1 ();
7638 else
7639 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7640 reset_sched_cycles_p = true;
7641
7642 sel_region_finish (reset_sched_cycles_p);
7643 }
7644
7645 /* Perform global init for the scheduler. */
7646 static void
7647 sel_global_init (void)
7648 {
7649 calculate_dominance_info (CDI_DOMINATORS);
7650 alloc_sched_pools ();
7651
7652 /* Setup the infos for sched_init. */
7653 sel_setup_sched_infos ();
7654 setup_sched_dump ();
7655
7656 sched_rgn_init (false);
7657 sched_init ();
7658
7659 sched_init_bbs ();
7660 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7661 after_recovery = 0;
7662 can_issue_more = issue_rate;
7663
7664 sched_extend_target ();
7665 sched_deps_init (true);
7666 setup_nop_and_exit_insns ();
7667 sel_extend_global_bb_info ();
7668 init_lv_sets ();
7669 init_hard_regs_data ();
7670 }
7671
7672 /* Free the global data of the scheduler. */
7673 static void
7674 sel_global_finish (void)
7675 {
7676 free_bb_note_pool ();
7677 free_lv_sets ();
7678 sel_finish_global_bb_info ();
7679
7680 free_regset_pool ();
7681 free_nop_and_exit_insns ();
7682
7683 sched_rgn_finish ();
7684 sched_deps_finish ();
7685 sched_finish ();
7686
7687 if (current_loops)
7688 sel_finish_pipelining ();
7689
7690 free_sched_pools ();
7691 free_dominance_info (CDI_DOMINATORS);
7692 }
7693
7694 /* Return true when we need to skip selective scheduling. Used for debugging. */
7695 bool
7696 maybe_skip_selective_scheduling (void)
7697 {
7698 return ! dbg_cnt (sel_sched_cnt);
7699 }
7700
7701 /* The entry point. */
7702 void
7703 run_selective_scheduling (void)
7704 {
7705 int rgn;
7706
7707 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7708 return;
7709
7710 sel_global_init ();
7711
7712 for (rgn = 0; rgn < nr_regions; rgn++)
7713 sel_sched_region (rgn);
7714
7715 sel_global_finish ();
7716 }
7717
7718 #endif