Guard against M4 versions with a buggy strstr.
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
48
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252 */
253
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
256
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
259
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
262 \f
263
264 /* Definitions of local types and macros. */
265
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
284 {
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290 };
291
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
297 {
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
321 };
322
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
326 {
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335 };
336
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
340 \f
341
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
349 {
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367 };
368
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
371 {
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389 };
390
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
393 {
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402 };
403
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
411 {
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443 };
444
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
463
464 /* Current fences. */
465 flist_t fences;
466
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
469
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
477
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
480
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
488
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
491
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
494
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
497
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
501
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
504
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
509
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
536
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
540
541 /* Variables to accumulate different statistics. */
542
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
545
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
548
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
551
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
554 \f
555
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572
573 static void debug_state (state_t);
574 \f
575
576 /* Functions that work with fences. */
577
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
581 {
582 unsigned i;
583 int cycle;
584 rtx insn;
585
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
591 FENCE_ISSUE_MORE (fence) = can_issue_more;
592
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 {
595 if (INSN_READY_CYCLE (insn) < cycle)
596 {
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
600 }
601 i++;
602 }
603 if (sched_verbose >= 2)
604 {
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
607 }
608 }
609
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
614 {
615 basic_block bb = BLOCK_FOR_INSN (insn);
616 edge e;
617
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
620
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
624 else
625 return false;
626
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
629
630 return bb == BLOCK_FOR_INSN (succ);
631 }
632
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
640 {
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
648
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
651 {
652 gcc_assert (!was_here_p);
653 was_here_p = true;
654 }
655 gcc_assert (was_here_p && insn != NULL_RTX);
656
657 /* When in the "middle" of the block, just move this fence
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
661 || (single_succ_p (bb)
662 && single_pred_p (single_succ (bb))))
663 {
664 insn_t succ;
665
666 succ = (sel_bb_end_p (insn)
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
669
670 if (INSN_SEQNO (succ) > 0
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
673 {
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
676
677 if (sched_verbose >= 1)
678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
680 }
681 return;
682 }
683
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
686 {
687 int seqno = INSN_SEQNO (succ);
688
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
691 {
692 bool b = (in_same_ebb_p (insn, succ)
693 || in_fallthru_bb_p (insn, succ));
694
695 if (sched_verbose >= 1)
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
698 BLOCK_NUM (succ), b ? "continue" : "reset");
699
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
703 {
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
707 }
708 }
709 }
710 }
711 \f
712
713 /* Functions to support substitution. */
714
715 /* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
717 moved up through this insn should be substituted. */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
720 {
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
727
728 /* Now we just need to make sure the INSN_RHS consists of only one
729 simple REG rtx. */
730 if (REG_P (INSN_LHS (insn))
731 && REG_P (INSN_RHS (insn)))
732 return true;
733 return false;
734 }
735
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
740 destination or the resulting insn is invalid for the target machine.
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
745 {
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
751
752 /* Do not try to replace in SET_DEST. Although we'll choose new
753 register for the RHS, we don't want to change RHS' original reg.
754 If the insn is not SET, we may still be able to substitute something
755 in it, and if we're here (don't have deps), it doesn't write INSN's
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
761
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
764 {
765 rtx new_insn;
766 rtx *where_replace;
767
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
771
772 /* Where we'll replace.
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
778
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781 new_insn);
782
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
790 {
791 change_vinsn_in_expr (expr,
792 create_vinsn_from_insn_rtx (new_insn, false));
793
794 /* Do not allow clobbering the address register of speculative
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_regno (expr)))
799 EXPR_TARGET_AVAILABLE (expr) = false;
800
801 return true;
802 }
803 else
804 return false;
805 }
806 else
807 return false;
808 }
809
810 /* Helper function for count_occurences_equiv. */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
813 {
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
815
816 /* The last param FOR_GCSE is true, because otherwise it performs excessive
817 substitutions like
818 r8 = r33
819 r16 = r33
820 for the last insn it presumes r33 equivalent to r8, so it changes it to
821 r33. Actually, there's no change, but it spoils debugging. */
822 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
823 {
824 /* Bail out if we occupy more than one register. */
825 if (REG_P (*cur_rtx)
826 && HARD_REGISTER_P (*cur_rtx)
827 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
828 {
829 p->n = 0;
830 return 1;
831 }
832
833 p->n++;
834
835 /* Do not traverse subexprs. */
836 return -1;
837 }
838
839 if (GET_CODE (*cur_rtx) == SUBREG
840 && REG_P (p->x)
841 && (!REG_P (SUBREG_REG (*cur_rtx))
842 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
843 {
844 /* ??? Do not support substituting regs inside subregs. In that case,
845 simplify_subreg will be called by validate_replace_rtx, and
846 unsubstitution will fail later. */
847 p->n = 0;
848 return 1;
849 }
850
851 /* Continue search. */
852 return 0;
853 }
854
855 /* Return the number of places WHAT appears within WHERE.
856 Bail out when we found a reference occupying several hard registers. */
857 static int
858 count_occurrences_equiv (rtx what, rtx where)
859 {
860 struct rtx_search_arg arg;
861
862 arg.x = what;
863 arg.n = 0;
864
865 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
866
867 return arg.n;
868 }
869
870 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
871 static bool
872 rtx_ok_for_substitution_p (rtx what, rtx where)
873 {
874 return (count_occurrences_equiv (what, where) > 0);
875 }
876 \f
877
878 /* Functions to support register renaming. */
879
880 /* Substitute VI's set source with REGNO. Returns newly created pattern
881 that has REGNO as its source. */
882 static rtx
883 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
884 {
885 rtx lhs_rtx;
886 rtx pattern;
887 rtx insn_rtx;
888
889 lhs_rtx = copy_rtx (VINSN_LHS (vi));
890
891 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
892 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
893
894 return insn_rtx;
895 }
896
897 /* Returns whether INSN's src can be replaced with register number
898 NEW_SRC_REG. E.g. the following insn is valid for i386:
899
900 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
901 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
902 (reg:SI 0 ax [orig:770 c1 ] [770]))
903 (const_int 288 [0x120])) [0 str S1 A8])
904 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
905 (nil))
906
907 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
908 because of operand constraints:
909
910 (define_insn "*movqi_1"
911 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
912 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
913 )]
914
915 So do constrain_operands here, before choosing NEW_SRC_REG as best
916 reg for rhs. */
917
918 static bool
919 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
920 {
921 vinsn_t vi = INSN_VINSN (insn);
922 enum machine_mode mode;
923 rtx dst_loc;
924 bool res;
925
926 gcc_assert (VINSN_SEPARABLE_P (vi));
927
928 get_dest_and_mode (insn, &dst_loc, &mode);
929 gcc_assert (mode == GET_MODE (new_src_reg));
930
931 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
932 return true;
933
934 /* See whether SET_SRC can be replaced with this register. */
935 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
936 res = verify_changes (0);
937 cancel_changes (0);
938
939 return res;
940 }
941
942 /* Returns whether INSN still be valid after replacing it's DEST with
943 register NEW_REG. */
944 static bool
945 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
946 {
947 vinsn_t vi = INSN_VINSN (insn);
948 bool res;
949
950 /* We should deal here only with separable insns. */
951 gcc_assert (VINSN_SEPARABLE_P (vi));
952 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
953
954 /* See whether SET_DEST can be replaced with this register. */
955 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
956 res = verify_changes (0);
957 cancel_changes (0);
958
959 return res;
960 }
961
962 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
963 static rtx
964 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
965 {
966 rtx rhs_rtx;
967 rtx pattern;
968 rtx insn_rtx;
969
970 rhs_rtx = copy_rtx (VINSN_RHS (vi));
971
972 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
973 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
974
975 return insn_rtx;
976 }
977
978 /* Substitute lhs in the given expression EXPR for the register with number
979 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
980 static void
981 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
982 {
983 rtx insn_rtx;
984 vinsn_t vinsn;
985
986 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
987 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
988
989 change_vinsn_in_expr (expr, vinsn);
990 EXPR_WAS_RENAMED (expr) = 1;
991 EXPR_TARGET_AVAILABLE (expr) = 1;
992 }
993
994 /* Returns whether VI writes either one of the USED_REGS registers or,
995 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
996 static bool
997 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
998 HARD_REG_SET unavailable_hard_regs)
999 {
1000 unsigned regno;
1001 reg_set_iterator rsi;
1002
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1004 {
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1010 }
1011
1012 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1013 {
1014 if (REGNO_REG_SET_P (used_regs, regno))
1015 return true;
1016 if (HARD_REGISTER_NUM_P (regno)
1017 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1018 return true;
1019 }
1020
1021 return false;
1022 }
1023
1024 /* Returns register class of the output register in INSN.
1025 Returns NO_REGS for call insns because some targets have constraints on
1026 destination register of a call insn.
1027
1028 Code adopted from regrename.c::build_def_use. */
1029 static enum reg_class
1030 get_reg_class (rtx insn)
1031 {
1032 int alt, i, n_ops;
1033
1034 extract_insn (insn);
1035 if (! constrain_operands (1))
1036 fatal_insn_not_found (insn);
1037 preprocess_constraints ();
1038 alt = which_alternative;
1039 n_ops = recog_data.n_operands;
1040
1041 for (i = 0; i < n_ops; ++i)
1042 {
1043 int matches = recog_op_alt[i][alt].matches;
1044 if (matches >= 0)
1045 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1046 }
1047
1048 if (asm_noperands (PATTERN (insn)) > 0)
1049 {
1050 for (i = 0; i < n_ops; i++)
1051 if (recog_data.operand_type[i] == OP_OUT)
1052 {
1053 rtx *loc = recog_data.operand_loc[i];
1054 rtx op = *loc;
1055 enum reg_class cl = recog_op_alt[i][alt].cl;
1056
1057 if (REG_P (op)
1058 && REGNO (op) == ORIGINAL_REGNO (op))
1059 continue;
1060
1061 return cl;
1062 }
1063 }
1064 else if (!CALL_P (insn))
1065 {
1066 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1067 {
1068 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1069 enum reg_class cl = recog_op_alt[opn][alt].cl;
1070
1071 if (recog_data.operand_type[opn] == OP_OUT ||
1072 recog_data.operand_type[opn] == OP_INOUT)
1073 return cl;
1074 }
1075 }
1076
1077 /* Insns like
1078 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1079 may result in returning NO_REGS, cause flags is written implicitly through
1080 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1081 return NO_REGS;
1082 }
1083
1084 #ifdef HARD_REGNO_RENAME_OK
1085 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1086 static void
1087 init_hard_regno_rename (int regno)
1088 {
1089 int cur_reg;
1090
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1092
1093 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1094 {
1095 /* We are not interested in renaming in other regs. */
1096 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1097 continue;
1098
1099 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1100 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1101 }
1102 }
1103 #endif
1104
1105 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1106 data first. */
1107 static inline bool
1108 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1109 {
1110 #ifdef HARD_REGNO_RENAME_OK
1111 /* Check whether this is all calculated. */
1112 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1113 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1114
1115 init_hard_regno_rename (from);
1116
1117 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1118 #else
1119 return true;
1120 #endif
1121 }
1122
1123 /* Calculate set of registers that are capable of holding MODE. */
1124 static void
1125 init_regs_for_mode (enum machine_mode mode)
1126 {
1127 int cur_reg;
1128
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1130 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1131
1132 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1133 {
1134 int nregs = hard_regno_nregs[cur_reg][mode];
1135 int i;
1136
1137 for (i = nregs - 1; i >= 0; --i)
1138 if (fixed_regs[cur_reg + i]
1139 || global_regs[cur_reg + i]
1140 /* Can't use regs which aren't saved by
1141 the prologue. */
1142 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1143 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1144 it affects aliasing globally and invalidates all AV sets. */
1145 || get_reg_base_value (cur_reg + i)
1146 #ifdef LEAF_REGISTERS
1147 /* We can't use a non-leaf register if we're in a
1148 leaf function. */
1149 || (current_function_is_leaf
1150 && !LEAF_REGISTERS[cur_reg + i])
1151 #endif
1152 )
1153 break;
1154
1155 if (i >= 0)
1156 continue;
1157
1158 /* See whether it accepts all modes that occur in
1159 original insns. */
1160 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1161 continue;
1162
1163 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1164 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1165 cur_reg);
1166
1167 /* If the CUR_REG passed all the checks above,
1168 then it's ok. */
1169 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1170 }
1171
1172 sel_hrd.regs_for_mode_ok[mode] = true;
1173 }
1174
1175 /* Init all register sets gathered in HRD. */
1176 static void
1177 init_hard_regs_data (void)
1178 {
1179 int cur_reg = 0;
1180 int cur_mode = 0;
1181
1182 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1183 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1184 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1185 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1186
1187 /* Initialize registers that are valid based on mode when this is
1188 really needed. */
1189 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1190 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1191
1192 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1193 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1194 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1195
1196 #ifdef STACK_REGS
1197 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1198
1199 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1200 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1201 #endif
1202 }
1203
1204 /* Mark hardware regs in REG_RENAME_P that are not suitable
1205 for renaming rhs in INSN due to hardware restrictions (register class,
1206 modes compatibility etc). This doesn't affect original insn's dest reg,
1207 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1208 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1209 Registers that are in used_regs are always marked in
1210 unavailable_hard_regs as well. */
1211
1212 static void
1213 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1214 regset used_regs ATTRIBUTE_UNUSED)
1215 {
1216 enum machine_mode mode;
1217 enum reg_class cl = NO_REGS;
1218 rtx orig_dest;
1219 unsigned cur_reg, regno;
1220 hard_reg_set_iterator hrsi;
1221
1222 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1223 gcc_assert (reg_rename_p);
1224
1225 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1226
1227 /* We have decided not to rename 'mem = something;' insns, as 'something'
1228 is usually a register. */
1229 if (!REG_P (orig_dest))
1230 return;
1231
1232 regno = REGNO (orig_dest);
1233
1234 /* If before reload, don't try to work with pseudos. */
1235 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1236 return;
1237
1238 if (reload_completed)
1239 cl = get_reg_class (def->orig_insn);
1240
1241 /* Stop if the original register is one of the fixed_regs, global_regs or
1242 frame pointer, or we could not discover its class. */
1243 if (fixed_regs[regno]
1244 || global_regs[regno]
1245 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1246 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1247 #else
1248 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1249 #endif
1250 || (reload_completed && cl == NO_REGS))
1251 {
1252 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1253
1254 /* Give a chance for original register, if it isn't in used_regs. */
1255 if (!def->crosses_call)
1256 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1257
1258 return;
1259 }
1260
1261 /* If something allocated on stack in this function, mark frame pointer
1262 register unavailable, considering also modes.
1263 FIXME: it is enough to do this once per all original defs. */
1264 if (frame_pointer_needed)
1265 {
1266 int i;
1267
1268 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1269 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1270 FRAME_POINTER_REGNUM + i);
1271
1272 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1273 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1274 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1275 HARD_FRAME_POINTER_REGNUM + i);
1276 #endif
1277 }
1278
1279 #ifdef STACK_REGS
1280 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1281 is equivalent to as if all stack regs were in this set.
1282 I.e. no stack register can be renamed, and even if it's an original
1283 register here we make sure it won't be lifted over it's previous def
1284 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1285 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1286 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1287 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1288 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1289 sel_hrd.stack_regs);
1290 #endif
1291
1292 /* If there's a call on this path, make regs from call_used_reg_set
1293 unavailable. */
1294 if (def->crosses_call)
1295 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1296 call_used_reg_set);
1297
1298 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1299 but not register classes. */
1300 if (!reload_completed)
1301 return;
1302
1303 /* Leave regs as 'available' only from the current
1304 register class. */
1305 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1306 reg_class_contents[cl]);
1307
1308 mode = GET_MODE (orig_dest);
1309
1310 /* Leave only registers available for this mode. */
1311 if (!sel_hrd.regs_for_mode_ok[mode])
1312 init_regs_for_mode (mode);
1313 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1314 sel_hrd.regs_for_mode[mode]);
1315
1316 /* Exclude registers that are partially call clobbered. */
1317 if (def->crosses_call
1318 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1319 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1320 sel_hrd.regs_for_call_clobbered[mode]);
1321
1322 /* Leave only those that are ok to rename. */
1323 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1324 0, cur_reg, hrsi)
1325 {
1326 int nregs;
1327 int i;
1328
1329 nregs = hard_regno_nregs[cur_reg][mode];
1330 gcc_assert (nregs > 0);
1331
1332 for (i = nregs - 1; i >= 0; --i)
1333 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1334 break;
1335
1336 if (i >= 0)
1337 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1338 cur_reg);
1339 }
1340
1341 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1342 reg_rename_p->unavailable_hard_regs);
1343
1344 /* Regno is always ok from the renaming part of view, but it really
1345 could be in *unavailable_hard_regs already, so set it here instead
1346 of there. */
1347 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1348 }
1349
1350 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1351 best register more recently than REG2. */
1352 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1353
1354 /* Indicates the number of times renaming happened before the current one. */
1355 static int reg_rename_this_tick;
1356
1357 /* Choose the register among free, that is suitable for storing
1358 the rhs value.
1359
1360 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1361 originally appears. There could be multiple original operations
1362 for single rhs since we moving it up and merging along different
1363 paths.
1364
1365 Some code is adapted from regrename.c (regrename_optimize).
1366 If original register is available, function returns it.
1367 Otherwise it performs the checks, so the new register should
1368 comply with the following:
1369 - it should not violate any live ranges (such registers are in
1370 REG_RENAME_P->available_for_renaming set);
1371 - it should not be in the HARD_REGS_USED regset;
1372 - it should be in the class compatible with original uses;
1373 - it should not be clobbered through reference with different mode;
1374 - if we're in the leaf function, then the new register should
1375 not be in the LEAF_REGISTERS;
1376 - etc.
1377
1378 If several registers meet the conditions, the register with smallest
1379 tick is returned to achieve more even register allocation.
1380
1381 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1382
1383 If no register satisfies the above conditions, NULL_RTX is returned. */
1384 static rtx
1385 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1386 struct reg_rename *reg_rename_p,
1387 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1388 {
1389 int best_new_reg;
1390 unsigned cur_reg;
1391 enum machine_mode mode = VOIDmode;
1392 unsigned regno, i, n;
1393 hard_reg_set_iterator hrsi;
1394 def_list_iterator di;
1395 def_t def;
1396
1397 /* If original register is available, return it. */
1398 *is_orig_reg_p_ptr = true;
1399
1400 FOR_EACH_DEF (def, di, original_insns)
1401 {
1402 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1403
1404 gcc_assert (REG_P (orig_dest));
1405
1406 /* Check that all original operations have the same mode.
1407 This is done for the next loop; if we'd return from this
1408 loop, we'd check only part of them, but in this case
1409 it doesn't matter. */
1410 if (mode == VOIDmode)
1411 mode = GET_MODE (orig_dest);
1412 gcc_assert (mode == GET_MODE (orig_dest));
1413
1414 regno = REGNO (orig_dest);
1415 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1416 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1417 break;
1418
1419 /* All hard registers are available. */
1420 if (i == n)
1421 {
1422 gcc_assert (mode != VOIDmode);
1423
1424 /* Hard registers should not be shared. */
1425 return gen_rtx_REG (mode, regno);
1426 }
1427 }
1428
1429 *is_orig_reg_p_ptr = false;
1430 best_new_reg = -1;
1431
1432 /* Among all available regs choose the register that was
1433 allocated earliest. */
1434 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1435 0, cur_reg, hrsi)
1436 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1437 {
1438 /* Check that all hard regs for mode are available. */
1439 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1440 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1441 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1442 cur_reg + i))
1443 break;
1444
1445 if (i < n)
1446 continue;
1447
1448 /* All hard registers are available. */
1449 if (best_new_reg < 0
1450 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1451 {
1452 best_new_reg = cur_reg;
1453
1454 /* Return immediately when we know there's no better reg. */
1455 if (! reg_rename_tick[best_new_reg])
1456 break;
1457 }
1458 }
1459
1460 if (best_new_reg >= 0)
1461 {
1462 /* Use the check from the above loop. */
1463 gcc_assert (mode != VOIDmode);
1464 return gen_rtx_REG (mode, best_new_reg);
1465 }
1466
1467 return NULL_RTX;
1468 }
1469
1470 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1471 assumptions about available registers in the function. */
1472 static rtx
1473 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1474 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1475 {
1476 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1477 original_insns, is_orig_reg_p_ptr);
1478
1479 /* FIXME loop over hard_regno_nregs here. */
1480 gcc_assert (best_reg == NULL_RTX
1481 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1482
1483 return best_reg;
1484 }
1485
1486 /* Choose the pseudo register for storing rhs value. As this is supposed
1487 to work before reload, we return either the original register or make
1488 the new one. The parameters are the same that in choose_nest_reg_1
1489 functions, except that USED_REGS may contain pseudos.
1490 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1491
1492 TODO: take into account register pressure while doing this. Up to this
1493 moment, this function would never return NULL for pseudos, but we should
1494 not rely on this. */
1495 static rtx
1496 choose_best_pseudo_reg (regset used_regs,
1497 struct reg_rename *reg_rename_p,
1498 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1499 {
1500 def_list_iterator i;
1501 def_t def;
1502 enum machine_mode mode = VOIDmode;
1503 bool bad_hard_regs = false;
1504
1505 /* We should not use this after reload. */
1506 gcc_assert (!reload_completed);
1507
1508 /* If original register is available, return it. */
1509 *is_orig_reg_p_ptr = true;
1510
1511 FOR_EACH_DEF (def, i, original_insns)
1512 {
1513 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1514 int orig_regno;
1515
1516 gcc_assert (REG_P (dest));
1517
1518 /* Check that all original operations have the same mode. */
1519 if (mode == VOIDmode)
1520 mode = GET_MODE (dest);
1521 else
1522 gcc_assert (mode == GET_MODE (dest));
1523 orig_regno = REGNO (dest);
1524
1525 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1526 {
1527 if (orig_regno < FIRST_PSEUDO_REGISTER)
1528 {
1529 gcc_assert (df_regs_ever_live_p (orig_regno));
1530
1531 /* For hard registers, we have to check hardware imposed
1532 limitations (frame/stack registers, calls crossed). */
1533 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1534 orig_regno))
1535 {
1536 /* Don't let register cross a call if it doesn't already
1537 cross one. This condition is written in accordance with
1538 that in sched-deps.c sched_analyze_reg(). */
1539 if (!reg_rename_p->crosses_call
1540 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1541 return gen_rtx_REG (mode, orig_regno);
1542 }
1543
1544 bad_hard_regs = true;
1545 }
1546 else
1547 return dest;
1548 }
1549 }
1550
1551 *is_orig_reg_p_ptr = false;
1552
1553 /* We had some original hard registers that couldn't be used.
1554 Those were likely special. Don't try to create a pseudo. */
1555 if (bad_hard_regs)
1556 return NULL_RTX;
1557
1558 /* We haven't found a register from original operations. Get a new one.
1559 FIXME: control register pressure somehow. */
1560 {
1561 rtx new_reg = gen_reg_rtx (mode);
1562
1563 gcc_assert (mode != VOIDmode);
1564
1565 max_regno = max_reg_num ();
1566 maybe_extend_reg_info_p ();
1567 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1568
1569 return new_reg;
1570 }
1571 }
1572
1573 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1574 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1575 static void
1576 verify_target_availability (expr_t expr, regset used_regs,
1577 struct reg_rename *reg_rename_p)
1578 {
1579 unsigned n, i, regno;
1580 enum machine_mode mode;
1581 bool target_available, live_available, hard_available;
1582
1583 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1584 return;
1585
1586 regno = expr_dest_regno (expr);
1587 mode = GET_MODE (EXPR_LHS (expr));
1588 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1589 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1590
1591 live_available = hard_available = true;
1592 for (i = 0; i < n; i++)
1593 {
1594 if (bitmap_bit_p (used_regs, regno + i))
1595 live_available = false;
1596 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1597 hard_available = false;
1598 }
1599
1600 /* When target is not available, it may be due to hard register
1601 restrictions, e.g. crosses calls, so we check hard_available too. */
1602 if (target_available)
1603 gcc_assert (live_available);
1604 else
1605 /* Check only if we haven't scheduled something on the previous fence,
1606 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1607 and having more than one fence, we may end having targ_un in a block
1608 in which successors target register is actually available.
1609
1610 The last condition handles the case when a dependence from a call insn
1611 was created in sched-deps.c for insns with destination registers that
1612 never crossed a call before, but do cross one after our code motion.
1613
1614 FIXME: in the latter case, we just uselessly called find_used_regs,
1615 because we can't move this expression with any other register
1616 as well. */
1617 gcc_assert (scheduled_something_on_previous_fence || !live_available
1618 || !hard_available
1619 || (!reload_completed && reg_rename_p->crosses_call
1620 && REG_N_CALLS_CROSSED (regno) == 0));
1621 }
1622
1623 /* Collect unavailable registers due to liveness for EXPR from BNDS
1624 into USED_REGS. Save additional information about available
1625 registers and unavailable due to hardware restriction registers
1626 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1627 list. */
1628 static void
1629 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1630 struct reg_rename *reg_rename_p,
1631 def_list_t *original_insns)
1632 {
1633 for (; bnds; bnds = BLIST_NEXT (bnds))
1634 {
1635 bool res;
1636 av_set_t orig_ops = NULL;
1637 bnd_t bnd = BLIST_BND (bnds);
1638
1639 /* If the chosen best expr doesn't belong to current boundary,
1640 skip it. */
1641 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1642 continue;
1643
1644 /* Put in ORIG_OPS all exprs from this boundary that became
1645 RES on top. */
1646 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1647
1648 /* Compute used regs and OR it into the USED_REGS. */
1649 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1650 reg_rename_p, original_insns);
1651
1652 /* FIXME: the assert is true until we'd have several boundaries. */
1653 gcc_assert (res);
1654 av_set_clear (&orig_ops);
1655 }
1656 }
1657
1658 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1659 If BEST_REG is valid, replace LHS of EXPR with it. */
1660 static bool
1661 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1662 {
1663 /* Try whether we'll be able to generate the insn
1664 'dest := best_reg' at the place of the original operation. */
1665 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1666 {
1667 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1668
1669 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1670
1671 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1672 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1673 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1674 return false;
1675 }
1676
1677 /* Make sure that EXPR has the right destination
1678 register. */
1679 if (expr_dest_regno (expr) != REGNO (best_reg))
1680 replace_dest_with_reg_in_expr (expr, best_reg);
1681 else
1682 EXPR_TARGET_AVAILABLE (expr) = 1;
1683
1684 return true;
1685 }
1686
1687 /* Select and assign best register to EXPR searching from BNDS.
1688 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1689 Return FALSE if no register can be chosen, which could happen when:
1690 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1691 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1692 that are used on the moving path. */
1693 static bool
1694 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1695 {
1696 static struct reg_rename reg_rename_data;
1697
1698 regset used_regs;
1699 def_list_t original_insns = NULL;
1700 bool reg_ok;
1701
1702 *is_orig_reg_p = false;
1703
1704 /* Don't bother to do anything if this insn doesn't set any registers. */
1705 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1706 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1707 return true;
1708
1709 used_regs = get_clear_regset_from_pool ();
1710 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1711
1712 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1713 &original_insns);
1714
1715 #ifdef ENABLE_CHECKING
1716 /* If after reload, make sure we're working with hard regs here. */
1717 if (reload_completed)
1718 {
1719 reg_set_iterator rsi;
1720 unsigned i;
1721
1722 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1723 gcc_unreachable ();
1724 }
1725 #endif
1726
1727 if (EXPR_SEPARABLE_P (expr))
1728 {
1729 rtx best_reg = NULL_RTX;
1730 /* Check that we have computed availability of a target register
1731 correctly. */
1732 verify_target_availability (expr, used_regs, &reg_rename_data);
1733
1734 /* Turn everything in hard regs after reload. */
1735 if (reload_completed)
1736 {
1737 HARD_REG_SET hard_regs_used;
1738 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1739
1740 /* Join hard registers unavailable due to register class
1741 restrictions and live range intersection. */
1742 IOR_HARD_REG_SET (hard_regs_used,
1743 reg_rename_data.unavailable_hard_regs);
1744
1745 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1746 original_insns, is_orig_reg_p);
1747 }
1748 else
1749 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1750 original_insns, is_orig_reg_p);
1751
1752 if (!best_reg)
1753 reg_ok = false;
1754 else if (*is_orig_reg_p)
1755 {
1756 /* In case of unification BEST_REG may be different from EXPR's LHS
1757 when EXPR's LHS is unavailable, and there is another LHS among
1758 ORIGINAL_INSNS. */
1759 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1760 }
1761 else
1762 {
1763 /* Forbid renaming of low-cost insns. */
1764 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1765 reg_ok = false;
1766 else
1767 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1768 }
1769 }
1770 else
1771 {
1772 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1773 any of the HARD_REGS_USED set. */
1774 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1775 reg_rename_data.unavailable_hard_regs))
1776 {
1777 reg_ok = false;
1778 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1779 }
1780 else
1781 {
1782 reg_ok = true;
1783 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1784 }
1785 }
1786
1787 ilist_clear (&original_insns);
1788 return_regset_to_pool (used_regs);
1789
1790 return reg_ok;
1791 }
1792 \f
1793
1794 /* Return true if dependence described by DS can be overcomed. */
1795 static bool
1796 can_speculate_dep_p (ds_t ds)
1797 {
1798 if (spec_info == NULL)
1799 return false;
1800
1801 /* Leave only speculative data. */
1802 ds &= SPECULATIVE;
1803
1804 if (ds == 0)
1805 return false;
1806
1807 {
1808 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1809 that we can overcome. */
1810 ds_t spec_mask = spec_info->mask;
1811
1812 if ((ds & spec_mask) != ds)
1813 return false;
1814 }
1815
1816 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1817 return false;
1818
1819 return true;
1820 }
1821
1822 /* Get a speculation check instruction.
1823 C_EXPR is a speculative expression,
1824 CHECK_DS describes speculations that should be checked,
1825 ORIG_INSN is the original non-speculative insn in the stream. */
1826 static insn_t
1827 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1828 {
1829 rtx check_pattern;
1830 rtx insn_rtx;
1831 insn_t insn;
1832 basic_block recovery_block;
1833 rtx label;
1834
1835 /* Create a recovery block if target is going to emit branchy check, or if
1836 ORIG_INSN was speculative already. */
1837 if (targetm.sched.needs_block_p (check_ds)
1838 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1839 {
1840 recovery_block = sel_create_recovery_block (orig_insn);
1841 label = BB_HEAD (recovery_block);
1842 }
1843 else
1844 {
1845 recovery_block = NULL;
1846 label = NULL_RTX;
1847 }
1848
1849 /* Get pattern of the check. */
1850 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1851 check_ds);
1852
1853 gcc_assert (check_pattern != NULL);
1854
1855 /* Emit check. */
1856 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1857
1858 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1859 INSN_SEQNO (orig_insn), orig_insn);
1860
1861 /* Make check to be non-speculative. */
1862 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1863 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1864
1865 /* Decrease priority of check by difference of load/check instruction
1866 latencies. */
1867 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1868 - sel_vinsn_cost (INSN_VINSN (insn)));
1869
1870 /* Emit copy of original insn (though with replaced target register,
1871 if needed) to the recovery block. */
1872 if (recovery_block != NULL)
1873 {
1874 rtx twin_rtx;
1875
1876 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1877 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1878 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1879 INSN_EXPR (orig_insn),
1880 INSN_SEQNO (insn),
1881 bb_note (recovery_block));
1882 }
1883
1884 /* If we've generated a data speculation check, make sure
1885 that all the bookkeeping instruction we'll create during
1886 this move_op () will allocate an ALAT entry so that the
1887 check won't fail.
1888 In case of control speculation we must convert C_EXPR to control
1889 speculative mode, because failing to do so will bring us an exception
1890 thrown by the non-control-speculative load. */
1891 check_ds = ds_get_max_dep_weak (check_ds);
1892 speculate_expr (c_expr, check_ds);
1893
1894 return insn;
1895 }
1896
1897 /* True when INSN is a "regN = regN" copy. */
1898 static bool
1899 identical_copy_p (rtx insn)
1900 {
1901 rtx lhs, rhs, pat;
1902
1903 pat = PATTERN (insn);
1904
1905 if (GET_CODE (pat) != SET)
1906 return false;
1907
1908 lhs = SET_DEST (pat);
1909 if (!REG_P (lhs))
1910 return false;
1911
1912 rhs = SET_SRC (pat);
1913 if (!REG_P (rhs))
1914 return false;
1915
1916 return REGNO (lhs) == REGNO (rhs);
1917 }
1918
1919 /* Undo all transformations on *AV_PTR that were done when
1920 moving through INSN. */
1921 static void
1922 undo_transformations (av_set_t *av_ptr, rtx insn)
1923 {
1924 av_set_iterator av_iter;
1925 expr_t expr;
1926 av_set_t new_set = NULL;
1927
1928 /* First, kill any EXPR that uses registers set by an insn. This is
1929 required for correctness. */
1930 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1931 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1932 && bitmap_intersect_p (INSN_REG_SETS (insn),
1933 VINSN_REG_USES (EXPR_VINSN (expr)))
1934 /* When an insn looks like 'r1 = r1', we could substitute through
1935 it, but the above condition will still hold. This happened with
1936 gcc.c-torture/execute/961125-1.c. */
1937 && !identical_copy_p (insn))
1938 {
1939 if (sched_verbose >= 6)
1940 sel_print ("Expr %d removed due to use/set conflict\n",
1941 INSN_UID (EXPR_INSN_RTX (expr)));
1942 av_set_iter_remove (&av_iter);
1943 }
1944
1945 /* Undo transformations looking at the history vector. */
1946 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1947 {
1948 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1949 insn, EXPR_VINSN (expr), true);
1950
1951 if (index >= 0)
1952 {
1953 expr_history_def *phist;
1954
1955 phist = VEC_index (expr_history_def,
1956 EXPR_HISTORY_OF_CHANGES (expr),
1957 index);
1958
1959 switch (phist->type)
1960 {
1961 case TRANS_SPECULATION:
1962 {
1963 ds_t old_ds, new_ds;
1964
1965 /* Compute the difference between old and new speculative
1966 statuses: that's what we need to check.
1967 Earlier we used to assert that the status will really
1968 change. This no longer works because only the probability
1969 bits in the status may have changed during compute_av_set,
1970 and in the case of merging different probabilities of the
1971 same speculative status along different paths we do not
1972 record this in the history vector. */
1973 old_ds = phist->spec_ds;
1974 new_ds = EXPR_SPEC_DONE_DS (expr);
1975
1976 old_ds &= SPECULATIVE;
1977 new_ds &= SPECULATIVE;
1978 new_ds &= ~old_ds;
1979
1980 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1981 break;
1982 }
1983 case TRANS_SUBSTITUTION:
1984 {
1985 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1986 vinsn_t new_vi;
1987 bool add = true;
1988
1989 new_vi = phist->old_expr_vinsn;
1990
1991 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1992 == EXPR_SEPARABLE_P (expr));
1993 copy_expr (tmp_expr, expr);
1994
1995 if (vinsn_equal_p (phist->new_expr_vinsn,
1996 EXPR_VINSN (tmp_expr)))
1997 change_vinsn_in_expr (tmp_expr, new_vi);
1998 else
1999 /* This happens when we're unsubstituting on a bookkeeping
2000 copy, which was in turn substituted. The history is wrong
2001 in this case. Do it the hard way. */
2002 add = substitute_reg_in_expr (tmp_expr, insn, true);
2003 if (add)
2004 av_set_add (&new_set, tmp_expr);
2005 clear_expr (tmp_expr);
2006 break;
2007 }
2008 default:
2009 gcc_unreachable ();
2010 }
2011 }
2012
2013 }
2014
2015 av_set_union_and_clear (av_ptr, &new_set, NULL);
2016 }
2017 \f
2018
2019 /* Moveup_* helpers for code motion and computing av sets. */
2020
2021 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2022 The difference from the below function is that only substitution is
2023 performed. */
2024 static enum MOVEUP_EXPR_CODE
2025 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2026 {
2027 vinsn_t vi = EXPR_VINSN (expr);
2028 ds_t *has_dep_p;
2029 ds_t full_ds;
2030
2031 /* Do this only inside insn group. */
2032 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2033
2034 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2035 if (full_ds == 0)
2036 return MOVEUP_EXPR_SAME;
2037
2038 /* Substitution is the possible choice in this case. */
2039 if (has_dep_p[DEPS_IN_RHS])
2040 {
2041 /* Can't substitute UNIQUE VINSNs. */
2042 gcc_assert (!VINSN_UNIQUE_P (vi));
2043
2044 if (can_substitute_through_p (through_insn,
2045 has_dep_p[DEPS_IN_RHS])
2046 && substitute_reg_in_expr (expr, through_insn, false))
2047 {
2048 EXPR_WAS_SUBSTITUTED (expr) = true;
2049 return MOVEUP_EXPR_CHANGED;
2050 }
2051
2052 /* Don't care about this, as even true dependencies may be allowed
2053 in an insn group. */
2054 return MOVEUP_EXPR_SAME;
2055 }
2056
2057 /* This can catch output dependencies in COND_EXECs. */
2058 if (has_dep_p[DEPS_IN_INSN])
2059 return MOVEUP_EXPR_NULL;
2060
2061 /* This is either an output or an anti dependence, which usually have
2062 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2063 will fix this. */
2064 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2065 return MOVEUP_EXPR_AS_RHS;
2066 }
2067
2068 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2069 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2070 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2071 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2072 && !sel_insn_is_speculation_check (through_insn))
2073
2074 /* True when a conflict on a target register was found during moveup_expr. */
2075 static bool was_target_conflict = false;
2076
2077 /* Return true when moving a debug INSN across THROUGH_INSN will
2078 create a bookkeeping block. We don't want to create such blocks,
2079 for they would cause codegen differences between compilations with
2080 and without debug info. */
2081
2082 static bool
2083 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2084 insn_t through_insn)
2085 {
2086 basic_block bbi, bbt;
2087 edge e1, e2;
2088 edge_iterator ei1, ei2;
2089
2090 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2091 {
2092 if (sched_verbose >= 9)
2093 sel_print ("no bookkeeping required: ");
2094 return FALSE;
2095 }
2096
2097 bbi = BLOCK_FOR_INSN (insn);
2098
2099 if (EDGE_COUNT (bbi->preds) == 1)
2100 {
2101 if (sched_verbose >= 9)
2102 sel_print ("only one pred edge: ");
2103 return TRUE;
2104 }
2105
2106 bbt = BLOCK_FOR_INSN (through_insn);
2107
2108 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2109 {
2110 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2111 {
2112 if (find_block_for_bookkeeping (e1, e2, TRUE))
2113 {
2114 if (sched_verbose >= 9)
2115 sel_print ("found existing block: ");
2116 return FALSE;
2117 }
2118 }
2119 }
2120
2121 if (sched_verbose >= 9)
2122 sel_print ("would create bookkeeping block: ");
2123
2124 return TRUE;
2125 }
2126
2127 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2128 performing necessary transformations. Record the type of transformation
2129 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2130 permit all dependencies except true ones, and try to remove those
2131 too via forward substitution. All cases when a non-eliminable
2132 non-zero cost dependency exists inside an insn group will be fixed
2133 in tick_check_p instead. */
2134 static enum MOVEUP_EXPR_CODE
2135 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2136 enum local_trans_type *ptrans_type)
2137 {
2138 vinsn_t vi = EXPR_VINSN (expr);
2139 insn_t insn = VINSN_INSN_RTX (vi);
2140 bool was_changed = false;
2141 bool as_rhs = false;
2142 ds_t *has_dep_p;
2143 ds_t full_ds;
2144
2145 /* ??? We use dependencies of non-debug insns on debug insns to
2146 indicate that the debug insns need to be reset if the non-debug
2147 insn is pulled ahead of it. It's hard to figure out how to
2148 introduce such a notion in sel-sched, but it already fails to
2149 support debug insns in other ways, so we just go ahead and
2150 let the deug insns go corrupt for now. */
2151 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2152 return MOVEUP_EXPR_SAME;
2153
2154 /* When inside_insn_group, delegate to the helper. */
2155 if (inside_insn_group)
2156 return moveup_expr_inside_insn_group (expr, through_insn);
2157
2158 /* Deal with unique insns and control dependencies. */
2159 if (VINSN_UNIQUE_P (vi))
2160 {
2161 /* We can move jumps without side-effects or jumps that are
2162 mutually exclusive with instruction THROUGH_INSN (all in cases
2163 dependencies allow to do so and jump is not speculative). */
2164 if (control_flow_insn_p (insn))
2165 {
2166 basic_block fallthru_bb;
2167
2168 /* Do not move checks and do not move jumps through other
2169 jumps. */
2170 if (control_flow_insn_p (through_insn)
2171 || sel_insn_is_speculation_check (insn))
2172 return MOVEUP_EXPR_NULL;
2173
2174 /* Don't move jumps through CFG joins. */
2175 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2176 return MOVEUP_EXPR_NULL;
2177
2178 /* The jump should have a clear fallthru block, and
2179 this block should be in the current region. */
2180 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2181 || ! in_current_region_p (fallthru_bb))
2182 return MOVEUP_EXPR_NULL;
2183
2184 /* And it should be mutually exclusive with through_insn. */
2185 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2186 && ! DEBUG_INSN_P (through_insn))
2187 return MOVEUP_EXPR_NULL;
2188 }
2189
2190 /* Don't move what we can't move. */
2191 if (EXPR_CANT_MOVE (expr)
2192 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2193 return MOVEUP_EXPR_NULL;
2194
2195 /* Don't move SCHED_GROUP instruction through anything.
2196 If we don't force this, then it will be possible to start
2197 scheduling a sched_group before all its dependencies are
2198 resolved.
2199 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2200 as late as possible through rank_for_schedule. */
2201 if (SCHED_GROUP_P (insn))
2202 return MOVEUP_EXPR_NULL;
2203 }
2204 else
2205 gcc_assert (!control_flow_insn_p (insn));
2206
2207 /* Don't move debug insns if this would require bookkeeping. */
2208 if (DEBUG_INSN_P (insn)
2209 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2210 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2211 return MOVEUP_EXPR_NULL;
2212
2213 /* Deal with data dependencies. */
2214 was_target_conflict = false;
2215 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2216 if (full_ds == 0)
2217 {
2218 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2219 return MOVEUP_EXPR_SAME;
2220 }
2221 else
2222 {
2223 /* We can move UNIQUE insn up only as a whole and unchanged,
2224 so it shouldn't have any dependencies. */
2225 if (VINSN_UNIQUE_P (vi))
2226 return MOVEUP_EXPR_NULL;
2227 }
2228
2229 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2230 {
2231 int res;
2232
2233 res = speculate_expr (expr, full_ds);
2234 if (res >= 0)
2235 {
2236 /* Speculation was successful. */
2237 full_ds = 0;
2238 was_changed = (res > 0);
2239 if (res == 2)
2240 was_target_conflict = true;
2241 if (ptrans_type)
2242 *ptrans_type = TRANS_SPECULATION;
2243 sel_clear_has_dependence ();
2244 }
2245 }
2246
2247 if (has_dep_p[DEPS_IN_INSN])
2248 /* We have some dependency that cannot be discarded. */
2249 return MOVEUP_EXPR_NULL;
2250
2251 if (has_dep_p[DEPS_IN_LHS])
2252 {
2253 /* Only separable insns can be moved up with the new register.
2254 Anyways, we should mark that the original register is
2255 unavailable. */
2256 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2257 return MOVEUP_EXPR_NULL;
2258
2259 EXPR_TARGET_AVAILABLE (expr) = false;
2260 was_target_conflict = true;
2261 as_rhs = true;
2262 }
2263
2264 /* At this point we have either separable insns, that will be lifted
2265 up only as RHSes, or non-separable insns with no dependency in lhs.
2266 If dependency is in RHS, then try to perform substitution and move up
2267 substituted RHS:
2268
2269 Ex. 1: Ex.2
2270 y = x; y = x;
2271 z = y*2; y = y*2;
2272
2273 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2274 moved above y=x assignment as z=x*2.
2275
2276 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2277 side can be moved because of the output dependency. The operation was
2278 cropped to its rhs above. */
2279 if (has_dep_p[DEPS_IN_RHS])
2280 {
2281 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2282
2283 /* Can't substitute UNIQUE VINSNs. */
2284 gcc_assert (!VINSN_UNIQUE_P (vi));
2285
2286 if (can_speculate_dep_p (*rhs_dsp))
2287 {
2288 int res;
2289
2290 res = speculate_expr (expr, *rhs_dsp);
2291 if (res >= 0)
2292 {
2293 /* Speculation was successful. */
2294 *rhs_dsp = 0;
2295 was_changed = (res > 0);
2296 if (res == 2)
2297 was_target_conflict = true;
2298 if (ptrans_type)
2299 *ptrans_type = TRANS_SPECULATION;
2300 }
2301 else
2302 return MOVEUP_EXPR_NULL;
2303 }
2304 else if (can_substitute_through_p (through_insn,
2305 *rhs_dsp)
2306 && substitute_reg_in_expr (expr, through_insn, false))
2307 {
2308 /* ??? We cannot perform substitution AND speculation on the same
2309 insn. */
2310 gcc_assert (!was_changed);
2311 was_changed = true;
2312 if (ptrans_type)
2313 *ptrans_type = TRANS_SUBSTITUTION;
2314 EXPR_WAS_SUBSTITUTED (expr) = true;
2315 }
2316 else
2317 return MOVEUP_EXPR_NULL;
2318 }
2319
2320 /* Don't move trapping insns through jumps.
2321 This check should be at the end to give a chance to control speculation
2322 to perform its duties. */
2323 if (CANT_MOVE_TRAPPING (expr, through_insn))
2324 return MOVEUP_EXPR_NULL;
2325
2326 return (was_changed
2327 ? MOVEUP_EXPR_CHANGED
2328 : (as_rhs
2329 ? MOVEUP_EXPR_AS_RHS
2330 : MOVEUP_EXPR_SAME));
2331 }
2332
2333 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2334 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2335 that can exist within a parallel group. Write to RES the resulting
2336 code for moveup_expr. */
2337 static bool
2338 try_bitmap_cache (expr_t expr, insn_t insn,
2339 bool inside_insn_group,
2340 enum MOVEUP_EXPR_CODE *res)
2341 {
2342 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2343
2344 /* First check whether we've analyzed this situation already. */
2345 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2346 {
2347 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2348 {
2349 if (sched_verbose >= 6)
2350 sel_print ("removed (cached)\n");
2351 *res = MOVEUP_EXPR_NULL;
2352 return true;
2353 }
2354 else
2355 {
2356 if (sched_verbose >= 6)
2357 sel_print ("unchanged (cached)\n");
2358 *res = MOVEUP_EXPR_SAME;
2359 return true;
2360 }
2361 }
2362 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2363 {
2364 if (inside_insn_group)
2365 {
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2368 *res = MOVEUP_EXPR_SAME;
2369 return true;
2370
2371 }
2372 else
2373 EXPR_TARGET_AVAILABLE (expr) = false;
2374
2375 /* This is the only case when propagation result can change over time,
2376 as we can dynamically switch off scheduling as RHS. In this case,
2377 just check the flag to reach the correct decision. */
2378 if (enable_schedule_as_rhs_p)
2379 {
2380 if (sched_verbose >= 6)
2381 sel_print ("unchanged (as RHS, cached)\n");
2382 *res = MOVEUP_EXPR_AS_RHS;
2383 return true;
2384 }
2385 else
2386 {
2387 if (sched_verbose >= 6)
2388 sel_print ("removed (cached as RHS, but renaming"
2389 " is now disabled)\n");
2390 *res = MOVEUP_EXPR_NULL;
2391 return true;
2392 }
2393 }
2394
2395 return false;
2396 }
2397
2398 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2399 if successful. Write to RES the resulting code for moveup_expr. */
2400 static bool
2401 try_transformation_cache (expr_t expr, insn_t insn,
2402 enum MOVEUP_EXPR_CODE *res)
2403 {
2404 struct transformed_insns *pti
2405 = (struct transformed_insns *)
2406 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2407 &EXPR_VINSN (expr),
2408 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2409 if (pti)
2410 {
2411 /* This EXPR was already moved through this insn and was
2412 changed as a result. Fetch the proper data from
2413 the hashtable. */
2414 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2415 INSN_UID (insn), pti->type,
2416 pti->vinsn_old, pti->vinsn_new,
2417 EXPR_SPEC_DONE_DS (expr));
2418
2419 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2420 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2421 change_vinsn_in_expr (expr, pti->vinsn_new);
2422 if (pti->was_target_conflict)
2423 EXPR_TARGET_AVAILABLE (expr) = false;
2424 if (pti->type == TRANS_SPECULATION)
2425 {
2426 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2427 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2428 }
2429
2430 if (sched_verbose >= 6)
2431 {
2432 sel_print ("changed (cached): ");
2433 dump_expr (expr);
2434 sel_print ("\n");
2435 }
2436
2437 *res = MOVEUP_EXPR_CHANGED;
2438 return true;
2439 }
2440
2441 return false;
2442 }
2443
2444 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2445 static void
2446 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2447 enum MOVEUP_EXPR_CODE res)
2448 {
2449 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2450
2451 /* Do not cache result of propagating jumps through an insn group,
2452 as it is always true, which is not useful outside the group. */
2453 if (inside_insn_group)
2454 return;
2455
2456 if (res == MOVEUP_EXPR_NULL)
2457 {
2458 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460 }
2461 else if (res == MOVEUP_EXPR_SAME)
2462 {
2463 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2464 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2465 }
2466 else if (res == MOVEUP_EXPR_AS_RHS)
2467 {
2468 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2469 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2470 }
2471 else
2472 gcc_unreachable ();
2473 }
2474
2475 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2476 and transformation type TRANS_TYPE. */
2477 static void
2478 update_transformation_cache (expr_t expr, insn_t insn,
2479 bool inside_insn_group,
2480 enum local_trans_type trans_type,
2481 vinsn_t expr_old_vinsn)
2482 {
2483 struct transformed_insns *pti;
2484
2485 if (inside_insn_group)
2486 return;
2487
2488 pti = XNEW (struct transformed_insns);
2489 pti->vinsn_old = expr_old_vinsn;
2490 pti->vinsn_new = EXPR_VINSN (expr);
2491 pti->type = trans_type;
2492 pti->was_target_conflict = was_target_conflict;
2493 pti->ds = EXPR_SPEC_DONE_DS (expr);
2494 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2495 vinsn_attach (pti->vinsn_old);
2496 vinsn_attach (pti->vinsn_new);
2497 *((struct transformed_insns **)
2498 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2499 pti, VINSN_HASH_RTX (expr_old_vinsn),
2500 INSERT)) = pti;
2501 }
2502
2503 /* Same as moveup_expr, but first looks up the result of
2504 transformation in caches. */
2505 static enum MOVEUP_EXPR_CODE
2506 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2507 {
2508 enum MOVEUP_EXPR_CODE res;
2509 bool got_answer = false;
2510
2511 if (sched_verbose >= 6)
2512 {
2513 sel_print ("Moving ");
2514 dump_expr (expr);
2515 sel_print (" through %d: ", INSN_UID (insn));
2516 }
2517
2518 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2519 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2520 == EXPR_INSN_RTX (expr)))
2521 /* Don't use cached information for debug insns that are heads of
2522 basic blocks. */;
2523 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2524 /* When inside insn group, we do not want remove stores conflicting
2525 with previosly issued loads. */
2526 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2527 else if (try_transformation_cache (expr, insn, &res))
2528 got_answer = true;
2529
2530 if (! got_answer)
2531 {
2532 /* Invoke moveup_expr and record the results. */
2533 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2534 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2535 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2536 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2537 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2538
2539 /* ??? Invent something better than this. We can't allow old_vinsn
2540 to go, we need it for the history vector. */
2541 vinsn_attach (expr_old_vinsn);
2542
2543 res = moveup_expr (expr, insn, inside_insn_group,
2544 &trans_type);
2545 switch (res)
2546 {
2547 case MOVEUP_EXPR_NULL:
2548 update_bitmap_cache (expr, insn, inside_insn_group, res);
2549 if (sched_verbose >= 6)
2550 sel_print ("removed\n");
2551 break;
2552
2553 case MOVEUP_EXPR_SAME:
2554 update_bitmap_cache (expr, insn, inside_insn_group, res);
2555 if (sched_verbose >= 6)
2556 sel_print ("unchanged\n");
2557 break;
2558
2559 case MOVEUP_EXPR_AS_RHS:
2560 gcc_assert (!unique_p || inside_insn_group);
2561 update_bitmap_cache (expr, insn, inside_insn_group, res);
2562 if (sched_verbose >= 6)
2563 sel_print ("unchanged (as RHS)\n");
2564 break;
2565
2566 case MOVEUP_EXPR_CHANGED:
2567 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2568 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2569 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2570 INSN_UID (insn), trans_type,
2571 expr_old_vinsn, EXPR_VINSN (expr),
2572 expr_old_spec_ds);
2573 update_transformation_cache (expr, insn, inside_insn_group,
2574 trans_type, expr_old_vinsn);
2575 if (sched_verbose >= 6)
2576 {
2577 sel_print ("changed: ");
2578 dump_expr (expr);
2579 sel_print ("\n");
2580 }
2581 break;
2582 default:
2583 gcc_unreachable ();
2584 }
2585
2586 vinsn_detach (expr_old_vinsn);
2587 }
2588
2589 return res;
2590 }
2591
2592 /* Moves an av set AVP up through INSN, performing necessary
2593 transformations. */
2594 static void
2595 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2596 {
2597 av_set_iterator i;
2598 expr_t expr;
2599
2600 FOR_EACH_EXPR_1 (expr, i, avp)
2601 {
2602
2603 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2604 {
2605 case MOVEUP_EXPR_SAME:
2606 case MOVEUP_EXPR_AS_RHS:
2607 break;
2608
2609 case MOVEUP_EXPR_NULL:
2610 av_set_iter_remove (&i);
2611 break;
2612
2613 case MOVEUP_EXPR_CHANGED:
2614 expr = merge_with_other_exprs (avp, &i, expr);
2615 break;
2616
2617 default:
2618 gcc_unreachable ();
2619 }
2620 }
2621 }
2622
2623 /* Moves AVP set along PATH. */
2624 static void
2625 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2626 {
2627 int last_cycle;
2628
2629 if (sched_verbose >= 6)
2630 sel_print ("Moving expressions up in the insn group...\n");
2631 if (! path)
2632 return;
2633 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2634 while (path
2635 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2636 {
2637 moveup_set_expr (avp, ILIST_INSN (path), true);
2638 path = ILIST_NEXT (path);
2639 }
2640 }
2641
2642 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2643 static bool
2644 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2645 {
2646 expr_def _tmp, *tmp = &_tmp;
2647 int last_cycle;
2648 bool res = true;
2649
2650 copy_expr_onside (tmp, expr);
2651 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2652 while (path
2653 && res
2654 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2655 {
2656 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2657 != MOVEUP_EXPR_NULL);
2658 path = ILIST_NEXT (path);
2659 }
2660
2661 if (res)
2662 {
2663 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2664 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2665
2666 if (tmp_vinsn != expr_vliw_vinsn)
2667 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2668 }
2669
2670 clear_expr (tmp);
2671 return res;
2672 }
2673 \f
2674
2675 /* Functions that compute av and lv sets. */
2676
2677 /* Returns true if INSN is not a downward continuation of the given path P in
2678 the current stage. */
2679 static bool
2680 is_ineligible_successor (insn_t insn, ilist_t p)
2681 {
2682 insn_t prev_insn;
2683
2684 /* Check if insn is not deleted. */
2685 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2686 gcc_unreachable ();
2687 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2688 gcc_unreachable ();
2689
2690 /* If it's the first insn visited, then the successor is ok. */
2691 if (!p)
2692 return false;
2693
2694 prev_insn = ILIST_INSN (p);
2695
2696 if (/* a backward edge. */
2697 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2698 /* is already visited. */
2699 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2700 && (ilist_is_in_p (p, insn)
2701 /* We can reach another fence here and still seqno of insn
2702 would be equal to seqno of prev_insn. This is possible
2703 when prev_insn is a previously created bookkeeping copy.
2704 In that case it'd get a seqno of insn. Thus, check here
2705 whether insn is in current fence too. */
2706 || IN_CURRENT_FENCE_P (insn)))
2707 /* Was already scheduled on this round. */
2708 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2709 && IN_CURRENT_FENCE_P (insn))
2710 /* An insn from another fence could also be
2711 scheduled earlier even if this insn is not in
2712 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2713 || (!pipelining_p
2714 && INSN_SCHED_TIMES (insn) > 0))
2715 return true;
2716 else
2717 return false;
2718 }
2719
2720 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2721 of handling multiple successors and properly merging its av_sets. P is
2722 the current path traversed. WS is the size of lookahead window.
2723 Return the av set computed. */
2724 static av_set_t
2725 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2726 {
2727 struct succs_info *sinfo;
2728 av_set_t expr_in_all_succ_branches = NULL;
2729 int is;
2730 insn_t succ, zero_succ = NULL;
2731 av_set_t av1 = NULL;
2732
2733 gcc_assert (sel_bb_end_p (insn));
2734
2735 /* Find different kind of successors needed for correct computing of
2736 SPEC and TARGET_AVAILABLE attributes. */
2737 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2738
2739 /* Debug output. */
2740 if (sched_verbose >= 6)
2741 {
2742 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2743 dump_insn_vector (sinfo->succs_ok);
2744 sel_print ("\n");
2745 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2746 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2747 }
2748
2749 /* Add insn to to the tail of current path. */
2750 ilist_add (&p, insn);
2751
2752 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2753 {
2754 av_set_t succ_set;
2755
2756 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2757 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2758
2759 av_set_split_usefulness (succ_set,
2760 VEC_index (int, sinfo->probs_ok, is),
2761 sinfo->all_prob);
2762
2763 if (sinfo->all_succs_n > 1)
2764 {
2765 /* Find EXPR'es that came from *all* successors and save them
2766 into expr_in_all_succ_branches. This set will be used later
2767 for calculating speculation attributes of EXPR'es. */
2768 if (is == 0)
2769 {
2770 expr_in_all_succ_branches = av_set_copy (succ_set);
2771
2772 /* Remember the first successor for later. */
2773 zero_succ = succ;
2774 }
2775 else
2776 {
2777 av_set_iterator i;
2778 expr_t expr;
2779
2780 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2781 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2782 av_set_iter_remove (&i);
2783 }
2784 }
2785
2786 /* Union the av_sets. Check liveness restrictions on target registers
2787 in special case of two successors. */
2788 if (sinfo->succs_ok_n == 2 && is == 1)
2789 {
2790 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2791 basic_block bb1 = BLOCK_FOR_INSN (succ);
2792
2793 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2794 av_set_union_and_live (&av1, &succ_set,
2795 BB_LV_SET (bb0),
2796 BB_LV_SET (bb1),
2797 insn);
2798 }
2799 else
2800 av_set_union_and_clear (&av1, &succ_set, insn);
2801 }
2802
2803 /* Check liveness restrictions via hard way when there are more than
2804 two successors. */
2805 if (sinfo->succs_ok_n > 2)
2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2807 {
2808 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2809
2810 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2811 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2812 BB_LV_SET (succ_bb));
2813 }
2814
2815 /* Finally, check liveness restrictions on paths leaving the region. */
2816 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2817 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2818 mark_unavailable_targets
2819 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2820
2821 if (sinfo->all_succs_n > 1)
2822 {
2823 av_set_iterator i;
2824 expr_t expr;
2825
2826 /* Increase the spec attribute of all EXPR'es that didn't come
2827 from all successors. */
2828 FOR_EACH_EXPR (expr, i, av1)
2829 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2830 EXPR_SPEC (expr)++;
2831
2832 av_set_clear (&expr_in_all_succ_branches);
2833
2834 /* Do not move conditional branches through other
2835 conditional branches. So, remove all conditional
2836 branches from av_set if current operator is a conditional
2837 branch. */
2838 av_set_substract_cond_branches (&av1);
2839 }
2840
2841 ilist_remove (&p);
2842 free_succs_info (sinfo);
2843
2844 if (sched_verbose >= 6)
2845 {
2846 sel_print ("av_succs (%d): ", INSN_UID (insn));
2847 dump_av_set (av1);
2848 sel_print ("\n");
2849 }
2850
2851 return av1;
2852 }
2853
2854 /* This function computes av_set for the FIRST_INSN by dragging valid
2855 av_set through all basic block insns either from the end of basic block
2856 (computed using compute_av_set_at_bb_end) or from the insn on which
2857 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2858 below the basic block and handling conditional branches.
2859 FIRST_INSN - the basic block head, P - path consisting of the insns
2860 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2861 and bb ends are added to the path), WS - current window size,
2862 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2863 static av_set_t
2864 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2865 bool need_copy_p)
2866 {
2867 insn_t cur_insn;
2868 int end_ws = ws;
2869 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2870 insn_t after_bb_end = NEXT_INSN (bb_end);
2871 insn_t last_insn;
2872 av_set_t av = NULL;
2873 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2874
2875 /* Return NULL if insn is not on the legitimate downward path. */
2876 if (is_ineligible_successor (first_insn, p))
2877 {
2878 if (sched_verbose >= 6)
2879 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2880
2881 return NULL;
2882 }
2883
2884 /* If insn already has valid av(insn) computed, just return it. */
2885 if (AV_SET_VALID_P (first_insn))
2886 {
2887 av_set_t av_set;
2888
2889 if (sel_bb_head_p (first_insn))
2890 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2891 else
2892 av_set = NULL;
2893
2894 if (sched_verbose >= 6)
2895 {
2896 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2897 dump_av_set (av_set);
2898 sel_print ("\n");
2899 }
2900
2901 return need_copy_p ? av_set_copy (av_set) : av_set;
2902 }
2903
2904 ilist_add (&p, first_insn);
2905
2906 /* As the result after this loop have completed, in LAST_INSN we'll
2907 have the insn which has valid av_set to start backward computation
2908 from: it either will be NULL because on it the window size was exceeded
2909 or other valid av_set as returned by compute_av_set for the last insn
2910 of the basic block. */
2911 for (last_insn = first_insn; last_insn != after_bb_end;
2912 last_insn = NEXT_INSN (last_insn))
2913 {
2914 /* We may encounter valid av_set not only on bb_head, but also on
2915 those insns on which previously MAX_WS was exceeded. */
2916 if (AV_SET_VALID_P (last_insn))
2917 {
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2920 break;
2921 }
2922
2923 /* The special case: the last insn of the BB may be an
2924 ineligible_successor due to its SEQ_NO that was set on
2925 it as a bookkeeping. */
2926 if (last_insn != first_insn
2927 && is_ineligible_successor (last_insn, p))
2928 {
2929 if (sched_verbose >= 6)
2930 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2931 break;
2932 }
2933
2934 if (DEBUG_INSN_P (last_insn))
2935 continue;
2936
2937 if (end_ws > max_ws)
2938 {
2939 /* We can reach max lookahead size at bb_header, so clean av_set
2940 first. */
2941 INSN_WS_LEVEL (last_insn) = global_level;
2942
2943 if (sched_verbose >= 6)
2944 sel_print ("Insn %d is beyond the software lookahead window size\n",
2945 INSN_UID (last_insn));
2946 break;
2947 }
2948
2949 end_ws++;
2950 }
2951
2952 /* Get the valid av_set into AV above the LAST_INSN to start backward
2953 computation from. It either will be empty av_set or av_set computed from
2954 the successors on the last insn of the current bb. */
2955 if (last_insn != after_bb_end)
2956 {
2957 av = NULL;
2958
2959 /* This is needed only to obtain av_sets that are identical to
2960 those computed by the old compute_av_set version. */
2961 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2962 av_set_add (&av, INSN_EXPR (last_insn));
2963 }
2964 else
2965 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2966 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2967
2968 /* Compute av_set in AV starting from below the LAST_INSN up to
2969 location above the FIRST_INSN. */
2970 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2971 cur_insn = PREV_INSN (cur_insn))
2972 if (!INSN_NOP_P (cur_insn))
2973 {
2974 expr_t expr;
2975
2976 moveup_set_expr (&av, cur_insn, false);
2977
2978 /* If the expression for CUR_INSN is already in the set,
2979 replace it by the new one. */
2980 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2981 if (expr != NULL)
2982 {
2983 clear_expr (expr);
2984 copy_expr (expr, INSN_EXPR (cur_insn));
2985 }
2986 else
2987 av_set_add (&av, INSN_EXPR (cur_insn));
2988 }
2989
2990 /* Clear stale bb_av_set. */
2991 if (sel_bb_head_p (first_insn))
2992 {
2993 av_set_clear (&BB_AV_SET (cur_bb));
2994 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2995 BB_AV_LEVEL (cur_bb) = global_level;
2996 }
2997
2998 if (sched_verbose >= 6)
2999 {
3000 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3001 dump_av_set (av);
3002 sel_print ("\n");
3003 }
3004
3005 ilist_remove (&p);
3006 return av;
3007 }
3008
3009 /* Compute av set before INSN.
3010 INSN - the current operation (actual rtx INSN)
3011 P - the current path, which is list of insns visited so far
3012 WS - software lookahead window size.
3013 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3014 if we want to save computed av_set in s_i_d, we should make a copy of it.
3015
3016 In the resulting set we will have only expressions that don't have delay
3017 stalls and nonsubstitutable dependences. */
3018 static av_set_t
3019 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3020 {
3021 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3022 }
3023
3024 /* Propagate a liveness set LV through INSN. */
3025 static void
3026 propagate_lv_set (regset lv, insn_t insn)
3027 {
3028 gcc_assert (INSN_P (insn));
3029
3030 if (INSN_NOP_P (insn))
3031 return;
3032
3033 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3034 }
3035
3036 /* Return livness set at the end of BB. */
3037 static regset
3038 compute_live_after_bb (basic_block bb)
3039 {
3040 edge e;
3041 edge_iterator ei;
3042 regset lv = get_clear_regset_from_pool ();
3043
3044 gcc_assert (!ignore_first);
3045
3046 FOR_EACH_EDGE (e, ei, bb->succs)
3047 if (sel_bb_empty_p (e->dest))
3048 {
3049 if (! BB_LV_SET_VALID_P (e->dest))
3050 {
3051 gcc_unreachable ();
3052 gcc_assert (BB_LV_SET (e->dest) == NULL);
3053 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3054 BB_LV_SET_VALID_P (e->dest) = true;
3055 }
3056 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3057 }
3058 else
3059 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3060
3061 return lv;
3062 }
3063
3064 /* Compute the set of all live registers at the point before INSN and save
3065 it at INSN if INSN is bb header. */
3066 regset
3067 compute_live (insn_t insn)
3068 {
3069 basic_block bb = BLOCK_FOR_INSN (insn);
3070 insn_t final, temp;
3071 regset lv;
3072
3073 /* Return the valid set if we're already on it. */
3074 if (!ignore_first)
3075 {
3076 regset src = NULL;
3077
3078 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3079 src = BB_LV_SET (bb);
3080 else
3081 {
3082 gcc_assert (in_current_region_p (bb));
3083 if (INSN_LIVE_VALID_P (insn))
3084 src = INSN_LIVE (insn);
3085 }
3086
3087 if (src)
3088 {
3089 lv = get_regset_from_pool ();
3090 COPY_REG_SET (lv, src);
3091
3092 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3093 {
3094 COPY_REG_SET (BB_LV_SET (bb), lv);
3095 BB_LV_SET_VALID_P (bb) = true;
3096 }
3097
3098 return_regset_to_pool (lv);
3099 return lv;
3100 }
3101 }
3102
3103 /* We've skipped the wrong lv_set. Don't skip the right one. */
3104 ignore_first = false;
3105 gcc_assert (in_current_region_p (bb));
3106
3107 /* Find a valid LV set in this block or below, if needed.
3108 Start searching from the next insn: either ignore_first is true, or
3109 INSN doesn't have a correct live set. */
3110 temp = NEXT_INSN (insn);
3111 final = NEXT_INSN (BB_END (bb));
3112 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3113 temp = NEXT_INSN (temp);
3114 if (temp == final)
3115 {
3116 lv = compute_live_after_bb (bb);
3117 temp = PREV_INSN (temp);
3118 }
3119 else
3120 {
3121 lv = get_regset_from_pool ();
3122 COPY_REG_SET (lv, INSN_LIVE (temp));
3123 }
3124
3125 /* Put correct lv sets on the insns which have bad sets. */
3126 final = PREV_INSN (insn);
3127 while (temp != final)
3128 {
3129 propagate_lv_set (lv, temp);
3130 COPY_REG_SET (INSN_LIVE (temp), lv);
3131 INSN_LIVE_VALID_P (temp) = true;
3132 temp = PREV_INSN (temp);
3133 }
3134
3135 /* Also put it in a BB. */
3136 if (sel_bb_head_p (insn))
3137 {
3138 basic_block bb = BLOCK_FOR_INSN (insn);
3139
3140 COPY_REG_SET (BB_LV_SET (bb), lv);
3141 BB_LV_SET_VALID_P (bb) = true;
3142 }
3143
3144 /* We return LV to the pool, but will not clear it there. Thus we can
3145 legimatelly use LV till the next use of regset_pool_get (). */
3146 return_regset_to_pool (lv);
3147 return lv;
3148 }
3149
3150 /* Update liveness sets for INSN. */
3151 static inline void
3152 update_liveness_on_insn (rtx insn)
3153 {
3154 ignore_first = true;
3155 compute_live (insn);
3156 }
3157
3158 /* Compute liveness below INSN and write it into REGS. */
3159 static inline void
3160 compute_live_below_insn (rtx insn, regset regs)
3161 {
3162 rtx succ;
3163 succ_iterator si;
3164
3165 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3166 IOR_REG_SET (regs, compute_live (succ));
3167 }
3168
3169 /* Update the data gathered in av and lv sets starting from INSN. */
3170 static void
3171 update_data_sets (rtx insn)
3172 {
3173 update_liveness_on_insn (insn);
3174 if (sel_bb_head_p (insn))
3175 {
3176 gcc_assert (AV_LEVEL (insn) != 0);
3177 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3178 compute_av_set (insn, NULL, 0, 0);
3179 }
3180 }
3181 \f
3182
3183 /* Helper for move_op () and find_used_regs ().
3184 Return speculation type for which a check should be created on the place
3185 of INSN. EXPR is one of the original ops we are searching for. */
3186 static ds_t
3187 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3188 {
3189 ds_t to_check_ds;
3190 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3191
3192 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3193
3194 if (targetm.sched.get_insn_checked_ds)
3195 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3196
3197 if (spec_info != NULL
3198 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3199 already_checked_ds |= BEGIN_CONTROL;
3200
3201 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3202
3203 to_check_ds &= ~already_checked_ds;
3204
3205 return to_check_ds;
3206 }
3207
3208 /* Find the set of registers that are unavailable for storing expres
3209 while moving ORIG_OPS up on the path starting from INSN due to
3210 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3211
3212 All the original operations found during the traversal are saved in the
3213 ORIGINAL_INSNS list.
3214
3215 REG_RENAME_P denotes the set of hardware registers that
3216 can not be used with renaming due to the register class restrictions,
3217 mode restrictions and other (the register we'll choose should be
3218 compatible class with the original uses, shouldn't be in call_used_regs,
3219 should be HARD_REGNO_RENAME_OK etc).
3220
3221 Returns TRUE if we've found all original insns, FALSE otherwise.
3222
3223 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3224 to traverse the code motion paths. This helper function finds registers
3225 that are not available for storing expres while moving ORIG_OPS up on the
3226 path starting from INSN. A register considered as used on the moving path,
3227 if one of the following conditions is not satisfied:
3228
3229 (1) a register not set or read on any path from xi to an instance of
3230 the original operation,
3231 (2) not among the live registers of the point immediately following the
3232 first original operation on a given downward path, except for the
3233 original target register of the operation,
3234 (3) not live on the other path of any conditional branch that is passed
3235 by the operation, in case original operations are not present on
3236 both paths of the conditional branch.
3237
3238 All the original operations found during the traversal are saved in the
3239 ORIGINAL_INSNS list.
3240
3241 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3242 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3243 to unavailable hard regs at the point original operation is found. */
3244
3245 static bool
3246 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3247 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3248 {
3249 def_list_iterator i;
3250 def_t def;
3251 int res;
3252 bool needs_spec_check_p = false;
3253 expr_t expr;
3254 av_set_iterator expr_iter;
3255 struct fur_static_params sparams;
3256 struct cmpd_local_params lparams;
3257
3258 /* We haven't visited any blocks yet. */
3259 bitmap_clear (code_motion_visited_blocks);
3260
3261 /* Init parameters for code_motion_path_driver. */
3262 sparams.crosses_call = false;
3263 sparams.original_insns = original_insns;
3264 sparams.used_regs = used_regs;
3265
3266 /* Set the appropriate hooks and data. */
3267 code_motion_path_driver_info = &fur_hooks;
3268
3269 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3270
3271 reg_rename_p->crosses_call |= sparams.crosses_call;
3272
3273 gcc_assert (res == 1);
3274 gcc_assert (original_insns && *original_insns);
3275
3276 /* ??? We calculate whether an expression needs a check when computing
3277 av sets. This information is not as precise as it could be due to
3278 merging this bit in merge_expr. We can do better in find_used_regs,
3279 but we want to avoid multiple traversals of the same code motion
3280 paths. */
3281 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3282 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3283
3284 /* Mark hardware regs in REG_RENAME_P that are not suitable
3285 for renaming expr in INSN due to hardware restrictions (register class,
3286 modes compatibility etc). */
3287 FOR_EACH_DEF (def, i, *original_insns)
3288 {
3289 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3290
3291 if (VINSN_SEPARABLE_P (vinsn))
3292 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3293
3294 /* Do not allow clobbering of ld.[sa] address in case some of the
3295 original operations need a check. */
3296 if (needs_spec_check_p)
3297 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3298 }
3299
3300 return true;
3301 }
3302 \f
3303
3304 /* Functions to choose the best insn from available ones. */
3305
3306 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3307 static int
3308 sel_target_adjust_priority (expr_t expr)
3309 {
3310 int priority = EXPR_PRIORITY (expr);
3311 int new_priority;
3312
3313 if (targetm.sched.adjust_priority)
3314 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3315 else
3316 new_priority = priority;
3317
3318 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3319 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3320
3321 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3322
3323 if (sched_verbose >= 4)
3324 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3325 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3326 EXPR_PRIORITY_ADJ (expr), new_priority);
3327
3328 return new_priority;
3329 }
3330
3331 /* Rank two available exprs for schedule. Never return 0 here. */
3332 static int
3333 sel_rank_for_schedule (const void *x, const void *y)
3334 {
3335 expr_t tmp = *(const expr_t *) y;
3336 expr_t tmp2 = *(const expr_t *) x;
3337 insn_t tmp_insn, tmp2_insn;
3338 vinsn_t tmp_vinsn, tmp2_vinsn;
3339 int val;
3340
3341 tmp_vinsn = EXPR_VINSN (tmp);
3342 tmp2_vinsn = EXPR_VINSN (tmp2);
3343 tmp_insn = EXPR_INSN_RTX (tmp);
3344 tmp2_insn = EXPR_INSN_RTX (tmp2);
3345
3346 /* Schedule debug insns as early as possible. */
3347 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3348 return -1;
3349 else if (DEBUG_INSN_P (tmp2_insn))
3350 return 1;
3351
3352 /* Prefer SCHED_GROUP_P insns to any others. */
3353 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3354 {
3355 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3356 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3357
3358 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3359 cannot be cloned. */
3360 if (VINSN_UNIQUE_P (tmp2_vinsn))
3361 return 1;
3362 return -1;
3363 }
3364
3365 /* Discourage scheduling of speculative checks. */
3366 val = (sel_insn_is_speculation_check (tmp_insn)
3367 - sel_insn_is_speculation_check (tmp2_insn));
3368 if (val)
3369 return val;
3370
3371 /* Prefer not scheduled insn over scheduled one. */
3372 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3373 {
3374 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3375 if (val)
3376 return val;
3377 }
3378
3379 /* Prefer jump over non-jump instruction. */
3380 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3381 return -1;
3382 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3383 return 1;
3384
3385 /* Prefer an expr with greater priority. */
3386 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3387 {
3388 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3389 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3390
3391 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3392 }
3393 else
3394 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3395 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3396 if (val)
3397 return val;
3398
3399 if (spec_info != NULL && spec_info->mask != 0)
3400 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3401 {
3402 ds_t ds1, ds2;
3403 dw_t dw1, dw2;
3404 int dw;
3405
3406 ds1 = EXPR_SPEC_DONE_DS (tmp);
3407 if (ds1)
3408 dw1 = ds_weak (ds1);
3409 else
3410 dw1 = NO_DEP_WEAK;
3411
3412 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3413 if (ds2)
3414 dw2 = ds_weak (ds2);
3415 else
3416 dw2 = NO_DEP_WEAK;
3417
3418 dw = dw2 - dw1;
3419 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3420 return dw;
3421 }
3422
3423 /* Prefer an old insn to a bookkeeping insn. */
3424 if (INSN_UID (tmp_insn) < first_emitted_uid
3425 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3426 return -1;
3427 if (INSN_UID (tmp_insn) >= first_emitted_uid
3428 && INSN_UID (tmp2_insn) < first_emitted_uid)
3429 return 1;
3430
3431 /* Prefer an insn with smaller UID, as a last resort.
3432 We can't safely use INSN_LUID as it is defined only for those insns
3433 that are in the stream. */
3434 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3435 }
3436
3437 /* Filter out expressions from av set pointed to by AV_PTR
3438 that are pipelined too many times. */
3439 static void
3440 process_pipelined_exprs (av_set_t *av_ptr)
3441 {
3442 expr_t expr;
3443 av_set_iterator si;
3444
3445 /* Don't pipeline already pipelined code as that would increase
3446 number of unnecessary register moves. */
3447 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3448 {
3449 if (EXPR_SCHED_TIMES (expr)
3450 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3451 av_set_iter_remove (&si);
3452 }
3453 }
3454
3455 /* Filter speculative insns from AV_PTR if we don't want them. */
3456 static void
3457 process_spec_exprs (av_set_t *av_ptr)
3458 {
3459 bool try_data_p = true;
3460 bool try_control_p = true;
3461 expr_t expr;
3462 av_set_iterator si;
3463
3464 if (spec_info == NULL)
3465 return;
3466
3467 /* Scan *AV_PTR to find out if we want to consider speculative
3468 instructions for scheduling. */
3469 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3470 {
3471 ds_t ds;
3472
3473 ds = EXPR_SPEC_DONE_DS (expr);
3474
3475 /* The probability of a success is too low - don't speculate. */
3476 if ((ds & SPECULATIVE)
3477 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3478 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3479 || (pipelining_p && false
3480 && (ds & DATA_SPEC)
3481 && (ds & CONTROL_SPEC))))
3482 {
3483 av_set_iter_remove (&si);
3484 continue;
3485 }
3486
3487 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3488 && !(ds & BEGIN_DATA))
3489 try_data_p = false;
3490
3491 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3492 && !(ds & BEGIN_CONTROL))
3493 try_control_p = false;
3494 }
3495
3496 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3497 {
3498 ds_t ds;
3499
3500 ds = EXPR_SPEC_DONE_DS (expr);
3501
3502 if (ds & SPECULATIVE)
3503 {
3504 if ((ds & BEGIN_DATA) && !try_data_p)
3505 /* We don't want any data speculative instructions right
3506 now. */
3507 av_set_iter_remove (&si);
3508
3509 if ((ds & BEGIN_CONTROL) && !try_control_p)
3510 /* We don't want any control speculative instructions right
3511 now. */
3512 av_set_iter_remove (&si);
3513 }
3514 }
3515 }
3516
3517 /* Search for any use-like insns in AV_PTR and decide on scheduling
3518 them. Return one when found, and NULL otherwise.
3519 Note that we check here whether a USE could be scheduled to avoid
3520 an infinite loop later. */
3521 static expr_t
3522 process_use_exprs (av_set_t *av_ptr)
3523 {
3524 expr_t expr;
3525 av_set_iterator si;
3526 bool uses_present_p = false;
3527 bool try_uses_p = true;
3528
3529 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3530 {
3531 /* This will also initialize INSN_CODE for later use. */
3532 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3533 {
3534 /* If we have a USE in *AV_PTR that was not scheduled yet,
3535 do so because it will do good only. */
3536 if (EXPR_SCHED_TIMES (expr) <= 0)
3537 {
3538 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3539 return expr;
3540
3541 av_set_iter_remove (&si);
3542 }
3543 else
3544 {
3545 gcc_assert (pipelining_p);
3546
3547 uses_present_p = true;
3548 }
3549 }
3550 else
3551 try_uses_p = false;
3552 }
3553
3554 if (uses_present_p)
3555 {
3556 /* If we don't want to schedule any USEs right now and we have some
3557 in *AV_PTR, remove them, else just return the first one found. */
3558 if (!try_uses_p)
3559 {
3560 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3561 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3562 av_set_iter_remove (&si);
3563 }
3564 else
3565 {
3566 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3567 {
3568 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3569
3570 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3571 return expr;
3572
3573 av_set_iter_remove (&si);
3574 }
3575 }
3576 }
3577
3578 return NULL;
3579 }
3580
3581 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3582 static bool
3583 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3584 {
3585 vinsn_t vinsn;
3586 int n;
3587
3588 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3589 if (VINSN_SEPARABLE_P (vinsn))
3590 {
3591 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3592 return true;
3593 }
3594 else
3595 {
3596 /* For non-separable instructions, the blocking insn can have
3597 another pattern due to substitution, and we can't choose
3598 different register as in the above case. Check all registers
3599 being written instead. */
3600 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3601 VINSN_REG_SETS (EXPR_VINSN (expr))))
3602 return true;
3603 }
3604
3605 return false;
3606 }
3607
3608 #ifdef ENABLE_CHECKING
3609 /* Return true if either of expressions from ORIG_OPS can be blocked
3610 by previously created bookkeeping code. STATIC_PARAMS points to static
3611 parameters of move_op. */
3612 static bool
3613 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3614 {
3615 expr_t expr;
3616 av_set_iterator iter;
3617 moveop_static_params_p sparams;
3618
3619 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3620 created while scheduling on another fence. */
3621 FOR_EACH_EXPR (expr, iter, orig_ops)
3622 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3623 return true;
3624
3625 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3626 sparams = (moveop_static_params_p) static_params;
3627
3628 /* Expressions can be also blocked by bookkeeping created during current
3629 move_op. */
3630 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3631 FOR_EACH_EXPR (expr, iter, orig_ops)
3632 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3633 return true;
3634
3635 /* Expressions in ORIG_OPS may have wrong destination register due to
3636 renaming. Check with the right register instead. */
3637 if (sparams->dest && REG_P (sparams->dest))
3638 {
3639 unsigned regno = REGNO (sparams->dest);
3640 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3641
3642 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3643 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3644 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3645 return true;
3646 }
3647
3648 return false;
3649 }
3650 #endif
3651
3652 /* Clear VINSN_VEC and detach vinsns. */
3653 static void
3654 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3655 {
3656 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3657 if (len > 0)
3658 {
3659 vinsn_t vinsn;
3660 int n;
3661
3662 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3663 vinsn_detach (vinsn);
3664 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3665 }
3666 }
3667
3668 /* Add the vinsn of EXPR to the VINSN_VEC. */
3669 static void
3670 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3671 {
3672 vinsn_attach (EXPR_VINSN (expr));
3673 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3674 }
3675
3676 /* Free the vector representing blocked expressions. */
3677 static void
3678 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3679 {
3680 if (*vinsn_vec)
3681 VEC_free (vinsn_t, heap, *vinsn_vec);
3682 }
3683
3684 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3685
3686 void sel_add_to_insn_priority (rtx insn, int amount)
3687 {
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3689
3690 if (sched_verbose >= 2)
3691 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3692 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3693 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3694 }
3695
3696 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3697 true if there is something to schedule. BNDS and FENCE are current
3698 boundaries and fence, respectively. If we need to stall for some cycles
3699 before an expr from AV would become available, write this number to
3700 *PNEED_STALL. */
3701 static bool
3702 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3703 int *pneed_stall)
3704 {
3705 av_set_iterator si;
3706 expr_t expr;
3707 int sched_next_worked = 0, stalled, n;
3708 static int av_max_prio, est_ticks_till_branch;
3709 int min_need_stall = -1;
3710 deps_t dc = BND_DC (BLIST_BND (bnds));
3711
3712 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3713 already scheduled. */
3714 if (av == NULL)
3715 return false;
3716
3717 /* Empty vector from the previous stuff. */
3718 if (VEC_length (expr_t, vec_av_set) > 0)
3719 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3720
3721 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3722 for each insn. */
3723 gcc_assert (VEC_empty (expr_t, vec_av_set));
3724 FOR_EACH_EXPR (expr, si, av)
3725 {
3726 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3727
3728 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3729
3730 /* Adjust priority using target backend hook. */
3731 sel_target_adjust_priority (expr);
3732 }
3733
3734 /* Sort the vector. */
3735 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3736
3737 /* We record maximal priority of insns in av set for current instruction
3738 group. */
3739 if (FENCE_STARTS_CYCLE_P (fence))
3740 av_max_prio = est_ticks_till_branch = INT_MIN;
3741
3742 /* Filter out inappropriate expressions. Loop's direction is reversed to
3743 visit "best" instructions first. We assume that VEC_unordered_remove
3744 moves last element in place of one being deleted. */
3745 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3746 {
3747 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3748 insn_t insn = EXPR_INSN_RTX (expr);
3749 signed char target_available;
3750 bool is_orig_reg_p = true;
3751 int need_cycles, new_prio;
3752
3753 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3754 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3755 {
3756 VEC_unordered_remove (expr_t, vec_av_set, n);
3757 continue;
3758 }
3759
3760 /* Set number of sched_next insns (just in case there
3761 could be several). */
3762 if (FENCE_SCHED_NEXT (fence))
3763 sched_next_worked++;
3764
3765 /* Check all liveness requirements and try renaming.
3766 FIXME: try to minimize calls to this. */
3767 target_available = EXPR_TARGET_AVAILABLE (expr);
3768
3769 /* If insn was already scheduled on the current fence,
3770 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3771 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3772 target_available = -1;
3773
3774 /* If the availability of the EXPR is invalidated by the insertion of
3775 bookkeeping earlier, make sure that we won't choose this expr for
3776 scheduling if it's not separable, and if it is separable, then
3777 we have to recompute the set of available registers for it. */
3778 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3779 {
3780 VEC_unordered_remove (expr_t, vec_av_set, n);
3781 if (sched_verbose >= 4)
3782 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3783 INSN_UID (insn));
3784 continue;
3785 }
3786
3787 if (target_available == true)
3788 {
3789 /* Do nothing -- we can use an existing register. */
3790 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3791 }
3792 else if (/* Non-separable instruction will never
3793 get another register. */
3794 (target_available == false
3795 && !EXPR_SEPARABLE_P (expr))
3796 /* Don't try to find a register for low-priority expression. */
3797 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3798 /* ??? FIXME: Don't try to rename data speculation. */
3799 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3800 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3801 {
3802 VEC_unordered_remove (expr_t, vec_av_set, n);
3803 if (sched_verbose >= 4)
3804 sel_print ("Expr %d has no suitable target register\n",
3805 INSN_UID (insn));
3806 continue;
3807 }
3808
3809 /* Filter expressions that need to be renamed or speculated when
3810 pipelining, because compensating register copies or speculation
3811 checks are likely to be placed near the beginning of the loop,
3812 causing a stall. */
3813 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3814 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3815 {
3816 /* Estimation of number of cycles until loop branch for
3817 renaming/speculation to be successful. */
3818 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3819
3820 if ((int) current_loop_nest->ninsns < 9)
3821 {
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3827 }
3828
3829 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3830 < need_n_ticks_till_branch * issue_rate / 2
3831 && est_ticks_till_branch < need_n_ticks_till_branch)
3832 {
3833 VEC_unordered_remove (expr_t, vec_av_set, n);
3834 if (sched_verbose >= 4)
3835 sel_print ("Pipelining expr %d will likely cause stall\n",
3836 INSN_UID (insn));
3837 continue;
3838 }
3839 }
3840
3841 /* We want to schedule speculation checks as late as possible. Discard
3842 them from av set if there are instructions with higher priority. */
3843 if (sel_insn_is_speculation_check (insn)
3844 && EXPR_PRIORITY (expr) < av_max_prio)
3845 {
3846 stalled++;
3847 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3848 VEC_unordered_remove (expr_t, vec_av_set, n);
3849 if (sched_verbose >= 4)
3850 sel_print ("Delaying speculation check %d until its first use\n",
3851 INSN_UID (insn));
3852 continue;
3853 }
3854
3855 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3856 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3857 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3858
3859 /* Don't allow any insns whose data is not yet ready.
3860 Check first whether we've already tried them and failed. */
3861 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3862 {
3863 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3864 - FENCE_CYCLE (fence));
3865 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3866 est_ticks_till_branch = MAX (est_ticks_till_branch,
3867 EXPR_PRIORITY (expr) + need_cycles);
3868
3869 if (need_cycles > 0)
3870 {
3871 stalled++;
3872 min_need_stall = (min_need_stall < 0
3873 ? need_cycles
3874 : MIN (min_need_stall, need_cycles));
3875 VEC_unordered_remove (expr_t, vec_av_set, n);
3876
3877 if (sched_verbose >= 4)
3878 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3879 INSN_UID (insn),
3880 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3881 continue;
3882 }
3883 }
3884
3885 /* Now resort to dependence analysis to find whether EXPR might be
3886 stalled due to dependencies from FENCE's context. */
3887 need_cycles = tick_check_p (expr, dc, fence);
3888 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3889
3890 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3891 est_ticks_till_branch = MAX (est_ticks_till_branch,
3892 new_prio);
3893
3894 if (need_cycles > 0)
3895 {
3896 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3897 {
3898 int new_size = INSN_UID (insn) * 3 / 2;
3899
3900 FENCE_READY_TICKS (fence)
3901 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3902 new_size, FENCE_READY_TICKS_SIZE (fence),
3903 sizeof (int));
3904 }
3905 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3906 = FENCE_CYCLE (fence) + need_cycles;
3907
3908 stalled++;
3909 min_need_stall = (min_need_stall < 0
3910 ? need_cycles
3911 : MIN (min_need_stall, need_cycles));
3912
3913 VEC_unordered_remove (expr_t, vec_av_set, n);
3914
3915 if (sched_verbose >= 4)
3916 sel_print ("Expr %d is not ready yet until cycle %d\n",
3917 INSN_UID (insn),
3918 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3919 continue;
3920 }
3921
3922 if (sched_verbose >= 4)
3923 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3924 min_need_stall = 0;
3925 }
3926
3927 /* Clear SCHED_NEXT. */
3928 if (FENCE_SCHED_NEXT (fence))
3929 {
3930 gcc_assert (sched_next_worked == 1);
3931 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3932 }
3933
3934 /* No need to stall if this variable was not initialized. */
3935 if (min_need_stall < 0)
3936 min_need_stall = 0;
3937
3938 if (VEC_empty (expr_t, vec_av_set))
3939 {
3940 /* We need to set *pneed_stall here, because later we skip this code
3941 when ready list is empty. */
3942 *pneed_stall = min_need_stall;
3943 return false;
3944 }
3945 else
3946 gcc_assert (min_need_stall == 0);
3947
3948 /* Sort the vector. */
3949 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3950
3951 if (sched_verbose >= 4)
3952 {
3953 sel_print ("Total ready exprs: %d, stalled: %d\n",
3954 VEC_length (expr_t, vec_av_set), stalled);
3955 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3956 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3957 dump_expr (expr);
3958 sel_print ("\n");
3959 }
3960
3961 *pneed_stall = 0;
3962 return true;
3963 }
3964
3965 /* Convert a vectored and sorted av set to the ready list that
3966 the rest of the backend wants to see. */
3967 static void
3968 convert_vec_av_set_to_ready (void)
3969 {
3970 int n;
3971 expr_t expr;
3972
3973 /* Allocate and fill the ready list from the sorted vector. */
3974 ready.n_ready = VEC_length (expr_t, vec_av_set);
3975 ready.first = ready.n_ready - 1;
3976
3977 gcc_assert (ready.n_ready > 0);
3978
3979 if (ready.n_ready > max_issue_size)
3980 {
3981 max_issue_size = ready.n_ready;
3982 sched_extend_ready_list (ready.n_ready);
3983 }
3984
3985 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3986 {
3987 vinsn_t vi = EXPR_VINSN (expr);
3988 insn_t insn = VINSN_INSN_RTX (vi);
3989
3990 ready_try[n] = 0;
3991 ready.vec[n] = insn;
3992 }
3993 }
3994
3995 /* Initialize ready list from *AV_PTR for the max_issue () call.
3996 If any unrecognizable insn found in *AV_PTR, return it (and skip
3997 max_issue). BND and FENCE are current boundary and fence,
3998 respectively. If we need to stall for some cycles before an expr
3999 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4000 static expr_t
4001 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4002 int *pneed_stall)
4003 {
4004 expr_t expr;
4005
4006 /* We do not support multiple boundaries per fence. */
4007 gcc_assert (BLIST_NEXT (bnds) == NULL);
4008
4009 /* Process expressions required special handling, i.e. pipelined,
4010 speculative and recog() < 0 expressions first. */
4011 process_pipelined_exprs (av_ptr);
4012 process_spec_exprs (av_ptr);
4013
4014 /* A USE could be scheduled immediately. */
4015 expr = process_use_exprs (av_ptr);
4016 if (expr)
4017 {
4018 *pneed_stall = 0;
4019 return expr;
4020 }
4021
4022 /* Turn the av set to a vector for sorting. */
4023 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4024 {
4025 ready.n_ready = 0;
4026 return NULL;
4027 }
4028
4029 /* Build the final ready list. */
4030 convert_vec_av_set_to_ready ();
4031 return NULL;
4032 }
4033
4034 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4035 static bool
4036 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4037 {
4038 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4039 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4040 : FENCE_CYCLE (fence) - 1;
4041 bool res = false;
4042 int sort_p = 0;
4043
4044 if (!targetm.sched.dfa_new_cycle)
4045 return false;
4046
4047 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4048
4049 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4050 insn, last_scheduled_cycle,
4051 FENCE_CYCLE (fence), &sort_p))
4052 {
4053 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4054 advance_one_cycle (fence);
4055 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4056 res = true;
4057 }
4058
4059 return res;
4060 }
4061
4062 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4063 we can issue. FENCE is the current fence. */
4064 static int
4065 invoke_reorder_hooks (fence_t fence)
4066 {
4067 int issue_more;
4068 bool ran_hook = false;
4069
4070 /* Call the reorder hook at the beginning of the cycle, and call
4071 the reorder2 hook in the middle of the cycle. */
4072 if (FENCE_ISSUED_INSNS (fence) == 0)
4073 {
4074 if (targetm.sched.reorder
4075 && !SCHED_GROUP_P (ready_element (&ready, 0))
4076 && ready.n_ready > 1)
4077 {
4078 /* Don't give reorder the most prioritized insn as it can break
4079 pipelining. */
4080 if (pipelining_p)
4081 --ready.n_ready;
4082
4083 issue_more
4084 = targetm.sched.reorder (sched_dump, sched_verbose,
4085 ready_lastpos (&ready),
4086 &ready.n_ready, FENCE_CYCLE (fence));
4087
4088 if (pipelining_p)
4089 ++ready.n_ready;
4090
4091 ran_hook = true;
4092 }
4093 else
4094 /* Initialize can_issue_more for variable_issue. */
4095 issue_more = issue_rate;
4096 }
4097 else if (targetm.sched.reorder2
4098 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4099 {
4100 if (ready.n_ready == 1)
4101 issue_more =
4102 targetm.sched.reorder2 (sched_dump, sched_verbose,
4103 ready_lastpos (&ready),
4104 &ready.n_ready, FENCE_CYCLE (fence));
4105 else
4106 {
4107 if (pipelining_p)
4108 --ready.n_ready;
4109
4110 issue_more =
4111 targetm.sched.reorder2 (sched_dump, sched_verbose,
4112 ready.n_ready
4113 ? ready_lastpos (&ready) : NULL,
4114 &ready.n_ready, FENCE_CYCLE (fence));
4115
4116 if (pipelining_p)
4117 ++ready.n_ready;
4118 }
4119
4120 ran_hook = true;
4121 }
4122 else
4123 issue_more = FENCE_ISSUE_MORE (fence);
4124
4125 /* Ensure that ready list and vec_av_set are in line with each other,
4126 i.e. vec_av_set[i] == ready_element (&ready, i). */
4127 if (issue_more && ran_hook)
4128 {
4129 int i, j, n;
4130 rtx *arr = ready.vec;
4131 expr_t *vec = VEC_address (expr_t, vec_av_set);
4132
4133 for (i = 0, n = ready.n_ready; i < n; i++)
4134 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4135 {
4136 expr_t tmp;
4137
4138 for (j = i; j < n; j++)
4139 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4140 break;
4141 gcc_assert (j < n);
4142
4143 tmp = vec[i];
4144 vec[i] = vec[j];
4145 vec[j] = tmp;
4146 }
4147 }
4148
4149 return issue_more;
4150 }
4151
4152 /* Return an EXPR correponding to INDEX element of ready list, if
4153 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4154 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4155 ready.vec otherwise. */
4156 static inline expr_t
4157 find_expr_for_ready (int index, bool follow_ready_element)
4158 {
4159 expr_t expr;
4160 int real_index;
4161
4162 real_index = follow_ready_element ? ready.first - index : index;
4163
4164 expr = VEC_index (expr_t, vec_av_set, real_index);
4165 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4166
4167 return expr;
4168 }
4169
4170 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4171 of such insns found. */
4172 static int
4173 invoke_dfa_lookahead_guard (void)
4174 {
4175 int i, n;
4176 bool have_hook
4177 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4178
4179 if (sched_verbose >= 2)
4180 sel_print ("ready after reorder: ");
4181
4182 for (i = 0, n = 0; i < ready.n_ready; i++)
4183 {
4184 expr_t expr;
4185 insn_t insn;
4186 int r;
4187
4188 /* In this loop insn is Ith element of the ready list given by
4189 ready_element, not Ith element of ready.vec. */
4190 insn = ready_element (&ready, i);
4191
4192 if (! have_hook || i == 0)
4193 r = 0;
4194 else
4195 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4196
4197 gcc_assert (INSN_CODE (insn) >= 0);
4198
4199 /* Only insns with ready_try = 0 can get here
4200 from fill_ready_list. */
4201 gcc_assert (ready_try [i] == 0);
4202 ready_try[i] = r;
4203 if (!r)
4204 n++;
4205
4206 expr = find_expr_for_ready (i, true);
4207
4208 if (sched_verbose >= 2)
4209 {
4210 dump_vinsn (EXPR_VINSN (expr));
4211 sel_print (":%d; ", ready_try[i]);
4212 }
4213 }
4214
4215 if (sched_verbose >= 2)
4216 sel_print ("\n");
4217 return n;
4218 }
4219
4220 /* Calculate the number of privileged insns and return it. */
4221 static int
4222 calculate_privileged_insns (void)
4223 {
4224 expr_t cur_expr, min_spec_expr = NULL;
4225 int privileged_n = 0, i;
4226
4227 for (i = 0; i < ready.n_ready; i++)
4228 {
4229 if (ready_try[i])
4230 continue;
4231
4232 if (! min_spec_expr)
4233 min_spec_expr = find_expr_for_ready (i, true);
4234
4235 cur_expr = find_expr_for_ready (i, true);
4236
4237 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4238 break;
4239
4240 ++privileged_n;
4241 }
4242
4243 if (i == ready.n_ready)
4244 privileged_n = 0;
4245
4246 if (sched_verbose >= 2)
4247 sel_print ("privileged_n: %d insns with SPEC %d\n",
4248 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4249 return privileged_n;
4250 }
4251
4252 /* Call the rest of the hooks after the choice was made. Return
4253 the number of insns that still can be issued given that the current
4254 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4255 and the insn chosen for scheduling, respectively. */
4256 static int
4257 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4258 {
4259 gcc_assert (INSN_P (best_insn));
4260
4261 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4262 sel_dfa_new_cycle (best_insn, fence);
4263
4264 if (targetm.sched.variable_issue)
4265 {
4266 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4267 issue_more =
4268 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4269 issue_more);
4270 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4271 }
4272 else if (GET_CODE (PATTERN (best_insn)) != USE
4273 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4274 issue_more--;
4275
4276 return issue_more;
4277 }
4278
4279 /* Estimate the cost of issuing INSN on DFA state STATE. */
4280 static int
4281 estimate_insn_cost (rtx insn, state_t state)
4282 {
4283 static state_t temp = NULL;
4284 int cost;
4285
4286 if (!temp)
4287 temp = xmalloc (dfa_state_size);
4288
4289 memcpy (temp, state, dfa_state_size);
4290 cost = state_transition (temp, insn);
4291
4292 if (cost < 0)
4293 return 0;
4294 else if (cost == 0)
4295 return 1;
4296 return cost;
4297 }
4298
4299 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4300 This function properly handles ASMs, USEs etc. */
4301 static int
4302 get_expr_cost (expr_t expr, fence_t fence)
4303 {
4304 rtx insn = EXPR_INSN_RTX (expr);
4305
4306 if (recog_memoized (insn) < 0)
4307 {
4308 if (!FENCE_STARTS_CYCLE_P (fence)
4309 && INSN_ASM_P (insn))
4310 /* This is asm insn which is tryed to be issued on the
4311 cycle not first. Issue it on the next cycle. */
4312 return 1;
4313 else
4314 /* A USE insn, or something else we don't need to
4315 understand. We can't pass these directly to
4316 state_transition because it will trigger a
4317 fatal error for unrecognizable insns. */
4318 return 0;
4319 }
4320 else
4321 return estimate_insn_cost (insn, FENCE_STATE (fence));
4322 }
4323
4324 /* Find the best insn for scheduling, either via max_issue or just take
4325 the most prioritized available. */
4326 static int
4327 choose_best_insn (fence_t fence, int privileged_n, int *index)
4328 {
4329 int can_issue = 0;
4330
4331 if (dfa_lookahead > 0)
4332 {
4333 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4334 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4335 can_issue = max_issue (&ready, privileged_n,
4336 FENCE_STATE (fence), true, index);
4337 if (sched_verbose >= 2)
4338 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4339 can_issue, FENCE_ISSUED_INSNS (fence));
4340 }
4341 else
4342 {
4343 /* We can't use max_issue; just return the first available element. */
4344 int i;
4345
4346 for (i = 0; i < ready.n_ready; i++)
4347 {
4348 expr_t expr = find_expr_for_ready (i, true);
4349
4350 if (get_expr_cost (expr, fence) < 1)
4351 {
4352 can_issue = can_issue_more;
4353 *index = i;
4354
4355 if (sched_verbose >= 2)
4356 sel_print ("using %dth insn from the ready list\n", i + 1);
4357
4358 break;
4359 }
4360 }
4361
4362 if (i == ready.n_ready)
4363 {
4364 can_issue = 0;
4365 *index = -1;
4366 }
4367 }
4368
4369 return can_issue;
4370 }
4371
4372 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4373 BNDS and FENCE are current boundaries and scheduling fence respectively.
4374 Return the expr found and NULL if nothing can be issued atm.
4375 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4376 static expr_t
4377 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4378 int *pneed_stall)
4379 {
4380 expr_t best;
4381
4382 /* Choose the best insn for scheduling via:
4383 1) sorting the ready list based on priority;
4384 2) calling the reorder hook;
4385 3) calling max_issue. */
4386 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4387 if (best == NULL && ready.n_ready > 0)
4388 {
4389 int privileged_n, index;
4390
4391 can_issue_more = invoke_reorder_hooks (fence);
4392 if (can_issue_more > 0)
4393 {
4394 /* Try choosing the best insn until we find one that is could be
4395 scheduled due to liveness restrictions on its destination register.
4396 In the future, we'd like to choose once and then just probe insns
4397 in the order of their priority. */
4398 invoke_dfa_lookahead_guard ();
4399 privileged_n = calculate_privileged_insns ();
4400 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4401 if (can_issue_more)
4402 best = find_expr_for_ready (index, true);
4403 }
4404 /* We had some available insns, so if we can't issue them,
4405 we have a stall. */
4406 if (can_issue_more == 0)
4407 {
4408 best = NULL;
4409 *pneed_stall = 1;
4410 }
4411 }
4412
4413 if (best != NULL)
4414 {
4415 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4416 can_issue_more);
4417 if (targetm.sched.variable_issue
4418 && can_issue_more == 0)
4419 *pneed_stall = 1;
4420 }
4421
4422 if (sched_verbose >= 2)
4423 {
4424 if (best != NULL)
4425 {
4426 sel_print ("Best expression (vliw form): ");
4427 dump_expr (best);
4428 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4429 }
4430 else
4431 sel_print ("No best expr found!\n");
4432 }
4433
4434 return best;
4435 }
4436 \f
4437
4438 /* Functions that implement the core of the scheduler. */
4439
4440
4441 /* Emit an instruction from EXPR with SEQNO and VINSN after
4442 PLACE_TO_INSERT. */
4443 static insn_t
4444 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4445 insn_t place_to_insert)
4446 {
4447 /* This assert fails when we have identical instructions
4448 one of which dominates the other. In this case move_op ()
4449 finds the first instruction and doesn't search for second one.
4450 The solution would be to compute av_set after the first found
4451 insn and, if insn present in that set, continue searching.
4452 For now we workaround this issue in move_op. */
4453 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4454
4455 if (EXPR_WAS_RENAMED (expr))
4456 {
4457 unsigned regno = expr_dest_regno (expr);
4458
4459 if (HARD_REGISTER_NUM_P (regno))
4460 {
4461 df_set_regs_ever_live (regno, true);
4462 reg_rename_tick[regno] = ++reg_rename_this_tick;
4463 }
4464 }
4465
4466 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4467 place_to_insert);
4468 }
4469
4470 /* Return TRUE if BB can hold bookkeeping code. */
4471 static bool
4472 block_valid_for_bookkeeping_p (basic_block bb)
4473 {
4474 insn_t bb_end = BB_END (bb);
4475
4476 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4477 return false;
4478
4479 if (INSN_P (bb_end))
4480 {
4481 if (INSN_SCHED_TIMES (bb_end) > 0)
4482 return false;
4483 }
4484 else
4485 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4486
4487 return true;
4488 }
4489
4490 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4491 into E2->dest, except from E1->src (there may be a sequence of empty basic
4492 blocks between E1->src and E2->dest). Return found block, or NULL if new
4493 one must be created. If LAX holds, don't assume there is a simple path
4494 from E1->src to E2->dest. */
4495 static basic_block
4496 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4497 {
4498 basic_block candidate_block = NULL;
4499 edge e;
4500
4501 /* Loop over edges from E1 to E2, inclusive. */
4502 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4503 {
4504 if (EDGE_COUNT (e->dest->preds) == 2)
4505 {
4506 if (candidate_block == NULL)
4507 candidate_block = (EDGE_PRED (e->dest, 0) == e
4508 ? EDGE_PRED (e->dest, 1)->src
4509 : EDGE_PRED (e->dest, 0)->src);
4510 else
4511 /* Found additional edge leading to path from e1 to e2
4512 from aside. */
4513 return NULL;
4514 }
4515 else if (EDGE_COUNT (e->dest->preds) > 2)
4516 /* Several edges leading to path from e1 to e2 from aside. */
4517 return NULL;
4518
4519 if (e == e2)
4520 return ((!lax || candidate_block)
4521 && block_valid_for_bookkeeping_p (candidate_block)
4522 ? candidate_block
4523 : NULL);
4524
4525 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4526 return NULL;
4527 }
4528
4529 if (lax)
4530 return NULL;
4531
4532 gcc_unreachable ();
4533 }
4534
4535 /* Create new basic block for bookkeeping code for path(s) incoming into
4536 E2->dest, except from E1->src. Return created block. */
4537 static basic_block
4538 create_block_for_bookkeeping (edge e1, edge e2)
4539 {
4540 basic_block new_bb, bb = e2->dest;
4541
4542 /* Check that we don't spoil the loop structure. */
4543 if (current_loop_nest)
4544 {
4545 basic_block latch = current_loop_nest->latch;
4546
4547 /* We do not split header. */
4548 gcc_assert (e2->dest != current_loop_nest->header);
4549
4550 /* We do not redirect the only edge to the latch block. */
4551 gcc_assert (e1->dest != latch
4552 || !single_pred_p (latch)
4553 || e1 != single_pred_edge (latch));
4554 }
4555
4556 /* Split BB to insert BOOK_INSN there. */
4557 new_bb = sched_split_block (bb, NULL);
4558
4559 /* Move note_list from the upper bb. */
4560 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4561 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4562 BB_NOTE_LIST (bb) = NULL_RTX;
4563
4564 gcc_assert (e2->dest == bb);
4565
4566 /* Skip block for bookkeeping copy when leaving E1->src. */
4567 if (e1->flags & EDGE_FALLTHRU)
4568 sel_redirect_edge_and_branch_force (e1, new_bb);
4569 else
4570 sel_redirect_edge_and_branch (e1, new_bb);
4571
4572 gcc_assert (e1->dest == new_bb);
4573 gcc_assert (sel_bb_empty_p (bb));
4574
4575 /* To keep basic block numbers in sync between debug and non-debug
4576 compilations, we have to rotate blocks here. Consider that we
4577 started from (a,b)->d, (c,d)->e, and d contained only debug
4578 insns. It would have been removed before if the debug insns
4579 weren't there, so we'd have split e rather than d. So what we do
4580 now is to swap the block numbers of new_bb and
4581 single_succ(new_bb) == e, so that the insns that were in e before
4582 get the new block number. */
4583
4584 if (MAY_HAVE_DEBUG_INSNS)
4585 {
4586 basic_block succ;
4587 insn_t insn = sel_bb_head (new_bb);
4588 insn_t last;
4589
4590 if (DEBUG_INSN_P (insn)
4591 && single_succ_p (new_bb)
4592 && (succ = single_succ (new_bb))
4593 && succ != EXIT_BLOCK_PTR
4594 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4595 {
4596 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4597 insn = NEXT_INSN (insn);
4598
4599 if (insn == last)
4600 {
4601 sel_global_bb_info_def gbi;
4602 sel_region_bb_info_def rbi;
4603 int i;
4604
4605 if (sched_verbose >= 2)
4606 sel_print ("Swapping block ids %i and %i\n",
4607 new_bb->index, succ->index);
4608
4609 i = new_bb->index;
4610 new_bb->index = succ->index;
4611 succ->index = i;
4612
4613 SET_BASIC_BLOCK (new_bb->index, new_bb);
4614 SET_BASIC_BLOCK (succ->index, succ);
4615
4616 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4617 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4618 sizeof (gbi));
4619 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4620
4621 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4622 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4623 sizeof (rbi));
4624 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4625
4626 i = BLOCK_TO_BB (new_bb->index);
4627 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4628 BLOCK_TO_BB (succ->index) = i;
4629
4630 i = CONTAINING_RGN (new_bb->index);
4631 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4632 CONTAINING_RGN (succ->index) = i;
4633
4634 for (i = 0; i < current_nr_blocks; i++)
4635 if (BB_TO_BLOCK (i) == succ->index)
4636 BB_TO_BLOCK (i) = new_bb->index;
4637 else if (BB_TO_BLOCK (i) == new_bb->index)
4638 BB_TO_BLOCK (i) = succ->index;
4639
4640 FOR_BB_INSNS (new_bb, insn)
4641 if (INSN_P (insn))
4642 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4643
4644 FOR_BB_INSNS (succ, insn)
4645 if (INSN_P (insn))
4646 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4647
4648 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4649 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4650
4651 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4652 && LABEL_P (BB_HEAD (succ)));
4653
4654 if (sched_verbose >= 4)
4655 sel_print ("Swapping code labels %i and %i\n",
4656 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4658
4659 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4660 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4661 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4662 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4663 }
4664 }
4665 }
4666
4667 return bb;
4668 }
4669
4670 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4671 into E2->dest, except from E1->src. */
4672 static insn_t
4673 find_place_for_bookkeeping (edge e1, edge e2)
4674 {
4675 insn_t place_to_insert;
4676 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4677 create new basic block, but insert bookkeeping there. */
4678 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4679
4680 if (book_block)
4681 {
4682 place_to_insert = BB_END (book_block);
4683
4684 /* Don't use a block containing only debug insns for
4685 bookkeeping, this causes scheduling differences between debug
4686 and non-debug compilations, for the block would have been
4687 removed already. */
4688 if (DEBUG_INSN_P (place_to_insert))
4689 {
4690 rtx insn = sel_bb_head (book_block);
4691
4692 while (insn != place_to_insert &&
4693 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4694 insn = NEXT_INSN (insn);
4695
4696 if (insn == place_to_insert)
4697 book_block = NULL;
4698 }
4699 }
4700
4701 if (!book_block)
4702 {
4703 book_block = create_block_for_bookkeeping (e1, e2);
4704 place_to_insert = BB_END (book_block);
4705 if (sched_verbose >= 9)
4706 sel_print ("New block is %i, split from bookkeeping block %i\n",
4707 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4708 }
4709 else
4710 {
4711 if (sched_verbose >= 9)
4712 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4713 }
4714
4715 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4716 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4717 place_to_insert = PREV_INSN (place_to_insert);
4718
4719 return place_to_insert;
4720 }
4721
4722 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4723 for JOIN_POINT. */
4724 static int
4725 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4726 {
4727 int seqno;
4728 rtx next;
4729
4730 /* Check if we are about to insert bookkeeping copy before a jump, and use
4731 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4732 next = NEXT_INSN (place_to_insert);
4733 if (INSN_P (next)
4734 && JUMP_P (next)
4735 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4736 {
4737 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4738 seqno = INSN_SEQNO (next);
4739 }
4740 else if (INSN_SEQNO (join_point) > 0)
4741 seqno = INSN_SEQNO (join_point);
4742 else
4743 {
4744 seqno = get_seqno_by_preds (place_to_insert);
4745
4746 /* Sometimes the fences can move in such a way that there will be
4747 no instructions with positive seqno around this bookkeeping.
4748 This means that there will be no way to get to it by a regular
4749 fence movement. Never mind because we pick up such pieces for
4750 rescheduling anyways, so any positive value will do for now. */
4751 if (seqno < 0)
4752 {
4753 gcc_assert (pipelining_p);
4754 seqno = 1;
4755 }
4756 }
4757
4758 gcc_assert (seqno > 0);
4759 return seqno;
4760 }
4761
4762 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4763 NEW_SEQNO to it. Return created insn. */
4764 static insn_t
4765 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4766 {
4767 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4768
4769 vinsn_t new_vinsn
4770 = create_vinsn_from_insn_rtx (new_insn_rtx,
4771 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4772
4773 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4774 place_to_insert);
4775
4776 INSN_SCHED_TIMES (new_insn) = 0;
4777 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4778
4779 return new_insn;
4780 }
4781
4782 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4783 E2->dest, except from E1->src (there may be a sequence of empty blocks
4784 between E1->src and E2->dest). Return block containing the copy.
4785 All scheduler data is initialized for the newly created insn. */
4786 static basic_block
4787 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4788 {
4789 insn_t join_point, place_to_insert, new_insn;
4790 int new_seqno;
4791 bool need_to_exchange_data_sets;
4792
4793 if (sched_verbose >= 4)
4794 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4795 e2->dest->index);
4796
4797 join_point = sel_bb_head (e2->dest);
4798 place_to_insert = find_place_for_bookkeeping (e1, e2);
4799 if (!place_to_insert)
4800 return NULL;
4801 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4802 need_to_exchange_data_sets
4803 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4804
4805 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4806
4807 /* When inserting bookkeeping insn in new block, av sets should be
4808 following: old basic block (that now holds bookkeeping) data sets are
4809 the same as was before generation of bookkeeping, and new basic block
4810 (that now hold all other insns of old basic block) data sets are
4811 invalid. So exchange data sets for these basic blocks as sel_split_block
4812 mistakenly exchanges them in this case. Cannot do it earlier because
4813 when single instruction is added to new basic block it should hold NULL
4814 lv_set. */
4815 if (need_to_exchange_data_sets)
4816 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4817 BLOCK_FOR_INSN (join_point));
4818
4819 stat_bookkeeping_copies++;
4820 return BLOCK_FOR_INSN (new_insn);
4821 }
4822
4823 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4824 on FENCE, but we are unable to copy them. */
4825 static void
4826 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4827 {
4828 expr_t expr;
4829 av_set_iterator i;
4830
4831 /* An expression does not need bookkeeping if it is available on all paths
4832 from current block to original block and current block dominates
4833 original block. We check availability on all paths by examining
4834 EXPR_SPEC; this is not equivalent, because it may be positive even
4835 if expr is available on all paths (but if expr is not available on
4836 any path, EXPR_SPEC will be positive). */
4837
4838 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4839 {
4840 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4841 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4842 && (EXPR_SPEC (expr)
4843 || !EXPR_ORIG_BB_INDEX (expr)
4844 || !dominated_by_p (CDI_DOMINATORS,
4845 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4846 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4847 {
4848 if (sched_verbose >= 4)
4849 sel_print ("Expr %d removed because it would need bookkeeping, which "
4850 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4851 av_set_iter_remove (&i);
4852 }
4853 }
4854 }
4855
4856 /* Moving conditional jump through some instructions.
4857
4858 Consider example:
4859
4860 ... <- current scheduling point
4861 NOTE BASIC BLOCK: <- bb header
4862 (p8) add r14=r14+0x9;;
4863 (p8) mov [r14]=r23
4864 (!p8) jump L1;;
4865 NOTE BASIC BLOCK:
4866 ...
4867
4868 We can schedule jump one cycle earlier, than mov, because they cannot be
4869 executed together as their predicates are mutually exclusive.
4870
4871 This is done in this way: first, new fallthrough basic block is created
4872 after jump (it is always can be done, because there already should be a
4873 fallthrough block, where control flow goes in case of predicate being true -
4874 in our example; otherwise there should be a dependence between those
4875 instructions and jump and we cannot schedule jump right now);
4876 next, all instructions between jump and current scheduling point are moved
4877 to this new block. And the result is this:
4878
4879 NOTE BASIC BLOCK:
4880 (!p8) jump L1 <- current scheduling point
4881 NOTE BASIC BLOCK: <- bb header
4882 (p8) add r14=r14+0x9;;
4883 (p8) mov [r14]=r23
4884 NOTE BASIC BLOCK:
4885 ...
4886 */
4887 static void
4888 move_cond_jump (rtx insn, bnd_t bnd)
4889 {
4890 edge ft_edge;
4891 basic_block block_from, block_next, block_new, block_bnd, bb;
4892 rtx next, prev, link, head;
4893
4894 block_from = BLOCK_FOR_INSN (insn);
4895 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4896 prev = BND_TO (bnd);
4897
4898 #ifdef ENABLE_CHECKING
4899 /* Moving of jump should not cross any other jumps or beginnings of new
4900 basic blocks. The only exception is when we move a jump through
4901 mutually exclusive insns along fallthru edges. */
4902 if (block_from != block_bnd)
4903 {
4904 bb = block_from;
4905 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4906 link = PREV_INSN (link))
4907 {
4908 if (INSN_P (link))
4909 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4910 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4911 {
4912 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4913 bb = BLOCK_FOR_INSN (link);
4914 }
4915 }
4916 }
4917 #endif
4918
4919 /* Jump is moved to the boundary. */
4920 next = PREV_INSN (insn);
4921 BND_TO (bnd) = insn;
4922
4923 ft_edge = find_fallthru_edge_from (block_from);
4924 block_next = ft_edge->dest;
4925 /* There must be a fallthrough block (or where should go
4926 control flow in case of false jump predicate otherwise?). */
4927 gcc_assert (block_next);
4928
4929 /* Create new empty basic block after source block. */
4930 block_new = sel_split_edge (ft_edge);
4931 gcc_assert (block_new->next_bb == block_next
4932 && block_from->next_bb == block_new);
4933
4934 /* Move all instructions except INSN to BLOCK_NEW. */
4935 bb = block_bnd;
4936 head = BB_HEAD (block_new);
4937 while (bb != block_from->next_bb)
4938 {
4939 rtx from, to;
4940 from = bb == block_bnd ? prev : sel_bb_head (bb);
4941 to = bb == block_from ? next : sel_bb_end (bb);
4942
4943 /* The jump being moved can be the first insn in the block.
4944 In this case we don't have to move anything in this block. */
4945 if (NEXT_INSN (to) != from)
4946 {
4947 reorder_insns (from, to, head);
4948
4949 for (link = to; link != head; link = PREV_INSN (link))
4950 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4951 head = to;
4952 }
4953
4954 /* Cleanup possibly empty blocks left. */
4955 block_next = bb->next_bb;
4956 if (bb != block_from)
4957 tidy_control_flow (bb, false);
4958 bb = block_next;
4959 }
4960
4961 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4962 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4963
4964 gcc_assert (!sel_bb_empty_p (block_from)
4965 && !sel_bb_empty_p (block_new));
4966
4967 /* Update data sets for BLOCK_NEW to represent that INSN and
4968 instructions from the other branch of INSN is no longer
4969 available at BLOCK_NEW. */
4970 BB_AV_LEVEL (block_new) = global_level;
4971 gcc_assert (BB_LV_SET (block_new) == NULL);
4972 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4973 update_data_sets (sel_bb_head (block_new));
4974
4975 /* INSN is a new basic block header - so prepare its data
4976 structures and update availability and liveness sets. */
4977 update_data_sets (insn);
4978
4979 if (sched_verbose >= 4)
4980 sel_print ("Moving jump %d\n", INSN_UID (insn));
4981 }
4982
4983 /* Remove nops generated during move_op for preventing removal of empty
4984 basic blocks. */
4985 static void
4986 remove_temp_moveop_nops (bool full_tidying)
4987 {
4988 int i;
4989 insn_t insn;
4990
4991 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4992 {
4993 gcc_assert (INSN_NOP_P (insn));
4994 return_nop_to_pool (insn, full_tidying);
4995 }
4996
4997 /* Empty the vector. */
4998 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4999 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
5000 VEC_length (insn_t, vec_temp_moveop_nops));
5001 }
5002
5003 /* Records the maximal UID before moving up an instruction. Used for
5004 distinguishing between bookkeeping copies and original insns. */
5005 static int max_uid_before_move_op = 0;
5006
5007 /* Remove from AV_VLIW_P all instructions but next when debug counter
5008 tells us so. Next instruction is fetched from BNDS. */
5009 static void
5010 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5011 {
5012 if (! dbg_cnt (sel_sched_insn_cnt))
5013 /* Leave only the next insn in av_vliw. */
5014 {
5015 av_set_iterator av_it;
5016 expr_t expr;
5017 bnd_t bnd = BLIST_BND (bnds);
5018 insn_t next = BND_TO (bnd);
5019
5020 gcc_assert (BLIST_NEXT (bnds) == NULL);
5021
5022 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5023 if (EXPR_INSN_RTX (expr) != next)
5024 av_set_iter_remove (&av_it);
5025 }
5026 }
5027
5028 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5029 the computed set to *AV_VLIW_P. */
5030 static void
5031 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5032 {
5033 if (sched_verbose >= 2)
5034 {
5035 sel_print ("Boundaries: ");
5036 dump_blist (bnds);
5037 sel_print ("\n");
5038 }
5039
5040 for (; bnds; bnds = BLIST_NEXT (bnds))
5041 {
5042 bnd_t bnd = BLIST_BND (bnds);
5043 av_set_t av1_copy;
5044 insn_t bnd_to = BND_TO (bnd);
5045
5046 /* Rewind BND->TO to the basic block header in case some bookkeeping
5047 instructions were inserted before BND->TO and it needs to be
5048 adjusted. */
5049 if (sel_bb_head_p (bnd_to))
5050 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5051 else
5052 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5053 {
5054 bnd_to = PREV_INSN (bnd_to);
5055 if (sel_bb_head_p (bnd_to))
5056 break;
5057 }
5058
5059 if (BND_TO (bnd) != bnd_to)
5060 {
5061 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5062 FENCE_INSN (fence) = bnd_to;
5063 BND_TO (bnd) = bnd_to;
5064 }
5065
5066 av_set_clear (&BND_AV (bnd));
5067 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5068
5069 av_set_clear (&BND_AV1 (bnd));
5070 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5071
5072 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5073
5074 av1_copy = av_set_copy (BND_AV1 (bnd));
5075 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5076 }
5077
5078 if (sched_verbose >= 2)
5079 {
5080 sel_print ("Available exprs (vliw form): ");
5081 dump_av_set (*av_vliw_p);
5082 sel_print ("\n");
5083 }
5084 }
5085
5086 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5087 expression. When FOR_MOVEOP is true, also replace the register of
5088 expressions found with the register from EXPR_VLIW. */
5089 static av_set_t
5090 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5091 {
5092 av_set_t expr_seq = NULL;
5093 expr_t expr;
5094 av_set_iterator i;
5095
5096 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5097 {
5098 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5099 {
5100 if (for_moveop)
5101 {
5102 /* The sequential expression has the right form to pass
5103 to move_op except when renaming happened. Put the
5104 correct register in EXPR then. */
5105 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5106 {
5107 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5108 {
5109 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5110 stat_renamed_scheduled++;
5111 }
5112 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5113 This is needed when renaming came up with original
5114 register. */
5115 else if (EXPR_TARGET_AVAILABLE (expr)
5116 != EXPR_TARGET_AVAILABLE (expr_vliw))
5117 {
5118 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5119 EXPR_TARGET_AVAILABLE (expr) = 1;
5120 }
5121 }
5122 if (EXPR_WAS_SUBSTITUTED (expr))
5123 stat_substitutions_total++;
5124 }
5125
5126 av_set_add (&expr_seq, expr);
5127
5128 /* With substitution inside insn group, it is possible
5129 that more than one expression in expr_seq will correspond
5130 to expr_vliw. In this case, choose one as the attempt to
5131 move both leads to miscompiles. */
5132 break;
5133 }
5134 }
5135
5136 if (for_moveop && sched_verbose >= 2)
5137 {
5138 sel_print ("Best expression(s) (sequential form): ");
5139 dump_av_set (expr_seq);
5140 sel_print ("\n");
5141 }
5142
5143 return expr_seq;
5144 }
5145
5146
5147 /* Move nop to previous block. */
5148 static void ATTRIBUTE_UNUSED
5149 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5150 {
5151 insn_t prev_insn, next_insn, note;
5152
5153 gcc_assert (sel_bb_head_p (nop)
5154 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5155 note = bb_note (BLOCK_FOR_INSN (nop));
5156 prev_insn = sel_bb_end (prev_bb);
5157 next_insn = NEXT_INSN (nop);
5158 gcc_assert (prev_insn != NULL_RTX
5159 && PREV_INSN (note) == prev_insn);
5160
5161 NEXT_INSN (prev_insn) = nop;
5162 PREV_INSN (nop) = prev_insn;
5163
5164 PREV_INSN (note) = nop;
5165 NEXT_INSN (note) = next_insn;
5166
5167 NEXT_INSN (nop) = note;
5168 PREV_INSN (next_insn) = note;
5169
5170 BB_END (prev_bb) = nop;
5171 BLOCK_FOR_INSN (nop) = prev_bb;
5172 }
5173
5174 /* Prepare a place to insert the chosen expression on BND. */
5175 static insn_t
5176 prepare_place_to_insert (bnd_t bnd)
5177 {
5178 insn_t place_to_insert;
5179
5180 /* Init place_to_insert before calling move_op, as the later
5181 can possibly remove BND_TO (bnd). */
5182 if (/* If this is not the first insn scheduled. */
5183 BND_PTR (bnd))
5184 {
5185 /* Add it after last scheduled. */
5186 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5187 if (DEBUG_INSN_P (place_to_insert))
5188 {
5189 ilist_t l = BND_PTR (bnd);
5190 while ((l = ILIST_NEXT (l)) &&
5191 DEBUG_INSN_P (ILIST_INSN (l)))
5192 ;
5193 if (!l)
5194 place_to_insert = NULL;
5195 }
5196 }
5197 else
5198 place_to_insert = NULL;
5199
5200 if (!place_to_insert)
5201 {
5202 /* Add it before BND_TO. The difference is in the
5203 basic block, where INSN will be added. */
5204 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5205 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5206 == BLOCK_FOR_INSN (BND_TO (bnd)));
5207 }
5208
5209 return place_to_insert;
5210 }
5211
5212 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5213 Return the expression to emit in C_EXPR. */
5214 static bool
5215 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5216 av_set_t expr_seq, expr_t c_expr)
5217 {
5218 bool b, should_move;
5219 unsigned book_uid;
5220 bitmap_iterator bi;
5221 int n_bookkeeping_copies_before_moveop;
5222
5223 /* Make a move. This call will remove the original operation,
5224 insert all necessary bookkeeping instructions and update the
5225 data sets. After that all we have to do is add the operation
5226 at before BND_TO (BND). */
5227 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5228 max_uid_before_move_op = get_max_uid ();
5229 bitmap_clear (current_copies);
5230 bitmap_clear (current_originators);
5231
5232 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5233 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5234
5235 /* We should be able to find the expression we've chosen for
5236 scheduling. */
5237 gcc_assert (b);
5238
5239 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5240 stat_insns_needed_bookkeeping++;
5241
5242 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5243 {
5244 unsigned uid;
5245 bitmap_iterator bi;
5246
5247 /* We allocate these bitmaps lazily. */
5248 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5249 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5250
5251 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5252 current_originators);
5253
5254 /* Transitively add all originators' originators. */
5255 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5256 if (INSN_ORIGINATORS_BY_UID (uid))
5257 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5258 INSN_ORIGINATORS_BY_UID (uid));
5259 }
5260
5261 return should_move;
5262 }
5263
5264
5265 /* Debug a DFA state as an array of bytes. */
5266 static void
5267 debug_state (state_t state)
5268 {
5269 unsigned char *p;
5270 unsigned int i, size = dfa_state_size;
5271
5272 sel_print ("state (%u):", size);
5273 for (i = 0, p = (unsigned char *) state; i < size; i++)
5274 sel_print (" %d", p[i]);
5275 sel_print ("\n");
5276 }
5277
5278 /* Advance state on FENCE with INSN. Return true if INSN is
5279 an ASM, and we should advance state once more. */
5280 static bool
5281 advance_state_on_fence (fence_t fence, insn_t insn)
5282 {
5283 bool asm_p;
5284
5285 if (recog_memoized (insn) >= 0)
5286 {
5287 int res;
5288 state_t temp_state = alloca (dfa_state_size);
5289
5290 gcc_assert (!INSN_ASM_P (insn));
5291 asm_p = false;
5292
5293 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5294 res = state_transition (FENCE_STATE (fence), insn);
5295 gcc_assert (res < 0);
5296
5297 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5298 {
5299 FENCE_ISSUED_INSNS (fence)++;
5300
5301 /* We should never issue more than issue_rate insns. */
5302 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5303 gcc_unreachable ();
5304 }
5305 }
5306 else
5307 {
5308 /* This could be an ASM insn which we'd like to schedule
5309 on the next cycle. */
5310 asm_p = INSN_ASM_P (insn);
5311 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5312 advance_one_cycle (fence);
5313 }
5314
5315 if (sched_verbose >= 2)
5316 debug_state (FENCE_STATE (fence));
5317 if (!DEBUG_INSN_P (insn))
5318 FENCE_STARTS_CYCLE_P (fence) = 0;
5319 FENCE_ISSUE_MORE (fence) = can_issue_more;
5320 return asm_p;
5321 }
5322
5323 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5324 is nonzero if we need to stall after issuing INSN. */
5325 static void
5326 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5327 {
5328 bool asm_p;
5329
5330 /* First, reflect that something is scheduled on this fence. */
5331 asm_p = advance_state_on_fence (fence, insn);
5332 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5333 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5334 if (SCHED_GROUP_P (insn))
5335 {
5336 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5337 SCHED_GROUP_P (insn) = 0;
5338 }
5339 else
5340 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5341 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5342 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5343
5344 /* Set instruction scheduling info. This will be used in bundling,
5345 pipelining, tick computations etc. */
5346 ++INSN_SCHED_TIMES (insn);
5347 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5348 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5349 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5350 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5351
5352 /* This does not account for adjust_cost hooks, just add the biggest
5353 constant the hook may add to the latency. TODO: make this
5354 a target dependent constant. */
5355 INSN_READY_CYCLE (insn)
5356 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5357 ? 1
5358 : maximal_insn_latency (insn) + 1);
5359
5360 /* Change these fields last, as they're used above. */
5361 FENCE_AFTER_STALL_P (fence) = 0;
5362 if (asm_p || need_stall)
5363 advance_one_cycle (fence);
5364
5365 /* Indicate that we've scheduled something on this fence. */
5366 FENCE_SCHEDULED_P (fence) = true;
5367 scheduled_something_on_previous_fence = true;
5368
5369 /* Print debug information when insn's fields are updated. */
5370 if (sched_verbose >= 2)
5371 {
5372 sel_print ("Scheduling insn: ");
5373 dump_insn_1 (insn, 1);
5374 sel_print ("\n");
5375 }
5376 }
5377
5378 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5379 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5380 return it. */
5381 static blist_t *
5382 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5383 blist_t *bnds_tailp)
5384 {
5385 succ_iterator si;
5386 insn_t succ;
5387
5388 advance_deps_context (BND_DC (bnd), insn);
5389 FOR_EACH_SUCC_1 (succ, si, insn,
5390 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5391 {
5392 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5393
5394 ilist_add (&ptr, insn);
5395
5396 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5397 && is_ineligible_successor (succ, ptr))
5398 {
5399 ilist_clear (&ptr);
5400 continue;
5401 }
5402
5403 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5404 {
5405 if (sched_verbose >= 9)
5406 sel_print ("Updating fence insn from %i to %i\n",
5407 INSN_UID (insn), INSN_UID (succ));
5408 FENCE_INSN (fence) = succ;
5409 }
5410 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5411 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5412 }
5413
5414 blist_remove (bndsp);
5415 return bnds_tailp;
5416 }
5417
5418 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5419 static insn_t
5420 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5421 {
5422 av_set_t expr_seq;
5423 expr_t c_expr = XALLOCA (expr_def);
5424 insn_t place_to_insert;
5425 insn_t insn;
5426 bool should_move;
5427
5428 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5429
5430 /* In case of scheduling a jump skipping some other instructions,
5431 prepare CFG. After this, jump is at the boundary and can be
5432 scheduled as usual insn by MOVE_OP. */
5433 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5434 {
5435 insn = EXPR_INSN_RTX (expr_vliw);
5436
5437 /* Speculative jumps are not handled. */
5438 if (insn != BND_TO (bnd)
5439 && !sel_insn_is_speculation_check (insn))
5440 move_cond_jump (insn, bnd);
5441 }
5442
5443 /* Find a place for C_EXPR to schedule. */
5444 place_to_insert = prepare_place_to_insert (bnd);
5445 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5446 clear_expr (c_expr);
5447
5448 /* Add the instruction. The corner case to care about is when
5449 the expr_seq set has more than one expr, and we chose the one that
5450 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5451 we can't use it. Generate the new vinsn. */
5452 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5453 {
5454 vinsn_t vinsn_new;
5455
5456 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5457 change_vinsn_in_expr (expr_vliw, vinsn_new);
5458 should_move = false;
5459 }
5460 if (should_move)
5461 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5462 else
5463 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5464 place_to_insert);
5465
5466 /* Return the nops generated for preserving of data sets back
5467 into pool. */
5468 if (INSN_NOP_P (place_to_insert))
5469 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5470 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5471
5472 av_set_clear (&expr_seq);
5473
5474 /* Save the expression scheduled so to reset target availability if we'll
5475 meet it later on the same fence. */
5476 if (EXPR_WAS_RENAMED (expr_vliw))
5477 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5478
5479 /* Check that the recent movement didn't destroyed loop
5480 structure. */
5481 gcc_assert (!pipelining_p
5482 || current_loop_nest == NULL
5483 || loop_latch_edge (current_loop_nest));
5484 return insn;
5485 }
5486
5487 /* Stall for N cycles on FENCE. */
5488 static void
5489 stall_for_cycles (fence_t fence, int n)
5490 {
5491 int could_more;
5492
5493 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5494 while (n--)
5495 advance_one_cycle (fence);
5496 if (could_more)
5497 FENCE_AFTER_STALL_P (fence) = 1;
5498 }
5499
5500 /* Gather a parallel group of insns at FENCE and assign their seqno
5501 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5502 list for later recalculation of seqnos. */
5503 static void
5504 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5505 {
5506 blist_t bnds = NULL, *bnds_tailp;
5507 av_set_t av_vliw = NULL;
5508 insn_t insn = FENCE_INSN (fence);
5509
5510 if (sched_verbose >= 2)
5511 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5512 INSN_UID (insn), FENCE_CYCLE (fence));
5513
5514 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5515 bnds_tailp = &BLIST_NEXT (bnds);
5516 set_target_context (FENCE_TC (fence));
5517 can_issue_more = FENCE_ISSUE_MORE (fence);
5518 target_bb = INSN_BB (insn);
5519
5520 /* Do while we can add any operation to the current group. */
5521 do
5522 {
5523 blist_t *bnds_tailp1, *bndsp;
5524 expr_t expr_vliw;
5525 int need_stall;
5526 int was_stall = 0, scheduled_insns = 0;
5527 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5528 int max_stall = pipelining_p ? 1 : 3;
5529 bool last_insn_was_debug = false;
5530 bool was_debug_bb_end_p = false;
5531
5532 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5533 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5534 remove_insns_for_debug (bnds, &av_vliw);
5535
5536 /* Return early if we have nothing to schedule. */
5537 if (av_vliw == NULL)
5538 break;
5539
5540 /* Choose the best expression and, if needed, destination register
5541 for it. */
5542 do
5543 {
5544 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5545 if (! expr_vliw && need_stall)
5546 {
5547 /* All expressions required a stall. Do not recompute av sets
5548 as we'll get the same answer (modulo the insns between
5549 the fence and its boundary, which will not be available for
5550 pipelining).
5551 If we are going to stall for too long, break to recompute av
5552 sets and bring more insns for pipelining. */
5553 was_stall++;
5554 if (need_stall <= 3)
5555 stall_for_cycles (fence, need_stall);
5556 else
5557 {
5558 stall_for_cycles (fence, 1);
5559 break;
5560 }
5561 }
5562 }
5563 while (! expr_vliw && need_stall);
5564
5565 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5566 if (!expr_vliw)
5567 {
5568 av_set_clear (&av_vliw);
5569 break;
5570 }
5571
5572 bndsp = &bnds;
5573 bnds_tailp1 = bnds_tailp;
5574
5575 do
5576 /* This code will be executed only once until we'd have several
5577 boundaries per fence. */
5578 {
5579 bnd_t bnd = BLIST_BND (*bndsp);
5580
5581 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5582 {
5583 bndsp = &BLIST_NEXT (*bndsp);
5584 continue;
5585 }
5586
5587 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5588 last_insn_was_debug = DEBUG_INSN_P (insn);
5589 if (last_insn_was_debug)
5590 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5591 update_fence_and_insn (fence, insn, need_stall);
5592 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5593
5594 /* Add insn to the list of scheduled on this cycle instructions. */
5595 ilist_add (*scheduled_insns_tailpp, insn);
5596 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5597 }
5598 while (*bndsp != *bnds_tailp1);
5599
5600 av_set_clear (&av_vliw);
5601 if (!last_insn_was_debug)
5602 scheduled_insns++;
5603
5604 /* We currently support information about candidate blocks only for
5605 one 'target_bb' block. Hence we can't schedule after jump insn,
5606 as this will bring two boundaries and, hence, necessity to handle
5607 information for two or more blocks concurrently. */
5608 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5609 || (was_stall
5610 && (was_stall >= max_stall
5611 || scheduled_insns >= max_insns)))
5612 break;
5613 }
5614 while (bnds);
5615
5616 gcc_assert (!FENCE_BNDS (fence));
5617
5618 /* Update boundaries of the FENCE. */
5619 while (bnds)
5620 {
5621 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5622
5623 if (ptr)
5624 {
5625 insn = ILIST_INSN (ptr);
5626
5627 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5628 ilist_add (&FENCE_BNDS (fence), insn);
5629 }
5630
5631 blist_remove (&bnds);
5632 }
5633
5634 /* Update target context on the fence. */
5635 reset_target_context (FENCE_TC (fence), false);
5636 }
5637
5638 /* All exprs in ORIG_OPS must have the same destination register or memory.
5639 Return that destination. */
5640 static rtx
5641 get_dest_from_orig_ops (av_set_t orig_ops)
5642 {
5643 rtx dest = NULL_RTX;
5644 av_set_iterator av_it;
5645 expr_t expr;
5646 bool first_p = true;
5647
5648 FOR_EACH_EXPR (expr, av_it, orig_ops)
5649 {
5650 rtx x = EXPR_LHS (expr);
5651
5652 if (first_p)
5653 {
5654 first_p = false;
5655 dest = x;
5656 }
5657 else
5658 gcc_assert (dest == x
5659 || (dest != NULL_RTX && x != NULL_RTX
5660 && rtx_equal_p (dest, x)));
5661 }
5662
5663 return dest;
5664 }
5665
5666 /* Update data sets for the bookkeeping block and record those expressions
5667 which become no longer available after inserting this bookkeeping. */
5668 static void
5669 update_and_record_unavailable_insns (basic_block book_block)
5670 {
5671 av_set_iterator i;
5672 av_set_t old_av_set = NULL;
5673 expr_t cur_expr;
5674 rtx bb_end = sel_bb_end (book_block);
5675
5676 /* First, get correct liveness in the bookkeeping block. The problem is
5677 the range between the bookeeping insn and the end of block. */
5678 update_liveness_on_insn (bb_end);
5679 if (control_flow_insn_p (bb_end))
5680 update_liveness_on_insn (PREV_INSN (bb_end));
5681
5682 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5683 fence above, where we may choose to schedule an insn which is
5684 actually blocked from moving up with the bookkeeping we create here. */
5685 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5686 {
5687 old_av_set = av_set_copy (BB_AV_SET (book_block));
5688 update_data_sets (sel_bb_head (book_block));
5689
5690 /* Traverse all the expressions in the old av_set and check whether
5691 CUR_EXPR is in new AV_SET. */
5692 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5693 {
5694 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5695 EXPR_VINSN (cur_expr));
5696
5697 if (! new_expr
5698 /* In this case, we can just turn off the E_T_A bit, but we can't
5699 represent this information with the current vector. */
5700 || EXPR_TARGET_AVAILABLE (new_expr)
5701 != EXPR_TARGET_AVAILABLE (cur_expr))
5702 /* Unfortunately, the below code could be also fired up on
5703 separable insns.
5704 FIXME: add an example of how this could happen. */
5705 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5706 }
5707
5708 av_set_clear (&old_av_set);
5709 }
5710 }
5711
5712 /* The main effect of this function is that sparams->c_expr is merged
5713 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5714 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5715 lparams->c_expr_merged is copied back to sparams->c_expr after all
5716 successors has been traversed. lparams->c_expr_local is an expr allocated
5717 on stack in the caller function, and is used if there is more than one
5718 successor.
5719
5720 SUCC is one of the SUCCS_NORMAL successors of INSN,
5721 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5722 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5723 static void
5724 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5725 insn_t succ ATTRIBUTE_UNUSED,
5726 int moveop_drv_call_res,
5727 cmpd_local_params_p lparams, void *static_params)
5728 {
5729 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5730
5731 /* Nothing to do, if original expr wasn't found below. */
5732 if (moveop_drv_call_res != 1)
5733 return;
5734
5735 /* If this is a first successor. */
5736 if (!lparams->c_expr_merged)
5737 {
5738 lparams->c_expr_merged = sparams->c_expr;
5739 sparams->c_expr = lparams->c_expr_local;
5740 }
5741 else
5742 {
5743 /* We must merge all found expressions to get reasonable
5744 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5745 do so then we can first find the expr with epsilon
5746 speculation success probability and only then with the
5747 good probability. As a result the insn will get epsilon
5748 probability and will never be scheduled because of
5749 weakness_cutoff in find_best_expr.
5750
5751 We call merge_expr_data here instead of merge_expr
5752 because due to speculation C_EXPR and X may have the
5753 same insns with different speculation types. And as of
5754 now such insns are considered non-equal.
5755
5756 However, EXPR_SCHED_TIMES is different -- we must get
5757 SCHED_TIMES from a real insn, not a bookkeeping copy.
5758 We force this here. Instead, we may consider merging
5759 SCHED_TIMES to the maximum instead of minimum in the
5760 below function. */
5761 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5762
5763 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5764 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5765 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5766
5767 clear_expr (sparams->c_expr);
5768 }
5769 }
5770
5771 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5772
5773 SUCC is one of the SUCCS_NORMAL successors of INSN,
5774 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5775 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5776 STATIC_PARAMS contain USED_REGS set. */
5777 static void
5778 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5779 int moveop_drv_call_res,
5780 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5781 void *static_params)
5782 {
5783 regset succ_live;
5784 fur_static_params_p sparams = (fur_static_params_p) static_params;
5785
5786 /* Here we compute live regsets only for branches that do not lie
5787 on the code motion paths. These branches correspond to value
5788 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5789 for such branches code_motion_path_driver is not called. */
5790 if (moveop_drv_call_res != 0)
5791 return;
5792
5793 /* Mark all registers that do not meet the following condition:
5794 (3) not live on the other path of any conditional branch
5795 that is passed by the operation, in case original
5796 operations are not present on both paths of the
5797 conditional branch. */
5798 succ_live = compute_live (succ);
5799 IOR_REG_SET (sparams->used_regs, succ_live);
5800 }
5801
5802 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5803 into SP->CEXPR. */
5804 static void
5805 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5806 {
5807 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5808
5809 sp->c_expr = lp->c_expr_merged;
5810 }
5811
5812 /* Track bookkeeping copies created, insns scheduled, and blocks for
5813 rescheduling when INSN is found by move_op. */
5814 static void
5815 track_scheduled_insns_and_blocks (rtx insn)
5816 {
5817 /* Even if this insn can be a copy that will be removed during current move_op,
5818 we still need to count it as an originator. */
5819 bitmap_set_bit (current_originators, INSN_UID (insn));
5820
5821 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5822 {
5823 /* Note that original block needs to be rescheduled, as we pulled an
5824 instruction out of it. */
5825 if (INSN_SCHED_TIMES (insn) > 0)
5826 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5827 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5828 num_insns_scheduled++;
5829 }
5830
5831 /* For instructions we must immediately remove insn from the
5832 stream, so subsequent update_data_sets () won't include this
5833 insn into av_set.
5834 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5835 if (INSN_UID (insn) > max_uid_before_move_op)
5836 stat_bookkeeping_copies--;
5837 }
5838
5839 /* Emit a register-register copy for INSN if needed. Return true if
5840 emitted one. PARAMS is the move_op static parameters. */
5841 static bool
5842 maybe_emit_renaming_copy (rtx insn,
5843 moveop_static_params_p params)
5844 {
5845 bool insn_emitted = false;
5846 rtx cur_reg;
5847
5848 /* Bail out early when expression can not be renamed at all. */
5849 if (!EXPR_SEPARABLE_P (params->c_expr))
5850 return false;
5851
5852 cur_reg = expr_dest_reg (params->c_expr);
5853 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5854
5855 /* If original operation has expr and the register chosen for
5856 that expr is not original operation's dest reg, substitute
5857 operation's right hand side with the register chosen. */
5858 if (REGNO (params->dest) != REGNO (cur_reg))
5859 {
5860 insn_t reg_move_insn, reg_move_insn_rtx;
5861
5862 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5863 params->dest);
5864 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5865 INSN_EXPR (insn),
5866 INSN_SEQNO (insn),
5867 insn);
5868 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5869 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5870
5871 insn_emitted = true;
5872 params->was_renamed = true;
5873 }
5874
5875 return insn_emitted;
5876 }
5877
5878 /* Emit a speculative check for INSN speculated as EXPR if needed.
5879 Return true if we've emitted one. PARAMS is the move_op static
5880 parameters. */
5881 static bool
5882 maybe_emit_speculative_check (rtx insn, expr_t expr,
5883 moveop_static_params_p params)
5884 {
5885 bool insn_emitted = false;
5886 insn_t x;
5887 ds_t check_ds;
5888
5889 check_ds = get_spec_check_type_for_insn (insn, expr);
5890 if (check_ds != 0)
5891 {
5892 /* A speculation check should be inserted. */
5893 x = create_speculation_check (params->c_expr, check_ds, insn);
5894 insn_emitted = true;
5895 }
5896 else
5897 {
5898 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5899 x = insn;
5900 }
5901
5902 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5903 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5904 return insn_emitted;
5905 }
5906
5907 /* Handle transformations that leave an insn in place of original
5908 insn such as renaming/speculation. Return true if one of such
5909 transformations actually happened, and we have emitted this insn. */
5910 static bool
5911 handle_emitting_transformations (rtx insn, expr_t expr,
5912 moveop_static_params_p params)
5913 {
5914 bool insn_emitted = false;
5915
5916 insn_emitted = maybe_emit_renaming_copy (insn, params);
5917 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5918
5919 return insn_emitted;
5920 }
5921
5922 /* If INSN is the only insn in the basic block (not counting JUMP,
5923 which may be a jump to next insn, and DEBUG_INSNs), we want to
5924 leave a NOP there till the return to fill_insns. */
5925
5926 static bool
5927 need_nop_to_preserve_insn_bb (rtx insn)
5928 {
5929 insn_t bb_head, bb_end, bb_next, in_next;
5930 basic_block bb = BLOCK_FOR_INSN (insn);
5931
5932 bb_head = sel_bb_head (bb);
5933 bb_end = sel_bb_end (bb);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5939 bb_head = NEXT_INSN (bb_head);
5940
5941 if (bb_head == bb_end)
5942 return true;
5943
5944 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5945 bb_end = PREV_INSN (bb_end);
5946
5947 if (bb_head == bb_end)
5948 return true;
5949
5950 bb_next = NEXT_INSN (bb_head);
5951 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5952 bb_next = NEXT_INSN (bb_next);
5953
5954 if (bb_next == bb_end && JUMP_P (bb_end))
5955 return true;
5956
5957 in_next = NEXT_INSN (insn);
5958 while (DEBUG_INSN_P (in_next))
5959 in_next = NEXT_INSN (in_next);
5960
5961 if (IN_CURRENT_FENCE_P (in_next))
5962 return true;
5963
5964 return false;
5965 }
5966
5967 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5968 is not removed but reused when INSN is re-emitted. */
5969 static void
5970 remove_insn_from_stream (rtx insn, bool only_disconnect)
5971 {
5972 /* If there's only one insn in the BB, make sure that a nop is
5973 inserted into it, so the basic block won't disappear when we'll
5974 delete INSN below with sel_remove_insn. It should also survive
5975 till the return to fill_insns. */
5976 if (need_nop_to_preserve_insn_bb (insn))
5977 {
5978 insn_t nop = get_nop_from_pool (insn);
5979 gcc_assert (INSN_NOP_P (nop));
5980 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5981 }
5982
5983 sel_remove_insn (insn, only_disconnect, false);
5984 }
5985
5986 /* This function is called when original expr is found.
5987 INSN - current insn traversed, EXPR - the corresponding expr found.
5988 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5989 is static parameters of move_op. */
5990 static void
5991 move_op_orig_expr_found (insn_t insn, expr_t expr,
5992 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5993 void *static_params)
5994 {
5995 bool only_disconnect, insn_emitted;
5996 moveop_static_params_p params = (moveop_static_params_p) static_params;
5997
5998 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5999 track_scheduled_insns_and_blocks (insn);
6000 insn_emitted = handle_emitting_transformations (insn, expr, params);
6001 only_disconnect = (params->uid == INSN_UID (insn)
6002 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
6003
6004 /* Mark that we've disconnected an insn. */
6005 if (only_disconnect)
6006 params->uid = -1;
6007 remove_insn_from_stream (insn, only_disconnect);
6008 }
6009
6010 /* The function is called when original expr is found.
6011 INSN - current insn traversed, EXPR - the corresponding expr found,
6012 crosses_call and original_insns in STATIC_PARAMS are updated. */
6013 static void
6014 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6015 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6016 void *static_params)
6017 {
6018 fur_static_params_p params = (fur_static_params_p) static_params;
6019 regset tmp;
6020
6021 if (CALL_P (insn))
6022 params->crosses_call = true;
6023
6024 def_list_add (params->original_insns, insn, params->crosses_call);
6025
6026 /* Mark the registers that do not meet the following condition:
6027 (2) not among the live registers of the point
6028 immediately following the first original operation on
6029 a given downward path, except for the original target
6030 register of the operation. */
6031 tmp = get_clear_regset_from_pool ();
6032 compute_live_below_insn (insn, tmp);
6033 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6034 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6035 IOR_REG_SET (params->used_regs, tmp);
6036 return_regset_to_pool (tmp);
6037
6038 /* (*1) We need to add to USED_REGS registers that are read by
6039 INSN's lhs. This may lead to choosing wrong src register.
6040 E.g. (scheduling const expr enabled):
6041
6042 429: ax=0x0 <- Can't use AX for this expr (0x0)
6043 433: dx=[bp-0x18]
6044 427: [ax+dx+0x1]=ax
6045 REG_DEAD: ax
6046 168: di=dx
6047 REG_DEAD: dx
6048 */
6049 /* FIXME: see comment above and enable MEM_P
6050 in vinsn_separable_p. */
6051 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6052 || !MEM_P (INSN_LHS (insn)));
6053 }
6054
6055 /* This function is called on the ascending pass, before returning from
6056 current basic block. */
6057 static void
6058 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6059 void *static_params)
6060 {
6061 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6062 basic_block book_block = NULL;
6063
6064 /* When we have removed the boundary insn for scheduling, which also
6065 happened to be the end insn in its bb, we don't need to update sets. */
6066 if (!lparams->removed_last_insn
6067 && lparams->e1
6068 && sel_bb_head_p (insn))
6069 {
6070 /* We should generate bookkeeping code only if we are not at the
6071 top level of the move_op. */
6072 if (sel_num_cfg_preds_gt_1 (insn))
6073 book_block = generate_bookkeeping_insn (sparams->c_expr,
6074 lparams->e1, lparams->e2);
6075 /* Update data sets for the current insn. */
6076 update_data_sets (insn);
6077 }
6078
6079 /* If bookkeeping code was inserted, we need to update av sets of basic
6080 block that received bookkeeping. After generation of bookkeeping insn,
6081 bookkeeping block does not contain valid av set because we are not following
6082 the original algorithm in every detail with regards to e.g. renaming
6083 simple reg-reg copies. Consider example:
6084
6085 bookkeeping block scheduling fence
6086 \ /
6087 \ join /
6088 ----------
6089 | |
6090 ----------
6091 / \
6092 / \
6093 r1 := r2 r1 := r3
6094
6095 We try to schedule insn "r1 := r3" on the current
6096 scheduling fence. Also, note that av set of bookkeeping block
6097 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6098 been scheduled, the CFG is as follows:
6099
6100 r1 := r3 r1 := r3
6101 bookkeeping block scheduling fence
6102 \ /
6103 \ join /
6104 ----------
6105 | |
6106 ----------
6107 / \
6108 / \
6109 r1 := r2
6110
6111 Here, insn "r1 := r3" was scheduled at the current scheduling point
6112 and bookkeeping code was generated at the bookeeping block. This
6113 way insn "r1 := r2" is no longer available as a whole instruction
6114 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6115 This situation is handled by calling update_data_sets.
6116
6117 Since update_data_sets is called only on the bookkeeping block, and
6118 it also may have predecessors with av_sets, containing instructions that
6119 are no longer available, we save all such expressions that become
6120 unavailable during data sets update on the bookkeeping block in
6121 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6122 expressions for scheduling. This allows us to avoid recomputation of
6123 av_sets outside the code motion path. */
6124
6125 if (book_block)
6126 update_and_record_unavailable_insns (book_block);
6127
6128 /* If INSN was previously marked for deletion, it's time to do it. */
6129 if (lparams->removed_last_insn)
6130 insn = PREV_INSN (insn);
6131
6132 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6133 kill a block with a single nop in which the insn should be emitted. */
6134 if (lparams->e1)
6135 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6136 }
6137
6138 /* This function is called on the ascending pass, before returning from the
6139 current basic block. */
6140 static void
6141 fur_at_first_insn (insn_t insn,
6142 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6143 void *static_params ATTRIBUTE_UNUSED)
6144 {
6145 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6146 || AV_LEVEL (insn) == -1);
6147 }
6148
6149 /* Called on the backward stage of recursion to call moveup_expr for insn
6150 and sparams->c_expr. */
6151 static void
6152 move_op_ascend (insn_t insn, void *static_params)
6153 {
6154 enum MOVEUP_EXPR_CODE res;
6155 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6156
6157 if (! INSN_NOP_P (insn))
6158 {
6159 res = moveup_expr_cached (sparams->c_expr, insn, false);
6160 gcc_assert (res != MOVEUP_EXPR_NULL);
6161 }
6162
6163 /* Update liveness for this insn as it was invalidated. */
6164 update_liveness_on_insn (insn);
6165 }
6166
6167 /* This function is called on enter to the basic block.
6168 Returns TRUE if this block already have been visited and
6169 code_motion_path_driver should return 1, FALSE otherwise. */
6170 static int
6171 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6172 void *static_params, bool visited_p)
6173 {
6174 fur_static_params_p sparams = (fur_static_params_p) static_params;
6175
6176 if (visited_p)
6177 {
6178 /* If we have found something below this block, there should be at
6179 least one insn in ORIGINAL_INSNS. */
6180 gcc_assert (*sparams->original_insns);
6181
6182 /* Adjust CROSSES_CALL, since we may have come to this block along
6183 different path. */
6184 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6185 |= sparams->crosses_call;
6186 }
6187 else
6188 local_params->old_original_insns = *sparams->original_insns;
6189
6190 return 1;
6191 }
6192
6193 /* Same as above but for move_op. */
6194 static int
6195 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6196 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6197 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6198 {
6199 if (visited_p)
6200 return -1;
6201 return 1;
6202 }
6203
6204 /* This function is called while descending current basic block if current
6205 insn is not the original EXPR we're searching for.
6206
6207 Return value: FALSE, if code_motion_path_driver should perform a local
6208 cleanup and return 0 itself;
6209 TRUE, if code_motion_path_driver should continue. */
6210 static bool
6211 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6212 void *static_params)
6213 {
6214 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6215
6216 #ifdef ENABLE_CHECKING
6217 sparams->failed_insn = insn;
6218 #endif
6219
6220 /* If we're scheduling separate expr, in order to generate correct code
6221 we need to stop the search at bookkeeping code generated with the
6222 same destination register or memory. */
6223 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6224 return false;
6225 return true;
6226 }
6227
6228 /* This function is called while descending current basic block if current
6229 insn is not the original EXPR we're searching for.
6230
6231 Return value: TRUE (code_motion_path_driver should continue). */
6232 static bool
6233 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6234 {
6235 bool mutexed;
6236 expr_t r;
6237 av_set_iterator avi;
6238 fur_static_params_p sparams = (fur_static_params_p) static_params;
6239
6240 if (CALL_P (insn))
6241 sparams->crosses_call = true;
6242 else if (DEBUG_INSN_P (insn))
6243 return true;
6244
6245 /* If current insn we are looking at cannot be executed together
6246 with original insn, then we can skip it safely.
6247
6248 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6249 INSN = (!p6) r14 = r14 + 1;
6250
6251 Here we can schedule ORIG_OP with lhs = r14, though only
6252 looking at the set of used and set registers of INSN we must
6253 forbid it. So, add set/used in INSN registers to the
6254 untouchable set only if there is an insn in ORIG_OPS that can
6255 affect INSN. */
6256 mutexed = true;
6257 FOR_EACH_EXPR (r, avi, orig_ops)
6258 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6259 {
6260 mutexed = false;
6261 break;
6262 }
6263
6264 /* Mark all registers that do not meet the following condition:
6265 (1) Not set or read on any path from xi to an instance of the
6266 original operation. */
6267 if (!mutexed)
6268 {
6269 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6272 }
6273
6274 return true;
6275 }
6276
6277 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6278 struct code_motion_path_driver_info_def move_op_hooks = {
6279 move_op_on_enter,
6280 move_op_orig_expr_found,
6281 move_op_orig_expr_not_found,
6282 move_op_merge_succs,
6283 move_op_after_merge_succs,
6284 move_op_ascend,
6285 move_op_at_first_insn,
6286 SUCCS_NORMAL,
6287 "move_op"
6288 };
6289
6290 /* Hooks and data to perform find_used_regs operations
6291 with code_motion_path_driver. */
6292 struct code_motion_path_driver_info_def fur_hooks = {
6293 fur_on_enter,
6294 fur_orig_expr_found,
6295 fur_orig_expr_not_found,
6296 fur_merge_succs,
6297 NULL, /* fur_after_merge_succs */
6298 NULL, /* fur_ascend */
6299 fur_at_first_insn,
6300 SUCCS_ALL,
6301 "find_used_regs"
6302 };
6303
6304 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6305 code_motion_path_driver is called recursively. Original operation
6306 was found at least on one path that is starting with one of INSN's
6307 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6308 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6309 of either move_op or find_used_regs depending on the caller.
6310
6311 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6312 know for sure at this point. */
6313 static int
6314 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6315 ilist_t path, void *static_params)
6316 {
6317 int res = 0;
6318 succ_iterator succ_i;
6319 rtx succ;
6320 basic_block bb;
6321 int old_index;
6322 unsigned old_succs;
6323
6324 struct cmpd_local_params lparams;
6325 expr_def _x;
6326
6327 lparams.c_expr_local = &_x;
6328 lparams.c_expr_merged = NULL;
6329
6330 /* We need to process only NORMAL succs for move_op, and collect live
6331 registers from ALL branches (including those leading out of the
6332 region) for find_used_regs.
6333
6334 In move_op, there can be a case when insn's bb number has changed
6335 due to created bookkeeping. This happens very rare, as we need to
6336 move expression from the beginning to the end of the same block.
6337 Rescan successors in this case. */
6338
6339 rescan:
6340 bb = BLOCK_FOR_INSN (insn);
6341 old_index = bb->index;
6342 old_succs = EDGE_COUNT (bb->succs);
6343
6344 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6345 {
6346 int b;
6347
6348 lparams.e1 = succ_i.e1;
6349 lparams.e2 = succ_i.e2;
6350
6351 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6352 current region). */
6353 if (succ_i.current_flags == SUCCS_NORMAL)
6354 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6355 static_params);
6356 else
6357 b = 0;
6358
6359 /* Merge c_expres found or unify live register sets from different
6360 successors. */
6361 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6362 static_params);
6363 if (b == 1)
6364 res = b;
6365 else if (b == -1 && res != 1)
6366 res = b;
6367
6368 /* We have simplified the control flow below this point. In this case,
6369 the iterator becomes invalid. We need to try again. */
6370 if (BLOCK_FOR_INSN (insn)->index != old_index
6371 || EDGE_COUNT (bb->succs) != old_succs)
6372 goto rescan;
6373 }
6374
6375 #ifdef ENABLE_CHECKING
6376 /* Here, RES==1 if original expr was found at least for one of the
6377 successors. After the loop, RES may happen to have zero value
6378 only if at some point the expr searched is present in av_set, but is
6379 not found below. In most cases, this situation is an error.
6380 The exception is when the original operation is blocked by
6381 bookkeeping generated for another fence or for another path in current
6382 move_op. */
6383 gcc_assert (res == 1
6384 || (res == 0
6385 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6386 static_params))
6387 || res == -1);
6388 #endif
6389
6390 /* Merge data, clean up, etc. */
6391 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6392 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6393
6394 return res;
6395 }
6396
6397
6398 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6399 is the pointer to the av set with expressions we were looking for,
6400 PATH_P is the pointer to the traversed path. */
6401 static inline void
6402 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6403 {
6404 ilist_remove (path_p);
6405 av_set_clear (orig_ops_p);
6406 }
6407
6408 /* The driver function that implements move_op or find_used_regs
6409 functionality dependent whether code_motion_path_driver_INFO is set to
6410 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6411 of code (CFG traversal etc) that are shared among both functions. INSN
6412 is the insn we're starting the search from, ORIG_OPS are the expressions
6413 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6414 parameters of the driver, and STATIC_PARAMS are static parameters of
6415 the caller.
6416
6417 Returns whether original instructions were found. Note that top-level
6418 code_motion_path_driver always returns true. */
6419 static int
6420 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6421 cmpd_local_params_p local_params_in,
6422 void *static_params)
6423 {
6424 expr_t expr = NULL;
6425 basic_block bb = BLOCK_FOR_INSN (insn);
6426 insn_t first_insn, bb_tail, before_first;
6427 bool removed_last_insn = false;
6428
6429 if (sched_verbose >= 6)
6430 {
6431 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6432 dump_insn (insn);
6433 sel_print (",");
6434 dump_av_set (orig_ops);
6435 sel_print (")\n");
6436 }
6437
6438 gcc_assert (orig_ops);
6439
6440 /* If no original operations exist below this insn, return immediately. */
6441 if (is_ineligible_successor (insn, path))
6442 {
6443 if (sched_verbose >= 6)
6444 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6445 return false;
6446 }
6447
6448 /* The block can have invalid av set, in which case it was created earlier
6449 during move_op. Return immediately. */
6450 if (sel_bb_head_p (insn))
6451 {
6452 if (! AV_SET_VALID_P (insn))
6453 {
6454 if (sched_verbose >= 6)
6455 sel_print ("Returned from block %d as it had invalid av set\n",
6456 bb->index);
6457 return false;
6458 }
6459
6460 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6461 {
6462 /* We have already found an original operation on this branch, do not
6463 go any further and just return TRUE here. If we don't stop here,
6464 function can have exponential behaviour even on the small code
6465 with many different paths (e.g. with data speculation and
6466 recovery blocks). */
6467 if (sched_verbose >= 6)
6468 sel_print ("Block %d already visited in this traversal\n", bb->index);
6469 if (code_motion_path_driver_info->on_enter)
6470 return code_motion_path_driver_info->on_enter (insn,
6471 local_params_in,
6472 static_params,
6473 true);
6474 }
6475 }
6476
6477 if (code_motion_path_driver_info->on_enter)
6478 code_motion_path_driver_info->on_enter (insn, local_params_in,
6479 static_params, false);
6480 orig_ops = av_set_copy (orig_ops);
6481
6482 /* Filter the orig_ops set. */
6483 if (AV_SET_VALID_P (insn))
6484 av_set_intersect (&orig_ops, AV_SET (insn));
6485
6486 /* If no more original ops, return immediately. */
6487 if (!orig_ops)
6488 {
6489 if (sched_verbose >= 6)
6490 sel_print ("No intersection with av set of block %d\n", bb->index);
6491 return false;
6492 }
6493
6494 /* For non-speculative insns we have to leave only one form of the
6495 original operation, because if we don't, we may end up with
6496 different C_EXPRes and, consequently, with bookkeepings for different
6497 expression forms along the same code motion path. That may lead to
6498 generation of incorrect code. So for each code motion we stick to
6499 the single form of the instruction, except for speculative insns
6500 which we need to keep in different forms with all speculation
6501 types. */
6502 av_set_leave_one_nonspec (&orig_ops);
6503
6504 /* It is not possible that all ORIG_OPS are filtered out. */
6505 gcc_assert (orig_ops);
6506
6507 /* It is enough to place only heads and tails of visited basic blocks into
6508 the PATH. */
6509 ilist_add (&path, insn);
6510 first_insn = insn;
6511 bb_tail = sel_bb_end (bb);
6512
6513 /* Descend the basic block in search of the original expr; this part
6514 corresponds to the part of the original move_op procedure executed
6515 before the recursive call. */
6516 for (;;)
6517 {
6518 /* Look at the insn and decide if it could be an ancestor of currently
6519 scheduling operation. If it is so, then the insn "dest = op" could
6520 either be replaced with "dest = reg", because REG now holds the result
6521 of OP, or just removed, if we've scheduled the insn as a whole.
6522
6523 If this insn doesn't contain currently scheduling OP, then proceed
6524 with searching and look at its successors. Operations we're searching
6525 for could have changed when moving up through this insn via
6526 substituting. In this case, perform unsubstitution on them first.
6527
6528 When traversing the DAG below this insn is finished, insert
6529 bookkeeping code, if the insn is a joint point, and remove
6530 leftovers. */
6531
6532 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6533 if (expr)
6534 {
6535 insn_t last_insn = PREV_INSN (insn);
6536
6537 /* We have found the original operation. */
6538 if (sched_verbose >= 6)
6539 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6540
6541 code_motion_path_driver_info->orig_expr_found
6542 (insn, expr, local_params_in, static_params);
6543
6544 /* Step back, so on the way back we'll start traversing from the
6545 previous insn (or we'll see that it's bb_note and skip that
6546 loop). */
6547 if (insn == first_insn)
6548 {
6549 first_insn = NEXT_INSN (last_insn);
6550 removed_last_insn = sel_bb_end_p (last_insn);
6551 }
6552 insn = last_insn;
6553 break;
6554 }
6555 else
6556 {
6557 /* We haven't found the original expr, continue descending the basic
6558 block. */
6559 if (code_motion_path_driver_info->orig_expr_not_found
6560 (insn, orig_ops, static_params))
6561 {
6562 /* Av set ops could have been changed when moving through this
6563 insn. To find them below it, we have to un-substitute them. */
6564 undo_transformations (&orig_ops, insn);
6565 }
6566 else
6567 {
6568 /* Clean up and return, if the hook tells us to do so. It may
6569 happen if we've encountered the previously created
6570 bookkeeping. */
6571 code_motion_path_driver_cleanup (&orig_ops, &path);
6572 return -1;
6573 }
6574
6575 gcc_assert (orig_ops);
6576 }
6577
6578 /* Stop at insn if we got to the end of BB. */
6579 if (insn == bb_tail)
6580 break;
6581
6582 insn = NEXT_INSN (insn);
6583 }
6584
6585 /* Here INSN either points to the insn before the original insn (may be
6586 bb_note, if original insn was a bb_head) or to the bb_end. */
6587 if (!expr)
6588 {
6589 int res;
6590
6591 gcc_assert (insn == sel_bb_end (bb));
6592
6593 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6594 it's already in PATH then). */
6595 if (insn != first_insn)
6596 ilist_add (&path, insn);
6597
6598 /* Process_successors should be able to find at least one
6599 successor for which code_motion_path_driver returns TRUE. */
6600 res = code_motion_process_successors (insn, orig_ops,
6601 path, static_params);
6602
6603 /* Remove bb tail from path. */
6604 if (insn != first_insn)
6605 ilist_remove (&path);
6606
6607 if (res != 1)
6608 {
6609 /* This is the case when one of the original expr is no longer available
6610 due to bookkeeping created on this branch with the same register.
6611 In the original algorithm, which doesn't have update_data_sets call
6612 on a bookkeeping block, it would simply result in returning
6613 FALSE when we've encountered a previously generated bookkeeping
6614 insn in moveop_orig_expr_not_found. */
6615 code_motion_path_driver_cleanup (&orig_ops, &path);
6616 return res;
6617 }
6618 }
6619
6620 /* Don't need it any more. */
6621 av_set_clear (&orig_ops);
6622
6623 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6624 the beginning of the basic block. */
6625 before_first = PREV_INSN (first_insn);
6626 while (insn != before_first)
6627 {
6628 if (code_motion_path_driver_info->ascend)
6629 code_motion_path_driver_info->ascend (insn, static_params);
6630
6631 insn = PREV_INSN (insn);
6632 }
6633
6634 /* Now we're at the bb head. */
6635 insn = first_insn;
6636 ilist_remove (&path);
6637 local_params_in->removed_last_insn = removed_last_insn;
6638 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6639
6640 /* This should be the very last operation as at bb head we could change
6641 the numbering by creating bookkeeping blocks. */
6642 if (removed_last_insn)
6643 insn = PREV_INSN (insn);
6644 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6645 return true;
6646 }
6647
6648 /* Move up the operations from ORIG_OPS set traversing the dag starting
6649 from INSN. PATH represents the edges traversed so far.
6650 DEST is the register chosen for scheduling the current expr. Insert
6651 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6652 C_EXPR is how it looks like at the given cfg point.
6653 Set *SHOULD_MOVE to indicate whether we have only disconnected
6654 one of the insns found.
6655
6656 Returns whether original instructions were found, which is asserted
6657 to be true in the caller. */
6658 static bool
6659 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6660 rtx dest, expr_t c_expr, bool *should_move)
6661 {
6662 struct moveop_static_params sparams;
6663 struct cmpd_local_params lparams;
6664 bool res;
6665
6666 /* Init params for code_motion_path_driver. */
6667 sparams.dest = dest;
6668 sparams.c_expr = c_expr;
6669 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6670 #ifdef ENABLE_CHECKING
6671 sparams.failed_insn = NULL;
6672 #endif
6673 sparams.was_renamed = false;
6674 lparams.e1 = NULL;
6675
6676 /* We haven't visited any blocks yet. */
6677 bitmap_clear (code_motion_visited_blocks);
6678
6679 /* Set appropriate hooks and data. */
6680 code_motion_path_driver_info = &move_op_hooks;
6681 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6682
6683 if (sparams.was_renamed)
6684 EXPR_WAS_RENAMED (expr_vliw) = true;
6685
6686 *should_move = (sparams.uid == -1);
6687
6688 return res;
6689 }
6690 \f
6691
6692 /* Functions that work with regions. */
6693
6694 /* Current number of seqno used in init_seqno and init_seqno_1. */
6695 static int cur_seqno;
6696
6697 /* A helper for init_seqno. Traverse the region starting from BB and
6698 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6699 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6700 static void
6701 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6702 {
6703 int bbi = BLOCK_TO_BB (bb->index);
6704 insn_t insn, note = bb_note (bb);
6705 insn_t succ_insn;
6706 succ_iterator si;
6707
6708 SET_BIT (visited_bbs, bbi);
6709 if (blocks_to_reschedule)
6710 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6711
6712 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6713 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6714 {
6715 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6716 int succ_bbi = BLOCK_TO_BB (succ->index);
6717
6718 gcc_assert (in_current_region_p (succ));
6719
6720 if (!TEST_BIT (visited_bbs, succ_bbi))
6721 {
6722 gcc_assert (succ_bbi > bbi);
6723
6724 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6725 }
6726 else if (blocks_to_reschedule)
6727 bitmap_set_bit (forced_ebb_heads, succ->index);
6728 }
6729
6730 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6731 INSN_SEQNO (insn) = cur_seqno--;
6732 }
6733
6734 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6735 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6736 which we're rescheduling when pipelining, FROM is the block where
6737 traversing region begins (it may not be the head of the region when
6738 pipelining, but the head of the loop instead).
6739
6740 Returns the maximal seqno found. */
6741 static int
6742 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6743 {
6744 sbitmap visited_bbs;
6745 bitmap_iterator bi;
6746 unsigned bbi;
6747
6748 visited_bbs = sbitmap_alloc (current_nr_blocks);
6749
6750 if (blocks_to_reschedule)
6751 {
6752 sbitmap_ones (visited_bbs);
6753 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6754 {
6755 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6756 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6757 }
6758 }
6759 else
6760 {
6761 sbitmap_zero (visited_bbs);
6762 from = EBB_FIRST_BB (0);
6763 }
6764
6765 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6766 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6767 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6768
6769 sbitmap_free (visited_bbs);
6770 return sched_max_luid - 1;
6771 }
6772
6773 /* Initialize scheduling parameters for current region. */
6774 static void
6775 sel_setup_region_sched_flags (void)
6776 {
6777 enable_schedule_as_rhs_p = 1;
6778 bookkeeping_p = 1;
6779 pipelining_p = (bookkeeping_p
6780 && (flag_sel_sched_pipelining != 0)
6781 && current_loop_nest != NULL);
6782 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6783 max_ws = MAX_WS;
6784 }
6785
6786 /* Return true if all basic blocks of current region are empty. */
6787 static bool
6788 current_region_empty_p (void)
6789 {
6790 int i;
6791 for (i = 0; i < current_nr_blocks; i++)
6792 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6793 return false;
6794
6795 return true;
6796 }
6797
6798 /* Prepare and verify loop nest for pipelining. */
6799 static void
6800 setup_current_loop_nest (int rgn)
6801 {
6802 current_loop_nest = get_loop_nest_for_rgn (rgn);
6803
6804 if (!current_loop_nest)
6805 return;
6806
6807 /* If this loop has any saved loop preheaders from nested loops,
6808 add these basic blocks to the current region. */
6809 sel_add_loop_preheaders ();
6810
6811 /* Check that we're starting with a valid information. */
6812 gcc_assert (loop_latch_edge (current_loop_nest));
6813 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6814 }
6815
6816 /* Compute instruction priorities for current region. */
6817 static void
6818 sel_compute_priorities (int rgn)
6819 {
6820 sched_rgn_compute_dependencies (rgn);
6821
6822 /* Compute insn priorities in haifa style. Then free haifa style
6823 dependencies that we've calculated for this. */
6824 compute_priorities ();
6825
6826 if (sched_verbose >= 5)
6827 debug_rgn_dependencies (0);
6828
6829 free_rgn_deps ();
6830 }
6831
6832 /* Init scheduling data for RGN. Returns true when this region should not
6833 be scheduled. */
6834 static bool
6835 sel_region_init (int rgn)
6836 {
6837 int i;
6838 bb_vec_t bbs;
6839
6840 rgn_setup_region (rgn);
6841
6842 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6843 do region initialization here so the region can be bundled correctly,
6844 but we'll skip the scheduling in sel_sched_region (). */
6845 if (current_region_empty_p ())
6846 return true;
6847
6848 if (flag_sel_sched_pipelining)
6849 setup_current_loop_nest (rgn);
6850
6851 sel_setup_region_sched_flags ();
6852
6853 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6854
6855 for (i = 0; i < current_nr_blocks; i++)
6856 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6857
6858 sel_init_bbs (bbs, NULL);
6859
6860 /* Initialize luids and dependence analysis which both sel-sched and haifa
6861 need. */
6862 sched_init_luids (bbs, NULL, NULL, NULL);
6863 sched_deps_init (false);
6864
6865 /* Initialize haifa data. */
6866 rgn_setup_sched_infos ();
6867 sel_set_sched_flags ();
6868 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6869
6870 sel_compute_priorities (rgn);
6871 init_deps_global ();
6872
6873 /* Main initialization. */
6874 sel_setup_sched_infos ();
6875 sel_init_global_and_expr (bbs);
6876
6877 VEC_free (basic_block, heap, bbs);
6878
6879 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6880
6881 /* Init correct liveness sets on each instruction of a single-block loop.
6882 This is the only situation when we can't update liveness when calling
6883 compute_live for the first insn of the loop. */
6884 if (current_loop_nest)
6885 {
6886 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6887 ? 1
6888 : 0);
6889
6890 if (current_nr_blocks == header + 1)
6891 update_liveness_on_insn
6892 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6893 }
6894
6895 /* Set hooks so that no newly generated insn will go out unnoticed. */
6896 sel_register_cfg_hooks ();
6897
6898 /* !!! We call target.sched.init () for the whole region, but we invoke
6899 targetm.sched.finish () for every ebb. */
6900 if (targetm.sched.init)
6901 /* None of the arguments are actually used in any target. */
6902 targetm.sched.init (sched_dump, sched_verbose, -1);
6903
6904 first_emitted_uid = get_max_uid () + 1;
6905 preheader_removed = false;
6906
6907 /* Reset register allocation ticks array. */
6908 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6909 reg_rename_this_tick = 0;
6910
6911 bitmap_initialize (forced_ebb_heads, 0);
6912 bitmap_clear (forced_ebb_heads);
6913
6914 setup_nop_vinsn ();
6915 current_copies = BITMAP_ALLOC (NULL);
6916 current_originators = BITMAP_ALLOC (NULL);
6917 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6918
6919 return false;
6920 }
6921
6922 /* Simplify insns after the scheduling. */
6923 static void
6924 simplify_changed_insns (void)
6925 {
6926 int i;
6927
6928 for (i = 0; i < current_nr_blocks; i++)
6929 {
6930 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6931 rtx insn;
6932
6933 FOR_BB_INSNS (bb, insn)
6934 if (INSN_P (insn))
6935 {
6936 expr_t expr = INSN_EXPR (insn);
6937
6938 if (EXPR_WAS_SUBSTITUTED (expr))
6939 validate_simplify_insn (insn);
6940 }
6941 }
6942 }
6943
6944 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6945 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6946 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6947 static void
6948 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6949 {
6950 insn_t head, tail;
6951 basic_block bb1 = bb;
6952 if (sched_verbose >= 2)
6953 sel_print ("Finishing schedule in bbs: ");
6954
6955 do
6956 {
6957 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6958
6959 if (sched_verbose >= 2)
6960 sel_print ("%d; ", bb1->index);
6961 }
6962 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6963
6964 if (sched_verbose >= 2)
6965 sel_print ("\n");
6966
6967 get_ebb_head_tail (bb, bb1, &head, &tail);
6968
6969 current_sched_info->head = head;
6970 current_sched_info->tail = tail;
6971 current_sched_info->prev_head = PREV_INSN (head);
6972 current_sched_info->next_tail = NEXT_INSN (tail);
6973 }
6974
6975 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6976 static void
6977 reset_sched_cycles_in_current_ebb (void)
6978 {
6979 int last_clock = 0;
6980 int haifa_last_clock = -1;
6981 int haifa_clock = 0;
6982 int issued_insns = 0;
6983 insn_t insn;
6984
6985 if (targetm.sched.init)
6986 {
6987 /* None of the arguments are actually used in any target.
6988 NB: We should have md_reset () hook for cases like this. */
6989 targetm.sched.init (sched_dump, sched_verbose, -1);
6990 }
6991
6992 state_reset (curr_state);
6993 advance_state (curr_state);
6994
6995 for (insn = current_sched_info->head;
6996 insn != current_sched_info->next_tail;
6997 insn = NEXT_INSN (insn))
6998 {
6999 int cost, haifa_cost;
7000 int sort_p;
7001 bool asm_p, real_insn, after_stall, all_issued;
7002 int clock;
7003
7004 if (!INSN_P (insn))
7005 continue;
7006
7007 asm_p = false;
7008 real_insn = recog_memoized (insn) >= 0;
7009 clock = INSN_SCHED_CYCLE (insn);
7010
7011 cost = clock - last_clock;
7012
7013 /* Initialize HAIFA_COST. */
7014 if (! real_insn)
7015 {
7016 asm_p = INSN_ASM_P (insn);
7017
7018 if (asm_p)
7019 /* This is asm insn which *had* to be scheduled first
7020 on the cycle. */
7021 haifa_cost = 1;
7022 else
7023 /* This is a use/clobber insn. It should not change
7024 cost. */
7025 haifa_cost = 0;
7026 }
7027 else
7028 haifa_cost = estimate_insn_cost (insn, curr_state);
7029
7030 /* Stall for whatever cycles we've stalled before. */
7031 after_stall = 0;
7032 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7033 {
7034 haifa_cost = cost;
7035 after_stall = 1;
7036 }
7037 all_issued = issued_insns == issue_rate;
7038 if (haifa_cost == 0 && all_issued)
7039 haifa_cost = 1;
7040 if (haifa_cost > 0)
7041 {
7042 int i = 0;
7043
7044 while (haifa_cost--)
7045 {
7046 advance_state (curr_state);
7047 issued_insns = 0;
7048 i++;
7049
7050 if (sched_verbose >= 2)
7051 {
7052 sel_print ("advance_state (state_transition)\n");
7053 debug_state (curr_state);
7054 }
7055
7056 /* The DFA may report that e.g. insn requires 2 cycles to be
7057 issued, but on the next cycle it says that insn is ready
7058 to go. Check this here. */
7059 if (!after_stall
7060 && real_insn
7061 && haifa_cost > 0
7062 && estimate_insn_cost (insn, curr_state) == 0)
7063 break;
7064
7065 /* When the data dependency stall is longer than the DFA stall,
7066 and when we have issued exactly issue_rate insns and stalled,
7067 it could be that after this longer stall the insn will again
7068 become unavailable to the DFA restrictions. Looks strange
7069 but happens e.g. on x86-64. So recheck DFA on the last
7070 iteration. */
7071 if ((after_stall || all_issued)
7072 && real_insn
7073 && haifa_cost == 0)
7074 haifa_cost = estimate_insn_cost (insn, curr_state);
7075 }
7076
7077 haifa_clock += i;
7078 if (sched_verbose >= 2)
7079 sel_print ("haifa clock: %d\n", haifa_clock);
7080 }
7081 else
7082 gcc_assert (haifa_cost == 0);
7083
7084 if (sched_verbose >= 2)
7085 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7086
7087 if (targetm.sched.dfa_new_cycle)
7088 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7089 haifa_last_clock, haifa_clock,
7090 &sort_p))
7091 {
7092 advance_state (curr_state);
7093 issued_insns = 0;
7094 haifa_clock++;
7095 if (sched_verbose >= 2)
7096 {
7097 sel_print ("advance_state (dfa_new_cycle)\n");
7098 debug_state (curr_state);
7099 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7100 }
7101 }
7102
7103 if (real_insn)
7104 {
7105 cost = state_transition (curr_state, insn);
7106 issued_insns++;
7107
7108 if (sched_verbose >= 2)
7109 {
7110 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7111 haifa_clock + 1);
7112 debug_state (curr_state);
7113 }
7114 gcc_assert (cost < 0);
7115 }
7116
7117 if (targetm.sched.variable_issue)
7118 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7119
7120 INSN_SCHED_CYCLE (insn) = haifa_clock;
7121
7122 last_clock = clock;
7123 haifa_last_clock = haifa_clock;
7124 }
7125 }
7126
7127 /* Put TImode markers on insns starting a new issue group. */
7128 static void
7129 put_TImodes (void)
7130 {
7131 int last_clock = -1;
7132 insn_t insn;
7133
7134 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7135 insn = NEXT_INSN (insn))
7136 {
7137 int cost, clock;
7138
7139 if (!INSN_P (insn))
7140 continue;
7141
7142 clock = INSN_SCHED_CYCLE (insn);
7143 cost = (last_clock == -1) ? 1 : clock - last_clock;
7144
7145 gcc_assert (cost >= 0);
7146
7147 if (issue_rate > 1
7148 && GET_CODE (PATTERN (insn)) != USE
7149 && GET_CODE (PATTERN (insn)) != CLOBBER)
7150 {
7151 if (reload_completed && cost > 0)
7152 PUT_MODE (insn, TImode);
7153
7154 last_clock = clock;
7155 }
7156
7157 if (sched_verbose >= 2)
7158 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7159 }
7160 }
7161
7162 /* Perform MD_FINISH on EBBs comprising current region. When
7163 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7164 to produce correct sched cycles on insns. */
7165 static void
7166 sel_region_target_finish (bool reset_sched_cycles_p)
7167 {
7168 int i;
7169 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7170
7171 for (i = 0; i < current_nr_blocks; i++)
7172 {
7173 if (bitmap_bit_p (scheduled_blocks, i))
7174 continue;
7175
7176 /* While pipelining outer loops, skip bundling for loop
7177 preheaders. Those will be rescheduled in the outer loop. */
7178 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7179 continue;
7180
7181 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7182
7183 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7184 continue;
7185
7186 if (reset_sched_cycles_p)
7187 reset_sched_cycles_in_current_ebb ();
7188
7189 if (targetm.sched.init)
7190 targetm.sched.init (sched_dump, sched_verbose, -1);
7191
7192 put_TImodes ();
7193
7194 if (targetm.sched.finish)
7195 {
7196 targetm.sched.finish (sched_dump, sched_verbose);
7197
7198 /* Extend luids so that insns generated by the target will
7199 get zero luid. */
7200 sched_init_luids (NULL, NULL, NULL, NULL);
7201 }
7202 }
7203
7204 BITMAP_FREE (scheduled_blocks);
7205 }
7206
7207 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7208 is true, make an additional pass emulating scheduler to get correct insn
7209 cycles for md_finish calls. */
7210 static void
7211 sel_region_finish (bool reset_sched_cycles_p)
7212 {
7213 simplify_changed_insns ();
7214 sched_finish_ready_list ();
7215 free_nop_pool ();
7216
7217 /* Free the vectors. */
7218 if (vec_av_set)
7219 VEC_free (expr_t, heap, vec_av_set);
7220 BITMAP_FREE (current_copies);
7221 BITMAP_FREE (current_originators);
7222 BITMAP_FREE (code_motion_visited_blocks);
7223 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7224 vinsn_vec_free (&vec_target_unavailable_vinsns);
7225
7226 /* If LV_SET of the region head should be updated, do it now because
7227 there will be no other chance. */
7228 {
7229 succ_iterator si;
7230 insn_t insn;
7231
7232 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7233 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7234 {
7235 basic_block bb = BLOCK_FOR_INSN (insn);
7236
7237 if (!BB_LV_SET_VALID_P (bb))
7238 compute_live (insn);
7239 }
7240 }
7241
7242 /* Emulate the Haifa scheduler for bundling. */
7243 if (reload_completed)
7244 sel_region_target_finish (reset_sched_cycles_p);
7245
7246 sel_finish_global_and_expr ();
7247
7248 bitmap_clear (forced_ebb_heads);
7249
7250 free_nop_vinsn ();
7251
7252 finish_deps_global ();
7253 sched_finish_luids ();
7254
7255 sel_finish_bbs ();
7256 BITMAP_FREE (blocks_to_reschedule);
7257
7258 sel_unregister_cfg_hooks ();
7259
7260 max_issue_size = 0;
7261 }
7262 \f
7263
7264 /* Functions that implement the scheduler driver. */
7265
7266 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7267 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7268 of insns scheduled -- these would be postprocessed later. */
7269 static void
7270 schedule_on_fences (flist_t fences, int max_seqno,
7271 ilist_t **scheduled_insns_tailpp)
7272 {
7273 flist_t old_fences = fences;
7274
7275 if (sched_verbose >= 1)
7276 {
7277 sel_print ("\nScheduling on fences: ");
7278 dump_flist (fences);
7279 sel_print ("\n");
7280 }
7281
7282 scheduled_something_on_previous_fence = false;
7283 for (; fences; fences = FLIST_NEXT (fences))
7284 {
7285 fence_t fence = NULL;
7286 int seqno = 0;
7287 flist_t fences2;
7288 bool first_p = true;
7289
7290 /* Choose the next fence group to schedule.
7291 The fact that insn can be scheduled only once
7292 on the cycle is guaranteed by two properties:
7293 1. seqnos of parallel groups decrease with each iteration.
7294 2. If is_ineligible_successor () sees the larger seqno, it
7295 checks if candidate insn is_in_current_fence_p (). */
7296 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7297 {
7298 fence_t f = FLIST_FENCE (fences2);
7299
7300 if (!FENCE_PROCESSED_P (f))
7301 {
7302 int i = INSN_SEQNO (FENCE_INSN (f));
7303
7304 if (first_p || i > seqno)
7305 {
7306 seqno = i;
7307 fence = f;
7308 first_p = false;
7309 }
7310 else
7311 /* ??? Seqnos of different groups should be different. */
7312 gcc_assert (1 || i != seqno);
7313 }
7314 }
7315
7316 gcc_assert (fence);
7317
7318 /* As FENCE is nonnull, SEQNO is initialized. */
7319 seqno -= max_seqno + 1;
7320 fill_insns (fence, seqno, scheduled_insns_tailpp);
7321 FENCE_PROCESSED_P (fence) = true;
7322 }
7323
7324 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7325 don't need to keep bookkeeping-invalidated and target-unavailable
7326 vinsns any more. */
7327 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7328 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7329 }
7330
7331 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7332 static void
7333 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7334 {
7335 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7336
7337 /* The first element is already processed. */
7338 while ((fences = FLIST_NEXT (fences)))
7339 {
7340 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7341
7342 if (*min_seqno > seqno)
7343 *min_seqno = seqno;
7344 else if (*max_seqno < seqno)
7345 *max_seqno = seqno;
7346 }
7347 }
7348
7349 /* Calculate new fences from FENCES. */
7350 static flist_t
7351 calculate_new_fences (flist_t fences, int orig_max_seqno)
7352 {
7353 flist_t old_fences = fences;
7354 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7355
7356 flist_tail_init (new_fences);
7357 for (; fences; fences = FLIST_NEXT (fences))
7358 {
7359 fence_t fence = FLIST_FENCE (fences);
7360 insn_t insn;
7361
7362 if (!FENCE_BNDS (fence))
7363 {
7364 /* This fence doesn't have any successors. */
7365 if (!FENCE_SCHEDULED_P (fence))
7366 {
7367 /* Nothing was scheduled on this fence. */
7368 int seqno;
7369
7370 insn = FENCE_INSN (fence);
7371 seqno = INSN_SEQNO (insn);
7372 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7373
7374 if (sched_verbose >= 1)
7375 sel_print ("Fence %d[%d] has not changed\n",
7376 INSN_UID (insn),
7377 BLOCK_NUM (insn));
7378 move_fence_to_fences (fences, new_fences);
7379 }
7380 }
7381 else
7382 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7383 }
7384
7385 flist_clear (&old_fences);
7386 return FLIST_TAIL_HEAD (new_fences);
7387 }
7388
7389 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7390 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7391 the highest seqno used in a region. Return the updated highest seqno. */
7392 static int
7393 update_seqnos_and_stage (int min_seqno, int max_seqno,
7394 int highest_seqno_in_use,
7395 ilist_t *pscheduled_insns)
7396 {
7397 int new_hs;
7398 ilist_iterator ii;
7399 insn_t insn;
7400
7401 /* Actually, new_hs is the seqno of the instruction, that was
7402 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7403 if (*pscheduled_insns)
7404 {
7405 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7406 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7407 gcc_assert (new_hs > highest_seqno_in_use);
7408 }
7409 else
7410 new_hs = highest_seqno_in_use;
7411
7412 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7413 {
7414 gcc_assert (INSN_SEQNO (insn) < 0);
7415 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7416 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7417
7418 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7419 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7420 require > 1GB of memory e.g. on limit-fnargs.c. */
7421 if (! pipelining_p)
7422 free_data_for_scheduled_insn (insn);
7423 }
7424
7425 ilist_clear (pscheduled_insns);
7426 global_level++;
7427
7428 return new_hs;
7429 }
7430
7431 /* The main driver for scheduling a region. This function is responsible
7432 for correct propagation of fences (i.e. scheduling points) and creating
7433 a group of parallel insns at each of them. It also supports
7434 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7435 of scheduling. */
7436 static void
7437 sel_sched_region_2 (int orig_max_seqno)
7438 {
7439 int highest_seqno_in_use = orig_max_seqno;
7440
7441 stat_bookkeeping_copies = 0;
7442 stat_insns_needed_bookkeeping = 0;
7443 stat_renamed_scheduled = 0;
7444 stat_substitutions_total = 0;
7445 num_insns_scheduled = 0;
7446
7447 while (fences)
7448 {
7449 int min_seqno, max_seqno;
7450 ilist_t scheduled_insns = NULL;
7451 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7452
7453 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7454 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7455 fences = calculate_new_fences (fences, orig_max_seqno);
7456 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7457 highest_seqno_in_use,
7458 &scheduled_insns);
7459 }
7460
7461 if (sched_verbose >= 1)
7462 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7463 "bookkeeping, %d insns renamed, %d insns substituted\n",
7464 stat_bookkeeping_copies,
7465 stat_insns_needed_bookkeeping,
7466 stat_renamed_scheduled,
7467 stat_substitutions_total);
7468 }
7469
7470 /* Schedule a region. When pipelining, search for possibly never scheduled
7471 bookkeeping code and schedule it. Reschedule pipelined code without
7472 pipelining after. */
7473 static void
7474 sel_sched_region_1 (void)
7475 {
7476 int number_of_insns;
7477 int orig_max_seqno;
7478
7479 /* Remove empty blocks that might be in the region from the beginning.
7480 We need to do save sched_max_luid before that, as it actually shows
7481 the number of insns in the region, and purge_empty_blocks can
7482 alter it. */
7483 number_of_insns = sched_max_luid - 1;
7484 purge_empty_blocks ();
7485
7486 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7487 gcc_assert (orig_max_seqno >= 1);
7488
7489 /* When pipelining outer loops, create fences on the loop header,
7490 not preheader. */
7491 fences = NULL;
7492 if (current_loop_nest)
7493 init_fences (BB_END (EBB_FIRST_BB (0)));
7494 else
7495 init_fences (bb_note (EBB_FIRST_BB (0)));
7496 global_level = 1;
7497
7498 sel_sched_region_2 (orig_max_seqno);
7499
7500 gcc_assert (fences == NULL);
7501
7502 if (pipelining_p)
7503 {
7504 int i;
7505 basic_block bb;
7506 struct flist_tail_def _new_fences;
7507 flist_tail_t new_fences = &_new_fences;
7508 bool do_p = true;
7509
7510 pipelining_p = false;
7511 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7512 bookkeeping_p = false;
7513 enable_schedule_as_rhs_p = false;
7514
7515 /* Schedule newly created code, that has not been scheduled yet. */
7516 do_p = true;
7517
7518 while (do_p)
7519 {
7520 do_p = false;
7521
7522 for (i = 0; i < current_nr_blocks; i++)
7523 {
7524 basic_block bb = EBB_FIRST_BB (i);
7525
7526 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7527 {
7528 if (! bb_ends_ebb_p (bb))
7529 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7530 if (sel_bb_empty_p (bb))
7531 {
7532 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7533 continue;
7534 }
7535 clear_outdated_rtx_info (bb);
7536 if (sel_insn_is_speculation_check (BB_END (bb))
7537 && JUMP_P (BB_END (bb)))
7538 bitmap_set_bit (blocks_to_reschedule,
7539 BRANCH_EDGE (bb)->dest->index);
7540 }
7541 else if (! sel_bb_empty_p (bb)
7542 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7543 bitmap_set_bit (blocks_to_reschedule, bb->index);
7544 }
7545
7546 for (i = 0; i < current_nr_blocks; i++)
7547 {
7548 bb = EBB_FIRST_BB (i);
7549
7550 /* While pipelining outer loops, skip bundling for loop
7551 preheaders. Those will be rescheduled in the outer
7552 loop. */
7553 if (sel_is_loop_preheader_p (bb))
7554 {
7555 clear_outdated_rtx_info (bb);
7556 continue;
7557 }
7558
7559 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7560 {
7561 flist_tail_init (new_fences);
7562
7563 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7564
7565 /* Mark BB as head of the new ebb. */
7566 bitmap_set_bit (forced_ebb_heads, bb->index);
7567
7568 gcc_assert (fences == NULL);
7569
7570 init_fences (bb_note (bb));
7571
7572 sel_sched_region_2 (orig_max_seqno);
7573
7574 do_p = true;
7575 break;
7576 }
7577 }
7578 }
7579 }
7580 }
7581
7582 /* Schedule the RGN region. */
7583 void
7584 sel_sched_region (int rgn)
7585 {
7586 bool schedule_p;
7587 bool reset_sched_cycles_p;
7588
7589 if (sel_region_init (rgn))
7590 return;
7591
7592 if (sched_verbose >= 1)
7593 sel_print ("Scheduling region %d\n", rgn);
7594
7595 schedule_p = (!sched_is_disabled_for_current_region_p ()
7596 && dbg_cnt (sel_sched_region_cnt));
7597 reset_sched_cycles_p = pipelining_p;
7598 if (schedule_p)
7599 sel_sched_region_1 ();
7600 else
7601 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7602 reset_sched_cycles_p = true;
7603
7604 sel_region_finish (reset_sched_cycles_p);
7605 }
7606
7607 /* Perform global init for the scheduler. */
7608 static void
7609 sel_global_init (void)
7610 {
7611 calculate_dominance_info (CDI_DOMINATORS);
7612 alloc_sched_pools ();
7613
7614 /* Setup the infos for sched_init. */
7615 sel_setup_sched_infos ();
7616 setup_sched_dump ();
7617
7618 sched_rgn_init (false);
7619 sched_init ();
7620
7621 sched_init_bbs ();
7622 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7623 after_recovery = 0;
7624 can_issue_more = issue_rate;
7625
7626 sched_extend_target ();
7627 sched_deps_init (true);
7628 setup_nop_and_exit_insns ();
7629 sel_extend_global_bb_info ();
7630 init_lv_sets ();
7631 init_hard_regs_data ();
7632 }
7633
7634 /* Free the global data of the scheduler. */
7635 static void
7636 sel_global_finish (void)
7637 {
7638 free_bb_note_pool ();
7639 free_lv_sets ();
7640 sel_finish_global_bb_info ();
7641
7642 free_regset_pool ();
7643 free_nop_and_exit_insns ();
7644
7645 sched_rgn_finish ();
7646 sched_deps_finish ();
7647 sched_finish ();
7648
7649 if (current_loops)
7650 sel_finish_pipelining ();
7651
7652 free_sched_pools ();
7653 free_dominance_info (CDI_DOMINATORS);
7654 }
7655
7656 /* Return true when we need to skip selective scheduling. Used for debugging. */
7657 bool
7658 maybe_skip_selective_scheduling (void)
7659 {
7660 return ! dbg_cnt (sel_sched_cnt);
7661 }
7662
7663 /* The entry point. */
7664 void
7665 run_selective_scheduling (void)
7666 {
7667 int rgn;
7668
7669 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7670 return;
7671
7672 sel_global_init ();
7673
7674 for (rgn = 0; rgn < nr_regions; rgn++)
7675 sel_sched_region (rgn);
7676
7677 sel_global_finish ();
7678 }
7679
7680 #endif