re PR rtl-optimization/52203 (ICE: in reset_sched_cycles_in_current_ebb, at sel-sched...
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
48
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252 */
253
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
256
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
259
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
262 \f
263
264 /* Definitions of local types and macros. */
265
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
284 {
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290 };
291
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
297 {
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
321 };
322
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
326 {
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335 };
336
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
340 \f
341
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
349 {
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367 };
368
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
371 {
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389 };
390
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
393 {
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402 };
403
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
411 {
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443 };
444
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
463
464 /* Current fences. */
465 flist_t fences;
466
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
469
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
477
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
480
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
488
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
491
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
494
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
497
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
501
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
504
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
509
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
536
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
540
541 /* Variables to accumulate different statistics. */
542
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
545
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
548
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
551
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
554 \f
555
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572
573 static void debug_state (state_t);
574 \f
575
576 /* Functions that work with fences. */
577
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
581 {
582 unsigned i;
583 int cycle;
584 rtx insn;
585
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
591 FENCE_ISSUE_MORE (fence) = can_issue_more;
592
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 {
595 if (INSN_READY_CYCLE (insn) < cycle)
596 {
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
600 }
601 i++;
602 }
603 if (sched_verbose >= 2)
604 {
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
607 }
608 }
609
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
614 {
615 basic_block bb = BLOCK_FOR_INSN (insn);
616 edge e;
617
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
620
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
624 else
625 return false;
626
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
629
630 return bb == BLOCK_FOR_INSN (succ);
631 }
632
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
640 {
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
648
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
651 {
652 gcc_assert (!was_here_p);
653 was_here_p = true;
654 }
655 gcc_assert (was_here_p && insn != NULL_RTX);
656
657 /* When in the "middle" of the block, just move this fence
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
661 || (single_succ_p (bb)
662 && single_pred_p (single_succ (bb))))
663 {
664 insn_t succ;
665
666 succ = (sel_bb_end_p (insn)
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
669
670 if (INSN_SEQNO (succ) > 0
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
673 {
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
676
677 if (sched_verbose >= 1)
678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
680 }
681 return;
682 }
683
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
686 {
687 int seqno = INSN_SEQNO (succ);
688
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
691 {
692 bool b = (in_same_ebb_p (insn, succ)
693 || in_fallthru_bb_p (insn, succ));
694
695 if (sched_verbose >= 1)
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
698 BLOCK_NUM (succ), b ? "continue" : "reset");
699
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
703 {
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
707 }
708 }
709 }
710 }
711 \f
712
713 /* Functions to support substitution. */
714
715 /* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
717 moved up through this insn should be substituted. */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
720 {
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
727
728 /* Now we just need to make sure the INSN_RHS consists of only one
729 simple REG rtx. */
730 if (REG_P (INSN_LHS (insn))
731 && REG_P (INSN_RHS (insn)))
732 return true;
733 return false;
734 }
735
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
740 destination or the resulting insn is invalid for the target machine.
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
745 {
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
751
752 /* Do not try to replace in SET_DEST. Although we'll choose new
753 register for the RHS, we don't want to change RHS' original reg.
754 If the insn is not SET, we may still be able to substitute something
755 in it, and if we're here (don't have deps), it doesn't write INSN's
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
761
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
764 {
765 rtx new_insn;
766 rtx *where_replace;
767
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
771
772 /* Where we'll replace.
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
778
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781 new_insn);
782
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
790 {
791 change_vinsn_in_expr (expr,
792 create_vinsn_from_insn_rtx (new_insn, false));
793
794 /* Do not allow clobbering the address register of speculative
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_reg (expr)))
799 EXPR_TARGET_AVAILABLE (expr) = false;
800
801 return true;
802 }
803 else
804 return false;
805 }
806 else
807 return false;
808 }
809
810 /* Helper function for count_occurences_equiv. */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
813 {
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
815
816 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
817 {
818 /* Bail out if mode is different or more than one register is used. */
819 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
820 || (HARD_REGISTER_P (*cur_rtx)
821 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
822 {
823 p->n = 0;
824 return 1;
825 }
826
827 p->n++;
828
829 /* Do not traverse subexprs. */
830 return -1;
831 }
832
833 if (GET_CODE (*cur_rtx) == SUBREG
834 && (!REG_P (SUBREG_REG (*cur_rtx))
835 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
836 {
837 /* ??? Do not support substituting regs inside subregs. In that case,
838 simplify_subreg will be called by validate_replace_rtx, and
839 unsubstitution will fail later. */
840 p->n = 0;
841 return 1;
842 }
843
844 /* Continue search. */
845 return 0;
846 }
847
848 /* Return the number of places WHAT appears within WHERE.
849 Bail out when we found a reference occupying several hard registers. */
850 static int
851 count_occurrences_equiv (rtx what, rtx where)
852 {
853 struct rtx_search_arg arg;
854
855 gcc_assert (REG_P (what));
856 arg.x = what;
857 arg.n = 0;
858
859 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
860
861 return arg.n;
862 }
863
864 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
865 static bool
866 rtx_ok_for_substitution_p (rtx what, rtx where)
867 {
868 return (count_occurrences_equiv (what, where) > 0);
869 }
870 \f
871
872 /* Functions to support register renaming. */
873
874 /* Substitute VI's set source with REGNO. Returns newly created pattern
875 that has REGNO as its source. */
876 static rtx
877 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
878 {
879 rtx lhs_rtx;
880 rtx pattern;
881 rtx insn_rtx;
882
883 lhs_rtx = copy_rtx (VINSN_LHS (vi));
884
885 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
886 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
887
888 return insn_rtx;
889 }
890
891 /* Returns whether INSN's src can be replaced with register number
892 NEW_SRC_REG. E.g. the following insn is valid for i386:
893
894 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
895 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
896 (reg:SI 0 ax [orig:770 c1 ] [770]))
897 (const_int 288 [0x120])) [0 str S1 A8])
898 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
899 (nil))
900
901 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
902 because of operand constraints:
903
904 (define_insn "*movqi_1"
905 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
906 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
907 )]
908
909 So do constrain_operands here, before choosing NEW_SRC_REG as best
910 reg for rhs. */
911
912 static bool
913 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
914 {
915 vinsn_t vi = INSN_VINSN (insn);
916 enum machine_mode mode;
917 rtx dst_loc;
918 bool res;
919
920 gcc_assert (VINSN_SEPARABLE_P (vi));
921
922 get_dest_and_mode (insn, &dst_loc, &mode);
923 gcc_assert (mode == GET_MODE (new_src_reg));
924
925 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
926 return true;
927
928 /* See whether SET_SRC can be replaced with this register. */
929 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
930 res = verify_changes (0);
931 cancel_changes (0);
932
933 return res;
934 }
935
936 /* Returns whether INSN still be valid after replacing it's DEST with
937 register NEW_REG. */
938 static bool
939 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
940 {
941 vinsn_t vi = INSN_VINSN (insn);
942 bool res;
943
944 /* We should deal here only with separable insns. */
945 gcc_assert (VINSN_SEPARABLE_P (vi));
946 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
947
948 /* See whether SET_DEST can be replaced with this register. */
949 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
950 res = verify_changes (0);
951 cancel_changes (0);
952
953 return res;
954 }
955
956 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
957 static rtx
958 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
959 {
960 rtx rhs_rtx;
961 rtx pattern;
962 rtx insn_rtx;
963
964 rhs_rtx = copy_rtx (VINSN_RHS (vi));
965
966 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
967 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
968
969 return insn_rtx;
970 }
971
972 /* Substitute lhs in the given expression EXPR for the register with number
973 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
974 static void
975 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
976 {
977 rtx insn_rtx;
978 vinsn_t vinsn;
979
980 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
981 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
982
983 change_vinsn_in_expr (expr, vinsn);
984 EXPR_WAS_RENAMED (expr) = 1;
985 EXPR_TARGET_AVAILABLE (expr) = 1;
986 }
987
988 /* Returns whether VI writes either one of the USED_REGS registers or,
989 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
990 static bool
991 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
992 HARD_REG_SET unavailable_hard_regs)
993 {
994 unsigned regno;
995 reg_set_iterator rsi;
996
997 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
998 {
999 if (REGNO_REG_SET_P (used_regs, regno))
1000 return true;
1001 if (HARD_REGISTER_NUM_P (regno)
1002 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1003 return true;
1004 }
1005
1006 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1007 {
1008 if (REGNO_REG_SET_P (used_regs, regno))
1009 return true;
1010 if (HARD_REGISTER_NUM_P (regno)
1011 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1012 return true;
1013 }
1014
1015 return false;
1016 }
1017
1018 /* Returns register class of the output register in INSN.
1019 Returns NO_REGS for call insns because some targets have constraints on
1020 destination register of a call insn.
1021
1022 Code adopted from regrename.c::build_def_use. */
1023 static enum reg_class
1024 get_reg_class (rtx insn)
1025 {
1026 int alt, i, n_ops;
1027
1028 extract_insn (insn);
1029 if (! constrain_operands (1))
1030 fatal_insn_not_found (insn);
1031 preprocess_constraints ();
1032 alt = which_alternative;
1033 n_ops = recog_data.n_operands;
1034
1035 for (i = 0; i < n_ops; ++i)
1036 {
1037 int matches = recog_op_alt[i][alt].matches;
1038 if (matches >= 0)
1039 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1040 }
1041
1042 if (asm_noperands (PATTERN (insn)) > 0)
1043 {
1044 for (i = 0; i < n_ops; i++)
1045 if (recog_data.operand_type[i] == OP_OUT)
1046 {
1047 rtx *loc = recog_data.operand_loc[i];
1048 rtx op = *loc;
1049 enum reg_class cl = recog_op_alt[i][alt].cl;
1050
1051 if (REG_P (op)
1052 && REGNO (op) == ORIGINAL_REGNO (op))
1053 continue;
1054
1055 return cl;
1056 }
1057 }
1058 else if (!CALL_P (insn))
1059 {
1060 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1061 {
1062 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1063 enum reg_class cl = recog_op_alt[opn][alt].cl;
1064
1065 if (recog_data.operand_type[opn] == OP_OUT ||
1066 recog_data.operand_type[opn] == OP_INOUT)
1067 return cl;
1068 }
1069 }
1070
1071 /* Insns like
1072 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1073 may result in returning NO_REGS, cause flags is written implicitly through
1074 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1075 return NO_REGS;
1076 }
1077
1078 #ifdef HARD_REGNO_RENAME_OK
1079 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1080 static void
1081 init_hard_regno_rename (int regno)
1082 {
1083 int cur_reg;
1084
1085 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1086
1087 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1088 {
1089 /* We are not interested in renaming in other regs. */
1090 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1091 continue;
1092
1093 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1094 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1095 }
1096 }
1097 #endif
1098
1099 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1100 data first. */
1101 static inline bool
1102 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1103 {
1104 #ifdef HARD_REGNO_RENAME_OK
1105 /* Check whether this is all calculated. */
1106 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1107 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1108
1109 init_hard_regno_rename (from);
1110
1111 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1112 #else
1113 return true;
1114 #endif
1115 }
1116
1117 /* Calculate set of registers that are capable of holding MODE. */
1118 static void
1119 init_regs_for_mode (enum machine_mode mode)
1120 {
1121 int cur_reg;
1122
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1125
1126 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1127 {
1128 int nregs = hard_regno_nregs[cur_reg][mode];
1129 int i;
1130
1131 for (i = nregs - 1; i >= 0; --i)
1132 if (fixed_regs[cur_reg + i]
1133 || global_regs[cur_reg + i]
1134 /* Can't use regs which aren't saved by
1135 the prologue. */
1136 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1137 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1138 it affects aliasing globally and invalidates all AV sets. */
1139 || get_reg_base_value (cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1146 )
1147 break;
1148
1149 if (i >= 0)
1150 continue;
1151
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
1156
1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159 cur_reg);
1160
1161 /* If the CUR_REG passed all the checks above,
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164 }
1165
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1167 }
1168
1169 /* Init all register sets gathered in HRD. */
1170 static void
1171 init_hard_regs_data (void)
1172 {
1173 int cur_reg = 0;
1174 int cur_mode = 0;
1175
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180
1181 /* Initialize registers that are valid based on mode when this is
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189
1190 #ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1196 }
1197
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1205
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1209 {
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1215
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1218
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1225
1226 regno = REGNO (orig_dest);
1227
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1231
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
1234
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
1237 if (fixed_regs[regno]
1238 || global_regs[regno]
1239 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244 || (reload_completed && cl == NO_REGS))
1245 {
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251
1252 return;
1253 }
1254
1255 /* If something allocated on stack in this function, mark frame pointer
1256 register unavailable, considering also modes.
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1259 {
1260 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1261 Pmode, FRAME_POINTER_REGNUM);
1262
1263 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1264 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1265 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1266 }
1267
1268 #ifdef STACK_REGS
1269 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1270 is equivalent to as if all stack regs were in this set.
1271 I.e. no stack register can be renamed, and even if it's an original
1272 register here we make sure it won't be lifted over it's previous def
1273 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1274 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1275 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1276 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1277 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1278 sel_hrd.stack_regs);
1279 #endif
1280
1281 /* If there's a call on this path, make regs from call_used_reg_set
1282 unavailable. */
1283 if (def->crosses_call)
1284 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1285 call_used_reg_set);
1286
1287 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1288 but not register classes. */
1289 if (!reload_completed)
1290 return;
1291
1292 /* Leave regs as 'available' only from the current
1293 register class. */
1294 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1295 reg_class_contents[cl]);
1296
1297 mode = GET_MODE (orig_dest);
1298
1299 /* Leave only registers available for this mode. */
1300 if (!sel_hrd.regs_for_mode_ok[mode])
1301 init_regs_for_mode (mode);
1302 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1303 sel_hrd.regs_for_mode[mode]);
1304
1305 /* Exclude registers that are partially call clobbered. */
1306 if (def->crosses_call
1307 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1308 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1309 sel_hrd.regs_for_call_clobbered[mode]);
1310
1311 /* Leave only those that are ok to rename. */
1312 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 0, cur_reg, hrsi)
1314 {
1315 int nregs;
1316 int i;
1317
1318 nregs = hard_regno_nregs[cur_reg][mode];
1319 gcc_assert (nregs > 0);
1320
1321 for (i = nregs - 1; i >= 0; --i)
1322 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1323 break;
1324
1325 if (i >= 0)
1326 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1327 cur_reg);
1328 }
1329
1330 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1331 reg_rename_p->unavailable_hard_regs);
1332
1333 /* Regno is always ok from the renaming part of view, but it really
1334 could be in *unavailable_hard_regs already, so set it here instead
1335 of there. */
1336 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1337 }
1338
1339 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1340 best register more recently than REG2. */
1341 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1342
1343 /* Indicates the number of times renaming happened before the current one. */
1344 static int reg_rename_this_tick;
1345
1346 /* Choose the register among free, that is suitable for storing
1347 the rhs value.
1348
1349 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1350 originally appears. There could be multiple original operations
1351 for single rhs since we moving it up and merging along different
1352 paths.
1353
1354 Some code is adapted from regrename.c (regrename_optimize).
1355 If original register is available, function returns it.
1356 Otherwise it performs the checks, so the new register should
1357 comply with the following:
1358 - it should not violate any live ranges (such registers are in
1359 REG_RENAME_P->available_for_renaming set);
1360 - it should not be in the HARD_REGS_USED regset;
1361 - it should be in the class compatible with original uses;
1362 - it should not be clobbered through reference with different mode;
1363 - if we're in the leaf function, then the new register should
1364 not be in the LEAF_REGISTERS;
1365 - etc.
1366
1367 If several registers meet the conditions, the register with smallest
1368 tick is returned to achieve more even register allocation.
1369
1370 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1371
1372 If no register satisfies the above conditions, NULL_RTX is returned. */
1373 static rtx
1374 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1375 struct reg_rename *reg_rename_p,
1376 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1377 {
1378 int best_new_reg;
1379 unsigned cur_reg;
1380 enum machine_mode mode = VOIDmode;
1381 unsigned regno, i, n;
1382 hard_reg_set_iterator hrsi;
1383 def_list_iterator di;
1384 def_t def;
1385
1386 /* If original register is available, return it. */
1387 *is_orig_reg_p_ptr = true;
1388
1389 FOR_EACH_DEF (def, di, original_insns)
1390 {
1391 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1392
1393 gcc_assert (REG_P (orig_dest));
1394
1395 /* Check that all original operations have the same mode.
1396 This is done for the next loop; if we'd return from this
1397 loop, we'd check only part of them, but in this case
1398 it doesn't matter. */
1399 if (mode == VOIDmode)
1400 mode = GET_MODE (orig_dest);
1401 gcc_assert (mode == GET_MODE (orig_dest));
1402
1403 regno = REGNO (orig_dest);
1404 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1405 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1406 break;
1407
1408 /* All hard registers are available. */
1409 if (i == n)
1410 {
1411 gcc_assert (mode != VOIDmode);
1412
1413 /* Hard registers should not be shared. */
1414 return gen_rtx_REG (mode, regno);
1415 }
1416 }
1417
1418 *is_orig_reg_p_ptr = false;
1419 best_new_reg = -1;
1420
1421 /* Among all available regs choose the register that was
1422 allocated earliest. */
1423 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1424 0, cur_reg, hrsi)
1425 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1426 {
1427 /* Check that all hard regs for mode are available. */
1428 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1429 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1430 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1431 cur_reg + i))
1432 break;
1433
1434 if (i < n)
1435 continue;
1436
1437 /* All hard registers are available. */
1438 if (best_new_reg < 0
1439 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1440 {
1441 best_new_reg = cur_reg;
1442
1443 /* Return immediately when we know there's no better reg. */
1444 if (! reg_rename_tick[best_new_reg])
1445 break;
1446 }
1447 }
1448
1449 if (best_new_reg >= 0)
1450 {
1451 /* Use the check from the above loop. */
1452 gcc_assert (mode != VOIDmode);
1453 return gen_rtx_REG (mode, best_new_reg);
1454 }
1455
1456 return NULL_RTX;
1457 }
1458
1459 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1460 assumptions about available registers in the function. */
1461 static rtx
1462 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1463 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1464 {
1465 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1466 original_insns, is_orig_reg_p_ptr);
1467
1468 /* FIXME loop over hard_regno_nregs here. */
1469 gcc_assert (best_reg == NULL_RTX
1470 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1471
1472 return best_reg;
1473 }
1474
1475 /* Choose the pseudo register for storing rhs value. As this is supposed
1476 to work before reload, we return either the original register or make
1477 the new one. The parameters are the same that in choose_nest_reg_1
1478 functions, except that USED_REGS may contain pseudos.
1479 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1480
1481 TODO: take into account register pressure while doing this. Up to this
1482 moment, this function would never return NULL for pseudos, but we should
1483 not rely on this. */
1484 static rtx
1485 choose_best_pseudo_reg (regset used_regs,
1486 struct reg_rename *reg_rename_p,
1487 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1488 {
1489 def_list_iterator i;
1490 def_t def;
1491 enum machine_mode mode = VOIDmode;
1492 bool bad_hard_regs = false;
1493
1494 /* We should not use this after reload. */
1495 gcc_assert (!reload_completed);
1496
1497 /* If original register is available, return it. */
1498 *is_orig_reg_p_ptr = true;
1499
1500 FOR_EACH_DEF (def, i, original_insns)
1501 {
1502 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1503 int orig_regno;
1504
1505 gcc_assert (REG_P (dest));
1506
1507 /* Check that all original operations have the same mode. */
1508 if (mode == VOIDmode)
1509 mode = GET_MODE (dest);
1510 else
1511 gcc_assert (mode == GET_MODE (dest));
1512 orig_regno = REGNO (dest);
1513
1514 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1515 {
1516 if (orig_regno < FIRST_PSEUDO_REGISTER)
1517 {
1518 gcc_assert (df_regs_ever_live_p (orig_regno));
1519
1520 /* For hard registers, we have to check hardware imposed
1521 limitations (frame/stack registers, calls crossed). */
1522 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1523 orig_regno))
1524 {
1525 /* Don't let register cross a call if it doesn't already
1526 cross one. This condition is written in accordance with
1527 that in sched-deps.c sched_analyze_reg(). */
1528 if (!reg_rename_p->crosses_call
1529 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1530 return gen_rtx_REG (mode, orig_regno);
1531 }
1532
1533 bad_hard_regs = true;
1534 }
1535 else
1536 return dest;
1537 }
1538 }
1539
1540 *is_orig_reg_p_ptr = false;
1541
1542 /* We had some original hard registers that couldn't be used.
1543 Those were likely special. Don't try to create a pseudo. */
1544 if (bad_hard_regs)
1545 return NULL_RTX;
1546
1547 /* We haven't found a register from original operations. Get a new one.
1548 FIXME: control register pressure somehow. */
1549 {
1550 rtx new_reg = gen_reg_rtx (mode);
1551
1552 gcc_assert (mode != VOIDmode);
1553
1554 max_regno = max_reg_num ();
1555 maybe_extend_reg_info_p ();
1556 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1557
1558 return new_reg;
1559 }
1560 }
1561
1562 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1563 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1564 static void
1565 verify_target_availability (expr_t expr, regset used_regs,
1566 struct reg_rename *reg_rename_p)
1567 {
1568 unsigned n, i, regno;
1569 enum machine_mode mode;
1570 bool target_available, live_available, hard_available;
1571
1572 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1573 return;
1574
1575 regno = expr_dest_regno (expr);
1576 mode = GET_MODE (EXPR_LHS (expr));
1577 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1578 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1579
1580 live_available = hard_available = true;
1581 for (i = 0; i < n; i++)
1582 {
1583 if (bitmap_bit_p (used_regs, regno + i))
1584 live_available = false;
1585 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1586 hard_available = false;
1587 }
1588
1589 /* When target is not available, it may be due to hard register
1590 restrictions, e.g. crosses calls, so we check hard_available too. */
1591 if (target_available)
1592 gcc_assert (live_available);
1593 else
1594 /* Check only if we haven't scheduled something on the previous fence,
1595 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1596 and having more than one fence, we may end having targ_un in a block
1597 in which successors target register is actually available.
1598
1599 The last condition handles the case when a dependence from a call insn
1600 was created in sched-deps.c for insns with destination registers that
1601 never crossed a call before, but do cross one after our code motion.
1602
1603 FIXME: in the latter case, we just uselessly called find_used_regs,
1604 because we can't move this expression with any other register
1605 as well. */
1606 gcc_assert (scheduled_something_on_previous_fence || !live_available
1607 || !hard_available
1608 || (!reload_completed && reg_rename_p->crosses_call
1609 && REG_N_CALLS_CROSSED (regno) == 0));
1610 }
1611
1612 /* Collect unavailable registers due to liveness for EXPR from BNDS
1613 into USED_REGS. Save additional information about available
1614 registers and unavailable due to hardware restriction registers
1615 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1616 list. */
1617 static void
1618 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1619 struct reg_rename *reg_rename_p,
1620 def_list_t *original_insns)
1621 {
1622 for (; bnds; bnds = BLIST_NEXT (bnds))
1623 {
1624 bool res;
1625 av_set_t orig_ops = NULL;
1626 bnd_t bnd = BLIST_BND (bnds);
1627
1628 /* If the chosen best expr doesn't belong to current boundary,
1629 skip it. */
1630 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1631 continue;
1632
1633 /* Put in ORIG_OPS all exprs from this boundary that became
1634 RES on top. */
1635 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1636
1637 /* Compute used regs and OR it into the USED_REGS. */
1638 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1639 reg_rename_p, original_insns);
1640
1641 /* FIXME: the assert is true until we'd have several boundaries. */
1642 gcc_assert (res);
1643 av_set_clear (&orig_ops);
1644 }
1645 }
1646
1647 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1648 If BEST_REG is valid, replace LHS of EXPR with it. */
1649 static bool
1650 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1651 {
1652 /* Try whether we'll be able to generate the insn
1653 'dest := best_reg' at the place of the original operation. */
1654 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1655 {
1656 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1657
1658 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1659
1660 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1661 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1662 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1663 return false;
1664 }
1665
1666 /* Make sure that EXPR has the right destination
1667 register. */
1668 if (expr_dest_regno (expr) != REGNO (best_reg))
1669 replace_dest_with_reg_in_expr (expr, best_reg);
1670 else
1671 EXPR_TARGET_AVAILABLE (expr) = 1;
1672
1673 return true;
1674 }
1675
1676 /* Select and assign best register to EXPR searching from BNDS.
1677 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1678 Return FALSE if no register can be chosen, which could happen when:
1679 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1680 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1681 that are used on the moving path. */
1682 static bool
1683 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1684 {
1685 static struct reg_rename reg_rename_data;
1686
1687 regset used_regs;
1688 def_list_t original_insns = NULL;
1689 bool reg_ok;
1690
1691 *is_orig_reg_p = false;
1692
1693 /* Don't bother to do anything if this insn doesn't set any registers. */
1694 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1695 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1696 return true;
1697
1698 used_regs = get_clear_regset_from_pool ();
1699 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1700
1701 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1702 &original_insns);
1703
1704 #ifdef ENABLE_CHECKING
1705 /* If after reload, make sure we're working with hard regs here. */
1706 if (reload_completed)
1707 {
1708 reg_set_iterator rsi;
1709 unsigned i;
1710
1711 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1712 gcc_unreachable ();
1713 }
1714 #endif
1715
1716 if (EXPR_SEPARABLE_P (expr))
1717 {
1718 rtx best_reg = NULL_RTX;
1719 /* Check that we have computed availability of a target register
1720 correctly. */
1721 verify_target_availability (expr, used_regs, &reg_rename_data);
1722
1723 /* Turn everything in hard regs after reload. */
1724 if (reload_completed)
1725 {
1726 HARD_REG_SET hard_regs_used;
1727 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1728
1729 /* Join hard registers unavailable due to register class
1730 restrictions and live range intersection. */
1731 IOR_HARD_REG_SET (hard_regs_used,
1732 reg_rename_data.unavailable_hard_regs);
1733
1734 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1735 original_insns, is_orig_reg_p);
1736 }
1737 else
1738 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1739 original_insns, is_orig_reg_p);
1740
1741 if (!best_reg)
1742 reg_ok = false;
1743 else if (*is_orig_reg_p)
1744 {
1745 /* In case of unification BEST_REG may be different from EXPR's LHS
1746 when EXPR's LHS is unavailable, and there is another LHS among
1747 ORIGINAL_INSNS. */
1748 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1749 }
1750 else
1751 {
1752 /* Forbid renaming of low-cost insns. */
1753 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1754 reg_ok = false;
1755 else
1756 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1757 }
1758 }
1759 else
1760 {
1761 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1762 any of the HARD_REGS_USED set. */
1763 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1764 reg_rename_data.unavailable_hard_regs))
1765 {
1766 reg_ok = false;
1767 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1768 }
1769 else
1770 {
1771 reg_ok = true;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1773 }
1774 }
1775
1776 ilist_clear (&original_insns);
1777 return_regset_to_pool (used_regs);
1778
1779 return reg_ok;
1780 }
1781 \f
1782
1783 /* Return true if dependence described by DS can be overcomed. */
1784 static bool
1785 can_speculate_dep_p (ds_t ds)
1786 {
1787 if (spec_info == NULL)
1788 return false;
1789
1790 /* Leave only speculative data. */
1791 ds &= SPECULATIVE;
1792
1793 if (ds == 0)
1794 return false;
1795
1796 {
1797 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1798 that we can overcome. */
1799 ds_t spec_mask = spec_info->mask;
1800
1801 if ((ds & spec_mask) != ds)
1802 return false;
1803 }
1804
1805 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1806 return false;
1807
1808 return true;
1809 }
1810
1811 /* Get a speculation check instruction.
1812 C_EXPR is a speculative expression,
1813 CHECK_DS describes speculations that should be checked,
1814 ORIG_INSN is the original non-speculative insn in the stream. */
1815 static insn_t
1816 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1817 {
1818 rtx check_pattern;
1819 rtx insn_rtx;
1820 insn_t insn;
1821 basic_block recovery_block;
1822 rtx label;
1823
1824 /* Create a recovery block if target is going to emit branchy check, or if
1825 ORIG_INSN was speculative already. */
1826 if (targetm.sched.needs_block_p (check_ds)
1827 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1828 {
1829 recovery_block = sel_create_recovery_block (orig_insn);
1830 label = BB_HEAD (recovery_block);
1831 }
1832 else
1833 {
1834 recovery_block = NULL;
1835 label = NULL_RTX;
1836 }
1837
1838 /* Get pattern of the check. */
1839 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1840 check_ds);
1841
1842 gcc_assert (check_pattern != NULL);
1843
1844 /* Emit check. */
1845 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1846
1847 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1848 INSN_SEQNO (orig_insn), orig_insn);
1849
1850 /* Make check to be non-speculative. */
1851 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1852 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1853
1854 /* Decrease priority of check by difference of load/check instruction
1855 latencies. */
1856 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1857 - sel_vinsn_cost (INSN_VINSN (insn)));
1858
1859 /* Emit copy of original insn (though with replaced target register,
1860 if needed) to the recovery block. */
1861 if (recovery_block != NULL)
1862 {
1863 rtx twin_rtx;
1864
1865 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1866 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1867 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1868 INSN_EXPR (orig_insn),
1869 INSN_SEQNO (insn),
1870 bb_note (recovery_block));
1871 }
1872
1873 /* If we've generated a data speculation check, make sure
1874 that all the bookkeeping instruction we'll create during
1875 this move_op () will allocate an ALAT entry so that the
1876 check won't fail.
1877 In case of control speculation we must convert C_EXPR to control
1878 speculative mode, because failing to do so will bring us an exception
1879 thrown by the non-control-speculative load. */
1880 check_ds = ds_get_max_dep_weak (check_ds);
1881 speculate_expr (c_expr, check_ds);
1882
1883 return insn;
1884 }
1885
1886 /* True when INSN is a "regN = regN" copy. */
1887 static bool
1888 identical_copy_p (rtx insn)
1889 {
1890 rtx lhs, rhs, pat;
1891
1892 pat = PATTERN (insn);
1893
1894 if (GET_CODE (pat) != SET)
1895 return false;
1896
1897 lhs = SET_DEST (pat);
1898 if (!REG_P (lhs))
1899 return false;
1900
1901 rhs = SET_SRC (pat);
1902 if (!REG_P (rhs))
1903 return false;
1904
1905 return REGNO (lhs) == REGNO (rhs);
1906 }
1907
1908 /* Undo all transformations on *AV_PTR that were done when
1909 moving through INSN. */
1910 static void
1911 undo_transformations (av_set_t *av_ptr, rtx insn)
1912 {
1913 av_set_iterator av_iter;
1914 expr_t expr;
1915 av_set_t new_set = NULL;
1916
1917 /* First, kill any EXPR that uses registers set by an insn. This is
1918 required for correctness. */
1919 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1920 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1921 && bitmap_intersect_p (INSN_REG_SETS (insn),
1922 VINSN_REG_USES (EXPR_VINSN (expr)))
1923 /* When an insn looks like 'r1 = r1', we could substitute through
1924 it, but the above condition will still hold. This happened with
1925 gcc.c-torture/execute/961125-1.c. */
1926 && !identical_copy_p (insn))
1927 {
1928 if (sched_verbose >= 6)
1929 sel_print ("Expr %d removed due to use/set conflict\n",
1930 INSN_UID (EXPR_INSN_RTX (expr)));
1931 av_set_iter_remove (&av_iter);
1932 }
1933
1934 /* Undo transformations looking at the history vector. */
1935 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1936 {
1937 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1938 insn, EXPR_VINSN (expr), true);
1939
1940 if (index >= 0)
1941 {
1942 expr_history_def *phist;
1943
1944 phist = VEC_index (expr_history_def,
1945 EXPR_HISTORY_OF_CHANGES (expr),
1946 index);
1947
1948 switch (phist->type)
1949 {
1950 case TRANS_SPECULATION:
1951 {
1952 ds_t old_ds, new_ds;
1953
1954 /* Compute the difference between old and new speculative
1955 statuses: that's what we need to check.
1956 Earlier we used to assert that the status will really
1957 change. This no longer works because only the probability
1958 bits in the status may have changed during compute_av_set,
1959 and in the case of merging different probabilities of the
1960 same speculative status along different paths we do not
1961 record this in the history vector. */
1962 old_ds = phist->spec_ds;
1963 new_ds = EXPR_SPEC_DONE_DS (expr);
1964
1965 old_ds &= SPECULATIVE;
1966 new_ds &= SPECULATIVE;
1967 new_ds &= ~old_ds;
1968
1969 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1970 break;
1971 }
1972 case TRANS_SUBSTITUTION:
1973 {
1974 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1975 vinsn_t new_vi;
1976 bool add = true;
1977
1978 new_vi = phist->old_expr_vinsn;
1979
1980 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1981 == EXPR_SEPARABLE_P (expr));
1982 copy_expr (tmp_expr, expr);
1983
1984 if (vinsn_equal_p (phist->new_expr_vinsn,
1985 EXPR_VINSN (tmp_expr)))
1986 change_vinsn_in_expr (tmp_expr, new_vi);
1987 else
1988 /* This happens when we're unsubstituting on a bookkeeping
1989 copy, which was in turn substituted. The history is wrong
1990 in this case. Do it the hard way. */
1991 add = substitute_reg_in_expr (tmp_expr, insn, true);
1992 if (add)
1993 av_set_add (&new_set, tmp_expr);
1994 clear_expr (tmp_expr);
1995 break;
1996 }
1997 default:
1998 gcc_unreachable ();
1999 }
2000 }
2001
2002 }
2003
2004 av_set_union_and_clear (av_ptr, &new_set, NULL);
2005 }
2006 \f
2007
2008 /* Moveup_* helpers for code motion and computing av sets. */
2009
2010 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2011 The difference from the below function is that only substitution is
2012 performed. */
2013 static enum MOVEUP_EXPR_CODE
2014 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2015 {
2016 vinsn_t vi = EXPR_VINSN (expr);
2017 ds_t *has_dep_p;
2018 ds_t full_ds;
2019
2020 /* Do this only inside insn group. */
2021 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2022
2023 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2024 if (full_ds == 0)
2025 return MOVEUP_EXPR_SAME;
2026
2027 /* Substitution is the possible choice in this case. */
2028 if (has_dep_p[DEPS_IN_RHS])
2029 {
2030 /* Can't substitute UNIQUE VINSNs. */
2031 gcc_assert (!VINSN_UNIQUE_P (vi));
2032
2033 if (can_substitute_through_p (through_insn,
2034 has_dep_p[DEPS_IN_RHS])
2035 && substitute_reg_in_expr (expr, through_insn, false))
2036 {
2037 EXPR_WAS_SUBSTITUTED (expr) = true;
2038 return MOVEUP_EXPR_CHANGED;
2039 }
2040
2041 /* Don't care about this, as even true dependencies may be allowed
2042 in an insn group. */
2043 return MOVEUP_EXPR_SAME;
2044 }
2045
2046 /* This can catch output dependencies in COND_EXECs. */
2047 if (has_dep_p[DEPS_IN_INSN])
2048 return MOVEUP_EXPR_NULL;
2049
2050 /* This is either an output or an anti dependence, which usually have
2051 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2052 will fix this. */
2053 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2054 return MOVEUP_EXPR_AS_RHS;
2055 }
2056
2057 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2058 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2059 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2060 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2061 && !sel_insn_is_speculation_check (through_insn))
2062
2063 /* True when a conflict on a target register was found during moveup_expr. */
2064 static bool was_target_conflict = false;
2065
2066 /* Return true when moving a debug INSN across THROUGH_INSN will
2067 create a bookkeeping block. We don't want to create such blocks,
2068 for they would cause codegen differences between compilations with
2069 and without debug info. */
2070
2071 static bool
2072 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2073 insn_t through_insn)
2074 {
2075 basic_block bbi, bbt;
2076 edge e1, e2;
2077 edge_iterator ei1, ei2;
2078
2079 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2080 {
2081 if (sched_verbose >= 9)
2082 sel_print ("no bookkeeping required: ");
2083 return FALSE;
2084 }
2085
2086 bbi = BLOCK_FOR_INSN (insn);
2087
2088 if (EDGE_COUNT (bbi->preds) == 1)
2089 {
2090 if (sched_verbose >= 9)
2091 sel_print ("only one pred edge: ");
2092 return TRUE;
2093 }
2094
2095 bbt = BLOCK_FOR_INSN (through_insn);
2096
2097 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2098 {
2099 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2100 {
2101 if (find_block_for_bookkeeping (e1, e2, TRUE))
2102 {
2103 if (sched_verbose >= 9)
2104 sel_print ("found existing block: ");
2105 return FALSE;
2106 }
2107 }
2108 }
2109
2110 if (sched_verbose >= 9)
2111 sel_print ("would create bookkeeping block: ");
2112
2113 return TRUE;
2114 }
2115
2116 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2117 performing necessary transformations. Record the type of transformation
2118 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2119 permit all dependencies except true ones, and try to remove those
2120 too via forward substitution. All cases when a non-eliminable
2121 non-zero cost dependency exists inside an insn group will be fixed
2122 in tick_check_p instead. */
2123 static enum MOVEUP_EXPR_CODE
2124 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2125 enum local_trans_type *ptrans_type)
2126 {
2127 vinsn_t vi = EXPR_VINSN (expr);
2128 insn_t insn = VINSN_INSN_RTX (vi);
2129 bool was_changed = false;
2130 bool as_rhs = false;
2131 ds_t *has_dep_p;
2132 ds_t full_ds;
2133
2134 /* ??? We use dependencies of non-debug insns on debug insns to
2135 indicate that the debug insns need to be reset if the non-debug
2136 insn is pulled ahead of it. It's hard to figure out how to
2137 introduce such a notion in sel-sched, but it already fails to
2138 support debug insns in other ways, so we just go ahead and
2139 let the deug insns go corrupt for now. */
2140 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2141 return MOVEUP_EXPR_SAME;
2142
2143 /* When inside_insn_group, delegate to the helper. */
2144 if (inside_insn_group)
2145 return moveup_expr_inside_insn_group (expr, through_insn);
2146
2147 /* Deal with unique insns and control dependencies. */
2148 if (VINSN_UNIQUE_P (vi))
2149 {
2150 /* We can move jumps without side-effects or jumps that are
2151 mutually exclusive with instruction THROUGH_INSN (all in cases
2152 dependencies allow to do so and jump is not speculative). */
2153 if (control_flow_insn_p (insn))
2154 {
2155 basic_block fallthru_bb;
2156
2157 /* Do not move checks and do not move jumps through other
2158 jumps. */
2159 if (control_flow_insn_p (through_insn)
2160 || sel_insn_is_speculation_check (insn))
2161 return MOVEUP_EXPR_NULL;
2162
2163 /* Don't move jumps through CFG joins. */
2164 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2165 return MOVEUP_EXPR_NULL;
2166
2167 /* The jump should have a clear fallthru block, and
2168 this block should be in the current region. */
2169 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2170 || ! in_current_region_p (fallthru_bb))
2171 return MOVEUP_EXPR_NULL;
2172
2173 /* And it should be mutually exclusive with through_insn. */
2174 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2175 && ! DEBUG_INSN_P (through_insn))
2176 return MOVEUP_EXPR_NULL;
2177 }
2178
2179 /* Don't move what we can't move. */
2180 if (EXPR_CANT_MOVE (expr)
2181 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 return MOVEUP_EXPR_NULL;
2183
2184 /* Don't move SCHED_GROUP instruction through anything.
2185 If we don't force this, then it will be possible to start
2186 scheduling a sched_group before all its dependencies are
2187 resolved.
2188 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189 as late as possible through rank_for_schedule. */
2190 if (SCHED_GROUP_P (insn))
2191 return MOVEUP_EXPR_NULL;
2192 }
2193 else
2194 gcc_assert (!control_flow_insn_p (insn));
2195
2196 /* Don't move debug insns if this would require bookkeeping. */
2197 if (DEBUG_INSN_P (insn)
2198 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200 return MOVEUP_EXPR_NULL;
2201
2202 /* Deal with data dependencies. */
2203 was_target_conflict = false;
2204 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205 if (full_ds == 0)
2206 {
2207 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 return MOVEUP_EXPR_SAME;
2209 }
2210 else
2211 {
2212 /* We can move UNIQUE insn up only as a whole and unchanged,
2213 so it shouldn't have any dependencies. */
2214 if (VINSN_UNIQUE_P (vi))
2215 return MOVEUP_EXPR_NULL;
2216 }
2217
2218 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219 {
2220 int res;
2221
2222 res = speculate_expr (expr, full_ds);
2223 if (res >= 0)
2224 {
2225 /* Speculation was successful. */
2226 full_ds = 0;
2227 was_changed = (res > 0);
2228 if (res == 2)
2229 was_target_conflict = true;
2230 if (ptrans_type)
2231 *ptrans_type = TRANS_SPECULATION;
2232 sel_clear_has_dependence ();
2233 }
2234 }
2235
2236 if (has_dep_p[DEPS_IN_INSN])
2237 /* We have some dependency that cannot be discarded. */
2238 return MOVEUP_EXPR_NULL;
2239
2240 if (has_dep_p[DEPS_IN_LHS])
2241 {
2242 /* Only separable insns can be moved up with the new register.
2243 Anyways, we should mark that the original register is
2244 unavailable. */
2245 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246 return MOVEUP_EXPR_NULL;
2247
2248 EXPR_TARGET_AVAILABLE (expr) = false;
2249 was_target_conflict = true;
2250 as_rhs = true;
2251 }
2252
2253 /* At this point we have either separable insns, that will be lifted
2254 up only as RHSes, or non-separable insns with no dependency in lhs.
2255 If dependency is in RHS, then try to perform substitution and move up
2256 substituted RHS:
2257
2258 Ex. 1: Ex.2
2259 y = x; y = x;
2260 z = y*2; y = y*2;
2261
2262 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2263 moved above y=x assignment as z=x*2.
2264
2265 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2266 side can be moved because of the output dependency. The operation was
2267 cropped to its rhs above. */
2268 if (has_dep_p[DEPS_IN_RHS])
2269 {
2270 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2271
2272 /* Can't substitute UNIQUE VINSNs. */
2273 gcc_assert (!VINSN_UNIQUE_P (vi));
2274
2275 if (can_speculate_dep_p (*rhs_dsp))
2276 {
2277 int res;
2278
2279 res = speculate_expr (expr, *rhs_dsp);
2280 if (res >= 0)
2281 {
2282 /* Speculation was successful. */
2283 *rhs_dsp = 0;
2284 was_changed = (res > 0);
2285 if (res == 2)
2286 was_target_conflict = true;
2287 if (ptrans_type)
2288 *ptrans_type = TRANS_SPECULATION;
2289 }
2290 else
2291 return MOVEUP_EXPR_NULL;
2292 }
2293 else if (can_substitute_through_p (through_insn,
2294 *rhs_dsp)
2295 && substitute_reg_in_expr (expr, through_insn, false))
2296 {
2297 /* ??? We cannot perform substitution AND speculation on the same
2298 insn. */
2299 gcc_assert (!was_changed);
2300 was_changed = true;
2301 if (ptrans_type)
2302 *ptrans_type = TRANS_SUBSTITUTION;
2303 EXPR_WAS_SUBSTITUTED (expr) = true;
2304 }
2305 else
2306 return MOVEUP_EXPR_NULL;
2307 }
2308
2309 /* Don't move trapping insns through jumps.
2310 This check should be at the end to give a chance to control speculation
2311 to perform its duties. */
2312 if (CANT_MOVE_TRAPPING (expr, through_insn))
2313 return MOVEUP_EXPR_NULL;
2314
2315 return (was_changed
2316 ? MOVEUP_EXPR_CHANGED
2317 : (as_rhs
2318 ? MOVEUP_EXPR_AS_RHS
2319 : MOVEUP_EXPR_SAME));
2320 }
2321
2322 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2323 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2324 that can exist within a parallel group. Write to RES the resulting
2325 code for moveup_expr. */
2326 static bool
2327 try_bitmap_cache (expr_t expr, insn_t insn,
2328 bool inside_insn_group,
2329 enum MOVEUP_EXPR_CODE *res)
2330 {
2331 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2332
2333 /* First check whether we've analyzed this situation already. */
2334 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2335 {
2336 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2337 {
2338 if (sched_verbose >= 6)
2339 sel_print ("removed (cached)\n");
2340 *res = MOVEUP_EXPR_NULL;
2341 return true;
2342 }
2343 else
2344 {
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (cached)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2349 }
2350 }
2351 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2352 {
2353 if (inside_insn_group)
2354 {
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
2359
2360 }
2361 else
2362 EXPR_TARGET_AVAILABLE (expr) = false;
2363
2364 /* This is the only case when propagation result can change over time,
2365 as we can dynamically switch off scheduling as RHS. In this case,
2366 just check the flag to reach the correct decision. */
2367 if (enable_schedule_as_rhs_p)
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (as RHS, cached)\n");
2371 *res = MOVEUP_EXPR_AS_RHS;
2372 return true;
2373 }
2374 else
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("removed (cached as RHS, but renaming"
2378 " is now disabled)\n");
2379 *res = MOVEUP_EXPR_NULL;
2380 return true;
2381 }
2382 }
2383
2384 return false;
2385 }
2386
2387 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2388 if successful. Write to RES the resulting code for moveup_expr. */
2389 static bool
2390 try_transformation_cache (expr_t expr, insn_t insn,
2391 enum MOVEUP_EXPR_CODE *res)
2392 {
2393 struct transformed_insns *pti
2394 = (struct transformed_insns *)
2395 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2396 &EXPR_VINSN (expr),
2397 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398 if (pti)
2399 {
2400 /* This EXPR was already moved through this insn and was
2401 changed as a result. Fetch the proper data from
2402 the hashtable. */
2403 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404 INSN_UID (insn), pti->type,
2405 pti->vinsn_old, pti->vinsn_new,
2406 EXPR_SPEC_DONE_DS (expr));
2407
2408 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410 change_vinsn_in_expr (expr, pti->vinsn_new);
2411 if (pti->was_target_conflict)
2412 EXPR_TARGET_AVAILABLE (expr) = false;
2413 if (pti->type == TRANS_SPECULATION)
2414 {
2415 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417 }
2418
2419 if (sched_verbose >= 6)
2420 {
2421 sel_print ("changed (cached): ");
2422 dump_expr (expr);
2423 sel_print ("\n");
2424 }
2425
2426 *res = MOVEUP_EXPR_CHANGED;
2427 return true;
2428 }
2429
2430 return false;
2431 }
2432
2433 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2434 static void
2435 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2436 enum MOVEUP_EXPR_CODE res)
2437 {
2438 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2439
2440 /* Do not cache result of propagating jumps through an insn group,
2441 as it is always true, which is not useful outside the group. */
2442 if (inside_insn_group)
2443 return;
2444
2445 if (res == MOVEUP_EXPR_NULL)
2446 {
2447 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449 }
2450 else if (res == MOVEUP_EXPR_SAME)
2451 {
2452 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454 }
2455 else if (res == MOVEUP_EXPR_AS_RHS)
2456 {
2457 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459 }
2460 else
2461 gcc_unreachable ();
2462 }
2463
2464 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465 and transformation type TRANS_TYPE. */
2466 static void
2467 update_transformation_cache (expr_t expr, insn_t insn,
2468 bool inside_insn_group,
2469 enum local_trans_type trans_type,
2470 vinsn_t expr_old_vinsn)
2471 {
2472 struct transformed_insns *pti;
2473
2474 if (inside_insn_group)
2475 return;
2476
2477 pti = XNEW (struct transformed_insns);
2478 pti->vinsn_old = expr_old_vinsn;
2479 pti->vinsn_new = EXPR_VINSN (expr);
2480 pti->type = trans_type;
2481 pti->was_target_conflict = was_target_conflict;
2482 pti->ds = EXPR_SPEC_DONE_DS (expr);
2483 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484 vinsn_attach (pti->vinsn_old);
2485 vinsn_attach (pti->vinsn_new);
2486 *((struct transformed_insns **)
2487 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488 pti, VINSN_HASH_RTX (expr_old_vinsn),
2489 INSERT)) = pti;
2490 }
2491
2492 /* Same as moveup_expr, but first looks up the result of
2493 transformation in caches. */
2494 static enum MOVEUP_EXPR_CODE
2495 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2496 {
2497 enum MOVEUP_EXPR_CODE res;
2498 bool got_answer = false;
2499
2500 if (sched_verbose >= 6)
2501 {
2502 sel_print ("Moving ");
2503 dump_expr (expr);
2504 sel_print (" through %d: ", INSN_UID (insn));
2505 }
2506
2507 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 == EXPR_INSN_RTX (expr)))
2510 /* Don't use cached information for debug insns that are heads of
2511 basic blocks. */;
2512 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2513 /* When inside insn group, we do not want remove stores conflicting
2514 with previosly issued loads. */
2515 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516 else if (try_transformation_cache (expr, insn, &res))
2517 got_answer = true;
2518
2519 if (! got_answer)
2520 {
2521 /* Invoke moveup_expr and record the results. */
2522 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2527
2528 /* ??? Invent something better than this. We can't allow old_vinsn
2529 to go, we need it for the history vector. */
2530 vinsn_attach (expr_old_vinsn);
2531
2532 res = moveup_expr (expr, insn, inside_insn_group,
2533 &trans_type);
2534 switch (res)
2535 {
2536 case MOVEUP_EXPR_NULL:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("removed\n");
2540 break;
2541
2542 case MOVEUP_EXPR_SAME:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("unchanged\n");
2546 break;
2547
2548 case MOVEUP_EXPR_AS_RHS:
2549 gcc_assert (!unique_p || inside_insn_group);
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("unchanged (as RHS)\n");
2553 break;
2554
2555 case MOVEUP_EXPR_CHANGED:
2556 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2558 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559 INSN_UID (insn), trans_type,
2560 expr_old_vinsn, EXPR_VINSN (expr),
2561 expr_old_spec_ds);
2562 update_transformation_cache (expr, insn, inside_insn_group,
2563 trans_type, expr_old_vinsn);
2564 if (sched_verbose >= 6)
2565 {
2566 sel_print ("changed: ");
2567 dump_expr (expr);
2568 sel_print ("\n");
2569 }
2570 break;
2571 default:
2572 gcc_unreachable ();
2573 }
2574
2575 vinsn_detach (expr_old_vinsn);
2576 }
2577
2578 return res;
2579 }
2580
2581 /* Moves an av set AVP up through INSN, performing necessary
2582 transformations. */
2583 static void
2584 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2585 {
2586 av_set_iterator i;
2587 expr_t expr;
2588
2589 FOR_EACH_EXPR_1 (expr, i, avp)
2590 {
2591
2592 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2593 {
2594 case MOVEUP_EXPR_SAME:
2595 case MOVEUP_EXPR_AS_RHS:
2596 break;
2597
2598 case MOVEUP_EXPR_NULL:
2599 av_set_iter_remove (&i);
2600 break;
2601
2602 case MOVEUP_EXPR_CHANGED:
2603 expr = merge_with_other_exprs (avp, &i, expr);
2604 break;
2605
2606 default:
2607 gcc_unreachable ();
2608 }
2609 }
2610 }
2611
2612 /* Moves AVP set along PATH. */
2613 static void
2614 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2615 {
2616 int last_cycle;
2617
2618 if (sched_verbose >= 6)
2619 sel_print ("Moving expressions up in the insn group...\n");
2620 if (! path)
2621 return;
2622 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2623 while (path
2624 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2625 {
2626 moveup_set_expr (avp, ILIST_INSN (path), true);
2627 path = ILIST_NEXT (path);
2628 }
2629 }
2630
2631 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2632 static bool
2633 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2634 {
2635 expr_def _tmp, *tmp = &_tmp;
2636 int last_cycle;
2637 bool res = true;
2638
2639 copy_expr_onside (tmp, expr);
2640 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2641 while (path
2642 && res
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2644 {
2645 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2646 != MOVEUP_EXPR_NULL);
2647 path = ILIST_NEXT (path);
2648 }
2649
2650 if (res)
2651 {
2652 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2654
2655 if (tmp_vinsn != expr_vliw_vinsn)
2656 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657 }
2658
2659 clear_expr (tmp);
2660 return res;
2661 }
2662 \f
2663
2664 /* Functions that compute av and lv sets. */
2665
2666 /* Returns true if INSN is not a downward continuation of the given path P in
2667 the current stage. */
2668 static bool
2669 is_ineligible_successor (insn_t insn, ilist_t p)
2670 {
2671 insn_t prev_insn;
2672
2673 /* Check if insn is not deleted. */
2674 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677 gcc_unreachable ();
2678
2679 /* If it's the first insn visited, then the successor is ok. */
2680 if (!p)
2681 return false;
2682
2683 prev_insn = ILIST_INSN (p);
2684
2685 if (/* a backward edge. */
2686 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687 /* is already visited. */
2688 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 && (ilist_is_in_p (p, insn)
2690 /* We can reach another fence here and still seqno of insn
2691 would be equal to seqno of prev_insn. This is possible
2692 when prev_insn is a previously created bookkeeping copy.
2693 In that case it'd get a seqno of insn. Thus, check here
2694 whether insn is in current fence too. */
2695 || IN_CURRENT_FENCE_P (insn)))
2696 /* Was already scheduled on this round. */
2697 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 && IN_CURRENT_FENCE_P (insn))
2699 /* An insn from another fence could also be
2700 scheduled earlier even if this insn is not in
2701 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2702 || (!pipelining_p
2703 && INSN_SCHED_TIMES (insn) > 0))
2704 return true;
2705 else
2706 return false;
2707 }
2708
2709 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710 of handling multiple successors and properly merging its av_sets. P is
2711 the current path traversed. WS is the size of lookahead window.
2712 Return the av set computed. */
2713 static av_set_t
2714 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2715 {
2716 struct succs_info *sinfo;
2717 av_set_t expr_in_all_succ_branches = NULL;
2718 int is;
2719 insn_t succ, zero_succ = NULL;
2720 av_set_t av1 = NULL;
2721
2722 gcc_assert (sel_bb_end_p (insn));
2723
2724 /* Find different kind of successors needed for correct computing of
2725 SPEC and TARGET_AVAILABLE attributes. */
2726 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2727
2728 /* Debug output. */
2729 if (sched_verbose >= 6)
2730 {
2731 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732 dump_insn_vector (sinfo->succs_ok);
2733 sel_print ("\n");
2734 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736 }
2737
2738 /* Add insn to the tail of current path. */
2739 ilist_add (&p, insn);
2740
2741 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2742 {
2743 av_set_t succ_set;
2744
2745 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2746 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2747
2748 av_set_split_usefulness (succ_set,
2749 VEC_index (int, sinfo->probs_ok, is),
2750 sinfo->all_prob);
2751
2752 if (sinfo->all_succs_n > 1)
2753 {
2754 /* Find EXPR'es that came from *all* successors and save them
2755 into expr_in_all_succ_branches. This set will be used later
2756 for calculating speculation attributes of EXPR'es. */
2757 if (is == 0)
2758 {
2759 expr_in_all_succ_branches = av_set_copy (succ_set);
2760
2761 /* Remember the first successor for later. */
2762 zero_succ = succ;
2763 }
2764 else
2765 {
2766 av_set_iterator i;
2767 expr_t expr;
2768
2769 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771 av_set_iter_remove (&i);
2772 }
2773 }
2774
2775 /* Union the av_sets. Check liveness restrictions on target registers
2776 in special case of two successors. */
2777 if (sinfo->succs_ok_n == 2 && is == 1)
2778 {
2779 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780 basic_block bb1 = BLOCK_FOR_INSN (succ);
2781
2782 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2783 av_set_union_and_live (&av1, &succ_set,
2784 BB_LV_SET (bb0),
2785 BB_LV_SET (bb1),
2786 insn);
2787 }
2788 else
2789 av_set_union_and_clear (&av1, &succ_set, insn);
2790 }
2791
2792 /* Check liveness restrictions via hard way when there are more than
2793 two successors. */
2794 if (sinfo->succs_ok_n > 2)
2795 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2796 {
2797 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2798
2799 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2800 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2801 BB_LV_SET (succ_bb));
2802 }
2803
2804 /* Finally, check liveness restrictions on paths leaving the region. */
2805 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2807 mark_unavailable_targets
2808 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2809
2810 if (sinfo->all_succs_n > 1)
2811 {
2812 av_set_iterator i;
2813 expr_t expr;
2814
2815 /* Increase the spec attribute of all EXPR'es that didn't come
2816 from all successors. */
2817 FOR_EACH_EXPR (expr, i, av1)
2818 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 EXPR_SPEC (expr)++;
2820
2821 av_set_clear (&expr_in_all_succ_branches);
2822
2823 /* Do not move conditional branches through other
2824 conditional branches. So, remove all conditional
2825 branches from av_set if current operator is a conditional
2826 branch. */
2827 av_set_substract_cond_branches (&av1);
2828 }
2829
2830 ilist_remove (&p);
2831 free_succs_info (sinfo);
2832
2833 if (sched_verbose >= 6)
2834 {
2835 sel_print ("av_succs (%d): ", INSN_UID (insn));
2836 dump_av_set (av1);
2837 sel_print ("\n");
2838 }
2839
2840 return av1;
2841 }
2842
2843 /* This function computes av_set for the FIRST_INSN by dragging valid
2844 av_set through all basic block insns either from the end of basic block
2845 (computed using compute_av_set_at_bb_end) or from the insn on which
2846 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2847 below the basic block and handling conditional branches.
2848 FIRST_INSN - the basic block head, P - path consisting of the insns
2849 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850 and bb ends are added to the path), WS - current window size,
2851 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2852 static av_set_t
2853 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2854 bool need_copy_p)
2855 {
2856 insn_t cur_insn;
2857 int end_ws = ws;
2858 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859 insn_t after_bb_end = NEXT_INSN (bb_end);
2860 insn_t last_insn;
2861 av_set_t av = NULL;
2862 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2863
2864 /* Return NULL if insn is not on the legitimate downward path. */
2865 if (is_ineligible_successor (first_insn, p))
2866 {
2867 if (sched_verbose >= 6)
2868 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2869
2870 return NULL;
2871 }
2872
2873 /* If insn already has valid av(insn) computed, just return it. */
2874 if (AV_SET_VALID_P (first_insn))
2875 {
2876 av_set_t av_set;
2877
2878 if (sel_bb_head_p (first_insn))
2879 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880 else
2881 av_set = NULL;
2882
2883 if (sched_verbose >= 6)
2884 {
2885 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886 dump_av_set (av_set);
2887 sel_print ("\n");
2888 }
2889
2890 return need_copy_p ? av_set_copy (av_set) : av_set;
2891 }
2892
2893 ilist_add (&p, first_insn);
2894
2895 /* As the result after this loop have completed, in LAST_INSN we'll
2896 have the insn which has valid av_set to start backward computation
2897 from: it either will be NULL because on it the window size was exceeded
2898 or other valid av_set as returned by compute_av_set for the last insn
2899 of the basic block. */
2900 for (last_insn = first_insn; last_insn != after_bb_end;
2901 last_insn = NEXT_INSN (last_insn))
2902 {
2903 /* We may encounter valid av_set not only on bb_head, but also on
2904 those insns on which previously MAX_WS was exceeded. */
2905 if (AV_SET_VALID_P (last_insn))
2906 {
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 break;
2910 }
2911
2912 /* The special case: the last insn of the BB may be an
2913 ineligible_successor due to its SEQ_NO that was set on
2914 it as a bookkeeping. */
2915 if (last_insn != first_insn
2916 && is_ineligible_successor (last_insn, p))
2917 {
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2920 break;
2921 }
2922
2923 if (DEBUG_INSN_P (last_insn))
2924 continue;
2925
2926 if (end_ws > max_ws)
2927 {
2928 /* We can reach max lookahead size at bb_header, so clean av_set
2929 first. */
2930 INSN_WS_LEVEL (last_insn) = global_level;
2931
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d is beyond the software lookahead window size\n",
2934 INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 end_ws++;
2939 }
2940
2941 /* Get the valid av_set into AV above the LAST_INSN to start backward
2942 computation from. It either will be empty av_set or av_set computed from
2943 the successors on the last insn of the current bb. */
2944 if (last_insn != after_bb_end)
2945 {
2946 av = NULL;
2947
2948 /* This is needed only to obtain av_sets that are identical to
2949 those computed by the old compute_av_set version. */
2950 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951 av_set_add (&av, INSN_EXPR (last_insn));
2952 }
2953 else
2954 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2955 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2956
2957 /* Compute av_set in AV starting from below the LAST_INSN up to
2958 location above the FIRST_INSN. */
2959 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2960 cur_insn = PREV_INSN (cur_insn))
2961 if (!INSN_NOP_P (cur_insn))
2962 {
2963 expr_t expr;
2964
2965 moveup_set_expr (&av, cur_insn, false);
2966
2967 /* If the expression for CUR_INSN is already in the set,
2968 replace it by the new one. */
2969 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2970 if (expr != NULL)
2971 {
2972 clear_expr (expr);
2973 copy_expr (expr, INSN_EXPR (cur_insn));
2974 }
2975 else
2976 av_set_add (&av, INSN_EXPR (cur_insn));
2977 }
2978
2979 /* Clear stale bb_av_set. */
2980 if (sel_bb_head_p (first_insn))
2981 {
2982 av_set_clear (&BB_AV_SET (cur_bb));
2983 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984 BB_AV_LEVEL (cur_bb) = global_level;
2985 }
2986
2987 if (sched_verbose >= 6)
2988 {
2989 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990 dump_av_set (av);
2991 sel_print ("\n");
2992 }
2993
2994 ilist_remove (&p);
2995 return av;
2996 }
2997
2998 /* Compute av set before INSN.
2999 INSN - the current operation (actual rtx INSN)
3000 P - the current path, which is list of insns visited so far
3001 WS - software lookahead window size.
3002 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003 if we want to save computed av_set in s_i_d, we should make a copy of it.
3004
3005 In the resulting set we will have only expressions that don't have delay
3006 stalls and nonsubstitutable dependences. */
3007 static av_set_t
3008 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3009 {
3010 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011 }
3012
3013 /* Propagate a liveness set LV through INSN. */
3014 static void
3015 propagate_lv_set (regset lv, insn_t insn)
3016 {
3017 gcc_assert (INSN_P (insn));
3018
3019 if (INSN_NOP_P (insn))
3020 return;
3021
3022 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3023 }
3024
3025 /* Return livness set at the end of BB. */
3026 static regset
3027 compute_live_after_bb (basic_block bb)
3028 {
3029 edge e;
3030 edge_iterator ei;
3031 regset lv = get_clear_regset_from_pool ();
3032
3033 gcc_assert (!ignore_first);
3034
3035 FOR_EACH_EDGE (e, ei, bb->succs)
3036 if (sel_bb_empty_p (e->dest))
3037 {
3038 if (! BB_LV_SET_VALID_P (e->dest))
3039 {
3040 gcc_unreachable ();
3041 gcc_assert (BB_LV_SET (e->dest) == NULL);
3042 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043 BB_LV_SET_VALID_P (e->dest) = true;
3044 }
3045 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3046 }
3047 else
3048 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3049
3050 return lv;
3051 }
3052
3053 /* Compute the set of all live registers at the point before INSN and save
3054 it at INSN if INSN is bb header. */
3055 regset
3056 compute_live (insn_t insn)
3057 {
3058 basic_block bb = BLOCK_FOR_INSN (insn);
3059 insn_t final, temp;
3060 regset lv;
3061
3062 /* Return the valid set if we're already on it. */
3063 if (!ignore_first)
3064 {
3065 regset src = NULL;
3066
3067 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068 src = BB_LV_SET (bb);
3069 else
3070 {
3071 gcc_assert (in_current_region_p (bb));
3072 if (INSN_LIVE_VALID_P (insn))
3073 src = INSN_LIVE (insn);
3074 }
3075
3076 if (src)
3077 {
3078 lv = get_regset_from_pool ();
3079 COPY_REG_SET (lv, src);
3080
3081 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3082 {
3083 COPY_REG_SET (BB_LV_SET (bb), lv);
3084 BB_LV_SET_VALID_P (bb) = true;
3085 }
3086
3087 return_regset_to_pool (lv);
3088 return lv;
3089 }
3090 }
3091
3092 /* We've skipped the wrong lv_set. Don't skip the right one. */
3093 ignore_first = false;
3094 gcc_assert (in_current_region_p (bb));
3095
3096 /* Find a valid LV set in this block or below, if needed.
3097 Start searching from the next insn: either ignore_first is true, or
3098 INSN doesn't have a correct live set. */
3099 temp = NEXT_INSN (insn);
3100 final = NEXT_INSN (BB_END (bb));
3101 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102 temp = NEXT_INSN (temp);
3103 if (temp == final)
3104 {
3105 lv = compute_live_after_bb (bb);
3106 temp = PREV_INSN (temp);
3107 }
3108 else
3109 {
3110 lv = get_regset_from_pool ();
3111 COPY_REG_SET (lv, INSN_LIVE (temp));
3112 }
3113
3114 /* Put correct lv sets on the insns which have bad sets. */
3115 final = PREV_INSN (insn);
3116 while (temp != final)
3117 {
3118 propagate_lv_set (lv, temp);
3119 COPY_REG_SET (INSN_LIVE (temp), lv);
3120 INSN_LIVE_VALID_P (temp) = true;
3121 temp = PREV_INSN (temp);
3122 }
3123
3124 /* Also put it in a BB. */
3125 if (sel_bb_head_p (insn))
3126 {
3127 basic_block bb = BLOCK_FOR_INSN (insn);
3128
3129 COPY_REG_SET (BB_LV_SET (bb), lv);
3130 BB_LV_SET_VALID_P (bb) = true;
3131 }
3132
3133 /* We return LV to the pool, but will not clear it there. Thus we can
3134 legimatelly use LV till the next use of regset_pool_get (). */
3135 return_regset_to_pool (lv);
3136 return lv;
3137 }
3138
3139 /* Update liveness sets for INSN. */
3140 static inline void
3141 update_liveness_on_insn (rtx insn)
3142 {
3143 ignore_first = true;
3144 compute_live (insn);
3145 }
3146
3147 /* Compute liveness below INSN and write it into REGS. */
3148 static inline void
3149 compute_live_below_insn (rtx insn, regset regs)
3150 {
3151 rtx succ;
3152 succ_iterator si;
3153
3154 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3155 IOR_REG_SET (regs, compute_live (succ));
3156 }
3157
3158 /* Update the data gathered in av and lv sets starting from INSN. */
3159 static void
3160 update_data_sets (rtx insn)
3161 {
3162 update_liveness_on_insn (insn);
3163 if (sel_bb_head_p (insn))
3164 {
3165 gcc_assert (AV_LEVEL (insn) != 0);
3166 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167 compute_av_set (insn, NULL, 0, 0);
3168 }
3169 }
3170 \f
3171
3172 /* Helper for move_op () and find_used_regs ().
3173 Return speculation type for which a check should be created on the place
3174 of INSN. EXPR is one of the original ops we are searching for. */
3175 static ds_t
3176 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3177 {
3178 ds_t to_check_ds;
3179 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3180
3181 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3182
3183 if (targetm.sched.get_insn_checked_ds)
3184 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3185
3186 if (spec_info != NULL
3187 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188 already_checked_ds |= BEGIN_CONTROL;
3189
3190 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3191
3192 to_check_ds &= ~already_checked_ds;
3193
3194 return to_check_ds;
3195 }
3196
3197 /* Find the set of registers that are unavailable for storing expres
3198 while moving ORIG_OPS up on the path starting from INSN due to
3199 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3200
3201 All the original operations found during the traversal are saved in the
3202 ORIGINAL_INSNS list.
3203
3204 REG_RENAME_P denotes the set of hardware registers that
3205 can not be used with renaming due to the register class restrictions,
3206 mode restrictions and other (the register we'll choose should be
3207 compatible class with the original uses, shouldn't be in call_used_regs,
3208 should be HARD_REGNO_RENAME_OK etc).
3209
3210 Returns TRUE if we've found all original insns, FALSE otherwise.
3211
3212 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3213 to traverse the code motion paths. This helper function finds registers
3214 that are not available for storing expres while moving ORIG_OPS up on the
3215 path starting from INSN. A register considered as used on the moving path,
3216 if one of the following conditions is not satisfied:
3217
3218 (1) a register not set or read on any path from xi to an instance of
3219 the original operation,
3220 (2) not among the live registers of the point immediately following the
3221 first original operation on a given downward path, except for the
3222 original target register of the operation,
3223 (3) not live on the other path of any conditional branch that is passed
3224 by the operation, in case original operations are not present on
3225 both paths of the conditional branch.
3226
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3229
3230 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3232 to unavailable hard regs at the point original operation is found. */
3233
3234 static bool
3235 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3237 {
3238 def_list_iterator i;
3239 def_t def;
3240 int res;
3241 bool needs_spec_check_p = false;
3242 expr_t expr;
3243 av_set_iterator expr_iter;
3244 struct fur_static_params sparams;
3245 struct cmpd_local_params lparams;
3246
3247 /* We haven't visited any blocks yet. */
3248 bitmap_clear (code_motion_visited_blocks);
3249
3250 /* Init parameters for code_motion_path_driver. */
3251 sparams.crosses_call = false;
3252 sparams.original_insns = original_insns;
3253 sparams.used_regs = used_regs;
3254
3255 /* Set the appropriate hooks and data. */
3256 code_motion_path_driver_info = &fur_hooks;
3257
3258 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3259
3260 reg_rename_p->crosses_call |= sparams.crosses_call;
3261
3262 gcc_assert (res == 1);
3263 gcc_assert (original_insns && *original_insns);
3264
3265 /* ??? We calculate whether an expression needs a check when computing
3266 av sets. This information is not as precise as it could be due to
3267 merging this bit in merge_expr. We can do better in find_used_regs,
3268 but we want to avoid multiple traversals of the same code motion
3269 paths. */
3270 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3272
3273 /* Mark hardware regs in REG_RENAME_P that are not suitable
3274 for renaming expr in INSN due to hardware restrictions (register class,
3275 modes compatibility etc). */
3276 FOR_EACH_DEF (def, i, *original_insns)
3277 {
3278 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3279
3280 if (VINSN_SEPARABLE_P (vinsn))
3281 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3282
3283 /* Do not allow clobbering of ld.[sa] address in case some of the
3284 original operations need a check. */
3285 if (needs_spec_check_p)
3286 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287 }
3288
3289 return true;
3290 }
3291 \f
3292
3293 /* Functions to choose the best insn from available ones. */
3294
3295 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3296 static int
3297 sel_target_adjust_priority (expr_t expr)
3298 {
3299 int priority = EXPR_PRIORITY (expr);
3300 int new_priority;
3301
3302 if (targetm.sched.adjust_priority)
3303 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304 else
3305 new_priority = priority;
3306
3307 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3308 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3309
3310 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3311
3312 if (sched_verbose >= 4)
3313 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3314 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3315 EXPR_PRIORITY_ADJ (expr), new_priority);
3316
3317 return new_priority;
3318 }
3319
3320 /* Rank two available exprs for schedule. Never return 0 here. */
3321 static int
3322 sel_rank_for_schedule (const void *x, const void *y)
3323 {
3324 expr_t tmp = *(const expr_t *) y;
3325 expr_t tmp2 = *(const expr_t *) x;
3326 insn_t tmp_insn, tmp2_insn;
3327 vinsn_t tmp_vinsn, tmp2_vinsn;
3328 int val;
3329
3330 tmp_vinsn = EXPR_VINSN (tmp);
3331 tmp2_vinsn = EXPR_VINSN (tmp2);
3332 tmp_insn = EXPR_INSN_RTX (tmp);
3333 tmp2_insn = EXPR_INSN_RTX (tmp2);
3334
3335 /* Schedule debug insns as early as possible. */
3336 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337 return -1;
3338 else if (DEBUG_INSN_P (tmp2_insn))
3339 return 1;
3340
3341 /* Prefer SCHED_GROUP_P insns to any others. */
3342 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3343 {
3344 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3345 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3346
3347 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348 cannot be cloned. */
3349 if (VINSN_UNIQUE_P (tmp2_vinsn))
3350 return 1;
3351 return -1;
3352 }
3353
3354 /* Discourage scheduling of speculative checks. */
3355 val = (sel_insn_is_speculation_check (tmp_insn)
3356 - sel_insn_is_speculation_check (tmp2_insn));
3357 if (val)
3358 return val;
3359
3360 /* Prefer not scheduled insn over scheduled one. */
3361 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3362 {
3363 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364 if (val)
3365 return val;
3366 }
3367
3368 /* Prefer jump over non-jump instruction. */
3369 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370 return -1;
3371 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372 return 1;
3373
3374 /* Prefer an expr with greater priority. */
3375 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3376 {
3377 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3379
3380 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3381 }
3382 else
3383 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3384 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385 if (val)
3386 return val;
3387
3388 if (spec_info != NULL && spec_info->mask != 0)
3389 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3390 {
3391 ds_t ds1, ds2;
3392 dw_t dw1, dw2;
3393 int dw;
3394
3395 ds1 = EXPR_SPEC_DONE_DS (tmp);
3396 if (ds1)
3397 dw1 = ds_weak (ds1);
3398 else
3399 dw1 = NO_DEP_WEAK;
3400
3401 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402 if (ds2)
3403 dw2 = ds_weak (ds2);
3404 else
3405 dw2 = NO_DEP_WEAK;
3406
3407 dw = dw2 - dw1;
3408 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 return dw;
3410 }
3411
3412 /* Prefer an old insn to a bookkeeping insn. */
3413 if (INSN_UID (tmp_insn) < first_emitted_uid
3414 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415 return -1;
3416 if (INSN_UID (tmp_insn) >= first_emitted_uid
3417 && INSN_UID (tmp2_insn) < first_emitted_uid)
3418 return 1;
3419
3420 /* Prefer an insn with smaller UID, as a last resort.
3421 We can't safely use INSN_LUID as it is defined only for those insns
3422 that are in the stream. */
3423 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424 }
3425
3426 /* Filter out expressions from av set pointed to by AV_PTR
3427 that are pipelined too many times. */
3428 static void
3429 process_pipelined_exprs (av_set_t *av_ptr)
3430 {
3431 expr_t expr;
3432 av_set_iterator si;
3433
3434 /* Don't pipeline already pipelined code as that would increase
3435 number of unnecessary register moves. */
3436 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3437 {
3438 if (EXPR_SCHED_TIMES (expr)
3439 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 av_set_iter_remove (&si);
3441 }
3442 }
3443
3444 /* Filter speculative insns from AV_PTR if we don't want them. */
3445 static void
3446 process_spec_exprs (av_set_t *av_ptr)
3447 {
3448 bool try_data_p = true;
3449 bool try_control_p = true;
3450 expr_t expr;
3451 av_set_iterator si;
3452
3453 if (spec_info == NULL)
3454 return;
3455
3456 /* Scan *AV_PTR to find out if we want to consider speculative
3457 instructions for scheduling. */
3458 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3459 {
3460 ds_t ds;
3461
3462 ds = EXPR_SPEC_DONE_DS (expr);
3463
3464 /* The probability of a success is too low - don't speculate. */
3465 if ((ds & SPECULATIVE)
3466 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 || (pipelining_p && false
3469 && (ds & DATA_SPEC)
3470 && (ds & CONTROL_SPEC))))
3471 {
3472 av_set_iter_remove (&si);
3473 continue;
3474 }
3475
3476 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477 && !(ds & BEGIN_DATA))
3478 try_data_p = false;
3479
3480 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481 && !(ds & BEGIN_CONTROL))
3482 try_control_p = false;
3483 }
3484
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486 {
3487 ds_t ds;
3488
3489 ds = EXPR_SPEC_DONE_DS (expr);
3490
3491 if (ds & SPECULATIVE)
3492 {
3493 if ((ds & BEGIN_DATA) && !try_data_p)
3494 /* We don't want any data speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3497
3498 if ((ds & BEGIN_CONTROL) && !try_control_p)
3499 /* We don't want any control speculative instructions right
3500 now. */
3501 av_set_iter_remove (&si);
3502 }
3503 }
3504 }
3505
3506 /* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510 static expr_t
3511 process_use_exprs (av_set_t *av_ptr)
3512 {
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3517
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 {
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 {
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 {
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3529
3530 av_set_iter_remove (&si);
3531 }
3532 else
3533 {
3534 gcc_assert (pipelining_p);
3535
3536 uses_present_p = true;
3537 }
3538 }
3539 else
3540 try_uses_p = false;
3541 }
3542
3543 if (uses_present_p)
3544 {
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3548 {
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3552 }
3553 else
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 {
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3561
3562 av_set_iter_remove (&si);
3563 }
3564 }
3565 }
3566
3567 return NULL;
3568 }
3569
3570 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573 {
3574 vinsn_t vinsn;
3575 int n;
3576
3577 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3578 if (VINSN_SEPARABLE_P (vinsn))
3579 {
3580 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581 return true;
3582 }
3583 else
3584 {
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3590 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591 return true;
3592 }
3593
3594 return false;
3595 }
3596
3597 #ifdef ENABLE_CHECKING
3598 /* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601 static bool
3602 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603 {
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3607
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3613
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3616
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3623
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3627 {
3628 rtx reg = sparams->dest;
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630
3631 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3633 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3634 return true;
3635 }
3636
3637 return false;
3638 }
3639 #endif
3640
3641 /* Clear VINSN_VEC and detach vinsns. */
3642 static void
3643 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644 {
3645 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
3650
3651 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3652 vinsn_detach (vinsn);
3653 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 }
3655 }
3656
3657 /* Add the vinsn of EXPR to the VINSN_VEC. */
3658 static void
3659 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660 {
3661 vinsn_attach (EXPR_VINSN (expr));
3662 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663 }
3664
3665 /* Free the vector representing blocked expressions. */
3666 static void
3667 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3668 {
3669 if (*vinsn_vec)
3670 VEC_free (vinsn_t, heap, *vinsn_vec);
3671 }
3672
3673 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3674
3675 void sel_add_to_insn_priority (rtx insn, int amount)
3676 {
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678
3679 if (sched_verbose >= 2)
3680 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3681 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683 }
3684
3685 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3686 true if there is something to schedule. BNDS and FENCE are current
3687 boundaries and fence, respectively. If we need to stall for some cycles
3688 before an expr from AV would become available, write this number to
3689 *PNEED_STALL. */
3690 static bool
3691 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692 int *pneed_stall)
3693 {
3694 av_set_iterator si;
3695 expr_t expr;
3696 int sched_next_worked = 0, stalled, n;
3697 static int av_max_prio, est_ticks_till_branch;
3698 int min_need_stall = -1;
3699 deps_t dc = BND_DC (BLIST_BND (bnds));
3700
3701 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702 already scheduled. */
3703 if (av == NULL)
3704 return false;
3705
3706 /* Empty vector from the previous stuff. */
3707 if (VEC_length (expr_t, vec_av_set) > 0)
3708 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3709
3710 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711 for each insn. */
3712 gcc_assert (VEC_empty (expr_t, vec_av_set));
3713 FOR_EACH_EXPR (expr, si, av)
3714 {
3715 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3716
3717 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718
3719 /* Adjust priority using target backend hook. */
3720 sel_target_adjust_priority (expr);
3721 }
3722
3723 /* Sort the vector. */
3724 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3725
3726 /* We record maximal priority of insns in av set for current instruction
3727 group. */
3728 if (FENCE_STARTS_CYCLE_P (fence))
3729 av_max_prio = est_ticks_till_branch = INT_MIN;
3730
3731 /* Filter out inappropriate expressions. Loop's direction is reversed to
3732 visit "best" instructions first. We assume that VEC_unordered_remove
3733 moves last element in place of one being deleted. */
3734 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735 {
3736 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737 insn_t insn = EXPR_INSN_RTX (expr);
3738 signed char target_available;
3739 bool is_orig_reg_p = true;
3740 int need_cycles, new_prio;
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
3745 VEC_unordered_remove (expr_t, vec_av_set, n);
3746 continue;
3747 }
3748
3749 /* Set number of sched_next insns (just in case there
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
3753
3754 /* Check all liveness requirements and try renaming.
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 target_available = -1;
3762
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 {
3769 VEC_unordered_remove (expr_t, vec_av_set, n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3774 }
3775
3776 if (target_available == true)
3777 {
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 }
3781 else if (/* Non-separable instruction will never
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 {
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 if (sched_verbose >= 4)
3793 sel_print ("Expr %d has no suitable target register\n",
3794 INSN_UID (insn));
3795 continue;
3796 }
3797
3798 /* Filter expressions that need to be renamed or speculated when
3799 pipelining, because compensating register copies or speculation
3800 checks are likely to be placed near the beginning of the loop,
3801 causing a stall. */
3802 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 {
3805 /* Estimation of number of cycles until loop branch for
3806 renaming/speculation to be successful. */
3807 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808
3809 if ((int) current_loop_nest->ninsns < 9)
3810 {
3811 VEC_unordered_remove (expr_t, vec_av_set, n);
3812 if (sched_verbose >= 4)
3813 sel_print ("Pipelining expr %d will likely cause stall\n",
3814 INSN_UID (insn));
3815 continue;
3816 }
3817
3818 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 < need_n_ticks_till_branch * issue_rate / 2
3820 && est_ticks_till_branch < need_n_ticks_till_branch)
3821 {
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3827 }
3828 }
3829
3830 /* We want to schedule speculation checks as late as possible. Discard
3831 them from av set if there are instructions with higher priority. */
3832 if (sel_insn_is_speculation_check (insn)
3833 && EXPR_PRIORITY (expr) < av_max_prio)
3834 {
3835 stalled++;
3836 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837 VEC_unordered_remove (expr_t, vec_av_set, n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Delaying speculation check %d until its first use\n",
3840 INSN_UID (insn));
3841 continue;
3842 }
3843
3844 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3845 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847
3848 /* Don't allow any insns whose data is not yet ready.
3849 Check first whether we've already tried them and failed. */
3850 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 {
3852 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 - FENCE_CYCLE (fence));
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 EXPR_PRIORITY (expr) + need_cycles);
3857
3858 if (need_cycles > 0)
3859 {
3860 stalled++;
3861 min_need_stall = (min_need_stall < 0
3862 ? need_cycles
3863 : MIN (min_need_stall, need_cycles));
3864 VEC_unordered_remove (expr_t, vec_av_set, n);
3865
3866 if (sched_verbose >= 4)
3867 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3868 INSN_UID (insn),
3869 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 continue;
3871 }
3872 }
3873
3874 /* Now resort to dependence analysis to find whether EXPR might be
3875 stalled due to dependencies from FENCE's context. */
3876 need_cycles = tick_check_p (expr, dc, fence);
3877 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878
3879 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 new_prio);
3882
3883 if (need_cycles > 0)
3884 {
3885 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886 {
3887 int new_size = INSN_UID (insn) * 3 / 2;
3888
3889 FENCE_READY_TICKS (fence)
3890 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891 new_size, FENCE_READY_TICKS_SIZE (fence),
3892 sizeof (int));
3893 }
3894 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895 = FENCE_CYCLE (fence) + need_cycles;
3896
3897 stalled++;
3898 min_need_stall = (min_need_stall < 0
3899 ? need_cycles
3900 : MIN (min_need_stall, need_cycles));
3901
3902 VEC_unordered_remove (expr_t, vec_av_set, n);
3903
3904 if (sched_verbose >= 4)
3905 sel_print ("Expr %d is not ready yet until cycle %d\n",
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3909 }
3910
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913 min_need_stall = 0;
3914 }
3915
3916 /* Clear SCHED_NEXT. */
3917 if (FENCE_SCHED_NEXT (fence))
3918 {
3919 gcc_assert (sched_next_worked == 1);
3920 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921 }
3922
3923 /* No need to stall if this variable was not initialized. */
3924 if (min_need_stall < 0)
3925 min_need_stall = 0;
3926
3927 if (VEC_empty (expr_t, vec_av_set))
3928 {
3929 /* We need to set *pneed_stall here, because later we skip this code
3930 when ready list is empty. */
3931 *pneed_stall = min_need_stall;
3932 return false;
3933 }
3934 else
3935 gcc_assert (min_need_stall == 0);
3936
3937 /* Sort the vector. */
3938 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3939
3940 if (sched_verbose >= 4)
3941 {
3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946 dump_expr (expr);
3947 sel_print ("\n");
3948 }
3949
3950 *pneed_stall = 0;
3951 return true;
3952 }
3953
3954 /* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3958 {
3959 int n;
3960 expr_t expr;
3961
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
3965
3966 gcc_assert (ready.n_ready > 0);
3967
3968 if (ready.n_ready > max_issue_size)
3969 {
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3972 }
3973
3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3975 {
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3978
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3981 }
3982 }
3983
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3992 {
3993 expr_t expr;
3994
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997
3998 /* Process expressions required special handling, i.e. pipelined,
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4002
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4006 {
4007 *pneed_stall = 0;
4008 return expr;
4009 }
4010
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 {
4014 ready.n_ready = 0;
4015 return NULL;
4016 }
4017
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4021 }
4022
4023 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026 {
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4032
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4035
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4041 {
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4046 }
4047
4048 return res;
4049 }
4050
4051 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4055 {
4056 int issue_more;
4057 bool ran_hook = false;
4058
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 {
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4066 {
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4071
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4076
4077 if (pipelining_p)
4078 ++ready.n_ready;
4079
4080 ran_hook = true;
4081 }
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4085 }
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 {
4089 if (ready.n_ready == 1)
4090 issue_more =
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4095 {
4096 if (pipelining_p)
4097 --ready.n_ready;
4098
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104
4105 if (pipelining_p)
4106 ++ready.n_ready;
4107 }
4108
4109 ran_hook = true;
4110 }
4111 else
4112 issue_more = FENCE_ISSUE_MORE (fence);
4113
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4117 {
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 {
4125 expr_t tmp;
4126
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4131
4132 tmp = vec[i];
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4135 }
4136 }
4137
4138 return issue_more;
4139 }
4140
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144 ready.vec otherwise. */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4147 {
4148 expr_t expr;
4149 int real_index;
4150
4151 real_index = follow_ready_element ? ready.first - index : index;
4152
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155
4156 return expr;
4157 }
4158
4159 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4163 {
4164 int i, n;
4165 bool have_hook
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4170
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 {
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4176
4177 /* In this loop insn is Ith element of the ready list given by
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
4180
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4185
4186 gcc_assert (INSN_CODE (insn) >= 0);
4187
4188 /* Only insns with ready_try = 0 can get here
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4194
4195 expr = find_expr_for_ready (i, true);
4196
4197 if (sched_verbose >= 2)
4198 {
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4201 }
4202 }
4203
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4207 }
4208
4209 /* Calculate the number of privileged insns and return it. */
4210 static int
4211 calculate_privileged_insns (void)
4212 {
4213 expr_t cur_expr, min_spec_expr = NULL;
4214 int privileged_n = 0, i;
4215
4216 for (i = 0; i < ready.n_ready; i++)
4217 {
4218 if (ready_try[i])
4219 continue;
4220
4221 if (! min_spec_expr)
4222 min_spec_expr = find_expr_for_ready (i, true);
4223
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239 }
4240
4241 /* Call the rest of the hooks after the choice was made. Return
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247 {
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
4252
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256 issue_more =
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266 }
4267
4268 /* Estimate the cost of issuing INSN on DFA state STATE. Write to PEMPTY
4269 true when INSN does not change the processor state. */
4270 static int
4271 estimate_insn_cost (rtx insn, state_t state, bool *pempty)
4272 {
4273 static state_t temp = NULL;
4274 int cost;
4275
4276 if (!temp)
4277 temp = xmalloc (dfa_state_size);
4278
4279 memcpy (temp, state, dfa_state_size);
4280 cost = state_transition (temp, insn);
4281 if (pempty)
4282 *pempty = (memcmp (temp, state, dfa_state_size) == 0);
4283
4284 if (cost < 0)
4285 return 0;
4286 else if (cost == 0)
4287 return 1;
4288 return cost;
4289 }
4290
4291 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4292 This function properly handles ASMs, USEs etc. */
4293 static int
4294 get_expr_cost (expr_t expr, fence_t fence)
4295 {
4296 rtx insn = EXPR_INSN_RTX (expr);
4297
4298 if (recog_memoized (insn) < 0)
4299 {
4300 if (!FENCE_STARTS_CYCLE_P (fence)
4301 && INSN_ASM_P (insn))
4302 /* This is asm insn which is tryed to be issued on the
4303 cycle not first. Issue it on the next cycle. */
4304 return 1;
4305 else
4306 /* A USE insn, or something else we don't need to
4307 understand. We can't pass these directly to
4308 state_transition because it will trigger a
4309 fatal error for unrecognizable insns. */
4310 return 0;
4311 }
4312 else
4313 return estimate_insn_cost (insn, FENCE_STATE (fence), NULL);
4314 }
4315
4316 /* Find the best insn for scheduling, either via max_issue or just take
4317 the most prioritized available. */
4318 static int
4319 choose_best_insn (fence_t fence, int privileged_n, int *index)
4320 {
4321 int can_issue = 0;
4322
4323 if (dfa_lookahead > 0)
4324 {
4325 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4326 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4327 can_issue = max_issue (&ready, privileged_n,
4328 FENCE_STATE (fence), true, index);
4329 if (sched_verbose >= 2)
4330 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4331 can_issue, FENCE_ISSUED_INSNS (fence));
4332 }
4333 else
4334 {
4335 /* We can't use max_issue; just return the first available element. */
4336 int i;
4337
4338 for (i = 0; i < ready.n_ready; i++)
4339 {
4340 expr_t expr = find_expr_for_ready (i, true);
4341
4342 if (get_expr_cost (expr, fence) < 1)
4343 {
4344 can_issue = can_issue_more;
4345 *index = i;
4346
4347 if (sched_verbose >= 2)
4348 sel_print ("using %dth insn from the ready list\n", i + 1);
4349
4350 break;
4351 }
4352 }
4353
4354 if (i == ready.n_ready)
4355 {
4356 can_issue = 0;
4357 *index = -1;
4358 }
4359 }
4360
4361 return can_issue;
4362 }
4363
4364 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4365 BNDS and FENCE are current boundaries and scheduling fence respectively.
4366 Return the expr found and NULL if nothing can be issued atm.
4367 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4368 static expr_t
4369 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4370 int *pneed_stall)
4371 {
4372 expr_t best;
4373
4374 /* Choose the best insn for scheduling via:
4375 1) sorting the ready list based on priority;
4376 2) calling the reorder hook;
4377 3) calling max_issue. */
4378 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4379 if (best == NULL && ready.n_ready > 0)
4380 {
4381 int privileged_n, index;
4382
4383 can_issue_more = invoke_reorder_hooks (fence);
4384 if (can_issue_more > 0)
4385 {
4386 /* Try choosing the best insn until we find one that is could be
4387 scheduled due to liveness restrictions on its destination register.
4388 In the future, we'd like to choose once and then just probe insns
4389 in the order of their priority. */
4390 invoke_dfa_lookahead_guard ();
4391 privileged_n = calculate_privileged_insns ();
4392 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4393 if (can_issue_more)
4394 best = find_expr_for_ready (index, true);
4395 }
4396 /* We had some available insns, so if we can't issue them,
4397 we have a stall. */
4398 if (can_issue_more == 0)
4399 {
4400 best = NULL;
4401 *pneed_stall = 1;
4402 }
4403 }
4404
4405 if (best != NULL)
4406 {
4407 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4408 can_issue_more);
4409 if (targetm.sched.variable_issue
4410 && can_issue_more == 0)
4411 *pneed_stall = 1;
4412 }
4413
4414 if (sched_verbose >= 2)
4415 {
4416 if (best != NULL)
4417 {
4418 sel_print ("Best expression (vliw form): ");
4419 dump_expr (best);
4420 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4421 }
4422 else
4423 sel_print ("No best expr found!\n");
4424 }
4425
4426 return best;
4427 }
4428 \f
4429
4430 /* Functions that implement the core of the scheduler. */
4431
4432
4433 /* Emit an instruction from EXPR with SEQNO and VINSN after
4434 PLACE_TO_INSERT. */
4435 static insn_t
4436 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4437 insn_t place_to_insert)
4438 {
4439 /* This assert fails when we have identical instructions
4440 one of which dominates the other. In this case move_op ()
4441 finds the first instruction and doesn't search for second one.
4442 The solution would be to compute av_set after the first found
4443 insn and, if insn present in that set, continue searching.
4444 For now we workaround this issue in move_op. */
4445 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4446
4447 if (EXPR_WAS_RENAMED (expr))
4448 {
4449 unsigned regno = expr_dest_regno (expr);
4450
4451 if (HARD_REGISTER_NUM_P (regno))
4452 {
4453 df_set_regs_ever_live (regno, true);
4454 reg_rename_tick[regno] = ++reg_rename_this_tick;
4455 }
4456 }
4457
4458 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4459 place_to_insert);
4460 }
4461
4462 /* Return TRUE if BB can hold bookkeeping code. */
4463 static bool
4464 block_valid_for_bookkeeping_p (basic_block bb)
4465 {
4466 insn_t bb_end = BB_END (bb);
4467
4468 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4469 return false;
4470
4471 if (INSN_P (bb_end))
4472 {
4473 if (INSN_SCHED_TIMES (bb_end) > 0)
4474 return false;
4475 }
4476 else
4477 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4478
4479 return true;
4480 }
4481
4482 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4483 into E2->dest, except from E1->src (there may be a sequence of empty basic
4484 blocks between E1->src and E2->dest). Return found block, or NULL if new
4485 one must be created. If LAX holds, don't assume there is a simple path
4486 from E1->src to E2->dest. */
4487 static basic_block
4488 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4489 {
4490 basic_block candidate_block = NULL;
4491 edge e;
4492
4493 /* Loop over edges from E1 to E2, inclusive. */
4494 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4495 {
4496 if (EDGE_COUNT (e->dest->preds) == 2)
4497 {
4498 if (candidate_block == NULL)
4499 candidate_block = (EDGE_PRED (e->dest, 0) == e
4500 ? EDGE_PRED (e->dest, 1)->src
4501 : EDGE_PRED (e->dest, 0)->src);
4502 else
4503 /* Found additional edge leading to path from e1 to e2
4504 from aside. */
4505 return NULL;
4506 }
4507 else if (EDGE_COUNT (e->dest->preds) > 2)
4508 /* Several edges leading to path from e1 to e2 from aside. */
4509 return NULL;
4510
4511 if (e == e2)
4512 return ((!lax || candidate_block)
4513 && block_valid_for_bookkeeping_p (candidate_block)
4514 ? candidate_block
4515 : NULL);
4516
4517 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4518 return NULL;
4519 }
4520
4521 if (lax)
4522 return NULL;
4523
4524 gcc_unreachable ();
4525 }
4526
4527 /* Create new basic block for bookkeeping code for path(s) incoming into
4528 E2->dest, except from E1->src. Return created block. */
4529 static basic_block
4530 create_block_for_bookkeeping (edge e1, edge e2)
4531 {
4532 basic_block new_bb, bb = e2->dest;
4533
4534 /* Check that we don't spoil the loop structure. */
4535 if (current_loop_nest)
4536 {
4537 basic_block latch = current_loop_nest->latch;
4538
4539 /* We do not split header. */
4540 gcc_assert (e2->dest != current_loop_nest->header);
4541
4542 /* We do not redirect the only edge to the latch block. */
4543 gcc_assert (e1->dest != latch
4544 || !single_pred_p (latch)
4545 || e1 != single_pred_edge (latch));
4546 }
4547
4548 /* Split BB to insert BOOK_INSN there. */
4549 new_bb = sched_split_block (bb, NULL);
4550
4551 /* Move note_list from the upper bb. */
4552 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4553 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4554 BB_NOTE_LIST (bb) = NULL_RTX;
4555
4556 gcc_assert (e2->dest == bb);
4557
4558 /* Skip block for bookkeeping copy when leaving E1->src. */
4559 if (e1->flags & EDGE_FALLTHRU)
4560 sel_redirect_edge_and_branch_force (e1, new_bb);
4561 else
4562 sel_redirect_edge_and_branch (e1, new_bb);
4563
4564 gcc_assert (e1->dest == new_bb);
4565 gcc_assert (sel_bb_empty_p (bb));
4566
4567 /* To keep basic block numbers in sync between debug and non-debug
4568 compilations, we have to rotate blocks here. Consider that we
4569 started from (a,b)->d, (c,d)->e, and d contained only debug
4570 insns. It would have been removed before if the debug insns
4571 weren't there, so we'd have split e rather than d. So what we do
4572 now is to swap the block numbers of new_bb and
4573 single_succ(new_bb) == e, so that the insns that were in e before
4574 get the new block number. */
4575
4576 if (MAY_HAVE_DEBUG_INSNS)
4577 {
4578 basic_block succ;
4579 insn_t insn = sel_bb_head (new_bb);
4580 insn_t last;
4581
4582 if (DEBUG_INSN_P (insn)
4583 && single_succ_p (new_bb)
4584 && (succ = single_succ (new_bb))
4585 && succ != EXIT_BLOCK_PTR
4586 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4587 {
4588 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4589 insn = NEXT_INSN (insn);
4590
4591 if (insn == last)
4592 {
4593 sel_global_bb_info_def gbi;
4594 sel_region_bb_info_def rbi;
4595 int i;
4596
4597 if (sched_verbose >= 2)
4598 sel_print ("Swapping block ids %i and %i\n",
4599 new_bb->index, succ->index);
4600
4601 i = new_bb->index;
4602 new_bb->index = succ->index;
4603 succ->index = i;
4604
4605 SET_BASIC_BLOCK (new_bb->index, new_bb);
4606 SET_BASIC_BLOCK (succ->index, succ);
4607
4608 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4609 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4610 sizeof (gbi));
4611 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4612
4613 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4614 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4615 sizeof (rbi));
4616 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4617
4618 i = BLOCK_TO_BB (new_bb->index);
4619 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4620 BLOCK_TO_BB (succ->index) = i;
4621
4622 i = CONTAINING_RGN (new_bb->index);
4623 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4624 CONTAINING_RGN (succ->index) = i;
4625
4626 for (i = 0; i < current_nr_blocks; i++)
4627 if (BB_TO_BLOCK (i) == succ->index)
4628 BB_TO_BLOCK (i) = new_bb->index;
4629 else if (BB_TO_BLOCK (i) == new_bb->index)
4630 BB_TO_BLOCK (i) = succ->index;
4631
4632 FOR_BB_INSNS (new_bb, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4635
4636 FOR_BB_INSNS (succ, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4639
4640 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4641 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4642
4643 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4644 && LABEL_P (BB_HEAD (succ)));
4645
4646 if (sched_verbose >= 4)
4647 sel_print ("Swapping code labels %i and %i\n",
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650
4651 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4652 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4653 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4654 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4655 }
4656 }
4657 }
4658
4659 return bb;
4660 }
4661
4662 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4663 into E2->dest, except from E1->src. If the returned insn immediately
4664 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4665 static insn_t
4666 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4667 {
4668 insn_t place_to_insert;
4669 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4670 create new basic block, but insert bookkeeping there. */
4671 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4672
4673 if (book_block)
4674 {
4675 place_to_insert = BB_END (book_block);
4676
4677 /* Don't use a block containing only debug insns for
4678 bookkeeping, this causes scheduling differences between debug
4679 and non-debug compilations, for the block would have been
4680 removed already. */
4681 if (DEBUG_INSN_P (place_to_insert))
4682 {
4683 rtx insn = sel_bb_head (book_block);
4684
4685 while (insn != place_to_insert &&
4686 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4687 insn = NEXT_INSN (insn);
4688
4689 if (insn == place_to_insert)
4690 book_block = NULL;
4691 }
4692 }
4693
4694 if (!book_block)
4695 {
4696 book_block = create_block_for_bookkeeping (e1, e2);
4697 place_to_insert = BB_END (book_block);
4698 if (sched_verbose >= 9)
4699 sel_print ("New block is %i, split from bookkeeping block %i\n",
4700 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4701 }
4702 else
4703 {
4704 if (sched_verbose >= 9)
4705 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4706 }
4707
4708 *fence_to_rewind = NULL;
4709 /* If basic block ends with a jump, insert bookkeeping code right before it.
4710 Notice if we are crossing a fence when taking PREV_INSN. */
4711 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4712 {
4713 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4714 place_to_insert = PREV_INSN (place_to_insert);
4715 }
4716
4717 return place_to_insert;
4718 }
4719
4720 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4721 for JOIN_POINT. */
4722 static int
4723 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4724 {
4725 int seqno;
4726 rtx next;
4727
4728 /* Check if we are about to insert bookkeeping copy before a jump, and use
4729 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4730 next = NEXT_INSN (place_to_insert);
4731 if (INSN_P (next)
4732 && JUMP_P (next)
4733 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4734 {
4735 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4736 seqno = INSN_SEQNO (next);
4737 }
4738 else if (INSN_SEQNO (join_point) > 0)
4739 seqno = INSN_SEQNO (join_point);
4740 else
4741 {
4742 seqno = get_seqno_by_preds (place_to_insert);
4743
4744 /* Sometimes the fences can move in such a way that there will be
4745 no instructions with positive seqno around this bookkeeping.
4746 This means that there will be no way to get to it by a regular
4747 fence movement. Never mind because we pick up such pieces for
4748 rescheduling anyways, so any positive value will do for now. */
4749 if (seqno < 0)
4750 {
4751 gcc_assert (pipelining_p);
4752 seqno = 1;
4753 }
4754 }
4755
4756 gcc_assert (seqno > 0);
4757 return seqno;
4758 }
4759
4760 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4761 NEW_SEQNO to it. Return created insn. */
4762 static insn_t
4763 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4764 {
4765 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4766
4767 vinsn_t new_vinsn
4768 = create_vinsn_from_insn_rtx (new_insn_rtx,
4769 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4770
4771 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4772 place_to_insert);
4773
4774 INSN_SCHED_TIMES (new_insn) = 0;
4775 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4776
4777 return new_insn;
4778 }
4779
4780 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4781 E2->dest, except from E1->src (there may be a sequence of empty blocks
4782 between E1->src and E2->dest). Return block containing the copy.
4783 All scheduler data is initialized for the newly created insn. */
4784 static basic_block
4785 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4786 {
4787 insn_t join_point, place_to_insert, new_insn;
4788 int new_seqno;
4789 bool need_to_exchange_data_sets;
4790 fence_t fence_to_rewind;
4791
4792 if (sched_verbose >= 4)
4793 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4794 e2->dest->index);
4795
4796 join_point = sel_bb_head (e2->dest);
4797 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4798 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4799 need_to_exchange_data_sets
4800 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4801
4802 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4803
4804 if (fence_to_rewind)
4805 FENCE_INSN (fence_to_rewind) = new_insn;
4806
4807 /* When inserting bookkeeping insn in new block, av sets should be
4808 following: old basic block (that now holds bookkeeping) data sets are
4809 the same as was before generation of bookkeeping, and new basic block
4810 (that now hold all other insns of old basic block) data sets are
4811 invalid. So exchange data sets for these basic blocks as sel_split_block
4812 mistakenly exchanges them in this case. Cannot do it earlier because
4813 when single instruction is added to new basic block it should hold NULL
4814 lv_set. */
4815 if (need_to_exchange_data_sets)
4816 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4817 BLOCK_FOR_INSN (join_point));
4818
4819 stat_bookkeeping_copies++;
4820 return BLOCK_FOR_INSN (new_insn);
4821 }
4822
4823 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4824 on FENCE, but we are unable to copy them. */
4825 static void
4826 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4827 {
4828 expr_t expr;
4829 av_set_iterator i;
4830
4831 /* An expression does not need bookkeeping if it is available on all paths
4832 from current block to original block and current block dominates
4833 original block. We check availability on all paths by examining
4834 EXPR_SPEC; this is not equivalent, because it may be positive even
4835 if expr is available on all paths (but if expr is not available on
4836 any path, EXPR_SPEC will be positive). */
4837
4838 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4839 {
4840 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4841 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4842 && (EXPR_SPEC (expr)
4843 || !EXPR_ORIG_BB_INDEX (expr)
4844 || !dominated_by_p (CDI_DOMINATORS,
4845 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4846 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4847 {
4848 if (sched_verbose >= 4)
4849 sel_print ("Expr %d removed because it would need bookkeeping, which "
4850 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4851 av_set_iter_remove (&i);
4852 }
4853 }
4854 }
4855
4856 /* Moving conditional jump through some instructions.
4857
4858 Consider example:
4859
4860 ... <- current scheduling point
4861 NOTE BASIC BLOCK: <- bb header
4862 (p8) add r14=r14+0x9;;
4863 (p8) mov [r14]=r23
4864 (!p8) jump L1;;
4865 NOTE BASIC BLOCK:
4866 ...
4867
4868 We can schedule jump one cycle earlier, than mov, because they cannot be
4869 executed together as their predicates are mutually exclusive.
4870
4871 This is done in this way: first, new fallthrough basic block is created
4872 after jump (it is always can be done, because there already should be a
4873 fallthrough block, where control flow goes in case of predicate being true -
4874 in our example; otherwise there should be a dependence between those
4875 instructions and jump and we cannot schedule jump right now);
4876 next, all instructions between jump and current scheduling point are moved
4877 to this new block. And the result is this:
4878
4879 NOTE BASIC BLOCK:
4880 (!p8) jump L1 <- current scheduling point
4881 NOTE BASIC BLOCK: <- bb header
4882 (p8) add r14=r14+0x9;;
4883 (p8) mov [r14]=r23
4884 NOTE BASIC BLOCK:
4885 ...
4886 */
4887 static void
4888 move_cond_jump (rtx insn, bnd_t bnd)
4889 {
4890 edge ft_edge;
4891 basic_block block_from, block_next, block_new, block_bnd, bb;
4892 rtx next, prev, link, head;
4893
4894 block_from = BLOCK_FOR_INSN (insn);
4895 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4896 prev = BND_TO (bnd);
4897
4898 #ifdef ENABLE_CHECKING
4899 /* Moving of jump should not cross any other jumps or beginnings of new
4900 basic blocks. The only exception is when we move a jump through
4901 mutually exclusive insns along fallthru edges. */
4902 if (block_from != block_bnd)
4903 {
4904 bb = block_from;
4905 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4906 link = PREV_INSN (link))
4907 {
4908 if (INSN_P (link))
4909 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4910 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4911 {
4912 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4913 bb = BLOCK_FOR_INSN (link);
4914 }
4915 }
4916 }
4917 #endif
4918
4919 /* Jump is moved to the boundary. */
4920 next = PREV_INSN (insn);
4921 BND_TO (bnd) = insn;
4922
4923 ft_edge = find_fallthru_edge_from (block_from);
4924 block_next = ft_edge->dest;
4925 /* There must be a fallthrough block (or where should go
4926 control flow in case of false jump predicate otherwise?). */
4927 gcc_assert (block_next);
4928
4929 /* Create new empty basic block after source block. */
4930 block_new = sel_split_edge (ft_edge);
4931 gcc_assert (block_new->next_bb == block_next
4932 && block_from->next_bb == block_new);
4933
4934 /* Move all instructions except INSN to BLOCK_NEW. */
4935 bb = block_bnd;
4936 head = BB_HEAD (block_new);
4937 while (bb != block_from->next_bb)
4938 {
4939 rtx from, to;
4940 from = bb == block_bnd ? prev : sel_bb_head (bb);
4941 to = bb == block_from ? next : sel_bb_end (bb);
4942
4943 /* The jump being moved can be the first insn in the block.
4944 In this case we don't have to move anything in this block. */
4945 if (NEXT_INSN (to) != from)
4946 {
4947 reorder_insns (from, to, head);
4948
4949 for (link = to; link != head; link = PREV_INSN (link))
4950 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4951 head = to;
4952 }
4953
4954 /* Cleanup possibly empty blocks left. */
4955 block_next = bb->next_bb;
4956 if (bb != block_from)
4957 tidy_control_flow (bb, false);
4958 bb = block_next;
4959 }
4960
4961 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4962 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4963
4964 gcc_assert (!sel_bb_empty_p (block_from)
4965 && !sel_bb_empty_p (block_new));
4966
4967 /* Update data sets for BLOCK_NEW to represent that INSN and
4968 instructions from the other branch of INSN is no longer
4969 available at BLOCK_NEW. */
4970 BB_AV_LEVEL (block_new) = global_level;
4971 gcc_assert (BB_LV_SET (block_new) == NULL);
4972 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4973 update_data_sets (sel_bb_head (block_new));
4974
4975 /* INSN is a new basic block header - so prepare its data
4976 structures and update availability and liveness sets. */
4977 update_data_sets (insn);
4978
4979 if (sched_verbose >= 4)
4980 sel_print ("Moving jump %d\n", INSN_UID (insn));
4981 }
4982
4983 /* Remove nops generated during move_op for preventing removal of empty
4984 basic blocks. */
4985 static void
4986 remove_temp_moveop_nops (bool full_tidying)
4987 {
4988 int i;
4989 insn_t insn;
4990
4991 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4992 {
4993 gcc_assert (INSN_NOP_P (insn));
4994 return_nop_to_pool (insn, full_tidying);
4995 }
4996
4997 /* Empty the vector. */
4998 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4999 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
5000 VEC_length (insn_t, vec_temp_moveop_nops));
5001 }
5002
5003 /* Records the maximal UID before moving up an instruction. Used for
5004 distinguishing between bookkeeping copies and original insns. */
5005 static int max_uid_before_move_op = 0;
5006
5007 /* Remove from AV_VLIW_P all instructions but next when debug counter
5008 tells us so. Next instruction is fetched from BNDS. */
5009 static void
5010 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5011 {
5012 if (! dbg_cnt (sel_sched_insn_cnt))
5013 /* Leave only the next insn in av_vliw. */
5014 {
5015 av_set_iterator av_it;
5016 expr_t expr;
5017 bnd_t bnd = BLIST_BND (bnds);
5018 insn_t next = BND_TO (bnd);
5019
5020 gcc_assert (BLIST_NEXT (bnds) == NULL);
5021
5022 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5023 if (EXPR_INSN_RTX (expr) != next)
5024 av_set_iter_remove (&av_it);
5025 }
5026 }
5027
5028 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5029 the computed set to *AV_VLIW_P. */
5030 static void
5031 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5032 {
5033 if (sched_verbose >= 2)
5034 {
5035 sel_print ("Boundaries: ");
5036 dump_blist (bnds);
5037 sel_print ("\n");
5038 }
5039
5040 for (; bnds; bnds = BLIST_NEXT (bnds))
5041 {
5042 bnd_t bnd = BLIST_BND (bnds);
5043 av_set_t av1_copy;
5044 insn_t bnd_to = BND_TO (bnd);
5045
5046 /* Rewind BND->TO to the basic block header in case some bookkeeping
5047 instructions were inserted before BND->TO and it needs to be
5048 adjusted. */
5049 if (sel_bb_head_p (bnd_to))
5050 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5051 else
5052 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5053 {
5054 bnd_to = PREV_INSN (bnd_to);
5055 if (sel_bb_head_p (bnd_to))
5056 break;
5057 }
5058
5059 if (BND_TO (bnd) != bnd_to)
5060 {
5061 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5062 FENCE_INSN (fence) = bnd_to;
5063 BND_TO (bnd) = bnd_to;
5064 }
5065
5066 av_set_clear (&BND_AV (bnd));
5067 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5068
5069 av_set_clear (&BND_AV1 (bnd));
5070 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5071
5072 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5073
5074 av1_copy = av_set_copy (BND_AV1 (bnd));
5075 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5076 }
5077
5078 if (sched_verbose >= 2)
5079 {
5080 sel_print ("Available exprs (vliw form): ");
5081 dump_av_set (*av_vliw_p);
5082 sel_print ("\n");
5083 }
5084 }
5085
5086 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5087 expression. When FOR_MOVEOP is true, also replace the register of
5088 expressions found with the register from EXPR_VLIW. */
5089 static av_set_t
5090 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5091 {
5092 av_set_t expr_seq = NULL;
5093 expr_t expr;
5094 av_set_iterator i;
5095
5096 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5097 {
5098 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5099 {
5100 if (for_moveop)
5101 {
5102 /* The sequential expression has the right form to pass
5103 to move_op except when renaming happened. Put the
5104 correct register in EXPR then. */
5105 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5106 {
5107 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5108 {
5109 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5110 stat_renamed_scheduled++;
5111 }
5112 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5113 This is needed when renaming came up with original
5114 register. */
5115 else if (EXPR_TARGET_AVAILABLE (expr)
5116 != EXPR_TARGET_AVAILABLE (expr_vliw))
5117 {
5118 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5119 EXPR_TARGET_AVAILABLE (expr) = 1;
5120 }
5121 }
5122 if (EXPR_WAS_SUBSTITUTED (expr))
5123 stat_substitutions_total++;
5124 }
5125
5126 av_set_add (&expr_seq, expr);
5127
5128 /* With substitution inside insn group, it is possible
5129 that more than one expression in expr_seq will correspond
5130 to expr_vliw. In this case, choose one as the attempt to
5131 move both leads to miscompiles. */
5132 break;
5133 }
5134 }
5135
5136 if (for_moveop && sched_verbose >= 2)
5137 {
5138 sel_print ("Best expression(s) (sequential form): ");
5139 dump_av_set (expr_seq);
5140 sel_print ("\n");
5141 }
5142
5143 return expr_seq;
5144 }
5145
5146
5147 /* Move nop to previous block. */
5148 static void ATTRIBUTE_UNUSED
5149 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5150 {
5151 insn_t prev_insn, next_insn, note;
5152
5153 gcc_assert (sel_bb_head_p (nop)
5154 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5155 note = bb_note (BLOCK_FOR_INSN (nop));
5156 prev_insn = sel_bb_end (prev_bb);
5157 next_insn = NEXT_INSN (nop);
5158 gcc_assert (prev_insn != NULL_RTX
5159 && PREV_INSN (note) == prev_insn);
5160
5161 NEXT_INSN (prev_insn) = nop;
5162 PREV_INSN (nop) = prev_insn;
5163
5164 PREV_INSN (note) = nop;
5165 NEXT_INSN (note) = next_insn;
5166
5167 NEXT_INSN (nop) = note;
5168 PREV_INSN (next_insn) = note;
5169
5170 BB_END (prev_bb) = nop;
5171 BLOCK_FOR_INSN (nop) = prev_bb;
5172 }
5173
5174 /* Prepare a place to insert the chosen expression on BND. */
5175 static insn_t
5176 prepare_place_to_insert (bnd_t bnd)
5177 {
5178 insn_t place_to_insert;
5179
5180 /* Init place_to_insert before calling move_op, as the later
5181 can possibly remove BND_TO (bnd). */
5182 if (/* If this is not the first insn scheduled. */
5183 BND_PTR (bnd))
5184 {
5185 /* Add it after last scheduled. */
5186 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5187 if (DEBUG_INSN_P (place_to_insert))
5188 {
5189 ilist_t l = BND_PTR (bnd);
5190 while ((l = ILIST_NEXT (l)) &&
5191 DEBUG_INSN_P (ILIST_INSN (l)))
5192 ;
5193 if (!l)
5194 place_to_insert = NULL;
5195 }
5196 }
5197 else
5198 place_to_insert = NULL;
5199
5200 if (!place_to_insert)
5201 {
5202 /* Add it before BND_TO. The difference is in the
5203 basic block, where INSN will be added. */
5204 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5205 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5206 == BLOCK_FOR_INSN (BND_TO (bnd)));
5207 }
5208
5209 return place_to_insert;
5210 }
5211
5212 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5213 Return the expression to emit in C_EXPR. */
5214 static bool
5215 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5216 av_set_t expr_seq, expr_t c_expr)
5217 {
5218 bool b, should_move;
5219 unsigned book_uid;
5220 bitmap_iterator bi;
5221 int n_bookkeeping_copies_before_moveop;
5222
5223 /* Make a move. This call will remove the original operation,
5224 insert all necessary bookkeeping instructions and update the
5225 data sets. After that all we have to do is add the operation
5226 at before BND_TO (BND). */
5227 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5228 max_uid_before_move_op = get_max_uid ();
5229 bitmap_clear (current_copies);
5230 bitmap_clear (current_originators);
5231
5232 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5233 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5234
5235 /* We should be able to find the expression we've chosen for
5236 scheduling. */
5237 gcc_assert (b);
5238
5239 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5240 stat_insns_needed_bookkeeping++;
5241
5242 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5243 {
5244 unsigned uid;
5245 bitmap_iterator bi;
5246
5247 /* We allocate these bitmaps lazily. */
5248 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5249 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5250
5251 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5252 current_originators);
5253
5254 /* Transitively add all originators' originators. */
5255 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5256 if (INSN_ORIGINATORS_BY_UID (uid))
5257 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5258 INSN_ORIGINATORS_BY_UID (uid));
5259 }
5260
5261 return should_move;
5262 }
5263
5264
5265 /* Debug a DFA state as an array of bytes. */
5266 static void
5267 debug_state (state_t state)
5268 {
5269 unsigned char *p;
5270 unsigned int i, size = dfa_state_size;
5271
5272 sel_print ("state (%u):", size);
5273 for (i = 0, p = (unsigned char *) state; i < size; i++)
5274 sel_print (" %d", p[i]);
5275 sel_print ("\n");
5276 }
5277
5278 /* Advance state on FENCE with INSN. Return true if INSN is
5279 an ASM, and we should advance state once more. */
5280 static bool
5281 advance_state_on_fence (fence_t fence, insn_t insn)
5282 {
5283 bool asm_p;
5284
5285 if (recog_memoized (insn) >= 0)
5286 {
5287 int res;
5288 state_t temp_state = alloca (dfa_state_size);
5289
5290 gcc_assert (!INSN_ASM_P (insn));
5291 asm_p = false;
5292
5293 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5294 res = state_transition (FENCE_STATE (fence), insn);
5295 gcc_assert (res < 0);
5296
5297 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5298 {
5299 FENCE_ISSUED_INSNS (fence)++;
5300
5301 /* We should never issue more than issue_rate insns. */
5302 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5303 gcc_unreachable ();
5304 }
5305 }
5306 else
5307 {
5308 /* This could be an ASM insn which we'd like to schedule
5309 on the next cycle. */
5310 asm_p = INSN_ASM_P (insn);
5311 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5312 advance_one_cycle (fence);
5313 }
5314
5315 if (sched_verbose >= 2)
5316 debug_state (FENCE_STATE (fence));
5317 if (!DEBUG_INSN_P (insn))
5318 FENCE_STARTS_CYCLE_P (fence) = 0;
5319 FENCE_ISSUE_MORE (fence) = can_issue_more;
5320 return asm_p;
5321 }
5322
5323 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5324 is nonzero if we need to stall after issuing INSN. */
5325 static void
5326 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5327 {
5328 bool asm_p;
5329
5330 /* First, reflect that something is scheduled on this fence. */
5331 asm_p = advance_state_on_fence (fence, insn);
5332 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5333 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5334 if (SCHED_GROUP_P (insn))
5335 {
5336 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5337 SCHED_GROUP_P (insn) = 0;
5338 }
5339 else
5340 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5341 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5342 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5343
5344 /* Set instruction scheduling info. This will be used in bundling,
5345 pipelining, tick computations etc. */
5346 ++INSN_SCHED_TIMES (insn);
5347 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5348 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5349 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5350 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5351
5352 /* This does not account for adjust_cost hooks, just add the biggest
5353 constant the hook may add to the latency. TODO: make this
5354 a target dependent constant. */
5355 INSN_READY_CYCLE (insn)
5356 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5357 ? 1
5358 : maximal_insn_latency (insn) + 1);
5359
5360 /* Change these fields last, as they're used above. */
5361 FENCE_AFTER_STALL_P (fence) = 0;
5362 if (asm_p || need_stall)
5363 advance_one_cycle (fence);
5364
5365 /* Indicate that we've scheduled something on this fence. */
5366 FENCE_SCHEDULED_P (fence) = true;
5367 scheduled_something_on_previous_fence = true;
5368
5369 /* Print debug information when insn's fields are updated. */
5370 if (sched_verbose >= 2)
5371 {
5372 sel_print ("Scheduling insn: ");
5373 dump_insn_1 (insn, 1);
5374 sel_print ("\n");
5375 }
5376 }
5377
5378 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5379 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5380 return it. */
5381 static blist_t *
5382 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5383 blist_t *bnds_tailp)
5384 {
5385 succ_iterator si;
5386 insn_t succ;
5387
5388 advance_deps_context (BND_DC (bnd), insn);
5389 FOR_EACH_SUCC_1 (succ, si, insn,
5390 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5391 {
5392 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5393
5394 ilist_add (&ptr, insn);
5395
5396 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5397 && is_ineligible_successor (succ, ptr))
5398 {
5399 ilist_clear (&ptr);
5400 continue;
5401 }
5402
5403 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5404 {
5405 if (sched_verbose >= 9)
5406 sel_print ("Updating fence insn from %i to %i\n",
5407 INSN_UID (insn), INSN_UID (succ));
5408 FENCE_INSN (fence) = succ;
5409 }
5410 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5411 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5412 }
5413
5414 blist_remove (bndsp);
5415 return bnds_tailp;
5416 }
5417
5418 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5419 static insn_t
5420 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5421 {
5422 av_set_t expr_seq;
5423 expr_t c_expr = XALLOCA (expr_def);
5424 insn_t place_to_insert;
5425 insn_t insn;
5426 bool should_move;
5427
5428 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5429
5430 /* In case of scheduling a jump skipping some other instructions,
5431 prepare CFG. After this, jump is at the boundary and can be
5432 scheduled as usual insn by MOVE_OP. */
5433 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5434 {
5435 insn = EXPR_INSN_RTX (expr_vliw);
5436
5437 /* Speculative jumps are not handled. */
5438 if (insn != BND_TO (bnd)
5439 && !sel_insn_is_speculation_check (insn))
5440 move_cond_jump (insn, bnd);
5441 }
5442
5443 /* Find a place for C_EXPR to schedule. */
5444 place_to_insert = prepare_place_to_insert (bnd);
5445 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5446 clear_expr (c_expr);
5447
5448 /* Add the instruction. The corner case to care about is when
5449 the expr_seq set has more than one expr, and we chose the one that
5450 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5451 we can't use it. Generate the new vinsn. */
5452 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5453 {
5454 vinsn_t vinsn_new;
5455
5456 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5457 change_vinsn_in_expr (expr_vliw, vinsn_new);
5458 should_move = false;
5459 }
5460 if (should_move)
5461 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5462 else
5463 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5464 place_to_insert);
5465
5466 /* Return the nops generated for preserving of data sets back
5467 into pool. */
5468 if (INSN_NOP_P (place_to_insert))
5469 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5470 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5471
5472 av_set_clear (&expr_seq);
5473
5474 /* Save the expression scheduled so to reset target availability if we'll
5475 meet it later on the same fence. */
5476 if (EXPR_WAS_RENAMED (expr_vliw))
5477 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5478
5479 /* Check that the recent movement didn't destroyed loop
5480 structure. */
5481 gcc_assert (!pipelining_p
5482 || current_loop_nest == NULL
5483 || loop_latch_edge (current_loop_nest));
5484 return insn;
5485 }
5486
5487 /* Stall for N cycles on FENCE. */
5488 static void
5489 stall_for_cycles (fence_t fence, int n)
5490 {
5491 int could_more;
5492
5493 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5494 while (n--)
5495 advance_one_cycle (fence);
5496 if (could_more)
5497 FENCE_AFTER_STALL_P (fence) = 1;
5498 }
5499
5500 /* Gather a parallel group of insns at FENCE and assign their seqno
5501 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5502 list for later recalculation of seqnos. */
5503 static void
5504 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5505 {
5506 blist_t bnds = NULL, *bnds_tailp;
5507 av_set_t av_vliw = NULL;
5508 insn_t insn = FENCE_INSN (fence);
5509
5510 if (sched_verbose >= 2)
5511 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5512 INSN_UID (insn), FENCE_CYCLE (fence));
5513
5514 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5515 bnds_tailp = &BLIST_NEXT (bnds);
5516 set_target_context (FENCE_TC (fence));
5517 can_issue_more = FENCE_ISSUE_MORE (fence);
5518 target_bb = INSN_BB (insn);
5519
5520 /* Do while we can add any operation to the current group. */
5521 do
5522 {
5523 blist_t *bnds_tailp1, *bndsp;
5524 expr_t expr_vliw;
5525 int need_stall = false;
5526 int was_stall = 0, scheduled_insns = 0;
5527 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5528 int max_stall = pipelining_p ? 1 : 3;
5529 bool last_insn_was_debug = false;
5530 bool was_debug_bb_end_p = false;
5531
5532 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5533 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5534 remove_insns_for_debug (bnds, &av_vliw);
5535
5536 /* Return early if we have nothing to schedule. */
5537 if (av_vliw == NULL)
5538 break;
5539
5540 /* Choose the best expression and, if needed, destination register
5541 for it. */
5542 do
5543 {
5544 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5545 if (! expr_vliw && need_stall)
5546 {
5547 /* All expressions required a stall. Do not recompute av sets
5548 as we'll get the same answer (modulo the insns between
5549 the fence and its boundary, which will not be available for
5550 pipelining).
5551 If we are going to stall for too long, break to recompute av
5552 sets and bring more insns for pipelining. */
5553 was_stall++;
5554 if (need_stall <= 3)
5555 stall_for_cycles (fence, need_stall);
5556 else
5557 {
5558 stall_for_cycles (fence, 1);
5559 break;
5560 }
5561 }
5562 }
5563 while (! expr_vliw && need_stall);
5564
5565 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5566 if (!expr_vliw)
5567 {
5568 av_set_clear (&av_vliw);
5569 break;
5570 }
5571
5572 bndsp = &bnds;
5573 bnds_tailp1 = bnds_tailp;
5574
5575 do
5576 /* This code will be executed only once until we'd have several
5577 boundaries per fence. */
5578 {
5579 bnd_t bnd = BLIST_BND (*bndsp);
5580
5581 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5582 {
5583 bndsp = &BLIST_NEXT (*bndsp);
5584 continue;
5585 }
5586
5587 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5588 last_insn_was_debug = DEBUG_INSN_P (insn);
5589 if (last_insn_was_debug)
5590 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5591 update_fence_and_insn (fence, insn, need_stall);
5592 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5593
5594 /* Add insn to the list of scheduled on this cycle instructions. */
5595 ilist_add (*scheduled_insns_tailpp, insn);
5596 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5597 }
5598 while (*bndsp != *bnds_tailp1);
5599
5600 av_set_clear (&av_vliw);
5601 if (!last_insn_was_debug)
5602 scheduled_insns++;
5603
5604 /* We currently support information about candidate blocks only for
5605 one 'target_bb' block. Hence we can't schedule after jump insn,
5606 as this will bring two boundaries and, hence, necessity to handle
5607 information for two or more blocks concurrently. */
5608 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5609 || (was_stall
5610 && (was_stall >= max_stall
5611 || scheduled_insns >= max_insns)))
5612 break;
5613 }
5614 while (bnds);
5615
5616 gcc_assert (!FENCE_BNDS (fence));
5617
5618 /* Update boundaries of the FENCE. */
5619 while (bnds)
5620 {
5621 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5622
5623 if (ptr)
5624 {
5625 insn = ILIST_INSN (ptr);
5626
5627 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5628 ilist_add (&FENCE_BNDS (fence), insn);
5629 }
5630
5631 blist_remove (&bnds);
5632 }
5633
5634 /* Update target context on the fence. */
5635 reset_target_context (FENCE_TC (fence), false);
5636 }
5637
5638 /* All exprs in ORIG_OPS must have the same destination register or memory.
5639 Return that destination. */
5640 static rtx
5641 get_dest_from_orig_ops (av_set_t orig_ops)
5642 {
5643 rtx dest = NULL_RTX;
5644 av_set_iterator av_it;
5645 expr_t expr;
5646 bool first_p = true;
5647
5648 FOR_EACH_EXPR (expr, av_it, orig_ops)
5649 {
5650 rtx x = EXPR_LHS (expr);
5651
5652 if (first_p)
5653 {
5654 first_p = false;
5655 dest = x;
5656 }
5657 else
5658 gcc_assert (dest == x
5659 || (dest != NULL_RTX && x != NULL_RTX
5660 && rtx_equal_p (dest, x)));
5661 }
5662
5663 return dest;
5664 }
5665
5666 /* Update data sets for the bookkeeping block and record those expressions
5667 which become no longer available after inserting this bookkeeping. */
5668 static void
5669 update_and_record_unavailable_insns (basic_block book_block)
5670 {
5671 av_set_iterator i;
5672 av_set_t old_av_set = NULL;
5673 expr_t cur_expr;
5674 rtx bb_end = sel_bb_end (book_block);
5675
5676 /* First, get correct liveness in the bookkeeping block. The problem is
5677 the range between the bookeeping insn and the end of block. */
5678 update_liveness_on_insn (bb_end);
5679 if (control_flow_insn_p (bb_end))
5680 update_liveness_on_insn (PREV_INSN (bb_end));
5681
5682 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5683 fence above, where we may choose to schedule an insn which is
5684 actually blocked from moving up with the bookkeeping we create here. */
5685 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5686 {
5687 old_av_set = av_set_copy (BB_AV_SET (book_block));
5688 update_data_sets (sel_bb_head (book_block));
5689
5690 /* Traverse all the expressions in the old av_set and check whether
5691 CUR_EXPR is in new AV_SET. */
5692 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5693 {
5694 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5695 EXPR_VINSN (cur_expr));
5696
5697 if (! new_expr
5698 /* In this case, we can just turn off the E_T_A bit, but we can't
5699 represent this information with the current vector. */
5700 || EXPR_TARGET_AVAILABLE (new_expr)
5701 != EXPR_TARGET_AVAILABLE (cur_expr))
5702 /* Unfortunately, the below code could be also fired up on
5703 separable insns.
5704 FIXME: add an example of how this could happen. */
5705 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5706 }
5707
5708 av_set_clear (&old_av_set);
5709 }
5710 }
5711
5712 /* The main effect of this function is that sparams->c_expr is merged
5713 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5714 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5715 lparams->c_expr_merged is copied back to sparams->c_expr after all
5716 successors has been traversed. lparams->c_expr_local is an expr allocated
5717 on stack in the caller function, and is used if there is more than one
5718 successor.
5719
5720 SUCC is one of the SUCCS_NORMAL successors of INSN,
5721 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5722 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5723 static void
5724 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5725 insn_t succ ATTRIBUTE_UNUSED,
5726 int moveop_drv_call_res,
5727 cmpd_local_params_p lparams, void *static_params)
5728 {
5729 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5730
5731 /* Nothing to do, if original expr wasn't found below. */
5732 if (moveop_drv_call_res != 1)
5733 return;
5734
5735 /* If this is a first successor. */
5736 if (!lparams->c_expr_merged)
5737 {
5738 lparams->c_expr_merged = sparams->c_expr;
5739 sparams->c_expr = lparams->c_expr_local;
5740 }
5741 else
5742 {
5743 /* We must merge all found expressions to get reasonable
5744 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5745 do so then we can first find the expr with epsilon
5746 speculation success probability and only then with the
5747 good probability. As a result the insn will get epsilon
5748 probability and will never be scheduled because of
5749 weakness_cutoff in find_best_expr.
5750
5751 We call merge_expr_data here instead of merge_expr
5752 because due to speculation C_EXPR and X may have the
5753 same insns with different speculation types. And as of
5754 now such insns are considered non-equal.
5755
5756 However, EXPR_SCHED_TIMES is different -- we must get
5757 SCHED_TIMES from a real insn, not a bookkeeping copy.
5758 We force this here. Instead, we may consider merging
5759 SCHED_TIMES to the maximum instead of minimum in the
5760 below function. */
5761 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5762
5763 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5764 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5765 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5766
5767 clear_expr (sparams->c_expr);
5768 }
5769 }
5770
5771 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5772
5773 SUCC is one of the SUCCS_NORMAL successors of INSN,
5774 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5775 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5776 STATIC_PARAMS contain USED_REGS set. */
5777 static void
5778 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5779 int moveop_drv_call_res,
5780 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5781 void *static_params)
5782 {
5783 regset succ_live;
5784 fur_static_params_p sparams = (fur_static_params_p) static_params;
5785
5786 /* Here we compute live regsets only for branches that do not lie
5787 on the code motion paths. These branches correspond to value
5788 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5789 for such branches code_motion_path_driver is not called. */
5790 if (moveop_drv_call_res != 0)
5791 return;
5792
5793 /* Mark all registers that do not meet the following condition:
5794 (3) not live on the other path of any conditional branch
5795 that is passed by the operation, in case original
5796 operations are not present on both paths of the
5797 conditional branch. */
5798 succ_live = compute_live (succ);
5799 IOR_REG_SET (sparams->used_regs, succ_live);
5800 }
5801
5802 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5803 into SP->CEXPR. */
5804 static void
5805 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5806 {
5807 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5808
5809 sp->c_expr = lp->c_expr_merged;
5810 }
5811
5812 /* Track bookkeeping copies created, insns scheduled, and blocks for
5813 rescheduling when INSN is found by move_op. */
5814 static void
5815 track_scheduled_insns_and_blocks (rtx insn)
5816 {
5817 /* Even if this insn can be a copy that will be removed during current move_op,
5818 we still need to count it as an originator. */
5819 bitmap_set_bit (current_originators, INSN_UID (insn));
5820
5821 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5822 {
5823 /* Note that original block needs to be rescheduled, as we pulled an
5824 instruction out of it. */
5825 if (INSN_SCHED_TIMES (insn) > 0)
5826 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5827 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5828 num_insns_scheduled++;
5829 }
5830
5831 /* For instructions we must immediately remove insn from the
5832 stream, so subsequent update_data_sets () won't include this
5833 insn into av_set.
5834 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5835 if (INSN_UID (insn) > max_uid_before_move_op)
5836 stat_bookkeeping_copies--;
5837 }
5838
5839 /* Emit a register-register copy for INSN if needed. Return true if
5840 emitted one. PARAMS is the move_op static parameters. */
5841 static bool
5842 maybe_emit_renaming_copy (rtx insn,
5843 moveop_static_params_p params)
5844 {
5845 bool insn_emitted = false;
5846 rtx cur_reg;
5847
5848 /* Bail out early when expression can not be renamed at all. */
5849 if (!EXPR_SEPARABLE_P (params->c_expr))
5850 return false;
5851
5852 cur_reg = expr_dest_reg (params->c_expr);
5853 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5854
5855 /* If original operation has expr and the register chosen for
5856 that expr is not original operation's dest reg, substitute
5857 operation's right hand side with the register chosen. */
5858 if (REGNO (params->dest) != REGNO (cur_reg))
5859 {
5860 insn_t reg_move_insn, reg_move_insn_rtx;
5861
5862 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5863 params->dest);
5864 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5865 INSN_EXPR (insn),
5866 INSN_SEQNO (insn),
5867 insn);
5868 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5869 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5870
5871 insn_emitted = true;
5872 params->was_renamed = true;
5873 }
5874
5875 return insn_emitted;
5876 }
5877
5878 /* Emit a speculative check for INSN speculated as EXPR if needed.
5879 Return true if we've emitted one. PARAMS is the move_op static
5880 parameters. */
5881 static bool
5882 maybe_emit_speculative_check (rtx insn, expr_t expr,
5883 moveop_static_params_p params)
5884 {
5885 bool insn_emitted = false;
5886 insn_t x;
5887 ds_t check_ds;
5888
5889 check_ds = get_spec_check_type_for_insn (insn, expr);
5890 if (check_ds != 0)
5891 {
5892 /* A speculation check should be inserted. */
5893 x = create_speculation_check (params->c_expr, check_ds, insn);
5894 insn_emitted = true;
5895 }
5896 else
5897 {
5898 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5899 x = insn;
5900 }
5901
5902 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5903 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5904 return insn_emitted;
5905 }
5906
5907 /* Handle transformations that leave an insn in place of original
5908 insn such as renaming/speculation. Return true if one of such
5909 transformations actually happened, and we have emitted this insn. */
5910 static bool
5911 handle_emitting_transformations (rtx insn, expr_t expr,
5912 moveop_static_params_p params)
5913 {
5914 bool insn_emitted = false;
5915
5916 insn_emitted = maybe_emit_renaming_copy (insn, params);
5917 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5918
5919 return insn_emitted;
5920 }
5921
5922 /* If INSN is the only insn in the basic block (not counting JUMP,
5923 which may be a jump to next insn, and DEBUG_INSNs), we want to
5924 leave a NOP there till the return to fill_insns. */
5925
5926 static bool
5927 need_nop_to_preserve_insn_bb (rtx insn)
5928 {
5929 insn_t bb_head, bb_end, bb_next, in_next;
5930 basic_block bb = BLOCK_FOR_INSN (insn);
5931
5932 bb_head = sel_bb_head (bb);
5933 bb_end = sel_bb_end (bb);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5939 bb_head = NEXT_INSN (bb_head);
5940
5941 if (bb_head == bb_end)
5942 return true;
5943
5944 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5945 bb_end = PREV_INSN (bb_end);
5946
5947 if (bb_head == bb_end)
5948 return true;
5949
5950 bb_next = NEXT_INSN (bb_head);
5951 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5952 bb_next = NEXT_INSN (bb_next);
5953
5954 if (bb_next == bb_end && JUMP_P (bb_end))
5955 return true;
5956
5957 in_next = NEXT_INSN (insn);
5958 while (DEBUG_INSN_P (in_next))
5959 in_next = NEXT_INSN (in_next);
5960
5961 if (IN_CURRENT_FENCE_P (in_next))
5962 return true;
5963
5964 return false;
5965 }
5966
5967 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5968 is not removed but reused when INSN is re-emitted. */
5969 static void
5970 remove_insn_from_stream (rtx insn, bool only_disconnect)
5971 {
5972 /* If there's only one insn in the BB, make sure that a nop is
5973 inserted into it, so the basic block won't disappear when we'll
5974 delete INSN below with sel_remove_insn. It should also survive
5975 till the return to fill_insns. */
5976 if (need_nop_to_preserve_insn_bb (insn))
5977 {
5978 insn_t nop = get_nop_from_pool (insn);
5979 gcc_assert (INSN_NOP_P (nop));
5980 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5981 }
5982
5983 sel_remove_insn (insn, only_disconnect, false);
5984 }
5985
5986 /* This function is called when original expr is found.
5987 INSN - current insn traversed, EXPR - the corresponding expr found.
5988 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5989 is static parameters of move_op. */
5990 static void
5991 move_op_orig_expr_found (insn_t insn, expr_t expr,
5992 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5993 void *static_params)
5994 {
5995 bool only_disconnect, insn_emitted;
5996 moveop_static_params_p params = (moveop_static_params_p) static_params;
5997
5998 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5999 track_scheduled_insns_and_blocks (insn);
6000 insn_emitted = handle_emitting_transformations (insn, expr, params);
6001 only_disconnect = (params->uid == INSN_UID (insn)
6002 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
6003
6004 /* Mark that we've disconnected an insn. */
6005 if (only_disconnect)
6006 params->uid = -1;
6007 remove_insn_from_stream (insn, only_disconnect);
6008 }
6009
6010 /* The function is called when original expr is found.
6011 INSN - current insn traversed, EXPR - the corresponding expr found,
6012 crosses_call and original_insns in STATIC_PARAMS are updated. */
6013 static void
6014 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6015 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6016 void *static_params)
6017 {
6018 fur_static_params_p params = (fur_static_params_p) static_params;
6019 regset tmp;
6020
6021 if (CALL_P (insn))
6022 params->crosses_call = true;
6023
6024 def_list_add (params->original_insns, insn, params->crosses_call);
6025
6026 /* Mark the registers that do not meet the following condition:
6027 (2) not among the live registers of the point
6028 immediately following the first original operation on
6029 a given downward path, except for the original target
6030 register of the operation. */
6031 tmp = get_clear_regset_from_pool ();
6032 compute_live_below_insn (insn, tmp);
6033 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6034 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6035 IOR_REG_SET (params->used_regs, tmp);
6036 return_regset_to_pool (tmp);
6037
6038 /* (*1) We need to add to USED_REGS registers that are read by
6039 INSN's lhs. This may lead to choosing wrong src register.
6040 E.g. (scheduling const expr enabled):
6041
6042 429: ax=0x0 <- Can't use AX for this expr (0x0)
6043 433: dx=[bp-0x18]
6044 427: [ax+dx+0x1]=ax
6045 REG_DEAD: ax
6046 168: di=dx
6047 REG_DEAD: dx
6048 */
6049 /* FIXME: see comment above and enable MEM_P
6050 in vinsn_separable_p. */
6051 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6052 || !MEM_P (INSN_LHS (insn)));
6053 }
6054
6055 /* This function is called on the ascending pass, before returning from
6056 current basic block. */
6057 static void
6058 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6059 void *static_params)
6060 {
6061 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6062 basic_block book_block = NULL;
6063
6064 /* When we have removed the boundary insn for scheduling, which also
6065 happened to be the end insn in its bb, we don't need to update sets. */
6066 if (!lparams->removed_last_insn
6067 && lparams->e1
6068 && sel_bb_head_p (insn))
6069 {
6070 /* We should generate bookkeeping code only if we are not at the
6071 top level of the move_op. */
6072 if (sel_num_cfg_preds_gt_1 (insn))
6073 book_block = generate_bookkeeping_insn (sparams->c_expr,
6074 lparams->e1, lparams->e2);
6075 /* Update data sets for the current insn. */
6076 update_data_sets (insn);
6077 }
6078
6079 /* If bookkeeping code was inserted, we need to update av sets of basic
6080 block that received bookkeeping. After generation of bookkeeping insn,
6081 bookkeeping block does not contain valid av set because we are not following
6082 the original algorithm in every detail with regards to e.g. renaming
6083 simple reg-reg copies. Consider example:
6084
6085 bookkeeping block scheduling fence
6086 \ /
6087 \ join /
6088 ----------
6089 | |
6090 ----------
6091 / \
6092 / \
6093 r1 := r2 r1 := r3
6094
6095 We try to schedule insn "r1 := r3" on the current
6096 scheduling fence. Also, note that av set of bookkeeping block
6097 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6098 been scheduled, the CFG is as follows:
6099
6100 r1 := r3 r1 := r3
6101 bookkeeping block scheduling fence
6102 \ /
6103 \ join /
6104 ----------
6105 | |
6106 ----------
6107 / \
6108 / \
6109 r1 := r2
6110
6111 Here, insn "r1 := r3" was scheduled at the current scheduling point
6112 and bookkeeping code was generated at the bookeeping block. This
6113 way insn "r1 := r2" is no longer available as a whole instruction
6114 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6115 This situation is handled by calling update_data_sets.
6116
6117 Since update_data_sets is called only on the bookkeeping block, and
6118 it also may have predecessors with av_sets, containing instructions that
6119 are no longer available, we save all such expressions that become
6120 unavailable during data sets update on the bookkeeping block in
6121 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6122 expressions for scheduling. This allows us to avoid recomputation of
6123 av_sets outside the code motion path. */
6124
6125 if (book_block)
6126 update_and_record_unavailable_insns (book_block);
6127
6128 /* If INSN was previously marked for deletion, it's time to do it. */
6129 if (lparams->removed_last_insn)
6130 insn = PREV_INSN (insn);
6131
6132 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6133 kill a block with a single nop in which the insn should be emitted. */
6134 if (lparams->e1)
6135 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6136 }
6137
6138 /* This function is called on the ascending pass, before returning from the
6139 current basic block. */
6140 static void
6141 fur_at_first_insn (insn_t insn,
6142 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6143 void *static_params ATTRIBUTE_UNUSED)
6144 {
6145 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6146 || AV_LEVEL (insn) == -1);
6147 }
6148
6149 /* Called on the backward stage of recursion to call moveup_expr for insn
6150 and sparams->c_expr. */
6151 static void
6152 move_op_ascend (insn_t insn, void *static_params)
6153 {
6154 enum MOVEUP_EXPR_CODE res;
6155 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6156
6157 if (! INSN_NOP_P (insn))
6158 {
6159 res = moveup_expr_cached (sparams->c_expr, insn, false);
6160 gcc_assert (res != MOVEUP_EXPR_NULL);
6161 }
6162
6163 /* Update liveness for this insn as it was invalidated. */
6164 update_liveness_on_insn (insn);
6165 }
6166
6167 /* This function is called on enter to the basic block.
6168 Returns TRUE if this block already have been visited and
6169 code_motion_path_driver should return 1, FALSE otherwise. */
6170 static int
6171 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6172 void *static_params, bool visited_p)
6173 {
6174 fur_static_params_p sparams = (fur_static_params_p) static_params;
6175
6176 if (visited_p)
6177 {
6178 /* If we have found something below this block, there should be at
6179 least one insn in ORIGINAL_INSNS. */
6180 gcc_assert (*sparams->original_insns);
6181
6182 /* Adjust CROSSES_CALL, since we may have come to this block along
6183 different path. */
6184 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6185 |= sparams->crosses_call;
6186 }
6187 else
6188 local_params->old_original_insns = *sparams->original_insns;
6189
6190 return 1;
6191 }
6192
6193 /* Same as above but for move_op. */
6194 static int
6195 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6196 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6197 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6198 {
6199 if (visited_p)
6200 return -1;
6201 return 1;
6202 }
6203
6204 /* This function is called while descending current basic block if current
6205 insn is not the original EXPR we're searching for.
6206
6207 Return value: FALSE, if code_motion_path_driver should perform a local
6208 cleanup and return 0 itself;
6209 TRUE, if code_motion_path_driver should continue. */
6210 static bool
6211 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6212 void *static_params)
6213 {
6214 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6215
6216 #ifdef ENABLE_CHECKING
6217 sparams->failed_insn = insn;
6218 #endif
6219
6220 /* If we're scheduling separate expr, in order to generate correct code
6221 we need to stop the search at bookkeeping code generated with the
6222 same destination register or memory. */
6223 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6224 return false;
6225 return true;
6226 }
6227
6228 /* This function is called while descending current basic block if current
6229 insn is not the original EXPR we're searching for.
6230
6231 Return value: TRUE (code_motion_path_driver should continue). */
6232 static bool
6233 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6234 {
6235 bool mutexed;
6236 expr_t r;
6237 av_set_iterator avi;
6238 fur_static_params_p sparams = (fur_static_params_p) static_params;
6239
6240 if (CALL_P (insn))
6241 sparams->crosses_call = true;
6242 else if (DEBUG_INSN_P (insn))
6243 return true;
6244
6245 /* If current insn we are looking at cannot be executed together
6246 with original insn, then we can skip it safely.
6247
6248 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6249 INSN = (!p6) r14 = r14 + 1;
6250
6251 Here we can schedule ORIG_OP with lhs = r14, though only
6252 looking at the set of used and set registers of INSN we must
6253 forbid it. So, add set/used in INSN registers to the
6254 untouchable set only if there is an insn in ORIG_OPS that can
6255 affect INSN. */
6256 mutexed = true;
6257 FOR_EACH_EXPR (r, avi, orig_ops)
6258 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6259 {
6260 mutexed = false;
6261 break;
6262 }
6263
6264 /* Mark all registers that do not meet the following condition:
6265 (1) Not set or read on any path from xi to an instance of the
6266 original operation. */
6267 if (!mutexed)
6268 {
6269 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6272 }
6273
6274 return true;
6275 }
6276
6277 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6278 struct code_motion_path_driver_info_def move_op_hooks = {
6279 move_op_on_enter,
6280 move_op_orig_expr_found,
6281 move_op_orig_expr_not_found,
6282 move_op_merge_succs,
6283 move_op_after_merge_succs,
6284 move_op_ascend,
6285 move_op_at_first_insn,
6286 SUCCS_NORMAL,
6287 "move_op"
6288 };
6289
6290 /* Hooks and data to perform find_used_regs operations
6291 with code_motion_path_driver. */
6292 struct code_motion_path_driver_info_def fur_hooks = {
6293 fur_on_enter,
6294 fur_orig_expr_found,
6295 fur_orig_expr_not_found,
6296 fur_merge_succs,
6297 NULL, /* fur_after_merge_succs */
6298 NULL, /* fur_ascend */
6299 fur_at_first_insn,
6300 SUCCS_ALL,
6301 "find_used_regs"
6302 };
6303
6304 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6305 code_motion_path_driver is called recursively. Original operation
6306 was found at least on one path that is starting with one of INSN's
6307 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6308 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6309 of either move_op or find_used_regs depending on the caller.
6310
6311 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6312 know for sure at this point. */
6313 static int
6314 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6315 ilist_t path, void *static_params)
6316 {
6317 int res = 0;
6318 succ_iterator succ_i;
6319 rtx succ;
6320 basic_block bb;
6321 int old_index;
6322 unsigned old_succs;
6323
6324 struct cmpd_local_params lparams;
6325 expr_def _x;
6326
6327 lparams.c_expr_local = &_x;
6328 lparams.c_expr_merged = NULL;
6329
6330 /* We need to process only NORMAL succs for move_op, and collect live
6331 registers from ALL branches (including those leading out of the
6332 region) for find_used_regs.
6333
6334 In move_op, there can be a case when insn's bb number has changed
6335 due to created bookkeeping. This happens very rare, as we need to
6336 move expression from the beginning to the end of the same block.
6337 Rescan successors in this case. */
6338
6339 rescan:
6340 bb = BLOCK_FOR_INSN (insn);
6341 old_index = bb->index;
6342 old_succs = EDGE_COUNT (bb->succs);
6343
6344 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6345 {
6346 int b;
6347
6348 lparams.e1 = succ_i.e1;
6349 lparams.e2 = succ_i.e2;
6350
6351 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6352 current region). */
6353 if (succ_i.current_flags == SUCCS_NORMAL)
6354 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6355 static_params);
6356 else
6357 b = 0;
6358
6359 /* Merge c_expres found or unify live register sets from different
6360 successors. */
6361 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6362 static_params);
6363 if (b == 1)
6364 res = b;
6365 else if (b == -1 && res != 1)
6366 res = b;
6367
6368 /* We have simplified the control flow below this point. In this case,
6369 the iterator becomes invalid. We need to try again. */
6370 if (BLOCK_FOR_INSN (insn)->index != old_index
6371 || EDGE_COUNT (bb->succs) != old_succs)
6372 {
6373 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6374 goto rescan;
6375 }
6376 }
6377
6378 #ifdef ENABLE_CHECKING
6379 /* Here, RES==1 if original expr was found at least for one of the
6380 successors. After the loop, RES may happen to have zero value
6381 only if at some point the expr searched is present in av_set, but is
6382 not found below. In most cases, this situation is an error.
6383 The exception is when the original operation is blocked by
6384 bookkeeping generated for another fence or for another path in current
6385 move_op. */
6386 gcc_assert (res == 1
6387 || (res == 0
6388 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6389 static_params))
6390 || res == -1);
6391 #endif
6392
6393 /* Merge data, clean up, etc. */
6394 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6395 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6396
6397 return res;
6398 }
6399
6400
6401 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6402 is the pointer to the av set with expressions we were looking for,
6403 PATH_P is the pointer to the traversed path. */
6404 static inline void
6405 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6406 {
6407 ilist_remove (path_p);
6408 av_set_clear (orig_ops_p);
6409 }
6410
6411 /* The driver function that implements move_op or find_used_regs
6412 functionality dependent whether code_motion_path_driver_INFO is set to
6413 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6414 of code (CFG traversal etc) that are shared among both functions. INSN
6415 is the insn we're starting the search from, ORIG_OPS are the expressions
6416 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6417 parameters of the driver, and STATIC_PARAMS are static parameters of
6418 the caller.
6419
6420 Returns whether original instructions were found. Note that top-level
6421 code_motion_path_driver always returns true. */
6422 static int
6423 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6424 cmpd_local_params_p local_params_in,
6425 void *static_params)
6426 {
6427 expr_t expr = NULL;
6428 basic_block bb = BLOCK_FOR_INSN (insn);
6429 insn_t first_insn, bb_tail, before_first;
6430 bool removed_last_insn = false;
6431
6432 if (sched_verbose >= 6)
6433 {
6434 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6435 dump_insn (insn);
6436 sel_print (",");
6437 dump_av_set (orig_ops);
6438 sel_print (")\n");
6439 }
6440
6441 gcc_assert (orig_ops);
6442
6443 /* If no original operations exist below this insn, return immediately. */
6444 if (is_ineligible_successor (insn, path))
6445 {
6446 if (sched_verbose >= 6)
6447 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6448 return false;
6449 }
6450
6451 /* The block can have invalid av set, in which case it was created earlier
6452 during move_op. Return immediately. */
6453 if (sel_bb_head_p (insn))
6454 {
6455 if (! AV_SET_VALID_P (insn))
6456 {
6457 if (sched_verbose >= 6)
6458 sel_print ("Returned from block %d as it had invalid av set\n",
6459 bb->index);
6460 return false;
6461 }
6462
6463 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6464 {
6465 /* We have already found an original operation on this branch, do not
6466 go any further and just return TRUE here. If we don't stop here,
6467 function can have exponential behaviour even on the small code
6468 with many different paths (e.g. with data speculation and
6469 recovery blocks). */
6470 if (sched_verbose >= 6)
6471 sel_print ("Block %d already visited in this traversal\n", bb->index);
6472 if (code_motion_path_driver_info->on_enter)
6473 return code_motion_path_driver_info->on_enter (insn,
6474 local_params_in,
6475 static_params,
6476 true);
6477 }
6478 }
6479
6480 if (code_motion_path_driver_info->on_enter)
6481 code_motion_path_driver_info->on_enter (insn, local_params_in,
6482 static_params, false);
6483 orig_ops = av_set_copy (orig_ops);
6484
6485 /* Filter the orig_ops set. */
6486 if (AV_SET_VALID_P (insn))
6487 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6488
6489 /* If no more original ops, return immediately. */
6490 if (!orig_ops)
6491 {
6492 if (sched_verbose >= 6)
6493 sel_print ("No intersection with av set of block %d\n", bb->index);
6494 return false;
6495 }
6496
6497 /* For non-speculative insns we have to leave only one form of the
6498 original operation, because if we don't, we may end up with
6499 different C_EXPRes and, consequently, with bookkeepings for different
6500 expression forms along the same code motion path. That may lead to
6501 generation of incorrect code. So for each code motion we stick to
6502 the single form of the instruction, except for speculative insns
6503 which we need to keep in different forms with all speculation
6504 types. */
6505 av_set_leave_one_nonspec (&orig_ops);
6506
6507 /* It is not possible that all ORIG_OPS are filtered out. */
6508 gcc_assert (orig_ops);
6509
6510 /* It is enough to place only heads and tails of visited basic blocks into
6511 the PATH. */
6512 ilist_add (&path, insn);
6513 first_insn = insn;
6514 bb_tail = sel_bb_end (bb);
6515
6516 /* Descend the basic block in search of the original expr; this part
6517 corresponds to the part of the original move_op procedure executed
6518 before the recursive call. */
6519 for (;;)
6520 {
6521 /* Look at the insn and decide if it could be an ancestor of currently
6522 scheduling operation. If it is so, then the insn "dest = op" could
6523 either be replaced with "dest = reg", because REG now holds the result
6524 of OP, or just removed, if we've scheduled the insn as a whole.
6525
6526 If this insn doesn't contain currently scheduling OP, then proceed
6527 with searching and look at its successors. Operations we're searching
6528 for could have changed when moving up through this insn via
6529 substituting. In this case, perform unsubstitution on them first.
6530
6531 When traversing the DAG below this insn is finished, insert
6532 bookkeeping code, if the insn is a joint point, and remove
6533 leftovers. */
6534
6535 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6536 if (expr)
6537 {
6538 insn_t last_insn = PREV_INSN (insn);
6539
6540 /* We have found the original operation. */
6541 if (sched_verbose >= 6)
6542 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6543
6544 code_motion_path_driver_info->orig_expr_found
6545 (insn, expr, local_params_in, static_params);
6546
6547 /* Step back, so on the way back we'll start traversing from the
6548 previous insn (or we'll see that it's bb_note and skip that
6549 loop). */
6550 if (insn == first_insn)
6551 {
6552 first_insn = NEXT_INSN (last_insn);
6553 removed_last_insn = sel_bb_end_p (last_insn);
6554 }
6555 insn = last_insn;
6556 break;
6557 }
6558 else
6559 {
6560 /* We haven't found the original expr, continue descending the basic
6561 block. */
6562 if (code_motion_path_driver_info->orig_expr_not_found
6563 (insn, orig_ops, static_params))
6564 {
6565 /* Av set ops could have been changed when moving through this
6566 insn. To find them below it, we have to un-substitute them. */
6567 undo_transformations (&orig_ops, insn);
6568 }
6569 else
6570 {
6571 /* Clean up and return, if the hook tells us to do so. It may
6572 happen if we've encountered the previously created
6573 bookkeeping. */
6574 code_motion_path_driver_cleanup (&orig_ops, &path);
6575 return -1;
6576 }
6577
6578 gcc_assert (orig_ops);
6579 }
6580
6581 /* Stop at insn if we got to the end of BB. */
6582 if (insn == bb_tail)
6583 break;
6584
6585 insn = NEXT_INSN (insn);
6586 }
6587
6588 /* Here INSN either points to the insn before the original insn (may be
6589 bb_note, if original insn was a bb_head) or to the bb_end. */
6590 if (!expr)
6591 {
6592 int res;
6593 rtx last_insn = PREV_INSN (insn);
6594 bool added_to_path;
6595
6596 gcc_assert (insn == sel_bb_end (bb));
6597
6598 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6599 it's already in PATH then). */
6600 if (insn != first_insn)
6601 {
6602 ilist_add (&path, insn);
6603 added_to_path = true;
6604 }
6605 else
6606 added_to_path = false;
6607
6608 /* Process_successors should be able to find at least one
6609 successor for which code_motion_path_driver returns TRUE. */
6610 res = code_motion_process_successors (insn, orig_ops,
6611 path, static_params);
6612
6613 /* Jump in the end of basic block could have been removed or replaced
6614 during code_motion_process_successors, so recompute insn as the
6615 last insn in bb. */
6616 if (NEXT_INSN (last_insn) != insn)
6617 {
6618 insn = sel_bb_end (bb);
6619 first_insn = sel_bb_head (bb);
6620 }
6621
6622 /* Remove bb tail from path. */
6623 if (added_to_path)
6624 ilist_remove (&path);
6625
6626 if (res != 1)
6627 {
6628 /* This is the case when one of the original expr is no longer available
6629 due to bookkeeping created on this branch with the same register.
6630 In the original algorithm, which doesn't have update_data_sets call
6631 on a bookkeeping block, it would simply result in returning
6632 FALSE when we've encountered a previously generated bookkeeping
6633 insn in moveop_orig_expr_not_found. */
6634 code_motion_path_driver_cleanup (&orig_ops, &path);
6635 return res;
6636 }
6637 }
6638
6639 /* Don't need it any more. */
6640 av_set_clear (&orig_ops);
6641
6642 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6643 the beginning of the basic block. */
6644 before_first = PREV_INSN (first_insn);
6645 while (insn != before_first)
6646 {
6647 if (code_motion_path_driver_info->ascend)
6648 code_motion_path_driver_info->ascend (insn, static_params);
6649
6650 insn = PREV_INSN (insn);
6651 }
6652
6653 /* Now we're at the bb head. */
6654 insn = first_insn;
6655 ilist_remove (&path);
6656 local_params_in->removed_last_insn = removed_last_insn;
6657 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6658
6659 /* This should be the very last operation as at bb head we could change
6660 the numbering by creating bookkeeping blocks. */
6661 if (removed_last_insn)
6662 insn = PREV_INSN (insn);
6663 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6664 return true;
6665 }
6666
6667 /* Move up the operations from ORIG_OPS set traversing the dag starting
6668 from INSN. PATH represents the edges traversed so far.
6669 DEST is the register chosen for scheduling the current expr. Insert
6670 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6671 C_EXPR is how it looks like at the given cfg point.
6672 Set *SHOULD_MOVE to indicate whether we have only disconnected
6673 one of the insns found.
6674
6675 Returns whether original instructions were found, which is asserted
6676 to be true in the caller. */
6677 static bool
6678 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6679 rtx dest, expr_t c_expr, bool *should_move)
6680 {
6681 struct moveop_static_params sparams;
6682 struct cmpd_local_params lparams;
6683 int res;
6684
6685 /* Init params for code_motion_path_driver. */
6686 sparams.dest = dest;
6687 sparams.c_expr = c_expr;
6688 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6689 #ifdef ENABLE_CHECKING
6690 sparams.failed_insn = NULL;
6691 #endif
6692 sparams.was_renamed = false;
6693 lparams.e1 = NULL;
6694
6695 /* We haven't visited any blocks yet. */
6696 bitmap_clear (code_motion_visited_blocks);
6697
6698 /* Set appropriate hooks and data. */
6699 code_motion_path_driver_info = &move_op_hooks;
6700 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6701
6702 gcc_assert (res != -1);
6703
6704 if (sparams.was_renamed)
6705 EXPR_WAS_RENAMED (expr_vliw) = true;
6706
6707 *should_move = (sparams.uid == -1);
6708
6709 return res;
6710 }
6711 \f
6712
6713 /* Functions that work with regions. */
6714
6715 /* Current number of seqno used in init_seqno and init_seqno_1. */
6716 static int cur_seqno;
6717
6718 /* A helper for init_seqno. Traverse the region starting from BB and
6719 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6720 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6721 static void
6722 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6723 {
6724 int bbi = BLOCK_TO_BB (bb->index);
6725 insn_t insn, note = bb_note (bb);
6726 insn_t succ_insn;
6727 succ_iterator si;
6728
6729 SET_BIT (visited_bbs, bbi);
6730 if (blocks_to_reschedule)
6731 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6732
6733 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6734 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6735 {
6736 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6737 int succ_bbi = BLOCK_TO_BB (succ->index);
6738
6739 gcc_assert (in_current_region_p (succ));
6740
6741 if (!TEST_BIT (visited_bbs, succ_bbi))
6742 {
6743 gcc_assert (succ_bbi > bbi);
6744
6745 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6746 }
6747 else if (blocks_to_reschedule)
6748 bitmap_set_bit (forced_ebb_heads, succ->index);
6749 }
6750
6751 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6752 INSN_SEQNO (insn) = cur_seqno--;
6753 }
6754
6755 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6756 blocks on which we're rescheduling when pipelining, FROM is the block where
6757 traversing region begins (it may not be the head of the region when
6758 pipelining, but the head of the loop instead).
6759
6760 Returns the maximal seqno found. */
6761 static int
6762 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6763 {
6764 sbitmap visited_bbs;
6765 bitmap_iterator bi;
6766 unsigned bbi;
6767
6768 visited_bbs = sbitmap_alloc (current_nr_blocks);
6769
6770 if (blocks_to_reschedule)
6771 {
6772 sbitmap_ones (visited_bbs);
6773 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6774 {
6775 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6776 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6777 }
6778 }
6779 else
6780 {
6781 sbitmap_zero (visited_bbs);
6782 from = EBB_FIRST_BB (0);
6783 }
6784
6785 cur_seqno = sched_max_luid - 1;
6786 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6787
6788 /* cur_seqno may be positive if the number of instructions is less than
6789 sched_max_luid - 1 (when rescheduling or if some instructions have been
6790 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6791 gcc_assert (cur_seqno >= 0);
6792
6793 sbitmap_free (visited_bbs);
6794 return sched_max_luid - 1;
6795 }
6796
6797 /* Initialize scheduling parameters for current region. */
6798 static void
6799 sel_setup_region_sched_flags (void)
6800 {
6801 enable_schedule_as_rhs_p = 1;
6802 bookkeeping_p = 1;
6803 pipelining_p = (bookkeeping_p
6804 && (flag_sel_sched_pipelining != 0)
6805 && current_loop_nest != NULL
6806 && loop_has_exit_edges (current_loop_nest));
6807 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6808 max_ws = MAX_WS;
6809 }
6810
6811 /* Return true if all basic blocks of current region are empty. */
6812 static bool
6813 current_region_empty_p (void)
6814 {
6815 int i;
6816 for (i = 0; i < current_nr_blocks; i++)
6817 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6818 return false;
6819
6820 return true;
6821 }
6822
6823 /* Prepare and verify loop nest for pipelining. */
6824 static void
6825 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6826 {
6827 current_loop_nest = get_loop_nest_for_rgn (rgn);
6828
6829 if (!current_loop_nest)
6830 return;
6831
6832 /* If this loop has any saved loop preheaders from nested loops,
6833 add these basic blocks to the current region. */
6834 sel_add_loop_preheaders (bbs);
6835
6836 /* Check that we're starting with a valid information. */
6837 gcc_assert (loop_latch_edge (current_loop_nest));
6838 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6839 }
6840
6841 /* Compute instruction priorities for current region. */
6842 static void
6843 sel_compute_priorities (int rgn)
6844 {
6845 sched_rgn_compute_dependencies (rgn);
6846
6847 /* Compute insn priorities in haifa style. Then free haifa style
6848 dependencies that we've calculated for this. */
6849 compute_priorities ();
6850
6851 if (sched_verbose >= 5)
6852 debug_rgn_dependencies (0);
6853
6854 free_rgn_deps ();
6855 }
6856
6857 /* Init scheduling data for RGN. Returns true when this region should not
6858 be scheduled. */
6859 static bool
6860 sel_region_init (int rgn)
6861 {
6862 int i;
6863 bb_vec_t bbs;
6864
6865 rgn_setup_region (rgn);
6866
6867 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6868 do region initialization here so the region can be bundled correctly,
6869 but we'll skip the scheduling in sel_sched_region (). */
6870 if (current_region_empty_p ())
6871 return true;
6872
6873 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6874
6875 for (i = 0; i < current_nr_blocks; i++)
6876 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6877
6878 sel_init_bbs (bbs);
6879
6880 if (flag_sel_sched_pipelining)
6881 setup_current_loop_nest (rgn, &bbs);
6882
6883 sel_setup_region_sched_flags ();
6884
6885 /* Initialize luids and dependence analysis which both sel-sched and haifa
6886 need. */
6887 sched_init_luids (bbs);
6888 sched_deps_init (false);
6889
6890 /* Initialize haifa data. */
6891 rgn_setup_sched_infos ();
6892 sel_set_sched_flags ();
6893 haifa_init_h_i_d (bbs);
6894
6895 sel_compute_priorities (rgn);
6896 init_deps_global ();
6897
6898 /* Main initialization. */
6899 sel_setup_sched_infos ();
6900 sel_init_global_and_expr (bbs);
6901
6902 VEC_free (basic_block, heap, bbs);
6903
6904 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6905
6906 /* Init correct liveness sets on each instruction of a single-block loop.
6907 This is the only situation when we can't update liveness when calling
6908 compute_live for the first insn of the loop. */
6909 if (current_loop_nest)
6910 {
6911 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6912 ? 1
6913 : 0);
6914
6915 if (current_nr_blocks == header + 1)
6916 update_liveness_on_insn
6917 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6918 }
6919
6920 /* Set hooks so that no newly generated insn will go out unnoticed. */
6921 sel_register_cfg_hooks ();
6922
6923 /* !!! We call target.sched.init () for the whole region, but we invoke
6924 targetm.sched.finish () for every ebb. */
6925 if (targetm.sched.init)
6926 /* None of the arguments are actually used in any target. */
6927 targetm.sched.init (sched_dump, sched_verbose, -1);
6928
6929 first_emitted_uid = get_max_uid () + 1;
6930 preheader_removed = false;
6931
6932 /* Reset register allocation ticks array. */
6933 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6934 reg_rename_this_tick = 0;
6935
6936 bitmap_initialize (forced_ebb_heads, 0);
6937 bitmap_clear (forced_ebb_heads);
6938
6939 setup_nop_vinsn ();
6940 current_copies = BITMAP_ALLOC (NULL);
6941 current_originators = BITMAP_ALLOC (NULL);
6942 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6943
6944 return false;
6945 }
6946
6947 /* Simplify insns after the scheduling. */
6948 static void
6949 simplify_changed_insns (void)
6950 {
6951 int i;
6952
6953 for (i = 0; i < current_nr_blocks; i++)
6954 {
6955 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6956 rtx insn;
6957
6958 FOR_BB_INSNS (bb, insn)
6959 if (INSN_P (insn))
6960 {
6961 expr_t expr = INSN_EXPR (insn);
6962
6963 if (EXPR_WAS_SUBSTITUTED (expr))
6964 validate_simplify_insn (insn);
6965 }
6966 }
6967 }
6968
6969 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6970 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6971 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6972 static void
6973 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6974 {
6975 insn_t head, tail;
6976 basic_block bb1 = bb;
6977 if (sched_verbose >= 2)
6978 sel_print ("Finishing schedule in bbs: ");
6979
6980 do
6981 {
6982 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6983
6984 if (sched_verbose >= 2)
6985 sel_print ("%d; ", bb1->index);
6986 }
6987 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6988
6989 if (sched_verbose >= 2)
6990 sel_print ("\n");
6991
6992 get_ebb_head_tail (bb, bb1, &head, &tail);
6993
6994 current_sched_info->head = head;
6995 current_sched_info->tail = tail;
6996 current_sched_info->prev_head = PREV_INSN (head);
6997 current_sched_info->next_tail = NEXT_INSN (tail);
6998 }
6999
7000 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7001 static void
7002 reset_sched_cycles_in_current_ebb (void)
7003 {
7004 int last_clock = 0;
7005 int haifa_last_clock = -1;
7006 int haifa_clock = 0;
7007 int issued_insns = 0;
7008 insn_t insn;
7009
7010 if (targetm.sched.init)
7011 {
7012 /* None of the arguments are actually used in any target.
7013 NB: We should have md_reset () hook for cases like this. */
7014 targetm.sched.init (sched_dump, sched_verbose, -1);
7015 }
7016
7017 state_reset (curr_state);
7018 advance_state (curr_state);
7019
7020 for (insn = current_sched_info->head;
7021 insn != current_sched_info->next_tail;
7022 insn = NEXT_INSN (insn))
7023 {
7024 int cost, haifa_cost;
7025 int sort_p;
7026 bool asm_p, real_insn, after_stall, all_issued, empty;
7027 int clock;
7028
7029 if (!INSN_P (insn))
7030 continue;
7031
7032 asm_p = false;
7033 real_insn = recog_memoized (insn) >= 0;
7034 clock = INSN_SCHED_CYCLE (insn);
7035
7036 cost = clock - last_clock;
7037
7038 /* Initialize HAIFA_COST. */
7039 if (! real_insn)
7040 {
7041 asm_p = INSN_ASM_P (insn);
7042
7043 if (asm_p)
7044 /* This is asm insn which *had* to be scheduled first
7045 on the cycle. */
7046 haifa_cost = 1;
7047 else
7048 /* This is a use/clobber insn. It should not change
7049 cost. */
7050 haifa_cost = 0;
7051 }
7052 else
7053 haifa_cost = estimate_insn_cost (insn, curr_state, &empty);
7054
7055 /* Stall for whatever cycles we've stalled before. */
7056 after_stall = 0;
7057 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7058 {
7059 haifa_cost = cost;
7060 after_stall = 1;
7061 }
7062 all_issued = issued_insns == issue_rate;
7063 if (haifa_cost == 0 && all_issued)
7064 haifa_cost = 1;
7065 if (haifa_cost > 0)
7066 {
7067 int i = 0;
7068
7069 while (haifa_cost--)
7070 {
7071 advance_state (curr_state);
7072 issued_insns = 0;
7073 i++;
7074
7075 if (sched_verbose >= 2)
7076 {
7077 sel_print ("advance_state (state_transition)\n");
7078 debug_state (curr_state);
7079 }
7080
7081 /* The DFA may report that e.g. insn requires 2 cycles to be
7082 issued, but on the next cycle it says that insn is ready
7083 to go. Check this here. */
7084 if (!after_stall
7085 && real_insn
7086 && haifa_cost > 0
7087 && estimate_insn_cost (insn, curr_state, NULL) == 0)
7088 break;
7089
7090 /* When the data dependency stall is longer than the DFA stall,
7091 and when we have issued exactly issue_rate insns and stalled,
7092 it could be that after this longer stall the insn will again
7093 become unavailable to the DFA restrictions. Looks strange
7094 but happens e.g. on x86-64. So recheck DFA on the last
7095 iteration. */
7096 if ((after_stall || all_issued)
7097 && real_insn
7098 && haifa_cost == 0)
7099 haifa_cost = estimate_insn_cost (insn, curr_state, NULL);
7100 }
7101
7102 haifa_clock += i;
7103 if (sched_verbose >= 2)
7104 sel_print ("haifa clock: %d\n", haifa_clock);
7105 }
7106 else
7107 gcc_assert (haifa_cost == 0);
7108
7109 if (sched_verbose >= 2)
7110 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7111
7112 if (targetm.sched.dfa_new_cycle)
7113 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7114 haifa_last_clock, haifa_clock,
7115 &sort_p))
7116 {
7117 advance_state (curr_state);
7118 issued_insns = 0;
7119 haifa_clock++;
7120 if (sched_verbose >= 2)
7121 {
7122 sel_print ("advance_state (dfa_new_cycle)\n");
7123 debug_state (curr_state);
7124 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7125 }
7126 }
7127
7128 if (real_insn)
7129 {
7130 cost = state_transition (curr_state, insn);
7131 if (!empty)
7132 issued_insns++;
7133
7134 if (sched_verbose >= 2)
7135 {
7136 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7137 haifa_clock + 1);
7138 debug_state (curr_state);
7139 }
7140 gcc_assert (cost < 0);
7141 }
7142
7143 if (targetm.sched.variable_issue)
7144 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7145
7146 INSN_SCHED_CYCLE (insn) = haifa_clock;
7147
7148 last_clock = clock;
7149 haifa_last_clock = haifa_clock;
7150 }
7151 }
7152
7153 /* Put TImode markers on insns starting a new issue group. */
7154 static void
7155 put_TImodes (void)
7156 {
7157 int last_clock = -1;
7158 insn_t insn;
7159
7160 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7161 insn = NEXT_INSN (insn))
7162 {
7163 int cost, clock;
7164
7165 if (!INSN_P (insn))
7166 continue;
7167
7168 clock = INSN_SCHED_CYCLE (insn);
7169 cost = (last_clock == -1) ? 1 : clock - last_clock;
7170
7171 gcc_assert (cost >= 0);
7172
7173 if (issue_rate > 1
7174 && GET_CODE (PATTERN (insn)) != USE
7175 && GET_CODE (PATTERN (insn)) != CLOBBER)
7176 {
7177 if (reload_completed && cost > 0)
7178 PUT_MODE (insn, TImode);
7179
7180 last_clock = clock;
7181 }
7182
7183 if (sched_verbose >= 2)
7184 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7185 }
7186 }
7187
7188 /* Perform MD_FINISH on EBBs comprising current region. When
7189 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7190 to produce correct sched cycles on insns. */
7191 static void
7192 sel_region_target_finish (bool reset_sched_cycles_p)
7193 {
7194 int i;
7195 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7196
7197 for (i = 0; i < current_nr_blocks; i++)
7198 {
7199 if (bitmap_bit_p (scheduled_blocks, i))
7200 continue;
7201
7202 /* While pipelining outer loops, skip bundling for loop
7203 preheaders. Those will be rescheduled in the outer loop. */
7204 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7205 continue;
7206
7207 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7208
7209 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7210 continue;
7211
7212 if (reset_sched_cycles_p)
7213 reset_sched_cycles_in_current_ebb ();
7214
7215 if (targetm.sched.init)
7216 targetm.sched.init (sched_dump, sched_verbose, -1);
7217
7218 put_TImodes ();
7219
7220 if (targetm.sched.finish)
7221 {
7222 targetm.sched.finish (sched_dump, sched_verbose);
7223
7224 /* Extend luids so that insns generated by the target will
7225 get zero luid. */
7226 sched_extend_luids ();
7227 }
7228 }
7229
7230 BITMAP_FREE (scheduled_blocks);
7231 }
7232
7233 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7234 is true, make an additional pass emulating scheduler to get correct insn
7235 cycles for md_finish calls. */
7236 static void
7237 sel_region_finish (bool reset_sched_cycles_p)
7238 {
7239 simplify_changed_insns ();
7240 sched_finish_ready_list ();
7241 free_nop_pool ();
7242
7243 /* Free the vectors. */
7244 if (vec_av_set)
7245 VEC_free (expr_t, heap, vec_av_set);
7246 BITMAP_FREE (current_copies);
7247 BITMAP_FREE (current_originators);
7248 BITMAP_FREE (code_motion_visited_blocks);
7249 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7250 vinsn_vec_free (&vec_target_unavailable_vinsns);
7251
7252 /* If LV_SET of the region head should be updated, do it now because
7253 there will be no other chance. */
7254 {
7255 succ_iterator si;
7256 insn_t insn;
7257
7258 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7259 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7260 {
7261 basic_block bb = BLOCK_FOR_INSN (insn);
7262
7263 if (!BB_LV_SET_VALID_P (bb))
7264 compute_live (insn);
7265 }
7266 }
7267
7268 /* Emulate the Haifa scheduler for bundling. */
7269 if (reload_completed)
7270 sel_region_target_finish (reset_sched_cycles_p);
7271
7272 sel_finish_global_and_expr ();
7273
7274 bitmap_clear (forced_ebb_heads);
7275
7276 free_nop_vinsn ();
7277
7278 finish_deps_global ();
7279 sched_finish_luids ();
7280 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7281
7282 sel_finish_bbs ();
7283 BITMAP_FREE (blocks_to_reschedule);
7284
7285 sel_unregister_cfg_hooks ();
7286
7287 max_issue_size = 0;
7288 }
7289 \f
7290
7291 /* Functions that implement the scheduler driver. */
7292
7293 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7294 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7295 of insns scheduled -- these would be postprocessed later. */
7296 static void
7297 schedule_on_fences (flist_t fences, int max_seqno,
7298 ilist_t **scheduled_insns_tailpp)
7299 {
7300 flist_t old_fences = fences;
7301
7302 if (sched_verbose >= 1)
7303 {
7304 sel_print ("\nScheduling on fences: ");
7305 dump_flist (fences);
7306 sel_print ("\n");
7307 }
7308
7309 scheduled_something_on_previous_fence = false;
7310 for (; fences; fences = FLIST_NEXT (fences))
7311 {
7312 fence_t fence = NULL;
7313 int seqno = 0;
7314 flist_t fences2;
7315 bool first_p = true;
7316
7317 /* Choose the next fence group to schedule.
7318 The fact that insn can be scheduled only once
7319 on the cycle is guaranteed by two properties:
7320 1. seqnos of parallel groups decrease with each iteration.
7321 2. If is_ineligible_successor () sees the larger seqno, it
7322 checks if candidate insn is_in_current_fence_p (). */
7323 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7324 {
7325 fence_t f = FLIST_FENCE (fences2);
7326
7327 if (!FENCE_PROCESSED_P (f))
7328 {
7329 int i = INSN_SEQNO (FENCE_INSN (f));
7330
7331 if (first_p || i > seqno)
7332 {
7333 seqno = i;
7334 fence = f;
7335 first_p = false;
7336 }
7337 else
7338 /* ??? Seqnos of different groups should be different. */
7339 gcc_assert (1 || i != seqno);
7340 }
7341 }
7342
7343 gcc_assert (fence);
7344
7345 /* As FENCE is nonnull, SEQNO is initialized. */
7346 seqno -= max_seqno + 1;
7347 fill_insns (fence, seqno, scheduled_insns_tailpp);
7348 FENCE_PROCESSED_P (fence) = true;
7349 }
7350
7351 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7352 don't need to keep bookkeeping-invalidated and target-unavailable
7353 vinsns any more. */
7354 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7355 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7356 }
7357
7358 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7359 static void
7360 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7361 {
7362 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7363
7364 /* The first element is already processed. */
7365 while ((fences = FLIST_NEXT (fences)))
7366 {
7367 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7368
7369 if (*min_seqno > seqno)
7370 *min_seqno = seqno;
7371 else if (*max_seqno < seqno)
7372 *max_seqno = seqno;
7373 }
7374 }
7375
7376 /* Calculate new fences from FENCES. */
7377 static flist_t
7378 calculate_new_fences (flist_t fences, int orig_max_seqno)
7379 {
7380 flist_t old_fences = fences;
7381 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7382
7383 flist_tail_init (new_fences);
7384 for (; fences; fences = FLIST_NEXT (fences))
7385 {
7386 fence_t fence = FLIST_FENCE (fences);
7387 insn_t insn;
7388
7389 if (!FENCE_BNDS (fence))
7390 {
7391 /* This fence doesn't have any successors. */
7392 if (!FENCE_SCHEDULED_P (fence))
7393 {
7394 /* Nothing was scheduled on this fence. */
7395 int seqno;
7396
7397 insn = FENCE_INSN (fence);
7398 seqno = INSN_SEQNO (insn);
7399 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7400
7401 if (sched_verbose >= 1)
7402 sel_print ("Fence %d[%d] has not changed\n",
7403 INSN_UID (insn),
7404 BLOCK_NUM (insn));
7405 move_fence_to_fences (fences, new_fences);
7406 }
7407 }
7408 else
7409 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7410 }
7411
7412 flist_clear (&old_fences);
7413 return FLIST_TAIL_HEAD (new_fences);
7414 }
7415
7416 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7417 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7418 the highest seqno used in a region. Return the updated highest seqno. */
7419 static int
7420 update_seqnos_and_stage (int min_seqno, int max_seqno,
7421 int highest_seqno_in_use,
7422 ilist_t *pscheduled_insns)
7423 {
7424 int new_hs;
7425 ilist_iterator ii;
7426 insn_t insn;
7427
7428 /* Actually, new_hs is the seqno of the instruction, that was
7429 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7430 if (*pscheduled_insns)
7431 {
7432 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7433 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7434 gcc_assert (new_hs > highest_seqno_in_use);
7435 }
7436 else
7437 new_hs = highest_seqno_in_use;
7438
7439 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7440 {
7441 gcc_assert (INSN_SEQNO (insn) < 0);
7442 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7443 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7444
7445 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7446 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7447 require > 1GB of memory e.g. on limit-fnargs.c. */
7448 if (! pipelining_p)
7449 free_data_for_scheduled_insn (insn);
7450 }
7451
7452 ilist_clear (pscheduled_insns);
7453 global_level++;
7454
7455 return new_hs;
7456 }
7457
7458 /* The main driver for scheduling a region. This function is responsible
7459 for correct propagation of fences (i.e. scheduling points) and creating
7460 a group of parallel insns at each of them. It also supports
7461 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7462 of scheduling. */
7463 static void
7464 sel_sched_region_2 (int orig_max_seqno)
7465 {
7466 int highest_seqno_in_use = orig_max_seqno;
7467
7468 stat_bookkeeping_copies = 0;
7469 stat_insns_needed_bookkeeping = 0;
7470 stat_renamed_scheduled = 0;
7471 stat_substitutions_total = 0;
7472 num_insns_scheduled = 0;
7473
7474 while (fences)
7475 {
7476 int min_seqno, max_seqno;
7477 ilist_t scheduled_insns = NULL;
7478 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7479
7480 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7481 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7482 fences = calculate_new_fences (fences, orig_max_seqno);
7483 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7484 highest_seqno_in_use,
7485 &scheduled_insns);
7486 }
7487
7488 if (sched_verbose >= 1)
7489 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7490 "bookkeeping, %d insns renamed, %d insns substituted\n",
7491 stat_bookkeeping_copies,
7492 stat_insns_needed_bookkeeping,
7493 stat_renamed_scheduled,
7494 stat_substitutions_total);
7495 }
7496
7497 /* Schedule a region. When pipelining, search for possibly never scheduled
7498 bookkeeping code and schedule it. Reschedule pipelined code without
7499 pipelining after. */
7500 static void
7501 sel_sched_region_1 (void)
7502 {
7503 int orig_max_seqno;
7504
7505 /* Remove empty blocks that might be in the region from the beginning. */
7506 purge_empty_blocks ();
7507
7508 orig_max_seqno = init_seqno (NULL, NULL);
7509 gcc_assert (orig_max_seqno >= 1);
7510
7511 /* When pipelining outer loops, create fences on the loop header,
7512 not preheader. */
7513 fences = NULL;
7514 if (current_loop_nest)
7515 init_fences (BB_END (EBB_FIRST_BB (0)));
7516 else
7517 init_fences (bb_note (EBB_FIRST_BB (0)));
7518 global_level = 1;
7519
7520 sel_sched_region_2 (orig_max_seqno);
7521
7522 gcc_assert (fences == NULL);
7523
7524 if (pipelining_p)
7525 {
7526 int i;
7527 basic_block bb;
7528 struct flist_tail_def _new_fences;
7529 flist_tail_t new_fences = &_new_fences;
7530 bool do_p = true;
7531
7532 pipelining_p = false;
7533 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7534 bookkeeping_p = false;
7535 enable_schedule_as_rhs_p = false;
7536
7537 /* Schedule newly created code, that has not been scheduled yet. */
7538 do_p = true;
7539
7540 while (do_p)
7541 {
7542 do_p = false;
7543
7544 for (i = 0; i < current_nr_blocks; i++)
7545 {
7546 basic_block bb = EBB_FIRST_BB (i);
7547
7548 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7549 {
7550 if (! bb_ends_ebb_p (bb))
7551 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7552 if (sel_bb_empty_p (bb))
7553 {
7554 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7555 continue;
7556 }
7557 clear_outdated_rtx_info (bb);
7558 if (sel_insn_is_speculation_check (BB_END (bb))
7559 && JUMP_P (BB_END (bb)))
7560 bitmap_set_bit (blocks_to_reschedule,
7561 BRANCH_EDGE (bb)->dest->index);
7562 }
7563 else if (! sel_bb_empty_p (bb)
7564 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7565 bitmap_set_bit (blocks_to_reschedule, bb->index);
7566 }
7567
7568 for (i = 0; i < current_nr_blocks; i++)
7569 {
7570 bb = EBB_FIRST_BB (i);
7571
7572 /* While pipelining outer loops, skip bundling for loop
7573 preheaders. Those will be rescheduled in the outer
7574 loop. */
7575 if (sel_is_loop_preheader_p (bb))
7576 {
7577 clear_outdated_rtx_info (bb);
7578 continue;
7579 }
7580
7581 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7582 {
7583 flist_tail_init (new_fences);
7584
7585 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7586
7587 /* Mark BB as head of the new ebb. */
7588 bitmap_set_bit (forced_ebb_heads, bb->index);
7589
7590 gcc_assert (fences == NULL);
7591
7592 init_fences (bb_note (bb));
7593
7594 sel_sched_region_2 (orig_max_seqno);
7595
7596 do_p = true;
7597 break;
7598 }
7599 }
7600 }
7601 }
7602 }
7603
7604 /* Schedule the RGN region. */
7605 void
7606 sel_sched_region (int rgn)
7607 {
7608 bool schedule_p;
7609 bool reset_sched_cycles_p;
7610
7611 if (sel_region_init (rgn))
7612 return;
7613
7614 if (sched_verbose >= 1)
7615 sel_print ("Scheduling region %d\n", rgn);
7616
7617 schedule_p = (!sched_is_disabled_for_current_region_p ()
7618 && dbg_cnt (sel_sched_region_cnt));
7619 reset_sched_cycles_p = pipelining_p;
7620 if (schedule_p)
7621 sel_sched_region_1 ();
7622 else
7623 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7624 reset_sched_cycles_p = true;
7625
7626 sel_region_finish (reset_sched_cycles_p);
7627 }
7628
7629 /* Perform global init for the scheduler. */
7630 static void
7631 sel_global_init (void)
7632 {
7633 calculate_dominance_info (CDI_DOMINATORS);
7634 alloc_sched_pools ();
7635
7636 /* Setup the infos for sched_init. */
7637 sel_setup_sched_infos ();
7638 setup_sched_dump ();
7639
7640 sched_rgn_init (false);
7641 sched_init ();
7642
7643 sched_init_bbs ();
7644 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7645 after_recovery = 0;
7646 can_issue_more = issue_rate;
7647
7648 sched_extend_target ();
7649 sched_deps_init (true);
7650 setup_nop_and_exit_insns ();
7651 sel_extend_global_bb_info ();
7652 init_lv_sets ();
7653 init_hard_regs_data ();
7654 }
7655
7656 /* Free the global data of the scheduler. */
7657 static void
7658 sel_global_finish (void)
7659 {
7660 free_bb_note_pool ();
7661 free_lv_sets ();
7662 sel_finish_global_bb_info ();
7663
7664 free_regset_pool ();
7665 free_nop_and_exit_insns ();
7666
7667 sched_rgn_finish ();
7668 sched_deps_finish ();
7669 sched_finish ();
7670
7671 if (current_loops)
7672 sel_finish_pipelining ();
7673
7674 free_sched_pools ();
7675 free_dominance_info (CDI_DOMINATORS);
7676 }
7677
7678 /* Return true when we need to skip selective scheduling. Used for debugging. */
7679 bool
7680 maybe_skip_selective_scheduling (void)
7681 {
7682 return ! dbg_cnt (sel_sched_cnt);
7683 }
7684
7685 /* The entry point. */
7686 void
7687 run_selective_scheduling (void)
7688 {
7689 int rgn;
7690
7691 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7692 return;
7693
7694 sel_global_init ();
7695
7696 for (rgn = 0; rgn < nr_regions; rgn++)
7697 sel_sched_region (rgn);
7698
7699 sel_global_finish ();
7700 }
7701
7702 #endif