output.h: (current_function_is_leaf...
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurrence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615 edge e;
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
620 e = find_fallthru_edge_from (bb);
621 if (e)
622 bb = e->dest;
623 else
624 return false;
625
626 while (sel_bb_empty_p (bb))
627 bb = bb->next_bb;
628
629 return bb == BLOCK_FOR_INSN (succ);
630 }
631
632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
633 When a successor will continue a ebb, transfer all parameters of a fence
634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
635 of scheduling helping to distinguish between the old and the new code. */
636 static void
637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 int orig_max_seqno)
639 {
640 bool was_here_p = false;
641 insn_t insn = NULL_RTX;
642 insn_t succ;
643 succ_iterator si;
644 ilist_iterator ii;
645 fence_t fence = FLIST_FENCE (old_fences);
646 basic_block bb;
647
648 /* Get the only element of FENCE_BNDS (fence). */
649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650 {
651 gcc_assert (!was_here_p);
652 was_here_p = true;
653 }
654 gcc_assert (was_here_p && insn != NULL_RTX);
655
656 /* When in the "middle" of the block, just move this fence
657 to the new list. */
658 bb = BLOCK_FOR_INSN (insn);
659 if (! sel_bb_end_p (insn)
660 || (single_succ_p (bb)
661 && single_pred_p (single_succ (bb))))
662 {
663 insn_t succ;
664
665 succ = (sel_bb_end_p (insn)
666 ? sel_bb_head (single_succ (bb))
667 : NEXT_INSN (insn));
668
669 if (INSN_SEQNO (succ) > 0
670 && INSN_SEQNO (succ) <= orig_max_seqno
671 && INSN_SCHED_TIMES (succ) <= 0)
672 {
673 FENCE_INSN (fence) = succ;
674 move_fence_to_fences (old_fences, new_fences);
675
676 if (sched_verbose >= 1)
677 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679 }
680 return;
681 }
682
683 /* Otherwise copy fence's structures to (possibly) multiple successors. */
684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685 {
686 int seqno = INSN_SEQNO (succ);
687
688 if (0 < seqno && seqno <= orig_max_seqno
689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690 {
691 bool b = (in_same_ebb_p (insn, succ)
692 || in_fallthru_bb_p (insn, succ));
693
694 if (sched_verbose >= 1)
695 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696 INSN_UID (insn), INSN_UID (succ),
697 BLOCK_NUM (succ), b ? "continue" : "reset");
698
699 if (b)
700 add_dirty_fence_to_fences (new_fences, succ, fence);
701 else
702 {
703 /* Mark block of the SUCC as head of the new ebb. */
704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705 add_clean_fence_to_fences (new_fences, succ, fence);
706 }
707 }
708 }
709 }
710 \f
711
712 /* Functions to support substitution. */
713
714 /* Returns whether INSN with dependence status DS is eligible for
715 substitution, i.e. it's a copy operation x := y, and RHS that is
716 moved up through this insn should be substituted. */
717 static bool
718 can_substitute_through_p (insn_t insn, ds_t ds)
719 {
720 /* We can substitute only true dependencies. */
721 if ((ds & DEP_OUTPUT)
722 || (ds & DEP_ANTI)
723 || ! INSN_RHS (insn)
724 || ! INSN_LHS (insn))
725 return false;
726
727 /* Now we just need to make sure the INSN_RHS consists of only one
728 simple REG rtx. */
729 if (REG_P (INSN_LHS (insn))
730 && REG_P (INSN_RHS (insn)))
731 return true;
732 return false;
733 }
734
735 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
736 source (if INSN is eligible for substitution). Returns TRUE if
737 substitution was actually performed, FALSE otherwise. Substitution might
738 be not performed because it's either EXPR' vinsn doesn't contain INSN's
739 destination or the resulting insn is invalid for the target machine.
740 When UNDO is true, perform unsubstitution instead (the difference is in
741 the part of rtx on which validate_replace_rtx is called). */
742 static bool
743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744 {
745 rtx *where;
746 bool new_insn_valid;
747 vinsn_t *vi = &EXPR_VINSN (expr);
748 bool has_rhs = VINSN_RHS (*vi) != NULL;
749 rtx old, new_rtx;
750
751 /* Do not try to replace in SET_DEST. Although we'll choose new
752 register for the RHS, we don't want to change RHS' original reg.
753 If the insn is not SET, we may still be able to substitute something
754 in it, and if we're here (don't have deps), it doesn't write INSN's
755 dest. */
756 where = (has_rhs
757 ? &VINSN_RHS (*vi)
758 : &PATTERN (VINSN_INSN_RTX (*vi)));
759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760
761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
762 if (rtx_ok_for_substitution_p (old, *where))
763 {
764 rtx new_insn;
765 rtx *where_replace;
766
767 /* We should copy these rtxes before substitution. */
768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770
771 /* Where we'll replace.
772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 used instead of SET_SRC. */
774 where_replace = (has_rhs
775 ? &SET_SRC (PATTERN (new_insn))
776 : &PATTERN (new_insn));
777
778 new_insn_valid
779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
780 new_insn);
781
782 /* ??? Actually, constrain_operands result depends upon choice of
783 destination register. E.g. if we allow single register to be an rhs,
784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
785 in invalid insn dx=dx, so we'll loose this rhs here.
786 Just can't come up with significant testcase for this, so just
787 leaving it for now. */
788 if (new_insn_valid)
789 {
790 change_vinsn_in_expr (expr,
791 create_vinsn_from_insn_rtx (new_insn, false));
792
793 /* Do not allow clobbering the address register of speculative
794 insns. */
795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
796 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
797 expr_dest_reg (expr)))
798 EXPR_TARGET_AVAILABLE (expr) = false;
799
800 return true;
801 }
802 else
803 return false;
804 }
805 else
806 return false;
807 }
808
809 /* Helper function for count_occurences_equiv. */
810 static int
811 count_occurrences_1 (rtx *cur_rtx, void *arg)
812 {
813 rtx_search_arg_p p = (rtx_search_arg_p) arg;
814
815 if (REG_P (*cur_rtx) && REGNO (*cur_rtx) == REGNO (p->x))
816 {
817 /* Bail out if mode is different or more than one register is used. */
818 if (GET_MODE (*cur_rtx) != GET_MODE (p->x)
819 || (HARD_REGISTER_P (*cur_rtx)
820 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1))
821 {
822 p->n = 0;
823 return 1;
824 }
825
826 p->n++;
827
828 /* Do not traverse subexprs. */
829 return -1;
830 }
831
832 if (GET_CODE (*cur_rtx) == SUBREG
833 && (!REG_P (SUBREG_REG (*cur_rtx))
834 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
835 {
836 /* ??? Do not support substituting regs inside subregs. In that case,
837 simplify_subreg will be called by validate_replace_rtx, and
838 unsubstitution will fail later. */
839 p->n = 0;
840 return 1;
841 }
842
843 /* Continue search. */
844 return 0;
845 }
846
847 /* Return the number of places WHAT appears within WHERE.
848 Bail out when we found a reference occupying several hard registers. */
849 static int
850 count_occurrences_equiv (rtx what, rtx where)
851 {
852 struct rtx_search_arg arg;
853
854 gcc_assert (REG_P (what));
855 arg.x = what;
856 arg.n = 0;
857
858 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
859
860 return arg.n;
861 }
862
863 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
864 static bool
865 rtx_ok_for_substitution_p (rtx what, rtx where)
866 {
867 return (count_occurrences_equiv (what, where) > 0);
868 }
869 \f
870
871 /* Functions to support register renaming. */
872
873 /* Substitute VI's set source with REGNO. Returns newly created pattern
874 that has REGNO as its source. */
875 static rtx
876 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
877 {
878 rtx lhs_rtx;
879 rtx pattern;
880 rtx insn_rtx;
881
882 lhs_rtx = copy_rtx (VINSN_LHS (vi));
883
884 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
885 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
886
887 return insn_rtx;
888 }
889
890 /* Returns whether INSN's src can be replaced with register number
891 NEW_SRC_REG. E.g. the following insn is valid for i386:
892
893 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
894 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
895 (reg:SI 0 ax [orig:770 c1 ] [770]))
896 (const_int 288 [0x120])) [0 str S1 A8])
897 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
898 (nil))
899
900 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
901 because of operand constraints:
902
903 (define_insn "*movqi_1"
904 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
905 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
906 )]
907
908 So do constrain_operands here, before choosing NEW_SRC_REG as best
909 reg for rhs. */
910
911 static bool
912 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
913 {
914 vinsn_t vi = INSN_VINSN (insn);
915 enum machine_mode mode;
916 rtx dst_loc;
917 bool res;
918
919 gcc_assert (VINSN_SEPARABLE_P (vi));
920
921 get_dest_and_mode (insn, &dst_loc, &mode);
922 gcc_assert (mode == GET_MODE (new_src_reg));
923
924 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
925 return true;
926
927 /* See whether SET_SRC can be replaced with this register. */
928 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
929 res = verify_changes (0);
930 cancel_changes (0);
931
932 return res;
933 }
934
935 /* Returns whether INSN still be valid after replacing it's DEST with
936 register NEW_REG. */
937 static bool
938 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
939 {
940 vinsn_t vi = INSN_VINSN (insn);
941 bool res;
942
943 /* We should deal here only with separable insns. */
944 gcc_assert (VINSN_SEPARABLE_P (vi));
945 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
946
947 /* See whether SET_DEST can be replaced with this register. */
948 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
949 res = verify_changes (0);
950 cancel_changes (0);
951
952 return res;
953 }
954
955 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
956 static rtx
957 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
958 {
959 rtx rhs_rtx;
960 rtx pattern;
961 rtx insn_rtx;
962
963 rhs_rtx = copy_rtx (VINSN_RHS (vi));
964
965 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
966 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
967
968 return insn_rtx;
969 }
970
971 /* Substitute lhs in the given expression EXPR for the register with number
972 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
973 static void
974 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
975 {
976 rtx insn_rtx;
977 vinsn_t vinsn;
978
979 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
980 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
981
982 change_vinsn_in_expr (expr, vinsn);
983 EXPR_WAS_RENAMED (expr) = 1;
984 EXPR_TARGET_AVAILABLE (expr) = 1;
985 }
986
987 /* Returns whether VI writes either one of the USED_REGS registers or,
988 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
989 static bool
990 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
991 HARD_REG_SET unavailable_hard_regs)
992 {
993 unsigned regno;
994 reg_set_iterator rsi;
995
996 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
997 {
998 if (REGNO_REG_SET_P (used_regs, regno))
999 return true;
1000 if (HARD_REGISTER_NUM_P (regno)
1001 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1002 return true;
1003 }
1004
1005 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1006 {
1007 if (REGNO_REG_SET_P (used_regs, regno))
1008 return true;
1009 if (HARD_REGISTER_NUM_P (regno)
1010 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1011 return true;
1012 }
1013
1014 return false;
1015 }
1016
1017 /* Returns register class of the output register in INSN.
1018 Returns NO_REGS for call insns because some targets have constraints on
1019 destination register of a call insn.
1020
1021 Code adopted from regrename.c::build_def_use. */
1022 static enum reg_class
1023 get_reg_class (rtx insn)
1024 {
1025 int alt, i, n_ops;
1026
1027 extract_insn (insn);
1028 if (! constrain_operands (1))
1029 fatal_insn_not_found (insn);
1030 preprocess_constraints ();
1031 alt = which_alternative;
1032 n_ops = recog_data.n_operands;
1033
1034 for (i = 0; i < n_ops; ++i)
1035 {
1036 int matches = recog_op_alt[i][alt].matches;
1037 if (matches >= 0)
1038 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1039 }
1040
1041 if (asm_noperands (PATTERN (insn)) > 0)
1042 {
1043 for (i = 0; i < n_ops; i++)
1044 if (recog_data.operand_type[i] == OP_OUT)
1045 {
1046 rtx *loc = recog_data.operand_loc[i];
1047 rtx op = *loc;
1048 enum reg_class cl = recog_op_alt[i][alt].cl;
1049
1050 if (REG_P (op)
1051 && REGNO (op) == ORIGINAL_REGNO (op))
1052 continue;
1053
1054 return cl;
1055 }
1056 }
1057 else if (!CALL_P (insn))
1058 {
1059 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1060 {
1061 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1062 enum reg_class cl = recog_op_alt[opn][alt].cl;
1063
1064 if (recog_data.operand_type[opn] == OP_OUT ||
1065 recog_data.operand_type[opn] == OP_INOUT)
1066 return cl;
1067 }
1068 }
1069
1070 /* Insns like
1071 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1072 may result in returning NO_REGS, cause flags is written implicitly through
1073 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1074 return NO_REGS;
1075 }
1076
1077 #ifdef HARD_REGNO_RENAME_OK
1078 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1079 static void
1080 init_hard_regno_rename (int regno)
1081 {
1082 int cur_reg;
1083
1084 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1085
1086 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1087 {
1088 /* We are not interested in renaming in other regs. */
1089 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1090 continue;
1091
1092 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1093 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1094 }
1095 }
1096 #endif
1097
1098 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1099 data first. */
1100 static inline bool
1101 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1102 {
1103 #ifdef HARD_REGNO_RENAME_OK
1104 /* Check whether this is all calculated. */
1105 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1106 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1107
1108 init_hard_regno_rename (from);
1109
1110 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111 #else
1112 return true;
1113 #endif
1114 }
1115
1116 /* Calculate set of registers that are capable of holding MODE. */
1117 static void
1118 init_regs_for_mode (enum machine_mode mode)
1119 {
1120 int cur_reg;
1121
1122 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1123 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1124
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 {
1127 int nregs = hard_regno_nregs[cur_reg][mode];
1128 int i;
1129
1130 for (i = nregs - 1; i >= 0; --i)
1131 if (fixed_regs[cur_reg + i]
1132 || global_regs[cur_reg + i]
1133 /* Can't use regs which aren't saved by
1134 the prologue. */
1135 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1136 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1137 it affects aliasing globally and invalidates all AV sets. */
1138 || get_reg_base_value (cur_reg + i)
1139 #ifdef LEAF_REGISTERS
1140 /* We can't use a non-leaf register if we're in a
1141 leaf function. */
1142 || (crtl->is_leaf
1143 && !LEAF_REGISTERS[cur_reg + i])
1144 #endif
1145 )
1146 break;
1147
1148 if (i >= 0)
1149 continue;
1150
1151 /* See whether it accepts all modes that occur in
1152 original insns. */
1153 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1154 continue;
1155
1156 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1157 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1158 cur_reg);
1159
1160 /* If the CUR_REG passed all the checks above,
1161 then it's ok. */
1162 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1163 }
1164
1165 sel_hrd.regs_for_mode_ok[mode] = true;
1166 }
1167
1168 /* Init all register sets gathered in HRD. */
1169 static void
1170 init_hard_regs_data (void)
1171 {
1172 int cur_reg = 0;
1173 int cur_mode = 0;
1174
1175 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1176 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1177 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1178 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1179
1180 /* Initialize registers that are valid based on mode when this is
1181 really needed. */
1182 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1183 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1184
1185 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1186 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1187 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1188
1189 #ifdef STACK_REGS
1190 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1191
1192 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1193 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1194 #endif
1195 }
1196
1197 /* Mark hardware regs in REG_RENAME_P that are not suitable
1198 for renaming rhs in INSN due to hardware restrictions (register class,
1199 modes compatibility etc). This doesn't affect original insn's dest reg,
1200 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1201 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1202 Registers that are in used_regs are always marked in
1203 unavailable_hard_regs as well. */
1204
1205 static void
1206 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1207 regset used_regs ATTRIBUTE_UNUSED)
1208 {
1209 enum machine_mode mode;
1210 enum reg_class cl = NO_REGS;
1211 rtx orig_dest;
1212 unsigned cur_reg, regno;
1213 hard_reg_set_iterator hrsi;
1214
1215 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1216 gcc_assert (reg_rename_p);
1217
1218 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1219
1220 /* We have decided not to rename 'mem = something;' insns, as 'something'
1221 is usually a register. */
1222 if (!REG_P (orig_dest))
1223 return;
1224
1225 regno = REGNO (orig_dest);
1226
1227 /* If before reload, don't try to work with pseudos. */
1228 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1229 return;
1230
1231 if (reload_completed)
1232 cl = get_reg_class (def->orig_insn);
1233
1234 /* Stop if the original register is one of the fixed_regs, global_regs or
1235 frame pointer, or we could not discover its class. */
1236 if (fixed_regs[regno]
1237 || global_regs[regno]
1238 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1239 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1240 #else
1241 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1242 #endif
1243 || (reload_completed && cl == NO_REGS))
1244 {
1245 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1246
1247 /* Give a chance for original register, if it isn't in used_regs. */
1248 if (!def->crosses_call)
1249 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1250
1251 return;
1252 }
1253
1254 /* If something allocated on stack in this function, mark frame pointer
1255 register unavailable, considering also modes.
1256 FIXME: it is enough to do this once per all original defs. */
1257 if (frame_pointer_needed)
1258 {
1259 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1260 Pmode, FRAME_POINTER_REGNUM);
1261
1262 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1263 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1264 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1265 }
1266
1267 #ifdef STACK_REGS
1268 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1269 is equivalent to as if all stack regs were in this set.
1270 I.e. no stack register can be renamed, and even if it's an original
1271 register here we make sure it won't be lifted over it's previous def
1272 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1273 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1274 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1275 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1276 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1277 sel_hrd.stack_regs);
1278 #endif
1279
1280 /* If there's a call on this path, make regs from call_used_reg_set
1281 unavailable. */
1282 if (def->crosses_call)
1283 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1284 call_used_reg_set);
1285
1286 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1287 but not register classes. */
1288 if (!reload_completed)
1289 return;
1290
1291 /* Leave regs as 'available' only from the current
1292 register class. */
1293 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1294 reg_class_contents[cl]);
1295
1296 mode = GET_MODE (orig_dest);
1297
1298 /* Leave only registers available for this mode. */
1299 if (!sel_hrd.regs_for_mode_ok[mode])
1300 init_regs_for_mode (mode);
1301 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 sel_hrd.regs_for_mode[mode]);
1303
1304 /* Exclude registers that are partially call clobbered. */
1305 if (def->crosses_call
1306 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1307 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1308 sel_hrd.regs_for_call_clobbered[mode]);
1309
1310 /* Leave only those that are ok to rename. */
1311 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1312 0, cur_reg, hrsi)
1313 {
1314 int nregs;
1315 int i;
1316
1317 nregs = hard_regno_nregs[cur_reg][mode];
1318 gcc_assert (nregs > 0);
1319
1320 for (i = nregs - 1; i >= 0; --i)
1321 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1322 break;
1323
1324 if (i >= 0)
1325 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1326 cur_reg);
1327 }
1328
1329 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1330 reg_rename_p->unavailable_hard_regs);
1331
1332 /* Regno is always ok from the renaming part of view, but it really
1333 could be in *unavailable_hard_regs already, so set it here instead
1334 of there. */
1335 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1336 }
1337
1338 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1339 best register more recently than REG2. */
1340 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1341
1342 /* Indicates the number of times renaming happened before the current one. */
1343 static int reg_rename_this_tick;
1344
1345 /* Choose the register among free, that is suitable for storing
1346 the rhs value.
1347
1348 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1349 originally appears. There could be multiple original operations
1350 for single rhs since we moving it up and merging along different
1351 paths.
1352
1353 Some code is adapted from regrename.c (regrename_optimize).
1354 If original register is available, function returns it.
1355 Otherwise it performs the checks, so the new register should
1356 comply with the following:
1357 - it should not violate any live ranges (such registers are in
1358 REG_RENAME_P->available_for_renaming set);
1359 - it should not be in the HARD_REGS_USED regset;
1360 - it should be in the class compatible with original uses;
1361 - it should not be clobbered through reference with different mode;
1362 - if we're in the leaf function, then the new register should
1363 not be in the LEAF_REGISTERS;
1364 - etc.
1365
1366 If several registers meet the conditions, the register with smallest
1367 tick is returned to achieve more even register allocation.
1368
1369 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1370
1371 If no register satisfies the above conditions, NULL_RTX is returned. */
1372 static rtx
1373 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1374 struct reg_rename *reg_rename_p,
1375 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1376 {
1377 int best_new_reg;
1378 unsigned cur_reg;
1379 enum machine_mode mode = VOIDmode;
1380 unsigned regno, i, n;
1381 hard_reg_set_iterator hrsi;
1382 def_list_iterator di;
1383 def_t def;
1384
1385 /* If original register is available, return it. */
1386 *is_orig_reg_p_ptr = true;
1387
1388 FOR_EACH_DEF (def, di, original_insns)
1389 {
1390 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1391
1392 gcc_assert (REG_P (orig_dest));
1393
1394 /* Check that all original operations have the same mode.
1395 This is done for the next loop; if we'd return from this
1396 loop, we'd check only part of them, but in this case
1397 it doesn't matter. */
1398 if (mode == VOIDmode)
1399 mode = GET_MODE (orig_dest);
1400 gcc_assert (mode == GET_MODE (orig_dest));
1401
1402 regno = REGNO (orig_dest);
1403 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1404 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1405 break;
1406
1407 /* All hard registers are available. */
1408 if (i == n)
1409 {
1410 gcc_assert (mode != VOIDmode);
1411
1412 /* Hard registers should not be shared. */
1413 return gen_rtx_REG (mode, regno);
1414 }
1415 }
1416
1417 *is_orig_reg_p_ptr = false;
1418 best_new_reg = -1;
1419
1420 /* Among all available regs choose the register that was
1421 allocated earliest. */
1422 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1423 0, cur_reg, hrsi)
1424 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1425 {
1426 /* Check that all hard regs for mode are available. */
1427 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1428 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1429 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1430 cur_reg + i))
1431 break;
1432
1433 if (i < n)
1434 continue;
1435
1436 /* All hard registers are available. */
1437 if (best_new_reg < 0
1438 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1439 {
1440 best_new_reg = cur_reg;
1441
1442 /* Return immediately when we know there's no better reg. */
1443 if (! reg_rename_tick[best_new_reg])
1444 break;
1445 }
1446 }
1447
1448 if (best_new_reg >= 0)
1449 {
1450 /* Use the check from the above loop. */
1451 gcc_assert (mode != VOIDmode);
1452 return gen_rtx_REG (mode, best_new_reg);
1453 }
1454
1455 return NULL_RTX;
1456 }
1457
1458 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1459 assumptions about available registers in the function. */
1460 static rtx
1461 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1462 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1463 {
1464 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1465 original_insns, is_orig_reg_p_ptr);
1466
1467 /* FIXME loop over hard_regno_nregs here. */
1468 gcc_assert (best_reg == NULL_RTX
1469 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1470
1471 return best_reg;
1472 }
1473
1474 /* Choose the pseudo register for storing rhs value. As this is supposed
1475 to work before reload, we return either the original register or make
1476 the new one. The parameters are the same that in choose_nest_reg_1
1477 functions, except that USED_REGS may contain pseudos.
1478 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1479
1480 TODO: take into account register pressure while doing this. Up to this
1481 moment, this function would never return NULL for pseudos, but we should
1482 not rely on this. */
1483 static rtx
1484 choose_best_pseudo_reg (regset used_regs,
1485 struct reg_rename *reg_rename_p,
1486 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1487 {
1488 def_list_iterator i;
1489 def_t def;
1490 enum machine_mode mode = VOIDmode;
1491 bool bad_hard_regs = false;
1492
1493 /* We should not use this after reload. */
1494 gcc_assert (!reload_completed);
1495
1496 /* If original register is available, return it. */
1497 *is_orig_reg_p_ptr = true;
1498
1499 FOR_EACH_DEF (def, i, original_insns)
1500 {
1501 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1502 int orig_regno;
1503
1504 gcc_assert (REG_P (dest));
1505
1506 /* Check that all original operations have the same mode. */
1507 if (mode == VOIDmode)
1508 mode = GET_MODE (dest);
1509 else
1510 gcc_assert (mode == GET_MODE (dest));
1511 orig_regno = REGNO (dest);
1512
1513 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1514 {
1515 if (orig_regno < FIRST_PSEUDO_REGISTER)
1516 {
1517 gcc_assert (df_regs_ever_live_p (orig_regno));
1518
1519 /* For hard registers, we have to check hardware imposed
1520 limitations (frame/stack registers, calls crossed). */
1521 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1522 orig_regno))
1523 {
1524 /* Don't let register cross a call if it doesn't already
1525 cross one. This condition is written in accordance with
1526 that in sched-deps.c sched_analyze_reg(). */
1527 if (!reg_rename_p->crosses_call
1528 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1529 return gen_rtx_REG (mode, orig_regno);
1530 }
1531
1532 bad_hard_regs = true;
1533 }
1534 else
1535 return dest;
1536 }
1537 }
1538
1539 *is_orig_reg_p_ptr = false;
1540
1541 /* We had some original hard registers that couldn't be used.
1542 Those were likely special. Don't try to create a pseudo. */
1543 if (bad_hard_regs)
1544 return NULL_RTX;
1545
1546 /* We haven't found a register from original operations. Get a new one.
1547 FIXME: control register pressure somehow. */
1548 {
1549 rtx new_reg = gen_reg_rtx (mode);
1550
1551 gcc_assert (mode != VOIDmode);
1552
1553 max_regno = max_reg_num ();
1554 maybe_extend_reg_info_p ();
1555 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1556
1557 return new_reg;
1558 }
1559 }
1560
1561 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1562 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1563 static void
1564 verify_target_availability (expr_t expr, regset used_regs,
1565 struct reg_rename *reg_rename_p)
1566 {
1567 unsigned n, i, regno;
1568 enum machine_mode mode;
1569 bool target_available, live_available, hard_available;
1570
1571 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1572 return;
1573
1574 regno = expr_dest_regno (expr);
1575 mode = GET_MODE (EXPR_LHS (expr));
1576 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1577 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1578
1579 live_available = hard_available = true;
1580 for (i = 0; i < n; i++)
1581 {
1582 if (bitmap_bit_p (used_regs, regno + i))
1583 live_available = false;
1584 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1585 hard_available = false;
1586 }
1587
1588 /* When target is not available, it may be due to hard register
1589 restrictions, e.g. crosses calls, so we check hard_available too. */
1590 if (target_available)
1591 gcc_assert (live_available);
1592 else
1593 /* Check only if we haven't scheduled something on the previous fence,
1594 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1595 and having more than one fence, we may end having targ_un in a block
1596 in which successors target register is actually available.
1597
1598 The last condition handles the case when a dependence from a call insn
1599 was created in sched-deps.c for insns with destination registers that
1600 never crossed a call before, but do cross one after our code motion.
1601
1602 FIXME: in the latter case, we just uselessly called find_used_regs,
1603 because we can't move this expression with any other register
1604 as well. */
1605 gcc_assert (scheduled_something_on_previous_fence || !live_available
1606 || !hard_available
1607 || (!reload_completed && reg_rename_p->crosses_call
1608 && REG_N_CALLS_CROSSED (regno) == 0));
1609 }
1610
1611 /* Collect unavailable registers due to liveness for EXPR from BNDS
1612 into USED_REGS. Save additional information about available
1613 registers and unavailable due to hardware restriction registers
1614 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1615 list. */
1616 static void
1617 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1618 struct reg_rename *reg_rename_p,
1619 def_list_t *original_insns)
1620 {
1621 for (; bnds; bnds = BLIST_NEXT (bnds))
1622 {
1623 bool res;
1624 av_set_t orig_ops = NULL;
1625 bnd_t bnd = BLIST_BND (bnds);
1626
1627 /* If the chosen best expr doesn't belong to current boundary,
1628 skip it. */
1629 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1630 continue;
1631
1632 /* Put in ORIG_OPS all exprs from this boundary that became
1633 RES on top. */
1634 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1635
1636 /* Compute used regs and OR it into the USED_REGS. */
1637 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1638 reg_rename_p, original_insns);
1639
1640 /* FIXME: the assert is true until we'd have several boundaries. */
1641 gcc_assert (res);
1642 av_set_clear (&orig_ops);
1643 }
1644 }
1645
1646 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1647 If BEST_REG is valid, replace LHS of EXPR with it. */
1648 static bool
1649 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1650 {
1651 /* Try whether we'll be able to generate the insn
1652 'dest := best_reg' at the place of the original operation. */
1653 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1654 {
1655 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1656
1657 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1658
1659 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1660 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1661 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1662 return false;
1663 }
1664
1665 /* Make sure that EXPR has the right destination
1666 register. */
1667 if (expr_dest_regno (expr) != REGNO (best_reg))
1668 replace_dest_with_reg_in_expr (expr, best_reg);
1669 else
1670 EXPR_TARGET_AVAILABLE (expr) = 1;
1671
1672 return true;
1673 }
1674
1675 /* Select and assign best register to EXPR searching from BNDS.
1676 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1677 Return FALSE if no register can be chosen, which could happen when:
1678 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1679 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1680 that are used on the moving path. */
1681 static bool
1682 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1683 {
1684 static struct reg_rename reg_rename_data;
1685
1686 regset used_regs;
1687 def_list_t original_insns = NULL;
1688 bool reg_ok;
1689
1690 *is_orig_reg_p = false;
1691
1692 /* Don't bother to do anything if this insn doesn't set any registers. */
1693 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1694 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1695 return true;
1696
1697 used_regs = get_clear_regset_from_pool ();
1698 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1699
1700 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1701 &original_insns);
1702
1703 #ifdef ENABLE_CHECKING
1704 /* If after reload, make sure we're working with hard regs here. */
1705 if (reload_completed)
1706 {
1707 reg_set_iterator rsi;
1708 unsigned i;
1709
1710 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1711 gcc_unreachable ();
1712 }
1713 #endif
1714
1715 if (EXPR_SEPARABLE_P (expr))
1716 {
1717 rtx best_reg = NULL_RTX;
1718 /* Check that we have computed availability of a target register
1719 correctly. */
1720 verify_target_availability (expr, used_regs, &reg_rename_data);
1721
1722 /* Turn everything in hard regs after reload. */
1723 if (reload_completed)
1724 {
1725 HARD_REG_SET hard_regs_used;
1726 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1727
1728 /* Join hard registers unavailable due to register class
1729 restrictions and live range intersection. */
1730 IOR_HARD_REG_SET (hard_regs_used,
1731 reg_rename_data.unavailable_hard_regs);
1732
1733 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1734 original_insns, is_orig_reg_p);
1735 }
1736 else
1737 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1738 original_insns, is_orig_reg_p);
1739
1740 if (!best_reg)
1741 reg_ok = false;
1742 else if (*is_orig_reg_p)
1743 {
1744 /* In case of unification BEST_REG may be different from EXPR's LHS
1745 when EXPR's LHS is unavailable, and there is another LHS among
1746 ORIGINAL_INSNS. */
1747 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1748 }
1749 else
1750 {
1751 /* Forbid renaming of low-cost insns. */
1752 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1753 reg_ok = false;
1754 else
1755 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 }
1757 }
1758 else
1759 {
1760 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1761 any of the HARD_REGS_USED set. */
1762 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1763 reg_rename_data.unavailable_hard_regs))
1764 {
1765 reg_ok = false;
1766 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1767 }
1768 else
1769 {
1770 reg_ok = true;
1771 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1772 }
1773 }
1774
1775 ilist_clear (&original_insns);
1776 return_regset_to_pool (used_regs);
1777
1778 return reg_ok;
1779 }
1780 \f
1781
1782 /* Return true if dependence described by DS can be overcomed. */
1783 static bool
1784 can_speculate_dep_p (ds_t ds)
1785 {
1786 if (spec_info == NULL)
1787 return false;
1788
1789 /* Leave only speculative data. */
1790 ds &= SPECULATIVE;
1791
1792 if (ds == 0)
1793 return false;
1794
1795 {
1796 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1797 that we can overcome. */
1798 ds_t spec_mask = spec_info->mask;
1799
1800 if ((ds & spec_mask) != ds)
1801 return false;
1802 }
1803
1804 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1805 return false;
1806
1807 return true;
1808 }
1809
1810 /* Get a speculation check instruction.
1811 C_EXPR is a speculative expression,
1812 CHECK_DS describes speculations that should be checked,
1813 ORIG_INSN is the original non-speculative insn in the stream. */
1814 static insn_t
1815 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1816 {
1817 rtx check_pattern;
1818 rtx insn_rtx;
1819 insn_t insn;
1820 basic_block recovery_block;
1821 rtx label;
1822
1823 /* Create a recovery block if target is going to emit branchy check, or if
1824 ORIG_INSN was speculative already. */
1825 if (targetm.sched.needs_block_p (check_ds)
1826 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1827 {
1828 recovery_block = sel_create_recovery_block (orig_insn);
1829 label = BB_HEAD (recovery_block);
1830 }
1831 else
1832 {
1833 recovery_block = NULL;
1834 label = NULL_RTX;
1835 }
1836
1837 /* Get pattern of the check. */
1838 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1839 check_ds);
1840
1841 gcc_assert (check_pattern != NULL);
1842
1843 /* Emit check. */
1844 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1845
1846 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1847 INSN_SEQNO (orig_insn), orig_insn);
1848
1849 /* Make check to be non-speculative. */
1850 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1851 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1852
1853 /* Decrease priority of check by difference of load/check instruction
1854 latencies. */
1855 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1856 - sel_vinsn_cost (INSN_VINSN (insn)));
1857
1858 /* Emit copy of original insn (though with replaced target register,
1859 if needed) to the recovery block. */
1860 if (recovery_block != NULL)
1861 {
1862 rtx twin_rtx;
1863
1864 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1865 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1866 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1867 INSN_EXPR (orig_insn),
1868 INSN_SEQNO (insn),
1869 bb_note (recovery_block));
1870 }
1871
1872 /* If we've generated a data speculation check, make sure
1873 that all the bookkeeping instruction we'll create during
1874 this move_op () will allocate an ALAT entry so that the
1875 check won't fail.
1876 In case of control speculation we must convert C_EXPR to control
1877 speculative mode, because failing to do so will bring us an exception
1878 thrown by the non-control-speculative load. */
1879 check_ds = ds_get_max_dep_weak (check_ds);
1880 speculate_expr (c_expr, check_ds);
1881
1882 return insn;
1883 }
1884
1885 /* True when INSN is a "regN = regN" copy. */
1886 static bool
1887 identical_copy_p (rtx insn)
1888 {
1889 rtx lhs, rhs, pat;
1890
1891 pat = PATTERN (insn);
1892
1893 if (GET_CODE (pat) != SET)
1894 return false;
1895
1896 lhs = SET_DEST (pat);
1897 if (!REG_P (lhs))
1898 return false;
1899
1900 rhs = SET_SRC (pat);
1901 if (!REG_P (rhs))
1902 return false;
1903
1904 return REGNO (lhs) == REGNO (rhs);
1905 }
1906
1907 /* Undo all transformations on *AV_PTR that were done when
1908 moving through INSN. */
1909 static void
1910 undo_transformations (av_set_t *av_ptr, rtx insn)
1911 {
1912 av_set_iterator av_iter;
1913 expr_t expr;
1914 av_set_t new_set = NULL;
1915
1916 /* First, kill any EXPR that uses registers set by an insn. This is
1917 required for correctness. */
1918 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1919 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1920 && bitmap_intersect_p (INSN_REG_SETS (insn),
1921 VINSN_REG_USES (EXPR_VINSN (expr)))
1922 /* When an insn looks like 'r1 = r1', we could substitute through
1923 it, but the above condition will still hold. This happened with
1924 gcc.c-torture/execute/961125-1.c. */
1925 && !identical_copy_p (insn))
1926 {
1927 if (sched_verbose >= 6)
1928 sel_print ("Expr %d removed due to use/set conflict\n",
1929 INSN_UID (EXPR_INSN_RTX (expr)));
1930 av_set_iter_remove (&av_iter);
1931 }
1932
1933 /* Undo transformations looking at the history vector. */
1934 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1935 {
1936 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1937 insn, EXPR_VINSN (expr), true);
1938
1939 if (index >= 0)
1940 {
1941 expr_history_def *phist;
1942
1943 phist = VEC_index (expr_history_def,
1944 EXPR_HISTORY_OF_CHANGES (expr),
1945 index);
1946
1947 switch (phist->type)
1948 {
1949 case TRANS_SPECULATION:
1950 {
1951 ds_t old_ds, new_ds;
1952
1953 /* Compute the difference between old and new speculative
1954 statuses: that's what we need to check.
1955 Earlier we used to assert that the status will really
1956 change. This no longer works because only the probability
1957 bits in the status may have changed during compute_av_set,
1958 and in the case of merging different probabilities of the
1959 same speculative status along different paths we do not
1960 record this in the history vector. */
1961 old_ds = phist->spec_ds;
1962 new_ds = EXPR_SPEC_DONE_DS (expr);
1963
1964 old_ds &= SPECULATIVE;
1965 new_ds &= SPECULATIVE;
1966 new_ds &= ~old_ds;
1967
1968 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1969 break;
1970 }
1971 case TRANS_SUBSTITUTION:
1972 {
1973 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1974 vinsn_t new_vi;
1975 bool add = true;
1976
1977 new_vi = phist->old_expr_vinsn;
1978
1979 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1980 == EXPR_SEPARABLE_P (expr));
1981 copy_expr (tmp_expr, expr);
1982
1983 if (vinsn_equal_p (phist->new_expr_vinsn,
1984 EXPR_VINSN (tmp_expr)))
1985 change_vinsn_in_expr (tmp_expr, new_vi);
1986 else
1987 /* This happens when we're unsubstituting on a bookkeeping
1988 copy, which was in turn substituted. The history is wrong
1989 in this case. Do it the hard way. */
1990 add = substitute_reg_in_expr (tmp_expr, insn, true);
1991 if (add)
1992 av_set_add (&new_set, tmp_expr);
1993 clear_expr (tmp_expr);
1994 break;
1995 }
1996 default:
1997 gcc_unreachable ();
1998 }
1999 }
2000
2001 }
2002
2003 av_set_union_and_clear (av_ptr, &new_set, NULL);
2004 }
2005 \f
2006
2007 /* Moveup_* helpers for code motion and computing av sets. */
2008
2009 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2010 The difference from the below function is that only substitution is
2011 performed. */
2012 static enum MOVEUP_EXPR_CODE
2013 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2014 {
2015 vinsn_t vi = EXPR_VINSN (expr);
2016 ds_t *has_dep_p;
2017 ds_t full_ds;
2018
2019 /* Do this only inside insn group. */
2020 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2021
2022 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2023 if (full_ds == 0)
2024 return MOVEUP_EXPR_SAME;
2025
2026 /* Substitution is the possible choice in this case. */
2027 if (has_dep_p[DEPS_IN_RHS])
2028 {
2029 /* Can't substitute UNIQUE VINSNs. */
2030 gcc_assert (!VINSN_UNIQUE_P (vi));
2031
2032 if (can_substitute_through_p (through_insn,
2033 has_dep_p[DEPS_IN_RHS])
2034 && substitute_reg_in_expr (expr, through_insn, false))
2035 {
2036 EXPR_WAS_SUBSTITUTED (expr) = true;
2037 return MOVEUP_EXPR_CHANGED;
2038 }
2039
2040 /* Don't care about this, as even true dependencies may be allowed
2041 in an insn group. */
2042 return MOVEUP_EXPR_SAME;
2043 }
2044
2045 /* This can catch output dependencies in COND_EXECs. */
2046 if (has_dep_p[DEPS_IN_INSN])
2047 return MOVEUP_EXPR_NULL;
2048
2049 /* This is either an output or an anti dependence, which usually have
2050 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2051 will fix this. */
2052 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2053 return MOVEUP_EXPR_AS_RHS;
2054 }
2055
2056 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2057 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2058 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2059 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2060 && !sel_insn_is_speculation_check (through_insn))
2061
2062 /* True when a conflict on a target register was found during moveup_expr. */
2063 static bool was_target_conflict = false;
2064
2065 /* Return true when moving a debug INSN across THROUGH_INSN will
2066 create a bookkeeping block. We don't want to create such blocks,
2067 for they would cause codegen differences between compilations with
2068 and without debug info. */
2069
2070 static bool
2071 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2072 insn_t through_insn)
2073 {
2074 basic_block bbi, bbt;
2075 edge e1, e2;
2076 edge_iterator ei1, ei2;
2077
2078 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2079 {
2080 if (sched_verbose >= 9)
2081 sel_print ("no bookkeeping required: ");
2082 return FALSE;
2083 }
2084
2085 bbi = BLOCK_FOR_INSN (insn);
2086
2087 if (EDGE_COUNT (bbi->preds) == 1)
2088 {
2089 if (sched_verbose >= 9)
2090 sel_print ("only one pred edge: ");
2091 return TRUE;
2092 }
2093
2094 bbt = BLOCK_FOR_INSN (through_insn);
2095
2096 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2097 {
2098 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2099 {
2100 if (find_block_for_bookkeeping (e1, e2, TRUE))
2101 {
2102 if (sched_verbose >= 9)
2103 sel_print ("found existing block: ");
2104 return FALSE;
2105 }
2106 }
2107 }
2108
2109 if (sched_verbose >= 9)
2110 sel_print ("would create bookkeeping block: ");
2111
2112 return TRUE;
2113 }
2114
2115 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2116 performing necessary transformations. Record the type of transformation
2117 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2118 permit all dependencies except true ones, and try to remove those
2119 too via forward substitution. All cases when a non-eliminable
2120 non-zero cost dependency exists inside an insn group will be fixed
2121 in tick_check_p instead. */
2122 static enum MOVEUP_EXPR_CODE
2123 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2124 enum local_trans_type *ptrans_type)
2125 {
2126 vinsn_t vi = EXPR_VINSN (expr);
2127 insn_t insn = VINSN_INSN_RTX (vi);
2128 bool was_changed = false;
2129 bool as_rhs = false;
2130 ds_t *has_dep_p;
2131 ds_t full_ds;
2132
2133 /* ??? We use dependencies of non-debug insns on debug insns to
2134 indicate that the debug insns need to be reset if the non-debug
2135 insn is pulled ahead of it. It's hard to figure out how to
2136 introduce such a notion in sel-sched, but it already fails to
2137 support debug insns in other ways, so we just go ahead and
2138 let the deug insns go corrupt for now. */
2139 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2140 return MOVEUP_EXPR_SAME;
2141
2142 /* When inside_insn_group, delegate to the helper. */
2143 if (inside_insn_group)
2144 return moveup_expr_inside_insn_group (expr, through_insn);
2145
2146 /* Deal with unique insns and control dependencies. */
2147 if (VINSN_UNIQUE_P (vi))
2148 {
2149 /* We can move jumps without side-effects or jumps that are
2150 mutually exclusive with instruction THROUGH_INSN (all in cases
2151 dependencies allow to do so and jump is not speculative). */
2152 if (control_flow_insn_p (insn))
2153 {
2154 basic_block fallthru_bb;
2155
2156 /* Do not move checks and do not move jumps through other
2157 jumps. */
2158 if (control_flow_insn_p (through_insn)
2159 || sel_insn_is_speculation_check (insn))
2160 return MOVEUP_EXPR_NULL;
2161
2162 /* Don't move jumps through CFG joins. */
2163 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2164 return MOVEUP_EXPR_NULL;
2165
2166 /* The jump should have a clear fallthru block, and
2167 this block should be in the current region. */
2168 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2169 || ! in_current_region_p (fallthru_bb))
2170 return MOVEUP_EXPR_NULL;
2171
2172 /* And it should be mutually exclusive with through_insn. */
2173 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2174 && ! DEBUG_INSN_P (through_insn))
2175 return MOVEUP_EXPR_NULL;
2176 }
2177
2178 /* Don't move what we can't move. */
2179 if (EXPR_CANT_MOVE (expr)
2180 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2181 return MOVEUP_EXPR_NULL;
2182
2183 /* Don't move SCHED_GROUP instruction through anything.
2184 If we don't force this, then it will be possible to start
2185 scheduling a sched_group before all its dependencies are
2186 resolved.
2187 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2188 as late as possible through rank_for_schedule. */
2189 if (SCHED_GROUP_P (insn))
2190 return MOVEUP_EXPR_NULL;
2191 }
2192 else
2193 gcc_assert (!control_flow_insn_p (insn));
2194
2195 /* Don't move debug insns if this would require bookkeeping. */
2196 if (DEBUG_INSN_P (insn)
2197 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2198 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2199 return MOVEUP_EXPR_NULL;
2200
2201 /* Deal with data dependencies. */
2202 was_target_conflict = false;
2203 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2204 if (full_ds == 0)
2205 {
2206 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2207 return MOVEUP_EXPR_SAME;
2208 }
2209 else
2210 {
2211 /* We can move UNIQUE insn up only as a whole and unchanged,
2212 so it shouldn't have any dependencies. */
2213 if (VINSN_UNIQUE_P (vi))
2214 return MOVEUP_EXPR_NULL;
2215 }
2216
2217 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2218 {
2219 int res;
2220
2221 res = speculate_expr (expr, full_ds);
2222 if (res >= 0)
2223 {
2224 /* Speculation was successful. */
2225 full_ds = 0;
2226 was_changed = (res > 0);
2227 if (res == 2)
2228 was_target_conflict = true;
2229 if (ptrans_type)
2230 *ptrans_type = TRANS_SPECULATION;
2231 sel_clear_has_dependence ();
2232 }
2233 }
2234
2235 if (has_dep_p[DEPS_IN_INSN])
2236 /* We have some dependency that cannot be discarded. */
2237 return MOVEUP_EXPR_NULL;
2238
2239 if (has_dep_p[DEPS_IN_LHS])
2240 {
2241 /* Only separable insns can be moved up with the new register.
2242 Anyways, we should mark that the original register is
2243 unavailable. */
2244 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2245 return MOVEUP_EXPR_NULL;
2246
2247 EXPR_TARGET_AVAILABLE (expr) = false;
2248 was_target_conflict = true;
2249 as_rhs = true;
2250 }
2251
2252 /* At this point we have either separable insns, that will be lifted
2253 up only as RHSes, or non-separable insns with no dependency in lhs.
2254 If dependency is in RHS, then try to perform substitution and move up
2255 substituted RHS:
2256
2257 Ex. 1: Ex.2
2258 y = x; y = x;
2259 z = y*2; y = y*2;
2260
2261 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2262 moved above y=x assignment as z=x*2.
2263
2264 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2265 side can be moved because of the output dependency. The operation was
2266 cropped to its rhs above. */
2267 if (has_dep_p[DEPS_IN_RHS])
2268 {
2269 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2270
2271 /* Can't substitute UNIQUE VINSNs. */
2272 gcc_assert (!VINSN_UNIQUE_P (vi));
2273
2274 if (can_speculate_dep_p (*rhs_dsp))
2275 {
2276 int res;
2277
2278 res = speculate_expr (expr, *rhs_dsp);
2279 if (res >= 0)
2280 {
2281 /* Speculation was successful. */
2282 *rhs_dsp = 0;
2283 was_changed = (res > 0);
2284 if (res == 2)
2285 was_target_conflict = true;
2286 if (ptrans_type)
2287 *ptrans_type = TRANS_SPECULATION;
2288 }
2289 else
2290 return MOVEUP_EXPR_NULL;
2291 }
2292 else if (can_substitute_through_p (through_insn,
2293 *rhs_dsp)
2294 && substitute_reg_in_expr (expr, through_insn, false))
2295 {
2296 /* ??? We cannot perform substitution AND speculation on the same
2297 insn. */
2298 gcc_assert (!was_changed);
2299 was_changed = true;
2300 if (ptrans_type)
2301 *ptrans_type = TRANS_SUBSTITUTION;
2302 EXPR_WAS_SUBSTITUTED (expr) = true;
2303 }
2304 else
2305 return MOVEUP_EXPR_NULL;
2306 }
2307
2308 /* Don't move trapping insns through jumps.
2309 This check should be at the end to give a chance to control speculation
2310 to perform its duties. */
2311 if (CANT_MOVE_TRAPPING (expr, through_insn))
2312 return MOVEUP_EXPR_NULL;
2313
2314 return (was_changed
2315 ? MOVEUP_EXPR_CHANGED
2316 : (as_rhs
2317 ? MOVEUP_EXPR_AS_RHS
2318 : MOVEUP_EXPR_SAME));
2319 }
2320
2321 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2322 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2323 that can exist within a parallel group. Write to RES the resulting
2324 code for moveup_expr. */
2325 static bool
2326 try_bitmap_cache (expr_t expr, insn_t insn,
2327 bool inside_insn_group,
2328 enum MOVEUP_EXPR_CODE *res)
2329 {
2330 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2331
2332 /* First check whether we've analyzed this situation already. */
2333 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2334 {
2335 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2336 {
2337 if (sched_verbose >= 6)
2338 sel_print ("removed (cached)\n");
2339 *res = MOVEUP_EXPR_NULL;
2340 return true;
2341 }
2342 else
2343 {
2344 if (sched_verbose >= 6)
2345 sel_print ("unchanged (cached)\n");
2346 *res = MOVEUP_EXPR_SAME;
2347 return true;
2348 }
2349 }
2350 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2351 {
2352 if (inside_insn_group)
2353 {
2354 if (sched_verbose >= 6)
2355 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2356 *res = MOVEUP_EXPR_SAME;
2357 return true;
2358
2359 }
2360 else
2361 EXPR_TARGET_AVAILABLE (expr) = false;
2362
2363 /* This is the only case when propagation result can change over time,
2364 as we can dynamically switch off scheduling as RHS. In this case,
2365 just check the flag to reach the correct decision. */
2366 if (enable_schedule_as_rhs_p)
2367 {
2368 if (sched_verbose >= 6)
2369 sel_print ("unchanged (as RHS, cached)\n");
2370 *res = MOVEUP_EXPR_AS_RHS;
2371 return true;
2372 }
2373 else
2374 {
2375 if (sched_verbose >= 6)
2376 sel_print ("removed (cached as RHS, but renaming"
2377 " is now disabled)\n");
2378 *res = MOVEUP_EXPR_NULL;
2379 return true;
2380 }
2381 }
2382
2383 return false;
2384 }
2385
2386 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2387 if successful. Write to RES the resulting code for moveup_expr. */
2388 static bool
2389 try_transformation_cache (expr_t expr, insn_t insn,
2390 enum MOVEUP_EXPR_CODE *res)
2391 {
2392 struct transformed_insns *pti
2393 = (struct transformed_insns *)
2394 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2395 &EXPR_VINSN (expr),
2396 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2397 if (pti)
2398 {
2399 /* This EXPR was already moved through this insn and was
2400 changed as a result. Fetch the proper data from
2401 the hashtable. */
2402 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2403 INSN_UID (insn), pti->type,
2404 pti->vinsn_old, pti->vinsn_new,
2405 EXPR_SPEC_DONE_DS (expr));
2406
2407 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2408 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2409 change_vinsn_in_expr (expr, pti->vinsn_new);
2410 if (pti->was_target_conflict)
2411 EXPR_TARGET_AVAILABLE (expr) = false;
2412 if (pti->type == TRANS_SPECULATION)
2413 {
2414 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2415 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2416 }
2417
2418 if (sched_verbose >= 6)
2419 {
2420 sel_print ("changed (cached): ");
2421 dump_expr (expr);
2422 sel_print ("\n");
2423 }
2424
2425 *res = MOVEUP_EXPR_CHANGED;
2426 return true;
2427 }
2428
2429 return false;
2430 }
2431
2432 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2433 static void
2434 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2435 enum MOVEUP_EXPR_CODE res)
2436 {
2437 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2438
2439 /* Do not cache result of propagating jumps through an insn group,
2440 as it is always true, which is not useful outside the group. */
2441 if (inside_insn_group)
2442 return;
2443
2444 if (res == MOVEUP_EXPR_NULL)
2445 {
2446 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2447 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2448 }
2449 else if (res == MOVEUP_EXPR_SAME)
2450 {
2451 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2452 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2453 }
2454 else if (res == MOVEUP_EXPR_AS_RHS)
2455 {
2456 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2457 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2458 }
2459 else
2460 gcc_unreachable ();
2461 }
2462
2463 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2464 and transformation type TRANS_TYPE. */
2465 static void
2466 update_transformation_cache (expr_t expr, insn_t insn,
2467 bool inside_insn_group,
2468 enum local_trans_type trans_type,
2469 vinsn_t expr_old_vinsn)
2470 {
2471 struct transformed_insns *pti;
2472
2473 if (inside_insn_group)
2474 return;
2475
2476 pti = XNEW (struct transformed_insns);
2477 pti->vinsn_old = expr_old_vinsn;
2478 pti->vinsn_new = EXPR_VINSN (expr);
2479 pti->type = trans_type;
2480 pti->was_target_conflict = was_target_conflict;
2481 pti->ds = EXPR_SPEC_DONE_DS (expr);
2482 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2483 vinsn_attach (pti->vinsn_old);
2484 vinsn_attach (pti->vinsn_new);
2485 *((struct transformed_insns **)
2486 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2487 pti, VINSN_HASH_RTX (expr_old_vinsn),
2488 INSERT)) = pti;
2489 }
2490
2491 /* Same as moveup_expr, but first looks up the result of
2492 transformation in caches. */
2493 static enum MOVEUP_EXPR_CODE
2494 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2495 {
2496 enum MOVEUP_EXPR_CODE res;
2497 bool got_answer = false;
2498
2499 if (sched_verbose >= 6)
2500 {
2501 sel_print ("Moving ");
2502 dump_expr (expr);
2503 sel_print (" through %d: ", INSN_UID (insn));
2504 }
2505
2506 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2507 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2508 == EXPR_INSN_RTX (expr)))
2509 /* Don't use cached information for debug insns that are heads of
2510 basic blocks. */;
2511 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2512 /* When inside insn group, we do not want remove stores conflicting
2513 with previosly issued loads. */
2514 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2515 else if (try_transformation_cache (expr, insn, &res))
2516 got_answer = true;
2517
2518 if (! got_answer)
2519 {
2520 /* Invoke moveup_expr and record the results. */
2521 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2522 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2523 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2524 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2525 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2526
2527 /* ??? Invent something better than this. We can't allow old_vinsn
2528 to go, we need it for the history vector. */
2529 vinsn_attach (expr_old_vinsn);
2530
2531 res = moveup_expr (expr, insn, inside_insn_group,
2532 &trans_type);
2533 switch (res)
2534 {
2535 case MOVEUP_EXPR_NULL:
2536 update_bitmap_cache (expr, insn, inside_insn_group, res);
2537 if (sched_verbose >= 6)
2538 sel_print ("removed\n");
2539 break;
2540
2541 case MOVEUP_EXPR_SAME:
2542 update_bitmap_cache (expr, insn, inside_insn_group, res);
2543 if (sched_verbose >= 6)
2544 sel_print ("unchanged\n");
2545 break;
2546
2547 case MOVEUP_EXPR_AS_RHS:
2548 gcc_assert (!unique_p || inside_insn_group);
2549 update_bitmap_cache (expr, insn, inside_insn_group, res);
2550 if (sched_verbose >= 6)
2551 sel_print ("unchanged (as RHS)\n");
2552 break;
2553
2554 case MOVEUP_EXPR_CHANGED:
2555 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2556 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2557 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2558 INSN_UID (insn), trans_type,
2559 expr_old_vinsn, EXPR_VINSN (expr),
2560 expr_old_spec_ds);
2561 update_transformation_cache (expr, insn, inside_insn_group,
2562 trans_type, expr_old_vinsn);
2563 if (sched_verbose >= 6)
2564 {
2565 sel_print ("changed: ");
2566 dump_expr (expr);
2567 sel_print ("\n");
2568 }
2569 break;
2570 default:
2571 gcc_unreachable ();
2572 }
2573
2574 vinsn_detach (expr_old_vinsn);
2575 }
2576
2577 return res;
2578 }
2579
2580 /* Moves an av set AVP up through INSN, performing necessary
2581 transformations. */
2582 static void
2583 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2584 {
2585 av_set_iterator i;
2586 expr_t expr;
2587
2588 FOR_EACH_EXPR_1 (expr, i, avp)
2589 {
2590
2591 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2592 {
2593 case MOVEUP_EXPR_SAME:
2594 case MOVEUP_EXPR_AS_RHS:
2595 break;
2596
2597 case MOVEUP_EXPR_NULL:
2598 av_set_iter_remove (&i);
2599 break;
2600
2601 case MOVEUP_EXPR_CHANGED:
2602 expr = merge_with_other_exprs (avp, &i, expr);
2603 break;
2604
2605 default:
2606 gcc_unreachable ();
2607 }
2608 }
2609 }
2610
2611 /* Moves AVP set along PATH. */
2612 static void
2613 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2614 {
2615 int last_cycle;
2616
2617 if (sched_verbose >= 6)
2618 sel_print ("Moving expressions up in the insn group...\n");
2619 if (! path)
2620 return;
2621 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2622 while (path
2623 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2624 {
2625 moveup_set_expr (avp, ILIST_INSN (path), true);
2626 path = ILIST_NEXT (path);
2627 }
2628 }
2629
2630 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2631 static bool
2632 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2633 {
2634 expr_def _tmp, *tmp = &_tmp;
2635 int last_cycle;
2636 bool res = true;
2637
2638 copy_expr_onside (tmp, expr);
2639 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2640 while (path
2641 && res
2642 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2643 {
2644 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2645 != MOVEUP_EXPR_NULL);
2646 path = ILIST_NEXT (path);
2647 }
2648
2649 if (res)
2650 {
2651 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2652 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2653
2654 if (tmp_vinsn != expr_vliw_vinsn)
2655 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2656 }
2657
2658 clear_expr (tmp);
2659 return res;
2660 }
2661 \f
2662
2663 /* Functions that compute av and lv sets. */
2664
2665 /* Returns true if INSN is not a downward continuation of the given path P in
2666 the current stage. */
2667 static bool
2668 is_ineligible_successor (insn_t insn, ilist_t p)
2669 {
2670 insn_t prev_insn;
2671
2672 /* Check if insn is not deleted. */
2673 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2674 gcc_unreachable ();
2675 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2676 gcc_unreachable ();
2677
2678 /* If it's the first insn visited, then the successor is ok. */
2679 if (!p)
2680 return false;
2681
2682 prev_insn = ILIST_INSN (p);
2683
2684 if (/* a backward edge. */
2685 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2686 /* is already visited. */
2687 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2688 && (ilist_is_in_p (p, insn)
2689 /* We can reach another fence here and still seqno of insn
2690 would be equal to seqno of prev_insn. This is possible
2691 when prev_insn is a previously created bookkeeping copy.
2692 In that case it'd get a seqno of insn. Thus, check here
2693 whether insn is in current fence too. */
2694 || IN_CURRENT_FENCE_P (insn)))
2695 /* Was already scheduled on this round. */
2696 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2697 && IN_CURRENT_FENCE_P (insn))
2698 /* An insn from another fence could also be
2699 scheduled earlier even if this insn is not in
2700 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2701 || (!pipelining_p
2702 && INSN_SCHED_TIMES (insn) > 0))
2703 return true;
2704 else
2705 return false;
2706 }
2707
2708 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2709 of handling multiple successors and properly merging its av_sets. P is
2710 the current path traversed. WS is the size of lookahead window.
2711 Return the av set computed. */
2712 static av_set_t
2713 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2714 {
2715 struct succs_info *sinfo;
2716 av_set_t expr_in_all_succ_branches = NULL;
2717 int is;
2718 insn_t succ, zero_succ = NULL;
2719 av_set_t av1 = NULL;
2720
2721 gcc_assert (sel_bb_end_p (insn));
2722
2723 /* Find different kind of successors needed for correct computing of
2724 SPEC and TARGET_AVAILABLE attributes. */
2725 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2726
2727 /* Debug output. */
2728 if (sched_verbose >= 6)
2729 {
2730 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2731 dump_insn_vector (sinfo->succs_ok);
2732 sel_print ("\n");
2733 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2734 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2735 }
2736
2737 /* Add insn to the tail of current path. */
2738 ilist_add (&p, insn);
2739
2740 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2741 {
2742 av_set_t succ_set;
2743
2744 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2745 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2746
2747 av_set_split_usefulness (succ_set,
2748 VEC_index (int, sinfo->probs_ok, is),
2749 sinfo->all_prob);
2750
2751 if (sinfo->all_succs_n > 1)
2752 {
2753 /* Find EXPR'es that came from *all* successors and save them
2754 into expr_in_all_succ_branches. This set will be used later
2755 for calculating speculation attributes of EXPR'es. */
2756 if (is == 0)
2757 {
2758 expr_in_all_succ_branches = av_set_copy (succ_set);
2759
2760 /* Remember the first successor for later. */
2761 zero_succ = succ;
2762 }
2763 else
2764 {
2765 av_set_iterator i;
2766 expr_t expr;
2767
2768 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2769 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2770 av_set_iter_remove (&i);
2771 }
2772 }
2773
2774 /* Union the av_sets. Check liveness restrictions on target registers
2775 in special case of two successors. */
2776 if (sinfo->succs_ok_n == 2 && is == 1)
2777 {
2778 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2779 basic_block bb1 = BLOCK_FOR_INSN (succ);
2780
2781 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2782 av_set_union_and_live (&av1, &succ_set,
2783 BB_LV_SET (bb0),
2784 BB_LV_SET (bb1),
2785 insn);
2786 }
2787 else
2788 av_set_union_and_clear (&av1, &succ_set, insn);
2789 }
2790
2791 /* Check liveness restrictions via hard way when there are more than
2792 two successors. */
2793 if (sinfo->succs_ok_n > 2)
2794 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2795 {
2796 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2797
2798 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2799 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2800 BB_LV_SET (succ_bb));
2801 }
2802
2803 /* Finally, check liveness restrictions on paths leaving the region. */
2804 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2805 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2806 mark_unavailable_targets
2807 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2808
2809 if (sinfo->all_succs_n > 1)
2810 {
2811 av_set_iterator i;
2812 expr_t expr;
2813
2814 /* Increase the spec attribute of all EXPR'es that didn't come
2815 from all successors. */
2816 FOR_EACH_EXPR (expr, i, av1)
2817 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2818 EXPR_SPEC (expr)++;
2819
2820 av_set_clear (&expr_in_all_succ_branches);
2821
2822 /* Do not move conditional branches through other
2823 conditional branches. So, remove all conditional
2824 branches from av_set if current operator is a conditional
2825 branch. */
2826 av_set_substract_cond_branches (&av1);
2827 }
2828
2829 ilist_remove (&p);
2830 free_succs_info (sinfo);
2831
2832 if (sched_verbose >= 6)
2833 {
2834 sel_print ("av_succs (%d): ", INSN_UID (insn));
2835 dump_av_set (av1);
2836 sel_print ("\n");
2837 }
2838
2839 return av1;
2840 }
2841
2842 /* This function computes av_set for the FIRST_INSN by dragging valid
2843 av_set through all basic block insns either from the end of basic block
2844 (computed using compute_av_set_at_bb_end) or from the insn on which
2845 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2846 below the basic block and handling conditional branches.
2847 FIRST_INSN - the basic block head, P - path consisting of the insns
2848 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2849 and bb ends are added to the path), WS - current window size,
2850 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2851 static av_set_t
2852 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2853 bool need_copy_p)
2854 {
2855 insn_t cur_insn;
2856 int end_ws = ws;
2857 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2858 insn_t after_bb_end = NEXT_INSN (bb_end);
2859 insn_t last_insn;
2860 av_set_t av = NULL;
2861 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2862
2863 /* Return NULL if insn is not on the legitimate downward path. */
2864 if (is_ineligible_successor (first_insn, p))
2865 {
2866 if (sched_verbose >= 6)
2867 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2868
2869 return NULL;
2870 }
2871
2872 /* If insn already has valid av(insn) computed, just return it. */
2873 if (AV_SET_VALID_P (first_insn))
2874 {
2875 av_set_t av_set;
2876
2877 if (sel_bb_head_p (first_insn))
2878 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2879 else
2880 av_set = NULL;
2881
2882 if (sched_verbose >= 6)
2883 {
2884 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2885 dump_av_set (av_set);
2886 sel_print ("\n");
2887 }
2888
2889 return need_copy_p ? av_set_copy (av_set) : av_set;
2890 }
2891
2892 ilist_add (&p, first_insn);
2893
2894 /* As the result after this loop have completed, in LAST_INSN we'll
2895 have the insn which has valid av_set to start backward computation
2896 from: it either will be NULL because on it the window size was exceeded
2897 or other valid av_set as returned by compute_av_set for the last insn
2898 of the basic block. */
2899 for (last_insn = first_insn; last_insn != after_bb_end;
2900 last_insn = NEXT_INSN (last_insn))
2901 {
2902 /* We may encounter valid av_set not only on bb_head, but also on
2903 those insns on which previously MAX_WS was exceeded. */
2904 if (AV_SET_VALID_P (last_insn))
2905 {
2906 if (sched_verbose >= 6)
2907 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2908 break;
2909 }
2910
2911 /* The special case: the last insn of the BB may be an
2912 ineligible_successor due to its SEQ_NO that was set on
2913 it as a bookkeeping. */
2914 if (last_insn != first_insn
2915 && is_ineligible_successor (last_insn, p))
2916 {
2917 if (sched_verbose >= 6)
2918 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2919 break;
2920 }
2921
2922 if (DEBUG_INSN_P (last_insn))
2923 continue;
2924
2925 if (end_ws > max_ws)
2926 {
2927 /* We can reach max lookahead size at bb_header, so clean av_set
2928 first. */
2929 INSN_WS_LEVEL (last_insn) = global_level;
2930
2931 if (sched_verbose >= 6)
2932 sel_print ("Insn %d is beyond the software lookahead window size\n",
2933 INSN_UID (last_insn));
2934 break;
2935 }
2936
2937 end_ws++;
2938 }
2939
2940 /* Get the valid av_set into AV above the LAST_INSN to start backward
2941 computation from. It either will be empty av_set or av_set computed from
2942 the successors on the last insn of the current bb. */
2943 if (last_insn != after_bb_end)
2944 {
2945 av = NULL;
2946
2947 /* This is needed only to obtain av_sets that are identical to
2948 those computed by the old compute_av_set version. */
2949 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2950 av_set_add (&av, INSN_EXPR (last_insn));
2951 }
2952 else
2953 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2954 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2955
2956 /* Compute av_set in AV starting from below the LAST_INSN up to
2957 location above the FIRST_INSN. */
2958 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2959 cur_insn = PREV_INSN (cur_insn))
2960 if (!INSN_NOP_P (cur_insn))
2961 {
2962 expr_t expr;
2963
2964 moveup_set_expr (&av, cur_insn, false);
2965
2966 /* If the expression for CUR_INSN is already in the set,
2967 replace it by the new one. */
2968 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2969 if (expr != NULL)
2970 {
2971 clear_expr (expr);
2972 copy_expr (expr, INSN_EXPR (cur_insn));
2973 }
2974 else
2975 av_set_add (&av, INSN_EXPR (cur_insn));
2976 }
2977
2978 /* Clear stale bb_av_set. */
2979 if (sel_bb_head_p (first_insn))
2980 {
2981 av_set_clear (&BB_AV_SET (cur_bb));
2982 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2983 BB_AV_LEVEL (cur_bb) = global_level;
2984 }
2985
2986 if (sched_verbose >= 6)
2987 {
2988 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2989 dump_av_set (av);
2990 sel_print ("\n");
2991 }
2992
2993 ilist_remove (&p);
2994 return av;
2995 }
2996
2997 /* Compute av set before INSN.
2998 INSN - the current operation (actual rtx INSN)
2999 P - the current path, which is list of insns visited so far
3000 WS - software lookahead window size.
3001 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3002 if we want to save computed av_set in s_i_d, we should make a copy of it.
3003
3004 In the resulting set we will have only expressions that don't have delay
3005 stalls and nonsubstitutable dependences. */
3006 static av_set_t
3007 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3008 {
3009 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3010 }
3011
3012 /* Propagate a liveness set LV through INSN. */
3013 static void
3014 propagate_lv_set (regset lv, insn_t insn)
3015 {
3016 gcc_assert (INSN_P (insn));
3017
3018 if (INSN_NOP_P (insn))
3019 return;
3020
3021 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3022 }
3023
3024 /* Return livness set at the end of BB. */
3025 static regset
3026 compute_live_after_bb (basic_block bb)
3027 {
3028 edge e;
3029 edge_iterator ei;
3030 regset lv = get_clear_regset_from_pool ();
3031
3032 gcc_assert (!ignore_first);
3033
3034 FOR_EACH_EDGE (e, ei, bb->succs)
3035 if (sel_bb_empty_p (e->dest))
3036 {
3037 if (! BB_LV_SET_VALID_P (e->dest))
3038 {
3039 gcc_unreachable ();
3040 gcc_assert (BB_LV_SET (e->dest) == NULL);
3041 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3042 BB_LV_SET_VALID_P (e->dest) = true;
3043 }
3044 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3045 }
3046 else
3047 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3048
3049 return lv;
3050 }
3051
3052 /* Compute the set of all live registers at the point before INSN and save
3053 it at INSN if INSN is bb header. */
3054 regset
3055 compute_live (insn_t insn)
3056 {
3057 basic_block bb = BLOCK_FOR_INSN (insn);
3058 insn_t final, temp;
3059 regset lv;
3060
3061 /* Return the valid set if we're already on it. */
3062 if (!ignore_first)
3063 {
3064 regset src = NULL;
3065
3066 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3067 src = BB_LV_SET (bb);
3068 else
3069 {
3070 gcc_assert (in_current_region_p (bb));
3071 if (INSN_LIVE_VALID_P (insn))
3072 src = INSN_LIVE (insn);
3073 }
3074
3075 if (src)
3076 {
3077 lv = get_regset_from_pool ();
3078 COPY_REG_SET (lv, src);
3079
3080 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3081 {
3082 COPY_REG_SET (BB_LV_SET (bb), lv);
3083 BB_LV_SET_VALID_P (bb) = true;
3084 }
3085
3086 return_regset_to_pool (lv);
3087 return lv;
3088 }
3089 }
3090
3091 /* We've skipped the wrong lv_set. Don't skip the right one. */
3092 ignore_first = false;
3093 gcc_assert (in_current_region_p (bb));
3094
3095 /* Find a valid LV set in this block or below, if needed.
3096 Start searching from the next insn: either ignore_first is true, or
3097 INSN doesn't have a correct live set. */
3098 temp = NEXT_INSN (insn);
3099 final = NEXT_INSN (BB_END (bb));
3100 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3101 temp = NEXT_INSN (temp);
3102 if (temp == final)
3103 {
3104 lv = compute_live_after_bb (bb);
3105 temp = PREV_INSN (temp);
3106 }
3107 else
3108 {
3109 lv = get_regset_from_pool ();
3110 COPY_REG_SET (lv, INSN_LIVE (temp));
3111 }
3112
3113 /* Put correct lv sets on the insns which have bad sets. */
3114 final = PREV_INSN (insn);
3115 while (temp != final)
3116 {
3117 propagate_lv_set (lv, temp);
3118 COPY_REG_SET (INSN_LIVE (temp), lv);
3119 INSN_LIVE_VALID_P (temp) = true;
3120 temp = PREV_INSN (temp);
3121 }
3122
3123 /* Also put it in a BB. */
3124 if (sel_bb_head_p (insn))
3125 {
3126 basic_block bb = BLOCK_FOR_INSN (insn);
3127
3128 COPY_REG_SET (BB_LV_SET (bb), lv);
3129 BB_LV_SET_VALID_P (bb) = true;
3130 }
3131
3132 /* We return LV to the pool, but will not clear it there. Thus we can
3133 legimatelly use LV till the next use of regset_pool_get (). */
3134 return_regset_to_pool (lv);
3135 return lv;
3136 }
3137
3138 /* Update liveness sets for INSN. */
3139 static inline void
3140 update_liveness_on_insn (rtx insn)
3141 {
3142 ignore_first = true;
3143 compute_live (insn);
3144 }
3145
3146 /* Compute liveness below INSN and write it into REGS. */
3147 static inline void
3148 compute_live_below_insn (rtx insn, regset regs)
3149 {
3150 rtx succ;
3151 succ_iterator si;
3152
3153 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3154 IOR_REG_SET (regs, compute_live (succ));
3155 }
3156
3157 /* Update the data gathered in av and lv sets starting from INSN. */
3158 static void
3159 update_data_sets (rtx insn)
3160 {
3161 update_liveness_on_insn (insn);
3162 if (sel_bb_head_p (insn))
3163 {
3164 gcc_assert (AV_LEVEL (insn) != 0);
3165 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3166 compute_av_set (insn, NULL, 0, 0);
3167 }
3168 }
3169 \f
3170
3171 /* Helper for move_op () and find_used_regs ().
3172 Return speculation type for which a check should be created on the place
3173 of INSN. EXPR is one of the original ops we are searching for. */
3174 static ds_t
3175 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3176 {
3177 ds_t to_check_ds;
3178 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3179
3180 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3181
3182 if (targetm.sched.get_insn_checked_ds)
3183 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3184
3185 if (spec_info != NULL
3186 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3187 already_checked_ds |= BEGIN_CONTROL;
3188
3189 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3190
3191 to_check_ds &= ~already_checked_ds;
3192
3193 return to_check_ds;
3194 }
3195
3196 /* Find the set of registers that are unavailable for storing expres
3197 while moving ORIG_OPS up on the path starting from INSN due to
3198 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3199
3200 All the original operations found during the traversal are saved in the
3201 ORIGINAL_INSNS list.
3202
3203 REG_RENAME_P denotes the set of hardware registers that
3204 can not be used with renaming due to the register class restrictions,
3205 mode restrictions and other (the register we'll choose should be
3206 compatible class with the original uses, shouldn't be in call_used_regs,
3207 should be HARD_REGNO_RENAME_OK etc).
3208
3209 Returns TRUE if we've found all original insns, FALSE otherwise.
3210
3211 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3212 to traverse the code motion paths. This helper function finds registers
3213 that are not available for storing expres while moving ORIG_OPS up on the
3214 path starting from INSN. A register considered as used on the moving path,
3215 if one of the following conditions is not satisfied:
3216
3217 (1) a register not set or read on any path from xi to an instance of
3218 the original operation,
3219 (2) not among the live registers of the point immediately following the
3220 first original operation on a given downward path, except for the
3221 original target register of the operation,
3222 (3) not live on the other path of any conditional branch that is passed
3223 by the operation, in case original operations are not present on
3224 both paths of the conditional branch.
3225
3226 All the original operations found during the traversal are saved in the
3227 ORIGINAL_INSNS list.
3228
3229 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3230 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3231 to unavailable hard regs at the point original operation is found. */
3232
3233 static bool
3234 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3235 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3236 {
3237 def_list_iterator i;
3238 def_t def;
3239 int res;
3240 bool needs_spec_check_p = false;
3241 expr_t expr;
3242 av_set_iterator expr_iter;
3243 struct fur_static_params sparams;
3244 struct cmpd_local_params lparams;
3245
3246 /* We haven't visited any blocks yet. */
3247 bitmap_clear (code_motion_visited_blocks);
3248
3249 /* Init parameters for code_motion_path_driver. */
3250 sparams.crosses_call = false;
3251 sparams.original_insns = original_insns;
3252 sparams.used_regs = used_regs;
3253
3254 /* Set the appropriate hooks and data. */
3255 code_motion_path_driver_info = &fur_hooks;
3256
3257 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3258
3259 reg_rename_p->crosses_call |= sparams.crosses_call;
3260
3261 gcc_assert (res == 1);
3262 gcc_assert (original_insns && *original_insns);
3263
3264 /* ??? We calculate whether an expression needs a check when computing
3265 av sets. This information is not as precise as it could be due to
3266 merging this bit in merge_expr. We can do better in find_used_regs,
3267 but we want to avoid multiple traversals of the same code motion
3268 paths. */
3269 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3270 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3271
3272 /* Mark hardware regs in REG_RENAME_P that are not suitable
3273 for renaming expr in INSN due to hardware restrictions (register class,
3274 modes compatibility etc). */
3275 FOR_EACH_DEF (def, i, *original_insns)
3276 {
3277 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3278
3279 if (VINSN_SEPARABLE_P (vinsn))
3280 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3281
3282 /* Do not allow clobbering of ld.[sa] address in case some of the
3283 original operations need a check. */
3284 if (needs_spec_check_p)
3285 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3286 }
3287
3288 return true;
3289 }
3290 \f
3291
3292 /* Functions to choose the best insn from available ones. */
3293
3294 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3295 static int
3296 sel_target_adjust_priority (expr_t expr)
3297 {
3298 int priority = EXPR_PRIORITY (expr);
3299 int new_priority;
3300
3301 if (targetm.sched.adjust_priority)
3302 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3303 else
3304 new_priority = priority;
3305
3306 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3307 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3308
3309 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3310
3311 if (sched_verbose >= 4)
3312 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3313 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3314 EXPR_PRIORITY_ADJ (expr), new_priority);
3315
3316 return new_priority;
3317 }
3318
3319 /* Rank two available exprs for schedule. Never return 0 here. */
3320 static int
3321 sel_rank_for_schedule (const void *x, const void *y)
3322 {
3323 expr_t tmp = *(const expr_t *) y;
3324 expr_t tmp2 = *(const expr_t *) x;
3325 insn_t tmp_insn, tmp2_insn;
3326 vinsn_t tmp_vinsn, tmp2_vinsn;
3327 int val;
3328
3329 tmp_vinsn = EXPR_VINSN (tmp);
3330 tmp2_vinsn = EXPR_VINSN (tmp2);
3331 tmp_insn = EXPR_INSN_RTX (tmp);
3332 tmp2_insn = EXPR_INSN_RTX (tmp2);
3333
3334 /* Schedule debug insns as early as possible. */
3335 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3336 return -1;
3337 else if (DEBUG_INSN_P (tmp2_insn))
3338 return 1;
3339
3340 /* Prefer SCHED_GROUP_P insns to any others. */
3341 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3342 {
3343 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3344 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3345
3346 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3347 cannot be cloned. */
3348 if (VINSN_UNIQUE_P (tmp2_vinsn))
3349 return 1;
3350 return -1;
3351 }
3352
3353 /* Discourage scheduling of speculative checks. */
3354 val = (sel_insn_is_speculation_check (tmp_insn)
3355 - sel_insn_is_speculation_check (tmp2_insn));
3356 if (val)
3357 return val;
3358
3359 /* Prefer not scheduled insn over scheduled one. */
3360 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3361 {
3362 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3363 if (val)
3364 return val;
3365 }
3366
3367 /* Prefer jump over non-jump instruction. */
3368 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3369 return -1;
3370 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3371 return 1;
3372
3373 /* Prefer an expr with greater priority. */
3374 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3375 {
3376 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3377 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3378
3379 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3380 }
3381 else
3382 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3383 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3384 if (val)
3385 return val;
3386
3387 if (spec_info != NULL && spec_info->mask != 0)
3388 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3389 {
3390 ds_t ds1, ds2;
3391 dw_t dw1, dw2;
3392 int dw;
3393
3394 ds1 = EXPR_SPEC_DONE_DS (tmp);
3395 if (ds1)
3396 dw1 = ds_weak (ds1);
3397 else
3398 dw1 = NO_DEP_WEAK;
3399
3400 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3401 if (ds2)
3402 dw2 = ds_weak (ds2);
3403 else
3404 dw2 = NO_DEP_WEAK;
3405
3406 dw = dw2 - dw1;
3407 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3408 return dw;
3409 }
3410
3411 /* Prefer an old insn to a bookkeeping insn. */
3412 if (INSN_UID (tmp_insn) < first_emitted_uid
3413 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3414 return -1;
3415 if (INSN_UID (tmp_insn) >= first_emitted_uid
3416 && INSN_UID (tmp2_insn) < first_emitted_uid)
3417 return 1;
3418
3419 /* Prefer an insn with smaller UID, as a last resort.
3420 We can't safely use INSN_LUID as it is defined only for those insns
3421 that are in the stream. */
3422 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3423 }
3424
3425 /* Filter out expressions from av set pointed to by AV_PTR
3426 that are pipelined too many times. */
3427 static void
3428 process_pipelined_exprs (av_set_t *av_ptr)
3429 {
3430 expr_t expr;
3431 av_set_iterator si;
3432
3433 /* Don't pipeline already pipelined code as that would increase
3434 number of unnecessary register moves. */
3435 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3436 {
3437 if (EXPR_SCHED_TIMES (expr)
3438 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3439 av_set_iter_remove (&si);
3440 }
3441 }
3442
3443 /* Filter speculative insns from AV_PTR if we don't want them. */
3444 static void
3445 process_spec_exprs (av_set_t *av_ptr)
3446 {
3447 bool try_data_p = true;
3448 bool try_control_p = true;
3449 expr_t expr;
3450 av_set_iterator si;
3451
3452 if (spec_info == NULL)
3453 return;
3454
3455 /* Scan *AV_PTR to find out if we want to consider speculative
3456 instructions for scheduling. */
3457 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3458 {
3459 ds_t ds;
3460
3461 ds = EXPR_SPEC_DONE_DS (expr);
3462
3463 /* The probability of a success is too low - don't speculate. */
3464 if ((ds & SPECULATIVE)
3465 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3466 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3467 || (pipelining_p && false
3468 && (ds & DATA_SPEC)
3469 && (ds & CONTROL_SPEC))))
3470 {
3471 av_set_iter_remove (&si);
3472 continue;
3473 }
3474
3475 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3476 && !(ds & BEGIN_DATA))
3477 try_data_p = false;
3478
3479 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3480 && !(ds & BEGIN_CONTROL))
3481 try_control_p = false;
3482 }
3483
3484 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3485 {
3486 ds_t ds;
3487
3488 ds = EXPR_SPEC_DONE_DS (expr);
3489
3490 if (ds & SPECULATIVE)
3491 {
3492 if ((ds & BEGIN_DATA) && !try_data_p)
3493 /* We don't want any data speculative instructions right
3494 now. */
3495 av_set_iter_remove (&si);
3496
3497 if ((ds & BEGIN_CONTROL) && !try_control_p)
3498 /* We don't want any control speculative instructions right
3499 now. */
3500 av_set_iter_remove (&si);
3501 }
3502 }
3503 }
3504
3505 /* Search for any use-like insns in AV_PTR and decide on scheduling
3506 them. Return one when found, and NULL otherwise.
3507 Note that we check here whether a USE could be scheduled to avoid
3508 an infinite loop later. */
3509 static expr_t
3510 process_use_exprs (av_set_t *av_ptr)
3511 {
3512 expr_t expr;
3513 av_set_iterator si;
3514 bool uses_present_p = false;
3515 bool try_uses_p = true;
3516
3517 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3518 {
3519 /* This will also initialize INSN_CODE for later use. */
3520 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3521 {
3522 /* If we have a USE in *AV_PTR that was not scheduled yet,
3523 do so because it will do good only. */
3524 if (EXPR_SCHED_TIMES (expr) <= 0)
3525 {
3526 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3527 return expr;
3528
3529 av_set_iter_remove (&si);
3530 }
3531 else
3532 {
3533 gcc_assert (pipelining_p);
3534
3535 uses_present_p = true;
3536 }
3537 }
3538 else
3539 try_uses_p = false;
3540 }
3541
3542 if (uses_present_p)
3543 {
3544 /* If we don't want to schedule any USEs right now and we have some
3545 in *AV_PTR, remove them, else just return the first one found. */
3546 if (!try_uses_p)
3547 {
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3550 av_set_iter_remove (&si);
3551 }
3552 else
3553 {
3554 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3555 {
3556 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3557
3558 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3559 return expr;
3560
3561 av_set_iter_remove (&si);
3562 }
3563 }
3564 }
3565
3566 return NULL;
3567 }
3568
3569 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3570 static bool
3571 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3572 {
3573 vinsn_t vinsn;
3574 int n;
3575
3576 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3577 if (VINSN_SEPARABLE_P (vinsn))
3578 {
3579 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3580 return true;
3581 }
3582 else
3583 {
3584 /* For non-separable instructions, the blocking insn can have
3585 another pattern due to substitution, and we can't choose
3586 different register as in the above case. Check all registers
3587 being written instead. */
3588 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3589 VINSN_REG_SETS (EXPR_VINSN (expr))))
3590 return true;
3591 }
3592
3593 return false;
3594 }
3595
3596 #ifdef ENABLE_CHECKING
3597 /* Return true if either of expressions from ORIG_OPS can be blocked
3598 by previously created bookkeeping code. STATIC_PARAMS points to static
3599 parameters of move_op. */
3600 static bool
3601 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3602 {
3603 expr_t expr;
3604 av_set_iterator iter;
3605 moveop_static_params_p sparams;
3606
3607 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3608 created while scheduling on another fence. */
3609 FOR_EACH_EXPR (expr, iter, orig_ops)
3610 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3611 return true;
3612
3613 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3614 sparams = (moveop_static_params_p) static_params;
3615
3616 /* Expressions can be also blocked by bookkeeping created during current
3617 move_op. */
3618 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3619 FOR_EACH_EXPR (expr, iter, orig_ops)
3620 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3621 return true;
3622
3623 /* Expressions in ORIG_OPS may have wrong destination register due to
3624 renaming. Check with the right register instead. */
3625 if (sparams->dest && REG_P (sparams->dest))
3626 {
3627 rtx reg = sparams->dest;
3628 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3629
3630 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3631 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3633 return true;
3634 }
3635
3636 return false;
3637 }
3638 #endif
3639
3640 /* Clear VINSN_VEC and detach vinsns. */
3641 static void
3642 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3643 {
3644 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3645 if (len > 0)
3646 {
3647 vinsn_t vinsn;
3648 int n;
3649
3650 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3651 vinsn_detach (vinsn);
3652 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3653 }
3654 }
3655
3656 /* Add the vinsn of EXPR to the VINSN_VEC. */
3657 static void
3658 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3659 {
3660 vinsn_attach (EXPR_VINSN (expr));
3661 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3662 }
3663
3664 /* Free the vector representing blocked expressions. */
3665 static void
3666 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3667 {
3668 if (*vinsn_vec)
3669 VEC_free (vinsn_t, heap, *vinsn_vec);
3670 }
3671
3672 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3673
3674 void sel_add_to_insn_priority (rtx insn, int amount)
3675 {
3676 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3677
3678 if (sched_verbose >= 2)
3679 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3680 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3681 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3682 }
3683
3684 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3685 true if there is something to schedule. BNDS and FENCE are current
3686 boundaries and fence, respectively. If we need to stall for some cycles
3687 before an expr from AV would become available, write this number to
3688 *PNEED_STALL. */
3689 static bool
3690 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3691 int *pneed_stall)
3692 {
3693 av_set_iterator si;
3694 expr_t expr;
3695 int sched_next_worked = 0, stalled, n;
3696 static int av_max_prio, est_ticks_till_branch;
3697 int min_need_stall = -1;
3698 deps_t dc = BND_DC (BLIST_BND (bnds));
3699
3700 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3701 already scheduled. */
3702 if (av == NULL)
3703 return false;
3704
3705 /* Empty vector from the previous stuff. */
3706 if (VEC_length (expr_t, vec_av_set) > 0)
3707 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3708
3709 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3710 for each insn. */
3711 gcc_assert (VEC_empty (expr_t, vec_av_set));
3712 FOR_EACH_EXPR (expr, si, av)
3713 {
3714 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3715
3716 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3717
3718 /* Adjust priority using target backend hook. */
3719 sel_target_adjust_priority (expr);
3720 }
3721
3722 /* Sort the vector. */
3723 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3724
3725 /* We record maximal priority of insns in av set for current instruction
3726 group. */
3727 if (FENCE_STARTS_CYCLE_P (fence))
3728 av_max_prio = est_ticks_till_branch = INT_MIN;
3729
3730 /* Filter out inappropriate expressions. Loop's direction is reversed to
3731 visit "best" instructions first. We assume that VEC_unordered_remove
3732 moves last element in place of one being deleted. */
3733 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3734 {
3735 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3736 insn_t insn = EXPR_INSN_RTX (expr);
3737 signed char target_available;
3738 bool is_orig_reg_p = true;
3739 int need_cycles, new_prio;
3740
3741 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3742 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3743 {
3744 VEC_unordered_remove (expr_t, vec_av_set, n);
3745 continue;
3746 }
3747
3748 /* Set number of sched_next insns (just in case there
3749 could be several). */
3750 if (FENCE_SCHED_NEXT (fence))
3751 sched_next_worked++;
3752
3753 /* Check all liveness requirements and try renaming.
3754 FIXME: try to minimize calls to this. */
3755 target_available = EXPR_TARGET_AVAILABLE (expr);
3756
3757 /* If insn was already scheduled on the current fence,
3758 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3759 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3760 target_available = -1;
3761
3762 /* If the availability of the EXPR is invalidated by the insertion of
3763 bookkeeping earlier, make sure that we won't choose this expr for
3764 scheduling if it's not separable, and if it is separable, then
3765 we have to recompute the set of available registers for it. */
3766 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3767 {
3768 VEC_unordered_remove (expr_t, vec_av_set, n);
3769 if (sched_verbose >= 4)
3770 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3771 INSN_UID (insn));
3772 continue;
3773 }
3774
3775 if (target_available == true)
3776 {
3777 /* Do nothing -- we can use an existing register. */
3778 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3779 }
3780 else if (/* Non-separable instruction will never
3781 get another register. */
3782 (target_available == false
3783 && !EXPR_SEPARABLE_P (expr))
3784 /* Don't try to find a register for low-priority expression. */
3785 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3786 /* ??? FIXME: Don't try to rename data speculation. */
3787 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3788 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3789 {
3790 VEC_unordered_remove (expr_t, vec_av_set, n);
3791 if (sched_verbose >= 4)
3792 sel_print ("Expr %d has no suitable target register\n",
3793 INSN_UID (insn));
3794 continue;
3795 }
3796
3797 /* Filter expressions that need to be renamed or speculated when
3798 pipelining, because compensating register copies or speculation
3799 checks are likely to be placed near the beginning of the loop,
3800 causing a stall. */
3801 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3802 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3803 {
3804 /* Estimation of number of cycles until loop branch for
3805 renaming/speculation to be successful. */
3806 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3807
3808 if ((int) current_loop_nest->ninsns < 9)
3809 {
3810 VEC_unordered_remove (expr_t, vec_av_set, n);
3811 if (sched_verbose >= 4)
3812 sel_print ("Pipelining expr %d will likely cause stall\n",
3813 INSN_UID (insn));
3814 continue;
3815 }
3816
3817 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3818 < need_n_ticks_till_branch * issue_rate / 2
3819 && est_ticks_till_branch < need_n_ticks_till_branch)
3820 {
3821 VEC_unordered_remove (expr_t, vec_av_set, n);
3822 if (sched_verbose >= 4)
3823 sel_print ("Pipelining expr %d will likely cause stall\n",
3824 INSN_UID (insn));
3825 continue;
3826 }
3827 }
3828
3829 /* We want to schedule speculation checks as late as possible. Discard
3830 them from av set if there are instructions with higher priority. */
3831 if (sel_insn_is_speculation_check (insn)
3832 && EXPR_PRIORITY (expr) < av_max_prio)
3833 {
3834 stalled++;
3835 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3836 VEC_unordered_remove (expr_t, vec_av_set, n);
3837 if (sched_verbose >= 4)
3838 sel_print ("Delaying speculation check %d until its first use\n",
3839 INSN_UID (insn));
3840 continue;
3841 }
3842
3843 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3844 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3845 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3846
3847 /* Don't allow any insns whose data is not yet ready.
3848 Check first whether we've already tried them and failed. */
3849 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3850 {
3851 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3852 - FENCE_CYCLE (fence));
3853 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3854 est_ticks_till_branch = MAX (est_ticks_till_branch,
3855 EXPR_PRIORITY (expr) + need_cycles);
3856
3857 if (need_cycles > 0)
3858 {
3859 stalled++;
3860 min_need_stall = (min_need_stall < 0
3861 ? need_cycles
3862 : MIN (min_need_stall, need_cycles));
3863 VEC_unordered_remove (expr_t, vec_av_set, n);
3864
3865 if (sched_verbose >= 4)
3866 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3867 INSN_UID (insn),
3868 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3869 continue;
3870 }
3871 }
3872
3873 /* Now resort to dependence analysis to find whether EXPR might be
3874 stalled due to dependencies from FENCE's context. */
3875 need_cycles = tick_check_p (expr, dc, fence);
3876 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3877
3878 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3879 est_ticks_till_branch = MAX (est_ticks_till_branch,
3880 new_prio);
3881
3882 if (need_cycles > 0)
3883 {
3884 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3885 {
3886 int new_size = INSN_UID (insn) * 3 / 2;
3887
3888 FENCE_READY_TICKS (fence)
3889 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3890 new_size, FENCE_READY_TICKS_SIZE (fence),
3891 sizeof (int));
3892 }
3893 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3894 = FENCE_CYCLE (fence) + need_cycles;
3895
3896 stalled++;
3897 min_need_stall = (min_need_stall < 0
3898 ? need_cycles
3899 : MIN (min_need_stall, need_cycles));
3900
3901 VEC_unordered_remove (expr_t, vec_av_set, n);
3902
3903 if (sched_verbose >= 4)
3904 sel_print ("Expr %d is not ready yet until cycle %d\n",
3905 INSN_UID (insn),
3906 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3907 continue;
3908 }
3909
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3912 min_need_stall = 0;
3913 }
3914
3915 /* Clear SCHED_NEXT. */
3916 if (FENCE_SCHED_NEXT (fence))
3917 {
3918 gcc_assert (sched_next_worked == 1);
3919 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3920 }
3921
3922 /* No need to stall if this variable was not initialized. */
3923 if (min_need_stall < 0)
3924 min_need_stall = 0;
3925
3926 if (VEC_empty (expr_t, vec_av_set))
3927 {
3928 /* We need to set *pneed_stall here, because later we skip this code
3929 when ready list is empty. */
3930 *pneed_stall = min_need_stall;
3931 return false;
3932 }
3933 else
3934 gcc_assert (min_need_stall == 0);
3935
3936 /* Sort the vector. */
3937 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3938
3939 if (sched_verbose >= 4)
3940 {
3941 sel_print ("Total ready exprs: %d, stalled: %d\n",
3942 VEC_length (expr_t, vec_av_set), stalled);
3943 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3944 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3945 dump_expr (expr);
3946 sel_print ("\n");
3947 }
3948
3949 *pneed_stall = 0;
3950 return true;
3951 }
3952
3953 /* Convert a vectored and sorted av set to the ready list that
3954 the rest of the backend wants to see. */
3955 static void
3956 convert_vec_av_set_to_ready (void)
3957 {
3958 int n;
3959 expr_t expr;
3960
3961 /* Allocate and fill the ready list from the sorted vector. */
3962 ready.n_ready = VEC_length (expr_t, vec_av_set);
3963 ready.first = ready.n_ready - 1;
3964
3965 gcc_assert (ready.n_ready > 0);
3966
3967 if (ready.n_ready > max_issue_size)
3968 {
3969 max_issue_size = ready.n_ready;
3970 sched_extend_ready_list (ready.n_ready);
3971 }
3972
3973 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3974 {
3975 vinsn_t vi = EXPR_VINSN (expr);
3976 insn_t insn = VINSN_INSN_RTX (vi);
3977
3978 ready_try[n] = 0;
3979 ready.vec[n] = insn;
3980 }
3981 }
3982
3983 /* Initialize ready list from *AV_PTR for the max_issue () call.
3984 If any unrecognizable insn found in *AV_PTR, return it (and skip
3985 max_issue). BND and FENCE are current boundary and fence,
3986 respectively. If we need to stall for some cycles before an expr
3987 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3988 static expr_t
3989 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3990 int *pneed_stall)
3991 {
3992 expr_t expr;
3993
3994 /* We do not support multiple boundaries per fence. */
3995 gcc_assert (BLIST_NEXT (bnds) == NULL);
3996
3997 /* Process expressions required special handling, i.e. pipelined,
3998 speculative and recog() < 0 expressions first. */
3999 process_pipelined_exprs (av_ptr);
4000 process_spec_exprs (av_ptr);
4001
4002 /* A USE could be scheduled immediately. */
4003 expr = process_use_exprs (av_ptr);
4004 if (expr)
4005 {
4006 *pneed_stall = 0;
4007 return expr;
4008 }
4009
4010 /* Turn the av set to a vector for sorting. */
4011 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4012 {
4013 ready.n_ready = 0;
4014 return NULL;
4015 }
4016
4017 /* Build the final ready list. */
4018 convert_vec_av_set_to_ready ();
4019 return NULL;
4020 }
4021
4022 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4023 static bool
4024 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4025 {
4026 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4027 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4028 : FENCE_CYCLE (fence) - 1;
4029 bool res = false;
4030 int sort_p = 0;
4031
4032 if (!targetm.sched.dfa_new_cycle)
4033 return false;
4034
4035 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4036
4037 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4038 insn, last_scheduled_cycle,
4039 FENCE_CYCLE (fence), &sort_p))
4040 {
4041 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4042 advance_one_cycle (fence);
4043 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4044 res = true;
4045 }
4046
4047 return res;
4048 }
4049
4050 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4051 we can issue. FENCE is the current fence. */
4052 static int
4053 invoke_reorder_hooks (fence_t fence)
4054 {
4055 int issue_more;
4056 bool ran_hook = false;
4057
4058 /* Call the reorder hook at the beginning of the cycle, and call
4059 the reorder2 hook in the middle of the cycle. */
4060 if (FENCE_ISSUED_INSNS (fence) == 0)
4061 {
4062 if (targetm.sched.reorder
4063 && !SCHED_GROUP_P (ready_element (&ready, 0))
4064 && ready.n_ready > 1)
4065 {
4066 /* Don't give reorder the most prioritized insn as it can break
4067 pipelining. */
4068 if (pipelining_p)
4069 --ready.n_ready;
4070
4071 issue_more
4072 = targetm.sched.reorder (sched_dump, sched_verbose,
4073 ready_lastpos (&ready),
4074 &ready.n_ready, FENCE_CYCLE (fence));
4075
4076 if (pipelining_p)
4077 ++ready.n_ready;
4078
4079 ran_hook = true;
4080 }
4081 else
4082 /* Initialize can_issue_more for variable_issue. */
4083 issue_more = issue_rate;
4084 }
4085 else if (targetm.sched.reorder2
4086 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4087 {
4088 if (ready.n_ready == 1)
4089 issue_more =
4090 targetm.sched.reorder2 (sched_dump, sched_verbose,
4091 ready_lastpos (&ready),
4092 &ready.n_ready, FENCE_CYCLE (fence));
4093 else
4094 {
4095 if (pipelining_p)
4096 --ready.n_ready;
4097
4098 issue_more =
4099 targetm.sched.reorder2 (sched_dump, sched_verbose,
4100 ready.n_ready
4101 ? ready_lastpos (&ready) : NULL,
4102 &ready.n_ready, FENCE_CYCLE (fence));
4103
4104 if (pipelining_p)
4105 ++ready.n_ready;
4106 }
4107
4108 ran_hook = true;
4109 }
4110 else
4111 issue_more = FENCE_ISSUE_MORE (fence);
4112
4113 /* Ensure that ready list and vec_av_set are in line with each other,
4114 i.e. vec_av_set[i] == ready_element (&ready, i). */
4115 if (issue_more && ran_hook)
4116 {
4117 int i, j, n;
4118 rtx *arr = ready.vec;
4119 expr_t *vec = VEC_address (expr_t, vec_av_set);
4120
4121 for (i = 0, n = ready.n_ready; i < n; i++)
4122 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4123 {
4124 expr_t tmp;
4125
4126 for (j = i; j < n; j++)
4127 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4128 break;
4129 gcc_assert (j < n);
4130
4131 tmp = vec[i];
4132 vec[i] = vec[j];
4133 vec[j] = tmp;
4134 }
4135 }
4136
4137 return issue_more;
4138 }
4139
4140 /* Return an EXPR corresponding to INDEX element of ready list, if
4141 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4142 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4143 ready.vec otherwise. */
4144 static inline expr_t
4145 find_expr_for_ready (int index, bool follow_ready_element)
4146 {
4147 expr_t expr;
4148 int real_index;
4149
4150 real_index = follow_ready_element ? ready.first - index : index;
4151
4152 expr = VEC_index (expr_t, vec_av_set, real_index);
4153 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4154
4155 return expr;
4156 }
4157
4158 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4159 of such insns found. */
4160 static int
4161 invoke_dfa_lookahead_guard (void)
4162 {
4163 int i, n;
4164 bool have_hook
4165 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4166
4167 if (sched_verbose >= 2)
4168 sel_print ("ready after reorder: ");
4169
4170 for (i = 0, n = 0; i < ready.n_ready; i++)
4171 {
4172 expr_t expr;
4173 insn_t insn;
4174 int r;
4175
4176 /* In this loop insn is Ith element of the ready list given by
4177 ready_element, not Ith element of ready.vec. */
4178 insn = ready_element (&ready, i);
4179
4180 if (! have_hook || i == 0)
4181 r = 0;
4182 else
4183 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4184
4185 gcc_assert (INSN_CODE (insn) >= 0);
4186
4187 /* Only insns with ready_try = 0 can get here
4188 from fill_ready_list. */
4189 gcc_assert (ready_try [i] == 0);
4190 ready_try[i] = r;
4191 if (!r)
4192 n++;
4193
4194 expr = find_expr_for_ready (i, true);
4195
4196 if (sched_verbose >= 2)
4197 {
4198 dump_vinsn (EXPR_VINSN (expr));
4199 sel_print (":%d; ", ready_try[i]);
4200 }
4201 }
4202
4203 if (sched_verbose >= 2)
4204 sel_print ("\n");
4205 return n;
4206 }
4207
4208 /* Calculate the number of privileged insns and return it. */
4209 static int
4210 calculate_privileged_insns (void)
4211 {
4212 expr_t cur_expr, min_spec_expr = NULL;
4213 int privileged_n = 0, i;
4214
4215 for (i = 0; i < ready.n_ready; i++)
4216 {
4217 if (ready_try[i])
4218 continue;
4219
4220 if (! min_spec_expr)
4221 min_spec_expr = find_expr_for_ready (i, true);
4222
4223 cur_expr = find_expr_for_ready (i, true);
4224
4225 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4226 break;
4227
4228 ++privileged_n;
4229 }
4230
4231 if (i == ready.n_ready)
4232 privileged_n = 0;
4233
4234 if (sched_verbose >= 2)
4235 sel_print ("privileged_n: %d insns with SPEC %d\n",
4236 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4237 return privileged_n;
4238 }
4239
4240 /* Call the rest of the hooks after the choice was made. Return
4241 the number of insns that still can be issued given that the current
4242 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4243 and the insn chosen for scheduling, respectively. */
4244 static int
4245 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4246 {
4247 gcc_assert (INSN_P (best_insn));
4248
4249 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4250 sel_dfa_new_cycle (best_insn, fence);
4251
4252 if (targetm.sched.variable_issue)
4253 {
4254 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4255 issue_more =
4256 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4257 issue_more);
4258 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4259 }
4260 else if (GET_CODE (PATTERN (best_insn)) != USE
4261 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4262 issue_more--;
4263
4264 return issue_more;
4265 }
4266
4267 /* Estimate the cost of issuing INSN on DFA state STATE. */
4268 static int
4269 estimate_insn_cost (rtx insn, state_t state)
4270 {
4271 static state_t temp = NULL;
4272 int cost;
4273
4274 if (!temp)
4275 temp = xmalloc (dfa_state_size);
4276
4277 memcpy (temp, state, dfa_state_size);
4278 cost = state_transition (temp, insn);
4279
4280 if (cost < 0)
4281 return 0;
4282 else if (cost == 0)
4283 return 1;
4284 return cost;
4285 }
4286
4287 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4288 This function properly handles ASMs, USEs etc. */
4289 static int
4290 get_expr_cost (expr_t expr, fence_t fence)
4291 {
4292 rtx insn = EXPR_INSN_RTX (expr);
4293
4294 if (recog_memoized (insn) < 0)
4295 {
4296 if (!FENCE_STARTS_CYCLE_P (fence)
4297 && INSN_ASM_P (insn))
4298 /* This is asm insn which is tryed to be issued on the
4299 cycle not first. Issue it on the next cycle. */
4300 return 1;
4301 else
4302 /* A USE insn, or something else we don't need to
4303 understand. We can't pass these directly to
4304 state_transition because it will trigger a
4305 fatal error for unrecognizable insns. */
4306 return 0;
4307 }
4308 else
4309 return estimate_insn_cost (insn, FENCE_STATE (fence));
4310 }
4311
4312 /* Find the best insn for scheduling, either via max_issue or just take
4313 the most prioritized available. */
4314 static int
4315 choose_best_insn (fence_t fence, int privileged_n, int *index)
4316 {
4317 int can_issue = 0;
4318
4319 if (dfa_lookahead > 0)
4320 {
4321 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4322 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), true, index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4328 }
4329 else
4330 {
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4333
4334 for (i = 0; i < ready.n_ready; i++)
4335 {
4336 expr_t expr = find_expr_for_ready (i, true);
4337
4338 if (get_expr_cost (expr, fence) < 1)
4339 {
4340 can_issue = can_issue_more;
4341 *index = i;
4342
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346 break;
4347 }
4348 }
4349
4350 if (i == ready.n_ready)
4351 {
4352 can_issue = 0;
4353 *index = -1;
4354 }
4355 }
4356
4357 return can_issue;
4358 }
4359
4360 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4364 static expr_t
4365 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4367 {
4368 expr_t best;
4369
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4376 {
4377 int privileged_n, index;
4378
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4381 {
4382 /* Try choosing the best insn until we find one that is could be
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
4386 invoke_dfa_lookahead_guard ();
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4391 }
4392 /* We had some available insns, so if we can't issue them,
4393 we have a stall. */
4394 if (can_issue_more == 0)
4395 {
4396 best = NULL;
4397 *pneed_stall = 1;
4398 }
4399 }
4400
4401 if (best != NULL)
4402 {
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (targetm.sched.variable_issue
4406 && can_issue_more == 0)
4407 *pneed_stall = 1;
4408 }
4409
4410 if (sched_verbose >= 2)
4411 {
4412 if (best != NULL)
4413 {
4414 sel_print ("Best expression (vliw form): ");
4415 dump_expr (best);
4416 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4417 }
4418 else
4419 sel_print ("No best expr found!\n");
4420 }
4421
4422 return best;
4423 }
4424 \f
4425
4426 /* Functions that implement the core of the scheduler. */
4427
4428
4429 /* Emit an instruction from EXPR with SEQNO and VINSN after
4430 PLACE_TO_INSERT. */
4431 static insn_t
4432 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4433 insn_t place_to_insert)
4434 {
4435 /* This assert fails when we have identical instructions
4436 one of which dominates the other. In this case move_op ()
4437 finds the first instruction and doesn't search for second one.
4438 The solution would be to compute av_set after the first found
4439 insn and, if insn present in that set, continue searching.
4440 For now we workaround this issue in move_op. */
4441 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4442
4443 if (EXPR_WAS_RENAMED (expr))
4444 {
4445 unsigned regno = expr_dest_regno (expr);
4446
4447 if (HARD_REGISTER_NUM_P (regno))
4448 {
4449 df_set_regs_ever_live (regno, true);
4450 reg_rename_tick[regno] = ++reg_rename_this_tick;
4451 }
4452 }
4453
4454 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4455 place_to_insert);
4456 }
4457
4458 /* Return TRUE if BB can hold bookkeeping code. */
4459 static bool
4460 block_valid_for_bookkeeping_p (basic_block bb)
4461 {
4462 insn_t bb_end = BB_END (bb);
4463
4464 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4465 return false;
4466
4467 if (INSN_P (bb_end))
4468 {
4469 if (INSN_SCHED_TIMES (bb_end) > 0)
4470 return false;
4471 }
4472 else
4473 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4474
4475 return true;
4476 }
4477
4478 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4479 into E2->dest, except from E1->src (there may be a sequence of empty basic
4480 blocks between E1->src and E2->dest). Return found block, or NULL if new
4481 one must be created. If LAX holds, don't assume there is a simple path
4482 from E1->src to E2->dest. */
4483 static basic_block
4484 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4485 {
4486 basic_block candidate_block = NULL;
4487 edge e;
4488
4489 /* Loop over edges from E1 to E2, inclusive. */
4490 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4491 {
4492 if (EDGE_COUNT (e->dest->preds) == 2)
4493 {
4494 if (candidate_block == NULL)
4495 candidate_block = (EDGE_PRED (e->dest, 0) == e
4496 ? EDGE_PRED (e->dest, 1)->src
4497 : EDGE_PRED (e->dest, 0)->src);
4498 else
4499 /* Found additional edge leading to path from e1 to e2
4500 from aside. */
4501 return NULL;
4502 }
4503 else if (EDGE_COUNT (e->dest->preds) > 2)
4504 /* Several edges leading to path from e1 to e2 from aside. */
4505 return NULL;
4506
4507 if (e == e2)
4508 return ((!lax || candidate_block)
4509 && block_valid_for_bookkeeping_p (candidate_block)
4510 ? candidate_block
4511 : NULL);
4512
4513 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4514 return NULL;
4515 }
4516
4517 if (lax)
4518 return NULL;
4519
4520 gcc_unreachable ();
4521 }
4522
4523 /* Create new basic block for bookkeeping code for path(s) incoming into
4524 E2->dest, except from E1->src. Return created block. */
4525 static basic_block
4526 create_block_for_bookkeeping (edge e1, edge e2)
4527 {
4528 basic_block new_bb, bb = e2->dest;
4529
4530 /* Check that we don't spoil the loop structure. */
4531 if (current_loop_nest)
4532 {
4533 basic_block latch = current_loop_nest->latch;
4534
4535 /* We do not split header. */
4536 gcc_assert (e2->dest != current_loop_nest->header);
4537
4538 /* We do not redirect the only edge to the latch block. */
4539 gcc_assert (e1->dest != latch
4540 || !single_pred_p (latch)
4541 || e1 != single_pred_edge (latch));
4542 }
4543
4544 /* Split BB to insert BOOK_INSN there. */
4545 new_bb = sched_split_block (bb, NULL);
4546
4547 /* Move note_list from the upper bb. */
4548 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4549 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4550 BB_NOTE_LIST (bb) = NULL_RTX;
4551
4552 gcc_assert (e2->dest == bb);
4553
4554 /* Skip block for bookkeeping copy when leaving E1->src. */
4555 if (e1->flags & EDGE_FALLTHRU)
4556 sel_redirect_edge_and_branch_force (e1, new_bb);
4557 else
4558 sel_redirect_edge_and_branch (e1, new_bb);
4559
4560 gcc_assert (e1->dest == new_bb);
4561 gcc_assert (sel_bb_empty_p (bb));
4562
4563 /* To keep basic block numbers in sync between debug and non-debug
4564 compilations, we have to rotate blocks here. Consider that we
4565 started from (a,b)->d, (c,d)->e, and d contained only debug
4566 insns. It would have been removed before if the debug insns
4567 weren't there, so we'd have split e rather than d. So what we do
4568 now is to swap the block numbers of new_bb and
4569 single_succ(new_bb) == e, so that the insns that were in e before
4570 get the new block number. */
4571
4572 if (MAY_HAVE_DEBUG_INSNS)
4573 {
4574 basic_block succ;
4575 insn_t insn = sel_bb_head (new_bb);
4576 insn_t last;
4577
4578 if (DEBUG_INSN_P (insn)
4579 && single_succ_p (new_bb)
4580 && (succ = single_succ (new_bb))
4581 && succ != EXIT_BLOCK_PTR
4582 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4583 {
4584 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4585 insn = NEXT_INSN (insn);
4586
4587 if (insn == last)
4588 {
4589 sel_global_bb_info_def gbi;
4590 sel_region_bb_info_def rbi;
4591 int i;
4592
4593 if (sched_verbose >= 2)
4594 sel_print ("Swapping block ids %i and %i\n",
4595 new_bb->index, succ->index);
4596
4597 i = new_bb->index;
4598 new_bb->index = succ->index;
4599 succ->index = i;
4600
4601 SET_BASIC_BLOCK (new_bb->index, new_bb);
4602 SET_BASIC_BLOCK (succ->index, succ);
4603
4604 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4605 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4606 sizeof (gbi));
4607 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4608
4609 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4610 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4611 sizeof (rbi));
4612 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4613
4614 i = BLOCK_TO_BB (new_bb->index);
4615 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4616 BLOCK_TO_BB (succ->index) = i;
4617
4618 i = CONTAINING_RGN (new_bb->index);
4619 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4620 CONTAINING_RGN (succ->index) = i;
4621
4622 for (i = 0; i < current_nr_blocks; i++)
4623 if (BB_TO_BLOCK (i) == succ->index)
4624 BB_TO_BLOCK (i) = new_bb->index;
4625 else if (BB_TO_BLOCK (i) == new_bb->index)
4626 BB_TO_BLOCK (i) = succ->index;
4627
4628 FOR_BB_INSNS (new_bb, insn)
4629 if (INSN_P (insn))
4630 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4631
4632 FOR_BB_INSNS (succ, insn)
4633 if (INSN_P (insn))
4634 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4635
4636 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4637 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4638
4639 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4640 && LABEL_P (BB_HEAD (succ)));
4641
4642 if (sched_verbose >= 4)
4643 sel_print ("Swapping code labels %i and %i\n",
4644 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4645 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4646
4647 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4648 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4649 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4650 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4651 }
4652 }
4653 }
4654
4655 return bb;
4656 }
4657
4658 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4659 into E2->dest, except from E1->src. If the returned insn immediately
4660 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4661 static insn_t
4662 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4663 {
4664 insn_t place_to_insert;
4665 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4666 create new basic block, but insert bookkeeping there. */
4667 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4668
4669 if (book_block)
4670 {
4671 place_to_insert = BB_END (book_block);
4672
4673 /* Don't use a block containing only debug insns for
4674 bookkeeping, this causes scheduling differences between debug
4675 and non-debug compilations, for the block would have been
4676 removed already. */
4677 if (DEBUG_INSN_P (place_to_insert))
4678 {
4679 rtx insn = sel_bb_head (book_block);
4680
4681 while (insn != place_to_insert &&
4682 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4683 insn = NEXT_INSN (insn);
4684
4685 if (insn == place_to_insert)
4686 book_block = NULL;
4687 }
4688 }
4689
4690 if (!book_block)
4691 {
4692 book_block = create_block_for_bookkeeping (e1, e2);
4693 place_to_insert = BB_END (book_block);
4694 if (sched_verbose >= 9)
4695 sel_print ("New block is %i, split from bookkeeping block %i\n",
4696 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4697 }
4698 else
4699 {
4700 if (sched_verbose >= 9)
4701 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4702 }
4703
4704 *fence_to_rewind = NULL;
4705 /* If basic block ends with a jump, insert bookkeeping code right before it.
4706 Notice if we are crossing a fence when taking PREV_INSN. */
4707 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4708 {
4709 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4710 place_to_insert = PREV_INSN (place_to_insert);
4711 }
4712
4713 return place_to_insert;
4714 }
4715
4716 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4717 for JOIN_POINT. */
4718 static int
4719 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4720 {
4721 int seqno;
4722 rtx next;
4723
4724 /* Check if we are about to insert bookkeeping copy before a jump, and use
4725 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4726 next = NEXT_INSN (place_to_insert);
4727 if (INSN_P (next)
4728 && JUMP_P (next)
4729 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4730 {
4731 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4732 seqno = INSN_SEQNO (next);
4733 }
4734 else if (INSN_SEQNO (join_point) > 0)
4735 seqno = INSN_SEQNO (join_point);
4736 else
4737 {
4738 seqno = get_seqno_by_preds (place_to_insert);
4739
4740 /* Sometimes the fences can move in such a way that there will be
4741 no instructions with positive seqno around this bookkeeping.
4742 This means that there will be no way to get to it by a regular
4743 fence movement. Never mind because we pick up such pieces for
4744 rescheduling anyways, so any positive value will do for now. */
4745 if (seqno < 0)
4746 {
4747 gcc_assert (pipelining_p);
4748 seqno = 1;
4749 }
4750 }
4751
4752 gcc_assert (seqno > 0);
4753 return seqno;
4754 }
4755
4756 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4757 NEW_SEQNO to it. Return created insn. */
4758 static insn_t
4759 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4760 {
4761 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4762
4763 vinsn_t new_vinsn
4764 = create_vinsn_from_insn_rtx (new_insn_rtx,
4765 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4766
4767 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4768 place_to_insert);
4769
4770 INSN_SCHED_TIMES (new_insn) = 0;
4771 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4772
4773 return new_insn;
4774 }
4775
4776 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4777 E2->dest, except from E1->src (there may be a sequence of empty blocks
4778 between E1->src and E2->dest). Return block containing the copy.
4779 All scheduler data is initialized for the newly created insn. */
4780 static basic_block
4781 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4782 {
4783 insn_t join_point, place_to_insert, new_insn;
4784 int new_seqno;
4785 bool need_to_exchange_data_sets;
4786 fence_t fence_to_rewind;
4787
4788 if (sched_verbose >= 4)
4789 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4790 e2->dest->index);
4791
4792 join_point = sel_bb_head (e2->dest);
4793 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4794 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4795 need_to_exchange_data_sets
4796 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4797
4798 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4799
4800 if (fence_to_rewind)
4801 FENCE_INSN (fence_to_rewind) = new_insn;
4802
4803 /* When inserting bookkeeping insn in new block, av sets should be
4804 following: old basic block (that now holds bookkeeping) data sets are
4805 the same as was before generation of bookkeeping, and new basic block
4806 (that now hold all other insns of old basic block) data sets are
4807 invalid. So exchange data sets for these basic blocks as sel_split_block
4808 mistakenly exchanges them in this case. Cannot do it earlier because
4809 when single instruction is added to new basic block it should hold NULL
4810 lv_set. */
4811 if (need_to_exchange_data_sets)
4812 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4813 BLOCK_FOR_INSN (join_point));
4814
4815 stat_bookkeeping_copies++;
4816 return BLOCK_FOR_INSN (new_insn);
4817 }
4818
4819 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4820 on FENCE, but we are unable to copy them. */
4821 static void
4822 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4823 {
4824 expr_t expr;
4825 av_set_iterator i;
4826
4827 /* An expression does not need bookkeeping if it is available on all paths
4828 from current block to original block and current block dominates
4829 original block. We check availability on all paths by examining
4830 EXPR_SPEC; this is not equivalent, because it may be positive even
4831 if expr is available on all paths (but if expr is not available on
4832 any path, EXPR_SPEC will be positive). */
4833
4834 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4835 {
4836 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4837 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4838 && (EXPR_SPEC (expr)
4839 || !EXPR_ORIG_BB_INDEX (expr)
4840 || !dominated_by_p (CDI_DOMINATORS,
4841 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4842 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4843 {
4844 if (sched_verbose >= 4)
4845 sel_print ("Expr %d removed because it would need bookkeeping, which "
4846 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4847 av_set_iter_remove (&i);
4848 }
4849 }
4850 }
4851
4852 /* Moving conditional jump through some instructions.
4853
4854 Consider example:
4855
4856 ... <- current scheduling point
4857 NOTE BASIC BLOCK: <- bb header
4858 (p8) add r14=r14+0x9;;
4859 (p8) mov [r14]=r23
4860 (!p8) jump L1;;
4861 NOTE BASIC BLOCK:
4862 ...
4863
4864 We can schedule jump one cycle earlier, than mov, because they cannot be
4865 executed together as their predicates are mutually exclusive.
4866
4867 This is done in this way: first, new fallthrough basic block is created
4868 after jump (it is always can be done, because there already should be a
4869 fallthrough block, where control flow goes in case of predicate being true -
4870 in our example; otherwise there should be a dependence between those
4871 instructions and jump and we cannot schedule jump right now);
4872 next, all instructions between jump and current scheduling point are moved
4873 to this new block. And the result is this:
4874
4875 NOTE BASIC BLOCK:
4876 (!p8) jump L1 <- current scheduling point
4877 NOTE BASIC BLOCK: <- bb header
4878 (p8) add r14=r14+0x9;;
4879 (p8) mov [r14]=r23
4880 NOTE BASIC BLOCK:
4881 ...
4882 */
4883 static void
4884 move_cond_jump (rtx insn, bnd_t bnd)
4885 {
4886 edge ft_edge;
4887 basic_block block_from, block_next, block_new, block_bnd, bb;
4888 rtx next, prev, link, head;
4889
4890 block_from = BLOCK_FOR_INSN (insn);
4891 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4892 prev = BND_TO (bnd);
4893
4894 #ifdef ENABLE_CHECKING
4895 /* Moving of jump should not cross any other jumps or beginnings of new
4896 basic blocks. The only exception is when we move a jump through
4897 mutually exclusive insns along fallthru edges. */
4898 if (block_from != block_bnd)
4899 {
4900 bb = block_from;
4901 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4902 link = PREV_INSN (link))
4903 {
4904 if (INSN_P (link))
4905 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4906 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4907 {
4908 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4909 bb = BLOCK_FOR_INSN (link);
4910 }
4911 }
4912 }
4913 #endif
4914
4915 /* Jump is moved to the boundary. */
4916 next = PREV_INSN (insn);
4917 BND_TO (bnd) = insn;
4918
4919 ft_edge = find_fallthru_edge_from (block_from);
4920 block_next = ft_edge->dest;
4921 /* There must be a fallthrough block (or where should go
4922 control flow in case of false jump predicate otherwise?). */
4923 gcc_assert (block_next);
4924
4925 /* Create new empty basic block after source block. */
4926 block_new = sel_split_edge (ft_edge);
4927 gcc_assert (block_new->next_bb == block_next
4928 && block_from->next_bb == block_new);
4929
4930 /* Move all instructions except INSN to BLOCK_NEW. */
4931 bb = block_bnd;
4932 head = BB_HEAD (block_new);
4933 while (bb != block_from->next_bb)
4934 {
4935 rtx from, to;
4936 from = bb == block_bnd ? prev : sel_bb_head (bb);
4937 to = bb == block_from ? next : sel_bb_end (bb);
4938
4939 /* The jump being moved can be the first insn in the block.
4940 In this case we don't have to move anything in this block. */
4941 if (NEXT_INSN (to) != from)
4942 {
4943 reorder_insns (from, to, head);
4944
4945 for (link = to; link != head; link = PREV_INSN (link))
4946 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4947 head = to;
4948 }
4949
4950 /* Cleanup possibly empty blocks left. */
4951 block_next = bb->next_bb;
4952 if (bb != block_from)
4953 tidy_control_flow (bb, false);
4954 bb = block_next;
4955 }
4956
4957 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4958 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4959
4960 gcc_assert (!sel_bb_empty_p (block_from)
4961 && !sel_bb_empty_p (block_new));
4962
4963 /* Update data sets for BLOCK_NEW to represent that INSN and
4964 instructions from the other branch of INSN is no longer
4965 available at BLOCK_NEW. */
4966 BB_AV_LEVEL (block_new) = global_level;
4967 gcc_assert (BB_LV_SET (block_new) == NULL);
4968 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4969 update_data_sets (sel_bb_head (block_new));
4970
4971 /* INSN is a new basic block header - so prepare its data
4972 structures and update availability and liveness sets. */
4973 update_data_sets (insn);
4974
4975 if (sched_verbose >= 4)
4976 sel_print ("Moving jump %d\n", INSN_UID (insn));
4977 }
4978
4979 /* Remove nops generated during move_op for preventing removal of empty
4980 basic blocks. */
4981 static void
4982 remove_temp_moveop_nops (bool full_tidying)
4983 {
4984 int i;
4985 insn_t insn;
4986
4987 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4988 {
4989 gcc_assert (INSN_NOP_P (insn));
4990 return_nop_to_pool (insn, full_tidying);
4991 }
4992
4993 /* Empty the vector. */
4994 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4995 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4996 VEC_length (insn_t, vec_temp_moveop_nops));
4997 }
4998
4999 /* Records the maximal UID before moving up an instruction. Used for
5000 distinguishing between bookkeeping copies and original insns. */
5001 static int max_uid_before_move_op = 0;
5002
5003 /* Remove from AV_VLIW_P all instructions but next when debug counter
5004 tells us so. Next instruction is fetched from BNDS. */
5005 static void
5006 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5007 {
5008 if (! dbg_cnt (sel_sched_insn_cnt))
5009 /* Leave only the next insn in av_vliw. */
5010 {
5011 av_set_iterator av_it;
5012 expr_t expr;
5013 bnd_t bnd = BLIST_BND (bnds);
5014 insn_t next = BND_TO (bnd);
5015
5016 gcc_assert (BLIST_NEXT (bnds) == NULL);
5017
5018 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5019 if (EXPR_INSN_RTX (expr) != next)
5020 av_set_iter_remove (&av_it);
5021 }
5022 }
5023
5024 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5025 the computed set to *AV_VLIW_P. */
5026 static void
5027 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5028 {
5029 if (sched_verbose >= 2)
5030 {
5031 sel_print ("Boundaries: ");
5032 dump_blist (bnds);
5033 sel_print ("\n");
5034 }
5035
5036 for (; bnds; bnds = BLIST_NEXT (bnds))
5037 {
5038 bnd_t bnd = BLIST_BND (bnds);
5039 av_set_t av1_copy;
5040 insn_t bnd_to = BND_TO (bnd);
5041
5042 /* Rewind BND->TO to the basic block header in case some bookkeeping
5043 instructions were inserted before BND->TO and it needs to be
5044 adjusted. */
5045 if (sel_bb_head_p (bnd_to))
5046 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5047 else
5048 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5049 {
5050 bnd_to = PREV_INSN (bnd_to);
5051 if (sel_bb_head_p (bnd_to))
5052 break;
5053 }
5054
5055 if (BND_TO (bnd) != bnd_to)
5056 {
5057 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5058 FENCE_INSN (fence) = bnd_to;
5059 BND_TO (bnd) = bnd_to;
5060 }
5061
5062 av_set_clear (&BND_AV (bnd));
5063 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5064
5065 av_set_clear (&BND_AV1 (bnd));
5066 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5067
5068 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5069
5070 av1_copy = av_set_copy (BND_AV1 (bnd));
5071 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5072 }
5073
5074 if (sched_verbose >= 2)
5075 {
5076 sel_print ("Available exprs (vliw form): ");
5077 dump_av_set (*av_vliw_p);
5078 sel_print ("\n");
5079 }
5080 }
5081
5082 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5083 expression. When FOR_MOVEOP is true, also replace the register of
5084 expressions found with the register from EXPR_VLIW. */
5085 static av_set_t
5086 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5087 {
5088 av_set_t expr_seq = NULL;
5089 expr_t expr;
5090 av_set_iterator i;
5091
5092 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5093 {
5094 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5095 {
5096 if (for_moveop)
5097 {
5098 /* The sequential expression has the right form to pass
5099 to move_op except when renaming happened. Put the
5100 correct register in EXPR then. */
5101 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5102 {
5103 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5104 {
5105 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5106 stat_renamed_scheduled++;
5107 }
5108 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5109 This is needed when renaming came up with original
5110 register. */
5111 else if (EXPR_TARGET_AVAILABLE (expr)
5112 != EXPR_TARGET_AVAILABLE (expr_vliw))
5113 {
5114 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5115 EXPR_TARGET_AVAILABLE (expr) = 1;
5116 }
5117 }
5118 if (EXPR_WAS_SUBSTITUTED (expr))
5119 stat_substitutions_total++;
5120 }
5121
5122 av_set_add (&expr_seq, expr);
5123
5124 /* With substitution inside insn group, it is possible
5125 that more than one expression in expr_seq will correspond
5126 to expr_vliw. In this case, choose one as the attempt to
5127 move both leads to miscompiles. */
5128 break;
5129 }
5130 }
5131
5132 if (for_moveop && sched_verbose >= 2)
5133 {
5134 sel_print ("Best expression(s) (sequential form): ");
5135 dump_av_set (expr_seq);
5136 sel_print ("\n");
5137 }
5138
5139 return expr_seq;
5140 }
5141
5142
5143 /* Move nop to previous block. */
5144 static void ATTRIBUTE_UNUSED
5145 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5146 {
5147 insn_t prev_insn, next_insn, note;
5148
5149 gcc_assert (sel_bb_head_p (nop)
5150 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5151 note = bb_note (BLOCK_FOR_INSN (nop));
5152 prev_insn = sel_bb_end (prev_bb);
5153 next_insn = NEXT_INSN (nop);
5154 gcc_assert (prev_insn != NULL_RTX
5155 && PREV_INSN (note) == prev_insn);
5156
5157 NEXT_INSN (prev_insn) = nop;
5158 PREV_INSN (nop) = prev_insn;
5159
5160 PREV_INSN (note) = nop;
5161 NEXT_INSN (note) = next_insn;
5162
5163 NEXT_INSN (nop) = note;
5164 PREV_INSN (next_insn) = note;
5165
5166 BB_END (prev_bb) = nop;
5167 BLOCK_FOR_INSN (nop) = prev_bb;
5168 }
5169
5170 /* Prepare a place to insert the chosen expression on BND. */
5171 static insn_t
5172 prepare_place_to_insert (bnd_t bnd)
5173 {
5174 insn_t place_to_insert;
5175
5176 /* Init place_to_insert before calling move_op, as the later
5177 can possibly remove BND_TO (bnd). */
5178 if (/* If this is not the first insn scheduled. */
5179 BND_PTR (bnd))
5180 {
5181 /* Add it after last scheduled. */
5182 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5183 if (DEBUG_INSN_P (place_to_insert))
5184 {
5185 ilist_t l = BND_PTR (bnd);
5186 while ((l = ILIST_NEXT (l)) &&
5187 DEBUG_INSN_P (ILIST_INSN (l)))
5188 ;
5189 if (!l)
5190 place_to_insert = NULL;
5191 }
5192 }
5193 else
5194 place_to_insert = NULL;
5195
5196 if (!place_to_insert)
5197 {
5198 /* Add it before BND_TO. The difference is in the
5199 basic block, where INSN will be added. */
5200 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5201 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5202 == BLOCK_FOR_INSN (BND_TO (bnd)));
5203 }
5204
5205 return place_to_insert;
5206 }
5207
5208 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5209 Return the expression to emit in C_EXPR. */
5210 static bool
5211 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5212 av_set_t expr_seq, expr_t c_expr)
5213 {
5214 bool b, should_move;
5215 unsigned book_uid;
5216 bitmap_iterator bi;
5217 int n_bookkeeping_copies_before_moveop;
5218
5219 /* Make a move. This call will remove the original operation,
5220 insert all necessary bookkeeping instructions and update the
5221 data sets. After that all we have to do is add the operation
5222 at before BND_TO (BND). */
5223 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5224 max_uid_before_move_op = get_max_uid ();
5225 bitmap_clear (current_copies);
5226 bitmap_clear (current_originators);
5227
5228 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5229 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5230
5231 /* We should be able to find the expression we've chosen for
5232 scheduling. */
5233 gcc_assert (b);
5234
5235 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5236 stat_insns_needed_bookkeeping++;
5237
5238 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5239 {
5240 unsigned uid;
5241 bitmap_iterator bi;
5242
5243 /* We allocate these bitmaps lazily. */
5244 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5245 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5246
5247 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5248 current_originators);
5249
5250 /* Transitively add all originators' originators. */
5251 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5252 if (INSN_ORIGINATORS_BY_UID (uid))
5253 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5254 INSN_ORIGINATORS_BY_UID (uid));
5255 }
5256
5257 return should_move;
5258 }
5259
5260
5261 /* Debug a DFA state as an array of bytes. */
5262 static void
5263 debug_state (state_t state)
5264 {
5265 unsigned char *p;
5266 unsigned int i, size = dfa_state_size;
5267
5268 sel_print ("state (%u):", size);
5269 for (i = 0, p = (unsigned char *) state; i < size; i++)
5270 sel_print (" %d", p[i]);
5271 sel_print ("\n");
5272 }
5273
5274 /* Advance state on FENCE with INSN. Return true if INSN is
5275 an ASM, and we should advance state once more. */
5276 static bool
5277 advance_state_on_fence (fence_t fence, insn_t insn)
5278 {
5279 bool asm_p;
5280
5281 if (recog_memoized (insn) >= 0)
5282 {
5283 int res;
5284 state_t temp_state = alloca (dfa_state_size);
5285
5286 gcc_assert (!INSN_ASM_P (insn));
5287 asm_p = false;
5288
5289 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5290 res = state_transition (FENCE_STATE (fence), insn);
5291 gcc_assert (res < 0);
5292
5293 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5294 {
5295 FENCE_ISSUED_INSNS (fence)++;
5296
5297 /* We should never issue more than issue_rate insns. */
5298 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5299 gcc_unreachable ();
5300 }
5301 }
5302 else
5303 {
5304 /* This could be an ASM insn which we'd like to schedule
5305 on the next cycle. */
5306 asm_p = INSN_ASM_P (insn);
5307 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5308 advance_one_cycle (fence);
5309 }
5310
5311 if (sched_verbose >= 2)
5312 debug_state (FENCE_STATE (fence));
5313 if (!DEBUG_INSN_P (insn))
5314 FENCE_STARTS_CYCLE_P (fence) = 0;
5315 FENCE_ISSUE_MORE (fence) = can_issue_more;
5316 return asm_p;
5317 }
5318
5319 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5320 is nonzero if we need to stall after issuing INSN. */
5321 static void
5322 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5323 {
5324 bool asm_p;
5325
5326 /* First, reflect that something is scheduled on this fence. */
5327 asm_p = advance_state_on_fence (fence, insn);
5328 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5329 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5330 if (SCHED_GROUP_P (insn))
5331 {
5332 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5333 SCHED_GROUP_P (insn) = 0;
5334 }
5335 else
5336 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5337 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5338 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5339
5340 /* Set instruction scheduling info. This will be used in bundling,
5341 pipelining, tick computations etc. */
5342 ++INSN_SCHED_TIMES (insn);
5343 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5344 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5345 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5346 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5347
5348 /* This does not account for adjust_cost hooks, just add the biggest
5349 constant the hook may add to the latency. TODO: make this
5350 a target dependent constant. */
5351 INSN_READY_CYCLE (insn)
5352 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5353 ? 1
5354 : maximal_insn_latency (insn) + 1);
5355
5356 /* Change these fields last, as they're used above. */
5357 FENCE_AFTER_STALL_P (fence) = 0;
5358 if (asm_p || need_stall)
5359 advance_one_cycle (fence);
5360
5361 /* Indicate that we've scheduled something on this fence. */
5362 FENCE_SCHEDULED_P (fence) = true;
5363 scheduled_something_on_previous_fence = true;
5364
5365 /* Print debug information when insn's fields are updated. */
5366 if (sched_verbose >= 2)
5367 {
5368 sel_print ("Scheduling insn: ");
5369 dump_insn_1 (insn, 1);
5370 sel_print ("\n");
5371 }
5372 }
5373
5374 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5375 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5376 return it. */
5377 static blist_t *
5378 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5379 blist_t *bnds_tailp)
5380 {
5381 succ_iterator si;
5382 insn_t succ;
5383
5384 advance_deps_context (BND_DC (bnd), insn);
5385 FOR_EACH_SUCC_1 (succ, si, insn,
5386 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5387 {
5388 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5389
5390 ilist_add (&ptr, insn);
5391
5392 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5393 && is_ineligible_successor (succ, ptr))
5394 {
5395 ilist_clear (&ptr);
5396 continue;
5397 }
5398
5399 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5400 {
5401 if (sched_verbose >= 9)
5402 sel_print ("Updating fence insn from %i to %i\n",
5403 INSN_UID (insn), INSN_UID (succ));
5404 FENCE_INSN (fence) = succ;
5405 }
5406 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5407 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5408 }
5409
5410 blist_remove (bndsp);
5411 return bnds_tailp;
5412 }
5413
5414 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5415 static insn_t
5416 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5417 {
5418 av_set_t expr_seq;
5419 expr_t c_expr = XALLOCA (expr_def);
5420 insn_t place_to_insert;
5421 insn_t insn;
5422 bool should_move;
5423
5424 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5425
5426 /* In case of scheduling a jump skipping some other instructions,
5427 prepare CFG. After this, jump is at the boundary and can be
5428 scheduled as usual insn by MOVE_OP. */
5429 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5430 {
5431 insn = EXPR_INSN_RTX (expr_vliw);
5432
5433 /* Speculative jumps are not handled. */
5434 if (insn != BND_TO (bnd)
5435 && !sel_insn_is_speculation_check (insn))
5436 move_cond_jump (insn, bnd);
5437 }
5438
5439 /* Find a place for C_EXPR to schedule. */
5440 place_to_insert = prepare_place_to_insert (bnd);
5441 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5442 clear_expr (c_expr);
5443
5444 /* Add the instruction. The corner case to care about is when
5445 the expr_seq set has more than one expr, and we chose the one that
5446 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5447 we can't use it. Generate the new vinsn. */
5448 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5449 {
5450 vinsn_t vinsn_new;
5451
5452 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5453 change_vinsn_in_expr (expr_vliw, vinsn_new);
5454 should_move = false;
5455 }
5456 if (should_move)
5457 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5458 else
5459 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5460 place_to_insert);
5461
5462 /* Return the nops generated for preserving of data sets back
5463 into pool. */
5464 if (INSN_NOP_P (place_to_insert))
5465 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5466 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5467
5468 av_set_clear (&expr_seq);
5469
5470 /* Save the expression scheduled so to reset target availability if we'll
5471 meet it later on the same fence. */
5472 if (EXPR_WAS_RENAMED (expr_vliw))
5473 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5474
5475 /* Check that the recent movement didn't destroyed loop
5476 structure. */
5477 gcc_assert (!pipelining_p
5478 || current_loop_nest == NULL
5479 || loop_latch_edge (current_loop_nest));
5480 return insn;
5481 }
5482
5483 /* Stall for N cycles on FENCE. */
5484 static void
5485 stall_for_cycles (fence_t fence, int n)
5486 {
5487 int could_more;
5488
5489 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5490 while (n--)
5491 advance_one_cycle (fence);
5492 if (could_more)
5493 FENCE_AFTER_STALL_P (fence) = 1;
5494 }
5495
5496 /* Gather a parallel group of insns at FENCE and assign their seqno
5497 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5498 list for later recalculation of seqnos. */
5499 static void
5500 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5501 {
5502 blist_t bnds = NULL, *bnds_tailp;
5503 av_set_t av_vliw = NULL;
5504 insn_t insn = FENCE_INSN (fence);
5505
5506 if (sched_verbose >= 2)
5507 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5508 INSN_UID (insn), FENCE_CYCLE (fence));
5509
5510 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5511 bnds_tailp = &BLIST_NEXT (bnds);
5512 set_target_context (FENCE_TC (fence));
5513 can_issue_more = FENCE_ISSUE_MORE (fence);
5514 target_bb = INSN_BB (insn);
5515
5516 /* Do while we can add any operation to the current group. */
5517 do
5518 {
5519 blist_t *bnds_tailp1, *bndsp;
5520 expr_t expr_vliw;
5521 int need_stall = false;
5522 int was_stall = 0, scheduled_insns = 0;
5523 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5524 int max_stall = pipelining_p ? 1 : 3;
5525 bool last_insn_was_debug = false;
5526 bool was_debug_bb_end_p = false;
5527
5528 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5529 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5530 remove_insns_for_debug (bnds, &av_vliw);
5531
5532 /* Return early if we have nothing to schedule. */
5533 if (av_vliw == NULL)
5534 break;
5535
5536 /* Choose the best expression and, if needed, destination register
5537 for it. */
5538 do
5539 {
5540 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5541 if (! expr_vliw && need_stall)
5542 {
5543 /* All expressions required a stall. Do not recompute av sets
5544 as we'll get the same answer (modulo the insns between
5545 the fence and its boundary, which will not be available for
5546 pipelining).
5547 If we are going to stall for too long, break to recompute av
5548 sets and bring more insns for pipelining. */
5549 was_stall++;
5550 if (need_stall <= 3)
5551 stall_for_cycles (fence, need_stall);
5552 else
5553 {
5554 stall_for_cycles (fence, 1);
5555 break;
5556 }
5557 }
5558 }
5559 while (! expr_vliw && need_stall);
5560
5561 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5562 if (!expr_vliw)
5563 {
5564 av_set_clear (&av_vliw);
5565 break;
5566 }
5567
5568 bndsp = &bnds;
5569 bnds_tailp1 = bnds_tailp;
5570
5571 do
5572 /* This code will be executed only once until we'd have several
5573 boundaries per fence. */
5574 {
5575 bnd_t bnd = BLIST_BND (*bndsp);
5576
5577 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5578 {
5579 bndsp = &BLIST_NEXT (*bndsp);
5580 continue;
5581 }
5582
5583 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5584 last_insn_was_debug = DEBUG_INSN_P (insn);
5585 if (last_insn_was_debug)
5586 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5587 update_fence_and_insn (fence, insn, need_stall);
5588 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5589
5590 /* Add insn to the list of scheduled on this cycle instructions. */
5591 ilist_add (*scheduled_insns_tailpp, insn);
5592 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5593 }
5594 while (*bndsp != *bnds_tailp1);
5595
5596 av_set_clear (&av_vliw);
5597 if (!last_insn_was_debug)
5598 scheduled_insns++;
5599
5600 /* We currently support information about candidate blocks only for
5601 one 'target_bb' block. Hence we can't schedule after jump insn,
5602 as this will bring two boundaries and, hence, necessity to handle
5603 information for two or more blocks concurrently. */
5604 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5605 || (was_stall
5606 && (was_stall >= max_stall
5607 || scheduled_insns >= max_insns)))
5608 break;
5609 }
5610 while (bnds);
5611
5612 gcc_assert (!FENCE_BNDS (fence));
5613
5614 /* Update boundaries of the FENCE. */
5615 while (bnds)
5616 {
5617 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5618
5619 if (ptr)
5620 {
5621 insn = ILIST_INSN (ptr);
5622
5623 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5624 ilist_add (&FENCE_BNDS (fence), insn);
5625 }
5626
5627 blist_remove (&bnds);
5628 }
5629
5630 /* Update target context on the fence. */
5631 reset_target_context (FENCE_TC (fence), false);
5632 }
5633
5634 /* All exprs in ORIG_OPS must have the same destination register or memory.
5635 Return that destination. */
5636 static rtx
5637 get_dest_from_orig_ops (av_set_t orig_ops)
5638 {
5639 rtx dest = NULL_RTX;
5640 av_set_iterator av_it;
5641 expr_t expr;
5642 bool first_p = true;
5643
5644 FOR_EACH_EXPR (expr, av_it, orig_ops)
5645 {
5646 rtx x = EXPR_LHS (expr);
5647
5648 if (first_p)
5649 {
5650 first_p = false;
5651 dest = x;
5652 }
5653 else
5654 gcc_assert (dest == x
5655 || (dest != NULL_RTX && x != NULL_RTX
5656 && rtx_equal_p (dest, x)));
5657 }
5658
5659 return dest;
5660 }
5661
5662 /* Update data sets for the bookkeeping block and record those expressions
5663 which become no longer available after inserting this bookkeeping. */
5664 static void
5665 update_and_record_unavailable_insns (basic_block book_block)
5666 {
5667 av_set_iterator i;
5668 av_set_t old_av_set = NULL;
5669 expr_t cur_expr;
5670 rtx bb_end = sel_bb_end (book_block);
5671
5672 /* First, get correct liveness in the bookkeeping block. The problem is
5673 the range between the bookeeping insn and the end of block. */
5674 update_liveness_on_insn (bb_end);
5675 if (control_flow_insn_p (bb_end))
5676 update_liveness_on_insn (PREV_INSN (bb_end));
5677
5678 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5679 fence above, where we may choose to schedule an insn which is
5680 actually blocked from moving up with the bookkeeping we create here. */
5681 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5682 {
5683 old_av_set = av_set_copy (BB_AV_SET (book_block));
5684 update_data_sets (sel_bb_head (book_block));
5685
5686 /* Traverse all the expressions in the old av_set and check whether
5687 CUR_EXPR is in new AV_SET. */
5688 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5689 {
5690 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5691 EXPR_VINSN (cur_expr));
5692
5693 if (! new_expr
5694 /* In this case, we can just turn off the E_T_A bit, but we can't
5695 represent this information with the current vector. */
5696 || EXPR_TARGET_AVAILABLE (new_expr)
5697 != EXPR_TARGET_AVAILABLE (cur_expr))
5698 /* Unfortunately, the below code could be also fired up on
5699 separable insns.
5700 FIXME: add an example of how this could happen. */
5701 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5702 }
5703
5704 av_set_clear (&old_av_set);
5705 }
5706 }
5707
5708 /* The main effect of this function is that sparams->c_expr is merged
5709 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5710 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5711 lparams->c_expr_merged is copied back to sparams->c_expr after all
5712 successors has been traversed. lparams->c_expr_local is an expr allocated
5713 on stack in the caller function, and is used if there is more than one
5714 successor.
5715
5716 SUCC is one of the SUCCS_NORMAL successors of INSN,
5717 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5718 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5719 static void
5720 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5721 insn_t succ ATTRIBUTE_UNUSED,
5722 int moveop_drv_call_res,
5723 cmpd_local_params_p lparams, void *static_params)
5724 {
5725 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5726
5727 /* Nothing to do, if original expr wasn't found below. */
5728 if (moveop_drv_call_res != 1)
5729 return;
5730
5731 /* If this is a first successor. */
5732 if (!lparams->c_expr_merged)
5733 {
5734 lparams->c_expr_merged = sparams->c_expr;
5735 sparams->c_expr = lparams->c_expr_local;
5736 }
5737 else
5738 {
5739 /* We must merge all found expressions to get reasonable
5740 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5741 do so then we can first find the expr with epsilon
5742 speculation success probability and only then with the
5743 good probability. As a result the insn will get epsilon
5744 probability and will never be scheduled because of
5745 weakness_cutoff in find_best_expr.
5746
5747 We call merge_expr_data here instead of merge_expr
5748 because due to speculation C_EXPR and X may have the
5749 same insns with different speculation types. And as of
5750 now such insns are considered non-equal.
5751
5752 However, EXPR_SCHED_TIMES is different -- we must get
5753 SCHED_TIMES from a real insn, not a bookkeeping copy.
5754 We force this here. Instead, we may consider merging
5755 SCHED_TIMES to the maximum instead of minimum in the
5756 below function. */
5757 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5758
5759 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5760 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5761 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5762
5763 clear_expr (sparams->c_expr);
5764 }
5765 }
5766
5767 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5768
5769 SUCC is one of the SUCCS_NORMAL successors of INSN,
5770 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5771 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5772 STATIC_PARAMS contain USED_REGS set. */
5773 static void
5774 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5775 int moveop_drv_call_res,
5776 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5777 void *static_params)
5778 {
5779 regset succ_live;
5780 fur_static_params_p sparams = (fur_static_params_p) static_params;
5781
5782 /* Here we compute live regsets only for branches that do not lie
5783 on the code motion paths. These branches correspond to value
5784 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5785 for such branches code_motion_path_driver is not called. */
5786 if (moveop_drv_call_res != 0)
5787 return;
5788
5789 /* Mark all registers that do not meet the following condition:
5790 (3) not live on the other path of any conditional branch
5791 that is passed by the operation, in case original
5792 operations are not present on both paths of the
5793 conditional branch. */
5794 succ_live = compute_live (succ);
5795 IOR_REG_SET (sparams->used_regs, succ_live);
5796 }
5797
5798 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5799 into SP->CEXPR. */
5800 static void
5801 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5802 {
5803 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5804
5805 sp->c_expr = lp->c_expr_merged;
5806 }
5807
5808 /* Track bookkeeping copies created, insns scheduled, and blocks for
5809 rescheduling when INSN is found by move_op. */
5810 static void
5811 track_scheduled_insns_and_blocks (rtx insn)
5812 {
5813 /* Even if this insn can be a copy that will be removed during current move_op,
5814 we still need to count it as an originator. */
5815 bitmap_set_bit (current_originators, INSN_UID (insn));
5816
5817 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5818 {
5819 /* Note that original block needs to be rescheduled, as we pulled an
5820 instruction out of it. */
5821 if (INSN_SCHED_TIMES (insn) > 0)
5822 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5823 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5824 num_insns_scheduled++;
5825 }
5826
5827 /* For instructions we must immediately remove insn from the
5828 stream, so subsequent update_data_sets () won't include this
5829 insn into av_set.
5830 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5831 if (INSN_UID (insn) > max_uid_before_move_op)
5832 stat_bookkeeping_copies--;
5833 }
5834
5835 /* Emit a register-register copy for INSN if needed. Return true if
5836 emitted one. PARAMS is the move_op static parameters. */
5837 static bool
5838 maybe_emit_renaming_copy (rtx insn,
5839 moveop_static_params_p params)
5840 {
5841 bool insn_emitted = false;
5842 rtx cur_reg;
5843
5844 /* Bail out early when expression can not be renamed at all. */
5845 if (!EXPR_SEPARABLE_P (params->c_expr))
5846 return false;
5847
5848 cur_reg = expr_dest_reg (params->c_expr);
5849 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5850
5851 /* If original operation has expr and the register chosen for
5852 that expr is not original operation's dest reg, substitute
5853 operation's right hand side with the register chosen. */
5854 if (REGNO (params->dest) != REGNO (cur_reg))
5855 {
5856 insn_t reg_move_insn, reg_move_insn_rtx;
5857
5858 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5859 params->dest);
5860 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5861 INSN_EXPR (insn),
5862 INSN_SEQNO (insn),
5863 insn);
5864 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5865 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5866
5867 insn_emitted = true;
5868 params->was_renamed = true;
5869 }
5870
5871 return insn_emitted;
5872 }
5873
5874 /* Emit a speculative check for INSN speculated as EXPR if needed.
5875 Return true if we've emitted one. PARAMS is the move_op static
5876 parameters. */
5877 static bool
5878 maybe_emit_speculative_check (rtx insn, expr_t expr,
5879 moveop_static_params_p params)
5880 {
5881 bool insn_emitted = false;
5882 insn_t x;
5883 ds_t check_ds;
5884
5885 check_ds = get_spec_check_type_for_insn (insn, expr);
5886 if (check_ds != 0)
5887 {
5888 /* A speculation check should be inserted. */
5889 x = create_speculation_check (params->c_expr, check_ds, insn);
5890 insn_emitted = true;
5891 }
5892 else
5893 {
5894 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5895 x = insn;
5896 }
5897
5898 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5899 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5900 return insn_emitted;
5901 }
5902
5903 /* Handle transformations that leave an insn in place of original
5904 insn such as renaming/speculation. Return true if one of such
5905 transformations actually happened, and we have emitted this insn. */
5906 static bool
5907 handle_emitting_transformations (rtx insn, expr_t expr,
5908 moveop_static_params_p params)
5909 {
5910 bool insn_emitted = false;
5911
5912 insn_emitted = maybe_emit_renaming_copy (insn, params);
5913 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5914
5915 return insn_emitted;
5916 }
5917
5918 /* If INSN is the only insn in the basic block (not counting JUMP,
5919 which may be a jump to next insn, and DEBUG_INSNs), we want to
5920 leave a NOP there till the return to fill_insns. */
5921
5922 static bool
5923 need_nop_to_preserve_insn_bb (rtx insn)
5924 {
5925 insn_t bb_head, bb_end, bb_next, in_next;
5926 basic_block bb = BLOCK_FOR_INSN (insn);
5927
5928 bb_head = sel_bb_head (bb);
5929 bb_end = sel_bb_end (bb);
5930
5931 if (bb_head == bb_end)
5932 return true;
5933
5934 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5935 bb_head = NEXT_INSN (bb_head);
5936
5937 if (bb_head == bb_end)
5938 return true;
5939
5940 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5941 bb_end = PREV_INSN (bb_end);
5942
5943 if (bb_head == bb_end)
5944 return true;
5945
5946 bb_next = NEXT_INSN (bb_head);
5947 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5948 bb_next = NEXT_INSN (bb_next);
5949
5950 if (bb_next == bb_end && JUMP_P (bb_end))
5951 return true;
5952
5953 in_next = NEXT_INSN (insn);
5954 while (DEBUG_INSN_P (in_next))
5955 in_next = NEXT_INSN (in_next);
5956
5957 if (IN_CURRENT_FENCE_P (in_next))
5958 return true;
5959
5960 return false;
5961 }
5962
5963 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5964 is not removed but reused when INSN is re-emitted. */
5965 static void
5966 remove_insn_from_stream (rtx insn, bool only_disconnect)
5967 {
5968 /* If there's only one insn in the BB, make sure that a nop is
5969 inserted into it, so the basic block won't disappear when we'll
5970 delete INSN below with sel_remove_insn. It should also survive
5971 till the return to fill_insns. */
5972 if (need_nop_to_preserve_insn_bb (insn))
5973 {
5974 insn_t nop = get_nop_from_pool (insn);
5975 gcc_assert (INSN_NOP_P (nop));
5976 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5977 }
5978
5979 sel_remove_insn (insn, only_disconnect, false);
5980 }
5981
5982 /* This function is called when original expr is found.
5983 INSN - current insn traversed, EXPR - the corresponding expr found.
5984 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5985 is static parameters of move_op. */
5986 static void
5987 move_op_orig_expr_found (insn_t insn, expr_t expr,
5988 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5989 void *static_params)
5990 {
5991 bool only_disconnect, insn_emitted;
5992 moveop_static_params_p params = (moveop_static_params_p) static_params;
5993
5994 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5995 track_scheduled_insns_and_blocks (insn);
5996 insn_emitted = handle_emitting_transformations (insn, expr, params);
5997 only_disconnect = (params->uid == INSN_UID (insn)
5998 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5999
6000 /* Mark that we've disconnected an insn. */
6001 if (only_disconnect)
6002 params->uid = -1;
6003 remove_insn_from_stream (insn, only_disconnect);
6004 }
6005
6006 /* The function is called when original expr is found.
6007 INSN - current insn traversed, EXPR - the corresponding expr found,
6008 crosses_call and original_insns in STATIC_PARAMS are updated. */
6009 static void
6010 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6011 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6012 void *static_params)
6013 {
6014 fur_static_params_p params = (fur_static_params_p) static_params;
6015 regset tmp;
6016
6017 if (CALL_P (insn))
6018 params->crosses_call = true;
6019
6020 def_list_add (params->original_insns, insn, params->crosses_call);
6021
6022 /* Mark the registers that do not meet the following condition:
6023 (2) not among the live registers of the point
6024 immediately following the first original operation on
6025 a given downward path, except for the original target
6026 register of the operation. */
6027 tmp = get_clear_regset_from_pool ();
6028 compute_live_below_insn (insn, tmp);
6029 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6030 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6031 IOR_REG_SET (params->used_regs, tmp);
6032 return_regset_to_pool (tmp);
6033
6034 /* (*1) We need to add to USED_REGS registers that are read by
6035 INSN's lhs. This may lead to choosing wrong src register.
6036 E.g. (scheduling const expr enabled):
6037
6038 429: ax=0x0 <- Can't use AX for this expr (0x0)
6039 433: dx=[bp-0x18]
6040 427: [ax+dx+0x1]=ax
6041 REG_DEAD: ax
6042 168: di=dx
6043 REG_DEAD: dx
6044 */
6045 /* FIXME: see comment above and enable MEM_P
6046 in vinsn_separable_p. */
6047 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6048 || !MEM_P (INSN_LHS (insn)));
6049 }
6050
6051 /* This function is called on the ascending pass, before returning from
6052 current basic block. */
6053 static void
6054 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6055 void *static_params)
6056 {
6057 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6058 basic_block book_block = NULL;
6059
6060 /* When we have removed the boundary insn for scheduling, which also
6061 happened to be the end insn in its bb, we don't need to update sets. */
6062 if (!lparams->removed_last_insn
6063 && lparams->e1
6064 && sel_bb_head_p (insn))
6065 {
6066 /* We should generate bookkeeping code only if we are not at the
6067 top level of the move_op. */
6068 if (sel_num_cfg_preds_gt_1 (insn))
6069 book_block = generate_bookkeeping_insn (sparams->c_expr,
6070 lparams->e1, lparams->e2);
6071 /* Update data sets for the current insn. */
6072 update_data_sets (insn);
6073 }
6074
6075 /* If bookkeeping code was inserted, we need to update av sets of basic
6076 block that received bookkeeping. After generation of bookkeeping insn,
6077 bookkeeping block does not contain valid av set because we are not following
6078 the original algorithm in every detail with regards to e.g. renaming
6079 simple reg-reg copies. Consider example:
6080
6081 bookkeeping block scheduling fence
6082 \ /
6083 \ join /
6084 ----------
6085 | |
6086 ----------
6087 / \
6088 / \
6089 r1 := r2 r1 := r3
6090
6091 We try to schedule insn "r1 := r3" on the current
6092 scheduling fence. Also, note that av set of bookkeeping block
6093 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6094 been scheduled, the CFG is as follows:
6095
6096 r1 := r3 r1 := r3
6097 bookkeeping block scheduling fence
6098 \ /
6099 \ join /
6100 ----------
6101 | |
6102 ----------
6103 / \
6104 / \
6105 r1 := r2
6106
6107 Here, insn "r1 := r3" was scheduled at the current scheduling point
6108 and bookkeeping code was generated at the bookeeping block. This
6109 way insn "r1 := r2" is no longer available as a whole instruction
6110 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6111 This situation is handled by calling update_data_sets.
6112
6113 Since update_data_sets is called only on the bookkeeping block, and
6114 it also may have predecessors with av_sets, containing instructions that
6115 are no longer available, we save all such expressions that become
6116 unavailable during data sets update on the bookkeeping block in
6117 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6118 expressions for scheduling. This allows us to avoid recomputation of
6119 av_sets outside the code motion path. */
6120
6121 if (book_block)
6122 update_and_record_unavailable_insns (book_block);
6123
6124 /* If INSN was previously marked for deletion, it's time to do it. */
6125 if (lparams->removed_last_insn)
6126 insn = PREV_INSN (insn);
6127
6128 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6129 kill a block with a single nop in which the insn should be emitted. */
6130 if (lparams->e1)
6131 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6132 }
6133
6134 /* This function is called on the ascending pass, before returning from the
6135 current basic block. */
6136 static void
6137 fur_at_first_insn (insn_t insn,
6138 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6139 void *static_params ATTRIBUTE_UNUSED)
6140 {
6141 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6142 || AV_LEVEL (insn) == -1);
6143 }
6144
6145 /* Called on the backward stage of recursion to call moveup_expr for insn
6146 and sparams->c_expr. */
6147 static void
6148 move_op_ascend (insn_t insn, void *static_params)
6149 {
6150 enum MOVEUP_EXPR_CODE res;
6151 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6152
6153 if (! INSN_NOP_P (insn))
6154 {
6155 res = moveup_expr_cached (sparams->c_expr, insn, false);
6156 gcc_assert (res != MOVEUP_EXPR_NULL);
6157 }
6158
6159 /* Update liveness for this insn as it was invalidated. */
6160 update_liveness_on_insn (insn);
6161 }
6162
6163 /* This function is called on enter to the basic block.
6164 Returns TRUE if this block already have been visited and
6165 code_motion_path_driver should return 1, FALSE otherwise. */
6166 static int
6167 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6168 void *static_params, bool visited_p)
6169 {
6170 fur_static_params_p sparams = (fur_static_params_p) static_params;
6171
6172 if (visited_p)
6173 {
6174 /* If we have found something below this block, there should be at
6175 least one insn in ORIGINAL_INSNS. */
6176 gcc_assert (*sparams->original_insns);
6177
6178 /* Adjust CROSSES_CALL, since we may have come to this block along
6179 different path. */
6180 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6181 |= sparams->crosses_call;
6182 }
6183 else
6184 local_params->old_original_insns = *sparams->original_insns;
6185
6186 return 1;
6187 }
6188
6189 /* Same as above but for move_op. */
6190 static int
6191 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6192 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6193 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6194 {
6195 if (visited_p)
6196 return -1;
6197 return 1;
6198 }
6199
6200 /* This function is called while descending current basic block if current
6201 insn is not the original EXPR we're searching for.
6202
6203 Return value: FALSE, if code_motion_path_driver should perform a local
6204 cleanup and return 0 itself;
6205 TRUE, if code_motion_path_driver should continue. */
6206 static bool
6207 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6208 void *static_params)
6209 {
6210 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6211
6212 #ifdef ENABLE_CHECKING
6213 sparams->failed_insn = insn;
6214 #endif
6215
6216 /* If we're scheduling separate expr, in order to generate correct code
6217 we need to stop the search at bookkeeping code generated with the
6218 same destination register or memory. */
6219 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6220 return false;
6221 return true;
6222 }
6223
6224 /* This function is called while descending current basic block if current
6225 insn is not the original EXPR we're searching for.
6226
6227 Return value: TRUE (code_motion_path_driver should continue). */
6228 static bool
6229 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6230 {
6231 bool mutexed;
6232 expr_t r;
6233 av_set_iterator avi;
6234 fur_static_params_p sparams = (fur_static_params_p) static_params;
6235
6236 if (CALL_P (insn))
6237 sparams->crosses_call = true;
6238 else if (DEBUG_INSN_P (insn))
6239 return true;
6240
6241 /* If current insn we are looking at cannot be executed together
6242 with original insn, then we can skip it safely.
6243
6244 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6245 INSN = (!p6) r14 = r14 + 1;
6246
6247 Here we can schedule ORIG_OP with lhs = r14, though only
6248 looking at the set of used and set registers of INSN we must
6249 forbid it. So, add set/used in INSN registers to the
6250 untouchable set only if there is an insn in ORIG_OPS that can
6251 affect INSN. */
6252 mutexed = true;
6253 FOR_EACH_EXPR (r, avi, orig_ops)
6254 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6255 {
6256 mutexed = false;
6257 break;
6258 }
6259
6260 /* Mark all registers that do not meet the following condition:
6261 (1) Not set or read on any path from xi to an instance of the
6262 original operation. */
6263 if (!mutexed)
6264 {
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6267 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6268 }
6269
6270 return true;
6271 }
6272
6273 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6274 struct code_motion_path_driver_info_def move_op_hooks = {
6275 move_op_on_enter,
6276 move_op_orig_expr_found,
6277 move_op_orig_expr_not_found,
6278 move_op_merge_succs,
6279 move_op_after_merge_succs,
6280 move_op_ascend,
6281 move_op_at_first_insn,
6282 SUCCS_NORMAL,
6283 "move_op"
6284 };
6285
6286 /* Hooks and data to perform find_used_regs operations
6287 with code_motion_path_driver. */
6288 struct code_motion_path_driver_info_def fur_hooks = {
6289 fur_on_enter,
6290 fur_orig_expr_found,
6291 fur_orig_expr_not_found,
6292 fur_merge_succs,
6293 NULL, /* fur_after_merge_succs */
6294 NULL, /* fur_ascend */
6295 fur_at_first_insn,
6296 SUCCS_ALL,
6297 "find_used_regs"
6298 };
6299
6300 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6301 code_motion_path_driver is called recursively. Original operation
6302 was found at least on one path that is starting with one of INSN's
6303 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6304 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6305 of either move_op or find_used_regs depending on the caller.
6306
6307 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6308 know for sure at this point. */
6309 static int
6310 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6311 ilist_t path, void *static_params)
6312 {
6313 int res = 0;
6314 succ_iterator succ_i;
6315 rtx succ;
6316 basic_block bb;
6317 int old_index;
6318 unsigned old_succs;
6319
6320 struct cmpd_local_params lparams;
6321 expr_def _x;
6322
6323 lparams.c_expr_local = &_x;
6324 lparams.c_expr_merged = NULL;
6325
6326 /* We need to process only NORMAL succs for move_op, and collect live
6327 registers from ALL branches (including those leading out of the
6328 region) for find_used_regs.
6329
6330 In move_op, there can be a case when insn's bb number has changed
6331 due to created bookkeeping. This happens very rare, as we need to
6332 move expression from the beginning to the end of the same block.
6333 Rescan successors in this case. */
6334
6335 rescan:
6336 bb = BLOCK_FOR_INSN (insn);
6337 old_index = bb->index;
6338 old_succs = EDGE_COUNT (bb->succs);
6339
6340 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6341 {
6342 int b;
6343
6344 lparams.e1 = succ_i.e1;
6345 lparams.e2 = succ_i.e2;
6346
6347 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6348 current region). */
6349 if (succ_i.current_flags == SUCCS_NORMAL)
6350 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6351 static_params);
6352 else
6353 b = 0;
6354
6355 /* Merge c_expres found or unify live register sets from different
6356 successors. */
6357 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6358 static_params);
6359 if (b == 1)
6360 res = b;
6361 else if (b == -1 && res != 1)
6362 res = b;
6363
6364 /* We have simplified the control flow below this point. In this case,
6365 the iterator becomes invalid. We need to try again. */
6366 if (BLOCK_FOR_INSN (insn)->index != old_index
6367 || EDGE_COUNT (bb->succs) != old_succs)
6368 {
6369 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6370 goto rescan;
6371 }
6372 }
6373
6374 #ifdef ENABLE_CHECKING
6375 /* Here, RES==1 if original expr was found at least for one of the
6376 successors. After the loop, RES may happen to have zero value
6377 only if at some point the expr searched is present in av_set, but is
6378 not found below. In most cases, this situation is an error.
6379 The exception is when the original operation is blocked by
6380 bookkeeping generated for another fence or for another path in current
6381 move_op. */
6382 gcc_assert (res == 1
6383 || (res == 0
6384 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6385 static_params))
6386 || res == -1);
6387 #endif
6388
6389 /* Merge data, clean up, etc. */
6390 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6391 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6392
6393 return res;
6394 }
6395
6396
6397 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6398 is the pointer to the av set with expressions we were looking for,
6399 PATH_P is the pointer to the traversed path. */
6400 static inline void
6401 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6402 {
6403 ilist_remove (path_p);
6404 av_set_clear (orig_ops_p);
6405 }
6406
6407 /* The driver function that implements move_op or find_used_regs
6408 functionality dependent whether code_motion_path_driver_INFO is set to
6409 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6410 of code (CFG traversal etc) that are shared among both functions. INSN
6411 is the insn we're starting the search from, ORIG_OPS are the expressions
6412 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6413 parameters of the driver, and STATIC_PARAMS are static parameters of
6414 the caller.
6415
6416 Returns whether original instructions were found. Note that top-level
6417 code_motion_path_driver always returns true. */
6418 static int
6419 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6420 cmpd_local_params_p local_params_in,
6421 void *static_params)
6422 {
6423 expr_t expr = NULL;
6424 basic_block bb = BLOCK_FOR_INSN (insn);
6425 insn_t first_insn, bb_tail, before_first;
6426 bool removed_last_insn = false;
6427
6428 if (sched_verbose >= 6)
6429 {
6430 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6431 dump_insn (insn);
6432 sel_print (",");
6433 dump_av_set (orig_ops);
6434 sel_print (")\n");
6435 }
6436
6437 gcc_assert (orig_ops);
6438
6439 /* If no original operations exist below this insn, return immediately. */
6440 if (is_ineligible_successor (insn, path))
6441 {
6442 if (sched_verbose >= 6)
6443 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6444 return false;
6445 }
6446
6447 /* The block can have invalid av set, in which case it was created earlier
6448 during move_op. Return immediately. */
6449 if (sel_bb_head_p (insn))
6450 {
6451 if (! AV_SET_VALID_P (insn))
6452 {
6453 if (sched_verbose >= 6)
6454 sel_print ("Returned from block %d as it had invalid av set\n",
6455 bb->index);
6456 return false;
6457 }
6458
6459 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6460 {
6461 /* We have already found an original operation on this branch, do not
6462 go any further and just return TRUE here. If we don't stop here,
6463 function can have exponential behaviour even on the small code
6464 with many different paths (e.g. with data speculation and
6465 recovery blocks). */
6466 if (sched_verbose >= 6)
6467 sel_print ("Block %d already visited in this traversal\n", bb->index);
6468 if (code_motion_path_driver_info->on_enter)
6469 return code_motion_path_driver_info->on_enter (insn,
6470 local_params_in,
6471 static_params,
6472 true);
6473 }
6474 }
6475
6476 if (code_motion_path_driver_info->on_enter)
6477 code_motion_path_driver_info->on_enter (insn, local_params_in,
6478 static_params, false);
6479 orig_ops = av_set_copy (orig_ops);
6480
6481 /* Filter the orig_ops set. */
6482 if (AV_SET_VALID_P (insn))
6483 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6484
6485 /* If no more original ops, return immediately. */
6486 if (!orig_ops)
6487 {
6488 if (sched_verbose >= 6)
6489 sel_print ("No intersection with av set of block %d\n", bb->index);
6490 return false;
6491 }
6492
6493 /* For non-speculative insns we have to leave only one form of the
6494 original operation, because if we don't, we may end up with
6495 different C_EXPRes and, consequently, with bookkeepings for different
6496 expression forms along the same code motion path. That may lead to
6497 generation of incorrect code. So for each code motion we stick to
6498 the single form of the instruction, except for speculative insns
6499 which we need to keep in different forms with all speculation
6500 types. */
6501 av_set_leave_one_nonspec (&orig_ops);
6502
6503 /* It is not possible that all ORIG_OPS are filtered out. */
6504 gcc_assert (orig_ops);
6505
6506 /* It is enough to place only heads and tails of visited basic blocks into
6507 the PATH. */
6508 ilist_add (&path, insn);
6509 first_insn = insn;
6510 bb_tail = sel_bb_end (bb);
6511
6512 /* Descend the basic block in search of the original expr; this part
6513 corresponds to the part of the original move_op procedure executed
6514 before the recursive call. */
6515 for (;;)
6516 {
6517 /* Look at the insn and decide if it could be an ancestor of currently
6518 scheduling operation. If it is so, then the insn "dest = op" could
6519 either be replaced with "dest = reg", because REG now holds the result
6520 of OP, or just removed, if we've scheduled the insn as a whole.
6521
6522 If this insn doesn't contain currently scheduling OP, then proceed
6523 with searching and look at its successors. Operations we're searching
6524 for could have changed when moving up through this insn via
6525 substituting. In this case, perform unsubstitution on them first.
6526
6527 When traversing the DAG below this insn is finished, insert
6528 bookkeeping code, if the insn is a joint point, and remove
6529 leftovers. */
6530
6531 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6532 if (expr)
6533 {
6534 insn_t last_insn = PREV_INSN (insn);
6535
6536 /* We have found the original operation. */
6537 if (sched_verbose >= 6)
6538 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6539
6540 code_motion_path_driver_info->orig_expr_found
6541 (insn, expr, local_params_in, static_params);
6542
6543 /* Step back, so on the way back we'll start traversing from the
6544 previous insn (or we'll see that it's bb_note and skip that
6545 loop). */
6546 if (insn == first_insn)
6547 {
6548 first_insn = NEXT_INSN (last_insn);
6549 removed_last_insn = sel_bb_end_p (last_insn);
6550 }
6551 insn = last_insn;
6552 break;
6553 }
6554 else
6555 {
6556 /* We haven't found the original expr, continue descending the basic
6557 block. */
6558 if (code_motion_path_driver_info->orig_expr_not_found
6559 (insn, orig_ops, static_params))
6560 {
6561 /* Av set ops could have been changed when moving through this
6562 insn. To find them below it, we have to un-substitute them. */
6563 undo_transformations (&orig_ops, insn);
6564 }
6565 else
6566 {
6567 /* Clean up and return, if the hook tells us to do so. It may
6568 happen if we've encountered the previously created
6569 bookkeeping. */
6570 code_motion_path_driver_cleanup (&orig_ops, &path);
6571 return -1;
6572 }
6573
6574 gcc_assert (orig_ops);
6575 }
6576
6577 /* Stop at insn if we got to the end of BB. */
6578 if (insn == bb_tail)
6579 break;
6580
6581 insn = NEXT_INSN (insn);
6582 }
6583
6584 /* Here INSN either points to the insn before the original insn (may be
6585 bb_note, if original insn was a bb_head) or to the bb_end. */
6586 if (!expr)
6587 {
6588 int res;
6589 rtx last_insn = PREV_INSN (insn);
6590 bool added_to_path;
6591
6592 gcc_assert (insn == sel_bb_end (bb));
6593
6594 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6595 it's already in PATH then). */
6596 if (insn != first_insn)
6597 {
6598 ilist_add (&path, insn);
6599 added_to_path = true;
6600 }
6601 else
6602 added_to_path = false;
6603
6604 /* Process_successors should be able to find at least one
6605 successor for which code_motion_path_driver returns TRUE. */
6606 res = code_motion_process_successors (insn, orig_ops,
6607 path, static_params);
6608
6609 /* Jump in the end of basic block could have been removed or replaced
6610 during code_motion_process_successors, so recompute insn as the
6611 last insn in bb. */
6612 if (NEXT_INSN (last_insn) != insn)
6613 {
6614 insn = sel_bb_end (bb);
6615 first_insn = sel_bb_head (bb);
6616 }
6617
6618 /* Remove bb tail from path. */
6619 if (added_to_path)
6620 ilist_remove (&path);
6621
6622 if (res != 1)
6623 {
6624 /* This is the case when one of the original expr is no longer available
6625 due to bookkeeping created on this branch with the same register.
6626 In the original algorithm, which doesn't have update_data_sets call
6627 on a bookkeeping block, it would simply result in returning
6628 FALSE when we've encountered a previously generated bookkeeping
6629 insn in moveop_orig_expr_not_found. */
6630 code_motion_path_driver_cleanup (&orig_ops, &path);
6631 return res;
6632 }
6633 }
6634
6635 /* Don't need it any more. */
6636 av_set_clear (&orig_ops);
6637
6638 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6639 the beginning of the basic block. */
6640 before_first = PREV_INSN (first_insn);
6641 while (insn != before_first)
6642 {
6643 if (code_motion_path_driver_info->ascend)
6644 code_motion_path_driver_info->ascend (insn, static_params);
6645
6646 insn = PREV_INSN (insn);
6647 }
6648
6649 /* Now we're at the bb head. */
6650 insn = first_insn;
6651 ilist_remove (&path);
6652 local_params_in->removed_last_insn = removed_last_insn;
6653 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6654
6655 /* This should be the very last operation as at bb head we could change
6656 the numbering by creating bookkeeping blocks. */
6657 if (removed_last_insn)
6658 insn = PREV_INSN (insn);
6659 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6660 return true;
6661 }
6662
6663 /* Move up the operations from ORIG_OPS set traversing the dag starting
6664 from INSN. PATH represents the edges traversed so far.
6665 DEST is the register chosen for scheduling the current expr. Insert
6666 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6667 C_EXPR is how it looks like at the given cfg point.
6668 Set *SHOULD_MOVE to indicate whether we have only disconnected
6669 one of the insns found.
6670
6671 Returns whether original instructions were found, which is asserted
6672 to be true in the caller. */
6673 static bool
6674 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6675 rtx dest, expr_t c_expr, bool *should_move)
6676 {
6677 struct moveop_static_params sparams;
6678 struct cmpd_local_params lparams;
6679 int res;
6680
6681 /* Init params for code_motion_path_driver. */
6682 sparams.dest = dest;
6683 sparams.c_expr = c_expr;
6684 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6685 #ifdef ENABLE_CHECKING
6686 sparams.failed_insn = NULL;
6687 #endif
6688 sparams.was_renamed = false;
6689 lparams.e1 = NULL;
6690
6691 /* We haven't visited any blocks yet. */
6692 bitmap_clear (code_motion_visited_blocks);
6693
6694 /* Set appropriate hooks and data. */
6695 code_motion_path_driver_info = &move_op_hooks;
6696 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6697
6698 gcc_assert (res != -1);
6699
6700 if (sparams.was_renamed)
6701 EXPR_WAS_RENAMED (expr_vliw) = true;
6702
6703 *should_move = (sparams.uid == -1);
6704
6705 return res;
6706 }
6707 \f
6708
6709 /* Functions that work with regions. */
6710
6711 /* Current number of seqno used in init_seqno and init_seqno_1. */
6712 static int cur_seqno;
6713
6714 /* A helper for init_seqno. Traverse the region starting from BB and
6715 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6716 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6717 static void
6718 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6719 {
6720 int bbi = BLOCK_TO_BB (bb->index);
6721 insn_t insn, note = bb_note (bb);
6722 insn_t succ_insn;
6723 succ_iterator si;
6724
6725 SET_BIT (visited_bbs, bbi);
6726 if (blocks_to_reschedule)
6727 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6728
6729 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6730 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6731 {
6732 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6733 int succ_bbi = BLOCK_TO_BB (succ->index);
6734
6735 gcc_assert (in_current_region_p (succ));
6736
6737 if (!TEST_BIT (visited_bbs, succ_bbi))
6738 {
6739 gcc_assert (succ_bbi > bbi);
6740
6741 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6742 }
6743 else if (blocks_to_reschedule)
6744 bitmap_set_bit (forced_ebb_heads, succ->index);
6745 }
6746
6747 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6748 INSN_SEQNO (insn) = cur_seqno--;
6749 }
6750
6751 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6752 blocks on which we're rescheduling when pipelining, FROM is the block where
6753 traversing region begins (it may not be the head of the region when
6754 pipelining, but the head of the loop instead).
6755
6756 Returns the maximal seqno found. */
6757 static int
6758 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6759 {
6760 sbitmap visited_bbs;
6761 bitmap_iterator bi;
6762 unsigned bbi;
6763
6764 visited_bbs = sbitmap_alloc (current_nr_blocks);
6765
6766 if (blocks_to_reschedule)
6767 {
6768 sbitmap_ones (visited_bbs);
6769 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6770 {
6771 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6772 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6773 }
6774 }
6775 else
6776 {
6777 sbitmap_zero (visited_bbs);
6778 from = EBB_FIRST_BB (0);
6779 }
6780
6781 cur_seqno = sched_max_luid - 1;
6782 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6783
6784 /* cur_seqno may be positive if the number of instructions is less than
6785 sched_max_luid - 1 (when rescheduling or if some instructions have been
6786 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6787 gcc_assert (cur_seqno >= 0);
6788
6789 sbitmap_free (visited_bbs);
6790 return sched_max_luid - 1;
6791 }
6792
6793 /* Initialize scheduling parameters for current region. */
6794 static void
6795 sel_setup_region_sched_flags (void)
6796 {
6797 enable_schedule_as_rhs_p = 1;
6798 bookkeeping_p = 1;
6799 pipelining_p = (bookkeeping_p
6800 && (flag_sel_sched_pipelining != 0)
6801 && current_loop_nest != NULL
6802 && loop_has_exit_edges (current_loop_nest));
6803 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6804 max_ws = MAX_WS;
6805 }
6806
6807 /* Return true if all basic blocks of current region are empty. */
6808 static bool
6809 current_region_empty_p (void)
6810 {
6811 int i;
6812 for (i = 0; i < current_nr_blocks; i++)
6813 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6814 return false;
6815
6816 return true;
6817 }
6818
6819 /* Prepare and verify loop nest for pipelining. */
6820 static void
6821 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6822 {
6823 current_loop_nest = get_loop_nest_for_rgn (rgn);
6824
6825 if (!current_loop_nest)
6826 return;
6827
6828 /* If this loop has any saved loop preheaders from nested loops,
6829 add these basic blocks to the current region. */
6830 sel_add_loop_preheaders (bbs);
6831
6832 /* Check that we're starting with a valid information. */
6833 gcc_assert (loop_latch_edge (current_loop_nest));
6834 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6835 }
6836
6837 /* Compute instruction priorities for current region. */
6838 static void
6839 sel_compute_priorities (int rgn)
6840 {
6841 sched_rgn_compute_dependencies (rgn);
6842
6843 /* Compute insn priorities in haifa style. Then free haifa style
6844 dependencies that we've calculated for this. */
6845 compute_priorities ();
6846
6847 if (sched_verbose >= 5)
6848 debug_rgn_dependencies (0);
6849
6850 free_rgn_deps ();
6851 }
6852
6853 /* Init scheduling data for RGN. Returns true when this region should not
6854 be scheduled. */
6855 static bool
6856 sel_region_init (int rgn)
6857 {
6858 int i;
6859 bb_vec_t bbs;
6860
6861 rgn_setup_region (rgn);
6862
6863 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6864 do region initialization here so the region can be bundled correctly,
6865 but we'll skip the scheduling in sel_sched_region (). */
6866 if (current_region_empty_p ())
6867 return true;
6868
6869 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6870
6871 for (i = 0; i < current_nr_blocks; i++)
6872 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6873
6874 sel_init_bbs (bbs);
6875
6876 if (flag_sel_sched_pipelining)
6877 setup_current_loop_nest (rgn, &bbs);
6878
6879 sel_setup_region_sched_flags ();
6880
6881 /* Initialize luids and dependence analysis which both sel-sched and haifa
6882 need. */
6883 sched_init_luids (bbs);
6884 sched_deps_init (false);
6885
6886 /* Initialize haifa data. */
6887 rgn_setup_sched_infos ();
6888 sel_set_sched_flags ();
6889 haifa_init_h_i_d (bbs);
6890
6891 sel_compute_priorities (rgn);
6892 init_deps_global ();
6893
6894 /* Main initialization. */
6895 sel_setup_sched_infos ();
6896 sel_init_global_and_expr (bbs);
6897
6898 VEC_free (basic_block, heap, bbs);
6899
6900 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6901
6902 /* Init correct liveness sets on each instruction of a single-block loop.
6903 This is the only situation when we can't update liveness when calling
6904 compute_live for the first insn of the loop. */
6905 if (current_loop_nest)
6906 {
6907 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6908 ? 1
6909 : 0);
6910
6911 if (current_nr_blocks == header + 1)
6912 update_liveness_on_insn
6913 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6914 }
6915
6916 /* Set hooks so that no newly generated insn will go out unnoticed. */
6917 sel_register_cfg_hooks ();
6918
6919 /* !!! We call target.sched.init () for the whole region, but we invoke
6920 targetm.sched.finish () for every ebb. */
6921 if (targetm.sched.init)
6922 /* None of the arguments are actually used in any target. */
6923 targetm.sched.init (sched_dump, sched_verbose, -1);
6924
6925 first_emitted_uid = get_max_uid () + 1;
6926 preheader_removed = false;
6927
6928 /* Reset register allocation ticks array. */
6929 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6930 reg_rename_this_tick = 0;
6931
6932 bitmap_initialize (forced_ebb_heads, 0);
6933 bitmap_clear (forced_ebb_heads);
6934
6935 setup_nop_vinsn ();
6936 current_copies = BITMAP_ALLOC (NULL);
6937 current_originators = BITMAP_ALLOC (NULL);
6938 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6939
6940 return false;
6941 }
6942
6943 /* Simplify insns after the scheduling. */
6944 static void
6945 simplify_changed_insns (void)
6946 {
6947 int i;
6948
6949 for (i = 0; i < current_nr_blocks; i++)
6950 {
6951 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6952 rtx insn;
6953
6954 FOR_BB_INSNS (bb, insn)
6955 if (INSN_P (insn))
6956 {
6957 expr_t expr = INSN_EXPR (insn);
6958
6959 if (EXPR_WAS_SUBSTITUTED (expr))
6960 validate_simplify_insn (insn);
6961 }
6962 }
6963 }
6964
6965 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6966 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6967 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6968 static void
6969 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6970 {
6971 insn_t head, tail;
6972 basic_block bb1 = bb;
6973 if (sched_verbose >= 2)
6974 sel_print ("Finishing schedule in bbs: ");
6975
6976 do
6977 {
6978 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6979
6980 if (sched_verbose >= 2)
6981 sel_print ("%d; ", bb1->index);
6982 }
6983 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6984
6985 if (sched_verbose >= 2)
6986 sel_print ("\n");
6987
6988 get_ebb_head_tail (bb, bb1, &head, &tail);
6989
6990 current_sched_info->head = head;
6991 current_sched_info->tail = tail;
6992 current_sched_info->prev_head = PREV_INSN (head);
6993 current_sched_info->next_tail = NEXT_INSN (tail);
6994 }
6995
6996 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6997 static void
6998 reset_sched_cycles_in_current_ebb (void)
6999 {
7000 int last_clock = 0;
7001 int haifa_last_clock = -1;
7002 int haifa_clock = 0;
7003 int issued_insns = 0;
7004 insn_t insn;
7005
7006 if (targetm.sched.init)
7007 {
7008 /* None of the arguments are actually used in any target.
7009 NB: We should have md_reset () hook for cases like this. */
7010 targetm.sched.init (sched_dump, sched_verbose, -1);
7011 }
7012
7013 state_reset (curr_state);
7014 advance_state (curr_state);
7015
7016 for (insn = current_sched_info->head;
7017 insn != current_sched_info->next_tail;
7018 insn = NEXT_INSN (insn))
7019 {
7020 int cost, haifa_cost;
7021 int sort_p;
7022 bool asm_p, real_insn, after_stall, all_issued;
7023 int clock;
7024
7025 if (!INSN_P (insn))
7026 continue;
7027
7028 asm_p = false;
7029 real_insn = recog_memoized (insn) >= 0;
7030 clock = INSN_SCHED_CYCLE (insn);
7031
7032 cost = clock - last_clock;
7033
7034 /* Initialize HAIFA_COST. */
7035 if (! real_insn)
7036 {
7037 asm_p = INSN_ASM_P (insn);
7038
7039 if (asm_p)
7040 /* This is asm insn which *had* to be scheduled first
7041 on the cycle. */
7042 haifa_cost = 1;
7043 else
7044 /* This is a use/clobber insn. It should not change
7045 cost. */
7046 haifa_cost = 0;
7047 }
7048 else
7049 haifa_cost = estimate_insn_cost (insn, curr_state);
7050
7051 /* Stall for whatever cycles we've stalled before. */
7052 after_stall = 0;
7053 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7054 {
7055 haifa_cost = cost;
7056 after_stall = 1;
7057 }
7058 all_issued = issued_insns == issue_rate;
7059 if (haifa_cost == 0 && all_issued)
7060 haifa_cost = 1;
7061 if (haifa_cost > 0)
7062 {
7063 int i = 0;
7064
7065 while (haifa_cost--)
7066 {
7067 advance_state (curr_state);
7068 issued_insns = 0;
7069 i++;
7070
7071 if (sched_verbose >= 2)
7072 {
7073 sel_print ("advance_state (state_transition)\n");
7074 debug_state (curr_state);
7075 }
7076
7077 /* The DFA may report that e.g. insn requires 2 cycles to be
7078 issued, but on the next cycle it says that insn is ready
7079 to go. Check this here. */
7080 if (!after_stall
7081 && real_insn
7082 && haifa_cost > 0
7083 && estimate_insn_cost (insn, curr_state) == 0)
7084 break;
7085
7086 /* When the data dependency stall is longer than the DFA stall,
7087 and when we have issued exactly issue_rate insns and stalled,
7088 it could be that after this longer stall the insn will again
7089 become unavailable to the DFA restrictions. Looks strange
7090 but happens e.g. on x86-64. So recheck DFA on the last
7091 iteration. */
7092 if ((after_stall || all_issued)
7093 && real_insn
7094 && haifa_cost == 0)
7095 haifa_cost = estimate_insn_cost (insn, curr_state);
7096 }
7097
7098 haifa_clock += i;
7099 if (sched_verbose >= 2)
7100 sel_print ("haifa clock: %d\n", haifa_clock);
7101 }
7102 else
7103 gcc_assert (haifa_cost == 0);
7104
7105 if (sched_verbose >= 2)
7106 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7107
7108 if (targetm.sched.dfa_new_cycle)
7109 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7110 haifa_last_clock, haifa_clock,
7111 &sort_p))
7112 {
7113 advance_state (curr_state);
7114 issued_insns = 0;
7115 haifa_clock++;
7116 if (sched_verbose >= 2)
7117 {
7118 sel_print ("advance_state (dfa_new_cycle)\n");
7119 debug_state (curr_state);
7120 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7121 }
7122 }
7123
7124 if (real_insn)
7125 {
7126 static state_t temp = NULL;
7127
7128 if (!temp)
7129 temp = xmalloc (dfa_state_size);
7130 memcpy (temp, curr_state, dfa_state_size);
7131
7132 cost = state_transition (curr_state, insn);
7133 if (memcmp (temp, curr_state, dfa_state_size))
7134 issued_insns++;
7135
7136 if (sched_verbose >= 2)
7137 {
7138 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7139 haifa_clock + 1);
7140 debug_state (curr_state);
7141 }
7142 gcc_assert (cost < 0);
7143 }
7144
7145 if (targetm.sched.variable_issue)
7146 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7147
7148 INSN_SCHED_CYCLE (insn) = haifa_clock;
7149
7150 last_clock = clock;
7151 haifa_last_clock = haifa_clock;
7152 }
7153 }
7154
7155 /* Put TImode markers on insns starting a new issue group. */
7156 static void
7157 put_TImodes (void)
7158 {
7159 int last_clock = -1;
7160 insn_t insn;
7161
7162 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7163 insn = NEXT_INSN (insn))
7164 {
7165 int cost, clock;
7166
7167 if (!INSN_P (insn))
7168 continue;
7169
7170 clock = INSN_SCHED_CYCLE (insn);
7171 cost = (last_clock == -1) ? 1 : clock - last_clock;
7172
7173 gcc_assert (cost >= 0);
7174
7175 if (issue_rate > 1
7176 && GET_CODE (PATTERN (insn)) != USE
7177 && GET_CODE (PATTERN (insn)) != CLOBBER)
7178 {
7179 if (reload_completed && cost > 0)
7180 PUT_MODE (insn, TImode);
7181
7182 last_clock = clock;
7183 }
7184
7185 if (sched_verbose >= 2)
7186 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7187 }
7188 }
7189
7190 /* Perform MD_FINISH on EBBs comprising current region. When
7191 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7192 to produce correct sched cycles on insns. */
7193 static void
7194 sel_region_target_finish (bool reset_sched_cycles_p)
7195 {
7196 int i;
7197 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7198
7199 for (i = 0; i < current_nr_blocks; i++)
7200 {
7201 if (bitmap_bit_p (scheduled_blocks, i))
7202 continue;
7203
7204 /* While pipelining outer loops, skip bundling for loop
7205 preheaders. Those will be rescheduled in the outer loop. */
7206 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7207 continue;
7208
7209 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7210
7211 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7212 continue;
7213
7214 if (reset_sched_cycles_p)
7215 reset_sched_cycles_in_current_ebb ();
7216
7217 if (targetm.sched.init)
7218 targetm.sched.init (sched_dump, sched_verbose, -1);
7219
7220 put_TImodes ();
7221
7222 if (targetm.sched.finish)
7223 {
7224 targetm.sched.finish (sched_dump, sched_verbose);
7225
7226 /* Extend luids so that insns generated by the target will
7227 get zero luid. */
7228 sched_extend_luids ();
7229 }
7230 }
7231
7232 BITMAP_FREE (scheduled_blocks);
7233 }
7234
7235 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7236 is true, make an additional pass emulating scheduler to get correct insn
7237 cycles for md_finish calls. */
7238 static void
7239 sel_region_finish (bool reset_sched_cycles_p)
7240 {
7241 simplify_changed_insns ();
7242 sched_finish_ready_list ();
7243 free_nop_pool ();
7244
7245 /* Free the vectors. */
7246 if (vec_av_set)
7247 VEC_free (expr_t, heap, vec_av_set);
7248 BITMAP_FREE (current_copies);
7249 BITMAP_FREE (current_originators);
7250 BITMAP_FREE (code_motion_visited_blocks);
7251 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7252 vinsn_vec_free (&vec_target_unavailable_vinsns);
7253
7254 /* If LV_SET of the region head should be updated, do it now because
7255 there will be no other chance. */
7256 {
7257 succ_iterator si;
7258 insn_t insn;
7259
7260 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7261 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7262 {
7263 basic_block bb = BLOCK_FOR_INSN (insn);
7264
7265 if (!BB_LV_SET_VALID_P (bb))
7266 compute_live (insn);
7267 }
7268 }
7269
7270 /* Emulate the Haifa scheduler for bundling. */
7271 if (reload_completed)
7272 sel_region_target_finish (reset_sched_cycles_p);
7273
7274 sel_finish_global_and_expr ();
7275
7276 bitmap_clear (forced_ebb_heads);
7277
7278 free_nop_vinsn ();
7279
7280 finish_deps_global ();
7281 sched_finish_luids ();
7282 VEC_free (haifa_deps_insn_data_def, heap, h_d_i_d);
7283
7284 sel_finish_bbs ();
7285 BITMAP_FREE (blocks_to_reschedule);
7286
7287 sel_unregister_cfg_hooks ();
7288
7289 max_issue_size = 0;
7290 }
7291 \f
7292
7293 /* Functions that implement the scheduler driver. */
7294
7295 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7296 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7297 of insns scheduled -- these would be postprocessed later. */
7298 static void
7299 schedule_on_fences (flist_t fences, int max_seqno,
7300 ilist_t **scheduled_insns_tailpp)
7301 {
7302 flist_t old_fences = fences;
7303
7304 if (sched_verbose >= 1)
7305 {
7306 sel_print ("\nScheduling on fences: ");
7307 dump_flist (fences);
7308 sel_print ("\n");
7309 }
7310
7311 scheduled_something_on_previous_fence = false;
7312 for (; fences; fences = FLIST_NEXT (fences))
7313 {
7314 fence_t fence = NULL;
7315 int seqno = 0;
7316 flist_t fences2;
7317 bool first_p = true;
7318
7319 /* Choose the next fence group to schedule.
7320 The fact that insn can be scheduled only once
7321 on the cycle is guaranteed by two properties:
7322 1. seqnos of parallel groups decrease with each iteration.
7323 2. If is_ineligible_successor () sees the larger seqno, it
7324 checks if candidate insn is_in_current_fence_p (). */
7325 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7326 {
7327 fence_t f = FLIST_FENCE (fences2);
7328
7329 if (!FENCE_PROCESSED_P (f))
7330 {
7331 int i = INSN_SEQNO (FENCE_INSN (f));
7332
7333 if (first_p || i > seqno)
7334 {
7335 seqno = i;
7336 fence = f;
7337 first_p = false;
7338 }
7339 else
7340 /* ??? Seqnos of different groups should be different. */
7341 gcc_assert (1 || i != seqno);
7342 }
7343 }
7344
7345 gcc_assert (fence);
7346
7347 /* As FENCE is nonnull, SEQNO is initialized. */
7348 seqno -= max_seqno + 1;
7349 fill_insns (fence, seqno, scheduled_insns_tailpp);
7350 FENCE_PROCESSED_P (fence) = true;
7351 }
7352
7353 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7354 don't need to keep bookkeeping-invalidated and target-unavailable
7355 vinsns any more. */
7356 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7357 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7358 }
7359
7360 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7361 static void
7362 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7363 {
7364 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7365
7366 /* The first element is already processed. */
7367 while ((fences = FLIST_NEXT (fences)))
7368 {
7369 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7370
7371 if (*min_seqno > seqno)
7372 *min_seqno = seqno;
7373 else if (*max_seqno < seqno)
7374 *max_seqno = seqno;
7375 }
7376 }
7377
7378 /* Calculate new fences from FENCES. */
7379 static flist_t
7380 calculate_new_fences (flist_t fences, int orig_max_seqno)
7381 {
7382 flist_t old_fences = fences;
7383 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7384
7385 flist_tail_init (new_fences);
7386 for (; fences; fences = FLIST_NEXT (fences))
7387 {
7388 fence_t fence = FLIST_FENCE (fences);
7389 insn_t insn;
7390
7391 if (!FENCE_BNDS (fence))
7392 {
7393 /* This fence doesn't have any successors. */
7394 if (!FENCE_SCHEDULED_P (fence))
7395 {
7396 /* Nothing was scheduled on this fence. */
7397 int seqno;
7398
7399 insn = FENCE_INSN (fence);
7400 seqno = INSN_SEQNO (insn);
7401 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7402
7403 if (sched_verbose >= 1)
7404 sel_print ("Fence %d[%d] has not changed\n",
7405 INSN_UID (insn),
7406 BLOCK_NUM (insn));
7407 move_fence_to_fences (fences, new_fences);
7408 }
7409 }
7410 else
7411 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7412 }
7413
7414 flist_clear (&old_fences);
7415 return FLIST_TAIL_HEAD (new_fences);
7416 }
7417
7418 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7419 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7420 the highest seqno used in a region. Return the updated highest seqno. */
7421 static int
7422 update_seqnos_and_stage (int min_seqno, int max_seqno,
7423 int highest_seqno_in_use,
7424 ilist_t *pscheduled_insns)
7425 {
7426 int new_hs;
7427 ilist_iterator ii;
7428 insn_t insn;
7429
7430 /* Actually, new_hs is the seqno of the instruction, that was
7431 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7432 if (*pscheduled_insns)
7433 {
7434 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7435 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7436 gcc_assert (new_hs > highest_seqno_in_use);
7437 }
7438 else
7439 new_hs = highest_seqno_in_use;
7440
7441 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7442 {
7443 gcc_assert (INSN_SEQNO (insn) < 0);
7444 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7445 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7446
7447 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7448 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7449 require > 1GB of memory e.g. on limit-fnargs.c. */
7450 if (! pipelining_p)
7451 free_data_for_scheduled_insn (insn);
7452 }
7453
7454 ilist_clear (pscheduled_insns);
7455 global_level++;
7456
7457 return new_hs;
7458 }
7459
7460 /* The main driver for scheduling a region. This function is responsible
7461 for correct propagation of fences (i.e. scheduling points) and creating
7462 a group of parallel insns at each of them. It also supports
7463 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7464 of scheduling. */
7465 static void
7466 sel_sched_region_2 (int orig_max_seqno)
7467 {
7468 int highest_seqno_in_use = orig_max_seqno;
7469
7470 stat_bookkeeping_copies = 0;
7471 stat_insns_needed_bookkeeping = 0;
7472 stat_renamed_scheduled = 0;
7473 stat_substitutions_total = 0;
7474 num_insns_scheduled = 0;
7475
7476 while (fences)
7477 {
7478 int min_seqno, max_seqno;
7479 ilist_t scheduled_insns = NULL;
7480 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7481
7482 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7483 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7484 fences = calculate_new_fences (fences, orig_max_seqno);
7485 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7486 highest_seqno_in_use,
7487 &scheduled_insns);
7488 }
7489
7490 if (sched_verbose >= 1)
7491 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7492 "bookkeeping, %d insns renamed, %d insns substituted\n",
7493 stat_bookkeeping_copies,
7494 stat_insns_needed_bookkeeping,
7495 stat_renamed_scheduled,
7496 stat_substitutions_total);
7497 }
7498
7499 /* Schedule a region. When pipelining, search for possibly never scheduled
7500 bookkeeping code and schedule it. Reschedule pipelined code without
7501 pipelining after. */
7502 static void
7503 sel_sched_region_1 (void)
7504 {
7505 int orig_max_seqno;
7506
7507 /* Remove empty blocks that might be in the region from the beginning. */
7508 purge_empty_blocks ();
7509
7510 orig_max_seqno = init_seqno (NULL, NULL);
7511 gcc_assert (orig_max_seqno >= 1);
7512
7513 /* When pipelining outer loops, create fences on the loop header,
7514 not preheader. */
7515 fences = NULL;
7516 if (current_loop_nest)
7517 init_fences (BB_END (EBB_FIRST_BB (0)));
7518 else
7519 init_fences (bb_note (EBB_FIRST_BB (0)));
7520 global_level = 1;
7521
7522 sel_sched_region_2 (orig_max_seqno);
7523
7524 gcc_assert (fences == NULL);
7525
7526 if (pipelining_p)
7527 {
7528 int i;
7529 basic_block bb;
7530 struct flist_tail_def _new_fences;
7531 flist_tail_t new_fences = &_new_fences;
7532 bool do_p = true;
7533
7534 pipelining_p = false;
7535 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7536 bookkeeping_p = false;
7537 enable_schedule_as_rhs_p = false;
7538
7539 /* Schedule newly created code, that has not been scheduled yet. */
7540 do_p = true;
7541
7542 while (do_p)
7543 {
7544 do_p = false;
7545
7546 for (i = 0; i < current_nr_blocks; i++)
7547 {
7548 basic_block bb = EBB_FIRST_BB (i);
7549
7550 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7551 {
7552 if (! bb_ends_ebb_p (bb))
7553 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7554 if (sel_bb_empty_p (bb))
7555 {
7556 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7557 continue;
7558 }
7559 clear_outdated_rtx_info (bb);
7560 if (sel_insn_is_speculation_check (BB_END (bb))
7561 && JUMP_P (BB_END (bb)))
7562 bitmap_set_bit (blocks_to_reschedule,
7563 BRANCH_EDGE (bb)->dest->index);
7564 }
7565 else if (! sel_bb_empty_p (bb)
7566 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7567 bitmap_set_bit (blocks_to_reschedule, bb->index);
7568 }
7569
7570 for (i = 0; i < current_nr_blocks; i++)
7571 {
7572 bb = EBB_FIRST_BB (i);
7573
7574 /* While pipelining outer loops, skip bundling for loop
7575 preheaders. Those will be rescheduled in the outer
7576 loop. */
7577 if (sel_is_loop_preheader_p (bb))
7578 {
7579 clear_outdated_rtx_info (bb);
7580 continue;
7581 }
7582
7583 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7584 {
7585 flist_tail_init (new_fences);
7586
7587 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7588
7589 /* Mark BB as head of the new ebb. */
7590 bitmap_set_bit (forced_ebb_heads, bb->index);
7591
7592 gcc_assert (fences == NULL);
7593
7594 init_fences (bb_note (bb));
7595
7596 sel_sched_region_2 (orig_max_seqno);
7597
7598 do_p = true;
7599 break;
7600 }
7601 }
7602 }
7603 }
7604 }
7605
7606 /* Schedule the RGN region. */
7607 void
7608 sel_sched_region (int rgn)
7609 {
7610 bool schedule_p;
7611 bool reset_sched_cycles_p;
7612
7613 if (sel_region_init (rgn))
7614 return;
7615
7616 if (sched_verbose >= 1)
7617 sel_print ("Scheduling region %d\n", rgn);
7618
7619 schedule_p = (!sched_is_disabled_for_current_region_p ()
7620 && dbg_cnt (sel_sched_region_cnt));
7621 reset_sched_cycles_p = pipelining_p;
7622 if (schedule_p)
7623 sel_sched_region_1 ();
7624 else
7625 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7626 reset_sched_cycles_p = true;
7627
7628 sel_region_finish (reset_sched_cycles_p);
7629 }
7630
7631 /* Perform global init for the scheduler. */
7632 static void
7633 sel_global_init (void)
7634 {
7635 calculate_dominance_info (CDI_DOMINATORS);
7636 alloc_sched_pools ();
7637
7638 /* Setup the infos for sched_init. */
7639 sel_setup_sched_infos ();
7640 setup_sched_dump ();
7641
7642 sched_rgn_init (false);
7643 sched_init ();
7644
7645 sched_init_bbs ();
7646 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7647 after_recovery = 0;
7648 can_issue_more = issue_rate;
7649
7650 sched_extend_target ();
7651 sched_deps_init (true);
7652 setup_nop_and_exit_insns ();
7653 sel_extend_global_bb_info ();
7654 init_lv_sets ();
7655 init_hard_regs_data ();
7656 }
7657
7658 /* Free the global data of the scheduler. */
7659 static void
7660 sel_global_finish (void)
7661 {
7662 free_bb_note_pool ();
7663 free_lv_sets ();
7664 sel_finish_global_bb_info ();
7665
7666 free_regset_pool ();
7667 free_nop_and_exit_insns ();
7668
7669 sched_rgn_finish ();
7670 sched_deps_finish ();
7671 sched_finish ();
7672
7673 if (current_loops)
7674 sel_finish_pipelining ();
7675
7676 free_sched_pools ();
7677 free_dominance_info (CDI_DOMINATORS);
7678 }
7679
7680 /* Return true when we need to skip selective scheduling. Used for debugging. */
7681 bool
7682 maybe_skip_selective_scheduling (void)
7683 {
7684 return ! dbg_cnt (sel_sched_cnt);
7685 }
7686
7687 /* The entry point. */
7688 void
7689 run_selective_scheduling (void)
7690 {
7691 int rgn;
7692
7693 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7694 return;
7695
7696 sel_global_init ();
7697
7698 for (rgn = 0; rgn < nr_regions; rgn++)
7699 sel_sched_region (rgn);
7700
7701 sel_global_finish ();
7702 }
7703
7704 #endif