vec.h (VEC_qsort): Define.
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615
616 if (bb == BLOCK_FOR_INSN (succ))
617 return true;
618
619 if (find_fallthru_edge (bb))
620 bb = find_fallthru_edge (bb)->dest;
621 else
622 return false;
623
624 while (sel_bb_empty_p (bb))
625 bb = bb->next_bb;
626
627 return bb == BLOCK_FOR_INSN (succ);
628 }
629
630 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
631 When a successor will continue a ebb, transfer all parameters of a fence
632 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
633 of scheduling helping to distinguish between the old and the new code. */
634 static void
635 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
636 int orig_max_seqno)
637 {
638 bool was_here_p = false;
639 insn_t insn = NULL_RTX;
640 insn_t succ;
641 succ_iterator si;
642 ilist_iterator ii;
643 fence_t fence = FLIST_FENCE (old_fences);
644 basic_block bb;
645
646 /* Get the only element of FENCE_BNDS (fence). */
647 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
648 {
649 gcc_assert (!was_here_p);
650 was_here_p = true;
651 }
652 gcc_assert (was_here_p && insn != NULL_RTX);
653
654 /* When in the "middle" of the block, just move this fence
655 to the new list. */
656 bb = BLOCK_FOR_INSN (insn);
657 if (! sel_bb_end_p (insn)
658 || (single_succ_p (bb)
659 && single_pred_p (single_succ (bb))))
660 {
661 insn_t succ;
662
663 succ = (sel_bb_end_p (insn)
664 ? sel_bb_head (single_succ (bb))
665 : NEXT_INSN (insn));
666
667 if (INSN_SEQNO (succ) > 0
668 && INSN_SEQNO (succ) <= orig_max_seqno
669 && INSN_SCHED_TIMES (succ) <= 0)
670 {
671 FENCE_INSN (fence) = succ;
672 move_fence_to_fences (old_fences, new_fences);
673
674 if (sched_verbose >= 1)
675 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
676 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
677 }
678 return;
679 }
680
681 /* Otherwise copy fence's structures to (possibly) multiple successors. */
682 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
683 {
684 int seqno = INSN_SEQNO (succ);
685
686 if (0 < seqno && seqno <= orig_max_seqno
687 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
688 {
689 bool b = (in_same_ebb_p (insn, succ)
690 || in_fallthru_bb_p (insn, succ));
691
692 if (sched_verbose >= 1)
693 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
694 INSN_UID (insn), INSN_UID (succ),
695 BLOCK_NUM (succ), b ? "continue" : "reset");
696
697 if (b)
698 add_dirty_fence_to_fences (new_fences, succ, fence);
699 else
700 {
701 /* Mark block of the SUCC as head of the new ebb. */
702 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
703 add_clean_fence_to_fences (new_fences, succ, fence);
704 }
705 }
706 }
707 }
708 \f
709
710 /* Functions to support substitution. */
711
712 /* Returns whether INSN with dependence status DS is eligible for
713 substitution, i.e. it's a copy operation x := y, and RHS that is
714 moved up through this insn should be substituted. */
715 static bool
716 can_substitute_through_p (insn_t insn, ds_t ds)
717 {
718 /* We can substitute only true dependencies. */
719 if ((ds & DEP_OUTPUT)
720 || (ds & DEP_ANTI)
721 || ! INSN_RHS (insn)
722 || ! INSN_LHS (insn))
723 return false;
724
725 /* Now we just need to make sure the INSN_RHS consists of only one
726 simple REG rtx. */
727 if (REG_P (INSN_LHS (insn))
728 && REG_P (INSN_RHS (insn)))
729 return true;
730 return false;
731 }
732
733 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
734 source (if INSN is eligible for substitution). Returns TRUE if
735 substitution was actually performed, FALSE otherwise. Substitution might
736 be not performed because it's either EXPR' vinsn doesn't contain INSN's
737 destination or the resulting insn is invalid for the target machine.
738 When UNDO is true, perform unsubstitution instead (the difference is in
739 the part of rtx on which validate_replace_rtx is called). */
740 static bool
741 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
742 {
743 rtx *where;
744 bool new_insn_valid;
745 vinsn_t *vi = &EXPR_VINSN (expr);
746 bool has_rhs = VINSN_RHS (*vi) != NULL;
747 rtx old, new_rtx;
748
749 /* Do not try to replace in SET_DEST. Although we'll choose new
750 register for the RHS, we don't want to change RHS' original reg.
751 If the insn is not SET, we may still be able to substitute something
752 in it, and if we're here (don't have deps), it doesn't write INSN's
753 dest. */
754 where = (has_rhs
755 ? &VINSN_RHS (*vi)
756 : &PATTERN (VINSN_INSN_RTX (*vi)));
757 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
758
759 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
760 if (rtx_ok_for_substitution_p (old, *where))
761 {
762 rtx new_insn;
763 rtx *where_replace;
764
765 /* We should copy these rtxes before substitution. */
766 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
767 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
768
769 /* Where we'll replace.
770 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
771 used instead of SET_SRC. */
772 where_replace = (has_rhs
773 ? &SET_SRC (PATTERN (new_insn))
774 : &PATTERN (new_insn));
775
776 new_insn_valid
777 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
778 new_insn);
779
780 /* ??? Actually, constrain_operands result depends upon choice of
781 destination register. E.g. if we allow single register to be an rhs,
782 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
783 in invalid insn dx=dx, so we'll loose this rhs here.
784 Just can't come up with significant testcase for this, so just
785 leaving it for now. */
786 if (new_insn_valid)
787 {
788 change_vinsn_in_expr (expr,
789 create_vinsn_from_insn_rtx (new_insn, false));
790
791 /* Do not allow clobbering the address register of speculative
792 insns. */
793 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
794 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
795 expr_dest_regno (expr)))
796 EXPR_TARGET_AVAILABLE (expr) = false;
797
798 return true;
799 }
800 else
801 return false;
802 }
803 else
804 return false;
805 }
806
807 /* Helper function for count_occurences_equiv. */
808 static int
809 count_occurrences_1 (rtx *cur_rtx, void *arg)
810 {
811 rtx_search_arg_p p = (rtx_search_arg_p) arg;
812
813 /* The last param FOR_GCSE is true, because otherwise it performs excessive
814 substitutions like
815 r8 = r33
816 r16 = r33
817 for the last insn it presumes r33 equivalent to r8, so it changes it to
818 r33. Actually, there's no change, but it spoils debugging. */
819 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
820 {
821 /* Bail out if we occupy more than one register. */
822 if (REG_P (*cur_rtx)
823 && HARD_REGISTER_P (*cur_rtx)
824 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
825 {
826 p->n = 0;
827 return 1;
828 }
829
830 p->n++;
831
832 /* Do not traverse subexprs. */
833 return -1;
834 }
835
836 if (GET_CODE (*cur_rtx) == SUBREG
837 && REG_P (p->x)
838 && (!REG_P (SUBREG_REG (*cur_rtx))
839 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
840 {
841 /* ??? Do not support substituting regs inside subregs. In that case,
842 simplify_subreg will be called by validate_replace_rtx, and
843 unsubstitution will fail later. */
844 p->n = 0;
845 return 1;
846 }
847
848 /* Continue search. */
849 return 0;
850 }
851
852 /* Return the number of places WHAT appears within WHERE.
853 Bail out when we found a reference occupying several hard registers. */
854 static int
855 count_occurrences_equiv (rtx what, rtx where)
856 {
857 struct rtx_search_arg arg;
858
859 arg.x = what;
860 arg.n = 0;
861
862 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
863
864 return arg.n;
865 }
866
867 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
868 static bool
869 rtx_ok_for_substitution_p (rtx what, rtx where)
870 {
871 return (count_occurrences_equiv (what, where) > 0);
872 }
873 \f
874
875 /* Functions to support register renaming. */
876
877 /* Substitute VI's set source with REGNO. Returns newly created pattern
878 that has REGNO as its source. */
879 static rtx
880 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
881 {
882 rtx lhs_rtx;
883 rtx pattern;
884 rtx insn_rtx;
885
886 lhs_rtx = copy_rtx (VINSN_LHS (vi));
887
888 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
889 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
890
891 return insn_rtx;
892 }
893
894 /* Returns whether INSN's src can be replaced with register number
895 NEW_SRC_REG. E.g. the following insn is valid for i386:
896
897 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
898 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
899 (reg:SI 0 ax [orig:770 c1 ] [770]))
900 (const_int 288 [0x120])) [0 str S1 A8])
901 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
902 (nil))
903
904 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
905 because of operand constraints:
906
907 (define_insn "*movqi_1"
908 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
909 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
910 )]
911
912 So do constrain_operands here, before choosing NEW_SRC_REG as best
913 reg for rhs. */
914
915 static bool
916 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
917 {
918 vinsn_t vi = INSN_VINSN (insn);
919 enum machine_mode mode;
920 rtx dst_loc;
921 bool res;
922
923 gcc_assert (VINSN_SEPARABLE_P (vi));
924
925 get_dest_and_mode (insn, &dst_loc, &mode);
926 gcc_assert (mode == GET_MODE (new_src_reg));
927
928 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
929 return true;
930
931 /* See whether SET_SRC can be replaced with this register. */
932 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
933 res = verify_changes (0);
934 cancel_changes (0);
935
936 return res;
937 }
938
939 /* Returns whether INSN still be valid after replacing it's DEST with
940 register NEW_REG. */
941 static bool
942 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
943 {
944 vinsn_t vi = INSN_VINSN (insn);
945 bool res;
946
947 /* We should deal here only with separable insns. */
948 gcc_assert (VINSN_SEPARABLE_P (vi));
949 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
950
951 /* See whether SET_DEST can be replaced with this register. */
952 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
953 res = verify_changes (0);
954 cancel_changes (0);
955
956 return res;
957 }
958
959 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
960 static rtx
961 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
962 {
963 rtx rhs_rtx;
964 rtx pattern;
965 rtx insn_rtx;
966
967 rhs_rtx = copy_rtx (VINSN_RHS (vi));
968
969 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
970 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
971
972 return insn_rtx;
973 }
974
975 /* Substitute lhs in the given expression EXPR for the register with number
976 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
977 static void
978 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
979 {
980 rtx insn_rtx;
981 vinsn_t vinsn;
982
983 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
984 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
985
986 change_vinsn_in_expr (expr, vinsn);
987 EXPR_WAS_RENAMED (expr) = 1;
988 EXPR_TARGET_AVAILABLE (expr) = 1;
989 }
990
991 /* Returns whether VI writes either one of the USED_REGS registers or,
992 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
993 static bool
994 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
995 HARD_REG_SET unavailable_hard_regs)
996 {
997 unsigned regno;
998 reg_set_iterator rsi;
999
1000 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1001 {
1002 if (REGNO_REG_SET_P (used_regs, regno))
1003 return true;
1004 if (HARD_REGISTER_NUM_P (regno)
1005 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1006 return true;
1007 }
1008
1009 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1010 {
1011 if (REGNO_REG_SET_P (used_regs, regno))
1012 return true;
1013 if (HARD_REGISTER_NUM_P (regno)
1014 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1015 return true;
1016 }
1017
1018 return false;
1019 }
1020
1021 /* Returns register class of the output register in INSN.
1022 Returns NO_REGS for call insns because some targets have constraints on
1023 destination register of a call insn.
1024
1025 Code adopted from regrename.c::build_def_use. */
1026 static enum reg_class
1027 get_reg_class (rtx insn)
1028 {
1029 int alt, i, n_ops;
1030
1031 extract_insn (insn);
1032 if (! constrain_operands (1))
1033 fatal_insn_not_found (insn);
1034 preprocess_constraints ();
1035 alt = which_alternative;
1036 n_ops = recog_data.n_operands;
1037
1038 for (i = 0; i < n_ops; ++i)
1039 {
1040 int matches = recog_op_alt[i][alt].matches;
1041 if (matches >= 0)
1042 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1043 }
1044
1045 if (asm_noperands (PATTERN (insn)) > 0)
1046 {
1047 for (i = 0; i < n_ops; i++)
1048 if (recog_data.operand_type[i] == OP_OUT)
1049 {
1050 rtx *loc = recog_data.operand_loc[i];
1051 rtx op = *loc;
1052 enum reg_class cl = recog_op_alt[i][alt].cl;
1053
1054 if (REG_P (op)
1055 && REGNO (op) == ORIGINAL_REGNO (op))
1056 continue;
1057
1058 return cl;
1059 }
1060 }
1061 else if (!CALL_P (insn))
1062 {
1063 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1064 {
1065 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1066 enum reg_class cl = recog_op_alt[opn][alt].cl;
1067
1068 if (recog_data.operand_type[opn] == OP_OUT ||
1069 recog_data.operand_type[opn] == OP_INOUT)
1070 return cl;
1071 }
1072 }
1073
1074 /* Insns like
1075 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1076 may result in returning NO_REGS, cause flags is written implicitly through
1077 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1078 return NO_REGS;
1079 }
1080
1081 #ifdef HARD_REGNO_RENAME_OK
1082 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1083 static void
1084 init_hard_regno_rename (int regno)
1085 {
1086 int cur_reg;
1087
1088 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1089
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 {
1092 /* We are not interested in renaming in other regs. */
1093 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1094 continue;
1095
1096 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1097 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1098 }
1099 }
1100 #endif
1101
1102 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1103 data first. */
1104 static inline bool
1105 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1106 {
1107 #ifdef HARD_REGNO_RENAME_OK
1108 /* Check whether this is all calculated. */
1109 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1110 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1111
1112 init_hard_regno_rename (from);
1113
1114 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1115 #else
1116 return true;
1117 #endif
1118 }
1119
1120 /* Calculate set of registers that are capable of holding MODE. */
1121 static void
1122 init_regs_for_mode (enum machine_mode mode)
1123 {
1124 int cur_reg;
1125
1126 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1127 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1128
1129 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1130 {
1131 int nregs = hard_regno_nregs[cur_reg][mode];
1132 int i;
1133
1134 for (i = nregs - 1; i >= 0; --i)
1135 if (fixed_regs[cur_reg + i]
1136 || global_regs[cur_reg + i]
1137 /* Can't use regs which aren't saved by
1138 the prologue. */
1139 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1140 #ifdef LEAF_REGISTERS
1141 /* We can't use a non-leaf register if we're in a
1142 leaf function. */
1143 || (current_function_is_leaf
1144 && !LEAF_REGISTERS[cur_reg + i])
1145 #endif
1146 )
1147 break;
1148
1149 if (i >= 0)
1150 continue;
1151
1152 /* See whether it accepts all modes that occur in
1153 original insns. */
1154 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1155 continue;
1156
1157 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1158 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1159 cur_reg);
1160
1161 /* If the CUR_REG passed all the checks above,
1162 then it's ok. */
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1164 }
1165
1166 sel_hrd.regs_for_mode_ok[mode] = true;
1167 }
1168
1169 /* Init all register sets gathered in HRD. */
1170 static void
1171 init_hard_regs_data (void)
1172 {
1173 int cur_reg = 0;
1174 int cur_mode = 0;
1175
1176 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1177 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1178 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1179 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1180
1181 /* Initialize registers that are valid based on mode when this is
1182 really needed. */
1183 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1184 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1185
1186 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1187 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1188 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1189
1190 #ifdef STACK_REGS
1191 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1192
1193 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1194 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1195 #endif
1196 }
1197
1198 /* Mark hardware regs in REG_RENAME_P that are not suitable
1199 for renaming rhs in INSN due to hardware restrictions (register class,
1200 modes compatibility etc). This doesn't affect original insn's dest reg,
1201 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1202 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1203 Registers that are in used_regs are always marked in
1204 unavailable_hard_regs as well. */
1205
1206 static void
1207 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1208 regset used_regs ATTRIBUTE_UNUSED)
1209 {
1210 enum machine_mode mode;
1211 enum reg_class cl = NO_REGS;
1212 rtx orig_dest;
1213 unsigned cur_reg, regno;
1214 hard_reg_set_iterator hrsi;
1215
1216 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1217 gcc_assert (reg_rename_p);
1218
1219 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1220
1221 /* We have decided not to rename 'mem = something;' insns, as 'something'
1222 is usually a register. */
1223 if (!REG_P (orig_dest))
1224 return;
1225
1226 regno = REGNO (orig_dest);
1227
1228 /* If before reload, don't try to work with pseudos. */
1229 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1230 return;
1231
1232 if (reload_completed)
1233 cl = get_reg_class (def->orig_insn);
1234
1235 /* Stop if the original register is one of the fixed_regs, global_regs or
1236 frame pointer, or we could not discover its class. */
1237 if (fixed_regs[regno]
1238 || global_regs[regno]
1239 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1240 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1241 #else
1242 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1243 #endif
1244 || (reload_completed && cl == NO_REGS))
1245 {
1246 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1247
1248 /* Give a chance for original register, if it isn't in used_regs. */
1249 if (!def->crosses_call)
1250 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1251
1252 return;
1253 }
1254
1255 /* If something allocated on stack in this function, mark frame pointer
1256 register unavailable, considering also modes.
1257 FIXME: it is enough to do this once per all original defs. */
1258 if (frame_pointer_needed)
1259 {
1260 int i;
1261
1262 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1263 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1264 FRAME_POINTER_REGNUM + i);
1265
1266 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1267 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269 HARD_FRAME_POINTER_REGNUM + i);
1270 #endif
1271 }
1272
1273 #ifdef STACK_REGS
1274 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1275 is equivalent to as if all stack regs were in this set.
1276 I.e. no stack register can be renamed, and even if it's an original
1277 register here we make sure it won't be lifted over it's previous def
1278 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1279 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1280 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1281 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1282 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1283 sel_hrd.stack_regs);
1284 #endif
1285
1286 /* If there's a call on this path, make regs from call_used_reg_set
1287 unavailable. */
1288 if (def->crosses_call)
1289 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1290 call_used_reg_set);
1291
1292 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1293 but not register classes. */
1294 if (!reload_completed)
1295 return;
1296
1297 /* Leave regs as 'available' only from the current
1298 register class. */
1299 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1300 reg_class_contents[cl]);
1301
1302 mode = GET_MODE (orig_dest);
1303
1304 /* Leave only registers available for this mode. */
1305 if (!sel_hrd.regs_for_mode_ok[mode])
1306 init_regs_for_mode (mode);
1307 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1308 sel_hrd.regs_for_mode[mode]);
1309
1310 /* Exclude registers that are partially call clobbered. */
1311 if (def->crosses_call
1312 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1313 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1314 sel_hrd.regs_for_call_clobbered[mode]);
1315
1316 /* Leave only those that are ok to rename. */
1317 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1318 0, cur_reg, hrsi)
1319 {
1320 int nregs;
1321 int i;
1322
1323 nregs = hard_regno_nregs[cur_reg][mode];
1324 gcc_assert (nregs > 0);
1325
1326 for (i = nregs - 1; i >= 0; --i)
1327 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1328 break;
1329
1330 if (i >= 0)
1331 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1332 cur_reg);
1333 }
1334
1335 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1336 reg_rename_p->unavailable_hard_regs);
1337
1338 /* Regno is always ok from the renaming part of view, but it really
1339 could be in *unavailable_hard_regs already, so set it here instead
1340 of there. */
1341 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1342 }
1343
1344 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1345 best register more recently than REG2. */
1346 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1347
1348 /* Indicates the number of times renaming happened before the current one. */
1349 static int reg_rename_this_tick;
1350
1351 /* Choose the register among free, that is suitable for storing
1352 the rhs value.
1353
1354 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1355 originally appears. There could be multiple original operations
1356 for single rhs since we moving it up and merging along different
1357 paths.
1358
1359 Some code is adapted from regrename.c (regrename_optimize).
1360 If original register is available, function returns it.
1361 Otherwise it performs the checks, so the new register should
1362 comply with the following:
1363 - it should not violate any live ranges (such registers are in
1364 REG_RENAME_P->available_for_renaming set);
1365 - it should not be in the HARD_REGS_USED regset;
1366 - it should be in the class compatible with original uses;
1367 - it should not be clobbered through reference with different mode;
1368 - if we're in the leaf function, then the new register should
1369 not be in the LEAF_REGISTERS;
1370 - etc.
1371
1372 If several registers meet the conditions, the register with smallest
1373 tick is returned to achieve more even register allocation.
1374
1375 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1376
1377 If no register satisfies the above conditions, NULL_RTX is returned. */
1378 static rtx
1379 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1380 struct reg_rename *reg_rename_p,
1381 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1382 {
1383 int best_new_reg;
1384 unsigned cur_reg;
1385 enum machine_mode mode = VOIDmode;
1386 unsigned regno, i, n;
1387 hard_reg_set_iterator hrsi;
1388 def_list_iterator di;
1389 def_t def;
1390
1391 /* If original register is available, return it. */
1392 *is_orig_reg_p_ptr = true;
1393
1394 FOR_EACH_DEF (def, di, original_insns)
1395 {
1396 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1397
1398 gcc_assert (REG_P (orig_dest));
1399
1400 /* Check that all original operations have the same mode.
1401 This is done for the next loop; if we'd return from this
1402 loop, we'd check only part of them, but in this case
1403 it doesn't matter. */
1404 if (mode == VOIDmode)
1405 mode = GET_MODE (orig_dest);
1406 gcc_assert (mode == GET_MODE (orig_dest));
1407
1408 regno = REGNO (orig_dest);
1409 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1410 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1411 break;
1412
1413 /* All hard registers are available. */
1414 if (i == n)
1415 {
1416 gcc_assert (mode != VOIDmode);
1417
1418 /* Hard registers should not be shared. */
1419 return gen_rtx_REG (mode, regno);
1420 }
1421 }
1422
1423 *is_orig_reg_p_ptr = false;
1424 best_new_reg = -1;
1425
1426 /* Among all available regs choose the register that was
1427 allocated earliest. */
1428 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1429 0, cur_reg, hrsi)
1430 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1431 {
1432 /* Check that all hard regs for mode are available. */
1433 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1434 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1435 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1436 cur_reg + i))
1437 break;
1438
1439 if (i < n)
1440 continue;
1441
1442 /* All hard registers are available. */
1443 if (best_new_reg < 0
1444 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1445 {
1446 best_new_reg = cur_reg;
1447
1448 /* Return immediately when we know there's no better reg. */
1449 if (! reg_rename_tick[best_new_reg])
1450 break;
1451 }
1452 }
1453
1454 if (best_new_reg >= 0)
1455 {
1456 /* Use the check from the above loop. */
1457 gcc_assert (mode != VOIDmode);
1458 return gen_rtx_REG (mode, best_new_reg);
1459 }
1460
1461 return NULL_RTX;
1462 }
1463
1464 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1465 assumptions about available registers in the function. */
1466 static rtx
1467 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1468 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1469 {
1470 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1471 original_insns, is_orig_reg_p_ptr);
1472
1473 /* FIXME loop over hard_regno_nregs here. */
1474 gcc_assert (best_reg == NULL_RTX
1475 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1476
1477 return best_reg;
1478 }
1479
1480 /* Choose the pseudo register for storing rhs value. As this is supposed
1481 to work before reload, we return either the original register or make
1482 the new one. The parameters are the same that in choose_nest_reg_1
1483 functions, except that USED_REGS may contain pseudos.
1484 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1485
1486 TODO: take into account register pressure while doing this. Up to this
1487 moment, this function would never return NULL for pseudos, but we should
1488 not rely on this. */
1489 static rtx
1490 choose_best_pseudo_reg (regset used_regs,
1491 struct reg_rename *reg_rename_p,
1492 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1493 {
1494 def_list_iterator i;
1495 def_t def;
1496 enum machine_mode mode = VOIDmode;
1497 bool bad_hard_regs = false;
1498
1499 /* We should not use this after reload. */
1500 gcc_assert (!reload_completed);
1501
1502 /* If original register is available, return it. */
1503 *is_orig_reg_p_ptr = true;
1504
1505 FOR_EACH_DEF (def, i, original_insns)
1506 {
1507 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1508 int orig_regno;
1509
1510 gcc_assert (REG_P (dest));
1511
1512 /* Check that all original operations have the same mode. */
1513 if (mode == VOIDmode)
1514 mode = GET_MODE (dest);
1515 else
1516 gcc_assert (mode == GET_MODE (dest));
1517 orig_regno = REGNO (dest);
1518
1519 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1520 {
1521 if (orig_regno < FIRST_PSEUDO_REGISTER)
1522 {
1523 gcc_assert (df_regs_ever_live_p (orig_regno));
1524
1525 /* For hard registers, we have to check hardware imposed
1526 limitations (frame/stack registers, calls crossed). */
1527 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1528 orig_regno))
1529 {
1530 /* Don't let register cross a call if it doesn't already
1531 cross one. This condition is written in accordance with
1532 that in sched-deps.c sched_analyze_reg(). */
1533 if (!reg_rename_p->crosses_call
1534 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1535 return gen_rtx_REG (mode, orig_regno);
1536 }
1537
1538 bad_hard_regs = true;
1539 }
1540 else
1541 return dest;
1542 }
1543 }
1544
1545 *is_orig_reg_p_ptr = false;
1546
1547 /* We had some original hard registers that couldn't be used.
1548 Those were likely special. Don't try to create a pseudo. */
1549 if (bad_hard_regs)
1550 return NULL_RTX;
1551
1552 /* We haven't found a register from original operations. Get a new one.
1553 FIXME: control register pressure somehow. */
1554 {
1555 rtx new_reg = gen_reg_rtx (mode);
1556
1557 gcc_assert (mode != VOIDmode);
1558
1559 max_regno = max_reg_num ();
1560 maybe_extend_reg_info_p ();
1561 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1562
1563 return new_reg;
1564 }
1565 }
1566
1567 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1568 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1569 static void
1570 verify_target_availability (expr_t expr, regset used_regs,
1571 struct reg_rename *reg_rename_p)
1572 {
1573 unsigned n, i, regno;
1574 enum machine_mode mode;
1575 bool target_available, live_available, hard_available;
1576
1577 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1578 return;
1579
1580 regno = expr_dest_regno (expr);
1581 mode = GET_MODE (EXPR_LHS (expr));
1582 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1583 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1584
1585 live_available = hard_available = true;
1586 for (i = 0; i < n; i++)
1587 {
1588 if (bitmap_bit_p (used_regs, regno + i))
1589 live_available = false;
1590 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1591 hard_available = false;
1592 }
1593
1594 /* When target is not available, it may be due to hard register
1595 restrictions, e.g. crosses calls, so we check hard_available too. */
1596 if (target_available)
1597 gcc_assert (live_available);
1598 else
1599 /* Check only if we haven't scheduled something on the previous fence,
1600 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1601 and having more than one fence, we may end having targ_un in a block
1602 in which successors target register is actually available.
1603
1604 The last condition handles the case when a dependence from a call insn
1605 was created in sched-deps.c for insns with destination registers that
1606 never crossed a call before, but do cross one after our code motion.
1607
1608 FIXME: in the latter case, we just uselessly called find_used_regs,
1609 because we can't move this expression with any other register
1610 as well. */
1611 gcc_assert (scheduled_something_on_previous_fence || !live_available
1612 || !hard_available
1613 || (!reload_completed && reg_rename_p->crosses_call
1614 && REG_N_CALLS_CROSSED (regno) == 0));
1615 }
1616
1617 /* Collect unavailable registers due to liveness for EXPR from BNDS
1618 into USED_REGS. Save additional information about available
1619 registers and unavailable due to hardware restriction registers
1620 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1621 list. */
1622 static void
1623 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1624 struct reg_rename *reg_rename_p,
1625 def_list_t *original_insns)
1626 {
1627 for (; bnds; bnds = BLIST_NEXT (bnds))
1628 {
1629 bool res;
1630 av_set_t orig_ops = NULL;
1631 bnd_t bnd = BLIST_BND (bnds);
1632
1633 /* If the chosen best expr doesn't belong to current boundary,
1634 skip it. */
1635 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1636 continue;
1637
1638 /* Put in ORIG_OPS all exprs from this boundary that became
1639 RES on top. */
1640 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1641
1642 /* Compute used regs and OR it into the USED_REGS. */
1643 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1644 reg_rename_p, original_insns);
1645
1646 /* FIXME: the assert is true until we'd have several boundaries. */
1647 gcc_assert (res);
1648 av_set_clear (&orig_ops);
1649 }
1650 }
1651
1652 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1653 If BEST_REG is valid, replace LHS of EXPR with it. */
1654 static bool
1655 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1656 {
1657 /* Try whether we'll be able to generate the insn
1658 'dest := best_reg' at the place of the original operation. */
1659 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1660 {
1661 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1662
1663 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1664
1665 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1666 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1667 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1668 return false;
1669 }
1670
1671 /* Make sure that EXPR has the right destination
1672 register. */
1673 if (expr_dest_regno (expr) != REGNO (best_reg))
1674 replace_dest_with_reg_in_expr (expr, best_reg);
1675 else
1676 EXPR_TARGET_AVAILABLE (expr) = 1;
1677
1678 return true;
1679 }
1680
1681 /* Select and assign best register to EXPR searching from BNDS.
1682 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1683 Return FALSE if no register can be chosen, which could happen when:
1684 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1685 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1686 that are used on the moving path. */
1687 static bool
1688 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1689 {
1690 static struct reg_rename reg_rename_data;
1691
1692 regset used_regs;
1693 def_list_t original_insns = NULL;
1694 bool reg_ok;
1695
1696 *is_orig_reg_p = false;
1697
1698 /* Don't bother to do anything if this insn doesn't set any registers. */
1699 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1700 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1701 return true;
1702
1703 used_regs = get_clear_regset_from_pool ();
1704 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1705
1706 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1707 &original_insns);
1708
1709 #ifdef ENABLE_CHECKING
1710 /* If after reload, make sure we're working with hard regs here. */
1711 if (reload_completed)
1712 {
1713 reg_set_iterator rsi;
1714 unsigned i;
1715
1716 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1717 gcc_unreachable ();
1718 }
1719 #endif
1720
1721 if (EXPR_SEPARABLE_P (expr))
1722 {
1723 rtx best_reg = NULL_RTX;
1724 /* Check that we have computed availability of a target register
1725 correctly. */
1726 verify_target_availability (expr, used_regs, &reg_rename_data);
1727
1728 /* Turn everything in hard regs after reload. */
1729 if (reload_completed)
1730 {
1731 HARD_REG_SET hard_regs_used;
1732 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1733
1734 /* Join hard registers unavailable due to register class
1735 restrictions and live range intersection. */
1736 IOR_HARD_REG_SET (hard_regs_used,
1737 reg_rename_data.unavailable_hard_regs);
1738
1739 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1740 original_insns, is_orig_reg_p);
1741 }
1742 else
1743 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1744 original_insns, is_orig_reg_p);
1745
1746 if (!best_reg)
1747 reg_ok = false;
1748 else if (*is_orig_reg_p)
1749 {
1750 /* In case of unification BEST_REG may be different from EXPR's LHS
1751 when EXPR's LHS is unavailable, and there is another LHS among
1752 ORIGINAL_INSNS. */
1753 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1754 }
1755 else
1756 {
1757 /* Forbid renaming of low-cost insns. */
1758 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1759 reg_ok = false;
1760 else
1761 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1762 }
1763 }
1764 else
1765 {
1766 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1767 any of the HARD_REGS_USED set. */
1768 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1769 reg_rename_data.unavailable_hard_regs))
1770 {
1771 reg_ok = false;
1772 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1773 }
1774 else
1775 {
1776 reg_ok = true;
1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1778 }
1779 }
1780
1781 ilist_clear (&original_insns);
1782 return_regset_to_pool (used_regs);
1783
1784 return reg_ok;
1785 }
1786 \f
1787
1788 /* Return true if dependence described by DS can be overcomed. */
1789 static bool
1790 can_speculate_dep_p (ds_t ds)
1791 {
1792 if (spec_info == NULL)
1793 return false;
1794
1795 /* Leave only speculative data. */
1796 ds &= SPECULATIVE;
1797
1798 if (ds == 0)
1799 return false;
1800
1801 {
1802 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1803 that we can overcome. */
1804 ds_t spec_mask = spec_info->mask;
1805
1806 if ((ds & spec_mask) != ds)
1807 return false;
1808 }
1809
1810 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1811 return false;
1812
1813 return true;
1814 }
1815
1816 /* Get a speculation check instruction.
1817 C_EXPR is a speculative expression,
1818 CHECK_DS describes speculations that should be checked,
1819 ORIG_INSN is the original non-speculative insn in the stream. */
1820 static insn_t
1821 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1822 {
1823 rtx check_pattern;
1824 rtx insn_rtx;
1825 insn_t insn;
1826 basic_block recovery_block;
1827 rtx label;
1828
1829 /* Create a recovery block if target is going to emit branchy check, or if
1830 ORIG_INSN was speculative already. */
1831 if (targetm.sched.needs_block_p (check_ds)
1832 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1833 {
1834 recovery_block = sel_create_recovery_block (orig_insn);
1835 label = BB_HEAD (recovery_block);
1836 }
1837 else
1838 {
1839 recovery_block = NULL;
1840 label = NULL_RTX;
1841 }
1842
1843 /* Get pattern of the check. */
1844 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1845 check_ds);
1846
1847 gcc_assert (check_pattern != NULL);
1848
1849 /* Emit check. */
1850 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1851
1852 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1853 INSN_SEQNO (orig_insn), orig_insn);
1854
1855 /* Make check to be non-speculative. */
1856 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1857 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1858
1859 /* Decrease priority of check by difference of load/check instruction
1860 latencies. */
1861 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1862 - sel_vinsn_cost (INSN_VINSN (insn)));
1863
1864 /* Emit copy of original insn (though with replaced target register,
1865 if needed) to the recovery block. */
1866 if (recovery_block != NULL)
1867 {
1868 rtx twin_rtx;
1869
1870 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1871 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1872 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1873 INSN_EXPR (orig_insn),
1874 INSN_SEQNO (insn),
1875 bb_note (recovery_block));
1876 }
1877
1878 /* If we've generated a data speculation check, make sure
1879 that all the bookkeeping instruction we'll create during
1880 this move_op () will allocate an ALAT entry so that the
1881 check won't fail.
1882 In case of control speculation we must convert C_EXPR to control
1883 speculative mode, because failing to do so will bring us an exception
1884 thrown by the non-control-speculative load. */
1885 check_ds = ds_get_max_dep_weak (check_ds);
1886 speculate_expr (c_expr, check_ds);
1887
1888 return insn;
1889 }
1890
1891 /* True when INSN is a "regN = regN" copy. */
1892 static bool
1893 identical_copy_p (rtx insn)
1894 {
1895 rtx lhs, rhs, pat;
1896
1897 pat = PATTERN (insn);
1898
1899 if (GET_CODE (pat) != SET)
1900 return false;
1901
1902 lhs = SET_DEST (pat);
1903 if (!REG_P (lhs))
1904 return false;
1905
1906 rhs = SET_SRC (pat);
1907 if (!REG_P (rhs))
1908 return false;
1909
1910 return REGNO (lhs) == REGNO (rhs);
1911 }
1912
1913 /* Undo all transformations on *AV_PTR that were done when
1914 moving through INSN. */
1915 static void
1916 undo_transformations (av_set_t *av_ptr, rtx insn)
1917 {
1918 av_set_iterator av_iter;
1919 expr_t expr;
1920 av_set_t new_set = NULL;
1921
1922 /* First, kill any EXPR that uses registers set by an insn. This is
1923 required for correctness. */
1924 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1925 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1926 && bitmap_intersect_p (INSN_REG_SETS (insn),
1927 VINSN_REG_USES (EXPR_VINSN (expr)))
1928 /* When an insn looks like 'r1 = r1', we could substitute through
1929 it, but the above condition will still hold. This happened with
1930 gcc.c-torture/execute/961125-1.c. */
1931 && !identical_copy_p (insn))
1932 {
1933 if (sched_verbose >= 6)
1934 sel_print ("Expr %d removed due to use/set conflict\n",
1935 INSN_UID (EXPR_INSN_RTX (expr)));
1936 av_set_iter_remove (&av_iter);
1937 }
1938
1939 /* Undo transformations looking at the history vector. */
1940 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1941 {
1942 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1943 insn, EXPR_VINSN (expr), true);
1944
1945 if (index >= 0)
1946 {
1947 expr_history_def *phist;
1948
1949 phist = VEC_index (expr_history_def,
1950 EXPR_HISTORY_OF_CHANGES (expr),
1951 index);
1952
1953 switch (phist->type)
1954 {
1955 case TRANS_SPECULATION:
1956 {
1957 ds_t old_ds, new_ds;
1958
1959 /* Compute the difference between old and new speculative
1960 statuses: that's what we need to check.
1961 Earlier we used to assert that the status will really
1962 change. This no longer works because only the probability
1963 bits in the status may have changed during compute_av_set,
1964 and in the case of merging different probabilities of the
1965 same speculative status along different paths we do not
1966 record this in the history vector. */
1967 old_ds = phist->spec_ds;
1968 new_ds = EXPR_SPEC_DONE_DS (expr);
1969
1970 old_ds &= SPECULATIVE;
1971 new_ds &= SPECULATIVE;
1972 new_ds &= ~old_ds;
1973
1974 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1975 break;
1976 }
1977 case TRANS_SUBSTITUTION:
1978 {
1979 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1980 vinsn_t new_vi;
1981 bool add = true;
1982
1983 new_vi = phist->old_expr_vinsn;
1984
1985 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1986 == EXPR_SEPARABLE_P (expr));
1987 copy_expr (tmp_expr, expr);
1988
1989 if (vinsn_equal_p (phist->new_expr_vinsn,
1990 EXPR_VINSN (tmp_expr)))
1991 change_vinsn_in_expr (tmp_expr, new_vi);
1992 else
1993 /* This happens when we're unsubstituting on a bookkeeping
1994 copy, which was in turn substituted. The history is wrong
1995 in this case. Do it the hard way. */
1996 add = substitute_reg_in_expr (tmp_expr, insn, true);
1997 if (add)
1998 av_set_add (&new_set, tmp_expr);
1999 clear_expr (tmp_expr);
2000 break;
2001 }
2002 default:
2003 gcc_unreachable ();
2004 }
2005 }
2006
2007 }
2008
2009 av_set_union_and_clear (av_ptr, &new_set, NULL);
2010 }
2011 \f
2012
2013 /* Moveup_* helpers for code motion and computing av sets. */
2014
2015 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2016 The difference from the below function is that only substitution is
2017 performed. */
2018 static enum MOVEUP_EXPR_CODE
2019 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2020 {
2021 vinsn_t vi = EXPR_VINSN (expr);
2022 ds_t *has_dep_p;
2023 ds_t full_ds;
2024
2025 /* Do this only inside insn group. */
2026 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2027
2028 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2029 if (full_ds == 0)
2030 return MOVEUP_EXPR_SAME;
2031
2032 /* Substitution is the possible choice in this case. */
2033 if (has_dep_p[DEPS_IN_RHS])
2034 {
2035 /* Can't substitute UNIQUE VINSNs. */
2036 gcc_assert (!VINSN_UNIQUE_P (vi));
2037
2038 if (can_substitute_through_p (through_insn,
2039 has_dep_p[DEPS_IN_RHS])
2040 && substitute_reg_in_expr (expr, through_insn, false))
2041 {
2042 EXPR_WAS_SUBSTITUTED (expr) = true;
2043 return MOVEUP_EXPR_CHANGED;
2044 }
2045
2046 /* Don't care about this, as even true dependencies may be allowed
2047 in an insn group. */
2048 return MOVEUP_EXPR_SAME;
2049 }
2050
2051 /* This can catch output dependencies in COND_EXECs. */
2052 if (has_dep_p[DEPS_IN_INSN])
2053 return MOVEUP_EXPR_NULL;
2054
2055 /* This is either an output or an anti dependence, which usually have
2056 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2057 will fix this. */
2058 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2059 return MOVEUP_EXPR_AS_RHS;
2060 }
2061
2062 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2063 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2064 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2065 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2066 && !sel_insn_is_speculation_check (through_insn))
2067
2068 /* True when a conflict on a target register was found during moveup_expr. */
2069 static bool was_target_conflict = false;
2070
2071 /* Return true when moving a debug INSN across THROUGH_INSN will
2072 create a bookkeeping block. We don't want to create such blocks,
2073 for they would cause codegen differences between compilations with
2074 and without debug info. */
2075
2076 static bool
2077 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2078 insn_t through_insn)
2079 {
2080 basic_block bbi, bbt;
2081 edge e1, e2;
2082 edge_iterator ei1, ei2;
2083
2084 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2085 {
2086 if (sched_verbose >= 9)
2087 sel_print ("no bookkeeping required: ");
2088 return FALSE;
2089 }
2090
2091 bbi = BLOCK_FOR_INSN (insn);
2092
2093 if (EDGE_COUNT (bbi->preds) == 1)
2094 {
2095 if (sched_verbose >= 9)
2096 sel_print ("only one pred edge: ");
2097 return TRUE;
2098 }
2099
2100 bbt = BLOCK_FOR_INSN (through_insn);
2101
2102 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2103 {
2104 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2105 {
2106 if (find_block_for_bookkeeping (e1, e2, TRUE))
2107 {
2108 if (sched_verbose >= 9)
2109 sel_print ("found existing block: ");
2110 return FALSE;
2111 }
2112 }
2113 }
2114
2115 if (sched_verbose >= 9)
2116 sel_print ("would create bookkeeping block: ");
2117
2118 return TRUE;
2119 }
2120
2121 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2122 performing necessary transformations. Record the type of transformation
2123 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2124 permit all dependencies except true ones, and try to remove those
2125 too via forward substitution. All cases when a non-eliminable
2126 non-zero cost dependency exists inside an insn group will be fixed
2127 in tick_check_p instead. */
2128 static enum MOVEUP_EXPR_CODE
2129 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2130 enum local_trans_type *ptrans_type)
2131 {
2132 vinsn_t vi = EXPR_VINSN (expr);
2133 insn_t insn = VINSN_INSN_RTX (vi);
2134 bool was_changed = false;
2135 bool as_rhs = false;
2136 ds_t *has_dep_p;
2137 ds_t full_ds;
2138
2139 /* When inside_insn_group, delegate to the helper. */
2140 if (inside_insn_group)
2141 return moveup_expr_inside_insn_group (expr, through_insn);
2142
2143 /* Deal with unique insns and control dependencies. */
2144 if (VINSN_UNIQUE_P (vi))
2145 {
2146 /* We can move jumps without side-effects or jumps that are
2147 mutually exclusive with instruction THROUGH_INSN (all in cases
2148 dependencies allow to do so and jump is not speculative). */
2149 if (control_flow_insn_p (insn))
2150 {
2151 basic_block fallthru_bb;
2152
2153 /* Do not move checks and do not move jumps through other
2154 jumps. */
2155 if (control_flow_insn_p (through_insn)
2156 || sel_insn_is_speculation_check (insn))
2157 return MOVEUP_EXPR_NULL;
2158
2159 /* Don't move jumps through CFG joins. */
2160 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2161 return MOVEUP_EXPR_NULL;
2162
2163 /* The jump should have a clear fallthru block, and
2164 this block should be in the current region. */
2165 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2166 || ! in_current_region_p (fallthru_bb))
2167 return MOVEUP_EXPR_NULL;
2168
2169 /* And it should be mutually exclusive with through_insn, or
2170 be an unconditional jump. */
2171 if (! any_uncondjump_p (insn)
2172 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2173 && ! DEBUG_INSN_P (through_insn))
2174 return MOVEUP_EXPR_NULL;
2175 }
2176
2177 /* Don't move what we can't move. */
2178 if (EXPR_CANT_MOVE (expr)
2179 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2180 return MOVEUP_EXPR_NULL;
2181
2182 /* Don't move SCHED_GROUP instruction through anything.
2183 If we don't force this, then it will be possible to start
2184 scheduling a sched_group before all its dependencies are
2185 resolved.
2186 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2187 as late as possible through rank_for_schedule. */
2188 if (SCHED_GROUP_P (insn))
2189 return MOVEUP_EXPR_NULL;
2190 }
2191 else
2192 gcc_assert (!control_flow_insn_p (insn));
2193
2194 /* Don't move debug insns if this would require bookkeeping. */
2195 if (DEBUG_INSN_P (insn)
2196 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2197 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2198 return MOVEUP_EXPR_NULL;
2199
2200 /* Deal with data dependencies. */
2201 was_target_conflict = false;
2202 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2203 if (full_ds == 0)
2204 {
2205 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2206 return MOVEUP_EXPR_SAME;
2207 }
2208 else
2209 {
2210 /* We can move UNIQUE insn up only as a whole and unchanged,
2211 so it shouldn't have any dependencies. */
2212 if (VINSN_UNIQUE_P (vi))
2213 return MOVEUP_EXPR_NULL;
2214 }
2215
2216 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2217 {
2218 int res;
2219
2220 res = speculate_expr (expr, full_ds);
2221 if (res >= 0)
2222 {
2223 /* Speculation was successful. */
2224 full_ds = 0;
2225 was_changed = (res > 0);
2226 if (res == 2)
2227 was_target_conflict = true;
2228 if (ptrans_type)
2229 *ptrans_type = TRANS_SPECULATION;
2230 sel_clear_has_dependence ();
2231 }
2232 }
2233
2234 if (has_dep_p[DEPS_IN_INSN])
2235 /* We have some dependency that cannot be discarded. */
2236 return MOVEUP_EXPR_NULL;
2237
2238 if (has_dep_p[DEPS_IN_LHS])
2239 {
2240 /* Only separable insns can be moved up with the new register.
2241 Anyways, we should mark that the original register is
2242 unavailable. */
2243 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2244 return MOVEUP_EXPR_NULL;
2245
2246 EXPR_TARGET_AVAILABLE (expr) = false;
2247 was_target_conflict = true;
2248 as_rhs = true;
2249 }
2250
2251 /* At this point we have either separable insns, that will be lifted
2252 up only as RHSes, or non-separable insns with no dependency in lhs.
2253 If dependency is in RHS, then try to perform substitution and move up
2254 substituted RHS:
2255
2256 Ex. 1: Ex.2
2257 y = x; y = x;
2258 z = y*2; y = y*2;
2259
2260 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2261 moved above y=x assignment as z=x*2.
2262
2263 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2264 side can be moved because of the output dependency. The operation was
2265 cropped to its rhs above. */
2266 if (has_dep_p[DEPS_IN_RHS])
2267 {
2268 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2269
2270 /* Can't substitute UNIQUE VINSNs. */
2271 gcc_assert (!VINSN_UNIQUE_P (vi));
2272
2273 if (can_speculate_dep_p (*rhs_dsp))
2274 {
2275 int res;
2276
2277 res = speculate_expr (expr, *rhs_dsp);
2278 if (res >= 0)
2279 {
2280 /* Speculation was successful. */
2281 *rhs_dsp = 0;
2282 was_changed = (res > 0);
2283 if (res == 2)
2284 was_target_conflict = true;
2285 if (ptrans_type)
2286 *ptrans_type = TRANS_SPECULATION;
2287 }
2288 else
2289 return MOVEUP_EXPR_NULL;
2290 }
2291 else if (can_substitute_through_p (through_insn,
2292 *rhs_dsp)
2293 && substitute_reg_in_expr (expr, through_insn, false))
2294 {
2295 /* ??? We cannot perform substitution AND speculation on the same
2296 insn. */
2297 gcc_assert (!was_changed);
2298 was_changed = true;
2299 if (ptrans_type)
2300 *ptrans_type = TRANS_SUBSTITUTION;
2301 EXPR_WAS_SUBSTITUTED (expr) = true;
2302 }
2303 else
2304 return MOVEUP_EXPR_NULL;
2305 }
2306
2307 /* Don't move trapping insns through jumps.
2308 This check should be at the end to give a chance to control speculation
2309 to perform its duties. */
2310 if (CANT_MOVE_TRAPPING (expr, through_insn))
2311 return MOVEUP_EXPR_NULL;
2312
2313 return (was_changed
2314 ? MOVEUP_EXPR_CHANGED
2315 : (as_rhs
2316 ? MOVEUP_EXPR_AS_RHS
2317 : MOVEUP_EXPR_SAME));
2318 }
2319
2320 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2321 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2322 that can exist within a parallel group. Write to RES the resulting
2323 code for moveup_expr. */
2324 static bool
2325 try_bitmap_cache (expr_t expr, insn_t insn,
2326 bool inside_insn_group,
2327 enum MOVEUP_EXPR_CODE *res)
2328 {
2329 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2330
2331 /* First check whether we've analyzed this situation already. */
2332 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2333 {
2334 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2335 {
2336 if (sched_verbose >= 6)
2337 sel_print ("removed (cached)\n");
2338 *res = MOVEUP_EXPR_NULL;
2339 return true;
2340 }
2341 else
2342 {
2343 if (sched_verbose >= 6)
2344 sel_print ("unchanged (cached)\n");
2345 *res = MOVEUP_EXPR_SAME;
2346 return true;
2347 }
2348 }
2349 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2350 {
2351 if (inside_insn_group)
2352 {
2353 if (sched_verbose >= 6)
2354 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2355 *res = MOVEUP_EXPR_SAME;
2356 return true;
2357
2358 }
2359 else
2360 EXPR_TARGET_AVAILABLE (expr) = false;
2361
2362 /* This is the only case when propagation result can change over time,
2363 as we can dynamically switch off scheduling as RHS. In this case,
2364 just check the flag to reach the correct decision. */
2365 if (enable_schedule_as_rhs_p)
2366 {
2367 if (sched_verbose >= 6)
2368 sel_print ("unchanged (as RHS, cached)\n");
2369 *res = MOVEUP_EXPR_AS_RHS;
2370 return true;
2371 }
2372 else
2373 {
2374 if (sched_verbose >= 6)
2375 sel_print ("removed (cached as RHS, but renaming"
2376 " is now disabled)\n");
2377 *res = MOVEUP_EXPR_NULL;
2378 return true;
2379 }
2380 }
2381
2382 return false;
2383 }
2384
2385 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2386 if successful. Write to RES the resulting code for moveup_expr. */
2387 static bool
2388 try_transformation_cache (expr_t expr, insn_t insn,
2389 enum MOVEUP_EXPR_CODE *res)
2390 {
2391 struct transformed_insns *pti
2392 = (struct transformed_insns *)
2393 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2394 &EXPR_VINSN (expr),
2395 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2396 if (pti)
2397 {
2398 /* This EXPR was already moved through this insn and was
2399 changed as a result. Fetch the proper data from
2400 the hashtable. */
2401 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2402 INSN_UID (insn), pti->type,
2403 pti->vinsn_old, pti->vinsn_new,
2404 EXPR_SPEC_DONE_DS (expr));
2405
2406 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2407 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2408 change_vinsn_in_expr (expr, pti->vinsn_new);
2409 if (pti->was_target_conflict)
2410 EXPR_TARGET_AVAILABLE (expr) = false;
2411 if (pti->type == TRANS_SPECULATION)
2412 {
2413 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2414 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2415 }
2416
2417 if (sched_verbose >= 6)
2418 {
2419 sel_print ("changed (cached): ");
2420 dump_expr (expr);
2421 sel_print ("\n");
2422 }
2423
2424 *res = MOVEUP_EXPR_CHANGED;
2425 return true;
2426 }
2427
2428 return false;
2429 }
2430
2431 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2432 static void
2433 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2434 enum MOVEUP_EXPR_CODE res)
2435 {
2436 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2437
2438 /* Do not cache result of propagating jumps through an insn group,
2439 as it is always true, which is not useful outside the group. */
2440 if (inside_insn_group)
2441 return;
2442
2443 if (res == MOVEUP_EXPR_NULL)
2444 {
2445 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2446 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2447 }
2448 else if (res == MOVEUP_EXPR_SAME)
2449 {
2450 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2451 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2452 }
2453 else if (res == MOVEUP_EXPR_AS_RHS)
2454 {
2455 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2456 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2457 }
2458 else
2459 gcc_unreachable ();
2460 }
2461
2462 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2463 and transformation type TRANS_TYPE. */
2464 static void
2465 update_transformation_cache (expr_t expr, insn_t insn,
2466 bool inside_insn_group,
2467 enum local_trans_type trans_type,
2468 vinsn_t expr_old_vinsn)
2469 {
2470 struct transformed_insns *pti;
2471
2472 if (inside_insn_group)
2473 return;
2474
2475 pti = XNEW (struct transformed_insns);
2476 pti->vinsn_old = expr_old_vinsn;
2477 pti->vinsn_new = EXPR_VINSN (expr);
2478 pti->type = trans_type;
2479 pti->was_target_conflict = was_target_conflict;
2480 pti->ds = EXPR_SPEC_DONE_DS (expr);
2481 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2482 vinsn_attach (pti->vinsn_old);
2483 vinsn_attach (pti->vinsn_new);
2484 *((struct transformed_insns **)
2485 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2486 pti, VINSN_HASH_RTX (expr_old_vinsn),
2487 INSERT)) = pti;
2488 }
2489
2490 /* Same as moveup_expr, but first looks up the result of
2491 transformation in caches. */
2492 static enum MOVEUP_EXPR_CODE
2493 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2494 {
2495 enum MOVEUP_EXPR_CODE res;
2496 bool got_answer = false;
2497
2498 if (sched_verbose >= 6)
2499 {
2500 sel_print ("Moving ");
2501 dump_expr (expr);
2502 sel_print (" through %d: ", INSN_UID (insn));
2503 }
2504
2505 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2506 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2507 == EXPR_INSN_RTX (expr)))
2508 /* Don't use cached information for debug insns that are heads of
2509 basic blocks. */;
2510 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2511 /* When inside insn group, we do not want remove stores conflicting
2512 with previosly issued loads. */
2513 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2514 else if (try_transformation_cache (expr, insn, &res))
2515 got_answer = true;
2516
2517 if (! got_answer)
2518 {
2519 /* Invoke moveup_expr and record the results. */
2520 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2521 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2522 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2523 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2524 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2525
2526 /* ??? Invent something better than this. We can't allow old_vinsn
2527 to go, we need it for the history vector. */
2528 vinsn_attach (expr_old_vinsn);
2529
2530 res = moveup_expr (expr, insn, inside_insn_group,
2531 &trans_type);
2532 switch (res)
2533 {
2534 case MOVEUP_EXPR_NULL:
2535 update_bitmap_cache (expr, insn, inside_insn_group, res);
2536 if (sched_verbose >= 6)
2537 sel_print ("removed\n");
2538 break;
2539
2540 case MOVEUP_EXPR_SAME:
2541 update_bitmap_cache (expr, insn, inside_insn_group, res);
2542 if (sched_verbose >= 6)
2543 sel_print ("unchanged\n");
2544 break;
2545
2546 case MOVEUP_EXPR_AS_RHS:
2547 gcc_assert (!unique_p || inside_insn_group);
2548 update_bitmap_cache (expr, insn, inside_insn_group, res);
2549 if (sched_verbose >= 6)
2550 sel_print ("unchanged (as RHS)\n");
2551 break;
2552
2553 case MOVEUP_EXPR_CHANGED:
2554 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2555 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2556 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2557 INSN_UID (insn), trans_type,
2558 expr_old_vinsn, EXPR_VINSN (expr),
2559 expr_old_spec_ds);
2560 update_transformation_cache (expr, insn, inside_insn_group,
2561 trans_type, expr_old_vinsn);
2562 if (sched_verbose >= 6)
2563 {
2564 sel_print ("changed: ");
2565 dump_expr (expr);
2566 sel_print ("\n");
2567 }
2568 break;
2569 default:
2570 gcc_unreachable ();
2571 }
2572
2573 vinsn_detach (expr_old_vinsn);
2574 }
2575
2576 return res;
2577 }
2578
2579 /* Moves an av set AVP up through INSN, performing necessary
2580 transformations. */
2581 static void
2582 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2583 {
2584 av_set_iterator i;
2585 expr_t expr;
2586
2587 FOR_EACH_EXPR_1 (expr, i, avp)
2588 {
2589
2590 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2591 {
2592 case MOVEUP_EXPR_SAME:
2593 case MOVEUP_EXPR_AS_RHS:
2594 break;
2595
2596 case MOVEUP_EXPR_NULL:
2597 av_set_iter_remove (&i);
2598 break;
2599
2600 case MOVEUP_EXPR_CHANGED:
2601 expr = merge_with_other_exprs (avp, &i, expr);
2602 break;
2603
2604 default:
2605 gcc_unreachable ();
2606 }
2607 }
2608 }
2609
2610 /* Moves AVP set along PATH. */
2611 static void
2612 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2613 {
2614 int last_cycle;
2615
2616 if (sched_verbose >= 6)
2617 sel_print ("Moving expressions up in the insn group...\n");
2618 if (! path)
2619 return;
2620 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2621 while (path
2622 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2623 {
2624 moveup_set_expr (avp, ILIST_INSN (path), true);
2625 path = ILIST_NEXT (path);
2626 }
2627 }
2628
2629 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2630 static bool
2631 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2632 {
2633 expr_def _tmp, *tmp = &_tmp;
2634 int last_cycle;
2635 bool res = true;
2636
2637 copy_expr_onside (tmp, expr);
2638 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2639 while (path
2640 && res
2641 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2642 {
2643 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2644 != MOVEUP_EXPR_NULL);
2645 path = ILIST_NEXT (path);
2646 }
2647
2648 if (res)
2649 {
2650 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2651 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2652
2653 if (tmp_vinsn != expr_vliw_vinsn)
2654 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2655 }
2656
2657 clear_expr (tmp);
2658 return res;
2659 }
2660 \f
2661
2662 /* Functions that compute av and lv sets. */
2663
2664 /* Returns true if INSN is not a downward continuation of the given path P in
2665 the current stage. */
2666 static bool
2667 is_ineligible_successor (insn_t insn, ilist_t p)
2668 {
2669 insn_t prev_insn;
2670
2671 /* Check if insn is not deleted. */
2672 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2673 gcc_unreachable ();
2674 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676
2677 /* If it's the first insn visited, then the successor is ok. */
2678 if (!p)
2679 return false;
2680
2681 prev_insn = ILIST_INSN (p);
2682
2683 if (/* a backward edge. */
2684 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2685 /* is already visited. */
2686 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2687 && (ilist_is_in_p (p, insn)
2688 /* We can reach another fence here and still seqno of insn
2689 would be equal to seqno of prev_insn. This is possible
2690 when prev_insn is a previously created bookkeeping copy.
2691 In that case it'd get a seqno of insn. Thus, check here
2692 whether insn is in current fence too. */
2693 || IN_CURRENT_FENCE_P (insn)))
2694 /* Was already scheduled on this round. */
2695 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2696 && IN_CURRENT_FENCE_P (insn))
2697 /* An insn from another fence could also be
2698 scheduled earlier even if this insn is not in
2699 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2700 || (!pipelining_p
2701 && INSN_SCHED_TIMES (insn) > 0))
2702 return true;
2703 else
2704 return false;
2705 }
2706
2707 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2708 of handling multiple successors and properly merging its av_sets. P is
2709 the current path traversed. WS is the size of lookahead window.
2710 Return the av set computed. */
2711 static av_set_t
2712 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2713 {
2714 struct succs_info *sinfo;
2715 av_set_t expr_in_all_succ_branches = NULL;
2716 int is;
2717 insn_t succ, zero_succ = NULL;
2718 av_set_t av1 = NULL;
2719
2720 gcc_assert (sel_bb_end_p (insn));
2721
2722 /* Find different kind of successors needed for correct computing of
2723 SPEC and TARGET_AVAILABLE attributes. */
2724 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2725
2726 /* Debug output. */
2727 if (sched_verbose >= 6)
2728 {
2729 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2730 dump_insn_vector (sinfo->succs_ok);
2731 sel_print ("\n");
2732 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2733 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2734 }
2735
2736 /* Add insn to to the tail of current path. */
2737 ilist_add (&p, insn);
2738
2739 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2740 {
2741 av_set_t succ_set;
2742
2743 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2744 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2745
2746 av_set_split_usefulness (succ_set,
2747 VEC_index (int, sinfo->probs_ok, is),
2748 sinfo->all_prob);
2749
2750 if (sinfo->all_succs_n > 1)
2751 {
2752 /* Find EXPR'es that came from *all* successors and save them
2753 into expr_in_all_succ_branches. This set will be used later
2754 for calculating speculation attributes of EXPR'es. */
2755 if (is == 0)
2756 {
2757 expr_in_all_succ_branches = av_set_copy (succ_set);
2758
2759 /* Remember the first successor for later. */
2760 zero_succ = succ;
2761 }
2762 else
2763 {
2764 av_set_iterator i;
2765 expr_t expr;
2766
2767 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2768 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2769 av_set_iter_remove (&i);
2770 }
2771 }
2772
2773 /* Union the av_sets. Check liveness restrictions on target registers
2774 in special case of two successors. */
2775 if (sinfo->succs_ok_n == 2 && is == 1)
2776 {
2777 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2778 basic_block bb1 = BLOCK_FOR_INSN (succ);
2779
2780 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2781 av_set_union_and_live (&av1, &succ_set,
2782 BB_LV_SET (bb0),
2783 BB_LV_SET (bb1),
2784 insn);
2785 }
2786 else
2787 av_set_union_and_clear (&av1, &succ_set, insn);
2788 }
2789
2790 /* Check liveness restrictions via hard way when there are more than
2791 two successors. */
2792 if (sinfo->succs_ok_n > 2)
2793 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2794 {
2795 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2796
2797 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2798 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2799 BB_LV_SET (succ_bb));
2800 }
2801
2802 /* Finally, check liveness restrictions on paths leaving the region. */
2803 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2804 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2805 mark_unavailable_targets
2806 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2807
2808 if (sinfo->all_succs_n > 1)
2809 {
2810 av_set_iterator i;
2811 expr_t expr;
2812
2813 /* Increase the spec attribute of all EXPR'es that didn't come
2814 from all successors. */
2815 FOR_EACH_EXPR (expr, i, av1)
2816 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2817 EXPR_SPEC (expr)++;
2818
2819 av_set_clear (&expr_in_all_succ_branches);
2820
2821 /* Do not move conditional branches through other
2822 conditional branches. So, remove all conditional
2823 branches from av_set if current operator is a conditional
2824 branch. */
2825 av_set_substract_cond_branches (&av1);
2826 }
2827
2828 ilist_remove (&p);
2829 free_succs_info (sinfo);
2830
2831 if (sched_verbose >= 6)
2832 {
2833 sel_print ("av_succs (%d): ", INSN_UID (insn));
2834 dump_av_set (av1);
2835 sel_print ("\n");
2836 }
2837
2838 return av1;
2839 }
2840
2841 /* This function computes av_set for the FIRST_INSN by dragging valid
2842 av_set through all basic block insns either from the end of basic block
2843 (computed using compute_av_set_at_bb_end) or from the insn on which
2844 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2845 below the basic block and handling conditional branches.
2846 FIRST_INSN - the basic block head, P - path consisting of the insns
2847 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2848 and bb ends are added to the path), WS - current window size,
2849 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2850 static av_set_t
2851 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2852 bool need_copy_p)
2853 {
2854 insn_t cur_insn;
2855 int end_ws = ws;
2856 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2857 insn_t after_bb_end = NEXT_INSN (bb_end);
2858 insn_t last_insn;
2859 av_set_t av = NULL;
2860 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2861
2862 /* Return NULL if insn is not on the legitimate downward path. */
2863 if (is_ineligible_successor (first_insn, p))
2864 {
2865 if (sched_verbose >= 6)
2866 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2867
2868 return NULL;
2869 }
2870
2871 /* If insn already has valid av(insn) computed, just return it. */
2872 if (AV_SET_VALID_P (first_insn))
2873 {
2874 av_set_t av_set;
2875
2876 if (sel_bb_head_p (first_insn))
2877 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2878 else
2879 av_set = NULL;
2880
2881 if (sched_verbose >= 6)
2882 {
2883 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2884 dump_av_set (av_set);
2885 sel_print ("\n");
2886 }
2887
2888 return need_copy_p ? av_set_copy (av_set) : av_set;
2889 }
2890
2891 ilist_add (&p, first_insn);
2892
2893 /* As the result after this loop have completed, in LAST_INSN we'll
2894 have the insn which has valid av_set to start backward computation
2895 from: it either will be NULL because on it the window size was exceeded
2896 or other valid av_set as returned by compute_av_set for the last insn
2897 of the basic block. */
2898 for (last_insn = first_insn; last_insn != after_bb_end;
2899 last_insn = NEXT_INSN (last_insn))
2900 {
2901 /* We may encounter valid av_set not only on bb_head, but also on
2902 those insns on which previously MAX_WS was exceeded. */
2903 if (AV_SET_VALID_P (last_insn))
2904 {
2905 if (sched_verbose >= 6)
2906 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2907 break;
2908 }
2909
2910 /* The special case: the last insn of the BB may be an
2911 ineligible_successor due to its SEQ_NO that was set on
2912 it as a bookkeeping. */
2913 if (last_insn != first_insn
2914 && is_ineligible_successor (last_insn, p))
2915 {
2916 if (sched_verbose >= 6)
2917 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2918 break;
2919 }
2920
2921 if (DEBUG_INSN_P (last_insn))
2922 continue;
2923
2924 if (end_ws > max_ws)
2925 {
2926 /* We can reach max lookahead size at bb_header, so clean av_set
2927 first. */
2928 INSN_WS_LEVEL (last_insn) = global_level;
2929
2930 if (sched_verbose >= 6)
2931 sel_print ("Insn %d is beyond the software lookahead window size\n",
2932 INSN_UID (last_insn));
2933 break;
2934 }
2935
2936 end_ws++;
2937 }
2938
2939 /* Get the valid av_set into AV above the LAST_INSN to start backward
2940 computation from. It either will be empty av_set or av_set computed from
2941 the successors on the last insn of the current bb. */
2942 if (last_insn != after_bb_end)
2943 {
2944 av = NULL;
2945
2946 /* This is needed only to obtain av_sets that are identical to
2947 those computed by the old compute_av_set version. */
2948 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2949 av_set_add (&av, INSN_EXPR (last_insn));
2950 }
2951 else
2952 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2953 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2954
2955 /* Compute av_set in AV starting from below the LAST_INSN up to
2956 location above the FIRST_INSN. */
2957 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2958 cur_insn = PREV_INSN (cur_insn))
2959 if (!INSN_NOP_P (cur_insn))
2960 {
2961 expr_t expr;
2962
2963 moveup_set_expr (&av, cur_insn, false);
2964
2965 /* If the expression for CUR_INSN is already in the set,
2966 replace it by the new one. */
2967 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2968 if (expr != NULL)
2969 {
2970 clear_expr (expr);
2971 copy_expr (expr, INSN_EXPR (cur_insn));
2972 }
2973 else
2974 av_set_add (&av, INSN_EXPR (cur_insn));
2975 }
2976
2977 /* Clear stale bb_av_set. */
2978 if (sel_bb_head_p (first_insn))
2979 {
2980 av_set_clear (&BB_AV_SET (cur_bb));
2981 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2982 BB_AV_LEVEL (cur_bb) = global_level;
2983 }
2984
2985 if (sched_verbose >= 6)
2986 {
2987 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2988 dump_av_set (av);
2989 sel_print ("\n");
2990 }
2991
2992 ilist_remove (&p);
2993 return av;
2994 }
2995
2996 /* Compute av set before INSN.
2997 INSN - the current operation (actual rtx INSN)
2998 P - the current path, which is list of insns visited so far
2999 WS - software lookahead window size.
3000 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3001 if we want to save computed av_set in s_i_d, we should make a copy of it.
3002
3003 In the resulting set we will have only expressions that don't have delay
3004 stalls and nonsubstitutable dependences. */
3005 static av_set_t
3006 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3007 {
3008 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3009 }
3010
3011 /* Propagate a liveness set LV through INSN. */
3012 static void
3013 propagate_lv_set (regset lv, insn_t insn)
3014 {
3015 gcc_assert (INSN_P (insn));
3016
3017 if (INSN_NOP_P (insn))
3018 return;
3019
3020 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3021 }
3022
3023 /* Return livness set at the end of BB. */
3024 static regset
3025 compute_live_after_bb (basic_block bb)
3026 {
3027 edge e;
3028 edge_iterator ei;
3029 regset lv = get_clear_regset_from_pool ();
3030
3031 gcc_assert (!ignore_first);
3032
3033 FOR_EACH_EDGE (e, ei, bb->succs)
3034 if (sel_bb_empty_p (e->dest))
3035 {
3036 if (! BB_LV_SET_VALID_P (e->dest))
3037 {
3038 gcc_unreachable ();
3039 gcc_assert (BB_LV_SET (e->dest) == NULL);
3040 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3041 BB_LV_SET_VALID_P (e->dest) = true;
3042 }
3043 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3044 }
3045 else
3046 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3047
3048 return lv;
3049 }
3050
3051 /* Compute the set of all live registers at the point before INSN and save
3052 it at INSN if INSN is bb header. */
3053 regset
3054 compute_live (insn_t insn)
3055 {
3056 basic_block bb = BLOCK_FOR_INSN (insn);
3057 insn_t final, temp;
3058 regset lv;
3059
3060 /* Return the valid set if we're already on it. */
3061 if (!ignore_first)
3062 {
3063 regset src = NULL;
3064
3065 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3066 src = BB_LV_SET (bb);
3067 else
3068 {
3069 gcc_assert (in_current_region_p (bb));
3070 if (INSN_LIVE_VALID_P (insn))
3071 src = INSN_LIVE (insn);
3072 }
3073
3074 if (src)
3075 {
3076 lv = get_regset_from_pool ();
3077 COPY_REG_SET (lv, src);
3078
3079 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3080 {
3081 COPY_REG_SET (BB_LV_SET (bb), lv);
3082 BB_LV_SET_VALID_P (bb) = true;
3083 }
3084
3085 return_regset_to_pool (lv);
3086 return lv;
3087 }
3088 }
3089
3090 /* We've skipped the wrong lv_set. Don't skip the right one. */
3091 ignore_first = false;
3092 gcc_assert (in_current_region_p (bb));
3093
3094 /* Find a valid LV set in this block or below, if needed.
3095 Start searching from the next insn: either ignore_first is true, or
3096 INSN doesn't have a correct live set. */
3097 temp = NEXT_INSN (insn);
3098 final = NEXT_INSN (BB_END (bb));
3099 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3100 temp = NEXT_INSN (temp);
3101 if (temp == final)
3102 {
3103 lv = compute_live_after_bb (bb);
3104 temp = PREV_INSN (temp);
3105 }
3106 else
3107 {
3108 lv = get_regset_from_pool ();
3109 COPY_REG_SET (lv, INSN_LIVE (temp));
3110 }
3111
3112 /* Put correct lv sets on the insns which have bad sets. */
3113 final = PREV_INSN (insn);
3114 while (temp != final)
3115 {
3116 propagate_lv_set (lv, temp);
3117 COPY_REG_SET (INSN_LIVE (temp), lv);
3118 INSN_LIVE_VALID_P (temp) = true;
3119 temp = PREV_INSN (temp);
3120 }
3121
3122 /* Also put it in a BB. */
3123 if (sel_bb_head_p (insn))
3124 {
3125 basic_block bb = BLOCK_FOR_INSN (insn);
3126
3127 COPY_REG_SET (BB_LV_SET (bb), lv);
3128 BB_LV_SET_VALID_P (bb) = true;
3129 }
3130
3131 /* We return LV to the pool, but will not clear it there. Thus we can
3132 legimatelly use LV till the next use of regset_pool_get (). */
3133 return_regset_to_pool (lv);
3134 return lv;
3135 }
3136
3137 /* Update liveness sets for INSN. */
3138 static inline void
3139 update_liveness_on_insn (rtx insn)
3140 {
3141 ignore_first = true;
3142 compute_live (insn);
3143 }
3144
3145 /* Compute liveness below INSN and write it into REGS. */
3146 static inline void
3147 compute_live_below_insn (rtx insn, regset regs)
3148 {
3149 rtx succ;
3150 succ_iterator si;
3151
3152 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3153 IOR_REG_SET (regs, compute_live (succ));
3154 }
3155
3156 /* Update the data gathered in av and lv sets starting from INSN. */
3157 static void
3158 update_data_sets (rtx insn)
3159 {
3160 update_liveness_on_insn (insn);
3161 if (sel_bb_head_p (insn))
3162 {
3163 gcc_assert (AV_LEVEL (insn) != 0);
3164 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3165 compute_av_set (insn, NULL, 0, 0);
3166 }
3167 }
3168 \f
3169
3170 /* Helper for move_op () and find_used_regs ().
3171 Return speculation type for which a check should be created on the place
3172 of INSN. EXPR is one of the original ops we are searching for. */
3173 static ds_t
3174 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3175 {
3176 ds_t to_check_ds;
3177 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3178
3179 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3180
3181 if (targetm.sched.get_insn_checked_ds)
3182 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3183
3184 if (spec_info != NULL
3185 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3186 already_checked_ds |= BEGIN_CONTROL;
3187
3188 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3189
3190 to_check_ds &= ~already_checked_ds;
3191
3192 return to_check_ds;
3193 }
3194
3195 /* Find the set of registers that are unavailable for storing expres
3196 while moving ORIG_OPS up on the path starting from INSN due to
3197 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3198
3199 All the original operations found during the traversal are saved in the
3200 ORIGINAL_INSNS list.
3201
3202 REG_RENAME_P denotes the set of hardware registers that
3203 can not be used with renaming due to the register class restrictions,
3204 mode restrictions and other (the register we'll choose should be
3205 compatible class with the original uses, shouldn't be in call_used_regs,
3206 should be HARD_REGNO_RENAME_OK etc).
3207
3208 Returns TRUE if we've found all original insns, FALSE otherwise.
3209
3210 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3211 to traverse the code motion paths. This helper function finds registers
3212 that are not available for storing expres while moving ORIG_OPS up on the
3213 path starting from INSN. A register considered as used on the moving path,
3214 if one of the following conditions is not satisfied:
3215
3216 (1) a register not set or read on any path from xi to an instance of
3217 the original operation,
3218 (2) not among the live registers of the point immediately following the
3219 first original operation on a given downward path, except for the
3220 original target register of the operation,
3221 (3) not live on the other path of any conditional branch that is passed
3222 by the operation, in case original operations are not present on
3223 both paths of the conditional branch.
3224
3225 All the original operations found during the traversal are saved in the
3226 ORIGINAL_INSNS list.
3227
3228 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3229 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3230 to unavailable hard regs at the point original operation is found. */
3231
3232 static bool
3233 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3234 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3235 {
3236 def_list_iterator i;
3237 def_t def;
3238 int res;
3239 bool needs_spec_check_p = false;
3240 expr_t expr;
3241 av_set_iterator expr_iter;
3242 struct fur_static_params sparams;
3243 struct cmpd_local_params lparams;
3244
3245 /* We haven't visited any blocks yet. */
3246 bitmap_clear (code_motion_visited_blocks);
3247
3248 /* Init parameters for code_motion_path_driver. */
3249 sparams.crosses_call = false;
3250 sparams.original_insns = original_insns;
3251 sparams.used_regs = used_regs;
3252
3253 /* Set the appropriate hooks and data. */
3254 code_motion_path_driver_info = &fur_hooks;
3255
3256 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3257
3258 reg_rename_p->crosses_call |= sparams.crosses_call;
3259
3260 gcc_assert (res == 1);
3261 gcc_assert (original_insns && *original_insns);
3262
3263 /* ??? We calculate whether an expression needs a check when computing
3264 av sets. This information is not as precise as it could be due to
3265 merging this bit in merge_expr. We can do better in find_used_regs,
3266 but we want to avoid multiple traversals of the same code motion
3267 paths. */
3268 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3269 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3270
3271 /* Mark hardware regs in REG_RENAME_P that are not suitable
3272 for renaming expr in INSN due to hardware restrictions (register class,
3273 modes compatibility etc). */
3274 FOR_EACH_DEF (def, i, *original_insns)
3275 {
3276 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3277
3278 if (VINSN_SEPARABLE_P (vinsn))
3279 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3280
3281 /* Do not allow clobbering of ld.[sa] address in case some of the
3282 original operations need a check. */
3283 if (needs_spec_check_p)
3284 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3285 }
3286
3287 return true;
3288 }
3289 \f
3290
3291 /* Functions to choose the best insn from available ones. */
3292
3293 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3294 static int
3295 sel_target_adjust_priority (expr_t expr)
3296 {
3297 int priority = EXPR_PRIORITY (expr);
3298 int new_priority;
3299
3300 if (targetm.sched.adjust_priority)
3301 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3302 else
3303 new_priority = priority;
3304
3305 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3306 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3307
3308 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3309
3310 if (sched_verbose >= 4)
3311 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3312 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3313 EXPR_PRIORITY_ADJ (expr), new_priority);
3314
3315 return new_priority;
3316 }
3317
3318 /* Rank two available exprs for schedule. Never return 0 here. */
3319 static int
3320 sel_rank_for_schedule (const void *x, const void *y)
3321 {
3322 expr_t tmp = *(const expr_t *) y;
3323 expr_t tmp2 = *(const expr_t *) x;
3324 insn_t tmp_insn, tmp2_insn;
3325 vinsn_t tmp_vinsn, tmp2_vinsn;
3326 int val;
3327
3328 tmp_vinsn = EXPR_VINSN (tmp);
3329 tmp2_vinsn = EXPR_VINSN (tmp2);
3330 tmp_insn = EXPR_INSN_RTX (tmp);
3331 tmp2_insn = EXPR_INSN_RTX (tmp2);
3332
3333 /* Schedule debug insns as early as possible. */
3334 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3335 return -1;
3336 else if (DEBUG_INSN_P (tmp2_insn))
3337 return 1;
3338
3339 /* Prefer SCHED_GROUP_P insns to any others. */
3340 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3341 {
3342 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3343 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3344
3345 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3346 cannot be cloned. */
3347 if (VINSN_UNIQUE_P (tmp2_vinsn))
3348 return 1;
3349 return -1;
3350 }
3351
3352 /* Discourage scheduling of speculative checks. */
3353 val = (sel_insn_is_speculation_check (tmp_insn)
3354 - sel_insn_is_speculation_check (tmp2_insn));
3355 if (val)
3356 return val;
3357
3358 /* Prefer not scheduled insn over scheduled one. */
3359 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3360 {
3361 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3362 if (val)
3363 return val;
3364 }
3365
3366 /* Prefer jump over non-jump instruction. */
3367 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3368 return -1;
3369 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3370 return 1;
3371
3372 /* Prefer an expr with greater priority. */
3373 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3374 {
3375 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3376 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3377
3378 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3379 }
3380 else
3381 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3382 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3383 if (val)
3384 return val;
3385
3386 if (spec_info != NULL && spec_info->mask != 0)
3387 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3388 {
3389 ds_t ds1, ds2;
3390 dw_t dw1, dw2;
3391 int dw;
3392
3393 ds1 = EXPR_SPEC_DONE_DS (tmp);
3394 if (ds1)
3395 dw1 = ds_weak (ds1);
3396 else
3397 dw1 = NO_DEP_WEAK;
3398
3399 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3400 if (ds2)
3401 dw2 = ds_weak (ds2);
3402 else
3403 dw2 = NO_DEP_WEAK;
3404
3405 dw = dw2 - dw1;
3406 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3407 return dw;
3408 }
3409
3410 /* Prefer an old insn to a bookkeeping insn. */
3411 if (INSN_UID (tmp_insn) < first_emitted_uid
3412 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3413 return -1;
3414 if (INSN_UID (tmp_insn) >= first_emitted_uid
3415 && INSN_UID (tmp2_insn) < first_emitted_uid)
3416 return 1;
3417
3418 /* Prefer an insn with smaller UID, as a last resort.
3419 We can't safely use INSN_LUID as it is defined only for those insns
3420 that are in the stream. */
3421 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3422 }
3423
3424 /* Filter out expressions from av set pointed to by AV_PTR
3425 that are pipelined too many times. */
3426 static void
3427 process_pipelined_exprs (av_set_t *av_ptr)
3428 {
3429 expr_t expr;
3430 av_set_iterator si;
3431
3432 /* Don't pipeline already pipelined code as that would increase
3433 number of unnecessary register moves. */
3434 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3435 {
3436 if (EXPR_SCHED_TIMES (expr)
3437 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3438 av_set_iter_remove (&si);
3439 }
3440 }
3441
3442 /* Filter speculative insns from AV_PTR if we don't want them. */
3443 static void
3444 process_spec_exprs (av_set_t *av_ptr)
3445 {
3446 bool try_data_p = true;
3447 bool try_control_p = true;
3448 expr_t expr;
3449 av_set_iterator si;
3450
3451 if (spec_info == NULL)
3452 return;
3453
3454 /* Scan *AV_PTR to find out if we want to consider speculative
3455 instructions for scheduling. */
3456 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3457 {
3458 ds_t ds;
3459
3460 ds = EXPR_SPEC_DONE_DS (expr);
3461
3462 /* The probability of a success is too low - don't speculate. */
3463 if ((ds & SPECULATIVE)
3464 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3465 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3466 || (pipelining_p && false
3467 && (ds & DATA_SPEC)
3468 && (ds & CONTROL_SPEC))))
3469 {
3470 av_set_iter_remove (&si);
3471 continue;
3472 }
3473
3474 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3475 && !(ds & BEGIN_DATA))
3476 try_data_p = false;
3477
3478 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3479 && !(ds & BEGIN_CONTROL))
3480 try_control_p = false;
3481 }
3482
3483 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3484 {
3485 ds_t ds;
3486
3487 ds = EXPR_SPEC_DONE_DS (expr);
3488
3489 if (ds & SPECULATIVE)
3490 {
3491 if ((ds & BEGIN_DATA) && !try_data_p)
3492 /* We don't want any data speculative instructions right
3493 now. */
3494 av_set_iter_remove (&si);
3495
3496 if ((ds & BEGIN_CONTROL) && !try_control_p)
3497 /* We don't want any control speculative instructions right
3498 now. */
3499 av_set_iter_remove (&si);
3500 }
3501 }
3502 }
3503
3504 /* Search for any use-like insns in AV_PTR and decide on scheduling
3505 them. Return one when found, and NULL otherwise.
3506 Note that we check here whether a USE could be scheduled to avoid
3507 an infinite loop later. */
3508 static expr_t
3509 process_use_exprs (av_set_t *av_ptr)
3510 {
3511 expr_t expr;
3512 av_set_iterator si;
3513 bool uses_present_p = false;
3514 bool try_uses_p = true;
3515
3516 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3517 {
3518 /* This will also initialize INSN_CODE for later use. */
3519 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3520 {
3521 /* If we have a USE in *AV_PTR that was not scheduled yet,
3522 do so because it will do good only. */
3523 if (EXPR_SCHED_TIMES (expr) <= 0)
3524 {
3525 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3526 return expr;
3527
3528 av_set_iter_remove (&si);
3529 }
3530 else
3531 {
3532 gcc_assert (pipelining_p);
3533
3534 uses_present_p = true;
3535 }
3536 }
3537 else
3538 try_uses_p = false;
3539 }
3540
3541 if (uses_present_p)
3542 {
3543 /* If we don't want to schedule any USEs right now and we have some
3544 in *AV_PTR, remove them, else just return the first one found. */
3545 if (!try_uses_p)
3546 {
3547 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3548 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3549 av_set_iter_remove (&si);
3550 }
3551 else
3552 {
3553 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3554 {
3555 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3556
3557 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3558 return expr;
3559
3560 av_set_iter_remove (&si);
3561 }
3562 }
3563 }
3564
3565 return NULL;
3566 }
3567
3568 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3569 static bool
3570 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3571 {
3572 vinsn_t vinsn;
3573 int n;
3574
3575 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3576 if (VINSN_SEPARABLE_P (vinsn))
3577 {
3578 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3579 return true;
3580 }
3581 else
3582 {
3583 /* For non-separable instructions, the blocking insn can have
3584 another pattern due to substitution, and we can't choose
3585 different register as in the above case. Check all registers
3586 being written instead. */
3587 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3588 VINSN_REG_SETS (EXPR_VINSN (expr))))
3589 return true;
3590 }
3591
3592 return false;
3593 }
3594
3595 #ifdef ENABLE_CHECKING
3596 /* Return true if either of expressions from ORIG_OPS can be blocked
3597 by previously created bookkeeping code. STATIC_PARAMS points to static
3598 parameters of move_op. */
3599 static bool
3600 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3601 {
3602 expr_t expr;
3603 av_set_iterator iter;
3604 moveop_static_params_p sparams;
3605
3606 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3607 created while scheduling on another fence. */
3608 FOR_EACH_EXPR (expr, iter, orig_ops)
3609 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3610 return true;
3611
3612 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3613 sparams = (moveop_static_params_p) static_params;
3614
3615 /* Expressions can be also blocked by bookkeeping created during current
3616 move_op. */
3617 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3618 FOR_EACH_EXPR (expr, iter, orig_ops)
3619 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3620 return true;
3621
3622 /* Expressions in ORIG_OPS may have wrong destination register due to
3623 renaming. Check with the right register instead. */
3624 if (sparams->dest && REG_P (sparams->dest))
3625 {
3626 unsigned regno = REGNO (sparams->dest);
3627 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3628
3629 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3630 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3631 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3632 return true;
3633 }
3634
3635 return false;
3636 }
3637 #endif
3638
3639 /* Clear VINSN_VEC and detach vinsns. */
3640 static void
3641 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3642 {
3643 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3644 if (len > 0)
3645 {
3646 vinsn_t vinsn;
3647 int n;
3648
3649 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3650 vinsn_detach (vinsn);
3651 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3652 }
3653 }
3654
3655 /* Add the vinsn of EXPR to the VINSN_VEC. */
3656 static void
3657 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3658 {
3659 vinsn_attach (EXPR_VINSN (expr));
3660 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3661 }
3662
3663 /* Free the vector representing blocked expressions. */
3664 static void
3665 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3666 {
3667 if (*vinsn_vec)
3668 VEC_free (vinsn_t, heap, *vinsn_vec);
3669 }
3670
3671 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3672
3673 void sel_add_to_insn_priority (rtx insn, int amount)
3674 {
3675 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3676
3677 if (sched_verbose >= 2)
3678 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3679 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3680 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3681 }
3682
3683 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3684 true if there is something to schedule. BNDS and FENCE are current
3685 boundaries and fence, respectively. If we need to stall for some cycles
3686 before an expr from AV would become available, write this number to
3687 *PNEED_STALL. */
3688 static bool
3689 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3690 int *pneed_stall)
3691 {
3692 av_set_iterator si;
3693 expr_t expr;
3694 int sched_next_worked = 0, stalled, n;
3695 static int av_max_prio, est_ticks_till_branch;
3696 int min_need_stall = -1;
3697 deps_t dc = BND_DC (BLIST_BND (bnds));
3698
3699 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3700 already scheduled. */
3701 if (av == NULL)
3702 return false;
3703
3704 /* Empty vector from the previous stuff. */
3705 if (VEC_length (expr_t, vec_av_set) > 0)
3706 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3707
3708 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3709 for each insn. */
3710 gcc_assert (VEC_empty (expr_t, vec_av_set));
3711 FOR_EACH_EXPR (expr, si, av)
3712 {
3713 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3714
3715 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3716
3717 /* Adjust priority using target backend hook. */
3718 sel_target_adjust_priority (expr);
3719 }
3720
3721 /* Sort the vector. */
3722 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3723
3724 /* We record maximal priority of insns in av set for current instruction
3725 group. */
3726 if (FENCE_STARTS_CYCLE_P (fence))
3727 av_max_prio = est_ticks_till_branch = INT_MIN;
3728
3729 /* Filter out inappropriate expressions. Loop's direction is reversed to
3730 visit "best" instructions first. We assume that VEC_unordered_remove
3731 moves last element in place of one being deleted. */
3732 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3733 {
3734 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3735 insn_t insn = EXPR_INSN_RTX (expr);
3736 char target_available;
3737 bool is_orig_reg_p = true;
3738 int need_cycles, new_prio;
3739
3740 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3741 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3742 {
3743 VEC_unordered_remove (expr_t, vec_av_set, n);
3744 continue;
3745 }
3746
3747 /* Set number of sched_next insns (just in case there
3748 could be several). */
3749 if (FENCE_SCHED_NEXT (fence))
3750 sched_next_worked++;
3751
3752 /* Check all liveness requirements and try renaming.
3753 FIXME: try to minimize calls to this. */
3754 target_available = EXPR_TARGET_AVAILABLE (expr);
3755
3756 /* If insn was already scheduled on the current fence,
3757 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3758 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3759 target_available = -1;
3760
3761 /* If the availability of the EXPR is invalidated by the insertion of
3762 bookkeeping earlier, make sure that we won't choose this expr for
3763 scheduling if it's not separable, and if it is separable, then
3764 we have to recompute the set of available registers for it. */
3765 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3766 {
3767 VEC_unordered_remove (expr_t, vec_av_set, n);
3768 if (sched_verbose >= 4)
3769 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3770 INSN_UID (insn));
3771 continue;
3772 }
3773
3774 if (target_available == true)
3775 {
3776 /* Do nothing -- we can use an existing register. */
3777 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3778 }
3779 else if (/* Non-separable instruction will never
3780 get another register. */
3781 (target_available == false
3782 && !EXPR_SEPARABLE_P (expr))
3783 /* Don't try to find a register for low-priority expression. */
3784 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3785 /* ??? FIXME: Don't try to rename data speculation. */
3786 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3787 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3788 {
3789 VEC_unordered_remove (expr_t, vec_av_set, n);
3790 if (sched_verbose >= 4)
3791 sel_print ("Expr %d has no suitable target register\n",
3792 INSN_UID (insn));
3793 continue;
3794 }
3795
3796 /* Filter expressions that need to be renamed or speculated when
3797 pipelining, because compensating register copies or speculation
3798 checks are likely to be placed near the beginning of the loop,
3799 causing a stall. */
3800 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3801 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3802 {
3803 /* Estimation of number of cycles until loop branch for
3804 renaming/speculation to be successful. */
3805 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3806
3807 if ((int) current_loop_nest->ninsns < 9)
3808 {
3809 VEC_unordered_remove (expr_t, vec_av_set, n);
3810 if (sched_verbose >= 4)
3811 sel_print ("Pipelining expr %d will likely cause stall\n",
3812 INSN_UID (insn));
3813 continue;
3814 }
3815
3816 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3817 < need_n_ticks_till_branch * issue_rate / 2
3818 && est_ticks_till_branch < need_n_ticks_till_branch)
3819 {
3820 VEC_unordered_remove (expr_t, vec_av_set, n);
3821 if (sched_verbose >= 4)
3822 sel_print ("Pipelining expr %d will likely cause stall\n",
3823 INSN_UID (insn));
3824 continue;
3825 }
3826 }
3827
3828 /* We want to schedule speculation checks as late as possible. Discard
3829 them from av set if there are instructions with higher priority. */
3830 if (sel_insn_is_speculation_check (insn)
3831 && EXPR_PRIORITY (expr) < av_max_prio)
3832 {
3833 stalled++;
3834 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3835 VEC_unordered_remove (expr_t, vec_av_set, n);
3836 if (sched_verbose >= 4)
3837 sel_print ("Delaying speculation check %d until its first use\n",
3838 INSN_UID (insn));
3839 continue;
3840 }
3841
3842 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3843 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3844 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3845
3846 /* Don't allow any insns whose data is not yet ready.
3847 Check first whether we've already tried them and failed. */
3848 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3849 {
3850 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3851 - FENCE_CYCLE (fence));
3852 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3853 est_ticks_till_branch = MAX (est_ticks_till_branch,
3854 EXPR_PRIORITY (expr) + need_cycles);
3855
3856 if (need_cycles > 0)
3857 {
3858 stalled++;
3859 min_need_stall = (min_need_stall < 0
3860 ? need_cycles
3861 : MIN (min_need_stall, need_cycles));
3862 VEC_unordered_remove (expr_t, vec_av_set, n);
3863
3864 if (sched_verbose >= 4)
3865 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3866 INSN_UID (insn),
3867 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3868 continue;
3869 }
3870 }
3871
3872 /* Now resort to dependence analysis to find whether EXPR might be
3873 stalled due to dependencies from FENCE's context. */
3874 need_cycles = tick_check_p (expr, dc, fence);
3875 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3876
3877 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3878 est_ticks_till_branch = MAX (est_ticks_till_branch,
3879 new_prio);
3880
3881 if (need_cycles > 0)
3882 {
3883 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3884 {
3885 int new_size = INSN_UID (insn) * 3 / 2;
3886
3887 FENCE_READY_TICKS (fence)
3888 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3889 new_size, FENCE_READY_TICKS_SIZE (fence),
3890 sizeof (int));
3891 }
3892 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3893 = FENCE_CYCLE (fence) + need_cycles;
3894
3895 stalled++;
3896 min_need_stall = (min_need_stall < 0
3897 ? need_cycles
3898 : MIN (min_need_stall, need_cycles));
3899
3900 VEC_unordered_remove (expr_t, vec_av_set, n);
3901
3902 if (sched_verbose >= 4)
3903 sel_print ("Expr %d is not ready yet until cycle %d\n",
3904 INSN_UID (insn),
3905 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3906 continue;
3907 }
3908
3909 if (sched_verbose >= 4)
3910 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3911 min_need_stall = 0;
3912 }
3913
3914 /* Clear SCHED_NEXT. */
3915 if (FENCE_SCHED_NEXT (fence))
3916 {
3917 gcc_assert (sched_next_worked == 1);
3918 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3919 }
3920
3921 /* No need to stall if this variable was not initialized. */
3922 if (min_need_stall < 0)
3923 min_need_stall = 0;
3924
3925 if (VEC_empty (expr_t, vec_av_set))
3926 {
3927 /* We need to set *pneed_stall here, because later we skip this code
3928 when ready list is empty. */
3929 *pneed_stall = min_need_stall;
3930 return false;
3931 }
3932 else
3933 gcc_assert (min_need_stall == 0);
3934
3935 /* Sort the vector. */
3936 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3937
3938 if (sched_verbose >= 4)
3939 {
3940 sel_print ("Total ready exprs: %d, stalled: %d\n",
3941 VEC_length (expr_t, vec_av_set), stalled);
3942 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3943 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3944 dump_expr (expr);
3945 sel_print ("\n");
3946 }
3947
3948 *pneed_stall = 0;
3949 return true;
3950 }
3951
3952 /* Convert a vectored and sorted av set to the ready list that
3953 the rest of the backend wants to see. */
3954 static void
3955 convert_vec_av_set_to_ready (void)
3956 {
3957 int n;
3958 expr_t expr;
3959
3960 /* Allocate and fill the ready list from the sorted vector. */
3961 ready.n_ready = VEC_length (expr_t, vec_av_set);
3962 ready.first = ready.n_ready - 1;
3963
3964 gcc_assert (ready.n_ready > 0);
3965
3966 if (ready.n_ready > max_issue_size)
3967 {
3968 max_issue_size = ready.n_ready;
3969 sched_extend_ready_list (ready.n_ready);
3970 }
3971
3972 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3973 {
3974 vinsn_t vi = EXPR_VINSN (expr);
3975 insn_t insn = VINSN_INSN_RTX (vi);
3976
3977 ready_try[n] = 0;
3978 ready.vec[n] = insn;
3979 }
3980 }
3981
3982 /* Initialize ready list from *AV_PTR for the max_issue () call.
3983 If any unrecognizable insn found in *AV_PTR, return it (and skip
3984 max_issue). BND and FENCE are current boundary and fence,
3985 respectively. If we need to stall for some cycles before an expr
3986 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3987 static expr_t
3988 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3989 int *pneed_stall)
3990 {
3991 expr_t expr;
3992
3993 /* We do not support multiple boundaries per fence. */
3994 gcc_assert (BLIST_NEXT (bnds) == NULL);
3995
3996 /* Process expressions required special handling, i.e. pipelined,
3997 speculative and recog() < 0 expressions first. */
3998 process_pipelined_exprs (av_ptr);
3999 process_spec_exprs (av_ptr);
4000
4001 /* A USE could be scheduled immediately. */
4002 expr = process_use_exprs (av_ptr);
4003 if (expr)
4004 {
4005 *pneed_stall = 0;
4006 return expr;
4007 }
4008
4009 /* Turn the av set to a vector for sorting. */
4010 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4011 {
4012 ready.n_ready = 0;
4013 return NULL;
4014 }
4015
4016 /* Build the final ready list. */
4017 convert_vec_av_set_to_ready ();
4018 return NULL;
4019 }
4020
4021 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4022 static bool
4023 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4024 {
4025 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4026 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4027 : FENCE_CYCLE (fence) - 1;
4028 bool res = false;
4029 int sort_p = 0;
4030
4031 if (!targetm.sched.dfa_new_cycle)
4032 return false;
4033
4034 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4035
4036 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4037 insn, last_scheduled_cycle,
4038 FENCE_CYCLE (fence), &sort_p))
4039 {
4040 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4041 advance_one_cycle (fence);
4042 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4043 res = true;
4044 }
4045
4046 return res;
4047 }
4048
4049 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4050 we can issue. FENCE is the current fence. */
4051 static int
4052 invoke_reorder_hooks (fence_t fence)
4053 {
4054 int issue_more;
4055 bool ran_hook = false;
4056
4057 /* Call the reorder hook at the beginning of the cycle, and call
4058 the reorder2 hook in the middle of the cycle. */
4059 if (FENCE_ISSUED_INSNS (fence) == 0)
4060 {
4061 if (targetm.sched.reorder
4062 && !SCHED_GROUP_P (ready_element (&ready, 0))
4063 && ready.n_ready > 1)
4064 {
4065 /* Don't give reorder the most prioritized insn as it can break
4066 pipelining. */
4067 if (pipelining_p)
4068 --ready.n_ready;
4069
4070 issue_more
4071 = targetm.sched.reorder (sched_dump, sched_verbose,
4072 ready_lastpos (&ready),
4073 &ready.n_ready, FENCE_CYCLE (fence));
4074
4075 if (pipelining_p)
4076 ++ready.n_ready;
4077
4078 ran_hook = true;
4079 }
4080 else
4081 /* Initialize can_issue_more for variable_issue. */
4082 issue_more = issue_rate;
4083 }
4084 else if (targetm.sched.reorder2
4085 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4086 {
4087 if (ready.n_ready == 1)
4088 issue_more =
4089 targetm.sched.reorder2 (sched_dump, sched_verbose,
4090 ready_lastpos (&ready),
4091 &ready.n_ready, FENCE_CYCLE (fence));
4092 else
4093 {
4094 if (pipelining_p)
4095 --ready.n_ready;
4096
4097 issue_more =
4098 targetm.sched.reorder2 (sched_dump, sched_verbose,
4099 ready.n_ready
4100 ? ready_lastpos (&ready) : NULL,
4101 &ready.n_ready, FENCE_CYCLE (fence));
4102
4103 if (pipelining_p)
4104 ++ready.n_ready;
4105 }
4106
4107 ran_hook = true;
4108 }
4109 else
4110 issue_more = FENCE_ISSUE_MORE (fence);
4111
4112 /* Ensure that ready list and vec_av_set are in line with each other,
4113 i.e. vec_av_set[i] == ready_element (&ready, i). */
4114 if (issue_more && ran_hook)
4115 {
4116 int i, j, n;
4117 rtx *arr = ready.vec;
4118 expr_t *vec = VEC_address (expr_t, vec_av_set);
4119
4120 for (i = 0, n = ready.n_ready; i < n; i++)
4121 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4122 {
4123 expr_t tmp;
4124
4125 for (j = i; j < n; j++)
4126 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4127 break;
4128 gcc_assert (j < n);
4129
4130 tmp = vec[i];
4131 vec[i] = vec[j];
4132 vec[j] = tmp;
4133 }
4134 }
4135
4136 return issue_more;
4137 }
4138
4139 /* Return an EXPR correponding to INDEX element of ready list, if
4140 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4141 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4142 ready.vec otherwise. */
4143 static inline expr_t
4144 find_expr_for_ready (int index, bool follow_ready_element)
4145 {
4146 expr_t expr;
4147 int real_index;
4148
4149 real_index = follow_ready_element ? ready.first - index : index;
4150
4151 expr = VEC_index (expr_t, vec_av_set, real_index);
4152 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4153
4154 return expr;
4155 }
4156
4157 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4158 of such insns found. */
4159 static int
4160 invoke_dfa_lookahead_guard (void)
4161 {
4162 int i, n;
4163 bool have_hook
4164 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4165
4166 if (sched_verbose >= 2)
4167 sel_print ("ready after reorder: ");
4168
4169 for (i = 0, n = 0; i < ready.n_ready; i++)
4170 {
4171 expr_t expr;
4172 insn_t insn;
4173 int r;
4174
4175 /* In this loop insn is Ith element of the ready list given by
4176 ready_element, not Ith element of ready.vec. */
4177 insn = ready_element (&ready, i);
4178
4179 if (! have_hook || i == 0)
4180 r = 0;
4181 else
4182 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4183
4184 gcc_assert (INSN_CODE (insn) >= 0);
4185
4186 /* Only insns with ready_try = 0 can get here
4187 from fill_ready_list. */
4188 gcc_assert (ready_try [i] == 0);
4189 ready_try[i] = r;
4190 if (!r)
4191 n++;
4192
4193 expr = find_expr_for_ready (i, true);
4194
4195 if (sched_verbose >= 2)
4196 {
4197 dump_vinsn (EXPR_VINSN (expr));
4198 sel_print (":%d; ", ready_try[i]);
4199 }
4200 }
4201
4202 if (sched_verbose >= 2)
4203 sel_print ("\n");
4204 return n;
4205 }
4206
4207 /* Calculate the number of privileged insns and return it. */
4208 static int
4209 calculate_privileged_insns (void)
4210 {
4211 expr_t cur_expr, min_spec_expr = NULL;
4212 int privileged_n = 0, i;
4213
4214 for (i = 0; i < ready.n_ready; i++)
4215 {
4216 if (ready_try[i])
4217 continue;
4218
4219 if (! min_spec_expr)
4220 min_spec_expr = find_expr_for_ready (i, true);
4221
4222 cur_expr = find_expr_for_ready (i, true);
4223
4224 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4225 break;
4226
4227 ++privileged_n;
4228 }
4229
4230 if (i == ready.n_ready)
4231 privileged_n = 0;
4232
4233 if (sched_verbose >= 2)
4234 sel_print ("privileged_n: %d insns with SPEC %d\n",
4235 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4236 return privileged_n;
4237 }
4238
4239 /* Call the rest of the hooks after the choice was made. Return
4240 the number of insns that still can be issued given that the current
4241 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4242 and the insn chosen for scheduling, respectively. */
4243 static int
4244 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4245 {
4246 gcc_assert (INSN_P (best_insn));
4247
4248 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4249 sel_dfa_new_cycle (best_insn, fence);
4250
4251 if (targetm.sched.variable_issue)
4252 {
4253 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4254 issue_more =
4255 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4256 issue_more);
4257 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4258 }
4259 else if (GET_CODE (PATTERN (best_insn)) != USE
4260 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4261 issue_more--;
4262
4263 return issue_more;
4264 }
4265
4266 /* Estimate the cost of issuing INSN on DFA state STATE. */
4267 static int
4268 estimate_insn_cost (rtx insn, state_t state)
4269 {
4270 static state_t temp = NULL;
4271 int cost;
4272
4273 if (!temp)
4274 temp = xmalloc (dfa_state_size);
4275
4276 memcpy (temp, state, dfa_state_size);
4277 cost = state_transition (temp, insn);
4278
4279 if (cost < 0)
4280 return 0;
4281 else if (cost == 0)
4282 return 1;
4283 return cost;
4284 }
4285
4286 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4287 This function properly handles ASMs, USEs etc. */
4288 static int
4289 get_expr_cost (expr_t expr, fence_t fence)
4290 {
4291 rtx insn = EXPR_INSN_RTX (expr);
4292
4293 if (recog_memoized (insn) < 0)
4294 {
4295 if (!FENCE_STARTS_CYCLE_P (fence)
4296 && INSN_ASM_P (insn))
4297 /* This is asm insn which is tryed to be issued on the
4298 cycle not first. Issue it on the next cycle. */
4299 return 1;
4300 else
4301 /* A USE insn, or something else we don't need to
4302 understand. We can't pass these directly to
4303 state_transition because it will trigger a
4304 fatal error for unrecognizable insns. */
4305 return 0;
4306 }
4307 else
4308 return estimate_insn_cost (insn, FENCE_STATE (fence));
4309 }
4310
4311 /* Find the best insn for scheduling, either via max_issue or just take
4312 the most prioritized available. */
4313 static int
4314 choose_best_insn (fence_t fence, int privileged_n, int *index)
4315 {
4316 int can_issue = 0;
4317
4318 if (dfa_lookahead > 0)
4319 {
4320 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4321 can_issue = max_issue (&ready, privileged_n,
4322 FENCE_STATE (fence), index);
4323 if (sched_verbose >= 2)
4324 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4325 can_issue, FENCE_ISSUED_INSNS (fence));
4326 }
4327 else
4328 {
4329 /* We can't use max_issue; just return the first available element. */
4330 int i;
4331
4332 for (i = 0; i < ready.n_ready; i++)
4333 {
4334 expr_t expr = find_expr_for_ready (i, true);
4335
4336 if (get_expr_cost (expr, fence) < 1)
4337 {
4338 can_issue = can_issue_more;
4339 *index = i;
4340
4341 if (sched_verbose >= 2)
4342 sel_print ("using %dth insn from the ready list\n", i + 1);
4343
4344 break;
4345 }
4346 }
4347
4348 if (i == ready.n_ready)
4349 {
4350 can_issue = 0;
4351 *index = -1;
4352 }
4353 }
4354
4355 return can_issue;
4356 }
4357
4358 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4359 BNDS and FENCE are current boundaries and scheduling fence respectively.
4360 Return the expr found and NULL if nothing can be issued atm.
4361 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4362 static expr_t
4363 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4364 int *pneed_stall)
4365 {
4366 expr_t best;
4367
4368 /* Choose the best insn for scheduling via:
4369 1) sorting the ready list based on priority;
4370 2) calling the reorder hook;
4371 3) calling max_issue. */
4372 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4373 if (best == NULL && ready.n_ready > 0)
4374 {
4375 int privileged_n, index;
4376
4377 can_issue_more = invoke_reorder_hooks (fence);
4378 if (can_issue_more > 0)
4379 {
4380 /* Try choosing the best insn until we find one that is could be
4381 scheduled due to liveness restrictions on its destination register.
4382 In the future, we'd like to choose once and then just probe insns
4383 in the order of their priority. */
4384 invoke_dfa_lookahead_guard ();
4385 privileged_n = calculate_privileged_insns ();
4386 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4387 if (can_issue_more)
4388 best = find_expr_for_ready (index, true);
4389 }
4390 /* We had some available insns, so if we can't issue them,
4391 we have a stall. */
4392 if (can_issue_more == 0)
4393 {
4394 best = NULL;
4395 *pneed_stall = 1;
4396 }
4397 }
4398
4399 if (best != NULL)
4400 {
4401 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4402 can_issue_more);
4403 if (can_issue_more == 0)
4404 *pneed_stall = 1;
4405 }
4406
4407 if (sched_verbose >= 2)
4408 {
4409 if (best != NULL)
4410 {
4411 sel_print ("Best expression (vliw form): ");
4412 dump_expr (best);
4413 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4414 }
4415 else
4416 sel_print ("No best expr found!\n");
4417 }
4418
4419 return best;
4420 }
4421 \f
4422
4423 /* Functions that implement the core of the scheduler. */
4424
4425
4426 /* Emit an instruction from EXPR with SEQNO and VINSN after
4427 PLACE_TO_INSERT. */
4428 static insn_t
4429 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4430 insn_t place_to_insert)
4431 {
4432 /* This assert fails when we have identical instructions
4433 one of which dominates the other. In this case move_op ()
4434 finds the first instruction and doesn't search for second one.
4435 The solution would be to compute av_set after the first found
4436 insn and, if insn present in that set, continue searching.
4437 For now we workaround this issue in move_op. */
4438 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4439
4440 if (EXPR_WAS_RENAMED (expr))
4441 {
4442 unsigned regno = expr_dest_regno (expr);
4443
4444 if (HARD_REGISTER_NUM_P (regno))
4445 {
4446 df_set_regs_ever_live (regno, true);
4447 reg_rename_tick[regno] = ++reg_rename_this_tick;
4448 }
4449 }
4450
4451 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4452 place_to_insert);
4453 }
4454
4455 /* Return TRUE if BB can hold bookkeeping code. */
4456 static bool
4457 block_valid_for_bookkeeping_p (basic_block bb)
4458 {
4459 insn_t bb_end = BB_END (bb);
4460
4461 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4462 return false;
4463
4464 if (INSN_P (bb_end))
4465 {
4466 if (INSN_SCHED_TIMES (bb_end) > 0)
4467 return false;
4468 }
4469 else
4470 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4471
4472 return true;
4473 }
4474
4475 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4476 into E2->dest, except from E1->src (there may be a sequence of empty basic
4477 blocks between E1->src and E2->dest). Return found block, or NULL if new
4478 one must be created. If LAX holds, don't assume there is a simple path
4479 from E1->src to E2->dest. */
4480 static basic_block
4481 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4482 {
4483 basic_block candidate_block = NULL;
4484 edge e;
4485
4486 /* Loop over edges from E1 to E2, inclusive. */
4487 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4488 {
4489 if (EDGE_COUNT (e->dest->preds) == 2)
4490 {
4491 if (candidate_block == NULL)
4492 candidate_block = (EDGE_PRED (e->dest, 0) == e
4493 ? EDGE_PRED (e->dest, 1)->src
4494 : EDGE_PRED (e->dest, 0)->src);
4495 else
4496 /* Found additional edge leading to path from e1 to e2
4497 from aside. */
4498 return NULL;
4499 }
4500 else if (EDGE_COUNT (e->dest->preds) > 2)
4501 /* Several edges leading to path from e1 to e2 from aside. */
4502 return NULL;
4503
4504 if (e == e2)
4505 return ((!lax || candidate_block)
4506 && block_valid_for_bookkeeping_p (candidate_block)
4507 ? candidate_block
4508 : NULL);
4509
4510 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4511 return NULL;
4512 }
4513
4514 if (lax)
4515 return NULL;
4516
4517 gcc_unreachable ();
4518 }
4519
4520 /* Create new basic block for bookkeeping code for path(s) incoming into
4521 E2->dest, except from E1->src. Return created block. */
4522 static basic_block
4523 create_block_for_bookkeeping (edge e1, edge e2)
4524 {
4525 basic_block new_bb, bb = e2->dest;
4526
4527 /* Check that we don't spoil the loop structure. */
4528 if (current_loop_nest)
4529 {
4530 basic_block latch = current_loop_nest->latch;
4531
4532 /* We do not split header. */
4533 gcc_assert (e2->dest != current_loop_nest->header);
4534
4535 /* We do not redirect the only edge to the latch block. */
4536 gcc_assert (e1->dest != latch
4537 || !single_pred_p (latch)
4538 || e1 != single_pred_edge (latch));
4539 }
4540
4541 /* Split BB to insert BOOK_INSN there. */
4542 new_bb = sched_split_block (bb, NULL);
4543
4544 /* Move note_list from the upper bb. */
4545 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4546 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4547 BB_NOTE_LIST (bb) = NULL_RTX;
4548
4549 gcc_assert (e2->dest == bb);
4550
4551 /* Skip block for bookkeeping copy when leaving E1->src. */
4552 if (e1->flags & EDGE_FALLTHRU)
4553 sel_redirect_edge_and_branch_force (e1, new_bb);
4554 else
4555 sel_redirect_edge_and_branch (e1, new_bb);
4556
4557 gcc_assert (e1->dest == new_bb);
4558 gcc_assert (sel_bb_empty_p (bb));
4559
4560 /* To keep basic block numbers in sync between debug and non-debug
4561 compilations, we have to rotate blocks here. Consider that we
4562 started from (a,b)->d, (c,d)->e, and d contained only debug
4563 insns. It would have been removed before if the debug insns
4564 weren't there, so we'd have split e rather than d. So what we do
4565 now is to swap the block numbers of new_bb and
4566 single_succ(new_bb) == e, so that the insns that were in e before
4567 get the new block number. */
4568
4569 if (MAY_HAVE_DEBUG_INSNS)
4570 {
4571 basic_block succ;
4572 insn_t insn = sel_bb_head (new_bb);
4573 insn_t last;
4574
4575 if (DEBUG_INSN_P (insn)
4576 && single_succ_p (new_bb)
4577 && (succ = single_succ (new_bb))
4578 && succ != EXIT_BLOCK_PTR
4579 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4580 {
4581 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4582 insn = NEXT_INSN (insn);
4583
4584 if (insn == last)
4585 {
4586 sel_global_bb_info_def gbi;
4587 sel_region_bb_info_def rbi;
4588 int i;
4589
4590 if (sched_verbose >= 2)
4591 sel_print ("Swapping block ids %i and %i\n",
4592 new_bb->index, succ->index);
4593
4594 i = new_bb->index;
4595 new_bb->index = succ->index;
4596 succ->index = i;
4597
4598 SET_BASIC_BLOCK (new_bb->index, new_bb);
4599 SET_BASIC_BLOCK (succ->index, succ);
4600
4601 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4602 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4603 sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4605
4606 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4607 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4608 sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4610
4611 i = BLOCK_TO_BB (new_bb->index);
4612 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4613 BLOCK_TO_BB (succ->index) = i;
4614
4615 i = CONTAINING_RGN (new_bb->index);
4616 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4617 CONTAINING_RGN (succ->index) = i;
4618
4619 for (i = 0; i < current_nr_blocks; i++)
4620 if (BB_TO_BLOCK (i) == succ->index)
4621 BB_TO_BLOCK (i) = new_bb->index;
4622 else if (BB_TO_BLOCK (i) == new_bb->index)
4623 BB_TO_BLOCK (i) = succ->index;
4624
4625 FOR_BB_INSNS (new_bb, insn)
4626 if (INSN_P (insn))
4627 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4628
4629 FOR_BB_INSNS (succ, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4632
4633 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4634 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4635
4636 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4637 && LABEL_P (BB_HEAD (succ)));
4638
4639 if (sched_verbose >= 4)
4640 sel_print ("Swapping code labels %i and %i\n",
4641 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4642 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4643
4644 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4646 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4647 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4648 }
4649 }
4650 }
4651
4652 return bb;
4653 }
4654
4655 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4656 into E2->dest, except from E1->src. */
4657 static insn_t
4658 find_place_for_bookkeeping (edge e1, edge e2)
4659 {
4660 insn_t place_to_insert;
4661 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4662 create new basic block, but insert bookkeeping there. */
4663 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4664
4665 if (book_block)
4666 {
4667 place_to_insert = BB_END (book_block);
4668
4669 /* Don't use a block containing only debug insns for
4670 bookkeeping, this causes scheduling differences between debug
4671 and non-debug compilations, for the block would have been
4672 removed already. */
4673 if (DEBUG_INSN_P (place_to_insert))
4674 {
4675 rtx insn = sel_bb_head (book_block);
4676
4677 while (insn != place_to_insert &&
4678 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4679 insn = NEXT_INSN (insn);
4680
4681 if (insn == place_to_insert)
4682 book_block = NULL;
4683 }
4684 }
4685
4686 if (!book_block)
4687 {
4688 book_block = create_block_for_bookkeeping (e1, e2);
4689 place_to_insert = BB_END (book_block);
4690 if (sched_verbose >= 9)
4691 sel_print ("New block is %i, split from bookkeeping block %i\n",
4692 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4693 }
4694 else
4695 {
4696 if (sched_verbose >= 9)
4697 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4698 }
4699
4700 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4701 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4702 place_to_insert = PREV_INSN (place_to_insert);
4703
4704 return place_to_insert;
4705 }
4706
4707 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4708 for JOIN_POINT. */
4709 static int
4710 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4711 {
4712 int seqno;
4713 rtx next;
4714
4715 /* Check if we are about to insert bookkeeping copy before a jump, and use
4716 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4717 next = NEXT_INSN (place_to_insert);
4718 if (INSN_P (next)
4719 && JUMP_P (next)
4720 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4721 {
4722 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4723 seqno = INSN_SEQNO (next);
4724 }
4725 else if (INSN_SEQNO (join_point) > 0)
4726 seqno = INSN_SEQNO (join_point);
4727 else
4728 {
4729 seqno = get_seqno_by_preds (place_to_insert);
4730
4731 /* Sometimes the fences can move in such a way that there will be
4732 no instructions with positive seqno around this bookkeeping.
4733 This means that there will be no way to get to it by a regular
4734 fence movement. Never mind because we pick up such pieces for
4735 rescheduling anyways, so any positive value will do for now. */
4736 if (seqno < 0)
4737 {
4738 gcc_assert (pipelining_p);
4739 seqno = 1;
4740 }
4741 }
4742
4743 gcc_assert (seqno > 0);
4744 return seqno;
4745 }
4746
4747 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4748 NEW_SEQNO to it. Return created insn. */
4749 static insn_t
4750 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4751 {
4752 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4753
4754 vinsn_t new_vinsn
4755 = create_vinsn_from_insn_rtx (new_insn_rtx,
4756 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4757
4758 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4759 place_to_insert);
4760
4761 INSN_SCHED_TIMES (new_insn) = 0;
4762 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4763
4764 return new_insn;
4765 }
4766
4767 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4768 E2->dest, except from E1->src (there may be a sequence of empty blocks
4769 between E1->src and E2->dest). Return block containing the copy.
4770 All scheduler data is initialized for the newly created insn. */
4771 static basic_block
4772 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4773 {
4774 insn_t join_point, place_to_insert, new_insn;
4775 int new_seqno;
4776 bool need_to_exchange_data_sets;
4777
4778 if (sched_verbose >= 4)
4779 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4780 e2->dest->index);
4781
4782 join_point = sel_bb_head (e2->dest);
4783 place_to_insert = find_place_for_bookkeeping (e1, e2);
4784 if (!place_to_insert)
4785 return NULL;
4786 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4787 need_to_exchange_data_sets
4788 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4789
4790 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4791
4792 /* When inserting bookkeeping insn in new block, av sets should be
4793 following: old basic block (that now holds bookkeeping) data sets are
4794 the same as was before generation of bookkeeping, and new basic block
4795 (that now hold all other insns of old basic block) data sets are
4796 invalid. So exchange data sets for these basic blocks as sel_split_block
4797 mistakenly exchanges them in this case. Cannot do it earlier because
4798 when single instruction is added to new basic block it should hold NULL
4799 lv_set. */
4800 if (need_to_exchange_data_sets)
4801 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4802 BLOCK_FOR_INSN (join_point));
4803
4804 stat_bookkeeping_copies++;
4805 return BLOCK_FOR_INSN (new_insn);
4806 }
4807
4808 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4809 on FENCE, but we are unable to copy them. */
4810 static void
4811 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4812 {
4813 expr_t expr;
4814 av_set_iterator i;
4815
4816 /* An expression does not need bookkeeping if it is available on all paths
4817 from current block to original block and current block dominates
4818 original block. We check availability on all paths by examining
4819 EXPR_SPEC; this is not equivalent, because it may be positive even
4820 if expr is available on all paths (but if expr is not available on
4821 any path, EXPR_SPEC will be positive). */
4822
4823 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4824 {
4825 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4826 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4827 && (EXPR_SPEC (expr)
4828 || !EXPR_ORIG_BB_INDEX (expr)
4829 || !dominated_by_p (CDI_DOMINATORS,
4830 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4831 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4832 {
4833 if (sched_verbose >= 4)
4834 sel_print ("Expr %d removed because it would need bookkeeping, which "
4835 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4836 av_set_iter_remove (&i);
4837 }
4838 }
4839 }
4840
4841 /* Moving conditional jump through some instructions.
4842
4843 Consider example:
4844
4845 ... <- current scheduling point
4846 NOTE BASIC BLOCK: <- bb header
4847 (p8) add r14=r14+0x9;;
4848 (p8) mov [r14]=r23
4849 (!p8) jump L1;;
4850 NOTE BASIC BLOCK:
4851 ...
4852
4853 We can schedule jump one cycle earlier, than mov, because they cannot be
4854 executed together as their predicates are mutually exclusive.
4855
4856 This is done in this way: first, new fallthrough basic block is created
4857 after jump (it is always can be done, because there already should be a
4858 fallthrough block, where control flow goes in case of predicate being true -
4859 in our example; otherwise there should be a dependence between those
4860 instructions and jump and we cannot schedule jump right now);
4861 next, all instructions between jump and current scheduling point are moved
4862 to this new block. And the result is this:
4863
4864 NOTE BASIC BLOCK:
4865 (!p8) jump L1 <- current scheduling point
4866 NOTE BASIC BLOCK: <- bb header
4867 (p8) add r14=r14+0x9;;
4868 (p8) mov [r14]=r23
4869 NOTE BASIC BLOCK:
4870 ...
4871 */
4872 static void
4873 move_cond_jump (rtx insn, bnd_t bnd)
4874 {
4875 edge ft_edge;
4876 basic_block block_from, block_next, block_new, block_bnd, bb;
4877 rtx next, prev, link, head;
4878
4879 block_from = BLOCK_FOR_INSN (insn);
4880 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4881 prev = BND_TO (bnd);
4882
4883 #ifdef ENABLE_CHECKING
4884 /* Moving of jump should not cross any other jumps or beginnings of new
4885 basic blocks. The only exception is when we move a jump through
4886 mutually exclusive insns along fallthru edges. */
4887 if (block_from != block_bnd)
4888 {
4889 bb = block_from;
4890 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4891 link = PREV_INSN (link))
4892 {
4893 if (INSN_P (link))
4894 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4895 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4896 {
4897 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4898 bb = BLOCK_FOR_INSN (link);
4899 }
4900 }
4901 }
4902 #endif
4903
4904 /* Jump is moved to the boundary. */
4905 next = PREV_INSN (insn);
4906 BND_TO (bnd) = insn;
4907
4908 ft_edge = find_fallthru_edge (block_from);
4909 block_next = ft_edge->dest;
4910 /* There must be a fallthrough block (or where should go
4911 control flow in case of false jump predicate otherwise?). */
4912 gcc_assert (block_next);
4913
4914 /* Create new empty basic block after source block. */
4915 block_new = sel_split_edge (ft_edge);
4916 gcc_assert (block_new->next_bb == block_next
4917 && block_from->next_bb == block_new);
4918
4919 /* Move all instructions except INSN to BLOCK_NEW. */
4920 bb = block_bnd;
4921 head = BB_HEAD (block_new);
4922 while (bb != block_from->next_bb)
4923 {
4924 rtx from, to;
4925 from = bb == block_bnd ? prev : sel_bb_head (bb);
4926 to = bb == block_from ? next : sel_bb_end (bb);
4927
4928 /* The jump being moved can be the first insn in the block.
4929 In this case we don't have to move anything in this block. */
4930 if (NEXT_INSN (to) != from)
4931 {
4932 reorder_insns (from, to, head);
4933
4934 for (link = to; link != head; link = PREV_INSN (link))
4935 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4936 head = to;
4937 }
4938
4939 /* Cleanup possibly empty blocks left. */
4940 block_next = bb->next_bb;
4941 if (bb != block_from)
4942 tidy_control_flow (bb, false);
4943 bb = block_next;
4944 }
4945
4946 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4947 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4948
4949 gcc_assert (!sel_bb_empty_p (block_from)
4950 && !sel_bb_empty_p (block_new));
4951
4952 /* Update data sets for BLOCK_NEW to represent that INSN and
4953 instructions from the other branch of INSN is no longer
4954 available at BLOCK_NEW. */
4955 BB_AV_LEVEL (block_new) = global_level;
4956 gcc_assert (BB_LV_SET (block_new) == NULL);
4957 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4958 update_data_sets (sel_bb_head (block_new));
4959
4960 /* INSN is a new basic block header - so prepare its data
4961 structures and update availability and liveness sets. */
4962 update_data_sets (insn);
4963
4964 if (sched_verbose >= 4)
4965 sel_print ("Moving jump %d\n", INSN_UID (insn));
4966 }
4967
4968 /* Remove nops generated during move_op for preventing removal of empty
4969 basic blocks. */
4970 static void
4971 remove_temp_moveop_nops (bool full_tidying)
4972 {
4973 int i;
4974 insn_t insn;
4975
4976 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4977 {
4978 gcc_assert (INSN_NOP_P (insn));
4979 return_nop_to_pool (insn, full_tidying);
4980 }
4981
4982 /* Empty the vector. */
4983 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4984 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4985 VEC_length (insn_t, vec_temp_moveop_nops));
4986 }
4987
4988 /* Records the maximal UID before moving up an instruction. Used for
4989 distinguishing between bookkeeping copies and original insns. */
4990 static int max_uid_before_move_op = 0;
4991
4992 /* Remove from AV_VLIW_P all instructions but next when debug counter
4993 tells us so. Next instruction is fetched from BNDS. */
4994 static void
4995 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4996 {
4997 if (! dbg_cnt (sel_sched_insn_cnt))
4998 /* Leave only the next insn in av_vliw. */
4999 {
5000 av_set_iterator av_it;
5001 expr_t expr;
5002 bnd_t bnd = BLIST_BND (bnds);
5003 insn_t next = BND_TO (bnd);
5004
5005 gcc_assert (BLIST_NEXT (bnds) == NULL);
5006
5007 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5008 if (EXPR_INSN_RTX (expr) != next)
5009 av_set_iter_remove (&av_it);
5010 }
5011 }
5012
5013 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5014 the computed set to *AV_VLIW_P. */
5015 static void
5016 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5017 {
5018 if (sched_verbose >= 2)
5019 {
5020 sel_print ("Boundaries: ");
5021 dump_blist (bnds);
5022 sel_print ("\n");
5023 }
5024
5025 for (; bnds; bnds = BLIST_NEXT (bnds))
5026 {
5027 bnd_t bnd = BLIST_BND (bnds);
5028 av_set_t av1_copy;
5029 insn_t bnd_to = BND_TO (bnd);
5030
5031 /* Rewind BND->TO to the basic block header in case some bookkeeping
5032 instructions were inserted before BND->TO and it needs to be
5033 adjusted. */
5034 if (sel_bb_head_p (bnd_to))
5035 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5036 else
5037 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5038 {
5039 bnd_to = PREV_INSN (bnd_to);
5040 if (sel_bb_head_p (bnd_to))
5041 break;
5042 }
5043
5044 if (BND_TO (bnd) != bnd_to)
5045 {
5046 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5047 FENCE_INSN (fence) = bnd_to;
5048 BND_TO (bnd) = bnd_to;
5049 }
5050
5051 av_set_clear (&BND_AV (bnd));
5052 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5053
5054 av_set_clear (&BND_AV1 (bnd));
5055 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5056
5057 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5058
5059 av1_copy = av_set_copy (BND_AV1 (bnd));
5060 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5061 }
5062
5063 if (sched_verbose >= 2)
5064 {
5065 sel_print ("Available exprs (vliw form): ");
5066 dump_av_set (*av_vliw_p);
5067 sel_print ("\n");
5068 }
5069 }
5070
5071 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5072 expression. When FOR_MOVEOP is true, also replace the register of
5073 expressions found with the register from EXPR_VLIW. */
5074 static av_set_t
5075 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5076 {
5077 av_set_t expr_seq = NULL;
5078 expr_t expr;
5079 av_set_iterator i;
5080
5081 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5082 {
5083 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5084 {
5085 if (for_moveop)
5086 {
5087 /* The sequential expression has the right form to pass
5088 to move_op except when renaming happened. Put the
5089 correct register in EXPR then. */
5090 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5091 {
5092 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5093 {
5094 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5095 stat_renamed_scheduled++;
5096 }
5097 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5098 This is needed when renaming came up with original
5099 register. */
5100 else if (EXPR_TARGET_AVAILABLE (expr)
5101 != EXPR_TARGET_AVAILABLE (expr_vliw))
5102 {
5103 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5104 EXPR_TARGET_AVAILABLE (expr) = 1;
5105 }
5106 }
5107 if (EXPR_WAS_SUBSTITUTED (expr))
5108 stat_substitutions_total++;
5109 }
5110
5111 av_set_add (&expr_seq, expr);
5112
5113 /* With substitution inside insn group, it is possible
5114 that more than one expression in expr_seq will correspond
5115 to expr_vliw. In this case, choose one as the attempt to
5116 move both leads to miscompiles. */
5117 break;
5118 }
5119 }
5120
5121 if (for_moveop && sched_verbose >= 2)
5122 {
5123 sel_print ("Best expression(s) (sequential form): ");
5124 dump_av_set (expr_seq);
5125 sel_print ("\n");
5126 }
5127
5128 return expr_seq;
5129 }
5130
5131
5132 /* Move nop to previous block. */
5133 static void ATTRIBUTE_UNUSED
5134 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5135 {
5136 insn_t prev_insn, next_insn, note;
5137
5138 gcc_assert (sel_bb_head_p (nop)
5139 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5140 note = bb_note (BLOCK_FOR_INSN (nop));
5141 prev_insn = sel_bb_end (prev_bb);
5142 next_insn = NEXT_INSN (nop);
5143 gcc_assert (prev_insn != NULL_RTX
5144 && PREV_INSN (note) == prev_insn);
5145
5146 NEXT_INSN (prev_insn) = nop;
5147 PREV_INSN (nop) = prev_insn;
5148
5149 PREV_INSN (note) = nop;
5150 NEXT_INSN (note) = next_insn;
5151
5152 NEXT_INSN (nop) = note;
5153 PREV_INSN (next_insn) = note;
5154
5155 BB_END (prev_bb) = nop;
5156 BLOCK_FOR_INSN (nop) = prev_bb;
5157 }
5158
5159 /* Prepare a place to insert the chosen expression on BND. */
5160 static insn_t
5161 prepare_place_to_insert (bnd_t bnd)
5162 {
5163 insn_t place_to_insert;
5164
5165 /* Init place_to_insert before calling move_op, as the later
5166 can possibly remove BND_TO (bnd). */
5167 if (/* If this is not the first insn scheduled. */
5168 BND_PTR (bnd))
5169 {
5170 /* Add it after last scheduled. */
5171 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5172 if (DEBUG_INSN_P (place_to_insert))
5173 {
5174 ilist_t l = BND_PTR (bnd);
5175 while ((l = ILIST_NEXT (l)) &&
5176 DEBUG_INSN_P (ILIST_INSN (l)))
5177 ;
5178 if (!l)
5179 place_to_insert = NULL;
5180 }
5181 }
5182 else
5183 place_to_insert = NULL;
5184
5185 if (!place_to_insert)
5186 {
5187 /* Add it before BND_TO. The difference is in the
5188 basic block, where INSN will be added. */
5189 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5190 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5191 == BLOCK_FOR_INSN (BND_TO (bnd)));
5192 }
5193
5194 return place_to_insert;
5195 }
5196
5197 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5198 Return the expression to emit in C_EXPR. */
5199 static bool
5200 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5201 av_set_t expr_seq, expr_t c_expr)
5202 {
5203 bool b, should_move;
5204 unsigned book_uid;
5205 bitmap_iterator bi;
5206 int n_bookkeeping_copies_before_moveop;
5207
5208 /* Make a move. This call will remove the original operation,
5209 insert all necessary bookkeeping instructions and update the
5210 data sets. After that all we have to do is add the operation
5211 at before BND_TO (BND). */
5212 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5213 max_uid_before_move_op = get_max_uid ();
5214 bitmap_clear (current_copies);
5215 bitmap_clear (current_originators);
5216
5217 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5218 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5219
5220 /* We should be able to find the expression we've chosen for
5221 scheduling. */
5222 gcc_assert (b);
5223
5224 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5225 stat_insns_needed_bookkeeping++;
5226
5227 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5228 {
5229 unsigned uid;
5230 bitmap_iterator bi;
5231
5232 /* We allocate these bitmaps lazily. */
5233 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5234 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5235
5236 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5237 current_originators);
5238
5239 /* Transitively add all originators' originators. */
5240 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5241 if (INSN_ORIGINATORS_BY_UID (uid))
5242 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5243 INSN_ORIGINATORS_BY_UID (uid));
5244 }
5245
5246 return should_move;
5247 }
5248
5249
5250 /* Debug a DFA state as an array of bytes. */
5251 static void
5252 debug_state (state_t state)
5253 {
5254 unsigned char *p;
5255 unsigned int i, size = dfa_state_size;
5256
5257 sel_print ("state (%u):", size);
5258 for (i = 0, p = (unsigned char *) state; i < size; i++)
5259 sel_print (" %d", p[i]);
5260 sel_print ("\n");
5261 }
5262
5263 /* Advance state on FENCE with INSN. Return true if INSN is
5264 an ASM, and we should advance state once more. */
5265 static bool
5266 advance_state_on_fence (fence_t fence, insn_t insn)
5267 {
5268 bool asm_p;
5269
5270 if (recog_memoized (insn) >= 0)
5271 {
5272 int res;
5273 state_t temp_state = alloca (dfa_state_size);
5274
5275 gcc_assert (!INSN_ASM_P (insn));
5276 asm_p = false;
5277
5278 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5279 res = state_transition (FENCE_STATE (fence), insn);
5280 gcc_assert (res < 0);
5281
5282 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5283 {
5284 FENCE_ISSUED_INSNS (fence)++;
5285
5286 /* We should never issue more than issue_rate insns. */
5287 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5288 gcc_unreachable ();
5289 }
5290 }
5291 else
5292 {
5293 /* This could be an ASM insn which we'd like to schedule
5294 on the next cycle. */
5295 asm_p = INSN_ASM_P (insn);
5296 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5297 advance_one_cycle (fence);
5298 }
5299
5300 if (sched_verbose >= 2)
5301 debug_state (FENCE_STATE (fence));
5302 if (!DEBUG_INSN_P (insn))
5303 FENCE_STARTS_CYCLE_P (fence) = 0;
5304 FENCE_ISSUE_MORE (fence) = can_issue_more;
5305 return asm_p;
5306 }
5307
5308 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5309 is nonzero if we need to stall after issuing INSN. */
5310 static void
5311 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5312 {
5313 bool asm_p;
5314
5315 /* First, reflect that something is scheduled on this fence. */
5316 asm_p = advance_state_on_fence (fence, insn);
5317 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5318 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5319 if (SCHED_GROUP_P (insn))
5320 {
5321 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5322 SCHED_GROUP_P (insn) = 0;
5323 }
5324 else
5325 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5326 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5327 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5328
5329 /* Set instruction scheduling info. This will be used in bundling,
5330 pipelining, tick computations etc. */
5331 ++INSN_SCHED_TIMES (insn);
5332 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5333 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5334 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5335 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5336
5337 /* This does not account for adjust_cost hooks, just add the biggest
5338 constant the hook may add to the latency. TODO: make this
5339 a target dependent constant. */
5340 INSN_READY_CYCLE (insn)
5341 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5342 ? 1
5343 : maximal_insn_latency (insn) + 1);
5344
5345 /* Change these fields last, as they're used above. */
5346 FENCE_AFTER_STALL_P (fence) = 0;
5347 if (asm_p || need_stall)
5348 advance_one_cycle (fence);
5349
5350 /* Indicate that we've scheduled something on this fence. */
5351 FENCE_SCHEDULED_P (fence) = true;
5352 scheduled_something_on_previous_fence = true;
5353
5354 /* Print debug information when insn's fields are updated. */
5355 if (sched_verbose >= 2)
5356 {
5357 sel_print ("Scheduling insn: ");
5358 dump_insn_1 (insn, 1);
5359 sel_print ("\n");
5360 }
5361 }
5362
5363 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5364 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5365 return it. */
5366 static blist_t *
5367 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5368 blist_t *bnds_tailp)
5369 {
5370 succ_iterator si;
5371 insn_t succ;
5372
5373 advance_deps_context (BND_DC (bnd), insn);
5374 FOR_EACH_SUCC_1 (succ, si, insn,
5375 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5376 {
5377 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5378
5379 ilist_add (&ptr, insn);
5380
5381 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5382 && is_ineligible_successor (succ, ptr))
5383 {
5384 ilist_clear (&ptr);
5385 continue;
5386 }
5387
5388 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5389 {
5390 if (sched_verbose >= 9)
5391 sel_print ("Updating fence insn from %i to %i\n",
5392 INSN_UID (insn), INSN_UID (succ));
5393 FENCE_INSN (fence) = succ;
5394 }
5395 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5396 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5397 }
5398
5399 blist_remove (bndsp);
5400 return bnds_tailp;
5401 }
5402
5403 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5404 static insn_t
5405 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5406 {
5407 av_set_t expr_seq;
5408 expr_t c_expr = XALLOCA (expr_def);
5409 insn_t place_to_insert;
5410 insn_t insn;
5411 bool should_move;
5412
5413 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5414
5415 /* In case of scheduling a jump skipping some other instructions,
5416 prepare CFG. After this, jump is at the boundary and can be
5417 scheduled as usual insn by MOVE_OP. */
5418 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5419 {
5420 insn = EXPR_INSN_RTX (expr_vliw);
5421
5422 /* Speculative jumps are not handled. */
5423 if (insn != BND_TO (bnd)
5424 && !sel_insn_is_speculation_check (insn))
5425 move_cond_jump (insn, bnd);
5426 }
5427
5428 /* Find a place for C_EXPR to schedule. */
5429 place_to_insert = prepare_place_to_insert (bnd);
5430 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5431 clear_expr (c_expr);
5432
5433 /* Add the instruction. The corner case to care about is when
5434 the expr_seq set has more than one expr, and we chose the one that
5435 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5436 we can't use it. Generate the new vinsn. */
5437 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5438 {
5439 vinsn_t vinsn_new;
5440
5441 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5442 change_vinsn_in_expr (expr_vliw, vinsn_new);
5443 should_move = false;
5444 }
5445 if (should_move)
5446 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5447 else
5448 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5449 place_to_insert);
5450
5451 /* Return the nops generated for preserving of data sets back
5452 into pool. */
5453 if (INSN_NOP_P (place_to_insert))
5454 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5455 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5456
5457 av_set_clear (&expr_seq);
5458
5459 /* Save the expression scheduled so to reset target availability if we'll
5460 meet it later on the same fence. */
5461 if (EXPR_WAS_RENAMED (expr_vliw))
5462 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5463
5464 /* Check that the recent movement didn't destroyed loop
5465 structure. */
5466 gcc_assert (!pipelining_p
5467 || current_loop_nest == NULL
5468 || loop_latch_edge (current_loop_nest));
5469 return insn;
5470 }
5471
5472 /* Stall for N cycles on FENCE. */
5473 static void
5474 stall_for_cycles (fence_t fence, int n)
5475 {
5476 int could_more;
5477
5478 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5479 while (n--)
5480 advance_one_cycle (fence);
5481 if (could_more)
5482 FENCE_AFTER_STALL_P (fence) = 1;
5483 }
5484
5485 /* Gather a parallel group of insns at FENCE and assign their seqno
5486 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5487 list for later recalculation of seqnos. */
5488 static void
5489 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5490 {
5491 blist_t bnds = NULL, *bnds_tailp;
5492 av_set_t av_vliw = NULL;
5493 insn_t insn = FENCE_INSN (fence);
5494
5495 if (sched_verbose >= 2)
5496 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5497 INSN_UID (insn), FENCE_CYCLE (fence));
5498
5499 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5500 bnds_tailp = &BLIST_NEXT (bnds);
5501 set_target_context (FENCE_TC (fence));
5502 can_issue_more = FENCE_ISSUE_MORE (fence);
5503 target_bb = INSN_BB (insn);
5504
5505 /* Do while we can add any operation to the current group. */
5506 do
5507 {
5508 blist_t *bnds_tailp1, *bndsp;
5509 expr_t expr_vliw;
5510 int need_stall;
5511 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5512 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5513 int max_stall = pipelining_p ? 1 : 3;
5514 bool last_insn_was_debug = false;
5515 bool was_debug_bb_end_p = false;
5516
5517 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5518 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5519 remove_insns_for_debug (bnds, &av_vliw);
5520
5521 /* Return early if we have nothing to schedule. */
5522 if (av_vliw == NULL)
5523 break;
5524
5525 /* Choose the best expression and, if needed, destination register
5526 for it. */
5527 do
5528 {
5529 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5530 if (!expr_vliw && need_stall)
5531 {
5532 /* All expressions required a stall. Do not recompute av sets
5533 as we'll get the same answer (modulo the insns between
5534 the fence and its boundary, which will not be available for
5535 pipelining). */
5536 gcc_assert (! expr_vliw && stall_iterations < 2);
5537 was_stall++;
5538 /* If we are going to stall for too long, break to recompute av
5539 sets and bring more insns for pipelining. */
5540 if (need_stall <= 3)
5541 stall_for_cycles (fence, need_stall);
5542 else
5543 {
5544 stall_for_cycles (fence, 1);
5545 break;
5546 }
5547 }
5548 }
5549 while (! expr_vliw && need_stall);
5550
5551 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5552 if (!expr_vliw)
5553 {
5554 av_set_clear (&av_vliw);
5555 break;
5556 }
5557
5558 bndsp = &bnds;
5559 bnds_tailp1 = bnds_tailp;
5560
5561 do
5562 /* This code will be executed only once until we'd have several
5563 boundaries per fence. */
5564 {
5565 bnd_t bnd = BLIST_BND (*bndsp);
5566
5567 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5568 {
5569 bndsp = &BLIST_NEXT (*bndsp);
5570 continue;
5571 }
5572
5573 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5574 last_insn_was_debug = DEBUG_INSN_P (insn);
5575 if (last_insn_was_debug)
5576 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5577 update_fence_and_insn (fence, insn, need_stall);
5578 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5579
5580 /* Add insn to the list of scheduled on this cycle instructions. */
5581 ilist_add (*scheduled_insns_tailpp, insn);
5582 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5583 }
5584 while (*bndsp != *bnds_tailp1);
5585
5586 av_set_clear (&av_vliw);
5587 if (!last_insn_was_debug)
5588 scheduled_insns++;
5589
5590 /* We currently support information about candidate blocks only for
5591 one 'target_bb' block. Hence we can't schedule after jump insn,
5592 as this will bring two boundaries and, hence, necessity to handle
5593 information for two or more blocks concurrently. */
5594 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5595 || (was_stall
5596 && (was_stall >= max_stall
5597 || scheduled_insns >= max_insns)))
5598 break;
5599 }
5600 while (bnds);
5601
5602 gcc_assert (!FENCE_BNDS (fence));
5603
5604 /* Update boundaries of the FENCE. */
5605 while (bnds)
5606 {
5607 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5608
5609 if (ptr)
5610 {
5611 insn = ILIST_INSN (ptr);
5612
5613 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5614 ilist_add (&FENCE_BNDS (fence), insn);
5615 }
5616
5617 blist_remove (&bnds);
5618 }
5619
5620 /* Update target context on the fence. */
5621 reset_target_context (FENCE_TC (fence), false);
5622 }
5623
5624 /* All exprs in ORIG_OPS must have the same destination register or memory.
5625 Return that destination. */
5626 static rtx
5627 get_dest_from_orig_ops (av_set_t orig_ops)
5628 {
5629 rtx dest = NULL_RTX;
5630 av_set_iterator av_it;
5631 expr_t expr;
5632 bool first_p = true;
5633
5634 FOR_EACH_EXPR (expr, av_it, orig_ops)
5635 {
5636 rtx x = EXPR_LHS (expr);
5637
5638 if (first_p)
5639 {
5640 first_p = false;
5641 dest = x;
5642 }
5643 else
5644 gcc_assert (dest == x
5645 || (dest != NULL_RTX && x != NULL_RTX
5646 && rtx_equal_p (dest, x)));
5647 }
5648
5649 return dest;
5650 }
5651
5652 /* Update data sets for the bookkeeping block and record those expressions
5653 which become no longer available after inserting this bookkeeping. */
5654 static void
5655 update_and_record_unavailable_insns (basic_block book_block)
5656 {
5657 av_set_iterator i;
5658 av_set_t old_av_set = NULL;
5659 expr_t cur_expr;
5660 rtx bb_end = sel_bb_end (book_block);
5661
5662 /* First, get correct liveness in the bookkeeping block. The problem is
5663 the range between the bookeeping insn and the end of block. */
5664 update_liveness_on_insn (bb_end);
5665 if (control_flow_insn_p (bb_end))
5666 update_liveness_on_insn (PREV_INSN (bb_end));
5667
5668 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5669 fence above, where we may choose to schedule an insn which is
5670 actually blocked from moving up with the bookkeeping we create here. */
5671 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5672 {
5673 old_av_set = av_set_copy (BB_AV_SET (book_block));
5674 update_data_sets (sel_bb_head (book_block));
5675
5676 /* Traverse all the expressions in the old av_set and check whether
5677 CUR_EXPR is in new AV_SET. */
5678 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5679 {
5680 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5681 EXPR_VINSN (cur_expr));
5682
5683 if (! new_expr
5684 /* In this case, we can just turn off the E_T_A bit, but we can't
5685 represent this information with the current vector. */
5686 || EXPR_TARGET_AVAILABLE (new_expr)
5687 != EXPR_TARGET_AVAILABLE (cur_expr))
5688 /* Unfortunately, the below code could be also fired up on
5689 separable insns.
5690 FIXME: add an example of how this could happen. */
5691 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5692 }
5693
5694 av_set_clear (&old_av_set);
5695 }
5696 }
5697
5698 /* The main effect of this function is that sparams->c_expr is merged
5699 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5700 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5701 lparams->c_expr_merged is copied back to sparams->c_expr after all
5702 successors has been traversed. lparams->c_expr_local is an expr allocated
5703 on stack in the caller function, and is used if there is more than one
5704 successor.
5705
5706 SUCC is one of the SUCCS_NORMAL successors of INSN,
5707 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5708 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5709 static void
5710 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5711 insn_t succ ATTRIBUTE_UNUSED,
5712 int moveop_drv_call_res,
5713 cmpd_local_params_p lparams, void *static_params)
5714 {
5715 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5716
5717 /* Nothing to do, if original expr wasn't found below. */
5718 if (moveop_drv_call_res != 1)
5719 return;
5720
5721 /* If this is a first successor. */
5722 if (!lparams->c_expr_merged)
5723 {
5724 lparams->c_expr_merged = sparams->c_expr;
5725 sparams->c_expr = lparams->c_expr_local;
5726 }
5727 else
5728 {
5729 /* We must merge all found expressions to get reasonable
5730 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5731 do so then we can first find the expr with epsilon
5732 speculation success probability and only then with the
5733 good probability. As a result the insn will get epsilon
5734 probability and will never be scheduled because of
5735 weakness_cutoff in find_best_expr.
5736
5737 We call merge_expr_data here instead of merge_expr
5738 because due to speculation C_EXPR and X may have the
5739 same insns with different speculation types. And as of
5740 now such insns are considered non-equal.
5741
5742 However, EXPR_SCHED_TIMES is different -- we must get
5743 SCHED_TIMES from a real insn, not a bookkeeping copy.
5744 We force this here. Instead, we may consider merging
5745 SCHED_TIMES to the maximum instead of minimum in the
5746 below function. */
5747 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5748
5749 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5750 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5751 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5752
5753 clear_expr (sparams->c_expr);
5754 }
5755 }
5756
5757 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5758
5759 SUCC is one of the SUCCS_NORMAL successors of INSN,
5760 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5761 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5762 STATIC_PARAMS contain USED_REGS set. */
5763 static void
5764 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5765 int moveop_drv_call_res,
5766 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5767 void *static_params)
5768 {
5769 regset succ_live;
5770 fur_static_params_p sparams = (fur_static_params_p) static_params;
5771
5772 /* Here we compute live regsets only for branches that do not lie
5773 on the code motion paths. These branches correspond to value
5774 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5775 for such branches code_motion_path_driver is not called. */
5776 if (moveop_drv_call_res != 0)
5777 return;
5778
5779 /* Mark all registers that do not meet the following condition:
5780 (3) not live on the other path of any conditional branch
5781 that is passed by the operation, in case original
5782 operations are not present on both paths of the
5783 conditional branch. */
5784 succ_live = compute_live (succ);
5785 IOR_REG_SET (sparams->used_regs, succ_live);
5786 }
5787
5788 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5789 into SP->CEXPR. */
5790 static void
5791 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5792 {
5793 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5794
5795 sp->c_expr = lp->c_expr_merged;
5796 }
5797
5798 /* Track bookkeeping copies created, insns scheduled, and blocks for
5799 rescheduling when INSN is found by move_op. */
5800 static void
5801 track_scheduled_insns_and_blocks (rtx insn)
5802 {
5803 /* Even if this insn can be a copy that will be removed during current move_op,
5804 we still need to count it as an originator. */
5805 bitmap_set_bit (current_originators, INSN_UID (insn));
5806
5807 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5808 {
5809 /* Note that original block needs to be rescheduled, as we pulled an
5810 instruction out of it. */
5811 if (INSN_SCHED_TIMES (insn) > 0)
5812 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5813 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5814 num_insns_scheduled++;
5815 }
5816
5817 /* For instructions we must immediately remove insn from the
5818 stream, so subsequent update_data_sets () won't include this
5819 insn into av_set.
5820 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5821 if (INSN_UID (insn) > max_uid_before_move_op)
5822 stat_bookkeeping_copies--;
5823 }
5824
5825 /* Emit a register-register copy for INSN if needed. Return true if
5826 emitted one. PARAMS is the move_op static parameters. */
5827 static bool
5828 maybe_emit_renaming_copy (rtx insn,
5829 moveop_static_params_p params)
5830 {
5831 bool insn_emitted = false;
5832 rtx cur_reg;
5833
5834 /* Bail out early when expression can not be renamed at all. */
5835 if (!EXPR_SEPARABLE_P (params->c_expr))
5836 return false;
5837
5838 cur_reg = expr_dest_reg (params->c_expr);
5839 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5840
5841 /* If original operation has expr and the register chosen for
5842 that expr is not original operation's dest reg, substitute
5843 operation's right hand side with the register chosen. */
5844 if (REGNO (params->dest) != REGNO (cur_reg))
5845 {
5846 insn_t reg_move_insn, reg_move_insn_rtx;
5847
5848 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5849 params->dest);
5850 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5851 INSN_EXPR (insn),
5852 INSN_SEQNO (insn),
5853 insn);
5854 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5855 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5856
5857 insn_emitted = true;
5858 params->was_renamed = true;
5859 }
5860
5861 return insn_emitted;
5862 }
5863
5864 /* Emit a speculative check for INSN speculated as EXPR if needed.
5865 Return true if we've emitted one. PARAMS is the move_op static
5866 parameters. */
5867 static bool
5868 maybe_emit_speculative_check (rtx insn, expr_t expr,
5869 moveop_static_params_p params)
5870 {
5871 bool insn_emitted = false;
5872 insn_t x;
5873 ds_t check_ds;
5874
5875 check_ds = get_spec_check_type_for_insn (insn, expr);
5876 if (check_ds != 0)
5877 {
5878 /* A speculation check should be inserted. */
5879 x = create_speculation_check (params->c_expr, check_ds, insn);
5880 insn_emitted = true;
5881 }
5882 else
5883 {
5884 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5885 x = insn;
5886 }
5887
5888 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5889 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5890 return insn_emitted;
5891 }
5892
5893 /* Handle transformations that leave an insn in place of original
5894 insn such as renaming/speculation. Return true if one of such
5895 transformations actually happened, and we have emitted this insn. */
5896 static bool
5897 handle_emitting_transformations (rtx insn, expr_t expr,
5898 moveop_static_params_p params)
5899 {
5900 bool insn_emitted = false;
5901
5902 insn_emitted = maybe_emit_renaming_copy (insn, params);
5903 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5904
5905 return insn_emitted;
5906 }
5907
5908 /* If INSN is the only insn in the basic block (not counting JUMP,
5909 which may be a jump to next insn, and DEBUG_INSNs), we want to
5910 leave a NOP there till the return to fill_insns. */
5911
5912 static bool
5913 need_nop_to_preserve_insn_bb (rtx insn)
5914 {
5915 insn_t bb_head, bb_end, bb_next, in_next;
5916 basic_block bb = BLOCK_FOR_INSN (insn);
5917
5918 bb_head = sel_bb_head (bb);
5919 bb_end = sel_bb_end (bb);
5920
5921 if (bb_head == bb_end)
5922 return true;
5923
5924 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5925 bb_head = NEXT_INSN (bb_head);
5926
5927 if (bb_head == bb_end)
5928 return true;
5929
5930 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5931 bb_end = PREV_INSN (bb_end);
5932
5933 if (bb_head == bb_end)
5934 return true;
5935
5936 bb_next = NEXT_INSN (bb_head);
5937 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5938 bb_next = NEXT_INSN (bb_next);
5939
5940 if (bb_next == bb_end && JUMP_P (bb_end))
5941 return true;
5942
5943 in_next = NEXT_INSN (insn);
5944 while (DEBUG_INSN_P (in_next))
5945 in_next = NEXT_INSN (in_next);
5946
5947 if (IN_CURRENT_FENCE_P (in_next))
5948 return true;
5949
5950 return false;
5951 }
5952
5953 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5954 is not removed but reused when INSN is re-emitted. */
5955 static void
5956 remove_insn_from_stream (rtx insn, bool only_disconnect)
5957 {
5958 /* If there's only one insn in the BB, make sure that a nop is
5959 inserted into it, so the basic block won't disappear when we'll
5960 delete INSN below with sel_remove_insn. It should also survive
5961 till the return to fill_insns. */
5962 if (need_nop_to_preserve_insn_bb (insn))
5963 {
5964 insn_t nop = get_nop_from_pool (insn);
5965 gcc_assert (INSN_NOP_P (nop));
5966 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5967 }
5968
5969 sel_remove_insn (insn, only_disconnect, false);
5970 }
5971
5972 /* This function is called when original expr is found.
5973 INSN - current insn traversed, EXPR - the corresponding expr found.
5974 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5975 is static parameters of move_op. */
5976 static void
5977 move_op_orig_expr_found (insn_t insn, expr_t expr,
5978 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5979 void *static_params)
5980 {
5981 bool only_disconnect, insn_emitted;
5982 moveop_static_params_p params = (moveop_static_params_p) static_params;
5983
5984 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5985 track_scheduled_insns_and_blocks (insn);
5986 insn_emitted = handle_emitting_transformations (insn, expr, params);
5987 only_disconnect = (params->uid == INSN_UID (insn)
5988 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5989
5990 /* Mark that we've disconnected an insn. */
5991 if (only_disconnect)
5992 params->uid = -1;
5993 remove_insn_from_stream (insn, only_disconnect);
5994 }
5995
5996 /* The function is called when original expr is found.
5997 INSN - current insn traversed, EXPR - the corresponding expr found,
5998 crosses_call and original_insns in STATIC_PARAMS are updated. */
5999 static void
6000 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6001 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6002 void *static_params)
6003 {
6004 fur_static_params_p params = (fur_static_params_p) static_params;
6005 regset tmp;
6006
6007 if (CALL_P (insn))
6008 params->crosses_call = true;
6009
6010 def_list_add (params->original_insns, insn, params->crosses_call);
6011
6012 /* Mark the registers that do not meet the following condition:
6013 (2) not among the live registers of the point
6014 immediately following the first original operation on
6015 a given downward path, except for the original target
6016 register of the operation. */
6017 tmp = get_clear_regset_from_pool ();
6018 compute_live_below_insn (insn, tmp);
6019 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6020 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6021 IOR_REG_SET (params->used_regs, tmp);
6022 return_regset_to_pool (tmp);
6023
6024 /* (*1) We need to add to USED_REGS registers that are read by
6025 INSN's lhs. This may lead to choosing wrong src register.
6026 E.g. (scheduling const expr enabled):
6027
6028 429: ax=0x0 <- Can't use AX for this expr (0x0)
6029 433: dx=[bp-0x18]
6030 427: [ax+dx+0x1]=ax
6031 REG_DEAD: ax
6032 168: di=dx
6033 REG_DEAD: dx
6034 */
6035 /* FIXME: see comment above and enable MEM_P
6036 in vinsn_separable_p. */
6037 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6038 || !MEM_P (INSN_LHS (insn)));
6039 }
6040
6041 /* This function is called on the ascending pass, before returning from
6042 current basic block. */
6043 static void
6044 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6045 void *static_params)
6046 {
6047 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6048 basic_block book_block = NULL;
6049
6050 /* When we have removed the boundary insn for scheduling, which also
6051 happened to be the end insn in its bb, we don't need to update sets. */
6052 if (!lparams->removed_last_insn
6053 && lparams->e1
6054 && sel_bb_head_p (insn))
6055 {
6056 /* We should generate bookkeeping code only if we are not at the
6057 top level of the move_op. */
6058 if (sel_num_cfg_preds_gt_1 (insn))
6059 book_block = generate_bookkeeping_insn (sparams->c_expr,
6060 lparams->e1, lparams->e2);
6061 /* Update data sets for the current insn. */
6062 update_data_sets (insn);
6063 }
6064
6065 /* If bookkeeping code was inserted, we need to update av sets of basic
6066 block that received bookkeeping. After generation of bookkeeping insn,
6067 bookkeeping block does not contain valid av set because we are not following
6068 the original algorithm in every detail with regards to e.g. renaming
6069 simple reg-reg copies. Consider example:
6070
6071 bookkeeping block scheduling fence
6072 \ /
6073 \ join /
6074 ----------
6075 | |
6076 ----------
6077 / \
6078 / \
6079 r1 := r2 r1 := r3
6080
6081 We try to schedule insn "r1 := r3" on the current
6082 scheduling fence. Also, note that av set of bookkeeping block
6083 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6084 been scheduled, the CFG is as follows:
6085
6086 r1 := r3 r1 := r3
6087 bookkeeping block scheduling fence
6088 \ /
6089 \ join /
6090 ----------
6091 | |
6092 ----------
6093 / \
6094 / \
6095 r1 := r2
6096
6097 Here, insn "r1 := r3" was scheduled at the current scheduling point
6098 and bookkeeping code was generated at the bookeeping block. This
6099 way insn "r1 := r2" is no longer available as a whole instruction
6100 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6101 This situation is handled by calling update_data_sets.
6102
6103 Since update_data_sets is called only on the bookkeeping block, and
6104 it also may have predecessors with av_sets, containing instructions that
6105 are no longer available, we save all such expressions that become
6106 unavailable during data sets update on the bookkeeping block in
6107 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6108 expressions for scheduling. This allows us to avoid recomputation of
6109 av_sets outside the code motion path. */
6110
6111 if (book_block)
6112 update_and_record_unavailable_insns (book_block);
6113
6114 /* If INSN was previously marked for deletion, it's time to do it. */
6115 if (lparams->removed_last_insn)
6116 insn = PREV_INSN (insn);
6117
6118 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6119 kill a block with a single nop in which the insn should be emitted. */
6120 if (lparams->e1)
6121 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6122 }
6123
6124 /* This function is called on the ascending pass, before returning from the
6125 current basic block. */
6126 static void
6127 fur_at_first_insn (insn_t insn,
6128 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6129 void *static_params ATTRIBUTE_UNUSED)
6130 {
6131 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6132 || AV_LEVEL (insn) == -1);
6133 }
6134
6135 /* Called on the backward stage of recursion to call moveup_expr for insn
6136 and sparams->c_expr. */
6137 static void
6138 move_op_ascend (insn_t insn, void *static_params)
6139 {
6140 enum MOVEUP_EXPR_CODE res;
6141 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6142
6143 if (! INSN_NOP_P (insn))
6144 {
6145 res = moveup_expr_cached (sparams->c_expr, insn, false);
6146 gcc_assert (res != MOVEUP_EXPR_NULL);
6147 }
6148
6149 /* Update liveness for this insn as it was invalidated. */
6150 update_liveness_on_insn (insn);
6151 }
6152
6153 /* This function is called on enter to the basic block.
6154 Returns TRUE if this block already have been visited and
6155 code_motion_path_driver should return 1, FALSE otherwise. */
6156 static int
6157 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6158 void *static_params, bool visited_p)
6159 {
6160 fur_static_params_p sparams = (fur_static_params_p) static_params;
6161
6162 if (visited_p)
6163 {
6164 /* If we have found something below this block, there should be at
6165 least one insn in ORIGINAL_INSNS. */
6166 gcc_assert (*sparams->original_insns);
6167
6168 /* Adjust CROSSES_CALL, since we may have come to this block along
6169 different path. */
6170 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6171 |= sparams->crosses_call;
6172 }
6173 else
6174 local_params->old_original_insns = *sparams->original_insns;
6175
6176 return 1;
6177 }
6178
6179 /* Same as above but for move_op. */
6180 static int
6181 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6182 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6183 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6184 {
6185 if (visited_p)
6186 return -1;
6187 return 1;
6188 }
6189
6190 /* This function is called while descending current basic block if current
6191 insn is not the original EXPR we're searching for.
6192
6193 Return value: FALSE, if code_motion_path_driver should perform a local
6194 cleanup and return 0 itself;
6195 TRUE, if code_motion_path_driver should continue. */
6196 static bool
6197 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6198 void *static_params)
6199 {
6200 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6201
6202 #ifdef ENABLE_CHECKING
6203 sparams->failed_insn = insn;
6204 #endif
6205
6206 /* If we're scheduling separate expr, in order to generate correct code
6207 we need to stop the search at bookkeeping code generated with the
6208 same destination register or memory. */
6209 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6210 return false;
6211 return true;
6212 }
6213
6214 /* This function is called while descending current basic block if current
6215 insn is not the original EXPR we're searching for.
6216
6217 Return value: TRUE (code_motion_path_driver should continue). */
6218 static bool
6219 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6220 {
6221 bool mutexed;
6222 expr_t r;
6223 av_set_iterator avi;
6224 fur_static_params_p sparams = (fur_static_params_p) static_params;
6225
6226 if (CALL_P (insn))
6227 sparams->crosses_call = true;
6228 else if (DEBUG_INSN_P (insn))
6229 return true;
6230
6231 /* If current insn we are looking at cannot be executed together
6232 with original insn, then we can skip it safely.
6233
6234 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6235 INSN = (!p6) r14 = r14 + 1;
6236
6237 Here we can schedule ORIG_OP with lhs = r14, though only
6238 looking at the set of used and set registers of INSN we must
6239 forbid it. So, add set/used in INSN registers to the
6240 untouchable set only if there is an insn in ORIG_OPS that can
6241 affect INSN. */
6242 mutexed = true;
6243 FOR_EACH_EXPR (r, avi, orig_ops)
6244 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6245 {
6246 mutexed = false;
6247 break;
6248 }
6249
6250 /* Mark all registers that do not meet the following condition:
6251 (1) Not set or read on any path from xi to an instance of the
6252 original operation. */
6253 if (!mutexed)
6254 {
6255 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6256 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6257 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6258 }
6259
6260 return true;
6261 }
6262
6263 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6264 struct code_motion_path_driver_info_def move_op_hooks = {
6265 move_op_on_enter,
6266 move_op_orig_expr_found,
6267 move_op_orig_expr_not_found,
6268 move_op_merge_succs,
6269 move_op_after_merge_succs,
6270 move_op_ascend,
6271 move_op_at_first_insn,
6272 SUCCS_NORMAL,
6273 "move_op"
6274 };
6275
6276 /* Hooks and data to perform find_used_regs operations
6277 with code_motion_path_driver. */
6278 struct code_motion_path_driver_info_def fur_hooks = {
6279 fur_on_enter,
6280 fur_orig_expr_found,
6281 fur_orig_expr_not_found,
6282 fur_merge_succs,
6283 NULL, /* fur_after_merge_succs */
6284 NULL, /* fur_ascend */
6285 fur_at_first_insn,
6286 SUCCS_ALL,
6287 "find_used_regs"
6288 };
6289
6290 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6291 code_motion_path_driver is called recursively. Original operation
6292 was found at least on one path that is starting with one of INSN's
6293 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6294 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6295 of either move_op or find_used_regs depending on the caller.
6296
6297 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6298 know for sure at this point. */
6299 static int
6300 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6301 ilist_t path, void *static_params)
6302 {
6303 int res = 0;
6304 succ_iterator succ_i;
6305 rtx succ;
6306 basic_block bb;
6307 int old_index;
6308 unsigned old_succs;
6309
6310 struct cmpd_local_params lparams;
6311 expr_def _x;
6312
6313 lparams.c_expr_local = &_x;
6314 lparams.c_expr_merged = NULL;
6315
6316 /* We need to process only NORMAL succs for move_op, and collect live
6317 registers from ALL branches (including those leading out of the
6318 region) for find_used_regs.
6319
6320 In move_op, there can be a case when insn's bb number has changed
6321 due to created bookkeeping. This happens very rare, as we need to
6322 move expression from the beginning to the end of the same block.
6323 Rescan successors in this case. */
6324
6325 rescan:
6326 bb = BLOCK_FOR_INSN (insn);
6327 old_index = bb->index;
6328 old_succs = EDGE_COUNT (bb->succs);
6329
6330 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6331 {
6332 int b;
6333
6334 lparams.e1 = succ_i.e1;
6335 lparams.e2 = succ_i.e2;
6336
6337 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6338 current region). */
6339 if (succ_i.current_flags == SUCCS_NORMAL)
6340 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6341 static_params);
6342 else
6343 b = 0;
6344
6345 /* Merge c_expres found or unify live register sets from different
6346 successors. */
6347 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6348 static_params);
6349 if (b == 1)
6350 res = b;
6351 else if (b == -1 && res != 1)
6352 res = b;
6353
6354 /* We have simplified the control flow below this point. In this case,
6355 the iterator becomes invalid. We need to try again. */
6356 if (BLOCK_FOR_INSN (insn)->index != old_index
6357 || EDGE_COUNT (bb->succs) != old_succs)
6358 goto rescan;
6359 }
6360
6361 #ifdef ENABLE_CHECKING
6362 /* Here, RES==1 if original expr was found at least for one of the
6363 successors. After the loop, RES may happen to have zero value
6364 only if at some point the expr searched is present in av_set, but is
6365 not found below. In most cases, this situation is an error.
6366 The exception is when the original operation is blocked by
6367 bookkeeping generated for another fence or for another path in current
6368 move_op. */
6369 gcc_assert (res == 1
6370 || (res == 0
6371 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6372 static_params))
6373 || res == -1);
6374 #endif
6375
6376 /* Merge data, clean up, etc. */
6377 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6378 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6379
6380 return res;
6381 }
6382
6383
6384 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6385 is the pointer to the av set with expressions we were looking for,
6386 PATH_P is the pointer to the traversed path. */
6387 static inline void
6388 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6389 {
6390 ilist_remove (path_p);
6391 av_set_clear (orig_ops_p);
6392 }
6393
6394 /* The driver function that implements move_op or find_used_regs
6395 functionality dependent whether code_motion_path_driver_INFO is set to
6396 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6397 of code (CFG traversal etc) that are shared among both functions. INSN
6398 is the insn we're starting the search from, ORIG_OPS are the expressions
6399 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6400 parameters of the driver, and STATIC_PARAMS are static parameters of
6401 the caller.
6402
6403 Returns whether original instructions were found. Note that top-level
6404 code_motion_path_driver always returns true. */
6405 static int
6406 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6407 cmpd_local_params_p local_params_in,
6408 void *static_params)
6409 {
6410 expr_t expr = NULL;
6411 basic_block bb = BLOCK_FOR_INSN (insn);
6412 insn_t first_insn, bb_tail, before_first;
6413 bool removed_last_insn = false;
6414
6415 if (sched_verbose >= 6)
6416 {
6417 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6418 dump_insn (insn);
6419 sel_print (",");
6420 dump_av_set (orig_ops);
6421 sel_print (")\n");
6422 }
6423
6424 gcc_assert (orig_ops);
6425
6426 /* If no original operations exist below this insn, return immediately. */
6427 if (is_ineligible_successor (insn, path))
6428 {
6429 if (sched_verbose >= 6)
6430 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6431 return false;
6432 }
6433
6434 /* The block can have invalid av set, in which case it was created earlier
6435 during move_op. Return immediately. */
6436 if (sel_bb_head_p (insn))
6437 {
6438 if (! AV_SET_VALID_P (insn))
6439 {
6440 if (sched_verbose >= 6)
6441 sel_print ("Returned from block %d as it had invalid av set\n",
6442 bb->index);
6443 return false;
6444 }
6445
6446 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6447 {
6448 /* We have already found an original operation on this branch, do not
6449 go any further and just return TRUE here. If we don't stop here,
6450 function can have exponential behaviour even on the small code
6451 with many different paths (e.g. with data speculation and
6452 recovery blocks). */
6453 if (sched_verbose >= 6)
6454 sel_print ("Block %d already visited in this traversal\n", bb->index);
6455 if (code_motion_path_driver_info->on_enter)
6456 return code_motion_path_driver_info->on_enter (insn,
6457 local_params_in,
6458 static_params,
6459 true);
6460 }
6461 }
6462
6463 if (code_motion_path_driver_info->on_enter)
6464 code_motion_path_driver_info->on_enter (insn, local_params_in,
6465 static_params, false);
6466 orig_ops = av_set_copy (orig_ops);
6467
6468 /* Filter the orig_ops set. */
6469 if (AV_SET_VALID_P (insn))
6470 av_set_intersect (&orig_ops, AV_SET (insn));
6471
6472 /* If no more original ops, return immediately. */
6473 if (!orig_ops)
6474 {
6475 if (sched_verbose >= 6)
6476 sel_print ("No intersection with av set of block %d\n", bb->index);
6477 return false;
6478 }
6479
6480 /* For non-speculative insns we have to leave only one form of the
6481 original operation, because if we don't, we may end up with
6482 different C_EXPRes and, consequently, with bookkeepings for different
6483 expression forms along the same code motion path. That may lead to
6484 generation of incorrect code. So for each code motion we stick to
6485 the single form of the instruction, except for speculative insns
6486 which we need to keep in different forms with all speculation
6487 types. */
6488 av_set_leave_one_nonspec (&orig_ops);
6489
6490 /* It is not possible that all ORIG_OPS are filtered out. */
6491 gcc_assert (orig_ops);
6492
6493 /* It is enough to place only heads and tails of visited basic blocks into
6494 the PATH. */
6495 ilist_add (&path, insn);
6496 first_insn = insn;
6497 bb_tail = sel_bb_end (bb);
6498
6499 /* Descend the basic block in search of the original expr; this part
6500 corresponds to the part of the original move_op procedure executed
6501 before the recursive call. */
6502 for (;;)
6503 {
6504 /* Look at the insn and decide if it could be an ancestor of currently
6505 scheduling operation. If it is so, then the insn "dest = op" could
6506 either be replaced with "dest = reg", because REG now holds the result
6507 of OP, or just removed, if we've scheduled the insn as a whole.
6508
6509 If this insn doesn't contain currently scheduling OP, then proceed
6510 with searching and look at its successors. Operations we're searching
6511 for could have changed when moving up through this insn via
6512 substituting. In this case, perform unsubstitution on them first.
6513
6514 When traversing the DAG below this insn is finished, insert
6515 bookkeeping code, if the insn is a joint point, and remove
6516 leftovers. */
6517
6518 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6519 if (expr)
6520 {
6521 insn_t last_insn = PREV_INSN (insn);
6522
6523 /* We have found the original operation. */
6524 if (sched_verbose >= 6)
6525 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6526
6527 code_motion_path_driver_info->orig_expr_found
6528 (insn, expr, local_params_in, static_params);
6529
6530 /* Step back, so on the way back we'll start traversing from the
6531 previous insn (or we'll see that it's bb_note and skip that
6532 loop). */
6533 if (insn == first_insn)
6534 {
6535 first_insn = NEXT_INSN (last_insn);
6536 removed_last_insn = sel_bb_end_p (last_insn);
6537 }
6538 insn = last_insn;
6539 break;
6540 }
6541 else
6542 {
6543 /* We haven't found the original expr, continue descending the basic
6544 block. */
6545 if (code_motion_path_driver_info->orig_expr_not_found
6546 (insn, orig_ops, static_params))
6547 {
6548 /* Av set ops could have been changed when moving through this
6549 insn. To find them below it, we have to un-substitute them. */
6550 undo_transformations (&orig_ops, insn);
6551 }
6552 else
6553 {
6554 /* Clean up and return, if the hook tells us to do so. It may
6555 happen if we've encountered the previously created
6556 bookkeeping. */
6557 code_motion_path_driver_cleanup (&orig_ops, &path);
6558 return -1;
6559 }
6560
6561 gcc_assert (orig_ops);
6562 }
6563
6564 /* Stop at insn if we got to the end of BB. */
6565 if (insn == bb_tail)
6566 break;
6567
6568 insn = NEXT_INSN (insn);
6569 }
6570
6571 /* Here INSN either points to the insn before the original insn (may be
6572 bb_note, if original insn was a bb_head) or to the bb_end. */
6573 if (!expr)
6574 {
6575 int res;
6576
6577 gcc_assert (insn == sel_bb_end (bb));
6578
6579 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6580 it's already in PATH then). */
6581 if (insn != first_insn)
6582 ilist_add (&path, insn);
6583
6584 /* Process_successors should be able to find at least one
6585 successor for which code_motion_path_driver returns TRUE. */
6586 res = code_motion_process_successors (insn, orig_ops,
6587 path, static_params);
6588
6589 /* Remove bb tail from path. */
6590 if (insn != first_insn)
6591 ilist_remove (&path);
6592
6593 if (res != 1)
6594 {
6595 /* This is the case when one of the original expr is no longer available
6596 due to bookkeeping created on this branch with the same register.
6597 In the original algorithm, which doesn't have update_data_sets call
6598 on a bookkeeping block, it would simply result in returning
6599 FALSE when we've encountered a previously generated bookkeeping
6600 insn in moveop_orig_expr_not_found. */
6601 code_motion_path_driver_cleanup (&orig_ops, &path);
6602 return res;
6603 }
6604 }
6605
6606 /* Don't need it any more. */
6607 av_set_clear (&orig_ops);
6608
6609 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6610 the beginning of the basic block. */
6611 before_first = PREV_INSN (first_insn);
6612 while (insn != before_first)
6613 {
6614 if (code_motion_path_driver_info->ascend)
6615 code_motion_path_driver_info->ascend (insn, static_params);
6616
6617 insn = PREV_INSN (insn);
6618 }
6619
6620 /* Now we're at the bb head. */
6621 insn = first_insn;
6622 ilist_remove (&path);
6623 local_params_in->removed_last_insn = removed_last_insn;
6624 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6625
6626 /* This should be the very last operation as at bb head we could change
6627 the numbering by creating bookkeeping blocks. */
6628 if (removed_last_insn)
6629 insn = PREV_INSN (insn);
6630 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6631 return true;
6632 }
6633
6634 /* Move up the operations from ORIG_OPS set traversing the dag starting
6635 from INSN. PATH represents the edges traversed so far.
6636 DEST is the register chosen for scheduling the current expr. Insert
6637 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6638 C_EXPR is how it looks like at the given cfg point.
6639 Set *SHOULD_MOVE to indicate whether we have only disconnected
6640 one of the insns found.
6641
6642 Returns whether original instructions were found, which is asserted
6643 to be true in the caller. */
6644 static bool
6645 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6646 rtx dest, expr_t c_expr, bool *should_move)
6647 {
6648 struct moveop_static_params sparams;
6649 struct cmpd_local_params lparams;
6650 bool res;
6651
6652 /* Init params for code_motion_path_driver. */
6653 sparams.dest = dest;
6654 sparams.c_expr = c_expr;
6655 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6656 #ifdef ENABLE_CHECKING
6657 sparams.failed_insn = NULL;
6658 #endif
6659 sparams.was_renamed = false;
6660 lparams.e1 = NULL;
6661
6662 /* We haven't visited any blocks yet. */
6663 bitmap_clear (code_motion_visited_blocks);
6664
6665 /* Set appropriate hooks and data. */
6666 code_motion_path_driver_info = &move_op_hooks;
6667 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6668
6669 if (sparams.was_renamed)
6670 EXPR_WAS_RENAMED (expr_vliw) = true;
6671
6672 *should_move = (sparams.uid == -1);
6673
6674 return res;
6675 }
6676 \f
6677
6678 /* Functions that work with regions. */
6679
6680 /* Current number of seqno used in init_seqno and init_seqno_1. */
6681 static int cur_seqno;
6682
6683 /* A helper for init_seqno. Traverse the region starting from BB and
6684 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6685 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6686 static void
6687 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6688 {
6689 int bbi = BLOCK_TO_BB (bb->index);
6690 insn_t insn, note = bb_note (bb);
6691 insn_t succ_insn;
6692 succ_iterator si;
6693
6694 SET_BIT (visited_bbs, bbi);
6695 if (blocks_to_reschedule)
6696 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6697
6698 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6699 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6700 {
6701 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6702 int succ_bbi = BLOCK_TO_BB (succ->index);
6703
6704 gcc_assert (in_current_region_p (succ));
6705
6706 if (!TEST_BIT (visited_bbs, succ_bbi))
6707 {
6708 gcc_assert (succ_bbi > bbi);
6709
6710 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6711 }
6712 }
6713
6714 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6715 INSN_SEQNO (insn) = cur_seqno--;
6716 }
6717
6718 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6719 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6720 which we're rescheduling when pipelining, FROM is the block where
6721 traversing region begins (it may not be the head of the region when
6722 pipelining, but the head of the loop instead).
6723
6724 Returns the maximal seqno found. */
6725 static int
6726 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6727 {
6728 sbitmap visited_bbs;
6729 bitmap_iterator bi;
6730 unsigned bbi;
6731
6732 visited_bbs = sbitmap_alloc (current_nr_blocks);
6733
6734 if (blocks_to_reschedule)
6735 {
6736 sbitmap_ones (visited_bbs);
6737 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6738 {
6739 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6740 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6741 }
6742 }
6743 else
6744 {
6745 sbitmap_zero (visited_bbs);
6746 from = EBB_FIRST_BB (0);
6747 }
6748
6749 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6750 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6751 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6752
6753 sbitmap_free (visited_bbs);
6754 return sched_max_luid - 1;
6755 }
6756
6757 /* Initialize scheduling parameters for current region. */
6758 static void
6759 sel_setup_region_sched_flags (void)
6760 {
6761 enable_schedule_as_rhs_p = 1;
6762 bookkeeping_p = 1;
6763 pipelining_p = (bookkeeping_p
6764 && (flag_sel_sched_pipelining != 0)
6765 && current_loop_nest != NULL);
6766 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6767 max_ws = MAX_WS;
6768 }
6769
6770 /* Return true if all basic blocks of current region are empty. */
6771 static bool
6772 current_region_empty_p (void)
6773 {
6774 int i;
6775 for (i = 0; i < current_nr_blocks; i++)
6776 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6777 return false;
6778
6779 return true;
6780 }
6781
6782 /* Prepare and verify loop nest for pipelining. */
6783 static void
6784 setup_current_loop_nest (int rgn)
6785 {
6786 current_loop_nest = get_loop_nest_for_rgn (rgn);
6787
6788 if (!current_loop_nest)
6789 return;
6790
6791 /* If this loop has any saved loop preheaders from nested loops,
6792 add these basic blocks to the current region. */
6793 sel_add_loop_preheaders ();
6794
6795 /* Check that we're starting with a valid information. */
6796 gcc_assert (loop_latch_edge (current_loop_nest));
6797 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6798 }
6799
6800 /* Compute instruction priorities for current region. */
6801 static void
6802 sel_compute_priorities (int rgn)
6803 {
6804 sched_rgn_compute_dependencies (rgn);
6805
6806 /* Compute insn priorities in haifa style. Then free haifa style
6807 dependencies that we've calculated for this. */
6808 compute_priorities ();
6809
6810 if (sched_verbose >= 5)
6811 debug_rgn_dependencies (0);
6812
6813 free_rgn_deps ();
6814 }
6815
6816 /* Init scheduling data for RGN. Returns true when this region should not
6817 be scheduled. */
6818 static bool
6819 sel_region_init (int rgn)
6820 {
6821 int i;
6822 bb_vec_t bbs;
6823
6824 rgn_setup_region (rgn);
6825
6826 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6827 do region initialization here so the region can be bundled correctly,
6828 but we'll skip the scheduling in sel_sched_region (). */
6829 if (current_region_empty_p ())
6830 return true;
6831
6832 if (flag_sel_sched_pipelining)
6833 setup_current_loop_nest (rgn);
6834
6835 sel_setup_region_sched_flags ();
6836
6837 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6838
6839 for (i = 0; i < current_nr_blocks; i++)
6840 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6841
6842 sel_init_bbs (bbs, NULL);
6843
6844 /* Initialize luids and dependence analysis which both sel-sched and haifa
6845 need. */
6846 sched_init_luids (bbs, NULL, NULL, NULL);
6847 sched_deps_init (false);
6848
6849 /* Initialize haifa data. */
6850 rgn_setup_sched_infos ();
6851 sel_set_sched_flags ();
6852 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6853
6854 sel_compute_priorities (rgn);
6855 init_deps_global ();
6856
6857 /* Main initialization. */
6858 sel_setup_sched_infos ();
6859 sel_init_global_and_expr (bbs);
6860
6861 VEC_free (basic_block, heap, bbs);
6862
6863 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6864
6865 /* Init correct liveness sets on each instruction of a single-block loop.
6866 This is the only situation when we can't update liveness when calling
6867 compute_live for the first insn of the loop. */
6868 if (current_loop_nest)
6869 {
6870 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6871 ? 1
6872 : 0);
6873
6874 if (current_nr_blocks == header + 1)
6875 update_liveness_on_insn
6876 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6877 }
6878
6879 /* Set hooks so that no newly generated insn will go out unnoticed. */
6880 sel_register_cfg_hooks ();
6881
6882 /* !!! We call target.sched.init () for the whole region, but we invoke
6883 targetm.sched.finish () for every ebb. */
6884 if (targetm.sched.init)
6885 /* None of the arguments are actually used in any target. */
6886 targetm.sched.init (sched_dump, sched_verbose, -1);
6887
6888 first_emitted_uid = get_max_uid () + 1;
6889 preheader_removed = false;
6890
6891 /* Reset register allocation ticks array. */
6892 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6893 reg_rename_this_tick = 0;
6894
6895 bitmap_initialize (forced_ebb_heads, 0);
6896 bitmap_clear (forced_ebb_heads);
6897
6898 setup_nop_vinsn ();
6899 current_copies = BITMAP_ALLOC (NULL);
6900 current_originators = BITMAP_ALLOC (NULL);
6901 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6902
6903 return false;
6904 }
6905
6906 /* Simplify insns after the scheduling. */
6907 static void
6908 simplify_changed_insns (void)
6909 {
6910 int i;
6911
6912 for (i = 0; i < current_nr_blocks; i++)
6913 {
6914 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6915 rtx insn;
6916
6917 FOR_BB_INSNS (bb, insn)
6918 if (INSN_P (insn))
6919 {
6920 expr_t expr = INSN_EXPR (insn);
6921
6922 if (EXPR_WAS_SUBSTITUTED (expr))
6923 validate_simplify_insn (insn);
6924 }
6925 }
6926 }
6927
6928 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6929 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6930 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6931 static void
6932 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6933 {
6934 insn_t head, tail;
6935 basic_block bb1 = bb;
6936 if (sched_verbose >= 2)
6937 sel_print ("Finishing schedule in bbs: ");
6938
6939 do
6940 {
6941 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6942
6943 if (sched_verbose >= 2)
6944 sel_print ("%d; ", bb1->index);
6945 }
6946 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6947
6948 if (sched_verbose >= 2)
6949 sel_print ("\n");
6950
6951 get_ebb_head_tail (bb, bb1, &head, &tail);
6952
6953 current_sched_info->head = head;
6954 current_sched_info->tail = tail;
6955 current_sched_info->prev_head = PREV_INSN (head);
6956 current_sched_info->next_tail = NEXT_INSN (tail);
6957 }
6958
6959 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6960 static void
6961 reset_sched_cycles_in_current_ebb (void)
6962 {
6963 int last_clock = 0;
6964 int haifa_last_clock = -1;
6965 int haifa_clock = 0;
6966 insn_t insn;
6967
6968 if (targetm.sched.init)
6969 {
6970 /* None of the arguments are actually used in any target.
6971 NB: We should have md_reset () hook for cases like this. */
6972 targetm.sched.init (sched_dump, sched_verbose, -1);
6973 }
6974
6975 state_reset (curr_state);
6976 advance_state (curr_state);
6977
6978 for (insn = current_sched_info->head;
6979 insn != current_sched_info->next_tail;
6980 insn = NEXT_INSN (insn))
6981 {
6982 int cost, haifa_cost;
6983 int sort_p;
6984 bool asm_p, real_insn, after_stall;
6985 int clock;
6986
6987 if (!INSN_P (insn))
6988 continue;
6989
6990 asm_p = false;
6991 real_insn = recog_memoized (insn) >= 0;
6992 clock = INSN_SCHED_CYCLE (insn);
6993
6994 cost = clock - last_clock;
6995
6996 /* Initialize HAIFA_COST. */
6997 if (! real_insn)
6998 {
6999 asm_p = INSN_ASM_P (insn);
7000
7001 if (asm_p)
7002 /* This is asm insn which *had* to be scheduled first
7003 on the cycle. */
7004 haifa_cost = 1;
7005 else
7006 /* This is a use/clobber insn. It should not change
7007 cost. */
7008 haifa_cost = 0;
7009 }
7010 else
7011 haifa_cost = estimate_insn_cost (insn, curr_state);
7012
7013 /* Stall for whatever cycles we've stalled before. */
7014 after_stall = 0;
7015 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7016 {
7017 haifa_cost = cost;
7018 after_stall = 1;
7019 }
7020
7021 if (haifa_cost > 0)
7022 {
7023 int i = 0;
7024
7025 while (haifa_cost--)
7026 {
7027 advance_state (curr_state);
7028 i++;
7029
7030 if (sched_verbose >= 2)
7031 {
7032 sel_print ("advance_state (state_transition)\n");
7033 debug_state (curr_state);
7034 }
7035
7036 /* The DFA may report that e.g. insn requires 2 cycles to be
7037 issued, but on the next cycle it says that insn is ready
7038 to go. Check this here. */
7039 if (!after_stall
7040 && real_insn
7041 && haifa_cost > 0
7042 && estimate_insn_cost (insn, curr_state) == 0)
7043 break;
7044 }
7045
7046 haifa_clock += i;
7047 }
7048 else
7049 gcc_assert (haifa_cost == 0);
7050
7051 if (sched_verbose >= 2)
7052 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7053
7054 if (targetm.sched.dfa_new_cycle)
7055 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7056 haifa_last_clock, haifa_clock,
7057 &sort_p))
7058 {
7059 advance_state (curr_state);
7060 haifa_clock++;
7061 if (sched_verbose >= 2)
7062 {
7063 sel_print ("advance_state (dfa_new_cycle)\n");
7064 debug_state (curr_state);
7065 }
7066 }
7067
7068 if (real_insn)
7069 {
7070 cost = state_transition (curr_state, insn);
7071
7072 if (sched_verbose >= 2)
7073 debug_state (curr_state);
7074
7075 gcc_assert (cost < 0);
7076 }
7077
7078 if (targetm.sched.variable_issue)
7079 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7080
7081 INSN_SCHED_CYCLE (insn) = haifa_clock;
7082
7083 last_clock = clock;
7084 haifa_last_clock = haifa_clock;
7085 }
7086 }
7087
7088 /* Put TImode markers on insns starting a new issue group. */
7089 static void
7090 put_TImodes (void)
7091 {
7092 int last_clock = -1;
7093 insn_t insn;
7094
7095 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7096 insn = NEXT_INSN (insn))
7097 {
7098 int cost, clock;
7099
7100 if (!INSN_P (insn))
7101 continue;
7102
7103 clock = INSN_SCHED_CYCLE (insn);
7104 cost = (last_clock == -1) ? 1 : clock - last_clock;
7105
7106 gcc_assert (cost >= 0);
7107
7108 if (issue_rate > 1
7109 && GET_CODE (PATTERN (insn)) != USE
7110 && GET_CODE (PATTERN (insn)) != CLOBBER)
7111 {
7112 if (reload_completed && cost > 0)
7113 PUT_MODE (insn, TImode);
7114
7115 last_clock = clock;
7116 }
7117
7118 if (sched_verbose >= 2)
7119 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7120 }
7121 }
7122
7123 /* Perform MD_FINISH on EBBs comprising current region. When
7124 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7125 to produce correct sched cycles on insns. */
7126 static void
7127 sel_region_target_finish (bool reset_sched_cycles_p)
7128 {
7129 int i;
7130 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7131
7132 for (i = 0; i < current_nr_blocks; i++)
7133 {
7134 if (bitmap_bit_p (scheduled_blocks, i))
7135 continue;
7136
7137 /* While pipelining outer loops, skip bundling for loop
7138 preheaders. Those will be rescheduled in the outer loop. */
7139 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7140 continue;
7141
7142 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7143
7144 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7145 continue;
7146
7147 if (reset_sched_cycles_p)
7148 reset_sched_cycles_in_current_ebb ();
7149
7150 if (targetm.sched.init)
7151 targetm.sched.init (sched_dump, sched_verbose, -1);
7152
7153 put_TImodes ();
7154
7155 if (targetm.sched.finish)
7156 {
7157 targetm.sched.finish (sched_dump, sched_verbose);
7158
7159 /* Extend luids so that insns generated by the target will
7160 get zero luid. */
7161 sched_init_luids (NULL, NULL, NULL, NULL);
7162 }
7163 }
7164
7165 BITMAP_FREE (scheduled_blocks);
7166 }
7167
7168 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7169 is true, make an additional pass emulating scheduler to get correct insn
7170 cycles for md_finish calls. */
7171 static void
7172 sel_region_finish (bool reset_sched_cycles_p)
7173 {
7174 simplify_changed_insns ();
7175 sched_finish_ready_list ();
7176 free_nop_pool ();
7177
7178 /* Free the vectors. */
7179 if (vec_av_set)
7180 VEC_free (expr_t, heap, vec_av_set);
7181 BITMAP_FREE (current_copies);
7182 BITMAP_FREE (current_originators);
7183 BITMAP_FREE (code_motion_visited_blocks);
7184 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7185 vinsn_vec_free (&vec_target_unavailable_vinsns);
7186
7187 /* If LV_SET of the region head should be updated, do it now because
7188 there will be no other chance. */
7189 {
7190 succ_iterator si;
7191 insn_t insn;
7192
7193 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7194 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7195 {
7196 basic_block bb = BLOCK_FOR_INSN (insn);
7197
7198 if (!BB_LV_SET_VALID_P (bb))
7199 compute_live (insn);
7200 }
7201 }
7202
7203 /* Emulate the Haifa scheduler for bundling. */
7204 if (reload_completed)
7205 sel_region_target_finish (reset_sched_cycles_p);
7206
7207 sel_finish_global_and_expr ();
7208
7209 bitmap_clear (forced_ebb_heads);
7210
7211 free_nop_vinsn ();
7212
7213 finish_deps_global ();
7214 sched_finish_luids ();
7215
7216 sel_finish_bbs ();
7217 BITMAP_FREE (blocks_to_reschedule);
7218
7219 sel_unregister_cfg_hooks ();
7220
7221 max_issue_size = 0;
7222 }
7223 \f
7224
7225 /* Functions that implement the scheduler driver. */
7226
7227 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7228 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7229 of insns scheduled -- these would be postprocessed later. */
7230 static void
7231 schedule_on_fences (flist_t fences, int max_seqno,
7232 ilist_t **scheduled_insns_tailpp)
7233 {
7234 flist_t old_fences = fences;
7235
7236 if (sched_verbose >= 1)
7237 {
7238 sel_print ("\nScheduling on fences: ");
7239 dump_flist (fences);
7240 sel_print ("\n");
7241 }
7242
7243 scheduled_something_on_previous_fence = false;
7244 for (; fences; fences = FLIST_NEXT (fences))
7245 {
7246 fence_t fence = NULL;
7247 int seqno = 0;
7248 flist_t fences2;
7249 bool first_p = true;
7250
7251 /* Choose the next fence group to schedule.
7252 The fact that insn can be scheduled only once
7253 on the cycle is guaranteed by two properties:
7254 1. seqnos of parallel groups decrease with each iteration.
7255 2. If is_ineligible_successor () sees the larger seqno, it
7256 checks if candidate insn is_in_current_fence_p (). */
7257 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7258 {
7259 fence_t f = FLIST_FENCE (fences2);
7260
7261 if (!FENCE_PROCESSED_P (f))
7262 {
7263 int i = INSN_SEQNO (FENCE_INSN (f));
7264
7265 if (first_p || i > seqno)
7266 {
7267 seqno = i;
7268 fence = f;
7269 first_p = false;
7270 }
7271 else
7272 /* ??? Seqnos of different groups should be different. */
7273 gcc_assert (1 || i != seqno);
7274 }
7275 }
7276
7277 gcc_assert (fence);
7278
7279 /* As FENCE is nonnull, SEQNO is initialized. */
7280 seqno -= max_seqno + 1;
7281 fill_insns (fence, seqno, scheduled_insns_tailpp);
7282 FENCE_PROCESSED_P (fence) = true;
7283 }
7284
7285 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7286 don't need to keep bookkeeping-invalidated and target-unavailable
7287 vinsns any more. */
7288 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7289 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7290 }
7291
7292 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7293 static void
7294 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7295 {
7296 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7297
7298 /* The first element is already processed. */
7299 while ((fences = FLIST_NEXT (fences)))
7300 {
7301 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7302
7303 if (*min_seqno > seqno)
7304 *min_seqno = seqno;
7305 else if (*max_seqno < seqno)
7306 *max_seqno = seqno;
7307 }
7308 }
7309
7310 /* Calculate new fences from FENCES. */
7311 static flist_t
7312 calculate_new_fences (flist_t fences, int orig_max_seqno)
7313 {
7314 flist_t old_fences = fences;
7315 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7316
7317 flist_tail_init (new_fences);
7318 for (; fences; fences = FLIST_NEXT (fences))
7319 {
7320 fence_t fence = FLIST_FENCE (fences);
7321 insn_t insn;
7322
7323 if (!FENCE_BNDS (fence))
7324 {
7325 /* This fence doesn't have any successors. */
7326 if (!FENCE_SCHEDULED_P (fence))
7327 {
7328 /* Nothing was scheduled on this fence. */
7329 int seqno;
7330
7331 insn = FENCE_INSN (fence);
7332 seqno = INSN_SEQNO (insn);
7333 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7334
7335 if (sched_verbose >= 1)
7336 sel_print ("Fence %d[%d] has not changed\n",
7337 INSN_UID (insn),
7338 BLOCK_NUM (insn));
7339 move_fence_to_fences (fences, new_fences);
7340 }
7341 }
7342 else
7343 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7344 }
7345
7346 flist_clear (&old_fences);
7347 return FLIST_TAIL_HEAD (new_fences);
7348 }
7349
7350 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7351 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7352 the highest seqno used in a region. Return the updated highest seqno. */
7353 static int
7354 update_seqnos_and_stage (int min_seqno, int max_seqno,
7355 int highest_seqno_in_use,
7356 ilist_t *pscheduled_insns)
7357 {
7358 int new_hs;
7359 ilist_iterator ii;
7360 insn_t insn;
7361
7362 /* Actually, new_hs is the seqno of the instruction, that was
7363 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7364 if (*pscheduled_insns)
7365 {
7366 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7367 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7368 gcc_assert (new_hs > highest_seqno_in_use);
7369 }
7370 else
7371 new_hs = highest_seqno_in_use;
7372
7373 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7374 {
7375 gcc_assert (INSN_SEQNO (insn) < 0);
7376 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7377 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7378
7379 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7380 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7381 require > 1GB of memory e.g. on limit-fnargs.c. */
7382 if (! pipelining_p)
7383 free_data_for_scheduled_insn (insn);
7384 }
7385
7386 ilist_clear (pscheduled_insns);
7387 global_level++;
7388
7389 return new_hs;
7390 }
7391
7392 /* The main driver for scheduling a region. This function is responsible
7393 for correct propagation of fences (i.e. scheduling points) and creating
7394 a group of parallel insns at each of them. It also supports
7395 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7396 of scheduling. */
7397 static void
7398 sel_sched_region_2 (int orig_max_seqno)
7399 {
7400 int highest_seqno_in_use = orig_max_seqno;
7401
7402 stat_bookkeeping_copies = 0;
7403 stat_insns_needed_bookkeeping = 0;
7404 stat_renamed_scheduled = 0;
7405 stat_substitutions_total = 0;
7406 num_insns_scheduled = 0;
7407
7408 while (fences)
7409 {
7410 int min_seqno, max_seqno;
7411 ilist_t scheduled_insns = NULL;
7412 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7413
7414 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7415 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7416 fences = calculate_new_fences (fences, orig_max_seqno);
7417 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7418 highest_seqno_in_use,
7419 &scheduled_insns);
7420 }
7421
7422 if (sched_verbose >= 1)
7423 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7424 "bookkeeping, %d insns renamed, %d insns substituted\n",
7425 stat_bookkeeping_copies,
7426 stat_insns_needed_bookkeeping,
7427 stat_renamed_scheduled,
7428 stat_substitutions_total);
7429 }
7430
7431 /* Schedule a region. When pipelining, search for possibly never scheduled
7432 bookkeeping code and schedule it. Reschedule pipelined code without
7433 pipelining after. */
7434 static void
7435 sel_sched_region_1 (void)
7436 {
7437 int number_of_insns;
7438 int orig_max_seqno;
7439
7440 /* Remove empty blocks that might be in the region from the beginning.
7441 We need to do save sched_max_luid before that, as it actually shows
7442 the number of insns in the region, and purge_empty_blocks can
7443 alter it. */
7444 number_of_insns = sched_max_luid - 1;
7445 purge_empty_blocks ();
7446
7447 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7448 gcc_assert (orig_max_seqno >= 1);
7449
7450 /* When pipelining outer loops, create fences on the loop header,
7451 not preheader. */
7452 fences = NULL;
7453 if (current_loop_nest)
7454 init_fences (BB_END (EBB_FIRST_BB (0)));
7455 else
7456 init_fences (bb_note (EBB_FIRST_BB (0)));
7457 global_level = 1;
7458
7459 sel_sched_region_2 (orig_max_seqno);
7460
7461 gcc_assert (fences == NULL);
7462
7463 if (pipelining_p)
7464 {
7465 int i;
7466 basic_block bb;
7467 struct flist_tail_def _new_fences;
7468 flist_tail_t new_fences = &_new_fences;
7469 bool do_p = true;
7470
7471 pipelining_p = false;
7472 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7473 bookkeeping_p = false;
7474 enable_schedule_as_rhs_p = false;
7475
7476 /* Schedule newly created code, that has not been scheduled yet. */
7477 do_p = true;
7478
7479 while (do_p)
7480 {
7481 do_p = false;
7482
7483 for (i = 0; i < current_nr_blocks; i++)
7484 {
7485 basic_block bb = EBB_FIRST_BB (i);
7486
7487 if (sel_bb_empty_p (bb))
7488 {
7489 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7490 continue;
7491 }
7492
7493 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7494 {
7495 clear_outdated_rtx_info (bb);
7496 if (sel_insn_is_speculation_check (BB_END (bb))
7497 && JUMP_P (BB_END (bb)))
7498 bitmap_set_bit (blocks_to_reschedule,
7499 BRANCH_EDGE (bb)->dest->index);
7500 }
7501 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7502 bitmap_set_bit (blocks_to_reschedule, bb->index);
7503 }
7504
7505 for (i = 0; i < current_nr_blocks; i++)
7506 {
7507 bb = EBB_FIRST_BB (i);
7508
7509 /* While pipelining outer loops, skip bundling for loop
7510 preheaders. Those will be rescheduled in the outer
7511 loop. */
7512 if (sel_is_loop_preheader_p (bb))
7513 {
7514 clear_outdated_rtx_info (bb);
7515 continue;
7516 }
7517
7518 if (bitmap_clear_bit (blocks_to_reschedule, bb->index))
7519 {
7520 flist_tail_init (new_fences);
7521
7522 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7523
7524 /* Mark BB as head of the new ebb. */
7525 bitmap_set_bit (forced_ebb_heads, bb->index);
7526
7527 gcc_assert (fences == NULL);
7528
7529 init_fences (bb_note (bb));
7530
7531 sel_sched_region_2 (orig_max_seqno);
7532
7533 do_p = true;
7534 break;
7535 }
7536 }
7537 }
7538 }
7539 }
7540
7541 /* Schedule the RGN region. */
7542 void
7543 sel_sched_region (int rgn)
7544 {
7545 bool schedule_p;
7546 bool reset_sched_cycles_p;
7547
7548 if (sel_region_init (rgn))
7549 return;
7550
7551 if (sched_verbose >= 1)
7552 sel_print ("Scheduling region %d\n", rgn);
7553
7554 schedule_p = (!sched_is_disabled_for_current_region_p ()
7555 && dbg_cnt (sel_sched_region_cnt));
7556 reset_sched_cycles_p = pipelining_p;
7557 if (schedule_p)
7558 sel_sched_region_1 ();
7559 else
7560 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7561 reset_sched_cycles_p = true;
7562
7563 sel_region_finish (reset_sched_cycles_p);
7564 }
7565
7566 /* Perform global init for the scheduler. */
7567 static void
7568 sel_global_init (void)
7569 {
7570 calculate_dominance_info (CDI_DOMINATORS);
7571 alloc_sched_pools ();
7572
7573 /* Setup the infos for sched_init. */
7574 sel_setup_sched_infos ();
7575 setup_sched_dump ();
7576
7577 sched_rgn_init (false);
7578 sched_init ();
7579
7580 sched_init_bbs ();
7581 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7582 after_recovery = 0;
7583 can_issue_more = issue_rate;
7584
7585 sched_extend_target ();
7586 sched_deps_init (true);
7587 setup_nop_and_exit_insns ();
7588 sel_extend_global_bb_info ();
7589 init_lv_sets ();
7590 init_hard_regs_data ();
7591 }
7592
7593 /* Free the global data of the scheduler. */
7594 static void
7595 sel_global_finish (void)
7596 {
7597 free_bb_note_pool ();
7598 free_lv_sets ();
7599 sel_finish_global_bb_info ();
7600
7601 free_regset_pool ();
7602 free_nop_and_exit_insns ();
7603
7604 sched_rgn_finish ();
7605 sched_deps_finish ();
7606 sched_finish ();
7607
7608 if (current_loops)
7609 sel_finish_pipelining ();
7610
7611 free_sched_pools ();
7612 free_dominance_info (CDI_DOMINATORS);
7613 }
7614
7615 /* Return true when we need to skip selective scheduling. Used for debugging. */
7616 bool
7617 maybe_skip_selective_scheduling (void)
7618 {
7619 return ! dbg_cnt (sel_sched_cnt);
7620 }
7621
7622 /* The entry point. */
7623 void
7624 run_selective_scheduling (void)
7625 {
7626 int rgn;
7627
7628 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7629 return;
7630
7631 sel_global_init ();
7632
7633 for (rgn = 0; rgn < nr_regions; rgn++)
7634 sel_sched_region (rgn);
7635
7636 sel_global_finish ();
7637 }
7638
7639 #endif