Remove COPY_HARD_REG_SET
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2019 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "memmodel.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "cfgcleanup.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "params.h"
35 #include "target.h"
36 #include "sched-int.h"
37 #include "rtlhooks-def.h"
38 #include "ira.h"
39 #include "ira-int.h"
40 #include "rtl-iter.h"
41
42 #ifdef INSN_SCHEDULING
43 #include "regset.h"
44 #include "cfgloop.h"
45 #include "sel-sched-ir.h"
46 #include "sel-sched-dump.h"
47 #include "sel-sched.h"
48 #include "dbgcnt.h"
49
50 /* Implementation of selective scheduling approach.
51 The below implementation follows the original approach with the following
52 changes:
53
54 o the scheduler works after register allocation (but can be also tuned
55 to work before RA);
56 o some instructions are not copied or register renamed;
57 o conditional jumps are not moved with code duplication;
58 o several jumps in one parallel group are not supported;
59 o when pipelining outer loops, code motion through inner loops
60 is not supported;
61 o control and data speculation are supported;
62 o some improvements for better compile time/performance were made.
63
64 Terminology
65 ===========
66
67 A vinsn, or virtual insn, is an insn with additional data characterizing
68 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
69 Vinsns also act as smart pointers to save memory by reusing them in
70 different expressions. A vinsn is described by vinsn_t type.
71
72 An expression is a vinsn with additional data characterizing its properties
73 at some point in the control flow graph. The data may be its usefulness,
74 priority, speculative status, whether it was renamed/subsituted, etc.
75 An expression is described by expr_t type.
76
77 Availability set (av_set) is a set of expressions at a given control flow
78 point. It is represented as av_set_t. The expressions in av sets are kept
79 sorted in the terms of expr_greater_p function. It allows to truncate
80 the set while leaving the best expressions.
81
82 A fence is a point through which code motion is prohibited. On each step,
83 we gather a parallel group of insns at a fence. It is possible to have
84 multiple fences. A fence is represented via fence_t.
85
86 A boundary is the border between the fence group and the rest of the code.
87 Currently, we never have more than one boundary per fence, as we finalize
88 the fence group when a jump is scheduled. A boundary is represented
89 via bnd_t.
90
91 High-level overview
92 ===================
93
94 The scheduler finds regions to schedule, schedules each one, and finalizes.
95 The regions are formed starting from innermost loops, so that when the inner
96 loop is pipelined, its prologue can be scheduled together with yet unprocessed
97 outer loop. The rest of acyclic regions are found using extend_rgns:
98 the blocks that are not yet allocated to any regions are traversed in top-down
99 order, and a block is added to a region to which all its predecessors belong;
100 otherwise, the block starts its own region.
101
102 The main scheduling loop (sel_sched_region_2) consists of just
103 scheduling on each fence and updating fences. For each fence,
104 we fill a parallel group of insns (fill_insns) until some insns can be added.
105 First, we compute available exprs (av-set) at the boundary of the current
106 group. Second, we choose the best expression from it. If the stall is
107 required to schedule any of the expressions, we advance the current cycle
108 appropriately. So, the final group does not exactly correspond to a VLIW
109 word. Third, we move the chosen expression to the boundary (move_op)
110 and update the intermediate av sets and liveness sets. We quit fill_insns
111 when either no insns left for scheduling or we have scheduled enough insns
112 so we feel like advancing a scheduling point.
113
114 Computing available expressions
115 ===============================
116
117 The computation (compute_av_set) is a bottom-up traversal. At each insn,
118 we're moving the union of its successors' sets through it via
119 moveup_expr_set. The dependent expressions are removed. Local
120 transformations (substitution, speculation) are applied to move more
121 exprs. Then the expr corresponding to the current insn is added.
122 The result is saved on each basic block header.
123
124 When traversing the CFG, we're moving down for no more than max_ws insns.
125 Also, we do not move down to ineligible successors (is_ineligible_successor),
126 which include moving along a back-edge, moving to already scheduled code,
127 and moving to another fence. The first two restrictions are lifted during
128 pipelining, which allows us to move insns along a back-edge. We always have
129 an acyclic region for scheduling because we forbid motion through fences.
130
131 Choosing the best expression
132 ============================
133
134 We sort the final availability set via sel_rank_for_schedule, then we remove
135 expressions which are not yet ready (tick_check_p) or which dest registers
136 cannot be used. For some of them, we choose another register via
137 find_best_reg. To do this, we run find_used_regs to calculate the set of
138 registers which cannot be used. The find_used_regs function performs
139 a traversal of code motion paths for an expr. We consider for renaming
140 only registers which are from the same regclass as the original one and
141 using which does not interfere with any live ranges. Finally, we convert
142 the resulting set to the ready list format and use max_issue and reorder*
143 hooks similarly to the Haifa scheduler.
144
145 Scheduling the best expression
146 ==============================
147
148 We run the move_op routine to perform the same type of code motion paths
149 traversal as in find_used_regs. (These are working via the same driver,
150 code_motion_path_driver.) When moving down the CFG, we look for original
151 instruction that gave birth to a chosen expression. We undo
152 the transformations performed on an expression via the history saved in it.
153 When found, we remove the instruction or leave a reg-reg copy/speculation
154 check if needed. On a way up, we insert bookkeeping copies at each join
155 point. If a copy is not needed, it will be removed later during this
156 traversal. We update the saved av sets and liveness sets on the way up, too.
157
158 Finalizing the schedule
159 =======================
160
161 When pipelining, we reschedule the blocks from which insns were pipelined
162 to get a tighter schedule. On Itanium, we also perform bundling via
163 the same routine from ia64.c.
164
165 Dependence analysis changes
166 ===========================
167
168 We augmented the sched-deps.c with hooks that get called when a particular
169 dependence is found in a particular part of an insn. Using these hooks, we
170 can do several actions such as: determine whether an insn can be moved through
171 another (has_dependence_p, moveup_expr); find out whether an insn can be
172 scheduled on the current cycle (tick_check_p); find out registers that
173 are set/used/clobbered by an insn and find out all the strange stuff that
174 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
175 init_global_and_expr_for_insn).
176
177 Initialization changes
178 ======================
179
180 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
181 reused in all of the schedulers. We have split up the initialization of data
182 of such parts into different functions prefixed with scheduler type and
183 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
184 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
185 The same splitting is done with current_sched_info structure:
186 dependence-related parts are in sched_deps_info, common part is in
187 common_sched_info, and haifa/sel/etc part is in current_sched_info.
188
189 Target contexts
190 ===============
191
192 As we now have multiple-point scheduling, this would not work with backends
193 which save some of the scheduler state to use it in the target hooks.
194 For this purpose, we introduce a concept of target contexts, which
195 encapsulate such information. The backend should implement simple routines
196 of allocating/freeing/setting such a context. The scheduler calls these
197 as target hooks and handles the target context as an opaque pointer (similar
198 to the DFA state type, state_t).
199
200 Various speedups
201 ================
202
203 As the correct data dependence graph is not supported during scheduling (which
204 is to be changed in mid-term), we cache as much of the dependence analysis
205 results as possible to avoid reanalyzing. This includes: bitmap caches on
206 each insn in stream of the region saying yes/no for a query with a pair of
207 UIDs; hashtables with the previously done transformations on each insn in
208 stream; a vector keeping a history of transformations on each expr.
209
210 Also, we try to minimize the dependence context used on each fence to check
211 whether the given expression is ready for scheduling by removing from it
212 insns that are definitely completed the execution. The results of
213 tick_check_p checks are also cached in a vector on each fence.
214
215 We keep a valid liveness set on each insn in a region to avoid the high
216 cost of recomputation on large basic blocks.
217
218 Finally, we try to minimize the number of needed updates to the availability
219 sets. The updates happen in two cases: when fill_insns terminates,
220 we advance all fences and increase the stage number to show that the region
221 has changed and the sets are to be recomputed; and when the next iteration
222 of a loop in fill_insns happens (but this one reuses the saved av sets
223 on bb headers.) Thus, we try to break the fill_insns loop only when
224 "significant" number of insns from the current scheduling window was
225 scheduled. This should be made a target param.
226
227
228 TODO: correctly support the data dependence graph at all stages and get rid
229 of all caches. This should speed up the scheduler.
230 TODO: implement moving cond jumps with bookkeeping copies on both targets.
231 TODO: tune the scheduler before RA so it does not create too much pseudos.
232
233
234 References:
235 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
236 selective scheduling and software pipelining.
237 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
238
239 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
240 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
241 for GCC. In Proceedings of GCC Developers' Summit 2006.
242
243 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
244 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
245 http://rogue.colorado.edu/EPIC7/.
246
247 */
248
249 /* True when pipelining is enabled. */
250 bool pipelining_p;
251
252 /* True if bookkeeping is enabled. */
253 bool bookkeeping_p;
254
255 /* Maximum number of insns that are eligible for renaming. */
256 int max_insns_to_rename;
257 \f
258
259 /* Definitions of local types and macros. */
260
261 /* Represents possible outcomes of moving an expression through an insn. */
262 enum MOVEUP_EXPR_CODE
263 {
264 /* The expression is not changed. */
265 MOVEUP_EXPR_SAME,
266
267 /* Not changed, but requires a new destination register. */
268 MOVEUP_EXPR_AS_RHS,
269
270 /* Cannot be moved. */
271 MOVEUP_EXPR_NULL,
272
273 /* Changed (substituted or speculated). */
274 MOVEUP_EXPR_CHANGED
275 };
276
277 /* The container to be passed into rtx search & replace functions. */
278 struct rtx_search_arg
279 {
280 /* What we are searching for. */
281 rtx x;
282
283 /* The occurrence counter. */
284 int n;
285 };
286
287 typedef struct rtx_search_arg *rtx_search_arg_p;
288
289 /* This struct contains precomputed hard reg sets that are needed when
290 computing registers available for renaming. */
291 struct hard_regs_data
292 {
293 /* For every mode, this stores registers available for use with
294 that mode. */
295 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
296
297 /* True when regs_for_mode[mode] is initialized. */
298 bool regs_for_mode_ok[NUM_MACHINE_MODES];
299
300 /* For every register, it has regs that are ok to rename into it.
301 The register in question is always set. If not, this means
302 that the whole set is not computed yet. */
303 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
304
305 /* For every mode, this stores registers not available due to
306 call clobbering. */
307 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
308
309 /* All registers that are used or call used. */
310 HARD_REG_SET regs_ever_used;
311
312 #ifdef STACK_REGS
313 /* Stack registers. */
314 HARD_REG_SET stack_regs;
315 #endif
316 };
317
318 /* Holds the results of computation of available for renaming and
319 unavailable hard registers. */
320 struct reg_rename
321 {
322 /* These are unavailable due to calls crossing, globalness, etc. */
323 HARD_REG_SET unavailable_hard_regs;
324
325 /* These are *available* for renaming. */
326 HARD_REG_SET available_for_renaming;
327
328 /* Whether this code motion path crosses a call. */
329 bool crosses_call;
330 };
331
332 /* A global structure that contains the needed information about harg
333 regs. */
334 static struct hard_regs_data sel_hrd;
335 \f
336
337 /* This structure holds local data used in code_motion_path_driver hooks on
338 the same or adjacent levels of recursion. Here we keep those parameters
339 that are not used in code_motion_path_driver routine itself, but only in
340 its hooks. Moreover, all parameters that can be modified in hooks are
341 in this structure, so all other parameters passed explicitly to hooks are
342 read-only. */
343 struct cmpd_local_params
344 {
345 /* Local params used in move_op_* functions. */
346
347 /* Edges for bookkeeping generation. */
348 edge e1, e2;
349
350 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
351 expr_t c_expr_merged, c_expr_local;
352
353 /* Local params used in fur_* functions. */
354 /* Copy of the ORIGINAL_INSN list, stores the original insns already
355 found before entering the current level of code_motion_path_driver. */
356 def_list_t old_original_insns;
357
358 /* Local params used in move_op_* functions. */
359 /* True when we have removed last insn in the block which was
360 also a boundary. Do not update anything or create bookkeeping copies. */
361 BOOL_BITFIELD removed_last_insn : 1;
362 };
363
364 /* Stores the static parameters for move_op_* calls. */
365 struct moveop_static_params
366 {
367 /* Destination register. */
368 rtx dest;
369
370 /* Current C_EXPR. */
371 expr_t c_expr;
372
373 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
374 they are to be removed. */
375 int uid;
376
377 /* This is initialized to the insn on which the driver stopped its traversal. */
378 insn_t failed_insn;
379
380 /* True if we scheduled an insn with different register. */
381 bool was_renamed;
382 };
383
384 /* Stores the static parameters for fur_* calls. */
385 struct fur_static_params
386 {
387 /* Set of registers unavailable on the code motion path. */
388 regset used_regs;
389
390 /* Pointer to the list of original insns definitions. */
391 def_list_t *original_insns;
392
393 /* True if a code motion path contains a CALL insn. */
394 bool crosses_call;
395 };
396
397 typedef struct fur_static_params *fur_static_params_p;
398 typedef struct cmpd_local_params *cmpd_local_params_p;
399 typedef struct moveop_static_params *moveop_static_params_p;
400
401 /* Set of hooks and parameters that determine behavior specific to
402 move_op or find_used_regs functions. */
403 struct code_motion_path_driver_info_def
404 {
405 /* Called on enter to the basic block. */
406 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
407
408 /* Called when original expr is found. */
409 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
410
411 /* Called while descending current basic block if current insn is not
412 the original EXPR we're searching for. */
413 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
414
415 /* Function to merge C_EXPRes from different successors. */
416 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
417
418 /* Function to finalize merge from different successors and possibly
419 deallocate temporary data structures used for merging. */
420 void (*after_merge_succs) (cmpd_local_params_p, void *);
421
422 /* Called on the backward stage of recursion to do moveup_expr.
423 Used only with move_op_*. */
424 void (*ascend) (insn_t, void *);
425
426 /* Called on the ascending pass, before returning from the current basic
427 block or from the whole traversal. */
428 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
429
430 /* When processing successors in move_op we need only descend into
431 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
432 int succ_flags;
433
434 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
435 const char *routine_name;
436 };
437
438 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
439 FUR_HOOKS. */
440 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
441
442 /* Set of hooks for performing move_op and find_used_regs routines with
443 code_motion_path_driver. */
444 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
445
446 /* True if/when we want to emulate Haifa scheduler in the common code.
447 This is used in sched_rgn_local_init and in various places in
448 sched-deps.c. */
449 int sched_emulate_haifa_p;
450
451 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
452 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
453 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
454 scheduling window. */
455 int global_level;
456
457 /* Current fences. */
458 flist_t fences;
459
460 /* True when separable insns should be scheduled as RHSes. */
461 static bool enable_schedule_as_rhs_p;
462
463 /* Used in verify_target_availability to assert that target reg is reported
464 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
465 we haven't scheduled anything on the previous fence.
466 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
467 have more conservative value than the one returned by the
468 find_used_regs, thus we shouldn't assert that these values are equal. */
469 static bool scheduled_something_on_previous_fence;
470
471 /* All newly emitted insns will have their uids greater than this value. */
472 static int first_emitted_uid;
473
474 /* Set of basic blocks that are forced to start new ebbs. This is a subset
475 of all the ebb heads. */
476 bitmap forced_ebb_heads;
477
478 /* Blocks that need to be rescheduled after pipelining. */
479 bitmap blocks_to_reschedule = NULL;
480
481 /* True when the first lv set should be ignored when updating liveness. */
482 static bool ignore_first = false;
483
484 /* Number of insns max_issue has initialized data structures for. */
485 static int max_issue_size = 0;
486
487 /* Whether we can issue more instructions. */
488 static int can_issue_more;
489
490 /* Maximum software lookahead window size, reduced when rescheduling after
491 pipelining. */
492 static int max_ws;
493
494 /* Number of insns scheduled in current region. */
495 static int num_insns_scheduled;
496
497 /* A vector of expressions is used to be able to sort them. */
498 static vec<expr_t> vec_av_set;
499
500 /* A vector of vinsns is used to hold temporary lists of vinsns. */
501 typedef vec<vinsn_t> vinsn_vec_t;
502
503 /* This vector has the exprs which may still present in av_sets, but actually
504 can't be moved up due to bookkeeping created during code motion to another
505 fence. See comment near the call to update_and_record_unavailable_insns
506 for the detailed explanations. */
507 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
508
509 /* This vector has vinsns which are scheduled with renaming on the first fence
510 and then seen on the second. For expressions with such vinsns, target
511 availability information may be wrong. */
512 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
513
514 /* Vector to store temporary nops inserted in move_op to prevent removal
515 of empty bbs. */
516 static vec<insn_t> vec_temp_moveop_nops;
517
518 /* These bitmaps record original instructions scheduled on the current
519 iteration and bookkeeping copies created by them. */
520 static bitmap current_originators = NULL;
521 static bitmap current_copies = NULL;
522
523 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
524 visit them afterwards. */
525 static bitmap code_motion_visited_blocks = NULL;
526
527 /* Variables to accumulate different statistics. */
528
529 /* The number of bookkeeping copies created. */
530 static int stat_bookkeeping_copies;
531
532 /* The number of insns that required bookkeeiping for their scheduling. */
533 static int stat_insns_needed_bookkeeping;
534
535 /* The number of insns that got renamed. */
536 static int stat_renamed_scheduled;
537
538 /* The number of substitutions made during scheduling. */
539 static int stat_substitutions_total;
540 \f
541
542 /* Forward declarations of static functions. */
543 static bool rtx_ok_for_substitution_p (rtx, rtx);
544 static int sel_rank_for_schedule (const void *, const void *);
545 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
546 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
547
548 static rtx get_dest_from_orig_ops (av_set_t);
549 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
550 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
551 def_list_t *);
552 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
553 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
554 cmpd_local_params_p, void *);
555 static void sel_sched_region_1 (void);
556 static void sel_sched_region_2 (int);
557 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
558
559 static void debug_state (state_t);
560 \f
561
562 /* Functions that work with fences. */
563
564 /* Advance one cycle on FENCE. */
565 static void
566 advance_one_cycle (fence_t fence)
567 {
568 unsigned i;
569 int cycle;
570 rtx_insn *insn;
571
572 advance_state (FENCE_STATE (fence));
573 cycle = ++FENCE_CYCLE (fence);
574 FENCE_ISSUED_INSNS (fence) = 0;
575 FENCE_STARTS_CYCLE_P (fence) = 1;
576 can_issue_more = issue_rate;
577 FENCE_ISSUE_MORE (fence) = can_issue_more;
578
579 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
580 {
581 if (INSN_READY_CYCLE (insn) < cycle)
582 {
583 remove_from_deps (FENCE_DC (fence), insn);
584 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
585 continue;
586 }
587 i++;
588 }
589 if (sched_verbose >= 2)
590 {
591 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
592 debug_state (FENCE_STATE (fence));
593 }
594 }
595
596 /* Returns true when SUCC in a fallthru bb of INSN, possibly
597 skipping empty basic blocks. */
598 static bool
599 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
600 {
601 basic_block bb = BLOCK_FOR_INSN (insn);
602 edge e;
603
604 if (bb == BLOCK_FOR_INSN (succ))
605 return true;
606
607 e = find_fallthru_edge_from (bb);
608 if (e)
609 bb = e->dest;
610 else
611 return false;
612
613 while (sel_bb_empty_p (bb))
614 bb = bb->next_bb;
615
616 return bb == BLOCK_FOR_INSN (succ);
617 }
618
619 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
620 When a successor will continue a ebb, transfer all parameters of a fence
621 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
622 of scheduling helping to distinguish between the old and the new code. */
623 static void
624 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
625 int orig_max_seqno)
626 {
627 bool was_here_p = false;
628 insn_t insn = NULL;
629 insn_t succ;
630 succ_iterator si;
631 ilist_iterator ii;
632 fence_t fence = FLIST_FENCE (old_fences);
633 basic_block bb;
634
635 /* Get the only element of FENCE_BNDS (fence). */
636 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
637 {
638 gcc_assert (!was_here_p);
639 was_here_p = true;
640 }
641 gcc_assert (was_here_p && insn != NULL_RTX);
642
643 /* When in the "middle" of the block, just move this fence
644 to the new list. */
645 bb = BLOCK_FOR_INSN (insn);
646 if (! sel_bb_end_p (insn)
647 || (single_succ_p (bb)
648 && single_pred_p (single_succ (bb))))
649 {
650 insn_t succ;
651
652 succ = (sel_bb_end_p (insn)
653 ? sel_bb_head (single_succ (bb))
654 : NEXT_INSN (insn));
655
656 if (INSN_SEQNO (succ) > 0
657 && INSN_SEQNO (succ) <= orig_max_seqno
658 && INSN_SCHED_TIMES (succ) <= 0)
659 {
660 FENCE_INSN (fence) = succ;
661 move_fence_to_fences (old_fences, new_fences);
662
663 if (sched_verbose >= 1)
664 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
665 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
666 }
667 return;
668 }
669
670 /* Otherwise copy fence's structures to (possibly) multiple successors. */
671 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
672 {
673 int seqno = INSN_SEQNO (succ);
674
675 if (seqno > 0 && seqno <= orig_max_seqno
676 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
677 {
678 bool b = (in_same_ebb_p (insn, succ)
679 || in_fallthru_bb_p (insn, succ));
680
681 if (sched_verbose >= 1)
682 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
683 INSN_UID (insn), INSN_UID (succ),
684 BLOCK_NUM (succ), b ? "continue" : "reset");
685
686 if (b)
687 add_dirty_fence_to_fences (new_fences, succ, fence);
688 else
689 {
690 /* Mark block of the SUCC as head of the new ebb. */
691 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
692 add_clean_fence_to_fences (new_fences, succ, fence);
693 }
694 }
695 }
696 }
697 \f
698
699 /* Functions to support substitution. */
700
701 /* Returns whether INSN with dependence status DS is eligible for
702 substitution, i.e. it's a copy operation x := y, and RHS that is
703 moved up through this insn should be substituted. */
704 static bool
705 can_substitute_through_p (insn_t insn, ds_t ds)
706 {
707 /* We can substitute only true dependencies. */
708 if ((ds & DEP_OUTPUT)
709 || (ds & DEP_ANTI)
710 || ! INSN_RHS (insn)
711 || ! INSN_LHS (insn))
712 return false;
713
714 /* Now we just need to make sure the INSN_RHS consists of only one
715 simple REG rtx. */
716 if (REG_P (INSN_LHS (insn))
717 && REG_P (INSN_RHS (insn)))
718 return true;
719 return false;
720 }
721
722 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
723 source (if INSN is eligible for substitution). Returns TRUE if
724 substitution was actually performed, FALSE otherwise. Substitution might
725 be not performed because it's either EXPR' vinsn doesn't contain INSN's
726 destination or the resulting insn is invalid for the target machine.
727 When UNDO is true, perform unsubstitution instead (the difference is in
728 the part of rtx on which validate_replace_rtx is called). */
729 static bool
730 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
731 {
732 rtx *where;
733 bool new_insn_valid;
734 vinsn_t *vi = &EXPR_VINSN (expr);
735 bool has_rhs = VINSN_RHS (*vi) != NULL;
736 rtx old, new_rtx;
737
738 /* Do not try to replace in SET_DEST. Although we'll choose new
739 register for the RHS, we don't want to change RHS' original reg.
740 If the insn is not SET, we may still be able to substitute something
741 in it, and if we're here (don't have deps), it doesn't write INSN's
742 dest. */
743 where = (has_rhs
744 ? &VINSN_RHS (*vi)
745 : &PATTERN (VINSN_INSN_RTX (*vi)));
746 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
747
748 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
749 if (rtx_ok_for_substitution_p (old, *where))
750 {
751 rtx_insn *new_insn;
752 rtx *where_replace;
753
754 /* We should copy these rtxes before substitution. */
755 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
756 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
757
758 /* Where we'll replace.
759 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
760 used instead of SET_SRC. */
761 where_replace = (has_rhs
762 ? &SET_SRC (PATTERN (new_insn))
763 : &PATTERN (new_insn));
764
765 new_insn_valid
766 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
767 new_insn);
768
769 /* ??? Actually, constrain_operands result depends upon choice of
770 destination register. E.g. if we allow single register to be an rhs,
771 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
772 in invalid insn dx=dx, so we'll loose this rhs here.
773 Just can't come up with significant testcase for this, so just
774 leaving it for now. */
775 if (new_insn_valid)
776 {
777 change_vinsn_in_expr (expr,
778 create_vinsn_from_insn_rtx (new_insn, false));
779
780 /* Do not allow clobbering the address register of speculative
781 insns. */
782 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
783 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
784 expr_dest_reg (expr)))
785 EXPR_TARGET_AVAILABLE (expr) = false;
786
787 return true;
788 }
789 else
790 return false;
791 }
792 else
793 return false;
794 }
795
796 /* Return the number of places WHAT appears within WHERE.
797 Bail out when we found a reference occupying several hard registers. */
798 static int
799 count_occurrences_equiv (const_rtx what, const_rtx where)
800 {
801 int count = 0;
802 subrtx_iterator::array_type array;
803 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
804 {
805 const_rtx x = *iter;
806 if (REG_P (x) && REGNO (x) == REGNO (what))
807 {
808 /* Bail out if mode is different or more than one register is
809 used. */
810 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
811 return 0;
812 count += 1;
813 }
814 else if (GET_CODE (x) == SUBREG
815 && (!REG_P (SUBREG_REG (x))
816 || REGNO (SUBREG_REG (x)) == REGNO (what)))
817 /* ??? Do not support substituting regs inside subregs. In that case,
818 simplify_subreg will be called by validate_replace_rtx, and
819 unsubstitution will fail later. */
820 return 0;
821 }
822 return count;
823 }
824
825 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
826 static bool
827 rtx_ok_for_substitution_p (rtx what, rtx where)
828 {
829 return (count_occurrences_equiv (what, where) > 0);
830 }
831 \f
832
833 /* Functions to support register renaming. */
834
835 /* Substitute VI's set source with REGNO. Returns newly created pattern
836 that has REGNO as its source. */
837 static rtx_insn *
838 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
839 {
840 rtx lhs_rtx;
841 rtx pattern;
842 rtx_insn *insn_rtx;
843
844 lhs_rtx = copy_rtx (VINSN_LHS (vi));
845
846 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
847 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
848
849 return insn_rtx;
850 }
851
852 /* Returns whether INSN's src can be replaced with register number
853 NEW_SRC_REG. E.g. the following insn is valid for i386:
854
855 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
856 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
857 (reg:SI 0 ax [orig:770 c1 ] [770]))
858 (const_int 288 [0x120])) [0 str S1 A8])
859 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
860 (nil))
861
862 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
863 because of operand constraints:
864
865 (define_insn "*movqi_1"
866 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
867 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
868 )]
869
870 So do constrain_operands here, before choosing NEW_SRC_REG as best
871 reg for rhs. */
872
873 static bool
874 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
875 {
876 vinsn_t vi = INSN_VINSN (insn);
877 machine_mode mode;
878 rtx dst_loc;
879 bool res;
880
881 gcc_assert (VINSN_SEPARABLE_P (vi));
882
883 get_dest_and_mode (insn, &dst_loc, &mode);
884 gcc_assert (mode == GET_MODE (new_src_reg));
885
886 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
887 return true;
888
889 /* See whether SET_SRC can be replaced with this register. */
890 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
891 res = verify_changes (0);
892 cancel_changes (0);
893
894 return res;
895 }
896
897 /* Returns whether INSN still be valid after replacing it's DEST with
898 register NEW_REG. */
899 static bool
900 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
901 {
902 vinsn_t vi = INSN_VINSN (insn);
903 bool res;
904
905 /* We should deal here only with separable insns. */
906 gcc_assert (VINSN_SEPARABLE_P (vi));
907 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
908
909 /* See whether SET_DEST can be replaced with this register. */
910 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
911 res = verify_changes (0);
912 cancel_changes (0);
913
914 return res;
915 }
916
917 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
918 static rtx_insn *
919 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
920 {
921 rtx rhs_rtx;
922 rtx pattern;
923 rtx_insn *insn_rtx;
924
925 rhs_rtx = copy_rtx (VINSN_RHS (vi));
926
927 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
928 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
929
930 return insn_rtx;
931 }
932
933 /* Substitute lhs in the given expression EXPR for the register with number
934 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
935 static void
936 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
937 {
938 rtx_insn *insn_rtx;
939 vinsn_t vinsn;
940
941 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
942 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
943
944 change_vinsn_in_expr (expr, vinsn);
945 EXPR_WAS_RENAMED (expr) = 1;
946 EXPR_TARGET_AVAILABLE (expr) = 1;
947 }
948
949 /* Returns whether VI writes either one of the USED_REGS registers or,
950 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
951 static bool
952 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
953 HARD_REG_SET unavailable_hard_regs)
954 {
955 unsigned regno;
956 reg_set_iterator rsi;
957
958 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
959 {
960 if (REGNO_REG_SET_P (used_regs, regno))
961 return true;
962 if (HARD_REGISTER_NUM_P (regno)
963 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
964 return true;
965 }
966
967 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
968 {
969 if (REGNO_REG_SET_P (used_regs, regno))
970 return true;
971 if (HARD_REGISTER_NUM_P (regno)
972 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
973 return true;
974 }
975
976 return false;
977 }
978
979 /* Returns register class of the output register in INSN.
980 Returns NO_REGS for call insns because some targets have constraints on
981 destination register of a call insn.
982
983 Code adopted from regrename.c::build_def_use. */
984 static enum reg_class
985 get_reg_class (rtx_insn *insn)
986 {
987 int i, n_ops;
988
989 extract_constrain_insn (insn);
990 preprocess_constraints (insn);
991 n_ops = recog_data.n_operands;
992
993 const operand_alternative *op_alt = which_op_alt ();
994 if (asm_noperands (PATTERN (insn)) > 0)
995 {
996 for (i = 0; i < n_ops; i++)
997 if (recog_data.operand_type[i] == OP_OUT)
998 {
999 rtx *loc = recog_data.operand_loc[i];
1000 rtx op = *loc;
1001 enum reg_class cl = alternative_class (op_alt, i);
1002
1003 if (REG_P (op)
1004 && REGNO (op) == ORIGINAL_REGNO (op))
1005 continue;
1006
1007 return cl;
1008 }
1009 }
1010 else if (!CALL_P (insn))
1011 {
1012 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1013 {
1014 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1015 enum reg_class cl = alternative_class (op_alt, opn);
1016
1017 if (recog_data.operand_type[opn] == OP_OUT ||
1018 recog_data.operand_type[opn] == OP_INOUT)
1019 return cl;
1020 }
1021 }
1022
1023 /* Insns like
1024 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1025 may result in returning NO_REGS, cause flags is written implicitly through
1026 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1027 return NO_REGS;
1028 }
1029
1030 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1031 static void
1032 init_hard_regno_rename (int regno)
1033 {
1034 int cur_reg;
1035
1036 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1037
1038 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1039 {
1040 /* We are not interested in renaming in other regs. */
1041 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1042 continue;
1043
1044 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1045 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1046 }
1047 }
1048
1049 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1050 data first. */
1051 static inline bool
1052 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1053 {
1054 /* Check whether this is all calculated. */
1055 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1056 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1057
1058 init_hard_regno_rename (from);
1059
1060 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1061 }
1062
1063 /* Calculate set of registers that are capable of holding MODE. */
1064 static void
1065 init_regs_for_mode (machine_mode mode)
1066 {
1067 int cur_reg;
1068
1069 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1070 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1071
1072 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1073 {
1074 int nregs;
1075 int i;
1076
1077 /* See whether it accepts all modes that occur in
1078 original insns. */
1079 if (!targetm.hard_regno_mode_ok (cur_reg, mode))
1080 continue;
1081
1082 nregs = hard_regno_nregs (cur_reg, mode);
1083
1084 for (i = nregs - 1; i >= 0; --i)
1085 if (fixed_regs[cur_reg + i]
1086 || global_regs[cur_reg + i]
1087 /* Can't use regs which aren't saved by
1088 the prologue. */
1089 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1090 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1091 it affects aliasing globally and invalidates all AV sets. */
1092 || get_reg_base_value (cur_reg + i)
1093 #ifdef LEAF_REGISTERS
1094 /* We can't use a non-leaf register if we're in a
1095 leaf function. */
1096 || (crtl->is_leaf
1097 && !LEAF_REGISTERS[cur_reg + i])
1098 #endif
1099 )
1100 break;
1101
1102 if (i >= 0)
1103 continue;
1104
1105 if (targetm.hard_regno_call_part_clobbered (NULL, cur_reg, mode))
1106 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1107 cur_reg);
1108
1109 /* If the CUR_REG passed all the checks above,
1110 then it's ok. */
1111 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1112 }
1113
1114 sel_hrd.regs_for_mode_ok[mode] = true;
1115 }
1116
1117 /* Init all register sets gathered in HRD. */
1118 static void
1119 init_hard_regs_data (void)
1120 {
1121 int cur_reg = 0;
1122 int cur_mode = 0;
1123
1124 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1125 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1126 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1127 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1128
1129 /* Initialize registers that are valid based on mode when this is
1130 really needed. */
1131 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1132 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1133
1134 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1135 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1136 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1137
1138 #ifdef STACK_REGS
1139 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1140
1141 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1142 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1143 #endif
1144 }
1145
1146 /* Mark hardware regs in REG_RENAME_P that are not suitable
1147 for renaming rhs in INSN due to hardware restrictions (register class,
1148 modes compatibility etc). This doesn't affect original insn's dest reg,
1149 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1150 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1151 Registers that are in used_regs are always marked in
1152 unavailable_hard_regs as well. */
1153
1154 static void
1155 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1156 regset used_regs ATTRIBUTE_UNUSED)
1157 {
1158 machine_mode mode;
1159 enum reg_class cl = NO_REGS;
1160 rtx orig_dest;
1161 unsigned cur_reg, regno;
1162 hard_reg_set_iterator hrsi;
1163
1164 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1165 gcc_assert (reg_rename_p);
1166
1167 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1168
1169 /* We have decided not to rename 'mem = something;' insns, as 'something'
1170 is usually a register. */
1171 if (!REG_P (orig_dest))
1172 return;
1173
1174 regno = REGNO (orig_dest);
1175
1176 /* If before reload, don't try to work with pseudos. */
1177 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1178 return;
1179
1180 if (reload_completed)
1181 cl = get_reg_class (def->orig_insn);
1182
1183 /* Stop if the original register is one of the fixed_regs, global_regs or
1184 frame pointer, or we could not discover its class. */
1185 if (fixed_regs[regno]
1186 || global_regs[regno]
1187 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1188 && regno == HARD_FRAME_POINTER_REGNUM)
1189 || (HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1190 && regno == FRAME_POINTER_REGNUM)
1191 || (reload_completed && cl == NO_REGS))
1192 {
1193 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1194
1195 /* Give a chance for original register, if it isn't in used_regs. */
1196 if (!def->crosses_call)
1197 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1198
1199 return;
1200 }
1201
1202 /* If something allocated on stack in this function, mark frame pointer
1203 register unavailable, considering also modes.
1204 FIXME: it is enough to do this once per all original defs. */
1205 if (frame_pointer_needed)
1206 {
1207 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1208 Pmode, FRAME_POINTER_REGNUM);
1209
1210 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1211 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1212 Pmode, HARD_FRAME_POINTER_REGNUM);
1213 }
1214
1215 #ifdef STACK_REGS
1216 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1217 is equivalent to as if all stack regs were in this set.
1218 I.e. no stack register can be renamed, and even if it's an original
1219 register here we make sure it won't be lifted over it's previous def
1220 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1221 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1222 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1223 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1224 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1225 sel_hrd.stack_regs);
1226 #endif
1227
1228 /* If there's a call on this path, make regs from call_used_reg_set
1229 unavailable. */
1230 if (def->crosses_call)
1231 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1232 call_used_reg_set);
1233
1234 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1235 but not register classes. */
1236 if (!reload_completed)
1237 return;
1238
1239 /* Leave regs as 'available' only from the current
1240 register class. */
1241 reg_rename_p->available_for_renaming = reg_class_contents[cl];
1242
1243 mode = GET_MODE (orig_dest);
1244
1245 /* Leave only registers available for this mode. */
1246 if (!sel_hrd.regs_for_mode_ok[mode])
1247 init_regs_for_mode (mode);
1248 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1249 sel_hrd.regs_for_mode[mode]);
1250
1251 /* Exclude registers that are partially call clobbered. */
1252 if (def->crosses_call
1253 && !targetm.hard_regno_call_part_clobbered (NULL, regno, mode))
1254 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1255 sel_hrd.regs_for_call_clobbered[mode]);
1256
1257 /* Leave only those that are ok to rename. */
1258 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1259 0, cur_reg, hrsi)
1260 {
1261 int nregs;
1262 int i;
1263
1264 nregs = hard_regno_nregs (cur_reg, mode);
1265 gcc_assert (nregs > 0);
1266
1267 for (i = nregs - 1; i >= 0; --i)
1268 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1269 break;
1270
1271 if (i >= 0)
1272 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1273 cur_reg);
1274 }
1275
1276 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1277 reg_rename_p->unavailable_hard_regs);
1278
1279 /* Regno is always ok from the renaming part of view, but it really
1280 could be in *unavailable_hard_regs already, so set it here instead
1281 of there. */
1282 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1283 }
1284
1285 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1286 best register more recently than REG2. */
1287 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1288
1289 /* Indicates the number of times renaming happened before the current one. */
1290 static int reg_rename_this_tick;
1291
1292 /* Choose the register among free, that is suitable for storing
1293 the rhs value.
1294
1295 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1296 originally appears. There could be multiple original operations
1297 for single rhs since we moving it up and merging along different
1298 paths.
1299
1300 Some code is adapted from regrename.c (regrename_optimize).
1301 If original register is available, function returns it.
1302 Otherwise it performs the checks, so the new register should
1303 comply with the following:
1304 - it should not violate any live ranges (such registers are in
1305 REG_RENAME_P->available_for_renaming set);
1306 - it should not be in the HARD_REGS_USED regset;
1307 - it should be in the class compatible with original uses;
1308 - it should not be clobbered through reference with different mode;
1309 - if we're in the leaf function, then the new register should
1310 not be in the LEAF_REGISTERS;
1311 - etc.
1312
1313 If several registers meet the conditions, the register with smallest
1314 tick is returned to achieve more even register allocation.
1315
1316 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1317
1318 If no register satisfies the above conditions, NULL_RTX is returned. */
1319 static rtx
1320 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1321 struct reg_rename *reg_rename_p,
1322 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1323 {
1324 int best_new_reg;
1325 unsigned cur_reg;
1326 machine_mode mode = VOIDmode;
1327 unsigned regno, i, n;
1328 hard_reg_set_iterator hrsi;
1329 def_list_iterator di;
1330 def_t def;
1331
1332 /* If original register is available, return it. */
1333 *is_orig_reg_p_ptr = true;
1334
1335 FOR_EACH_DEF (def, di, original_insns)
1336 {
1337 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1338
1339 gcc_assert (REG_P (orig_dest));
1340
1341 /* Check that all original operations have the same mode.
1342 This is done for the next loop; if we'd return from this
1343 loop, we'd check only part of them, but in this case
1344 it doesn't matter. */
1345 if (mode == VOIDmode)
1346 mode = GET_MODE (orig_dest);
1347 gcc_assert (mode == GET_MODE (orig_dest));
1348
1349 regno = REGNO (orig_dest);
1350 for (i = 0, n = REG_NREGS (orig_dest); i < n; i++)
1351 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1352 break;
1353
1354 /* All hard registers are available. */
1355 if (i == n)
1356 {
1357 gcc_assert (mode != VOIDmode);
1358
1359 /* Hard registers should not be shared. */
1360 return gen_rtx_REG (mode, regno);
1361 }
1362 }
1363
1364 *is_orig_reg_p_ptr = false;
1365 best_new_reg = -1;
1366
1367 /* Among all available regs choose the register that was
1368 allocated earliest. */
1369 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1370 0, cur_reg, hrsi)
1371 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1372 {
1373 /* Check that all hard regs for mode are available. */
1374 for (i = 1, n = hard_regno_nregs (cur_reg, mode); i < n; i++)
1375 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1376 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1377 cur_reg + i))
1378 break;
1379
1380 if (i < n)
1381 continue;
1382
1383 /* All hard registers are available. */
1384 if (best_new_reg < 0
1385 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1386 {
1387 best_new_reg = cur_reg;
1388
1389 /* Return immediately when we know there's no better reg. */
1390 if (! reg_rename_tick[best_new_reg])
1391 break;
1392 }
1393 }
1394
1395 if (best_new_reg >= 0)
1396 {
1397 /* Use the check from the above loop. */
1398 gcc_assert (mode != VOIDmode);
1399 return gen_rtx_REG (mode, best_new_reg);
1400 }
1401
1402 return NULL_RTX;
1403 }
1404
1405 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1406 assumptions about available registers in the function. */
1407 static rtx
1408 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1409 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1410 {
1411 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1412 original_insns, is_orig_reg_p_ptr);
1413
1414 /* FIXME loop over hard_regno_nregs here. */
1415 gcc_assert (best_reg == NULL_RTX
1416 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1417
1418 return best_reg;
1419 }
1420
1421 /* Choose the pseudo register for storing rhs value. As this is supposed
1422 to work before reload, we return either the original register or make
1423 the new one. The parameters are the same that in choose_nest_reg_1
1424 functions, except that USED_REGS may contain pseudos.
1425 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1426
1427 TODO: take into account register pressure while doing this. Up to this
1428 moment, this function would never return NULL for pseudos, but we should
1429 not rely on this. */
1430 static rtx
1431 choose_best_pseudo_reg (regset used_regs,
1432 struct reg_rename *reg_rename_p,
1433 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1434 {
1435 def_list_iterator i;
1436 def_t def;
1437 machine_mode mode = VOIDmode;
1438 bool bad_hard_regs = false;
1439
1440 /* We should not use this after reload. */
1441 gcc_assert (!reload_completed);
1442
1443 /* If original register is available, return it. */
1444 *is_orig_reg_p_ptr = true;
1445
1446 FOR_EACH_DEF (def, i, original_insns)
1447 {
1448 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1449 int orig_regno;
1450
1451 gcc_assert (REG_P (dest));
1452
1453 /* Check that all original operations have the same mode. */
1454 if (mode == VOIDmode)
1455 mode = GET_MODE (dest);
1456 else
1457 gcc_assert (mode == GET_MODE (dest));
1458 orig_regno = REGNO (dest);
1459
1460 /* Check that nothing in used_regs intersects with orig_regno. When
1461 we have a hard reg here, still loop over hard_regno_nregs. */
1462 if (HARD_REGISTER_NUM_P (orig_regno))
1463 {
1464 int j, n;
1465 for (j = 0, n = REG_NREGS (dest); j < n; j++)
1466 if (REGNO_REG_SET_P (used_regs, orig_regno + j))
1467 break;
1468 if (j < n)
1469 continue;
1470 }
1471 else
1472 {
1473 if (REGNO_REG_SET_P (used_regs, orig_regno))
1474 continue;
1475 }
1476 if (HARD_REGISTER_NUM_P (orig_regno))
1477 {
1478 gcc_assert (df_regs_ever_live_p (orig_regno));
1479
1480 /* For hard registers, we have to check hardware imposed
1481 limitations (frame/stack registers, calls crossed). */
1482 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1483 orig_regno))
1484 {
1485 /* Don't let register cross a call if it doesn't already
1486 cross one. This condition is written in accordance with
1487 that in sched-deps.c sched_analyze_reg(). */
1488 if (!reg_rename_p->crosses_call
1489 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1490 return gen_rtx_REG (mode, orig_regno);
1491 }
1492
1493 bad_hard_regs = true;
1494 }
1495 else
1496 return dest;
1497 }
1498
1499 *is_orig_reg_p_ptr = false;
1500
1501 /* We had some original hard registers that couldn't be used.
1502 Those were likely special. Don't try to create a pseudo. */
1503 if (bad_hard_regs)
1504 return NULL_RTX;
1505
1506 /* We haven't found a register from original operations. Get a new one.
1507 FIXME: control register pressure somehow. */
1508 {
1509 rtx new_reg = gen_reg_rtx (mode);
1510
1511 gcc_assert (mode != VOIDmode);
1512
1513 max_regno = max_reg_num ();
1514 maybe_extend_reg_info_p ();
1515 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1516
1517 return new_reg;
1518 }
1519 }
1520
1521 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1522 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1523 static void
1524 verify_target_availability (expr_t expr, regset used_regs,
1525 struct reg_rename *reg_rename_p)
1526 {
1527 unsigned n, i, regno;
1528 machine_mode mode;
1529 bool target_available, live_available, hard_available;
1530
1531 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1532 return;
1533
1534 regno = expr_dest_regno (expr);
1535 mode = GET_MODE (EXPR_LHS (expr));
1536 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1537 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs (regno, mode) : 1;
1538
1539 live_available = hard_available = true;
1540 for (i = 0; i < n; i++)
1541 {
1542 if (bitmap_bit_p (used_regs, regno + i))
1543 live_available = false;
1544 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1545 hard_available = false;
1546 }
1547
1548 /* When target is not available, it may be due to hard register
1549 restrictions, e.g. crosses calls, so we check hard_available too. */
1550 if (target_available)
1551 gcc_assert (live_available);
1552 else
1553 /* Check only if we haven't scheduled something on the previous fence,
1554 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1555 and having more than one fence, we may end having targ_un in a block
1556 in which successors target register is actually available.
1557
1558 The last condition handles the case when a dependence from a call insn
1559 was created in sched-deps.c for insns with destination registers that
1560 never crossed a call before, but do cross one after our code motion.
1561
1562 FIXME: in the latter case, we just uselessly called find_used_regs,
1563 because we can't move this expression with any other register
1564 as well. */
1565 gcc_assert (scheduled_something_on_previous_fence || !live_available
1566 || !hard_available
1567 || (!reload_completed && reg_rename_p->crosses_call
1568 && REG_N_CALLS_CROSSED (regno) == 0));
1569 }
1570
1571 /* Collect unavailable registers due to liveness for EXPR from BNDS
1572 into USED_REGS. Save additional information about available
1573 registers and unavailable due to hardware restriction registers
1574 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1575 list. */
1576 static void
1577 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1578 struct reg_rename *reg_rename_p,
1579 def_list_t *original_insns)
1580 {
1581 for (; bnds; bnds = BLIST_NEXT (bnds))
1582 {
1583 bool res;
1584 av_set_t orig_ops = NULL;
1585 bnd_t bnd = BLIST_BND (bnds);
1586
1587 /* If the chosen best expr doesn't belong to current boundary,
1588 skip it. */
1589 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1590 continue;
1591
1592 /* Put in ORIG_OPS all exprs from this boundary that became
1593 RES on top. */
1594 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1595
1596 /* Compute used regs and OR it into the USED_REGS. */
1597 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1598 reg_rename_p, original_insns);
1599
1600 /* FIXME: the assert is true until we'd have several boundaries. */
1601 gcc_assert (res);
1602 av_set_clear (&orig_ops);
1603 }
1604 }
1605
1606 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1607 If BEST_REG is valid, replace LHS of EXPR with it. */
1608 static bool
1609 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1610 {
1611 /* Try whether we'll be able to generate the insn
1612 'dest := best_reg' at the place of the original operation. */
1613 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1614 {
1615 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1616
1617 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1618
1619 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1620 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1621 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1622 return false;
1623 }
1624
1625 /* Make sure that EXPR has the right destination
1626 register. */
1627 if (expr_dest_regno (expr) != REGNO (best_reg))
1628 replace_dest_with_reg_in_expr (expr, best_reg);
1629 else
1630 EXPR_TARGET_AVAILABLE (expr) = 1;
1631
1632 return true;
1633 }
1634
1635 /* Select and assign best register to EXPR searching from BNDS.
1636 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1637 Return FALSE if no register can be chosen, which could happen when:
1638 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1639 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1640 that are used on the moving path. */
1641 static bool
1642 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1643 {
1644 static struct reg_rename reg_rename_data;
1645
1646 regset used_regs;
1647 def_list_t original_insns = NULL;
1648 bool reg_ok;
1649
1650 *is_orig_reg_p = false;
1651
1652 /* Don't bother to do anything if this insn doesn't set any registers. */
1653 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1654 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1655 return true;
1656
1657 used_regs = get_clear_regset_from_pool ();
1658 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1659
1660 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1661 &original_insns);
1662
1663 /* If after reload, make sure we're working with hard regs here. */
1664 if (flag_checking && reload_completed)
1665 {
1666 reg_set_iterator rsi;
1667 unsigned i;
1668
1669 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1670 gcc_unreachable ();
1671 }
1672
1673 if (EXPR_SEPARABLE_P (expr))
1674 {
1675 rtx best_reg = NULL_RTX;
1676 /* Check that we have computed availability of a target register
1677 correctly. */
1678 verify_target_availability (expr, used_regs, &reg_rename_data);
1679
1680 /* Turn everything in hard regs after reload. */
1681 if (reload_completed)
1682 {
1683 HARD_REG_SET hard_regs_used;
1684 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1685
1686 /* Join hard registers unavailable due to register class
1687 restrictions and live range intersection. */
1688 IOR_HARD_REG_SET (hard_regs_used,
1689 reg_rename_data.unavailable_hard_regs);
1690
1691 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1692 original_insns, is_orig_reg_p);
1693 }
1694 else
1695 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1696 original_insns, is_orig_reg_p);
1697
1698 if (!best_reg)
1699 reg_ok = false;
1700 else if (*is_orig_reg_p)
1701 {
1702 /* In case of unification BEST_REG may be different from EXPR's LHS
1703 when EXPR's LHS is unavailable, and there is another LHS among
1704 ORIGINAL_INSNS. */
1705 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1706 }
1707 else
1708 {
1709 /* Forbid renaming of low-cost insns. */
1710 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1711 reg_ok = false;
1712 else
1713 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1714 }
1715 }
1716 else
1717 {
1718 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1719 any of the HARD_REGS_USED set. */
1720 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1721 reg_rename_data.unavailable_hard_regs))
1722 {
1723 reg_ok = false;
1724 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1725 }
1726 else
1727 {
1728 reg_ok = true;
1729 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1730 }
1731 }
1732
1733 ilist_clear (&original_insns);
1734 return_regset_to_pool (used_regs);
1735
1736 return reg_ok;
1737 }
1738 \f
1739
1740 /* Return true if dependence described by DS can be overcomed. */
1741 static bool
1742 can_speculate_dep_p (ds_t ds)
1743 {
1744 if (spec_info == NULL)
1745 return false;
1746
1747 /* Leave only speculative data. */
1748 ds &= SPECULATIVE;
1749
1750 if (ds == 0)
1751 return false;
1752
1753 {
1754 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1755 that we can overcome. */
1756 ds_t spec_mask = spec_info->mask;
1757
1758 if ((ds & spec_mask) != ds)
1759 return false;
1760 }
1761
1762 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1763 return false;
1764
1765 return true;
1766 }
1767
1768 /* Get a speculation check instruction.
1769 C_EXPR is a speculative expression,
1770 CHECK_DS describes speculations that should be checked,
1771 ORIG_INSN is the original non-speculative insn in the stream. */
1772 static insn_t
1773 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1774 {
1775 rtx check_pattern;
1776 rtx_insn *insn_rtx;
1777 insn_t insn;
1778 basic_block recovery_block;
1779 rtx_insn *label;
1780
1781 /* Create a recovery block if target is going to emit branchy check, or if
1782 ORIG_INSN was speculative already. */
1783 if (targetm.sched.needs_block_p (check_ds)
1784 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1785 {
1786 recovery_block = sel_create_recovery_block (orig_insn);
1787 label = BB_HEAD (recovery_block);
1788 }
1789 else
1790 {
1791 recovery_block = NULL;
1792 label = NULL;
1793 }
1794
1795 /* Get pattern of the check. */
1796 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1797 check_ds);
1798
1799 gcc_assert (check_pattern != NULL);
1800
1801 /* Emit check. */
1802 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1803
1804 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1805 INSN_SEQNO (orig_insn), orig_insn);
1806
1807 /* Make check to be non-speculative. */
1808 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1809 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1810
1811 /* Decrease priority of check by difference of load/check instruction
1812 latencies. */
1813 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1814 - sel_vinsn_cost (INSN_VINSN (insn)));
1815
1816 /* Emit copy of original insn (though with replaced target register,
1817 if needed) to the recovery block. */
1818 if (recovery_block != NULL)
1819 {
1820 rtx twin_rtx;
1821
1822 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1823 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1824 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1825 INSN_EXPR (orig_insn),
1826 INSN_SEQNO (insn),
1827 bb_note (recovery_block));
1828 }
1829
1830 /* If we've generated a data speculation check, make sure
1831 that all the bookkeeping instruction we'll create during
1832 this move_op () will allocate an ALAT entry so that the
1833 check won't fail.
1834 In case of control speculation we must convert C_EXPR to control
1835 speculative mode, because failing to do so will bring us an exception
1836 thrown by the non-control-speculative load. */
1837 check_ds = ds_get_max_dep_weak (check_ds);
1838 speculate_expr (c_expr, check_ds);
1839
1840 return insn;
1841 }
1842
1843 /* True when INSN is a "regN = regN" copy. */
1844 static bool
1845 identical_copy_p (rtx_insn *insn)
1846 {
1847 rtx lhs, rhs, pat;
1848
1849 pat = PATTERN (insn);
1850
1851 if (GET_CODE (pat) != SET)
1852 return false;
1853
1854 lhs = SET_DEST (pat);
1855 if (!REG_P (lhs))
1856 return false;
1857
1858 rhs = SET_SRC (pat);
1859 if (!REG_P (rhs))
1860 return false;
1861
1862 return REGNO (lhs) == REGNO (rhs);
1863 }
1864
1865 /* Undo all transformations on *AV_PTR that were done when
1866 moving through INSN. */
1867 static void
1868 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1869 {
1870 av_set_iterator av_iter;
1871 expr_t expr;
1872 av_set_t new_set = NULL;
1873
1874 /* First, kill any EXPR that uses registers set by an insn. This is
1875 required for correctness. */
1876 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1877 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1878 && bitmap_intersect_p (INSN_REG_SETS (insn),
1879 VINSN_REG_USES (EXPR_VINSN (expr)))
1880 /* When an insn looks like 'r1 = r1', we could substitute through
1881 it, but the above condition will still hold. This happened with
1882 gcc.c-torture/execute/961125-1.c. */
1883 && !identical_copy_p (insn))
1884 {
1885 if (sched_verbose >= 6)
1886 sel_print ("Expr %d removed due to use/set conflict\n",
1887 INSN_UID (EXPR_INSN_RTX (expr)));
1888 av_set_iter_remove (&av_iter);
1889 }
1890
1891 /* Undo transformations looking at the history vector. */
1892 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1893 {
1894 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1895 insn, EXPR_VINSN (expr), true);
1896
1897 if (index >= 0)
1898 {
1899 expr_history_def *phist;
1900
1901 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1902
1903 switch (phist->type)
1904 {
1905 case TRANS_SPECULATION:
1906 {
1907 ds_t old_ds, new_ds;
1908
1909 /* Compute the difference between old and new speculative
1910 statuses: that's what we need to check.
1911 Earlier we used to assert that the status will really
1912 change. This no longer works because only the probability
1913 bits in the status may have changed during compute_av_set,
1914 and in the case of merging different probabilities of the
1915 same speculative status along different paths we do not
1916 record this in the history vector. */
1917 old_ds = phist->spec_ds;
1918 new_ds = EXPR_SPEC_DONE_DS (expr);
1919
1920 old_ds &= SPECULATIVE;
1921 new_ds &= SPECULATIVE;
1922 new_ds &= ~old_ds;
1923
1924 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1925 break;
1926 }
1927 case TRANS_SUBSTITUTION:
1928 {
1929 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1930 vinsn_t new_vi;
1931 bool add = true;
1932
1933 new_vi = phist->old_expr_vinsn;
1934
1935 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1936 == EXPR_SEPARABLE_P (expr));
1937 copy_expr (tmp_expr, expr);
1938
1939 if (vinsn_equal_p (phist->new_expr_vinsn,
1940 EXPR_VINSN (tmp_expr)))
1941 change_vinsn_in_expr (tmp_expr, new_vi);
1942 else
1943 /* This happens when we're unsubstituting on a bookkeeping
1944 copy, which was in turn substituted. The history is wrong
1945 in this case. Do it the hard way. */
1946 add = substitute_reg_in_expr (tmp_expr, insn, true);
1947 if (add)
1948 av_set_add (&new_set, tmp_expr);
1949 clear_expr (tmp_expr);
1950 break;
1951 }
1952 default:
1953 gcc_unreachable ();
1954 }
1955 }
1956
1957 }
1958
1959 av_set_union_and_clear (av_ptr, &new_set, NULL);
1960 }
1961 \f
1962
1963 /* Moveup_* helpers for code motion and computing av sets. */
1964
1965 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1966 The difference from the below function is that only substitution is
1967 performed. */
1968 static enum MOVEUP_EXPR_CODE
1969 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1970 {
1971 vinsn_t vi = EXPR_VINSN (expr);
1972 ds_t *has_dep_p;
1973 ds_t full_ds;
1974
1975 /* Do this only inside insn group. */
1976 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1977
1978 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1979 if (full_ds == 0)
1980 return MOVEUP_EXPR_SAME;
1981
1982 /* Substitution is the possible choice in this case. */
1983 if (has_dep_p[DEPS_IN_RHS])
1984 {
1985 /* Can't substitute UNIQUE VINSNs. */
1986 gcc_assert (!VINSN_UNIQUE_P (vi));
1987
1988 if (can_substitute_through_p (through_insn,
1989 has_dep_p[DEPS_IN_RHS])
1990 && substitute_reg_in_expr (expr, through_insn, false))
1991 {
1992 EXPR_WAS_SUBSTITUTED (expr) = true;
1993 return MOVEUP_EXPR_CHANGED;
1994 }
1995
1996 /* Don't care about this, as even true dependencies may be allowed
1997 in an insn group. */
1998 return MOVEUP_EXPR_SAME;
1999 }
2000
2001 /* This can catch output dependencies in COND_EXECs. */
2002 if (has_dep_p[DEPS_IN_INSN])
2003 return MOVEUP_EXPR_NULL;
2004
2005 /* This is either an output or an anti dependence, which usually have
2006 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2007 will fix this. */
2008 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2009 return MOVEUP_EXPR_AS_RHS;
2010 }
2011
2012 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2013 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2014 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2015 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2016 && !sel_insn_is_speculation_check (through_insn))
2017
2018 /* True when a conflict on a target register was found during moveup_expr. */
2019 static bool was_target_conflict = false;
2020
2021 /* Return true when moving a debug INSN across THROUGH_INSN will
2022 create a bookkeeping block. We don't want to create such blocks,
2023 for they would cause codegen differences between compilations with
2024 and without debug info. */
2025
2026 static bool
2027 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2028 insn_t through_insn)
2029 {
2030 basic_block bbi, bbt;
2031 edge e1, e2;
2032 edge_iterator ei1, ei2;
2033
2034 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2035 {
2036 if (sched_verbose >= 9)
2037 sel_print ("no bookkeeping required: ");
2038 return FALSE;
2039 }
2040
2041 bbi = BLOCK_FOR_INSN (insn);
2042
2043 if (EDGE_COUNT (bbi->preds) == 1)
2044 {
2045 if (sched_verbose >= 9)
2046 sel_print ("only one pred edge: ");
2047 return TRUE;
2048 }
2049
2050 bbt = BLOCK_FOR_INSN (through_insn);
2051
2052 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2053 {
2054 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2055 {
2056 if (find_block_for_bookkeeping (e1, e2, TRUE))
2057 {
2058 if (sched_verbose >= 9)
2059 sel_print ("found existing block: ");
2060 return FALSE;
2061 }
2062 }
2063 }
2064
2065 if (sched_verbose >= 9)
2066 sel_print ("would create bookkeeping block: ");
2067
2068 return TRUE;
2069 }
2070
2071 /* Return true when the conflict with newly created implicit clobbers
2072 between EXPR and THROUGH_INSN is found because of renaming. */
2073 static bool
2074 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2075 {
2076 HARD_REG_SET temp;
2077 rtx_insn *insn;
2078 rtx reg, rhs, pat;
2079 hard_reg_set_iterator hrsi;
2080 unsigned regno;
2081 bool valid;
2082
2083 /* Make a new pseudo register. */
2084 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2085 max_regno = max_reg_num ();
2086 maybe_extend_reg_info_p ();
2087
2088 /* Validate a change and bail out early. */
2089 insn = EXPR_INSN_RTX (expr);
2090 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2091 valid = verify_changes (0);
2092 cancel_changes (0);
2093 if (!valid)
2094 {
2095 if (sched_verbose >= 6)
2096 sel_print ("implicit clobbers failed validation, ");
2097 return true;
2098 }
2099
2100 /* Make a new insn with it. */
2101 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2102 pat = gen_rtx_SET (reg, rhs);
2103 start_sequence ();
2104 insn = emit_insn (pat);
2105 end_sequence ();
2106
2107 /* Calculate implicit clobbers. */
2108 extract_insn (insn);
2109 preprocess_constraints (insn);
2110 alternative_mask prefrred = get_preferred_alternatives (insn);
2111 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2112 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2113
2114 /* If any implicit clobber registers intersect with regular ones in
2115 through_insn, we have a dependency and thus bail out. */
2116 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2117 {
2118 vinsn_t vi = INSN_VINSN (through_insn);
2119 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2120 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2121 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2122 return true;
2123 }
2124
2125 return false;
2126 }
2127
2128 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2129 performing necessary transformations. Record the type of transformation
2130 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2131 permit all dependencies except true ones, and try to remove those
2132 too via forward substitution. All cases when a non-eliminable
2133 non-zero cost dependency exists inside an insn group will be fixed
2134 in tick_check_p instead. */
2135 static enum MOVEUP_EXPR_CODE
2136 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2137 enum local_trans_type *ptrans_type)
2138 {
2139 vinsn_t vi = EXPR_VINSN (expr);
2140 insn_t insn = VINSN_INSN_RTX (vi);
2141 bool was_changed = false;
2142 bool as_rhs = false;
2143 ds_t *has_dep_p;
2144 ds_t full_ds;
2145
2146 /* ??? We use dependencies of non-debug insns on debug insns to
2147 indicate that the debug insns need to be reset if the non-debug
2148 insn is pulled ahead of it. It's hard to figure out how to
2149 introduce such a notion in sel-sched, but it already fails to
2150 support debug insns in other ways, so we just go ahead and
2151 let the deug insns go corrupt for now. */
2152 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2153 return MOVEUP_EXPR_SAME;
2154
2155 /* When inside_insn_group, delegate to the helper. */
2156 if (inside_insn_group)
2157 return moveup_expr_inside_insn_group (expr, through_insn);
2158
2159 /* Deal with unique insns and control dependencies. */
2160 if (VINSN_UNIQUE_P (vi))
2161 {
2162 /* We can move jumps without side-effects or jumps that are
2163 mutually exclusive with instruction THROUGH_INSN (all in cases
2164 dependencies allow to do so and jump is not speculative). */
2165 if (control_flow_insn_p (insn))
2166 {
2167 basic_block fallthru_bb;
2168
2169 /* Do not move checks and do not move jumps through other
2170 jumps. */
2171 if (control_flow_insn_p (through_insn)
2172 || sel_insn_is_speculation_check (insn))
2173 return MOVEUP_EXPR_NULL;
2174
2175 /* Don't move jumps through CFG joins. */
2176 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2177 return MOVEUP_EXPR_NULL;
2178
2179 /* The jump should have a clear fallthru block, and
2180 this block should be in the current region. */
2181 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2182 || ! in_current_region_p (fallthru_bb))
2183 return MOVEUP_EXPR_NULL;
2184
2185 /* And it should be mutually exclusive with through_insn. */
2186 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2187 && ! DEBUG_INSN_P (through_insn))
2188 return MOVEUP_EXPR_NULL;
2189 }
2190
2191 /* Don't move what we can't move. */
2192 if (EXPR_CANT_MOVE (expr)
2193 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2194 return MOVEUP_EXPR_NULL;
2195
2196 /* Don't move SCHED_GROUP instruction through anything.
2197 If we don't force this, then it will be possible to start
2198 scheduling a sched_group before all its dependencies are
2199 resolved.
2200 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2201 as late as possible through rank_for_schedule. */
2202 if (SCHED_GROUP_P (insn))
2203 return MOVEUP_EXPR_NULL;
2204 }
2205 else
2206 gcc_assert (!control_flow_insn_p (insn));
2207
2208 /* Don't move debug insns if this would require bookkeeping. */
2209 if (DEBUG_INSN_P (insn)
2210 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2211 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2212 return MOVEUP_EXPR_NULL;
2213
2214 /* Deal with data dependencies. */
2215 was_target_conflict = false;
2216 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2217 if (full_ds == 0)
2218 {
2219 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2220 return MOVEUP_EXPR_SAME;
2221 }
2222 else
2223 {
2224 /* We can move UNIQUE insn up only as a whole and unchanged,
2225 so it shouldn't have any dependencies. */
2226 if (VINSN_UNIQUE_P (vi))
2227 return MOVEUP_EXPR_NULL;
2228 }
2229
2230 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2231 {
2232 int res;
2233
2234 res = speculate_expr (expr, full_ds);
2235 if (res >= 0)
2236 {
2237 /* Speculation was successful. */
2238 full_ds = 0;
2239 was_changed = (res > 0);
2240 if (res == 2)
2241 was_target_conflict = true;
2242 if (ptrans_type)
2243 *ptrans_type = TRANS_SPECULATION;
2244 sel_clear_has_dependence ();
2245 }
2246 }
2247
2248 if (has_dep_p[DEPS_IN_INSN])
2249 /* We have some dependency that cannot be discarded. */
2250 return MOVEUP_EXPR_NULL;
2251
2252 if (has_dep_p[DEPS_IN_LHS])
2253 {
2254 /* Only separable insns can be moved up with the new register.
2255 Anyways, we should mark that the original register is
2256 unavailable. */
2257 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2258 return MOVEUP_EXPR_NULL;
2259
2260 /* When renaming a hard register to a pseudo before reload, extra
2261 dependencies can occur from the implicit clobbers of the insn.
2262 Filter out such cases here. */
2263 if (!reload_completed && REG_P (EXPR_LHS (expr))
2264 && HARD_REGISTER_P (EXPR_LHS (expr))
2265 && implicit_clobber_conflict_p (through_insn, expr))
2266 {
2267 if (sched_verbose >= 6)
2268 sel_print ("implicit clobbers conflict detected, ");
2269 return MOVEUP_EXPR_NULL;
2270 }
2271 EXPR_TARGET_AVAILABLE (expr) = false;
2272 was_target_conflict = true;
2273 as_rhs = true;
2274 }
2275
2276 /* At this point we have either separable insns, that will be lifted
2277 up only as RHSes, or non-separable insns with no dependency in lhs.
2278 If dependency is in RHS, then try to perform substitution and move up
2279 substituted RHS:
2280
2281 Ex. 1: Ex.2
2282 y = x; y = x;
2283 z = y*2; y = y*2;
2284
2285 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2286 moved above y=x assignment as z=x*2.
2287
2288 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2289 side can be moved because of the output dependency. The operation was
2290 cropped to its rhs above. */
2291 if (has_dep_p[DEPS_IN_RHS])
2292 {
2293 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2294
2295 /* Can't substitute UNIQUE VINSNs. */
2296 gcc_assert (!VINSN_UNIQUE_P (vi));
2297
2298 if (can_speculate_dep_p (*rhs_dsp))
2299 {
2300 int res;
2301
2302 res = speculate_expr (expr, *rhs_dsp);
2303 if (res >= 0)
2304 {
2305 /* Speculation was successful. */
2306 *rhs_dsp = 0;
2307 was_changed = (res > 0);
2308 if (res == 2)
2309 was_target_conflict = true;
2310 if (ptrans_type)
2311 *ptrans_type = TRANS_SPECULATION;
2312 }
2313 else
2314 return MOVEUP_EXPR_NULL;
2315 }
2316 else if (can_substitute_through_p (through_insn,
2317 *rhs_dsp)
2318 && substitute_reg_in_expr (expr, through_insn, false))
2319 {
2320 /* ??? We cannot perform substitution AND speculation on the same
2321 insn. */
2322 gcc_assert (!was_changed);
2323 was_changed = true;
2324 if (ptrans_type)
2325 *ptrans_type = TRANS_SUBSTITUTION;
2326 EXPR_WAS_SUBSTITUTED (expr) = true;
2327 }
2328 else
2329 return MOVEUP_EXPR_NULL;
2330 }
2331
2332 /* Don't move trapping insns through jumps.
2333 This check should be at the end to give a chance to control speculation
2334 to perform its duties. */
2335 if (CANT_MOVE_TRAPPING (expr, through_insn))
2336 return MOVEUP_EXPR_NULL;
2337
2338 return (was_changed
2339 ? MOVEUP_EXPR_CHANGED
2340 : (as_rhs
2341 ? MOVEUP_EXPR_AS_RHS
2342 : MOVEUP_EXPR_SAME));
2343 }
2344
2345 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2346 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2347 that can exist within a parallel group. Write to RES the resulting
2348 code for moveup_expr. */
2349 static bool
2350 try_bitmap_cache (expr_t expr, insn_t insn,
2351 bool inside_insn_group,
2352 enum MOVEUP_EXPR_CODE *res)
2353 {
2354 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2355
2356 /* First check whether we've analyzed this situation already. */
2357 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2358 {
2359 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2360 {
2361 if (sched_verbose >= 6)
2362 sel_print ("removed (cached)\n");
2363 *res = MOVEUP_EXPR_NULL;
2364 return true;
2365 }
2366 else
2367 {
2368 if (sched_verbose >= 6)
2369 sel_print ("unchanged (cached)\n");
2370 *res = MOVEUP_EXPR_SAME;
2371 return true;
2372 }
2373 }
2374 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2375 {
2376 if (inside_insn_group)
2377 {
2378 if (sched_verbose >= 6)
2379 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2380 *res = MOVEUP_EXPR_SAME;
2381 return true;
2382
2383 }
2384 else
2385 EXPR_TARGET_AVAILABLE (expr) = false;
2386
2387 /* This is the only case when propagation result can change over time,
2388 as we can dynamically switch off scheduling as RHS. In this case,
2389 just check the flag to reach the correct decision. */
2390 if (enable_schedule_as_rhs_p)
2391 {
2392 if (sched_verbose >= 6)
2393 sel_print ("unchanged (as RHS, cached)\n");
2394 *res = MOVEUP_EXPR_AS_RHS;
2395 return true;
2396 }
2397 else
2398 {
2399 if (sched_verbose >= 6)
2400 sel_print ("removed (cached as RHS, but renaming"
2401 " is now disabled)\n");
2402 *res = MOVEUP_EXPR_NULL;
2403 return true;
2404 }
2405 }
2406
2407 return false;
2408 }
2409
2410 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2411 if successful. Write to RES the resulting code for moveup_expr. */
2412 static bool
2413 try_transformation_cache (expr_t expr, insn_t insn,
2414 enum MOVEUP_EXPR_CODE *res)
2415 {
2416 struct transformed_insns *pti
2417 = (struct transformed_insns *)
2418 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2419 &EXPR_VINSN (expr),
2420 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2421 if (pti)
2422 {
2423 /* This EXPR was already moved through this insn and was
2424 changed as a result. Fetch the proper data from
2425 the hashtable. */
2426 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2427 INSN_UID (insn), pti->type,
2428 pti->vinsn_old, pti->vinsn_new,
2429 EXPR_SPEC_DONE_DS (expr));
2430
2431 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2432 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2433 change_vinsn_in_expr (expr, pti->vinsn_new);
2434 if (pti->was_target_conflict)
2435 EXPR_TARGET_AVAILABLE (expr) = false;
2436 if (pti->type == TRANS_SPECULATION)
2437 {
2438 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2439 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2440 }
2441
2442 if (sched_verbose >= 6)
2443 {
2444 sel_print ("changed (cached): ");
2445 dump_expr (expr);
2446 sel_print ("\n");
2447 }
2448
2449 *res = MOVEUP_EXPR_CHANGED;
2450 return true;
2451 }
2452
2453 return false;
2454 }
2455
2456 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2457 static void
2458 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2459 enum MOVEUP_EXPR_CODE res)
2460 {
2461 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2462
2463 /* Do not cache result of propagating jumps through an insn group,
2464 as it is always true, which is not useful outside the group. */
2465 if (inside_insn_group)
2466 return;
2467
2468 if (res == MOVEUP_EXPR_NULL)
2469 {
2470 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2471 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2472 }
2473 else if (res == MOVEUP_EXPR_SAME)
2474 {
2475 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2476 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2477 }
2478 else if (res == MOVEUP_EXPR_AS_RHS)
2479 {
2480 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2481 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2482 }
2483 else
2484 gcc_unreachable ();
2485 }
2486
2487 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2488 and transformation type TRANS_TYPE. */
2489 static void
2490 update_transformation_cache (expr_t expr, insn_t insn,
2491 bool inside_insn_group,
2492 enum local_trans_type trans_type,
2493 vinsn_t expr_old_vinsn)
2494 {
2495 struct transformed_insns *pti;
2496
2497 if (inside_insn_group)
2498 return;
2499
2500 pti = XNEW (struct transformed_insns);
2501 pti->vinsn_old = expr_old_vinsn;
2502 pti->vinsn_new = EXPR_VINSN (expr);
2503 pti->type = trans_type;
2504 pti->was_target_conflict = was_target_conflict;
2505 pti->ds = EXPR_SPEC_DONE_DS (expr);
2506 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2507 vinsn_attach (pti->vinsn_old);
2508 vinsn_attach (pti->vinsn_new);
2509 *((struct transformed_insns **)
2510 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2511 pti, VINSN_HASH_RTX (expr_old_vinsn),
2512 INSERT)) = pti;
2513 }
2514
2515 /* Same as moveup_expr, but first looks up the result of
2516 transformation in caches. */
2517 static enum MOVEUP_EXPR_CODE
2518 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2519 {
2520 enum MOVEUP_EXPR_CODE res;
2521 bool got_answer = false;
2522
2523 if (sched_verbose >= 6)
2524 {
2525 sel_print ("Moving ");
2526 dump_expr (expr);
2527 sel_print (" through %d: ", INSN_UID (insn));
2528 }
2529
2530 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2531 && BLOCK_FOR_INSN (EXPR_INSN_RTX (expr))
2532 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2533 == EXPR_INSN_RTX (expr)))
2534 /* Don't use cached information for debug insns that are heads of
2535 basic blocks. */;
2536 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2537 /* When inside insn group, we do not want remove stores conflicting
2538 with previosly issued loads. */
2539 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2540 else if (try_transformation_cache (expr, insn, &res))
2541 got_answer = true;
2542
2543 if (! got_answer)
2544 {
2545 /* Invoke moveup_expr and record the results. */
2546 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2547 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2548 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2549 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2550 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2551
2552 /* ??? Invent something better than this. We can't allow old_vinsn
2553 to go, we need it for the history vector. */
2554 vinsn_attach (expr_old_vinsn);
2555
2556 res = moveup_expr (expr, insn, inside_insn_group,
2557 &trans_type);
2558 switch (res)
2559 {
2560 case MOVEUP_EXPR_NULL:
2561 update_bitmap_cache (expr, insn, inside_insn_group, res);
2562 if (sched_verbose >= 6)
2563 sel_print ("removed\n");
2564 break;
2565
2566 case MOVEUP_EXPR_SAME:
2567 update_bitmap_cache (expr, insn, inside_insn_group, res);
2568 if (sched_verbose >= 6)
2569 sel_print ("unchanged\n");
2570 break;
2571
2572 case MOVEUP_EXPR_AS_RHS:
2573 gcc_assert (!unique_p || inside_insn_group);
2574 update_bitmap_cache (expr, insn, inside_insn_group, res);
2575 if (sched_verbose >= 6)
2576 sel_print ("unchanged (as RHS)\n");
2577 break;
2578
2579 case MOVEUP_EXPR_CHANGED:
2580 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2581 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2582 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2583 INSN_UID (insn), trans_type,
2584 expr_old_vinsn, EXPR_VINSN (expr),
2585 expr_old_spec_ds);
2586 update_transformation_cache (expr, insn, inside_insn_group,
2587 trans_type, expr_old_vinsn);
2588 if (sched_verbose >= 6)
2589 {
2590 sel_print ("changed: ");
2591 dump_expr (expr);
2592 sel_print ("\n");
2593 }
2594 break;
2595 default:
2596 gcc_unreachable ();
2597 }
2598
2599 vinsn_detach (expr_old_vinsn);
2600 }
2601
2602 return res;
2603 }
2604
2605 /* Moves an av set AVP up through INSN, performing necessary
2606 transformations. */
2607 static void
2608 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2609 {
2610 av_set_iterator i;
2611 expr_t expr;
2612
2613 FOR_EACH_EXPR_1 (expr, i, avp)
2614 {
2615
2616 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2617 {
2618 case MOVEUP_EXPR_SAME:
2619 case MOVEUP_EXPR_AS_RHS:
2620 break;
2621
2622 case MOVEUP_EXPR_NULL:
2623 av_set_iter_remove (&i);
2624 break;
2625
2626 case MOVEUP_EXPR_CHANGED:
2627 expr = merge_with_other_exprs (avp, &i, expr);
2628 break;
2629
2630 default:
2631 gcc_unreachable ();
2632 }
2633 }
2634 }
2635
2636 /* Moves AVP set along PATH. */
2637 static void
2638 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2639 {
2640 int last_cycle;
2641
2642 if (sched_verbose >= 6)
2643 sel_print ("Moving expressions up in the insn group...\n");
2644 if (! path)
2645 return;
2646 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2647 while (path
2648 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2649 {
2650 moveup_set_expr (avp, ILIST_INSN (path), true);
2651 path = ILIST_NEXT (path);
2652 }
2653 }
2654
2655 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2656 static bool
2657 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2658 {
2659 expr_def _tmp, *tmp = &_tmp;
2660 int last_cycle;
2661 bool res = true;
2662
2663 copy_expr_onside (tmp, expr);
2664 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2665 while (path
2666 && res
2667 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2668 {
2669 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2670 != MOVEUP_EXPR_NULL);
2671 path = ILIST_NEXT (path);
2672 }
2673
2674 if (res)
2675 {
2676 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2677 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2678
2679 if (tmp_vinsn != expr_vliw_vinsn)
2680 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2681 }
2682
2683 clear_expr (tmp);
2684 return res;
2685 }
2686 \f
2687
2688 /* Functions that compute av and lv sets. */
2689
2690 /* Returns true if INSN is not a downward continuation of the given path P in
2691 the current stage. */
2692 static bool
2693 is_ineligible_successor (insn_t insn, ilist_t p)
2694 {
2695 insn_t prev_insn;
2696
2697 /* Check if insn is not deleted. */
2698 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2699 gcc_unreachable ();
2700 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2701 gcc_unreachable ();
2702
2703 /* If it's the first insn visited, then the successor is ok. */
2704 if (!p)
2705 return false;
2706
2707 prev_insn = ILIST_INSN (p);
2708
2709 if (/* a backward edge. */
2710 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2711 /* is already visited. */
2712 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2713 && (ilist_is_in_p (p, insn)
2714 /* We can reach another fence here and still seqno of insn
2715 would be equal to seqno of prev_insn. This is possible
2716 when prev_insn is a previously created bookkeeping copy.
2717 In that case it'd get a seqno of insn. Thus, check here
2718 whether insn is in current fence too. */
2719 || IN_CURRENT_FENCE_P (insn)))
2720 /* Was already scheduled on this round. */
2721 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2722 && IN_CURRENT_FENCE_P (insn))
2723 /* An insn from another fence could also be
2724 scheduled earlier even if this insn is not in
2725 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2726 || (!pipelining_p
2727 && INSN_SCHED_TIMES (insn) > 0))
2728 return true;
2729 else
2730 return false;
2731 }
2732
2733 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2734 of handling multiple successors and properly merging its av_sets. P is
2735 the current path traversed. WS is the size of lookahead window.
2736 Return the av set computed. */
2737 static av_set_t
2738 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2739 {
2740 struct succs_info *sinfo;
2741 av_set_t expr_in_all_succ_branches = NULL;
2742 int is;
2743 insn_t succ, zero_succ = NULL;
2744 av_set_t av1 = NULL;
2745
2746 gcc_assert (sel_bb_end_p (insn));
2747
2748 /* Find different kind of successors needed for correct computing of
2749 SPEC and TARGET_AVAILABLE attributes. */
2750 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2751
2752 /* Debug output. */
2753 if (sched_verbose >= 6)
2754 {
2755 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2756 dump_insn_vector (sinfo->succs_ok);
2757 sel_print ("\n");
2758 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2759 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2760 }
2761
2762 /* Add insn to the tail of current path. */
2763 ilist_add (&p, insn);
2764
2765 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2766 {
2767 av_set_t succ_set;
2768
2769 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2770 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2771
2772 av_set_split_usefulness (succ_set,
2773 sinfo->probs_ok[is],
2774 sinfo->all_prob);
2775
2776 if (sinfo->all_succs_n > 1)
2777 {
2778 /* Find EXPR'es that came from *all* successors and save them
2779 into expr_in_all_succ_branches. This set will be used later
2780 for calculating speculation attributes of EXPR'es. */
2781 if (is == 0)
2782 {
2783 expr_in_all_succ_branches = av_set_copy (succ_set);
2784
2785 /* Remember the first successor for later. */
2786 zero_succ = succ;
2787 }
2788 else
2789 {
2790 av_set_iterator i;
2791 expr_t expr;
2792
2793 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2794 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2795 av_set_iter_remove (&i);
2796 }
2797 }
2798
2799 /* Union the av_sets. Check liveness restrictions on target registers
2800 in special case of two successors. */
2801 if (sinfo->succs_ok_n == 2 && is == 1)
2802 {
2803 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2804 basic_block bb1 = BLOCK_FOR_INSN (succ);
2805
2806 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2807 av_set_union_and_live (&av1, &succ_set,
2808 BB_LV_SET (bb0),
2809 BB_LV_SET (bb1),
2810 insn);
2811 }
2812 else
2813 av_set_union_and_clear (&av1, &succ_set, insn);
2814 }
2815
2816 /* Check liveness restrictions via hard way when there are more than
2817 two successors. */
2818 if (sinfo->succs_ok_n > 2)
2819 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2820 {
2821 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2822 av_set_t av_succ = (is_ineligible_successor (succ, p)
2823 ? NULL
2824 : BB_AV_SET (succ_bb));
2825
2826 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2827 mark_unavailable_targets (av1, av_succ, BB_LV_SET (succ_bb));
2828 }
2829
2830 /* Finally, check liveness restrictions on paths leaving the region. */
2831 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2832 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2833 mark_unavailable_targets
2834 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2835
2836 if (sinfo->all_succs_n > 1)
2837 {
2838 av_set_iterator i;
2839 expr_t expr;
2840
2841 /* Increase the spec attribute of all EXPR'es that didn't come
2842 from all successors. */
2843 FOR_EACH_EXPR (expr, i, av1)
2844 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2845 EXPR_SPEC (expr)++;
2846
2847 av_set_clear (&expr_in_all_succ_branches);
2848
2849 /* Do not move conditional branches through other
2850 conditional branches. So, remove all conditional
2851 branches from av_set if current operator is a conditional
2852 branch. */
2853 av_set_substract_cond_branches (&av1);
2854 }
2855
2856 ilist_remove (&p);
2857 free_succs_info (sinfo);
2858
2859 if (sched_verbose >= 6)
2860 {
2861 sel_print ("av_succs (%d): ", INSN_UID (insn));
2862 dump_av_set (av1);
2863 sel_print ("\n");
2864 }
2865
2866 return av1;
2867 }
2868
2869 /* This function computes av_set for the FIRST_INSN by dragging valid
2870 av_set through all basic block insns either from the end of basic block
2871 (computed using compute_av_set_at_bb_end) or from the insn on which
2872 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2873 below the basic block and handling conditional branches.
2874 FIRST_INSN - the basic block head, P - path consisting of the insns
2875 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2876 and bb ends are added to the path), WS - current window size,
2877 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2878 static av_set_t
2879 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2880 bool need_copy_p)
2881 {
2882 insn_t cur_insn;
2883 int end_ws = ws;
2884 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2885 insn_t after_bb_end = NEXT_INSN (bb_end);
2886 insn_t last_insn;
2887 av_set_t av = NULL;
2888 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2889
2890 /* Return NULL if insn is not on the legitimate downward path. */
2891 if (is_ineligible_successor (first_insn, p))
2892 {
2893 if (sched_verbose >= 6)
2894 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2895
2896 return NULL;
2897 }
2898
2899 /* If insn already has valid av(insn) computed, just return it. */
2900 if (AV_SET_VALID_P (first_insn))
2901 {
2902 av_set_t av_set;
2903
2904 if (sel_bb_head_p (first_insn))
2905 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2906 else
2907 av_set = NULL;
2908
2909 if (sched_verbose >= 6)
2910 {
2911 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2912 dump_av_set (av_set);
2913 sel_print ("\n");
2914 }
2915
2916 return need_copy_p ? av_set_copy (av_set) : av_set;
2917 }
2918
2919 ilist_add (&p, first_insn);
2920
2921 /* As the result after this loop have completed, in LAST_INSN we'll
2922 have the insn which has valid av_set to start backward computation
2923 from: it either will be NULL because on it the window size was exceeded
2924 or other valid av_set as returned by compute_av_set for the last insn
2925 of the basic block. */
2926 for (last_insn = first_insn; last_insn != after_bb_end;
2927 last_insn = NEXT_INSN (last_insn))
2928 {
2929 /* We may encounter valid av_set not only on bb_head, but also on
2930 those insns on which previously MAX_WS was exceeded. */
2931 if (AV_SET_VALID_P (last_insn))
2932 {
2933 if (sched_verbose >= 6)
2934 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 /* The special case: the last insn of the BB may be an
2939 ineligible_successor due to its SEQ_NO that was set on
2940 it as a bookkeeping. */
2941 if (last_insn != first_insn
2942 && is_ineligible_successor (last_insn, p))
2943 {
2944 if (sched_verbose >= 6)
2945 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2946 break;
2947 }
2948
2949 if (DEBUG_INSN_P (last_insn))
2950 continue;
2951
2952 if (end_ws > max_ws)
2953 {
2954 /* We can reach max lookahead size at bb_header, so clean av_set
2955 first. */
2956 INSN_WS_LEVEL (last_insn) = global_level;
2957
2958 if (sched_verbose >= 6)
2959 sel_print ("Insn %d is beyond the software lookahead window size\n",
2960 INSN_UID (last_insn));
2961 break;
2962 }
2963
2964 end_ws++;
2965 }
2966
2967 /* Get the valid av_set into AV above the LAST_INSN to start backward
2968 computation from. It either will be empty av_set or av_set computed from
2969 the successors on the last insn of the current bb. */
2970 if (last_insn != after_bb_end)
2971 {
2972 av = NULL;
2973
2974 /* This is needed only to obtain av_sets that are identical to
2975 those computed by the old compute_av_set version. */
2976 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2977 av_set_add (&av, INSN_EXPR (last_insn));
2978 }
2979 else
2980 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2981 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2982
2983 /* Compute av_set in AV starting from below the LAST_INSN up to
2984 location above the FIRST_INSN. */
2985 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2986 cur_insn = PREV_INSN (cur_insn))
2987 if (!INSN_NOP_P (cur_insn))
2988 {
2989 expr_t expr;
2990
2991 moveup_set_expr (&av, cur_insn, false);
2992
2993 /* If the expression for CUR_INSN is already in the set,
2994 replace it by the new one. */
2995 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2996 if (expr != NULL)
2997 {
2998 clear_expr (expr);
2999 copy_expr (expr, INSN_EXPR (cur_insn));
3000 }
3001 else
3002 av_set_add (&av, INSN_EXPR (cur_insn));
3003 }
3004
3005 /* Clear stale bb_av_set. */
3006 if (sel_bb_head_p (first_insn))
3007 {
3008 av_set_clear (&BB_AV_SET (cur_bb));
3009 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3010 BB_AV_LEVEL (cur_bb) = global_level;
3011 }
3012
3013 if (sched_verbose >= 6)
3014 {
3015 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3016 dump_av_set (av);
3017 sel_print ("\n");
3018 }
3019
3020 ilist_remove (&p);
3021 return av;
3022 }
3023
3024 /* Compute av set before INSN.
3025 INSN - the current operation (actual rtx INSN)
3026 P - the current path, which is list of insns visited so far
3027 WS - software lookahead window size.
3028 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3029 if we want to save computed av_set in s_i_d, we should make a copy of it.
3030
3031 In the resulting set we will have only expressions that don't have delay
3032 stalls and nonsubstitutable dependences. */
3033 static av_set_t
3034 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3035 {
3036 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3037 }
3038
3039 /* Propagate a liveness set LV through INSN. */
3040 static void
3041 propagate_lv_set (regset lv, insn_t insn)
3042 {
3043 gcc_assert (INSN_P (insn));
3044
3045 if (INSN_NOP_P (insn))
3046 return;
3047
3048 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3049 }
3050
3051 /* Return livness set at the end of BB. */
3052 static regset
3053 compute_live_after_bb (basic_block bb)
3054 {
3055 edge e;
3056 edge_iterator ei;
3057 regset lv = get_clear_regset_from_pool ();
3058
3059 gcc_assert (!ignore_first);
3060
3061 FOR_EACH_EDGE (e, ei, bb->succs)
3062 if (sel_bb_empty_p (e->dest))
3063 {
3064 if (! BB_LV_SET_VALID_P (e->dest))
3065 {
3066 gcc_unreachable ();
3067 gcc_assert (BB_LV_SET (e->dest) == NULL);
3068 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3069 BB_LV_SET_VALID_P (e->dest) = true;
3070 }
3071 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3072 }
3073 else
3074 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3075
3076 return lv;
3077 }
3078
3079 /* Compute the set of all live registers at the point before INSN and save
3080 it at INSN if INSN is bb header. */
3081 regset
3082 compute_live (insn_t insn)
3083 {
3084 basic_block bb = BLOCK_FOR_INSN (insn);
3085 insn_t final, temp;
3086 regset lv;
3087
3088 /* Return the valid set if we're already on it. */
3089 if (!ignore_first)
3090 {
3091 regset src = NULL;
3092
3093 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3094 src = BB_LV_SET (bb);
3095 else
3096 {
3097 gcc_assert (in_current_region_p (bb));
3098 if (INSN_LIVE_VALID_P (insn))
3099 src = INSN_LIVE (insn);
3100 }
3101
3102 if (src)
3103 {
3104 lv = get_regset_from_pool ();
3105 COPY_REG_SET (lv, src);
3106
3107 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3108 {
3109 COPY_REG_SET (BB_LV_SET (bb), lv);
3110 BB_LV_SET_VALID_P (bb) = true;
3111 }
3112
3113 return_regset_to_pool (lv);
3114 return lv;
3115 }
3116 }
3117
3118 /* We've skipped the wrong lv_set. Don't skip the right one. */
3119 ignore_first = false;
3120 gcc_assert (in_current_region_p (bb));
3121
3122 /* Find a valid LV set in this block or below, if needed.
3123 Start searching from the next insn: either ignore_first is true, or
3124 INSN doesn't have a correct live set. */
3125 temp = NEXT_INSN (insn);
3126 final = NEXT_INSN (BB_END (bb));
3127 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3128 temp = NEXT_INSN (temp);
3129 if (temp == final)
3130 {
3131 lv = compute_live_after_bb (bb);
3132 temp = PREV_INSN (temp);
3133 }
3134 else
3135 {
3136 lv = get_regset_from_pool ();
3137 COPY_REG_SET (lv, INSN_LIVE (temp));
3138 }
3139
3140 /* Put correct lv sets on the insns which have bad sets. */
3141 final = PREV_INSN (insn);
3142 while (temp != final)
3143 {
3144 propagate_lv_set (lv, temp);
3145 COPY_REG_SET (INSN_LIVE (temp), lv);
3146 INSN_LIVE_VALID_P (temp) = true;
3147 temp = PREV_INSN (temp);
3148 }
3149
3150 /* Also put it in a BB. */
3151 if (sel_bb_head_p (insn))
3152 {
3153 basic_block bb = BLOCK_FOR_INSN (insn);
3154
3155 COPY_REG_SET (BB_LV_SET (bb), lv);
3156 BB_LV_SET_VALID_P (bb) = true;
3157 }
3158
3159 /* We return LV to the pool, but will not clear it there. Thus we can
3160 legimatelly use LV till the next use of regset_pool_get (). */
3161 return_regset_to_pool (lv);
3162 return lv;
3163 }
3164
3165 /* Update liveness sets for INSN. */
3166 static inline void
3167 update_liveness_on_insn (rtx_insn *insn)
3168 {
3169 ignore_first = true;
3170 compute_live (insn);
3171 }
3172
3173 /* Compute liveness below INSN and write it into REGS. */
3174 static inline void
3175 compute_live_below_insn (rtx_insn *insn, regset regs)
3176 {
3177 rtx_insn *succ;
3178 succ_iterator si;
3179
3180 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3181 IOR_REG_SET (regs, compute_live (succ));
3182 }
3183
3184 /* Update the data gathered in av and lv sets starting from INSN. */
3185 static void
3186 update_data_sets (rtx_insn *insn)
3187 {
3188 update_liveness_on_insn (insn);
3189 if (sel_bb_head_p (insn))
3190 {
3191 gcc_assert (AV_LEVEL (insn) != 0);
3192 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3193 compute_av_set (insn, NULL, 0, 0);
3194 }
3195 }
3196 \f
3197
3198 /* Helper for move_op () and find_used_regs ().
3199 Return speculation type for which a check should be created on the place
3200 of INSN. EXPR is one of the original ops we are searching for. */
3201 static ds_t
3202 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3203 {
3204 ds_t to_check_ds;
3205 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3206
3207 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3208
3209 if (targetm.sched.get_insn_checked_ds)
3210 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3211
3212 if (spec_info != NULL
3213 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3214 already_checked_ds |= BEGIN_CONTROL;
3215
3216 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3217
3218 to_check_ds &= ~already_checked_ds;
3219
3220 return to_check_ds;
3221 }
3222
3223 /* Find the set of registers that are unavailable for storing expres
3224 while moving ORIG_OPS up on the path starting from INSN due to
3225 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3226
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3229
3230 REG_RENAME_P denotes the set of hardware registers that
3231 cannot be used with renaming due to the register class restrictions,
3232 mode restrictions and other (the register we'll choose should be
3233 compatible class with the original uses, shouldn't be in call_used_regs,
3234 should be HARD_REGNO_RENAME_OK etc).
3235
3236 Returns TRUE if we've found all original insns, FALSE otherwise.
3237
3238 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3239 to traverse the code motion paths. This helper function finds registers
3240 that are not available for storing expres while moving ORIG_OPS up on the
3241 path starting from INSN. A register considered as used on the moving path,
3242 if one of the following conditions is not satisfied:
3243
3244 (1) a register not set or read on any path from xi to an instance of
3245 the original operation,
3246 (2) not among the live registers of the point immediately following the
3247 first original operation on a given downward path, except for the
3248 original target register of the operation,
3249 (3) not live on the other path of any conditional branch that is passed
3250 by the operation, in case original operations are not present on
3251 both paths of the conditional branch.
3252
3253 All the original operations found during the traversal are saved in the
3254 ORIGINAL_INSNS list.
3255
3256 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3257 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3258 to unavailable hard regs at the point original operation is found. */
3259
3260 static bool
3261 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3262 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3263 {
3264 def_list_iterator i;
3265 def_t def;
3266 int res;
3267 bool needs_spec_check_p = false;
3268 expr_t expr;
3269 av_set_iterator expr_iter;
3270 struct fur_static_params sparams;
3271 struct cmpd_local_params lparams;
3272
3273 /* We haven't visited any blocks yet. */
3274 bitmap_clear (code_motion_visited_blocks);
3275
3276 /* Init parameters for code_motion_path_driver. */
3277 sparams.crosses_call = false;
3278 sparams.original_insns = original_insns;
3279 sparams.used_regs = used_regs;
3280
3281 /* Set the appropriate hooks and data. */
3282 code_motion_path_driver_info = &fur_hooks;
3283
3284 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3285
3286 reg_rename_p->crosses_call |= sparams.crosses_call;
3287
3288 gcc_assert (res == 1);
3289 gcc_assert (original_insns && *original_insns);
3290
3291 /* ??? We calculate whether an expression needs a check when computing
3292 av sets. This information is not as precise as it could be due to
3293 merging this bit in merge_expr. We can do better in find_used_regs,
3294 but we want to avoid multiple traversals of the same code motion
3295 paths. */
3296 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3297 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3298
3299 /* Mark hardware regs in REG_RENAME_P that are not suitable
3300 for renaming expr in INSN due to hardware restrictions (register class,
3301 modes compatibility etc). */
3302 FOR_EACH_DEF (def, i, *original_insns)
3303 {
3304 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3305
3306 if (VINSN_SEPARABLE_P (vinsn))
3307 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3308
3309 /* Do not allow clobbering of ld.[sa] address in case some of the
3310 original operations need a check. */
3311 if (needs_spec_check_p)
3312 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3313 }
3314
3315 return true;
3316 }
3317 \f
3318
3319 /* Functions to choose the best insn from available ones. */
3320
3321 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3322 static int
3323 sel_target_adjust_priority (expr_t expr)
3324 {
3325 int priority = EXPR_PRIORITY (expr);
3326 int new_priority;
3327
3328 if (targetm.sched.adjust_priority)
3329 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3330 else
3331 new_priority = priority;
3332
3333 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3334 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3335
3336 if (sched_verbose >= 4)
3337 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3338 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3339 EXPR_PRIORITY_ADJ (expr), new_priority);
3340
3341 return new_priority;
3342 }
3343
3344 /* Rank two available exprs for schedule. Never return 0 here. */
3345 static int
3346 sel_rank_for_schedule (const void *x, const void *y)
3347 {
3348 expr_t tmp = *(const expr_t *) y;
3349 expr_t tmp2 = *(const expr_t *) x;
3350 insn_t tmp_insn, tmp2_insn;
3351 vinsn_t tmp_vinsn, tmp2_vinsn;
3352 int val;
3353
3354 tmp_vinsn = EXPR_VINSN (tmp);
3355 tmp2_vinsn = EXPR_VINSN (tmp2);
3356 tmp_insn = EXPR_INSN_RTX (tmp);
3357 tmp2_insn = EXPR_INSN_RTX (tmp2);
3358
3359 /* Schedule debug insns as early as possible. */
3360 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3361 return -1;
3362 else if (DEBUG_INSN_P (tmp2_insn))
3363 return 1;
3364
3365 /* Prefer SCHED_GROUP_P insns to any others. */
3366 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3367 {
3368 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3369 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3370
3371 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3372 cannot be cloned. */
3373 if (VINSN_UNIQUE_P (tmp2_vinsn))
3374 return 1;
3375 return -1;
3376 }
3377
3378 /* Discourage scheduling of speculative checks. */
3379 val = (sel_insn_is_speculation_check (tmp_insn)
3380 - sel_insn_is_speculation_check (tmp2_insn));
3381 if (val)
3382 return val;
3383
3384 /* Prefer not scheduled insn over scheduled one. */
3385 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3386 {
3387 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3388 if (val)
3389 return val;
3390 }
3391
3392 /* Prefer jump over non-jump instruction. */
3393 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3394 return -1;
3395 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3396 return 1;
3397
3398 /* Prefer an expr with non-zero usefulness. */
3399 int u1 = EXPR_USEFULNESS (tmp), u2 = EXPR_USEFULNESS (tmp2);
3400
3401 if (u1 == 0)
3402 {
3403 if (u2 == 0)
3404 u1 = u2 = 1;
3405 else
3406 return 1;
3407 }
3408 else if (u2 == 0)
3409 return -1;
3410
3411 /* Prefer an expr with greater priority. */
3412 val = (u2 * (EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2))
3413 - u1 * (EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp)));
3414 if (val)
3415 return val;
3416
3417 if (spec_info != NULL && spec_info->mask != 0)
3418 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3419 {
3420 ds_t ds1, ds2;
3421 dw_t dw1, dw2;
3422 int dw;
3423
3424 ds1 = EXPR_SPEC_DONE_DS (tmp);
3425 if (ds1)
3426 dw1 = ds_weak (ds1);
3427 else
3428 dw1 = NO_DEP_WEAK;
3429
3430 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3431 if (ds2)
3432 dw2 = ds_weak (ds2);
3433 else
3434 dw2 = NO_DEP_WEAK;
3435
3436 dw = dw2 - dw1;
3437 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3438 return dw;
3439 }
3440
3441 /* Prefer an old insn to a bookkeeping insn. */
3442 if (INSN_UID (tmp_insn) < first_emitted_uid
3443 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3444 return -1;
3445 if (INSN_UID (tmp_insn) >= first_emitted_uid
3446 && INSN_UID (tmp2_insn) < first_emitted_uid)
3447 return 1;
3448
3449 /* Prefer an insn with smaller UID, as a last resort.
3450 We can't safely use INSN_LUID as it is defined only for those insns
3451 that are in the stream. */
3452 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3453 }
3454
3455 /* Filter out expressions from av set pointed to by AV_PTR
3456 that are pipelined too many times. */
3457 static void
3458 process_pipelined_exprs (av_set_t *av_ptr)
3459 {
3460 expr_t expr;
3461 av_set_iterator si;
3462
3463 /* Don't pipeline already pipelined code as that would increase
3464 number of unnecessary register moves. */
3465 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3466 {
3467 if (EXPR_SCHED_TIMES (expr)
3468 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3469 av_set_iter_remove (&si);
3470 }
3471 }
3472
3473 /* Filter speculative insns from AV_PTR if we don't want them. */
3474 static void
3475 process_spec_exprs (av_set_t *av_ptr)
3476 {
3477 expr_t expr;
3478 av_set_iterator si;
3479
3480 if (spec_info == NULL)
3481 return;
3482
3483 /* Scan *AV_PTR to find out if we want to consider speculative
3484 instructions for scheduling. */
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486 {
3487 ds_t ds;
3488
3489 ds = EXPR_SPEC_DONE_DS (expr);
3490
3491 /* The probability of a success is too low - don't speculate. */
3492 if ((ds & SPECULATIVE)
3493 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3494 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3495 || (pipelining_p && false
3496 && (ds & DATA_SPEC)
3497 && (ds & CONTROL_SPEC))))
3498 {
3499 av_set_iter_remove (&si);
3500 continue;
3501 }
3502 }
3503 }
3504
3505 /* Search for any use-like insns in AV_PTR and decide on scheduling
3506 them. Return one when found, and NULL otherwise.
3507 Note that we check here whether a USE could be scheduled to avoid
3508 an infinite loop later. */
3509 static expr_t
3510 process_use_exprs (av_set_t *av_ptr)
3511 {
3512 expr_t expr;
3513 av_set_iterator si;
3514 bool uses_present_p = false;
3515 bool try_uses_p = true;
3516
3517 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3518 {
3519 /* This will also initialize INSN_CODE for later use. */
3520 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3521 {
3522 /* If we have a USE in *AV_PTR that was not scheduled yet,
3523 do so because it will do good only. */
3524 if (EXPR_SCHED_TIMES (expr) <= 0)
3525 {
3526 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3527 return expr;
3528
3529 av_set_iter_remove (&si);
3530 }
3531 else
3532 {
3533 gcc_assert (pipelining_p);
3534
3535 uses_present_p = true;
3536 }
3537 }
3538 else
3539 try_uses_p = false;
3540 }
3541
3542 if (uses_present_p)
3543 {
3544 /* If we don't want to schedule any USEs right now and we have some
3545 in *AV_PTR, remove them, else just return the first one found. */
3546 if (!try_uses_p)
3547 {
3548 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3549 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3550 av_set_iter_remove (&si);
3551 }
3552 else
3553 {
3554 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3555 {
3556 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3557
3558 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3559 return expr;
3560
3561 av_set_iter_remove (&si);
3562 }
3563 }
3564 }
3565
3566 return NULL;
3567 }
3568
3569 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3570 EXPR's history of changes. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573 {
3574 vinsn_t vinsn, expr_vinsn;
3575 int n;
3576 unsigned i;
3577
3578 /* Start with checking expr itself and then proceed with all the old forms
3579 of expr taken from its history vector. */
3580 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3581 expr_vinsn;
3582 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3583 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3584 : NULL))
3585 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3586 if (VINSN_SEPARABLE_P (vinsn))
3587 {
3588 if (vinsn_equal_p (vinsn, expr_vinsn))
3589 return true;
3590 }
3591 else
3592 {
3593 /* For non-separable instructions, the blocking insn can have
3594 another pattern due to substitution, and we can't choose
3595 different register as in the above case. Check all registers
3596 being written instead. */
3597 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3598 VINSN_REG_SETS (expr_vinsn)))
3599 return true;
3600 }
3601
3602 return false;
3603 }
3604
3605 /* Return true if either of expressions from ORIG_OPS can be blocked
3606 by previously created bookkeeping code. STATIC_PARAMS points to static
3607 parameters of move_op. */
3608 static bool
3609 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3610 {
3611 expr_t expr;
3612 av_set_iterator iter;
3613 moveop_static_params_p sparams;
3614
3615 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3616 created while scheduling on another fence. */
3617 FOR_EACH_EXPR (expr, iter, orig_ops)
3618 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3619 return true;
3620
3621 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3622 sparams = (moveop_static_params_p) static_params;
3623
3624 /* Expressions can be also blocked by bookkeeping created during current
3625 move_op. */
3626 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3627 FOR_EACH_EXPR (expr, iter, orig_ops)
3628 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3629 return true;
3630
3631 /* Expressions in ORIG_OPS may have wrong destination register due to
3632 renaming. Check with the right register instead. */
3633 if (sparams->dest && REG_P (sparams->dest))
3634 {
3635 rtx reg = sparams->dest;
3636 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3637
3638 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3639 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3640 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3641 return true;
3642 }
3643
3644 return false;
3645 }
3646
3647 /* Clear VINSN_VEC and detach vinsns. */
3648 static void
3649 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3650 {
3651 unsigned len = vinsn_vec->length ();
3652 if (len > 0)
3653 {
3654 vinsn_t vinsn;
3655 int n;
3656
3657 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3658 vinsn_detach (vinsn);
3659 vinsn_vec->block_remove (0, len);
3660 }
3661 }
3662
3663 /* Add the vinsn of EXPR to the VINSN_VEC. */
3664 static void
3665 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3666 {
3667 vinsn_attach (EXPR_VINSN (expr));
3668 vinsn_vec->safe_push (EXPR_VINSN (expr));
3669 }
3670
3671 /* Free the vector representing blocked expressions. */
3672 static void
3673 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3674 {
3675 vinsn_vec.release ();
3676 }
3677
3678 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3679
3680 void sel_add_to_insn_priority (rtx insn, int amount)
3681 {
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3683
3684 if (sched_verbose >= 2)
3685 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3686 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3687 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3688 }
3689
3690 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3691 true if there is something to schedule. BNDS and FENCE are current
3692 boundaries and fence, respectively. If we need to stall for some cycles
3693 before an expr from AV would become available, write this number to
3694 *PNEED_STALL. */
3695 static bool
3696 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3697 int *pneed_stall)
3698 {
3699 av_set_iterator si;
3700 expr_t expr;
3701 int sched_next_worked = 0, stalled, n;
3702 static int av_max_prio, est_ticks_till_branch;
3703 int min_need_stall = -1;
3704 deps_t dc = BND_DC (BLIST_BND (bnds));
3705
3706 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3707 already scheduled. */
3708 if (av == NULL)
3709 return false;
3710
3711 /* Empty vector from the previous stuff. */
3712 if (vec_av_set.length () > 0)
3713 vec_av_set.block_remove (0, vec_av_set.length ());
3714
3715 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3716 for each insn. */
3717 gcc_assert (vec_av_set.is_empty ());
3718 FOR_EACH_EXPR (expr, si, av)
3719 {
3720 vec_av_set.safe_push (expr);
3721
3722 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3723
3724 /* Adjust priority using target backend hook. */
3725 sel_target_adjust_priority (expr);
3726 }
3727
3728 /* Sort the vector. */
3729 vec_av_set.qsort (sel_rank_for_schedule);
3730
3731 /* We record maximal priority of insns in av set for current instruction
3732 group. */
3733 if (FENCE_STARTS_CYCLE_P (fence))
3734 av_max_prio = est_ticks_till_branch = INT_MIN;
3735
3736 /* Filter out inappropriate expressions. Loop's direction is reversed to
3737 visit "best" instructions first. We assume that vec::unordered_remove
3738 moves last element in place of one being deleted. */
3739 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3740 {
3741 expr_t expr = vec_av_set[n];
3742 insn_t insn = EXPR_INSN_RTX (expr);
3743 signed char target_available;
3744 bool is_orig_reg_p = true;
3745 int need_cycles, new_prio;
3746 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3747
3748 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3749 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3750 {
3751 vec_av_set.unordered_remove (n);
3752 continue;
3753 }
3754
3755 /* Set number of sched_next insns (just in case there
3756 could be several). */
3757 if (FENCE_SCHED_NEXT (fence))
3758 sched_next_worked++;
3759
3760 /* Check all liveness requirements and try renaming.
3761 FIXME: try to minimize calls to this. */
3762 target_available = EXPR_TARGET_AVAILABLE (expr);
3763
3764 /* If insn was already scheduled on the current fence,
3765 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3766 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3767 && !fence_insn_p)
3768 target_available = -1;
3769
3770 /* If the availability of the EXPR is invalidated by the insertion of
3771 bookkeeping earlier, make sure that we won't choose this expr for
3772 scheduling if it's not separable, and if it is separable, then
3773 we have to recompute the set of available registers for it. */
3774 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3775 {
3776 vec_av_set.unordered_remove (n);
3777 if (sched_verbose >= 4)
3778 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3779 INSN_UID (insn));
3780 continue;
3781 }
3782
3783 if (target_available == true)
3784 {
3785 /* Do nothing -- we can use an existing register. */
3786 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3787 }
3788 else if (/* Non-separable instruction will never
3789 get another register. */
3790 (target_available == false
3791 && !EXPR_SEPARABLE_P (expr))
3792 /* Don't try to find a register for low-priority expression. */
3793 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3794 /* ??? FIXME: Don't try to rename data speculation. */
3795 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3796 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3797 {
3798 vec_av_set.unordered_remove (n);
3799 if (sched_verbose >= 4)
3800 sel_print ("Expr %d has no suitable target register\n",
3801 INSN_UID (insn));
3802
3803 /* A fence insn should not get here. */
3804 gcc_assert (!fence_insn_p);
3805 continue;
3806 }
3807
3808 /* At this point a fence insn should always be available. */
3809 gcc_assert (!fence_insn_p
3810 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3811
3812 /* Filter expressions that need to be renamed or speculated when
3813 pipelining, because compensating register copies or speculation
3814 checks are likely to be placed near the beginning of the loop,
3815 causing a stall. */
3816 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3817 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3818 {
3819 /* Estimation of number of cycles until loop branch for
3820 renaming/speculation to be successful. */
3821 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3822
3823 if ((int) current_loop_nest->ninsns < 9)
3824 {
3825 vec_av_set.unordered_remove (n);
3826 if (sched_verbose >= 4)
3827 sel_print ("Pipelining expr %d will likely cause stall\n",
3828 INSN_UID (insn));
3829 continue;
3830 }
3831
3832 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3833 < need_n_ticks_till_branch * issue_rate / 2
3834 && est_ticks_till_branch < need_n_ticks_till_branch)
3835 {
3836 vec_av_set.unordered_remove (n);
3837 if (sched_verbose >= 4)
3838 sel_print ("Pipelining expr %d will likely cause stall\n",
3839 INSN_UID (insn));
3840 continue;
3841 }
3842 }
3843
3844 /* We want to schedule speculation checks as late as possible. Discard
3845 them from av set if there are instructions with higher priority. */
3846 if (sel_insn_is_speculation_check (insn)
3847 && EXPR_PRIORITY (expr) < av_max_prio)
3848 {
3849 stalled++;
3850 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3851 vec_av_set.unordered_remove (n);
3852 if (sched_verbose >= 4)
3853 sel_print ("Delaying speculation check %d until its first use\n",
3854 INSN_UID (insn));
3855 continue;
3856 }
3857
3858 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3859 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3860 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3861
3862 /* Don't allow any insns whose data is not yet ready.
3863 Check first whether we've already tried them and failed. */
3864 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3865 {
3866 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3867 - FENCE_CYCLE (fence));
3868 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3869 est_ticks_till_branch = MAX (est_ticks_till_branch,
3870 EXPR_PRIORITY (expr) + need_cycles);
3871
3872 if (need_cycles > 0)
3873 {
3874 stalled++;
3875 min_need_stall = (min_need_stall < 0
3876 ? need_cycles
3877 : MIN (min_need_stall, need_cycles));
3878 vec_av_set.unordered_remove (n);
3879
3880 if (sched_verbose >= 4)
3881 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3882 INSN_UID (insn),
3883 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3884 continue;
3885 }
3886 }
3887
3888 /* Now resort to dependence analysis to find whether EXPR might be
3889 stalled due to dependencies from FENCE's context. */
3890 need_cycles = tick_check_p (expr, dc, fence);
3891 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3892
3893 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3894 est_ticks_till_branch = MAX (est_ticks_till_branch,
3895 new_prio);
3896
3897 if (need_cycles > 0)
3898 {
3899 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3900 {
3901 int new_size = INSN_UID (insn) * 3 / 2;
3902
3903 FENCE_READY_TICKS (fence)
3904 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3905 new_size, FENCE_READY_TICKS_SIZE (fence),
3906 sizeof (int));
3907 }
3908 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3909 = FENCE_CYCLE (fence) + need_cycles;
3910
3911 stalled++;
3912 min_need_stall = (min_need_stall < 0
3913 ? need_cycles
3914 : MIN (min_need_stall, need_cycles));
3915
3916 vec_av_set.unordered_remove (n);
3917
3918 if (sched_verbose >= 4)
3919 sel_print ("Expr %d is not ready yet until cycle %d\n",
3920 INSN_UID (insn),
3921 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3922 continue;
3923 }
3924
3925 if (sched_verbose >= 4)
3926 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3927 min_need_stall = 0;
3928 }
3929
3930 /* Clear SCHED_NEXT. */
3931 if (FENCE_SCHED_NEXT (fence))
3932 {
3933 gcc_assert (sched_next_worked == 1);
3934 FENCE_SCHED_NEXT (fence) = NULL;
3935 }
3936
3937 /* No need to stall if this variable was not initialized. */
3938 if (min_need_stall < 0)
3939 min_need_stall = 0;
3940
3941 if (vec_av_set.is_empty ())
3942 {
3943 /* We need to set *pneed_stall here, because later we skip this code
3944 when ready list is empty. */
3945 *pneed_stall = min_need_stall;
3946 return false;
3947 }
3948 else
3949 gcc_assert (min_need_stall == 0);
3950
3951 /* Sort the vector. */
3952 vec_av_set.qsort (sel_rank_for_schedule);
3953
3954 if (sched_verbose >= 4)
3955 {
3956 sel_print ("Total ready exprs: %d, stalled: %d\n",
3957 vec_av_set.length (), stalled);
3958 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3959 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3960 dump_expr (expr);
3961 sel_print ("\n");
3962 }
3963
3964 *pneed_stall = 0;
3965 return true;
3966 }
3967
3968 /* Convert a vectored and sorted av set to the ready list that
3969 the rest of the backend wants to see. */
3970 static void
3971 convert_vec_av_set_to_ready (void)
3972 {
3973 int n;
3974 expr_t expr;
3975
3976 /* Allocate and fill the ready list from the sorted vector. */
3977 ready.n_ready = vec_av_set.length ();
3978 ready.first = ready.n_ready - 1;
3979
3980 gcc_assert (ready.n_ready > 0);
3981
3982 if (ready.n_ready > max_issue_size)
3983 {
3984 max_issue_size = ready.n_ready;
3985 sched_extend_ready_list (ready.n_ready);
3986 }
3987
3988 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3989 {
3990 vinsn_t vi = EXPR_VINSN (expr);
3991 insn_t insn = VINSN_INSN_RTX (vi);
3992
3993 ready_try[n] = 0;
3994 ready.vec[n] = insn;
3995 }
3996 }
3997
3998 /* Initialize ready list from *AV_PTR for the max_issue () call.
3999 If any unrecognizable insn found in *AV_PTR, return it (and skip
4000 max_issue). BND and FENCE are current boundary and fence,
4001 respectively. If we need to stall for some cycles before an expr
4002 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4003 static expr_t
4004 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4005 int *pneed_stall)
4006 {
4007 expr_t expr;
4008
4009 /* We do not support multiple boundaries per fence. */
4010 gcc_assert (BLIST_NEXT (bnds) == NULL);
4011
4012 /* Process expressions required special handling, i.e. pipelined,
4013 speculative and recog() < 0 expressions first. */
4014 process_pipelined_exprs (av_ptr);
4015 process_spec_exprs (av_ptr);
4016
4017 /* A USE could be scheduled immediately. */
4018 expr = process_use_exprs (av_ptr);
4019 if (expr)
4020 {
4021 *pneed_stall = 0;
4022 return expr;
4023 }
4024
4025 /* Turn the av set to a vector for sorting. */
4026 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4027 {
4028 ready.n_ready = 0;
4029 return NULL;
4030 }
4031
4032 /* Build the final ready list. */
4033 convert_vec_av_set_to_ready ();
4034 return NULL;
4035 }
4036
4037 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4038 static bool
4039 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4040 {
4041 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4042 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4043 : FENCE_CYCLE (fence) - 1;
4044 bool res = false;
4045 int sort_p = 0;
4046
4047 if (!targetm.sched.dfa_new_cycle)
4048 return false;
4049
4050 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4051
4052 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4053 insn, last_scheduled_cycle,
4054 FENCE_CYCLE (fence), &sort_p))
4055 {
4056 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4057 advance_one_cycle (fence);
4058 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4059 res = true;
4060 }
4061
4062 return res;
4063 }
4064
4065 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4066 we can issue. FENCE is the current fence. */
4067 static int
4068 invoke_reorder_hooks (fence_t fence)
4069 {
4070 int issue_more;
4071 bool ran_hook = false;
4072
4073 /* Call the reorder hook at the beginning of the cycle, and call
4074 the reorder2 hook in the middle of the cycle. */
4075 if (FENCE_ISSUED_INSNS (fence) == 0)
4076 {
4077 if (targetm.sched.reorder
4078 && !SCHED_GROUP_P (ready_element (&ready, 0))
4079 && ready.n_ready > 1)
4080 {
4081 /* Don't give reorder the most prioritized insn as it can break
4082 pipelining. */
4083 if (pipelining_p)
4084 --ready.n_ready;
4085
4086 issue_more
4087 = targetm.sched.reorder (sched_dump, sched_verbose,
4088 ready_lastpos (&ready),
4089 &ready.n_ready, FENCE_CYCLE (fence));
4090
4091 if (pipelining_p)
4092 ++ready.n_ready;
4093
4094 ran_hook = true;
4095 }
4096 else
4097 /* Initialize can_issue_more for variable_issue. */
4098 issue_more = issue_rate;
4099 }
4100 else if (targetm.sched.reorder2
4101 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4102 {
4103 if (ready.n_ready == 1)
4104 issue_more =
4105 targetm.sched.reorder2 (sched_dump, sched_verbose,
4106 ready_lastpos (&ready),
4107 &ready.n_ready, FENCE_CYCLE (fence));
4108 else
4109 {
4110 if (pipelining_p)
4111 --ready.n_ready;
4112
4113 issue_more =
4114 targetm.sched.reorder2 (sched_dump, sched_verbose,
4115 ready.n_ready
4116 ? ready_lastpos (&ready) : NULL,
4117 &ready.n_ready, FENCE_CYCLE (fence));
4118
4119 if (pipelining_p)
4120 ++ready.n_ready;
4121 }
4122
4123 ran_hook = true;
4124 }
4125 else
4126 issue_more = FENCE_ISSUE_MORE (fence);
4127
4128 /* Ensure that ready list and vec_av_set are in line with each other,
4129 i.e. vec_av_set[i] == ready_element (&ready, i). */
4130 if (issue_more && ran_hook)
4131 {
4132 int i, j, n;
4133 rtx_insn **arr = ready.vec;
4134 expr_t *vec = vec_av_set.address ();
4135
4136 for (i = 0, n = ready.n_ready; i < n; i++)
4137 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4138 {
4139 for (j = i; j < n; j++)
4140 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4141 break;
4142 gcc_assert (j < n);
4143
4144 std::swap (vec[i], vec[j]);
4145 }
4146 }
4147
4148 return issue_more;
4149 }
4150
4151 /* Return an EXPR corresponding to INDEX element of ready list, if
4152 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4153 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4154 ready.vec otherwise. */
4155 static inline expr_t
4156 find_expr_for_ready (int index, bool follow_ready_element)
4157 {
4158 expr_t expr;
4159 int real_index;
4160
4161 real_index = follow_ready_element ? ready.first - index : index;
4162
4163 expr = vec_av_set[real_index];
4164 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4165
4166 return expr;
4167 }
4168
4169 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4170 of such insns found. */
4171 static int
4172 invoke_dfa_lookahead_guard (void)
4173 {
4174 int i, n;
4175 bool have_hook
4176 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4177
4178 if (sched_verbose >= 2)
4179 sel_print ("ready after reorder: ");
4180
4181 for (i = 0, n = 0; i < ready.n_ready; i++)
4182 {
4183 expr_t expr;
4184 insn_t insn;
4185 int r;
4186
4187 /* In this loop insn is Ith element of the ready list given by
4188 ready_element, not Ith element of ready.vec. */
4189 insn = ready_element (&ready, i);
4190
4191 if (! have_hook || i == 0)
4192 r = 0;
4193 else
4194 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4195
4196 gcc_assert (INSN_CODE (insn) >= 0);
4197
4198 /* Only insns with ready_try = 0 can get here
4199 from fill_ready_list. */
4200 gcc_assert (ready_try [i] == 0);
4201 ready_try[i] = r;
4202 if (!r)
4203 n++;
4204
4205 expr = find_expr_for_ready (i, true);
4206
4207 if (sched_verbose >= 2)
4208 {
4209 dump_vinsn (EXPR_VINSN (expr));
4210 sel_print (":%d; ", ready_try[i]);
4211 }
4212 }
4213
4214 if (sched_verbose >= 2)
4215 sel_print ("\n");
4216 return n;
4217 }
4218
4219 /* Calculate the number of privileged insns and return it. */
4220 static int
4221 calculate_privileged_insns (void)
4222 {
4223 expr_t cur_expr, min_spec_expr = NULL;
4224 int privileged_n = 0, i;
4225
4226 for (i = 0; i < ready.n_ready; i++)
4227 {
4228 if (ready_try[i])
4229 continue;
4230
4231 if (! min_spec_expr)
4232 min_spec_expr = find_expr_for_ready (i, true);
4233
4234 cur_expr = find_expr_for_ready (i, true);
4235
4236 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4237 break;
4238
4239 ++privileged_n;
4240 }
4241
4242 if (i == ready.n_ready)
4243 privileged_n = 0;
4244
4245 if (sched_verbose >= 2)
4246 sel_print ("privileged_n: %d insns with SPEC %d\n",
4247 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4248 return privileged_n;
4249 }
4250
4251 /* Call the rest of the hooks after the choice was made. Return
4252 the number of insns that still can be issued given that the current
4253 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4254 and the insn chosen for scheduling, respectively. */
4255 static int
4256 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4257 {
4258 gcc_assert (INSN_P (best_insn));
4259
4260 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4261 sel_dfa_new_cycle (best_insn, fence);
4262
4263 if (targetm.sched.variable_issue)
4264 {
4265 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4266 issue_more =
4267 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4268 issue_more);
4269 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4270 }
4271 else if (!DEBUG_INSN_P (best_insn)
4272 && GET_CODE (PATTERN (best_insn)) != USE
4273 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4274 issue_more--;
4275
4276 return issue_more;
4277 }
4278
4279 /* Estimate the cost of issuing INSN on DFA state STATE. */
4280 static int
4281 estimate_insn_cost (rtx_insn *insn, state_t state)
4282 {
4283 static state_t temp = NULL;
4284 int cost;
4285
4286 if (!temp)
4287 temp = xmalloc (dfa_state_size);
4288
4289 memcpy (temp, state, dfa_state_size);
4290 cost = state_transition (temp, insn);
4291
4292 if (cost < 0)
4293 return 0;
4294 else if (cost == 0)
4295 return 1;
4296 return cost;
4297 }
4298
4299 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4300 This function properly handles ASMs, USEs etc. */
4301 static int
4302 get_expr_cost (expr_t expr, fence_t fence)
4303 {
4304 rtx_insn *insn = EXPR_INSN_RTX (expr);
4305
4306 if (recog_memoized (insn) < 0)
4307 {
4308 if (!FENCE_STARTS_CYCLE_P (fence)
4309 && INSN_ASM_P (insn))
4310 /* This is asm insn which is tryed to be issued on the
4311 cycle not first. Issue it on the next cycle. */
4312 return 1;
4313 else
4314 /* A USE insn, or something else we don't need to
4315 understand. We can't pass these directly to
4316 state_transition because it will trigger a
4317 fatal error for unrecognizable insns. */
4318 return 0;
4319 }
4320 else
4321 return estimate_insn_cost (insn, FENCE_STATE (fence));
4322 }
4323
4324 /* Find the best insn for scheduling, either via max_issue or just take
4325 the most prioritized available. */
4326 static int
4327 choose_best_insn (fence_t fence, int privileged_n, int *index)
4328 {
4329 int can_issue = 0;
4330
4331 if (dfa_lookahead > 0)
4332 {
4333 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4334 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4335 can_issue = max_issue (&ready, privileged_n,
4336 FENCE_STATE (fence), true, index);
4337 if (sched_verbose >= 2)
4338 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4339 can_issue, FENCE_ISSUED_INSNS (fence));
4340 }
4341 else
4342 {
4343 /* We can't use max_issue; just return the first available element. */
4344 int i;
4345
4346 for (i = 0; i < ready.n_ready; i++)
4347 {
4348 expr_t expr = find_expr_for_ready (i, true);
4349
4350 if (get_expr_cost (expr, fence) < 1)
4351 {
4352 can_issue = can_issue_more;
4353 *index = i;
4354
4355 if (sched_verbose >= 2)
4356 sel_print ("using %dth insn from the ready list\n", i + 1);
4357
4358 break;
4359 }
4360 }
4361
4362 if (i == ready.n_ready)
4363 {
4364 can_issue = 0;
4365 *index = -1;
4366 }
4367 }
4368
4369 return can_issue;
4370 }
4371
4372 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4373 BNDS and FENCE are current boundaries and scheduling fence respectively.
4374 Return the expr found and NULL if nothing can be issued atm.
4375 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4376 static expr_t
4377 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4378 int *pneed_stall)
4379 {
4380 expr_t best;
4381
4382 /* Choose the best insn for scheduling via:
4383 1) sorting the ready list based on priority;
4384 2) calling the reorder hook;
4385 3) calling max_issue. */
4386 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4387 if (best == NULL && ready.n_ready > 0)
4388 {
4389 int privileged_n, index;
4390
4391 can_issue_more = invoke_reorder_hooks (fence);
4392 if (can_issue_more > 0)
4393 {
4394 /* Try choosing the best insn until we find one that is could be
4395 scheduled due to liveness restrictions on its destination register.
4396 In the future, we'd like to choose once and then just probe insns
4397 in the order of their priority. */
4398 invoke_dfa_lookahead_guard ();
4399 privileged_n = calculate_privileged_insns ();
4400 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4401 if (can_issue_more)
4402 best = find_expr_for_ready (index, true);
4403 }
4404 /* We had some available insns, so if we can't issue them,
4405 we have a stall. */
4406 if (can_issue_more == 0)
4407 {
4408 best = NULL;
4409 *pneed_stall = 1;
4410 }
4411 }
4412
4413 if (best != NULL)
4414 {
4415 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4416 can_issue_more);
4417 if (targetm.sched.variable_issue
4418 && can_issue_more == 0)
4419 *pneed_stall = 1;
4420 }
4421
4422 if (sched_verbose >= 2)
4423 {
4424 if (best != NULL)
4425 {
4426 sel_print ("Best expression (vliw form): ");
4427 dump_expr (best);
4428 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4429 }
4430 else
4431 sel_print ("No best expr found!\n");
4432 }
4433
4434 return best;
4435 }
4436 \f
4437
4438 /* Functions that implement the core of the scheduler. */
4439
4440
4441 /* Emit an instruction from EXPR with SEQNO and VINSN after
4442 PLACE_TO_INSERT. */
4443 static insn_t
4444 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4445 insn_t place_to_insert)
4446 {
4447 /* This assert fails when we have identical instructions
4448 one of which dominates the other. In this case move_op ()
4449 finds the first instruction and doesn't search for second one.
4450 The solution would be to compute av_set after the first found
4451 insn and, if insn present in that set, continue searching.
4452 For now we workaround this issue in move_op. */
4453 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4454
4455 if (EXPR_WAS_RENAMED (expr))
4456 {
4457 unsigned regno = expr_dest_regno (expr);
4458
4459 if (HARD_REGISTER_NUM_P (regno))
4460 {
4461 df_set_regs_ever_live (regno, true);
4462 reg_rename_tick[regno] = ++reg_rename_this_tick;
4463 }
4464 }
4465
4466 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4467 place_to_insert);
4468 }
4469
4470 /* Return TRUE if BB can hold bookkeeping code. */
4471 static bool
4472 block_valid_for_bookkeeping_p (basic_block bb)
4473 {
4474 insn_t bb_end = BB_END (bb);
4475
4476 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4477 return false;
4478
4479 if (INSN_P (bb_end))
4480 {
4481 if (INSN_SCHED_TIMES (bb_end) > 0)
4482 return false;
4483 }
4484 else
4485 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4486
4487 return true;
4488 }
4489
4490 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4491 into E2->dest, except from E1->src (there may be a sequence of empty basic
4492 blocks between E1->src and E2->dest). Return found block, or NULL if new
4493 one must be created. If LAX holds, don't assume there is a simple path
4494 from E1->src to E2->dest. */
4495 static basic_block
4496 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4497 {
4498 basic_block candidate_block = NULL;
4499 edge e;
4500
4501 /* Loop over edges from E1 to E2, inclusive. */
4502 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4503 EDGE_SUCC (e->dest, 0))
4504 {
4505 if (EDGE_COUNT (e->dest->preds) == 2)
4506 {
4507 if (candidate_block == NULL)
4508 candidate_block = (EDGE_PRED (e->dest, 0) == e
4509 ? EDGE_PRED (e->dest, 1)->src
4510 : EDGE_PRED (e->dest, 0)->src);
4511 else
4512 /* Found additional edge leading to path from e1 to e2
4513 from aside. */
4514 return NULL;
4515 }
4516 else if (EDGE_COUNT (e->dest->preds) > 2)
4517 /* Several edges leading to path from e1 to e2 from aside. */
4518 return NULL;
4519
4520 if (e == e2)
4521 return ((!lax || candidate_block)
4522 && block_valid_for_bookkeeping_p (candidate_block)
4523 ? candidate_block
4524 : NULL);
4525
4526 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4527 return NULL;
4528 }
4529
4530 if (lax)
4531 return NULL;
4532
4533 gcc_unreachable ();
4534 }
4535
4536 /* Create new basic block for bookkeeping code for path(s) incoming into
4537 E2->dest, except from E1->src. Return created block. */
4538 static basic_block
4539 create_block_for_bookkeeping (edge e1, edge e2)
4540 {
4541 basic_block new_bb, bb = e2->dest;
4542
4543 /* Check that we don't spoil the loop structure. */
4544 if (current_loop_nest)
4545 {
4546 basic_block latch = current_loop_nest->latch;
4547
4548 /* We do not split header. */
4549 gcc_assert (e2->dest != current_loop_nest->header);
4550
4551 /* We do not redirect the only edge to the latch block. */
4552 gcc_assert (e1->dest != latch
4553 || !single_pred_p (latch)
4554 || e1 != single_pred_edge (latch));
4555 }
4556
4557 /* Split BB to insert BOOK_INSN there. */
4558 new_bb = sched_split_block (bb, NULL);
4559
4560 /* Move note_list from the upper bb. */
4561 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4562 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4563 BB_NOTE_LIST (bb) = NULL;
4564
4565 gcc_assert (e2->dest == bb);
4566
4567 /* Skip block for bookkeeping copy when leaving E1->src. */
4568 if (e1->flags & EDGE_FALLTHRU)
4569 sel_redirect_edge_and_branch_force (e1, new_bb);
4570 else
4571 sel_redirect_edge_and_branch (e1, new_bb);
4572
4573 gcc_assert (e1->dest == new_bb);
4574 gcc_assert (sel_bb_empty_p (bb));
4575
4576 /* To keep basic block numbers in sync between debug and non-debug
4577 compilations, we have to rotate blocks here. Consider that we
4578 started from (a,b)->d, (c,d)->e, and d contained only debug
4579 insns. It would have been removed before if the debug insns
4580 weren't there, so we'd have split e rather than d. So what we do
4581 now is to swap the block numbers of new_bb and
4582 single_succ(new_bb) == e, so that the insns that were in e before
4583 get the new block number. */
4584
4585 if (MAY_HAVE_DEBUG_INSNS)
4586 {
4587 basic_block succ;
4588 insn_t insn = sel_bb_head (new_bb);
4589 insn_t last;
4590
4591 if (DEBUG_INSN_P (insn)
4592 && single_succ_p (new_bb)
4593 && (succ = single_succ (new_bb))
4594 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4595 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4596 {
4597 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4598 insn = NEXT_INSN (insn);
4599
4600 if (insn == last)
4601 {
4602 sel_global_bb_info_def gbi;
4603 sel_region_bb_info_def rbi;
4604
4605 if (sched_verbose >= 2)
4606 sel_print ("Swapping block ids %i and %i\n",
4607 new_bb->index, succ->index);
4608
4609 std::swap (new_bb->index, succ->index);
4610
4611 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4612 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4613
4614 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4615 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4616 sizeof (gbi));
4617 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4618
4619 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4620 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4621 sizeof (rbi));
4622 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4623
4624 std::swap (BLOCK_TO_BB (new_bb->index),
4625 BLOCK_TO_BB (succ->index));
4626
4627 std::swap (CONTAINING_RGN (new_bb->index),
4628 CONTAINING_RGN (succ->index));
4629
4630 for (int i = 0; i < current_nr_blocks; i++)
4631 if (BB_TO_BLOCK (i) == succ->index)
4632 BB_TO_BLOCK (i) = new_bb->index;
4633 else if (BB_TO_BLOCK (i) == new_bb->index)
4634 BB_TO_BLOCK (i) = succ->index;
4635
4636 FOR_BB_INSNS (new_bb, insn)
4637 if (INSN_P (insn))
4638 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4639
4640 FOR_BB_INSNS (succ, insn)
4641 if (INSN_P (insn))
4642 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4643
4644 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4645 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4646
4647 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4648 && LABEL_P (BB_HEAD (succ)));
4649
4650 if (sched_verbose >= 4)
4651 sel_print ("Swapping code labels %i and %i\n",
4652 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4653 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4654
4655 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4656 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4657 }
4658 }
4659 }
4660
4661 return bb;
4662 }
4663
4664 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4665 into E2->dest, except from E1->src. If the returned insn immediately
4666 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4667 static insn_t
4668 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4669 {
4670 insn_t place_to_insert;
4671 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4672 create new basic block, but insert bookkeeping there. */
4673 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4674
4675 if (book_block)
4676 {
4677 place_to_insert = BB_END (book_block);
4678
4679 /* Don't use a block containing only debug insns for
4680 bookkeeping, this causes scheduling differences between debug
4681 and non-debug compilations, for the block would have been
4682 removed already. */
4683 if (DEBUG_INSN_P (place_to_insert))
4684 {
4685 rtx_insn *insn = sel_bb_head (book_block);
4686
4687 while (insn != place_to_insert &&
4688 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4689 insn = NEXT_INSN (insn);
4690
4691 if (insn == place_to_insert)
4692 book_block = NULL;
4693 }
4694 }
4695
4696 if (!book_block)
4697 {
4698 book_block = create_block_for_bookkeeping (e1, e2);
4699 place_to_insert = BB_END (book_block);
4700 if (sched_verbose >= 9)
4701 sel_print ("New block is %i, split from bookkeeping block %i\n",
4702 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4703 }
4704 else
4705 {
4706 if (sched_verbose >= 9)
4707 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4708 }
4709
4710 *fence_to_rewind = NULL;
4711 /* If basic block ends with a jump, insert bookkeeping code right before it.
4712 Notice if we are crossing a fence when taking PREV_INSN. */
4713 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4714 {
4715 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4716 place_to_insert = PREV_INSN (place_to_insert);
4717 }
4718
4719 return place_to_insert;
4720 }
4721
4722 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4723 for JOIN_POINT. */
4724 static int
4725 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4726 {
4727 int seqno;
4728
4729 /* Check if we are about to insert bookkeeping copy before a jump, and use
4730 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4731 rtx_insn *next = NEXT_INSN (place_to_insert);
4732 if (INSN_P (next)
4733 && JUMP_P (next)
4734 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4735 {
4736 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4737 seqno = INSN_SEQNO (next);
4738 }
4739 else if (INSN_SEQNO (join_point) > 0)
4740 seqno = INSN_SEQNO (join_point);
4741 else
4742 {
4743 seqno = get_seqno_by_preds (place_to_insert);
4744
4745 /* Sometimes the fences can move in such a way that there will be
4746 no instructions with positive seqno around this bookkeeping.
4747 This means that there will be no way to get to it by a regular
4748 fence movement. Never mind because we pick up such pieces for
4749 rescheduling anyways, so any positive value will do for now. */
4750 if (seqno < 0)
4751 {
4752 gcc_assert (pipelining_p);
4753 seqno = 1;
4754 }
4755 }
4756
4757 gcc_assert (seqno > 0);
4758 return seqno;
4759 }
4760
4761 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4762 NEW_SEQNO to it. Return created insn. */
4763 static insn_t
4764 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4765 {
4766 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4767
4768 vinsn_t new_vinsn
4769 = create_vinsn_from_insn_rtx (new_insn_rtx,
4770 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4771
4772 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4773 place_to_insert);
4774
4775 INSN_SCHED_TIMES (new_insn) = 0;
4776 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4777
4778 return new_insn;
4779 }
4780
4781 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4782 E2->dest, except from E1->src (there may be a sequence of empty blocks
4783 between E1->src and E2->dest). Return block containing the copy.
4784 All scheduler data is initialized for the newly created insn. */
4785 static basic_block
4786 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4787 {
4788 insn_t join_point, place_to_insert, new_insn;
4789 int new_seqno;
4790 bool need_to_exchange_data_sets;
4791 fence_t fence_to_rewind;
4792
4793 if (sched_verbose >= 4)
4794 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4795 e2->dest->index);
4796
4797 join_point = sel_bb_head (e2->dest);
4798 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4799 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4800 need_to_exchange_data_sets
4801 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4802
4803 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4804
4805 if (fence_to_rewind)
4806 FENCE_INSN (fence_to_rewind) = new_insn;
4807
4808 /* When inserting bookkeeping insn in new block, av sets should be
4809 following: old basic block (that now holds bookkeeping) data sets are
4810 the same as was before generation of bookkeeping, and new basic block
4811 (that now hold all other insns of old basic block) data sets are
4812 invalid. So exchange data sets for these basic blocks as sel_split_block
4813 mistakenly exchanges them in this case. Cannot do it earlier because
4814 when single instruction is added to new basic block it should hold NULL
4815 lv_set. */
4816 if (need_to_exchange_data_sets)
4817 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4818 BLOCK_FOR_INSN (join_point));
4819
4820 stat_bookkeeping_copies++;
4821 return BLOCK_FOR_INSN (new_insn);
4822 }
4823
4824 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4825 on FENCE, but we are unable to copy them. */
4826 static void
4827 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4828 {
4829 expr_t expr;
4830 av_set_iterator i;
4831
4832 /* An expression does not need bookkeeping if it is available on all paths
4833 from current block to original block and current block dominates
4834 original block. We check availability on all paths by examining
4835 EXPR_SPEC; this is not equivalent, because it may be positive even
4836 if expr is available on all paths (but if expr is not available on
4837 any path, EXPR_SPEC will be positive). */
4838
4839 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4840 {
4841 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4842 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4843 && (EXPR_SPEC (expr)
4844 || !EXPR_ORIG_BB_INDEX (expr)
4845 || !dominated_by_p (CDI_DOMINATORS,
4846 BASIC_BLOCK_FOR_FN (cfun,
4847 EXPR_ORIG_BB_INDEX (expr)),
4848 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4849 {
4850 if (sched_verbose >= 4)
4851 sel_print ("Expr %d removed because it would need bookkeeping, which "
4852 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4853 av_set_iter_remove (&i);
4854 }
4855 }
4856 }
4857
4858 /* Moving conditional jump through some instructions.
4859
4860 Consider example:
4861
4862 ... <- current scheduling point
4863 NOTE BASIC BLOCK: <- bb header
4864 (p8) add r14=r14+0x9;;
4865 (p8) mov [r14]=r23
4866 (!p8) jump L1;;
4867 NOTE BASIC BLOCK:
4868 ...
4869
4870 We can schedule jump one cycle earlier, than mov, because they cannot be
4871 executed together as their predicates are mutually exclusive.
4872
4873 This is done in this way: first, new fallthrough basic block is created
4874 after jump (it is always can be done, because there already should be a
4875 fallthrough block, where control flow goes in case of predicate being true -
4876 in our example; otherwise there should be a dependence between those
4877 instructions and jump and we cannot schedule jump right now);
4878 next, all instructions between jump and current scheduling point are moved
4879 to this new block. And the result is this:
4880
4881 NOTE BASIC BLOCK:
4882 (!p8) jump L1 <- current scheduling point
4883 NOTE BASIC BLOCK: <- bb header
4884 (p8) add r14=r14+0x9;;
4885 (p8) mov [r14]=r23
4886 NOTE BASIC BLOCK:
4887 ...
4888 */
4889 static void
4890 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4891 {
4892 edge ft_edge;
4893 basic_block block_from, block_next, block_new, block_bnd, bb;
4894 rtx_insn *next, *prev, *link, *head;
4895
4896 block_from = BLOCK_FOR_INSN (insn);
4897 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4898 prev = BND_TO (bnd);
4899
4900 /* Moving of jump should not cross any other jumps or beginnings of new
4901 basic blocks. The only exception is when we move a jump through
4902 mutually exclusive insns along fallthru edges. */
4903 if (flag_checking && block_from != block_bnd)
4904 {
4905 bb = block_from;
4906 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4907 link = PREV_INSN (link))
4908 {
4909 if (INSN_P (link))
4910 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4911 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4912 {
4913 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4914 bb = BLOCK_FOR_INSN (link);
4915 }
4916 }
4917 }
4918
4919 /* Jump is moved to the boundary. */
4920 next = PREV_INSN (insn);
4921 BND_TO (bnd) = insn;
4922
4923 ft_edge = find_fallthru_edge_from (block_from);
4924 block_next = ft_edge->dest;
4925 /* There must be a fallthrough block (or where should go
4926 control flow in case of false jump predicate otherwise?). */
4927 gcc_assert (block_next);
4928
4929 /* Create new empty basic block after source block. */
4930 block_new = sel_split_edge (ft_edge);
4931 gcc_assert (block_new->next_bb == block_next
4932 && block_from->next_bb == block_new);
4933
4934 /* Move all instructions except INSN to BLOCK_NEW. */
4935 bb = block_bnd;
4936 head = BB_HEAD (block_new);
4937 while (bb != block_from->next_bb)
4938 {
4939 rtx_insn *from, *to;
4940 from = bb == block_bnd ? prev : sel_bb_head (bb);
4941 to = bb == block_from ? next : sel_bb_end (bb);
4942
4943 /* The jump being moved can be the first insn in the block.
4944 In this case we don't have to move anything in this block. */
4945 if (NEXT_INSN (to) != from)
4946 {
4947 reorder_insns (from, to, head);
4948
4949 for (link = to; link != head; link = PREV_INSN (link))
4950 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4951 head = to;
4952 }
4953
4954 /* Cleanup possibly empty blocks left. */
4955 block_next = bb->next_bb;
4956 if (bb != block_from)
4957 tidy_control_flow (bb, false);
4958 bb = block_next;
4959 }
4960
4961 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4962 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4963
4964 gcc_assert (!sel_bb_empty_p (block_from)
4965 && !sel_bb_empty_p (block_new));
4966
4967 /* Update data sets for BLOCK_NEW to represent that INSN and
4968 instructions from the other branch of INSN is no longer
4969 available at BLOCK_NEW. */
4970 BB_AV_LEVEL (block_new) = global_level;
4971 gcc_assert (BB_LV_SET (block_new) == NULL);
4972 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4973 update_data_sets (sel_bb_head (block_new));
4974
4975 /* INSN is a new basic block header - so prepare its data
4976 structures and update availability and liveness sets. */
4977 update_data_sets (insn);
4978
4979 if (sched_verbose >= 4)
4980 sel_print ("Moving jump %d\n", INSN_UID (insn));
4981 }
4982
4983 /* Remove nops generated during move_op for preventing removal of empty
4984 basic blocks. */
4985 static void
4986 remove_temp_moveop_nops (bool full_tidying)
4987 {
4988 int i;
4989 insn_t insn;
4990
4991 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4992 {
4993 gcc_assert (INSN_NOP_P (insn));
4994 return_nop_to_pool (insn, full_tidying);
4995 }
4996
4997 /* Empty the vector. */
4998 if (vec_temp_moveop_nops.length () > 0)
4999 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5000 }
5001
5002 /* Records the maximal UID before moving up an instruction. Used for
5003 distinguishing between bookkeeping copies and original insns. */
5004 static int max_uid_before_move_op = 0;
5005
5006 /* When true, we're always scheduling next insn on the already scheduled code
5007 to get the right insn data for the following bundling or other passes. */
5008 static int force_next_insn = 0;
5009
5010 /* Remove from AV_VLIW_P all instructions but next when debug counter
5011 tells us so. Next instruction is fetched from BNDS. */
5012 static void
5013 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5014 {
5015 if (! dbg_cnt (sel_sched_insn_cnt) || force_next_insn)
5016 /* Leave only the next insn in av_vliw. */
5017 {
5018 av_set_iterator av_it;
5019 expr_t expr;
5020 bnd_t bnd = BLIST_BND (bnds);
5021 insn_t next = BND_TO (bnd);
5022
5023 gcc_assert (BLIST_NEXT (bnds) == NULL);
5024
5025 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5026 if (EXPR_INSN_RTX (expr) != next)
5027 av_set_iter_remove (&av_it);
5028 }
5029 }
5030
5031 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5032 the computed set to *AV_VLIW_P. */
5033 static void
5034 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5035 {
5036 if (sched_verbose >= 2)
5037 {
5038 sel_print ("Boundaries: ");
5039 dump_blist (bnds);
5040 sel_print ("\n");
5041 }
5042
5043 for (; bnds; bnds = BLIST_NEXT (bnds))
5044 {
5045 bnd_t bnd = BLIST_BND (bnds);
5046 av_set_t av1_copy;
5047 insn_t bnd_to = BND_TO (bnd);
5048
5049 /* Rewind BND->TO to the basic block header in case some bookkeeping
5050 instructions were inserted before BND->TO and it needs to be
5051 adjusted. */
5052 if (sel_bb_head_p (bnd_to))
5053 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5054 else
5055 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5056 {
5057 bnd_to = PREV_INSN (bnd_to);
5058 if (sel_bb_head_p (bnd_to))
5059 break;
5060 }
5061
5062 if (BND_TO (bnd) != bnd_to)
5063 {
5064 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5065 FENCE_INSN (fence) = bnd_to;
5066 BND_TO (bnd) = bnd_to;
5067 }
5068
5069 av_set_clear (&BND_AV (bnd));
5070 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5071
5072 av_set_clear (&BND_AV1 (bnd));
5073 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5074
5075 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5076
5077 av1_copy = av_set_copy (BND_AV1 (bnd));
5078 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5079 }
5080
5081 if (sched_verbose >= 2)
5082 {
5083 sel_print ("Available exprs (vliw form): ");
5084 dump_av_set (*av_vliw_p);
5085 sel_print ("\n");
5086 }
5087 }
5088
5089 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5090 expression. When FOR_MOVEOP is true, also replace the register of
5091 expressions found with the register from EXPR_VLIW. */
5092 static av_set_t
5093 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5094 {
5095 av_set_t expr_seq = NULL;
5096 expr_t expr;
5097 av_set_iterator i;
5098
5099 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5100 {
5101 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5102 {
5103 if (for_moveop)
5104 {
5105 /* The sequential expression has the right form to pass
5106 to move_op except when renaming happened. Put the
5107 correct register in EXPR then. */
5108 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5109 {
5110 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5111 {
5112 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5113 stat_renamed_scheduled++;
5114 }
5115 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5116 This is needed when renaming came up with original
5117 register. */
5118 else if (EXPR_TARGET_AVAILABLE (expr)
5119 != EXPR_TARGET_AVAILABLE (expr_vliw))
5120 {
5121 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5122 EXPR_TARGET_AVAILABLE (expr) = 1;
5123 }
5124 }
5125 if (EXPR_WAS_SUBSTITUTED (expr))
5126 stat_substitutions_total++;
5127 }
5128
5129 av_set_add (&expr_seq, expr);
5130
5131 /* With substitution inside insn group, it is possible
5132 that more than one expression in expr_seq will correspond
5133 to expr_vliw. In this case, choose one as the attempt to
5134 move both leads to miscompiles. */
5135 break;
5136 }
5137 }
5138
5139 if (for_moveop && sched_verbose >= 2)
5140 {
5141 sel_print ("Best expression(s) (sequential form): ");
5142 dump_av_set (expr_seq);
5143 sel_print ("\n");
5144 }
5145
5146 return expr_seq;
5147 }
5148
5149
5150 /* Move nop to previous block. */
5151 static void ATTRIBUTE_UNUSED
5152 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5153 {
5154 insn_t prev_insn, next_insn;
5155
5156 gcc_assert (sel_bb_head_p (nop)
5157 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5158 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5159 prev_insn = sel_bb_end (prev_bb);
5160 next_insn = NEXT_INSN (nop);
5161 gcc_assert (prev_insn != NULL_RTX
5162 && PREV_INSN (note) == prev_insn);
5163
5164 SET_NEXT_INSN (prev_insn) = nop;
5165 SET_PREV_INSN (nop) = prev_insn;
5166
5167 SET_PREV_INSN (note) = nop;
5168 SET_NEXT_INSN (note) = next_insn;
5169
5170 SET_NEXT_INSN (nop) = note;
5171 SET_PREV_INSN (next_insn) = note;
5172
5173 BB_END (prev_bb) = nop;
5174 BLOCK_FOR_INSN (nop) = prev_bb;
5175 }
5176
5177 /* Prepare a place to insert the chosen expression on BND. */
5178 static insn_t
5179 prepare_place_to_insert (bnd_t bnd)
5180 {
5181 insn_t place_to_insert;
5182
5183 /* Init place_to_insert before calling move_op, as the later
5184 can possibly remove BND_TO (bnd). */
5185 if (/* If this is not the first insn scheduled. */
5186 BND_PTR (bnd))
5187 {
5188 /* Add it after last scheduled. */
5189 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5190 if (DEBUG_INSN_P (place_to_insert))
5191 {
5192 ilist_t l = BND_PTR (bnd);
5193 while ((l = ILIST_NEXT (l)) &&
5194 DEBUG_INSN_P (ILIST_INSN (l)))
5195 ;
5196 if (!l)
5197 place_to_insert = NULL;
5198 }
5199 }
5200 else
5201 place_to_insert = NULL;
5202
5203 if (!place_to_insert)
5204 {
5205 /* Add it before BND_TO. The difference is in the
5206 basic block, where INSN will be added. */
5207 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5208 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5209 == BLOCK_FOR_INSN (BND_TO (bnd)));
5210 }
5211
5212 return place_to_insert;
5213 }
5214
5215 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5216 Return the expression to emit in C_EXPR. */
5217 static bool
5218 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5219 av_set_t expr_seq, expr_t c_expr)
5220 {
5221 bool b, should_move;
5222 unsigned book_uid;
5223 bitmap_iterator bi;
5224 int n_bookkeeping_copies_before_moveop;
5225
5226 /* Make a move. This call will remove the original operation,
5227 insert all necessary bookkeeping instructions and update the
5228 data sets. After that all we have to do is add the operation
5229 at before BND_TO (BND). */
5230 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5231 max_uid_before_move_op = get_max_uid ();
5232 bitmap_clear (current_copies);
5233 bitmap_clear (current_originators);
5234
5235 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5236 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5237
5238 /* We should be able to find the expression we've chosen for
5239 scheduling. */
5240 gcc_assert (b);
5241
5242 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5243 stat_insns_needed_bookkeeping++;
5244
5245 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5246 {
5247 unsigned uid;
5248 bitmap_iterator bi;
5249
5250 /* We allocate these bitmaps lazily. */
5251 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5252 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5253
5254 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5255 current_originators);
5256
5257 /* Transitively add all originators' originators. */
5258 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5259 if (INSN_ORIGINATORS_BY_UID (uid))
5260 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5261 INSN_ORIGINATORS_BY_UID (uid));
5262 }
5263
5264 return should_move;
5265 }
5266
5267
5268 /* Debug a DFA state as an array of bytes. */
5269 static void
5270 debug_state (state_t state)
5271 {
5272 unsigned char *p;
5273 unsigned int i, size = dfa_state_size;
5274
5275 sel_print ("state (%u):", size);
5276 for (i = 0, p = (unsigned char *) state; i < size; i++)
5277 sel_print (" %d", p[i]);
5278 sel_print ("\n");
5279 }
5280
5281 /* Advance state on FENCE with INSN. Return true if INSN is
5282 an ASM, and we should advance state once more. */
5283 static bool
5284 advance_state_on_fence (fence_t fence, insn_t insn)
5285 {
5286 bool asm_p;
5287
5288 if (recog_memoized (insn) >= 0)
5289 {
5290 int res;
5291 state_t temp_state = alloca (dfa_state_size);
5292
5293 gcc_assert (!INSN_ASM_P (insn));
5294 asm_p = false;
5295
5296 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5297 res = state_transition (FENCE_STATE (fence), insn);
5298 gcc_assert (res < 0);
5299
5300 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5301 {
5302 FENCE_ISSUED_INSNS (fence)++;
5303
5304 /* We should never issue more than issue_rate insns. */
5305 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5306 gcc_unreachable ();
5307 }
5308 }
5309 else
5310 {
5311 /* This could be an ASM insn which we'd like to schedule
5312 on the next cycle. */
5313 asm_p = INSN_ASM_P (insn);
5314 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5315 advance_one_cycle (fence);
5316 }
5317
5318 if (sched_verbose >= 2)
5319 debug_state (FENCE_STATE (fence));
5320 if (!DEBUG_INSN_P (insn))
5321 FENCE_STARTS_CYCLE_P (fence) = 0;
5322 FENCE_ISSUE_MORE (fence) = can_issue_more;
5323 return asm_p;
5324 }
5325
5326 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5327 is nonzero if we need to stall after issuing INSN. */
5328 static void
5329 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5330 {
5331 bool asm_p;
5332
5333 /* First, reflect that something is scheduled on this fence. */
5334 asm_p = advance_state_on_fence (fence, insn);
5335 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5336 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5337 if (SCHED_GROUP_P (insn))
5338 {
5339 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5340 SCHED_GROUP_P (insn) = 0;
5341 }
5342 else
5343 FENCE_SCHED_NEXT (fence) = NULL;
5344 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5345 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5346
5347 /* Set instruction scheduling info. This will be used in bundling,
5348 pipelining, tick computations etc. */
5349 ++INSN_SCHED_TIMES (insn);
5350 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5351 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5352 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5353 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5354
5355 /* This does not account for adjust_cost hooks, just add the biggest
5356 constant the hook may add to the latency. TODO: make this
5357 a target dependent constant. */
5358 INSN_READY_CYCLE (insn)
5359 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5360 ? 1
5361 : maximal_insn_latency (insn) + 1);
5362
5363 /* Change these fields last, as they're used above. */
5364 FENCE_AFTER_STALL_P (fence) = 0;
5365 if (asm_p || need_stall)
5366 advance_one_cycle (fence);
5367
5368 /* Indicate that we've scheduled something on this fence. */
5369 FENCE_SCHEDULED_P (fence) = true;
5370 scheduled_something_on_previous_fence = true;
5371
5372 /* Print debug information when insn's fields are updated. */
5373 if (sched_verbose >= 2)
5374 {
5375 sel_print ("Scheduling insn: ");
5376 dump_insn_1 (insn, 1);
5377 sel_print ("\n");
5378 }
5379 }
5380
5381 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5382 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5383 return it. */
5384 static blist_t *
5385 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5386 blist_t *bnds_tailp)
5387 {
5388 succ_iterator si;
5389 insn_t succ;
5390
5391 advance_deps_context (BND_DC (bnd), insn);
5392 FOR_EACH_SUCC_1 (succ, si, insn,
5393 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5394 {
5395 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5396
5397 ilist_add (&ptr, insn);
5398
5399 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5400 && is_ineligible_successor (succ, ptr))
5401 {
5402 ilist_clear (&ptr);
5403 continue;
5404 }
5405
5406 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5407 {
5408 if (sched_verbose >= 9)
5409 sel_print ("Updating fence insn from %i to %i\n",
5410 INSN_UID (insn), INSN_UID (succ));
5411 FENCE_INSN (fence) = succ;
5412 }
5413 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5414 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5415 }
5416
5417 blist_remove (bndsp);
5418 return bnds_tailp;
5419 }
5420
5421 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5422 static insn_t
5423 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5424 {
5425 av_set_t expr_seq;
5426 expr_t c_expr = XALLOCA (expr_def);
5427 insn_t place_to_insert;
5428 insn_t insn;
5429 bool should_move;
5430
5431 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5432
5433 /* In case of scheduling a jump skipping some other instructions,
5434 prepare CFG. After this, jump is at the boundary and can be
5435 scheduled as usual insn by MOVE_OP. */
5436 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5437 {
5438 insn = EXPR_INSN_RTX (expr_vliw);
5439
5440 /* Speculative jumps are not handled. */
5441 if (insn != BND_TO (bnd)
5442 && !sel_insn_is_speculation_check (insn))
5443 move_cond_jump (insn, bnd);
5444 }
5445
5446 /* Find a place for C_EXPR to schedule. */
5447 place_to_insert = prepare_place_to_insert (bnd);
5448 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5449 clear_expr (c_expr);
5450
5451 /* Add the instruction. The corner case to care about is when
5452 the expr_seq set has more than one expr, and we chose the one that
5453 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5454 we can't use it. Generate the new vinsn. */
5455 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5456 {
5457 vinsn_t vinsn_new;
5458
5459 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5460 change_vinsn_in_expr (expr_vliw, vinsn_new);
5461 should_move = false;
5462 }
5463 if (should_move)
5464 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5465 else
5466 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5467 place_to_insert);
5468
5469 /* Return the nops generated for preserving of data sets back
5470 into pool. */
5471 if (INSN_NOP_P (place_to_insert))
5472 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5473 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5474
5475 av_set_clear (&expr_seq);
5476
5477 /* Save the expression scheduled so to reset target availability if we'll
5478 meet it later on the same fence. */
5479 if (EXPR_WAS_RENAMED (expr_vliw))
5480 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5481
5482 /* Check that the recent movement didn't destroyed loop
5483 structure. */
5484 gcc_assert (!pipelining_p
5485 || current_loop_nest == NULL
5486 || loop_latch_edge (current_loop_nest));
5487 return insn;
5488 }
5489
5490 /* Stall for N cycles on FENCE. */
5491 static void
5492 stall_for_cycles (fence_t fence, int n)
5493 {
5494 int could_more;
5495
5496 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5497 while (n--)
5498 advance_one_cycle (fence);
5499 if (could_more)
5500 FENCE_AFTER_STALL_P (fence) = 1;
5501 }
5502
5503 /* Gather a parallel group of insns at FENCE and assign their seqno
5504 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5505 list for later recalculation of seqnos. */
5506 static void
5507 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5508 {
5509 blist_t bnds = NULL, *bnds_tailp;
5510 av_set_t av_vliw = NULL;
5511 insn_t insn = FENCE_INSN (fence);
5512
5513 if (sched_verbose >= 2)
5514 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5515 INSN_UID (insn), FENCE_CYCLE (fence));
5516
5517 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5518 bnds_tailp = &BLIST_NEXT (bnds);
5519 set_target_context (FENCE_TC (fence));
5520 can_issue_more = FENCE_ISSUE_MORE (fence);
5521 target_bb = INSN_BB (insn);
5522
5523 /* Do while we can add any operation to the current group. */
5524 do
5525 {
5526 blist_t *bnds_tailp1, *bndsp;
5527 expr_t expr_vliw;
5528 int need_stall = false;
5529 int was_stall = 0, scheduled_insns = 0;
5530 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5531 int max_stall = pipelining_p ? 1 : 3;
5532 bool last_insn_was_debug = false;
5533 bool was_debug_bb_end_p = false;
5534
5535 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5536 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5537 remove_insns_for_debug (bnds, &av_vliw);
5538
5539 /* Return early if we have nothing to schedule. */
5540 if (av_vliw == NULL)
5541 break;
5542
5543 /* Choose the best expression and, if needed, destination register
5544 for it. */
5545 do
5546 {
5547 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5548 if (! expr_vliw && need_stall)
5549 {
5550 /* All expressions required a stall. Do not recompute av sets
5551 as we'll get the same answer (modulo the insns between
5552 the fence and its boundary, which will not be available for
5553 pipelining).
5554 If we are going to stall for too long, break to recompute av
5555 sets and bring more insns for pipelining. */
5556 was_stall++;
5557 if (need_stall <= 3)
5558 stall_for_cycles (fence, need_stall);
5559 else
5560 {
5561 stall_for_cycles (fence, 1);
5562 break;
5563 }
5564 }
5565 }
5566 while (! expr_vliw && need_stall);
5567
5568 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5569 if (!expr_vliw)
5570 {
5571 av_set_clear (&av_vliw);
5572 break;
5573 }
5574
5575 bndsp = &bnds;
5576 bnds_tailp1 = bnds_tailp;
5577
5578 do
5579 /* This code will be executed only once until we'd have several
5580 boundaries per fence. */
5581 {
5582 bnd_t bnd = BLIST_BND (*bndsp);
5583
5584 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5585 {
5586 bndsp = &BLIST_NEXT (*bndsp);
5587 continue;
5588 }
5589
5590 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5591 last_insn_was_debug = DEBUG_INSN_P (insn);
5592 if (last_insn_was_debug)
5593 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5594 update_fence_and_insn (fence, insn, need_stall);
5595 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5596
5597 /* Add insn to the list of scheduled on this cycle instructions. */
5598 ilist_add (*scheduled_insns_tailpp, insn);
5599 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5600 }
5601 while (*bndsp != *bnds_tailp1);
5602
5603 av_set_clear (&av_vliw);
5604 if (!last_insn_was_debug)
5605 scheduled_insns++;
5606
5607 /* We currently support information about candidate blocks only for
5608 one 'target_bb' block. Hence we can't schedule after jump insn,
5609 as this will bring two boundaries and, hence, necessity to handle
5610 information for two or more blocks concurrently. */
5611 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5612 || (was_stall
5613 && (was_stall >= max_stall
5614 || scheduled_insns >= max_insns)))
5615 break;
5616 }
5617 while (bnds);
5618
5619 gcc_assert (!FENCE_BNDS (fence));
5620
5621 /* Update boundaries of the FENCE. */
5622 while (bnds)
5623 {
5624 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5625
5626 if (ptr)
5627 {
5628 insn = ILIST_INSN (ptr);
5629
5630 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5631 ilist_add (&FENCE_BNDS (fence), insn);
5632 }
5633
5634 blist_remove (&bnds);
5635 }
5636
5637 /* Update target context on the fence. */
5638 reset_target_context (FENCE_TC (fence), false);
5639 }
5640
5641 /* All exprs in ORIG_OPS must have the same destination register or memory.
5642 Return that destination. */
5643 static rtx
5644 get_dest_from_orig_ops (av_set_t orig_ops)
5645 {
5646 rtx dest = NULL_RTX;
5647 av_set_iterator av_it;
5648 expr_t expr;
5649 bool first_p = true;
5650
5651 FOR_EACH_EXPR (expr, av_it, orig_ops)
5652 {
5653 rtx x = EXPR_LHS (expr);
5654
5655 if (first_p)
5656 {
5657 first_p = false;
5658 dest = x;
5659 }
5660 else
5661 gcc_assert (dest == x
5662 || (dest != NULL_RTX && x != NULL_RTX
5663 && rtx_equal_p (dest, x)));
5664 }
5665
5666 return dest;
5667 }
5668
5669 /* Update data sets for the bookkeeping block and record those expressions
5670 which become no longer available after inserting this bookkeeping. */
5671 static void
5672 update_and_record_unavailable_insns (basic_block book_block)
5673 {
5674 av_set_iterator i;
5675 av_set_t old_av_set = NULL;
5676 expr_t cur_expr;
5677 rtx_insn *bb_end = sel_bb_end (book_block);
5678
5679 /* First, get correct liveness in the bookkeeping block. The problem is
5680 the range between the bookeeping insn and the end of block. */
5681 update_liveness_on_insn (bb_end);
5682 if (control_flow_insn_p (bb_end))
5683 update_liveness_on_insn (PREV_INSN (bb_end));
5684
5685 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5686 fence above, where we may choose to schedule an insn which is
5687 actually blocked from moving up with the bookkeeping we create here. */
5688 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5689 {
5690 old_av_set = av_set_copy (BB_AV_SET (book_block));
5691 update_data_sets (sel_bb_head (book_block));
5692
5693 /* Traverse all the expressions in the old av_set and check whether
5694 CUR_EXPR is in new AV_SET. */
5695 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5696 {
5697 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5698 EXPR_VINSN (cur_expr));
5699
5700 if (! new_expr
5701 /* In this case, we can just turn off the E_T_A bit, but we can't
5702 represent this information with the current vector. */
5703 || EXPR_TARGET_AVAILABLE (new_expr)
5704 != EXPR_TARGET_AVAILABLE (cur_expr))
5705 /* Unfortunately, the below code could be also fired up on
5706 separable insns, e.g. when moving insns through the new
5707 speculation check as in PR 53701. */
5708 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5709 }
5710
5711 av_set_clear (&old_av_set);
5712 }
5713 }
5714
5715 /* The main effect of this function is that sparams->c_expr is merged
5716 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5717 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5718 lparams->c_expr_merged is copied back to sparams->c_expr after all
5719 successors has been traversed. lparams->c_expr_local is an expr allocated
5720 on stack in the caller function, and is used if there is more than one
5721 successor.
5722
5723 SUCC is one of the SUCCS_NORMAL successors of INSN,
5724 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5725 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5726 static void
5727 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5728 insn_t succ ATTRIBUTE_UNUSED,
5729 int moveop_drv_call_res,
5730 cmpd_local_params_p lparams, void *static_params)
5731 {
5732 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5733
5734 /* Nothing to do, if original expr wasn't found below. */
5735 if (moveop_drv_call_res != 1)
5736 return;
5737
5738 /* If this is a first successor. */
5739 if (!lparams->c_expr_merged)
5740 {
5741 lparams->c_expr_merged = sparams->c_expr;
5742 sparams->c_expr = lparams->c_expr_local;
5743 }
5744 else
5745 {
5746 /* We must merge all found expressions to get reasonable
5747 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5748 do so then we can first find the expr with epsilon
5749 speculation success probability and only then with the
5750 good probability. As a result the insn will get epsilon
5751 probability and will never be scheduled because of
5752 weakness_cutoff in find_best_expr.
5753
5754 We call merge_expr_data here instead of merge_expr
5755 because due to speculation C_EXPR and X may have the
5756 same insns with different speculation types. And as of
5757 now such insns are considered non-equal.
5758
5759 However, EXPR_SCHED_TIMES is different -- we must get
5760 SCHED_TIMES from a real insn, not a bookkeeping copy.
5761 We force this here. Instead, we may consider merging
5762 SCHED_TIMES to the maximum instead of minimum in the
5763 below function. */
5764 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5765
5766 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5767 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5768 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5769
5770 clear_expr (sparams->c_expr);
5771 }
5772 }
5773
5774 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5775
5776 SUCC is one of the SUCCS_NORMAL successors of INSN,
5777 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5778 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5779 STATIC_PARAMS contain USED_REGS set. */
5780 static void
5781 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5782 int moveop_drv_call_res,
5783 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5784 void *static_params)
5785 {
5786 regset succ_live;
5787 fur_static_params_p sparams = (fur_static_params_p) static_params;
5788
5789 /* Here we compute live regsets only for branches that do not lie
5790 on the code motion paths. These branches correspond to value
5791 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5792 for such branches code_motion_path_driver is not called. */
5793 if (moveop_drv_call_res != 0)
5794 return;
5795
5796 /* Mark all registers that do not meet the following condition:
5797 (3) not live on the other path of any conditional branch
5798 that is passed by the operation, in case original
5799 operations are not present on both paths of the
5800 conditional branch. */
5801 succ_live = compute_live (succ);
5802 IOR_REG_SET (sparams->used_regs, succ_live);
5803 }
5804
5805 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5806 into SP->CEXPR. */
5807 static void
5808 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5809 {
5810 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5811
5812 sp->c_expr = lp->c_expr_merged;
5813 }
5814
5815 /* Track bookkeeping copies created, insns scheduled, and blocks for
5816 rescheduling when INSN is found by move_op. */
5817 static void
5818 track_scheduled_insns_and_blocks (rtx_insn *insn)
5819 {
5820 /* Even if this insn can be a copy that will be removed during current move_op,
5821 we still need to count it as an originator. */
5822 bitmap_set_bit (current_originators, INSN_UID (insn));
5823
5824 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5825 {
5826 /* Note that original block needs to be rescheduled, as we pulled an
5827 instruction out of it. */
5828 if (INSN_SCHED_TIMES (insn) > 0)
5829 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5830 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5831 num_insns_scheduled++;
5832 }
5833
5834 /* For instructions we must immediately remove insn from the
5835 stream, so subsequent update_data_sets () won't include this
5836 insn into av_set.
5837 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5838 if (INSN_UID (insn) > max_uid_before_move_op)
5839 stat_bookkeeping_copies--;
5840 }
5841
5842 /* Emit a register-register copy for INSN if needed. Return true if
5843 emitted one. PARAMS is the move_op static parameters. */
5844 static bool
5845 maybe_emit_renaming_copy (rtx_insn *insn,
5846 moveop_static_params_p params)
5847 {
5848 bool insn_emitted = false;
5849 rtx cur_reg;
5850
5851 /* Bail out early when expression cannot be renamed at all. */
5852 if (!EXPR_SEPARABLE_P (params->c_expr))
5853 return false;
5854
5855 cur_reg = expr_dest_reg (params->c_expr);
5856 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5857
5858 /* If original operation has expr and the register chosen for
5859 that expr is not original operation's dest reg, substitute
5860 operation's right hand side with the register chosen. */
5861 if (REGNO (params->dest) != REGNO (cur_reg))
5862 {
5863 insn_t reg_move_insn, reg_move_insn_rtx;
5864
5865 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5866 params->dest);
5867 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5868 INSN_EXPR (insn),
5869 INSN_SEQNO (insn),
5870 insn);
5871 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5872 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5873
5874 insn_emitted = true;
5875 params->was_renamed = true;
5876 }
5877
5878 return insn_emitted;
5879 }
5880
5881 /* Emit a speculative check for INSN speculated as EXPR if needed.
5882 Return true if we've emitted one. PARAMS is the move_op static
5883 parameters. */
5884 static bool
5885 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5886 moveop_static_params_p params)
5887 {
5888 bool insn_emitted = false;
5889 insn_t x;
5890 ds_t check_ds;
5891
5892 check_ds = get_spec_check_type_for_insn (insn, expr);
5893 if (check_ds != 0)
5894 {
5895 /* A speculation check should be inserted. */
5896 x = create_speculation_check (params->c_expr, check_ds, insn);
5897 insn_emitted = true;
5898 }
5899 else
5900 {
5901 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5902 x = insn;
5903 }
5904
5905 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5906 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5907 return insn_emitted;
5908 }
5909
5910 /* Handle transformations that leave an insn in place of original
5911 insn such as renaming/speculation. Return true if one of such
5912 transformations actually happened, and we have emitted this insn. */
5913 static bool
5914 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5915 moveop_static_params_p params)
5916 {
5917 bool insn_emitted = false;
5918
5919 insn_emitted = maybe_emit_renaming_copy (insn, params);
5920 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5921
5922 return insn_emitted;
5923 }
5924
5925 /* If INSN is the only insn in the basic block (not counting JUMP,
5926 which may be a jump to next insn, and DEBUG_INSNs), we want to
5927 leave a NOP there till the return to fill_insns. */
5928
5929 static bool
5930 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5931 {
5932 insn_t bb_head, bb_end, bb_next, in_next;
5933 basic_block bb = BLOCK_FOR_INSN (insn);
5934
5935 bb_head = sel_bb_head (bb);
5936 bb_end = sel_bb_end (bb);
5937
5938 if (bb_head == bb_end)
5939 return true;
5940
5941 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5942 bb_head = NEXT_INSN (bb_head);
5943
5944 if (bb_head == bb_end)
5945 return true;
5946
5947 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5948 bb_end = PREV_INSN (bb_end);
5949
5950 if (bb_head == bb_end)
5951 return true;
5952
5953 bb_next = NEXT_INSN (bb_head);
5954 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5955 bb_next = NEXT_INSN (bb_next);
5956
5957 if (bb_next == bb_end && JUMP_P (bb_end))
5958 return true;
5959
5960 in_next = NEXT_INSN (insn);
5961 while (DEBUG_INSN_P (in_next))
5962 in_next = NEXT_INSN (in_next);
5963
5964 if (IN_CURRENT_FENCE_P (in_next))
5965 return true;
5966
5967 return false;
5968 }
5969
5970 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5971 is not removed but reused when INSN is re-emitted. */
5972 static void
5973 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5974 {
5975 /* If there's only one insn in the BB, make sure that a nop is
5976 inserted into it, so the basic block won't disappear when we'll
5977 delete INSN below with sel_remove_insn. It should also survive
5978 till the return to fill_insns. */
5979 if (need_nop_to_preserve_insn_bb (insn))
5980 {
5981 insn_t nop = get_nop_from_pool (insn);
5982 gcc_assert (INSN_NOP_P (nop));
5983 vec_temp_moveop_nops.safe_push (nop);
5984 }
5985
5986 sel_remove_insn (insn, only_disconnect, false);
5987 }
5988
5989 /* This function is called when original expr is found.
5990 INSN - current insn traversed, EXPR - the corresponding expr found.
5991 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5992 is static parameters of move_op. */
5993 static void
5994 move_op_orig_expr_found (insn_t insn, expr_t expr,
5995 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5996 void *static_params)
5997 {
5998 bool only_disconnect;
5999 moveop_static_params_p params = (moveop_static_params_p) static_params;
6000
6001 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6002 track_scheduled_insns_and_blocks (insn);
6003 handle_emitting_transformations (insn, expr, params);
6004 only_disconnect = params->uid == INSN_UID (insn);
6005
6006 /* Mark that we've disconnected an insn. */
6007 if (only_disconnect)
6008 params->uid = -1;
6009 remove_insn_from_stream (insn, only_disconnect);
6010 }
6011
6012 /* The function is called when original expr is found.
6013 INSN - current insn traversed, EXPR - the corresponding expr found,
6014 crosses_call and original_insns in STATIC_PARAMS are updated. */
6015 static void
6016 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6017 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6018 void *static_params)
6019 {
6020 fur_static_params_p params = (fur_static_params_p) static_params;
6021 regset tmp;
6022
6023 if (CALL_P (insn))
6024 params->crosses_call = true;
6025
6026 def_list_add (params->original_insns, insn, params->crosses_call);
6027
6028 /* Mark the registers that do not meet the following condition:
6029 (2) not among the live registers of the point
6030 immediately following the first original operation on
6031 a given downward path, except for the original target
6032 register of the operation. */
6033 tmp = get_clear_regset_from_pool ();
6034 compute_live_below_insn (insn, tmp);
6035 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6036 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6037 IOR_REG_SET (params->used_regs, tmp);
6038 return_regset_to_pool (tmp);
6039
6040 /* (*1) We need to add to USED_REGS registers that are read by
6041 INSN's lhs. This may lead to choosing wrong src register.
6042 E.g. (scheduling const expr enabled):
6043
6044 429: ax=0x0 <- Can't use AX for this expr (0x0)
6045 433: dx=[bp-0x18]
6046 427: [ax+dx+0x1]=ax
6047 REG_DEAD: ax
6048 168: di=dx
6049 REG_DEAD: dx
6050 */
6051 /* FIXME: see comment above and enable MEM_P
6052 in vinsn_separable_p. */
6053 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6054 || !MEM_P (INSN_LHS (insn)));
6055 }
6056
6057 /* This function is called on the ascending pass, before returning from
6058 current basic block. */
6059 static void
6060 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6061 void *static_params)
6062 {
6063 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6064 basic_block book_block = NULL;
6065
6066 /* When we have removed the boundary insn for scheduling, which also
6067 happened to be the end insn in its bb, we don't need to update sets. */
6068 if (!lparams->removed_last_insn
6069 && lparams->e1
6070 && sel_bb_head_p (insn))
6071 {
6072 /* We should generate bookkeeping code only if we are not at the
6073 top level of the move_op. */
6074 if (sel_num_cfg_preds_gt_1 (insn))
6075 book_block = generate_bookkeeping_insn (sparams->c_expr,
6076 lparams->e1, lparams->e2);
6077 /* Update data sets for the current insn. */
6078 update_data_sets (insn);
6079 }
6080
6081 /* If bookkeeping code was inserted, we need to update av sets of basic
6082 block that received bookkeeping. After generation of bookkeeping insn,
6083 bookkeeping block does not contain valid av set because we are not following
6084 the original algorithm in every detail with regards to e.g. renaming
6085 simple reg-reg copies. Consider example:
6086
6087 bookkeeping block scheduling fence
6088 \ /
6089 \ join /
6090 ----------
6091 | |
6092 ----------
6093 / \
6094 / \
6095 r1 := r2 r1 := r3
6096
6097 We try to schedule insn "r1 := r3" on the current
6098 scheduling fence. Also, note that av set of bookkeeping block
6099 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6100 been scheduled, the CFG is as follows:
6101
6102 r1 := r3 r1 := r3
6103 bookkeeping block scheduling fence
6104 \ /
6105 \ join /
6106 ----------
6107 | |
6108 ----------
6109 / \
6110 / \
6111 r1 := r2
6112
6113 Here, insn "r1 := r3" was scheduled at the current scheduling point
6114 and bookkeeping code was generated at the bookeeping block. This
6115 way insn "r1 := r2" is no longer available as a whole instruction
6116 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6117 This situation is handled by calling update_data_sets.
6118
6119 Since update_data_sets is called only on the bookkeeping block, and
6120 it also may have predecessors with av_sets, containing instructions that
6121 are no longer available, we save all such expressions that become
6122 unavailable during data sets update on the bookkeeping block in
6123 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6124 expressions for scheduling. This allows us to avoid recomputation of
6125 av_sets outside the code motion path. */
6126
6127 if (book_block)
6128 update_and_record_unavailable_insns (book_block);
6129
6130 /* If INSN was previously marked for deletion, it's time to do it. */
6131 if (lparams->removed_last_insn)
6132 insn = PREV_INSN (insn);
6133
6134 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6135 kill a block with a single nop in which the insn should be emitted. */
6136 if (lparams->e1)
6137 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6138 }
6139
6140 /* This function is called on the ascending pass, before returning from the
6141 current basic block. */
6142 static void
6143 fur_at_first_insn (insn_t insn,
6144 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6145 void *static_params ATTRIBUTE_UNUSED)
6146 {
6147 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6148 || AV_LEVEL (insn) == -1);
6149 }
6150
6151 /* Called on the backward stage of recursion to call moveup_expr for insn
6152 and sparams->c_expr. */
6153 static void
6154 move_op_ascend (insn_t insn, void *static_params)
6155 {
6156 enum MOVEUP_EXPR_CODE res;
6157 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6158
6159 if (! INSN_NOP_P (insn))
6160 {
6161 res = moveup_expr_cached (sparams->c_expr, insn, false);
6162 gcc_assert (res != MOVEUP_EXPR_NULL);
6163 }
6164
6165 /* Update liveness for this insn as it was invalidated. */
6166 update_liveness_on_insn (insn);
6167 }
6168
6169 /* This function is called on enter to the basic block.
6170 Returns TRUE if this block already have been visited and
6171 code_motion_path_driver should return 1, FALSE otherwise. */
6172 static int
6173 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6174 void *static_params, bool visited_p)
6175 {
6176 fur_static_params_p sparams = (fur_static_params_p) static_params;
6177
6178 if (visited_p)
6179 {
6180 /* If we have found something below this block, there should be at
6181 least one insn in ORIGINAL_INSNS. */
6182 gcc_assert (*sparams->original_insns);
6183
6184 /* Adjust CROSSES_CALL, since we may have come to this block along
6185 different path. */
6186 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6187 |= sparams->crosses_call;
6188 }
6189 else
6190 local_params->old_original_insns = *sparams->original_insns;
6191
6192 return 1;
6193 }
6194
6195 /* Same as above but for move_op. */
6196 static int
6197 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6198 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6199 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6200 {
6201 if (visited_p)
6202 return -1;
6203 return 1;
6204 }
6205
6206 /* This function is called while descending current basic block if current
6207 insn is not the original EXPR we're searching for.
6208
6209 Return value: FALSE, if code_motion_path_driver should perform a local
6210 cleanup and return 0 itself;
6211 TRUE, if code_motion_path_driver should continue. */
6212 static bool
6213 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6214 void *static_params)
6215 {
6216 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6217
6218 sparams->failed_insn = insn;
6219
6220 /* If we're scheduling separate expr, in order to generate correct code
6221 we need to stop the search at bookkeeping code generated with the
6222 same destination register or memory. */
6223 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6224 return false;
6225 return true;
6226 }
6227
6228 /* This function is called while descending current basic block if current
6229 insn is not the original EXPR we're searching for.
6230
6231 Return value: TRUE (code_motion_path_driver should continue). */
6232 static bool
6233 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6234 {
6235 bool mutexed;
6236 expr_t r;
6237 av_set_iterator avi;
6238 fur_static_params_p sparams = (fur_static_params_p) static_params;
6239
6240 if (CALL_P (insn))
6241 sparams->crosses_call = true;
6242 else if (DEBUG_INSN_P (insn))
6243 return true;
6244
6245 /* If current insn we are looking at cannot be executed together
6246 with original insn, then we can skip it safely.
6247
6248 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6249 INSN = (!p6) r14 = r14 + 1;
6250
6251 Here we can schedule ORIG_OP with lhs = r14, though only
6252 looking at the set of used and set registers of INSN we must
6253 forbid it. So, add set/used in INSN registers to the
6254 untouchable set only if there is an insn in ORIG_OPS that can
6255 affect INSN. */
6256 mutexed = true;
6257 FOR_EACH_EXPR (r, avi, orig_ops)
6258 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6259 {
6260 mutexed = false;
6261 break;
6262 }
6263
6264 /* Mark all registers that do not meet the following condition:
6265 (1) Not set or read on any path from xi to an instance of the
6266 original operation. */
6267 if (!mutexed)
6268 {
6269 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6270 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6271 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6272 }
6273
6274 return true;
6275 }
6276
6277 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6278 struct code_motion_path_driver_info_def move_op_hooks = {
6279 move_op_on_enter,
6280 move_op_orig_expr_found,
6281 move_op_orig_expr_not_found,
6282 move_op_merge_succs,
6283 move_op_after_merge_succs,
6284 move_op_ascend,
6285 move_op_at_first_insn,
6286 SUCCS_NORMAL,
6287 "move_op"
6288 };
6289
6290 /* Hooks and data to perform find_used_regs operations
6291 with code_motion_path_driver. */
6292 struct code_motion_path_driver_info_def fur_hooks = {
6293 fur_on_enter,
6294 fur_orig_expr_found,
6295 fur_orig_expr_not_found,
6296 fur_merge_succs,
6297 NULL, /* fur_after_merge_succs */
6298 NULL, /* fur_ascend */
6299 fur_at_first_insn,
6300 SUCCS_ALL,
6301 "find_used_regs"
6302 };
6303
6304 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6305 code_motion_path_driver is called recursively. Original operation
6306 was found at least on one path that is starting with one of INSN's
6307 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6308 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6309 of either move_op or find_used_regs depending on the caller.
6310
6311 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6312 know for sure at this point. */
6313 static int
6314 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6315 ilist_t path, void *static_params)
6316 {
6317 int res = 0;
6318 succ_iterator succ_i;
6319 insn_t succ;
6320 basic_block bb;
6321 int old_index;
6322 unsigned old_succs;
6323
6324 struct cmpd_local_params lparams;
6325 expr_def _x;
6326
6327 lparams.c_expr_local = &_x;
6328 lparams.c_expr_merged = NULL;
6329
6330 /* We need to process only NORMAL succs for move_op, and collect live
6331 registers from ALL branches (including those leading out of the
6332 region) for find_used_regs.
6333
6334 In move_op, there can be a case when insn's bb number has changed
6335 due to created bookkeeping. This happens very rare, as we need to
6336 move expression from the beginning to the end of the same block.
6337 Rescan successors in this case. */
6338
6339 rescan:
6340 bb = BLOCK_FOR_INSN (insn);
6341 old_index = bb->index;
6342 old_succs = EDGE_COUNT (bb->succs);
6343
6344 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6345 {
6346 int b;
6347
6348 lparams.e1 = succ_i.e1;
6349 lparams.e2 = succ_i.e2;
6350
6351 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6352 current region). */
6353 if (succ_i.current_flags == SUCCS_NORMAL)
6354 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6355 static_params);
6356 else
6357 b = 0;
6358
6359 /* Merge c_expres found or unify live register sets from different
6360 successors. */
6361 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6362 static_params);
6363 if (b == 1)
6364 res = b;
6365 else if (b == -1 && res != 1)
6366 res = b;
6367
6368 /* We have simplified the control flow below this point. In this case,
6369 the iterator becomes invalid. We need to try again.
6370 If we have removed the insn itself, it could be only an
6371 unconditional jump. Thus, do not rescan but break immediately --
6372 we have already visited the only successor block. */
6373 if (!BLOCK_FOR_INSN (insn))
6374 {
6375 if (sched_verbose >= 6)
6376 sel_print ("Not doing rescan: already visited the only successor"
6377 " of block %d\n", old_index);
6378 break;
6379 }
6380 if (BLOCK_FOR_INSN (insn)->index != old_index
6381 || EDGE_COUNT (bb->succs) != old_succs)
6382 {
6383 if (sched_verbose >= 6)
6384 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6385 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6386 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6387 goto rescan;
6388 }
6389 }
6390
6391 /* Here, RES==1 if original expr was found at least for one of the
6392 successors. After the loop, RES may happen to have zero value
6393 only if at some point the expr searched is present in av_set, but is
6394 not found below. In most cases, this situation is an error.
6395 The exception is when the original operation is blocked by
6396 bookkeeping generated for another fence or for another path in current
6397 move_op. */
6398 gcc_checking_assert (res == 1
6399 || (res == 0
6400 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops, static_params))
6401 || res == -1);
6402
6403 /* Merge data, clean up, etc. */
6404 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6405 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6406
6407 return res;
6408 }
6409
6410
6411 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6412 is the pointer to the av set with expressions we were looking for,
6413 PATH_P is the pointer to the traversed path. */
6414 static inline void
6415 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6416 {
6417 ilist_remove (path_p);
6418 av_set_clear (orig_ops_p);
6419 }
6420
6421 /* The driver function that implements move_op or find_used_regs
6422 functionality dependent whether code_motion_path_driver_INFO is set to
6423 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6424 of code (CFG traversal etc) that are shared among both functions. INSN
6425 is the insn we're starting the search from, ORIG_OPS are the expressions
6426 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6427 parameters of the driver, and STATIC_PARAMS are static parameters of
6428 the caller.
6429
6430 Returns whether original instructions were found. Note that top-level
6431 code_motion_path_driver always returns true. */
6432 static int
6433 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6434 cmpd_local_params_p local_params_in,
6435 void *static_params)
6436 {
6437 expr_t expr = NULL;
6438 basic_block bb = BLOCK_FOR_INSN (insn);
6439 insn_t first_insn, original_insn, bb_tail, before_first;
6440 bool removed_last_insn = false;
6441
6442 if (sched_verbose >= 6)
6443 {
6444 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6445 dump_insn (insn);
6446 sel_print (",");
6447 dump_av_set (orig_ops);
6448 sel_print (")\n");
6449 }
6450
6451 gcc_assert (orig_ops);
6452
6453 /* If no original operations exist below this insn, return immediately. */
6454 if (is_ineligible_successor (insn, path))
6455 {
6456 if (sched_verbose >= 6)
6457 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6458 return false;
6459 }
6460
6461 /* The block can have invalid av set, in which case it was created earlier
6462 during move_op. Return immediately. */
6463 if (sel_bb_head_p (insn))
6464 {
6465 if (! AV_SET_VALID_P (insn))
6466 {
6467 if (sched_verbose >= 6)
6468 sel_print ("Returned from block %d as it had invalid av set\n",
6469 bb->index);
6470 return false;
6471 }
6472
6473 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6474 {
6475 /* We have already found an original operation on this branch, do not
6476 go any further and just return TRUE here. If we don't stop here,
6477 function can have exponential behavior even on the small code
6478 with many different paths (e.g. with data speculation and
6479 recovery blocks). */
6480 if (sched_verbose >= 6)
6481 sel_print ("Block %d already visited in this traversal\n", bb->index);
6482 if (code_motion_path_driver_info->on_enter)
6483 return code_motion_path_driver_info->on_enter (insn,
6484 local_params_in,
6485 static_params,
6486 true);
6487 }
6488 }
6489
6490 if (code_motion_path_driver_info->on_enter)
6491 code_motion_path_driver_info->on_enter (insn, local_params_in,
6492 static_params, false);
6493 orig_ops = av_set_copy (orig_ops);
6494
6495 /* Filter the orig_ops set. */
6496 if (AV_SET_VALID_P (insn))
6497 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6498
6499 /* If no more original ops, return immediately. */
6500 if (!orig_ops)
6501 {
6502 if (sched_verbose >= 6)
6503 sel_print ("No intersection with av set of block %d\n", bb->index);
6504 return false;
6505 }
6506
6507 /* For non-speculative insns we have to leave only one form of the
6508 original operation, because if we don't, we may end up with
6509 different C_EXPRes and, consequently, with bookkeepings for different
6510 expression forms along the same code motion path. That may lead to
6511 generation of incorrect code. So for each code motion we stick to
6512 the single form of the instruction, except for speculative insns
6513 which we need to keep in different forms with all speculation
6514 types. */
6515 av_set_leave_one_nonspec (&orig_ops);
6516
6517 /* It is not possible that all ORIG_OPS are filtered out. */
6518 gcc_assert (orig_ops);
6519
6520 /* It is enough to place only heads and tails of visited basic blocks into
6521 the PATH. */
6522 ilist_add (&path, insn);
6523 first_insn = original_insn = insn;
6524 bb_tail = sel_bb_end (bb);
6525
6526 /* Descend the basic block in search of the original expr; this part
6527 corresponds to the part of the original move_op procedure executed
6528 before the recursive call. */
6529 for (;;)
6530 {
6531 /* Look at the insn and decide if it could be an ancestor of currently
6532 scheduling operation. If it is so, then the insn "dest = op" could
6533 either be replaced with "dest = reg", because REG now holds the result
6534 of OP, or just removed, if we've scheduled the insn as a whole.
6535
6536 If this insn doesn't contain currently scheduling OP, then proceed
6537 with searching and look at its successors. Operations we're searching
6538 for could have changed when moving up through this insn via
6539 substituting. In this case, perform unsubstitution on them first.
6540
6541 When traversing the DAG below this insn is finished, insert
6542 bookkeeping code, if the insn is a joint point, and remove
6543 leftovers. */
6544
6545 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6546 if (expr)
6547 {
6548 insn_t last_insn = PREV_INSN (insn);
6549
6550 /* We have found the original operation. */
6551 if (sched_verbose >= 6)
6552 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6553
6554 code_motion_path_driver_info->orig_expr_found
6555 (insn, expr, local_params_in, static_params);
6556
6557 /* Step back, so on the way back we'll start traversing from the
6558 previous insn (or we'll see that it's bb_note and skip that
6559 loop). */
6560 if (insn == first_insn)
6561 {
6562 first_insn = NEXT_INSN (last_insn);
6563 removed_last_insn = sel_bb_end_p (last_insn);
6564 }
6565 insn = last_insn;
6566 break;
6567 }
6568 else
6569 {
6570 /* We haven't found the original expr, continue descending the basic
6571 block. */
6572 if (code_motion_path_driver_info->orig_expr_not_found
6573 (insn, orig_ops, static_params))
6574 {
6575 /* Av set ops could have been changed when moving through this
6576 insn. To find them below it, we have to un-substitute them. */
6577 undo_transformations (&orig_ops, insn);
6578 }
6579 else
6580 {
6581 /* Clean up and return, if the hook tells us to do so. It may
6582 happen if we've encountered the previously created
6583 bookkeeping. */
6584 code_motion_path_driver_cleanup (&orig_ops, &path);
6585 return -1;
6586 }
6587
6588 gcc_assert (orig_ops);
6589 }
6590
6591 /* Stop at insn if we got to the end of BB. */
6592 if (insn == bb_tail)
6593 break;
6594
6595 insn = NEXT_INSN (insn);
6596 }
6597
6598 /* Here INSN either points to the insn before the original insn (may be
6599 bb_note, if original insn was a bb_head) or to the bb_end. */
6600 if (!expr)
6601 {
6602 int res;
6603 rtx_insn *last_insn = PREV_INSN (insn);
6604 bool added_to_path;
6605
6606 gcc_assert (insn == sel_bb_end (bb));
6607
6608 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6609 it's already in PATH then). */
6610 if (insn != first_insn)
6611 {
6612 ilist_add (&path, insn);
6613 added_to_path = true;
6614 }
6615 else
6616 added_to_path = false;
6617
6618 /* Process_successors should be able to find at least one
6619 successor for which code_motion_path_driver returns TRUE. */
6620 res = code_motion_process_successors (insn, orig_ops,
6621 path, static_params);
6622
6623 /* Jump in the end of basic block could have been removed or replaced
6624 during code_motion_process_successors, so recompute insn as the
6625 last insn in bb. */
6626 if (NEXT_INSN (last_insn) != insn)
6627 {
6628 insn = sel_bb_end (bb);
6629 first_insn = sel_bb_head (bb);
6630 if (first_insn != original_insn)
6631 first_insn = original_insn;
6632 }
6633
6634 /* Remove bb tail from path. */
6635 if (added_to_path)
6636 ilist_remove (&path);
6637
6638 if (res != 1)
6639 {
6640 /* This is the case when one of the original expr is no longer available
6641 due to bookkeeping created on this branch with the same register.
6642 In the original algorithm, which doesn't have update_data_sets call
6643 on a bookkeeping block, it would simply result in returning
6644 FALSE when we've encountered a previously generated bookkeeping
6645 insn in moveop_orig_expr_not_found. */
6646 code_motion_path_driver_cleanup (&orig_ops, &path);
6647 return res;
6648 }
6649 }
6650
6651 /* Don't need it any more. */
6652 av_set_clear (&orig_ops);
6653
6654 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6655 the beginning of the basic block. */
6656 before_first = PREV_INSN (first_insn);
6657 while (insn != before_first)
6658 {
6659 if (code_motion_path_driver_info->ascend)
6660 code_motion_path_driver_info->ascend (insn, static_params);
6661
6662 insn = PREV_INSN (insn);
6663 }
6664
6665 /* Now we're at the bb head. */
6666 insn = first_insn;
6667 ilist_remove (&path);
6668 local_params_in->removed_last_insn = removed_last_insn;
6669 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6670
6671 /* This should be the very last operation as at bb head we could change
6672 the numbering by creating bookkeeping blocks. */
6673 if (removed_last_insn)
6674 insn = PREV_INSN (insn);
6675
6676 /* If we have simplified the control flow and removed the first jump insn,
6677 there's no point in marking this block in the visited blocks bitmap. */
6678 if (BLOCK_FOR_INSN (insn))
6679 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6680 return true;
6681 }
6682
6683 /* Move up the operations from ORIG_OPS set traversing the dag starting
6684 from INSN. PATH represents the edges traversed so far.
6685 DEST is the register chosen for scheduling the current expr. Insert
6686 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6687 C_EXPR is how it looks like at the given cfg point.
6688 Set *SHOULD_MOVE to indicate whether we have only disconnected
6689 one of the insns found.
6690
6691 Returns whether original instructions were found, which is asserted
6692 to be true in the caller. */
6693 static bool
6694 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6695 rtx dest, expr_t c_expr, bool *should_move)
6696 {
6697 struct moveop_static_params sparams;
6698 struct cmpd_local_params lparams;
6699 int res;
6700
6701 /* Init params for code_motion_path_driver. */
6702 sparams.dest = dest;
6703 sparams.c_expr = c_expr;
6704 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6705 sparams.failed_insn = NULL;
6706 sparams.was_renamed = false;
6707 lparams.e1 = NULL;
6708
6709 /* We haven't visited any blocks yet. */
6710 bitmap_clear (code_motion_visited_blocks);
6711
6712 /* Set appropriate hooks and data. */
6713 code_motion_path_driver_info = &move_op_hooks;
6714 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6715
6716 gcc_assert (res != -1);
6717
6718 if (sparams.was_renamed)
6719 EXPR_WAS_RENAMED (expr_vliw) = true;
6720
6721 *should_move = (sparams.uid == -1);
6722
6723 return res;
6724 }
6725 \f
6726
6727 /* Functions that work with regions. */
6728
6729 /* Current number of seqno used in init_seqno and init_seqno_1. */
6730 static int cur_seqno;
6731
6732 /* A helper for init_seqno. Traverse the region starting from BB and
6733 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6734 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6735 static void
6736 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6737 {
6738 int bbi = BLOCK_TO_BB (bb->index);
6739 insn_t insn;
6740 insn_t succ_insn;
6741 succ_iterator si;
6742
6743 rtx_note *note = bb_note (bb);
6744 bitmap_set_bit (visited_bbs, bbi);
6745 if (blocks_to_reschedule)
6746 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6747
6748 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6749 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6750 {
6751 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6752 int succ_bbi = BLOCK_TO_BB (succ->index);
6753
6754 gcc_assert (in_current_region_p (succ));
6755
6756 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6757 {
6758 gcc_assert (succ_bbi > bbi);
6759
6760 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6761 }
6762 else if (blocks_to_reschedule)
6763 bitmap_set_bit (forced_ebb_heads, succ->index);
6764 }
6765
6766 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6767 INSN_SEQNO (insn) = cur_seqno--;
6768 }
6769
6770 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6771 blocks on which we're rescheduling when pipelining, FROM is the block where
6772 traversing region begins (it may not be the head of the region when
6773 pipelining, but the head of the loop instead).
6774
6775 Returns the maximal seqno found. */
6776 static int
6777 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6778 {
6779 bitmap_iterator bi;
6780 unsigned bbi;
6781
6782 auto_sbitmap visited_bbs (current_nr_blocks);
6783
6784 if (blocks_to_reschedule)
6785 {
6786 bitmap_ones (visited_bbs);
6787 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6788 {
6789 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6790 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6791 }
6792 }
6793 else
6794 {
6795 bitmap_clear (visited_bbs);
6796 from = EBB_FIRST_BB (0);
6797 }
6798
6799 cur_seqno = sched_max_luid - 1;
6800 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6801
6802 /* cur_seqno may be positive if the number of instructions is less than
6803 sched_max_luid - 1 (when rescheduling or if some instructions have been
6804 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6805 gcc_assert (cur_seqno >= 0);
6806
6807 return sched_max_luid - 1;
6808 }
6809
6810 /* Initialize scheduling parameters for current region. */
6811 static void
6812 sel_setup_region_sched_flags (void)
6813 {
6814 enable_schedule_as_rhs_p = 1;
6815 bookkeeping_p = 1;
6816 pipelining_p = (bookkeeping_p
6817 && (flag_sel_sched_pipelining != 0)
6818 && current_loop_nest != NULL
6819 && loop_has_exit_edges (current_loop_nest));
6820 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6821 max_ws = MAX_WS;
6822 }
6823
6824 /* Return true if all basic blocks of current region are empty. */
6825 static bool
6826 current_region_empty_p (void)
6827 {
6828 int i;
6829 for (i = 0; i < current_nr_blocks; i++)
6830 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6831 return false;
6832
6833 return true;
6834 }
6835
6836 /* Prepare and verify loop nest for pipelining. */
6837 static void
6838 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6839 {
6840 current_loop_nest = get_loop_nest_for_rgn (rgn);
6841
6842 if (!current_loop_nest)
6843 return;
6844
6845 /* If this loop has any saved loop preheaders from nested loops,
6846 add these basic blocks to the current region. */
6847 sel_add_loop_preheaders (bbs);
6848
6849 /* Check that we're starting with a valid information. */
6850 gcc_assert (loop_latch_edge (current_loop_nest));
6851 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6852 }
6853
6854 /* Compute instruction priorities for current region. */
6855 static void
6856 sel_compute_priorities (int rgn)
6857 {
6858 sched_rgn_compute_dependencies (rgn);
6859
6860 /* Compute insn priorities in haifa style. Then free haifa style
6861 dependencies that we've calculated for this. */
6862 compute_priorities ();
6863
6864 if (sched_verbose >= 5)
6865 debug_rgn_dependencies (0);
6866
6867 free_rgn_deps ();
6868 }
6869
6870 /* Init scheduling data for RGN. Returns true when this region should not
6871 be scheduled. */
6872 static bool
6873 sel_region_init (int rgn)
6874 {
6875 int i;
6876 bb_vec_t bbs;
6877
6878 rgn_setup_region (rgn);
6879
6880 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6881 do region initialization here so the region can be bundled correctly,
6882 but we'll skip the scheduling in sel_sched_region (). */
6883 if (current_region_empty_p ())
6884 return true;
6885
6886 bbs.create (current_nr_blocks);
6887
6888 for (i = 0; i < current_nr_blocks; i++)
6889 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6890
6891 sel_init_bbs (bbs);
6892
6893 if (flag_sel_sched_pipelining)
6894 setup_current_loop_nest (rgn, &bbs);
6895
6896 sel_setup_region_sched_flags ();
6897
6898 /* Initialize luids and dependence analysis which both sel-sched and haifa
6899 need. */
6900 sched_init_luids (bbs);
6901 sched_deps_init (false);
6902
6903 /* Initialize haifa data. */
6904 rgn_setup_sched_infos ();
6905 sel_set_sched_flags ();
6906 haifa_init_h_i_d (bbs);
6907
6908 sel_compute_priorities (rgn);
6909 init_deps_global ();
6910
6911 /* Main initialization. */
6912 sel_setup_sched_infos ();
6913 sel_init_global_and_expr (bbs);
6914
6915 bbs.release ();
6916
6917 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6918
6919 /* Init correct liveness sets on each instruction of a single-block loop.
6920 This is the only situation when we can't update liveness when calling
6921 compute_live for the first insn of the loop. */
6922 if (current_loop_nest)
6923 {
6924 int header =
6925 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6926 ? 1
6927 : 0);
6928
6929 if (current_nr_blocks == header + 1)
6930 update_liveness_on_insn
6931 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6932 }
6933
6934 /* Set hooks so that no newly generated insn will go out unnoticed. */
6935 sel_register_cfg_hooks ();
6936
6937 /* !!! We call target.sched.init () for the whole region, but we invoke
6938 targetm.sched.finish () for every ebb. */
6939 if (targetm.sched.init)
6940 /* None of the arguments are actually used in any target. */
6941 targetm.sched.init (sched_dump, sched_verbose, -1);
6942
6943 first_emitted_uid = get_max_uid () + 1;
6944 preheader_removed = false;
6945
6946 /* Reset register allocation ticks array. */
6947 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6948 reg_rename_this_tick = 0;
6949
6950 forced_ebb_heads = BITMAP_ALLOC (NULL);
6951
6952 setup_nop_vinsn ();
6953 current_copies = BITMAP_ALLOC (NULL);
6954 current_originators = BITMAP_ALLOC (NULL);
6955 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6956
6957 return false;
6958 }
6959
6960 /* Simplify insns after the scheduling. */
6961 static void
6962 simplify_changed_insns (void)
6963 {
6964 int i;
6965
6966 for (i = 0; i < current_nr_blocks; i++)
6967 {
6968 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6969 rtx_insn *insn;
6970
6971 FOR_BB_INSNS (bb, insn)
6972 if (INSN_P (insn))
6973 {
6974 expr_t expr = INSN_EXPR (insn);
6975
6976 if (EXPR_WAS_SUBSTITUTED (expr))
6977 validate_simplify_insn (insn);
6978 }
6979 }
6980 }
6981
6982 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6983 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6984 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6985 static void
6986 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6987 {
6988 rtx_insn *head, *tail;
6989 basic_block bb1 = bb;
6990 if (sched_verbose >= 2)
6991 sel_print ("Finishing schedule in bbs: ");
6992
6993 do
6994 {
6995 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6996
6997 if (sched_verbose >= 2)
6998 sel_print ("%d; ", bb1->index);
6999 }
7000 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7001
7002 if (sched_verbose >= 2)
7003 sel_print ("\n");
7004
7005 get_ebb_head_tail (bb, bb1, &head, &tail);
7006
7007 current_sched_info->head = head;
7008 current_sched_info->tail = tail;
7009 current_sched_info->prev_head = PREV_INSN (head);
7010 current_sched_info->next_tail = NEXT_INSN (tail);
7011 }
7012
7013 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7014 static void
7015 reset_sched_cycles_in_current_ebb (void)
7016 {
7017 int last_clock = 0;
7018 int haifa_last_clock = -1;
7019 int haifa_clock = 0;
7020 int issued_insns = 0;
7021 insn_t insn;
7022
7023 if (targetm.sched.init)
7024 {
7025 /* None of the arguments are actually used in any target.
7026 NB: We should have md_reset () hook for cases like this. */
7027 targetm.sched.init (sched_dump, sched_verbose, -1);
7028 }
7029
7030 state_reset (curr_state);
7031 advance_state (curr_state);
7032
7033 for (insn = current_sched_info->head;
7034 insn != current_sched_info->next_tail;
7035 insn = NEXT_INSN (insn))
7036 {
7037 int cost, haifa_cost;
7038 int sort_p;
7039 bool asm_p, real_insn, after_stall, all_issued;
7040 int clock;
7041
7042 if (!INSN_P (insn))
7043 continue;
7044
7045 asm_p = false;
7046 real_insn = recog_memoized (insn) >= 0;
7047 clock = INSN_SCHED_CYCLE (insn);
7048
7049 cost = clock - last_clock;
7050
7051 /* Initialize HAIFA_COST. */
7052 if (! real_insn)
7053 {
7054 asm_p = INSN_ASM_P (insn);
7055
7056 if (asm_p)
7057 /* This is asm insn which *had* to be scheduled first
7058 on the cycle. */
7059 haifa_cost = 1;
7060 else
7061 /* This is a use/clobber insn. It should not change
7062 cost. */
7063 haifa_cost = 0;
7064 }
7065 else
7066 haifa_cost = estimate_insn_cost (insn, curr_state);
7067
7068 /* Stall for whatever cycles we've stalled before. */
7069 after_stall = 0;
7070 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7071 {
7072 haifa_cost = cost;
7073 after_stall = 1;
7074 }
7075 all_issued = issued_insns == issue_rate;
7076 if (haifa_cost == 0 && all_issued)
7077 haifa_cost = 1;
7078 if (haifa_cost > 0)
7079 {
7080 int i = 0;
7081
7082 while (haifa_cost--)
7083 {
7084 advance_state (curr_state);
7085 issued_insns = 0;
7086 i++;
7087
7088 if (sched_verbose >= 2)
7089 {
7090 sel_print ("advance_state (state_transition)\n");
7091 debug_state (curr_state);
7092 }
7093
7094 /* The DFA may report that e.g. insn requires 2 cycles to be
7095 issued, but on the next cycle it says that insn is ready
7096 to go. Check this here. */
7097 if (!after_stall
7098 && real_insn
7099 && haifa_cost > 0
7100 && estimate_insn_cost (insn, curr_state) == 0)
7101 break;
7102
7103 /* When the data dependency stall is longer than the DFA stall,
7104 and when we have issued exactly issue_rate insns and stalled,
7105 it could be that after this longer stall the insn will again
7106 become unavailable to the DFA restrictions. Looks strange
7107 but happens e.g. on x86-64. So recheck DFA on the last
7108 iteration. */
7109 if ((after_stall || all_issued)
7110 && real_insn
7111 && haifa_cost == 0)
7112 haifa_cost = estimate_insn_cost (insn, curr_state);
7113 }
7114
7115 haifa_clock += i;
7116 if (sched_verbose >= 2)
7117 sel_print ("haifa clock: %d\n", haifa_clock);
7118 }
7119 else
7120 gcc_assert (haifa_cost == 0);
7121
7122 if (sched_verbose >= 2)
7123 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7124
7125 if (targetm.sched.dfa_new_cycle)
7126 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7127 haifa_last_clock, haifa_clock,
7128 &sort_p))
7129 {
7130 advance_state (curr_state);
7131 issued_insns = 0;
7132 haifa_clock++;
7133 if (sched_verbose >= 2)
7134 {
7135 sel_print ("advance_state (dfa_new_cycle)\n");
7136 debug_state (curr_state);
7137 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7138 }
7139 }
7140
7141 if (real_insn)
7142 {
7143 static state_t temp = NULL;
7144
7145 if (!temp)
7146 temp = xmalloc (dfa_state_size);
7147 memcpy (temp, curr_state, dfa_state_size);
7148
7149 cost = state_transition (curr_state, insn);
7150 if (memcmp (temp, curr_state, dfa_state_size))
7151 issued_insns++;
7152
7153 if (sched_verbose >= 2)
7154 {
7155 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7156 haifa_clock + 1);
7157 debug_state (curr_state);
7158 }
7159 gcc_assert (cost < 0);
7160 }
7161
7162 if (targetm.sched.variable_issue)
7163 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7164
7165 INSN_SCHED_CYCLE (insn) = haifa_clock;
7166
7167 last_clock = clock;
7168 haifa_last_clock = haifa_clock;
7169 }
7170 }
7171
7172 /* Put TImode markers on insns starting a new issue group. */
7173 static void
7174 put_TImodes (void)
7175 {
7176 int last_clock = -1;
7177 insn_t insn;
7178
7179 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7180 insn = NEXT_INSN (insn))
7181 {
7182 int cost, clock;
7183
7184 if (!INSN_P (insn))
7185 continue;
7186
7187 clock = INSN_SCHED_CYCLE (insn);
7188 cost = (last_clock == -1) ? 1 : clock - last_clock;
7189
7190 gcc_assert (cost >= 0);
7191
7192 if (issue_rate > 1
7193 && GET_CODE (PATTERN (insn)) != USE
7194 && GET_CODE (PATTERN (insn)) != CLOBBER)
7195 {
7196 if (reload_completed && cost > 0)
7197 PUT_MODE (insn, TImode);
7198
7199 last_clock = clock;
7200 }
7201
7202 if (sched_verbose >= 2)
7203 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7204 }
7205 }
7206
7207 /* Perform MD_FINISH on EBBs comprising current region. When
7208 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7209 to produce correct sched cycles on insns. */
7210 static void
7211 sel_region_target_finish (bool reset_sched_cycles_p)
7212 {
7213 int i;
7214 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7215
7216 for (i = 0; i < current_nr_blocks; i++)
7217 {
7218 if (bitmap_bit_p (scheduled_blocks, i))
7219 continue;
7220
7221 /* While pipelining outer loops, skip bundling for loop
7222 preheaders. Those will be rescheduled in the outer loop. */
7223 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7224 continue;
7225
7226 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7227
7228 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7229 continue;
7230
7231 if (reset_sched_cycles_p)
7232 reset_sched_cycles_in_current_ebb ();
7233
7234 if (targetm.sched.init)
7235 targetm.sched.init (sched_dump, sched_verbose, -1);
7236
7237 put_TImodes ();
7238
7239 if (targetm.sched.finish)
7240 {
7241 targetm.sched.finish (sched_dump, sched_verbose);
7242
7243 /* Extend luids so that insns generated by the target will
7244 get zero luid. */
7245 sched_extend_luids ();
7246 }
7247 }
7248
7249 BITMAP_FREE (scheduled_blocks);
7250 }
7251
7252 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7253 is true, make an additional pass emulating scheduler to get correct insn
7254 cycles for md_finish calls. */
7255 static void
7256 sel_region_finish (bool reset_sched_cycles_p)
7257 {
7258 simplify_changed_insns ();
7259 sched_finish_ready_list ();
7260 free_nop_pool ();
7261
7262 /* Free the vectors. */
7263 vec_av_set.release ();
7264 BITMAP_FREE (current_copies);
7265 BITMAP_FREE (current_originators);
7266 BITMAP_FREE (code_motion_visited_blocks);
7267 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7268 vinsn_vec_free (vec_target_unavailable_vinsns);
7269
7270 /* If LV_SET of the region head should be updated, do it now because
7271 there will be no other chance. */
7272 {
7273 succ_iterator si;
7274 insn_t insn;
7275
7276 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7277 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7278 {
7279 basic_block bb = BLOCK_FOR_INSN (insn);
7280
7281 if (!BB_LV_SET_VALID_P (bb))
7282 compute_live (insn);
7283 }
7284 }
7285
7286 /* Emulate the Haifa scheduler for bundling. */
7287 if (reload_completed)
7288 sel_region_target_finish (reset_sched_cycles_p);
7289
7290 sel_finish_global_and_expr ();
7291
7292 BITMAP_FREE (forced_ebb_heads);
7293
7294 free_nop_vinsn ();
7295
7296 finish_deps_global ();
7297 sched_finish_luids ();
7298 h_d_i_d.release ();
7299
7300 sel_finish_bbs ();
7301 BITMAP_FREE (blocks_to_reschedule);
7302
7303 sel_unregister_cfg_hooks ();
7304
7305 max_issue_size = 0;
7306 }
7307 \f
7308
7309 /* Functions that implement the scheduler driver. */
7310
7311 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7312 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7313 of insns scheduled -- these would be postprocessed later. */
7314 static void
7315 schedule_on_fences (flist_t fences, int max_seqno,
7316 ilist_t **scheduled_insns_tailpp)
7317 {
7318 flist_t old_fences = fences;
7319
7320 if (sched_verbose >= 1)
7321 {
7322 sel_print ("\nScheduling on fences: ");
7323 dump_flist (fences);
7324 sel_print ("\n");
7325 }
7326
7327 scheduled_something_on_previous_fence = false;
7328 for (; fences; fences = FLIST_NEXT (fences))
7329 {
7330 fence_t fence = NULL;
7331 int seqno = 0;
7332 flist_t fences2;
7333 bool first_p = true;
7334
7335 /* Choose the next fence group to schedule.
7336 The fact that insn can be scheduled only once
7337 on the cycle is guaranteed by two properties:
7338 1. seqnos of parallel groups decrease with each iteration.
7339 2. If is_ineligible_successor () sees the larger seqno, it
7340 checks if candidate insn is_in_current_fence_p (). */
7341 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7342 {
7343 fence_t f = FLIST_FENCE (fences2);
7344
7345 if (!FENCE_PROCESSED_P (f))
7346 {
7347 int i = INSN_SEQNO (FENCE_INSN (f));
7348
7349 if (first_p || i > seqno)
7350 {
7351 seqno = i;
7352 fence = f;
7353 first_p = false;
7354 }
7355 else
7356 /* ??? Seqnos of different groups should be different. */
7357 gcc_assert (1 || i != seqno);
7358 }
7359 }
7360
7361 gcc_assert (fence);
7362
7363 /* As FENCE is nonnull, SEQNO is initialized. */
7364 seqno -= max_seqno + 1;
7365 fill_insns (fence, seqno, scheduled_insns_tailpp);
7366 FENCE_PROCESSED_P (fence) = true;
7367 }
7368
7369 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7370 don't need to keep bookkeeping-invalidated and target-unavailable
7371 vinsns any more. */
7372 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7373 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7374 }
7375
7376 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7377 static void
7378 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7379 {
7380 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7381
7382 /* The first element is already processed. */
7383 while ((fences = FLIST_NEXT (fences)))
7384 {
7385 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7386
7387 if (*min_seqno > seqno)
7388 *min_seqno = seqno;
7389 else if (*max_seqno < seqno)
7390 *max_seqno = seqno;
7391 }
7392 }
7393
7394 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7395 static flist_t
7396 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7397 {
7398 flist_t old_fences = fences;
7399 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7400 int max_time = 0;
7401
7402 flist_tail_init (new_fences);
7403 for (; fences; fences = FLIST_NEXT (fences))
7404 {
7405 fence_t fence = FLIST_FENCE (fences);
7406 insn_t insn;
7407
7408 if (!FENCE_BNDS (fence))
7409 {
7410 /* This fence doesn't have any successors. */
7411 if (!FENCE_SCHEDULED_P (fence))
7412 {
7413 /* Nothing was scheduled on this fence. */
7414 int seqno;
7415
7416 insn = FENCE_INSN (fence);
7417 seqno = INSN_SEQNO (insn);
7418 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7419
7420 if (sched_verbose >= 1)
7421 sel_print ("Fence %d[%d] has not changed\n",
7422 INSN_UID (insn),
7423 BLOCK_NUM (insn));
7424 move_fence_to_fences (fences, new_fences);
7425 }
7426 }
7427 else
7428 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7429 max_time = MAX (max_time, FENCE_CYCLE (fence));
7430 }
7431
7432 flist_clear (&old_fences);
7433 *ptime = max_time;
7434 return FLIST_TAIL_HEAD (new_fences);
7435 }
7436
7437 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7438 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7439 the highest seqno used in a region. Return the updated highest seqno. */
7440 static int
7441 update_seqnos_and_stage (int min_seqno, int max_seqno,
7442 int highest_seqno_in_use,
7443 ilist_t *pscheduled_insns)
7444 {
7445 int new_hs;
7446 ilist_iterator ii;
7447 insn_t insn;
7448
7449 /* Actually, new_hs is the seqno of the instruction, that was
7450 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7451 if (*pscheduled_insns)
7452 {
7453 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7454 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7455 gcc_assert (new_hs > highest_seqno_in_use);
7456 }
7457 else
7458 new_hs = highest_seqno_in_use;
7459
7460 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7461 {
7462 gcc_assert (INSN_SEQNO (insn) < 0);
7463 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7464 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7465
7466 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7467 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7468 require > 1GB of memory e.g. on limit-fnargs.c. */
7469 if (! pipelining_p)
7470 free_data_for_scheduled_insn (insn);
7471 }
7472
7473 ilist_clear (pscheduled_insns);
7474 global_level++;
7475
7476 return new_hs;
7477 }
7478
7479 /* The main driver for scheduling a region. This function is responsible
7480 for correct propagation of fences (i.e. scheduling points) and creating
7481 a group of parallel insns at each of them. It also supports
7482 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7483 of scheduling. */
7484 static void
7485 sel_sched_region_2 (int orig_max_seqno)
7486 {
7487 int highest_seqno_in_use = orig_max_seqno;
7488 int max_time = 0;
7489
7490 stat_bookkeeping_copies = 0;
7491 stat_insns_needed_bookkeeping = 0;
7492 stat_renamed_scheduled = 0;
7493 stat_substitutions_total = 0;
7494 num_insns_scheduled = 0;
7495
7496 while (fences)
7497 {
7498 int min_seqno, max_seqno;
7499 ilist_t scheduled_insns = NULL;
7500 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7501
7502 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7503 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7504 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7505 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7506 highest_seqno_in_use,
7507 &scheduled_insns);
7508 }
7509
7510 if (sched_verbose >= 1)
7511 {
7512 sel_print ("Total scheduling time: %d cycles\n", max_time);
7513 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7514 "bookkeeping, %d insns renamed, %d insns substituted\n",
7515 stat_bookkeeping_copies,
7516 stat_insns_needed_bookkeeping,
7517 stat_renamed_scheduled,
7518 stat_substitutions_total);
7519 }
7520 }
7521
7522 /* Schedule a region. When pipelining, search for possibly never scheduled
7523 bookkeeping code and schedule it. Reschedule pipelined code without
7524 pipelining after. */
7525 static void
7526 sel_sched_region_1 (void)
7527 {
7528 int orig_max_seqno;
7529
7530 /* Remove empty blocks that might be in the region from the beginning. */
7531 purge_empty_blocks ();
7532
7533 orig_max_seqno = init_seqno (NULL, NULL);
7534 gcc_assert (orig_max_seqno >= 1);
7535
7536 /* When pipelining outer loops, create fences on the loop header,
7537 not preheader. */
7538 fences = NULL;
7539 if (current_loop_nest)
7540 init_fences (BB_END (EBB_FIRST_BB (0)));
7541 else
7542 init_fences (bb_note (EBB_FIRST_BB (0)));
7543 global_level = 1;
7544
7545 sel_sched_region_2 (orig_max_seqno);
7546
7547 gcc_assert (fences == NULL);
7548
7549 if (pipelining_p)
7550 {
7551 int i;
7552 basic_block bb;
7553 struct flist_tail_def _new_fences;
7554 flist_tail_t new_fences = &_new_fences;
7555 bool do_p = true;
7556
7557 pipelining_p = false;
7558 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7559 bookkeeping_p = false;
7560 enable_schedule_as_rhs_p = false;
7561
7562 /* Schedule newly created code, that has not been scheduled yet. */
7563 do_p = true;
7564
7565 while (do_p)
7566 {
7567 do_p = false;
7568
7569 for (i = 0; i < current_nr_blocks; i++)
7570 {
7571 basic_block bb = EBB_FIRST_BB (i);
7572
7573 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7574 {
7575 if (! bb_ends_ebb_p (bb))
7576 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7577 if (sel_bb_empty_p (bb))
7578 {
7579 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7580 continue;
7581 }
7582 clear_outdated_rtx_info (bb);
7583 if (sel_insn_is_speculation_check (BB_END (bb))
7584 && JUMP_P (BB_END (bb)))
7585 bitmap_set_bit (blocks_to_reschedule,
7586 BRANCH_EDGE (bb)->dest->index);
7587 }
7588 else if (! sel_bb_empty_p (bb)
7589 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7590 bitmap_set_bit (blocks_to_reschedule, bb->index);
7591 }
7592
7593 for (i = 0; i < current_nr_blocks; i++)
7594 {
7595 bb = EBB_FIRST_BB (i);
7596
7597 /* While pipelining outer loops, skip bundling for loop
7598 preheaders. Those will be rescheduled in the outer
7599 loop. */
7600 if (sel_is_loop_preheader_p (bb))
7601 {
7602 clear_outdated_rtx_info (bb);
7603 continue;
7604 }
7605
7606 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7607 {
7608 flist_tail_init (new_fences);
7609
7610 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7611
7612 /* Mark BB as head of the new ebb. */
7613 bitmap_set_bit (forced_ebb_heads, bb->index);
7614
7615 gcc_assert (fences == NULL);
7616
7617 init_fences (bb_note (bb));
7618
7619 sel_sched_region_2 (orig_max_seqno);
7620
7621 do_p = true;
7622 break;
7623 }
7624 }
7625 }
7626 }
7627 }
7628
7629 /* Schedule the RGN region. */
7630 void
7631 sel_sched_region (int rgn)
7632 {
7633 bool schedule_p;
7634 bool reset_sched_cycles_p;
7635
7636 if (sel_region_init (rgn))
7637 return;
7638
7639 if (sched_verbose >= 1)
7640 sel_print ("Scheduling region %d\n", rgn);
7641
7642 schedule_p = (!sched_is_disabled_for_current_region_p ()
7643 && dbg_cnt (sel_sched_region_cnt));
7644 reset_sched_cycles_p = pipelining_p;
7645 if (schedule_p)
7646 sel_sched_region_1 ();
7647 else
7648 {
7649 /* Schedule always selecting the next insn to make the correct data
7650 for bundling or other later passes. */
7651 pipelining_p = false;
7652 reset_sched_cycles_p = false;
7653 force_next_insn = 1;
7654 sel_sched_region_1 ();
7655 force_next_insn = 0;
7656 }
7657 sel_region_finish (reset_sched_cycles_p);
7658 }
7659
7660 /* Perform global init for the scheduler. */
7661 static void
7662 sel_global_init (void)
7663 {
7664 /* Remove empty blocks: their presence can break assumptions elsewhere,
7665 e.g. the logic to invoke update_liveness_on_insn in sel_region_init. */
7666 cleanup_cfg (0);
7667
7668 calculate_dominance_info (CDI_DOMINATORS);
7669 alloc_sched_pools ();
7670
7671 /* Setup the infos for sched_init. */
7672 sel_setup_sched_infos ();
7673 setup_sched_dump ();
7674
7675 sched_rgn_init (false);
7676 sched_init ();
7677
7678 sched_init_bbs ();
7679 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7680 after_recovery = 0;
7681 can_issue_more = issue_rate;
7682
7683 sched_extend_target ();
7684 sched_deps_init (true);
7685 setup_nop_and_exit_insns ();
7686 sel_extend_global_bb_info ();
7687 init_lv_sets ();
7688 init_hard_regs_data ();
7689 }
7690
7691 /* Free the global data of the scheduler. */
7692 static void
7693 sel_global_finish (void)
7694 {
7695 free_bb_note_pool ();
7696 free_lv_sets ();
7697 sel_finish_global_bb_info ();
7698
7699 free_regset_pool ();
7700 free_nop_and_exit_insns ();
7701
7702 sched_rgn_finish ();
7703 sched_deps_finish ();
7704 sched_finish ();
7705
7706 if (current_loops)
7707 sel_finish_pipelining ();
7708
7709 free_sched_pools ();
7710 free_dominance_info (CDI_DOMINATORS);
7711 }
7712
7713 /* Return true when we need to skip selective scheduling. Used for debugging. */
7714 bool
7715 maybe_skip_selective_scheduling (void)
7716 {
7717 return ! dbg_cnt (sel_sched_cnt);
7718 }
7719
7720 /* The entry point. */
7721 void
7722 run_selective_scheduling (void)
7723 {
7724 int rgn;
7725
7726 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7727 return;
7728
7729 sel_global_init ();
7730
7731 for (rgn = 0; rgn < nr_regions; rgn++)
7732 sel_sched_region (rgn);
7733
7734 sel_global_finish ();
7735 }
7736
7737 #endif