basic-block.h (single_succ_edge): Use gcc_checking_assert.
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615 edge e;
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
620 e = find_fallthru_edge_from (bb);
621 if (e)
622 bb = e->dest;
623 else
624 return false;
625
626 while (sel_bb_empty_p (bb))
627 bb = bb->next_bb;
628
629 return bb == BLOCK_FOR_INSN (succ);
630 }
631
632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
633 When a successor will continue a ebb, transfer all parameters of a fence
634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
635 of scheduling helping to distinguish between the old and the new code. */
636 static void
637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 int orig_max_seqno)
639 {
640 bool was_here_p = false;
641 insn_t insn = NULL_RTX;
642 insn_t succ;
643 succ_iterator si;
644 ilist_iterator ii;
645 fence_t fence = FLIST_FENCE (old_fences);
646 basic_block bb;
647
648 /* Get the only element of FENCE_BNDS (fence). */
649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650 {
651 gcc_assert (!was_here_p);
652 was_here_p = true;
653 }
654 gcc_assert (was_here_p && insn != NULL_RTX);
655
656 /* When in the "middle" of the block, just move this fence
657 to the new list. */
658 bb = BLOCK_FOR_INSN (insn);
659 if (! sel_bb_end_p (insn)
660 || (single_succ_p (bb)
661 && single_pred_p (single_succ (bb))))
662 {
663 insn_t succ;
664
665 succ = (sel_bb_end_p (insn)
666 ? sel_bb_head (single_succ (bb))
667 : NEXT_INSN (insn));
668
669 if (INSN_SEQNO (succ) > 0
670 && INSN_SEQNO (succ) <= orig_max_seqno
671 && INSN_SCHED_TIMES (succ) <= 0)
672 {
673 FENCE_INSN (fence) = succ;
674 move_fence_to_fences (old_fences, new_fences);
675
676 if (sched_verbose >= 1)
677 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679 }
680 return;
681 }
682
683 /* Otherwise copy fence's structures to (possibly) multiple successors. */
684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685 {
686 int seqno = INSN_SEQNO (succ);
687
688 if (0 < seqno && seqno <= orig_max_seqno
689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690 {
691 bool b = (in_same_ebb_p (insn, succ)
692 || in_fallthru_bb_p (insn, succ));
693
694 if (sched_verbose >= 1)
695 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696 INSN_UID (insn), INSN_UID (succ),
697 BLOCK_NUM (succ), b ? "continue" : "reset");
698
699 if (b)
700 add_dirty_fence_to_fences (new_fences, succ, fence);
701 else
702 {
703 /* Mark block of the SUCC as head of the new ebb. */
704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705 add_clean_fence_to_fences (new_fences, succ, fence);
706 }
707 }
708 }
709 }
710 \f
711
712 /* Functions to support substitution. */
713
714 /* Returns whether INSN with dependence status DS is eligible for
715 substitution, i.e. it's a copy operation x := y, and RHS that is
716 moved up through this insn should be substituted. */
717 static bool
718 can_substitute_through_p (insn_t insn, ds_t ds)
719 {
720 /* We can substitute only true dependencies. */
721 if ((ds & DEP_OUTPUT)
722 || (ds & DEP_ANTI)
723 || ! INSN_RHS (insn)
724 || ! INSN_LHS (insn))
725 return false;
726
727 /* Now we just need to make sure the INSN_RHS consists of only one
728 simple REG rtx. */
729 if (REG_P (INSN_LHS (insn))
730 && REG_P (INSN_RHS (insn)))
731 return true;
732 return false;
733 }
734
735 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
736 source (if INSN is eligible for substitution). Returns TRUE if
737 substitution was actually performed, FALSE otherwise. Substitution might
738 be not performed because it's either EXPR' vinsn doesn't contain INSN's
739 destination or the resulting insn is invalid for the target machine.
740 When UNDO is true, perform unsubstitution instead (the difference is in
741 the part of rtx on which validate_replace_rtx is called). */
742 static bool
743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744 {
745 rtx *where;
746 bool new_insn_valid;
747 vinsn_t *vi = &EXPR_VINSN (expr);
748 bool has_rhs = VINSN_RHS (*vi) != NULL;
749 rtx old, new_rtx;
750
751 /* Do not try to replace in SET_DEST. Although we'll choose new
752 register for the RHS, we don't want to change RHS' original reg.
753 If the insn is not SET, we may still be able to substitute something
754 in it, and if we're here (don't have deps), it doesn't write INSN's
755 dest. */
756 where = (has_rhs
757 ? &VINSN_RHS (*vi)
758 : &PATTERN (VINSN_INSN_RTX (*vi)));
759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760
761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
762 if (rtx_ok_for_substitution_p (old, *where))
763 {
764 rtx new_insn;
765 rtx *where_replace;
766
767 /* We should copy these rtxes before substitution. */
768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770
771 /* Where we'll replace.
772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 used instead of SET_SRC. */
774 where_replace = (has_rhs
775 ? &SET_SRC (PATTERN (new_insn))
776 : &PATTERN (new_insn));
777
778 new_insn_valid
779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
780 new_insn);
781
782 /* ??? Actually, constrain_operands result depends upon choice of
783 destination register. E.g. if we allow single register to be an rhs,
784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
785 in invalid insn dx=dx, so we'll loose this rhs here.
786 Just can't come up with significant testcase for this, so just
787 leaving it for now. */
788 if (new_insn_valid)
789 {
790 change_vinsn_in_expr (expr,
791 create_vinsn_from_insn_rtx (new_insn, false));
792
793 /* Do not allow clobbering the address register of speculative
794 insns. */
795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
796 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
797 expr_dest_regno (expr)))
798 EXPR_TARGET_AVAILABLE (expr) = false;
799
800 return true;
801 }
802 else
803 return false;
804 }
805 else
806 return false;
807 }
808
809 /* Helper function for count_occurences_equiv. */
810 static int
811 count_occurrences_1 (rtx *cur_rtx, void *arg)
812 {
813 rtx_search_arg_p p = (rtx_search_arg_p) arg;
814
815 /* The last param FOR_GCSE is true, because otherwise it performs excessive
816 substitutions like
817 r8 = r33
818 r16 = r33
819 for the last insn it presumes r33 equivalent to r8, so it changes it to
820 r33. Actually, there's no change, but it spoils debugging. */
821 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
822 {
823 /* Bail out if we occupy more than one register. */
824 if (REG_P (*cur_rtx)
825 && HARD_REGISTER_P (*cur_rtx)
826 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
827 {
828 p->n = 0;
829 return 1;
830 }
831
832 p->n++;
833
834 /* Do not traverse subexprs. */
835 return -1;
836 }
837
838 if (GET_CODE (*cur_rtx) == SUBREG
839 && REG_P (p->x)
840 && (!REG_P (SUBREG_REG (*cur_rtx))
841 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
842 {
843 /* ??? Do not support substituting regs inside subregs. In that case,
844 simplify_subreg will be called by validate_replace_rtx, and
845 unsubstitution will fail later. */
846 p->n = 0;
847 return 1;
848 }
849
850 /* Continue search. */
851 return 0;
852 }
853
854 /* Return the number of places WHAT appears within WHERE.
855 Bail out when we found a reference occupying several hard registers. */
856 static int
857 count_occurrences_equiv (rtx what, rtx where)
858 {
859 struct rtx_search_arg arg;
860
861 arg.x = what;
862 arg.n = 0;
863
864 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
865
866 return arg.n;
867 }
868
869 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
870 static bool
871 rtx_ok_for_substitution_p (rtx what, rtx where)
872 {
873 return (count_occurrences_equiv (what, where) > 0);
874 }
875 \f
876
877 /* Functions to support register renaming. */
878
879 /* Substitute VI's set source with REGNO. Returns newly created pattern
880 that has REGNO as its source. */
881 static rtx
882 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
883 {
884 rtx lhs_rtx;
885 rtx pattern;
886 rtx insn_rtx;
887
888 lhs_rtx = copy_rtx (VINSN_LHS (vi));
889
890 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
891 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
892
893 return insn_rtx;
894 }
895
896 /* Returns whether INSN's src can be replaced with register number
897 NEW_SRC_REG. E.g. the following insn is valid for i386:
898
899 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
900 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
901 (reg:SI 0 ax [orig:770 c1 ] [770]))
902 (const_int 288 [0x120])) [0 str S1 A8])
903 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
904 (nil))
905
906 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
907 because of operand constraints:
908
909 (define_insn "*movqi_1"
910 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
911 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
912 )]
913
914 So do constrain_operands here, before choosing NEW_SRC_REG as best
915 reg for rhs. */
916
917 static bool
918 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
919 {
920 vinsn_t vi = INSN_VINSN (insn);
921 enum machine_mode mode;
922 rtx dst_loc;
923 bool res;
924
925 gcc_assert (VINSN_SEPARABLE_P (vi));
926
927 get_dest_and_mode (insn, &dst_loc, &mode);
928 gcc_assert (mode == GET_MODE (new_src_reg));
929
930 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
931 return true;
932
933 /* See whether SET_SRC can be replaced with this register. */
934 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
935 res = verify_changes (0);
936 cancel_changes (0);
937
938 return res;
939 }
940
941 /* Returns whether INSN still be valid after replacing it's DEST with
942 register NEW_REG. */
943 static bool
944 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
945 {
946 vinsn_t vi = INSN_VINSN (insn);
947 bool res;
948
949 /* We should deal here only with separable insns. */
950 gcc_assert (VINSN_SEPARABLE_P (vi));
951 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
952
953 /* See whether SET_DEST can be replaced with this register. */
954 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
955 res = verify_changes (0);
956 cancel_changes (0);
957
958 return res;
959 }
960
961 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
962 static rtx
963 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
964 {
965 rtx rhs_rtx;
966 rtx pattern;
967 rtx insn_rtx;
968
969 rhs_rtx = copy_rtx (VINSN_RHS (vi));
970
971 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
972 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
973
974 return insn_rtx;
975 }
976
977 /* Substitute lhs in the given expression EXPR for the register with number
978 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
979 static void
980 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
981 {
982 rtx insn_rtx;
983 vinsn_t vinsn;
984
985 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
986 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
987
988 change_vinsn_in_expr (expr, vinsn);
989 EXPR_WAS_RENAMED (expr) = 1;
990 EXPR_TARGET_AVAILABLE (expr) = 1;
991 }
992
993 /* Returns whether VI writes either one of the USED_REGS registers or,
994 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
995 static bool
996 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
997 HARD_REG_SET unavailable_hard_regs)
998 {
999 unsigned regno;
1000 reg_set_iterator rsi;
1001
1002 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1003 {
1004 if (REGNO_REG_SET_P (used_regs, regno))
1005 return true;
1006 if (HARD_REGISTER_NUM_P (regno)
1007 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1008 return true;
1009 }
1010
1011 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1012 {
1013 if (REGNO_REG_SET_P (used_regs, regno))
1014 return true;
1015 if (HARD_REGISTER_NUM_P (regno)
1016 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1017 return true;
1018 }
1019
1020 return false;
1021 }
1022
1023 /* Returns register class of the output register in INSN.
1024 Returns NO_REGS for call insns because some targets have constraints on
1025 destination register of a call insn.
1026
1027 Code adopted from regrename.c::build_def_use. */
1028 static enum reg_class
1029 get_reg_class (rtx insn)
1030 {
1031 int alt, i, n_ops;
1032
1033 extract_insn (insn);
1034 if (! constrain_operands (1))
1035 fatal_insn_not_found (insn);
1036 preprocess_constraints ();
1037 alt = which_alternative;
1038 n_ops = recog_data.n_operands;
1039
1040 for (i = 0; i < n_ops; ++i)
1041 {
1042 int matches = recog_op_alt[i][alt].matches;
1043 if (matches >= 0)
1044 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045 }
1046
1047 if (asm_noperands (PATTERN (insn)) > 0)
1048 {
1049 for (i = 0; i < n_ops; i++)
1050 if (recog_data.operand_type[i] == OP_OUT)
1051 {
1052 rtx *loc = recog_data.operand_loc[i];
1053 rtx op = *loc;
1054 enum reg_class cl = recog_op_alt[i][alt].cl;
1055
1056 if (REG_P (op)
1057 && REGNO (op) == ORIGINAL_REGNO (op))
1058 continue;
1059
1060 return cl;
1061 }
1062 }
1063 else if (!CALL_P (insn))
1064 {
1065 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1066 {
1067 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1068 enum reg_class cl = recog_op_alt[opn][alt].cl;
1069
1070 if (recog_data.operand_type[opn] == OP_OUT ||
1071 recog_data.operand_type[opn] == OP_INOUT)
1072 return cl;
1073 }
1074 }
1075
1076 /* Insns like
1077 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1078 may result in returning NO_REGS, cause flags is written implicitly through
1079 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1080 return NO_REGS;
1081 }
1082
1083 #ifdef HARD_REGNO_RENAME_OK
1084 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1085 static void
1086 init_hard_regno_rename (int regno)
1087 {
1088 int cur_reg;
1089
1090 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1091
1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1093 {
1094 /* We are not interested in renaming in other regs. */
1095 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1096 continue;
1097
1098 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1099 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100 }
1101 }
1102 #endif
1103
1104 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1105 data first. */
1106 static inline bool
1107 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1108 {
1109 #ifdef HARD_REGNO_RENAME_OK
1110 /* Check whether this is all calculated. */
1111 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113
1114 init_hard_regno_rename (from);
1115
1116 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1117 #else
1118 return true;
1119 #endif
1120 }
1121
1122 /* Calculate set of registers that are capable of holding MODE. */
1123 static void
1124 init_regs_for_mode (enum machine_mode mode)
1125 {
1126 int cur_reg;
1127
1128 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1130
1131 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1132 {
1133 int nregs = hard_regno_nregs[cur_reg][mode];
1134 int i;
1135
1136 for (i = nregs - 1; i >= 0; --i)
1137 if (fixed_regs[cur_reg + i]
1138 || global_regs[cur_reg + i]
1139 /* Can't use regs which aren't saved by
1140 the prologue. */
1141 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1142 #ifdef LEAF_REGISTERS
1143 /* We can't use a non-leaf register if we're in a
1144 leaf function. */
1145 || (current_function_is_leaf
1146 && !LEAF_REGISTERS[cur_reg + i])
1147 #endif
1148 )
1149 break;
1150
1151 if (i >= 0)
1152 continue;
1153
1154 /* See whether it accepts all modes that occur in
1155 original insns. */
1156 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1157 continue;
1158
1159 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1160 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1161 cur_reg);
1162
1163 /* If the CUR_REG passed all the checks above,
1164 then it's ok. */
1165 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1166 }
1167
1168 sel_hrd.regs_for_mode_ok[mode] = true;
1169 }
1170
1171 /* Init all register sets gathered in HRD. */
1172 static void
1173 init_hard_regs_data (void)
1174 {
1175 int cur_reg = 0;
1176 int cur_mode = 0;
1177
1178 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1179 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1180 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1181 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1182
1183 /* Initialize registers that are valid based on mode when this is
1184 really needed. */
1185 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1186 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1187
1188 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1189 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1190 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1191
1192 #ifdef STACK_REGS
1193 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1194
1195 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1196 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1197 #endif
1198 }
1199
1200 /* Mark hardware regs in REG_RENAME_P that are not suitable
1201 for renaming rhs in INSN due to hardware restrictions (register class,
1202 modes compatibility etc). This doesn't affect original insn's dest reg,
1203 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1204 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1205 Registers that are in used_regs are always marked in
1206 unavailable_hard_regs as well. */
1207
1208 static void
1209 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1210 regset used_regs ATTRIBUTE_UNUSED)
1211 {
1212 enum machine_mode mode;
1213 enum reg_class cl = NO_REGS;
1214 rtx orig_dest;
1215 unsigned cur_reg, regno;
1216 hard_reg_set_iterator hrsi;
1217
1218 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1219 gcc_assert (reg_rename_p);
1220
1221 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1222
1223 /* We have decided not to rename 'mem = something;' insns, as 'something'
1224 is usually a register. */
1225 if (!REG_P (orig_dest))
1226 return;
1227
1228 regno = REGNO (orig_dest);
1229
1230 /* If before reload, don't try to work with pseudos. */
1231 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1232 return;
1233
1234 if (reload_completed)
1235 cl = get_reg_class (def->orig_insn);
1236
1237 /* Stop if the original register is one of the fixed_regs, global_regs or
1238 frame pointer, or we could not discover its class. */
1239 if (fixed_regs[regno]
1240 || global_regs[regno]
1241 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1242 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1243 #else
1244 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1245 #endif
1246 || (reload_completed && cl == NO_REGS))
1247 {
1248 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1249
1250 /* Give a chance for original register, if it isn't in used_regs. */
1251 if (!def->crosses_call)
1252 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1253
1254 return;
1255 }
1256
1257 /* If something allocated on stack in this function, mark frame pointer
1258 register unavailable, considering also modes.
1259 FIXME: it is enough to do this once per all original defs. */
1260 if (frame_pointer_needed)
1261 {
1262 int i;
1263
1264 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1265 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1266 FRAME_POINTER_REGNUM + i);
1267
1268 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1269 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1270 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1271 HARD_FRAME_POINTER_REGNUM + i);
1272 #endif
1273 }
1274
1275 #ifdef STACK_REGS
1276 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1277 is equivalent to as if all stack regs were in this set.
1278 I.e. no stack register can be renamed, and even if it's an original
1279 register here we make sure it won't be lifted over it's previous def
1280 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1281 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1282 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1283 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1284 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1285 sel_hrd.stack_regs);
1286 #endif
1287
1288 /* If there's a call on this path, make regs from call_used_reg_set
1289 unavailable. */
1290 if (def->crosses_call)
1291 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1292 call_used_reg_set);
1293
1294 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1295 but not register classes. */
1296 if (!reload_completed)
1297 return;
1298
1299 /* Leave regs as 'available' only from the current
1300 register class. */
1301 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1302 reg_class_contents[cl]);
1303
1304 mode = GET_MODE (orig_dest);
1305
1306 /* Leave only registers available for this mode. */
1307 if (!sel_hrd.regs_for_mode_ok[mode])
1308 init_regs_for_mode (mode);
1309 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1310 sel_hrd.regs_for_mode[mode]);
1311
1312 /* Exclude registers that are partially call clobbered. */
1313 if (def->crosses_call
1314 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1315 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1316 sel_hrd.regs_for_call_clobbered[mode]);
1317
1318 /* Leave only those that are ok to rename. */
1319 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1320 0, cur_reg, hrsi)
1321 {
1322 int nregs;
1323 int i;
1324
1325 nregs = hard_regno_nregs[cur_reg][mode];
1326 gcc_assert (nregs > 0);
1327
1328 for (i = nregs - 1; i >= 0; --i)
1329 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1330 break;
1331
1332 if (i >= 0)
1333 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1334 cur_reg);
1335 }
1336
1337 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1338 reg_rename_p->unavailable_hard_regs);
1339
1340 /* Regno is always ok from the renaming part of view, but it really
1341 could be in *unavailable_hard_regs already, so set it here instead
1342 of there. */
1343 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1344 }
1345
1346 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1347 best register more recently than REG2. */
1348 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1349
1350 /* Indicates the number of times renaming happened before the current one. */
1351 static int reg_rename_this_tick;
1352
1353 /* Choose the register among free, that is suitable for storing
1354 the rhs value.
1355
1356 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1357 originally appears. There could be multiple original operations
1358 for single rhs since we moving it up and merging along different
1359 paths.
1360
1361 Some code is adapted from regrename.c (regrename_optimize).
1362 If original register is available, function returns it.
1363 Otherwise it performs the checks, so the new register should
1364 comply with the following:
1365 - it should not violate any live ranges (such registers are in
1366 REG_RENAME_P->available_for_renaming set);
1367 - it should not be in the HARD_REGS_USED regset;
1368 - it should be in the class compatible with original uses;
1369 - it should not be clobbered through reference with different mode;
1370 - if we're in the leaf function, then the new register should
1371 not be in the LEAF_REGISTERS;
1372 - etc.
1373
1374 If several registers meet the conditions, the register with smallest
1375 tick is returned to achieve more even register allocation.
1376
1377 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1378
1379 If no register satisfies the above conditions, NULL_RTX is returned. */
1380 static rtx
1381 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1382 struct reg_rename *reg_rename_p,
1383 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1384 {
1385 int best_new_reg;
1386 unsigned cur_reg;
1387 enum machine_mode mode = VOIDmode;
1388 unsigned regno, i, n;
1389 hard_reg_set_iterator hrsi;
1390 def_list_iterator di;
1391 def_t def;
1392
1393 /* If original register is available, return it. */
1394 *is_orig_reg_p_ptr = true;
1395
1396 FOR_EACH_DEF (def, di, original_insns)
1397 {
1398 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1399
1400 gcc_assert (REG_P (orig_dest));
1401
1402 /* Check that all original operations have the same mode.
1403 This is done for the next loop; if we'd return from this
1404 loop, we'd check only part of them, but in this case
1405 it doesn't matter. */
1406 if (mode == VOIDmode)
1407 mode = GET_MODE (orig_dest);
1408 gcc_assert (mode == GET_MODE (orig_dest));
1409
1410 regno = REGNO (orig_dest);
1411 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1412 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1413 break;
1414
1415 /* All hard registers are available. */
1416 if (i == n)
1417 {
1418 gcc_assert (mode != VOIDmode);
1419
1420 /* Hard registers should not be shared. */
1421 return gen_rtx_REG (mode, regno);
1422 }
1423 }
1424
1425 *is_orig_reg_p_ptr = false;
1426 best_new_reg = -1;
1427
1428 /* Among all available regs choose the register that was
1429 allocated earliest. */
1430 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1431 0, cur_reg, hrsi)
1432 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1433 {
1434 /* Check that all hard regs for mode are available. */
1435 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1436 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1437 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1438 cur_reg + i))
1439 break;
1440
1441 if (i < n)
1442 continue;
1443
1444 /* All hard registers are available. */
1445 if (best_new_reg < 0
1446 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1447 {
1448 best_new_reg = cur_reg;
1449
1450 /* Return immediately when we know there's no better reg. */
1451 if (! reg_rename_tick[best_new_reg])
1452 break;
1453 }
1454 }
1455
1456 if (best_new_reg >= 0)
1457 {
1458 /* Use the check from the above loop. */
1459 gcc_assert (mode != VOIDmode);
1460 return gen_rtx_REG (mode, best_new_reg);
1461 }
1462
1463 return NULL_RTX;
1464 }
1465
1466 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1467 assumptions about available registers in the function. */
1468 static rtx
1469 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1470 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1471 {
1472 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1473 original_insns, is_orig_reg_p_ptr);
1474
1475 /* FIXME loop over hard_regno_nregs here. */
1476 gcc_assert (best_reg == NULL_RTX
1477 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1478
1479 return best_reg;
1480 }
1481
1482 /* Choose the pseudo register for storing rhs value. As this is supposed
1483 to work before reload, we return either the original register or make
1484 the new one. The parameters are the same that in choose_nest_reg_1
1485 functions, except that USED_REGS may contain pseudos.
1486 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1487
1488 TODO: take into account register pressure while doing this. Up to this
1489 moment, this function would never return NULL for pseudos, but we should
1490 not rely on this. */
1491 static rtx
1492 choose_best_pseudo_reg (regset used_regs,
1493 struct reg_rename *reg_rename_p,
1494 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1495 {
1496 def_list_iterator i;
1497 def_t def;
1498 enum machine_mode mode = VOIDmode;
1499 bool bad_hard_regs = false;
1500
1501 /* We should not use this after reload. */
1502 gcc_assert (!reload_completed);
1503
1504 /* If original register is available, return it. */
1505 *is_orig_reg_p_ptr = true;
1506
1507 FOR_EACH_DEF (def, i, original_insns)
1508 {
1509 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1510 int orig_regno;
1511
1512 gcc_assert (REG_P (dest));
1513
1514 /* Check that all original operations have the same mode. */
1515 if (mode == VOIDmode)
1516 mode = GET_MODE (dest);
1517 else
1518 gcc_assert (mode == GET_MODE (dest));
1519 orig_regno = REGNO (dest);
1520
1521 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1522 {
1523 if (orig_regno < FIRST_PSEUDO_REGISTER)
1524 {
1525 gcc_assert (df_regs_ever_live_p (orig_regno));
1526
1527 /* For hard registers, we have to check hardware imposed
1528 limitations (frame/stack registers, calls crossed). */
1529 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1530 orig_regno))
1531 {
1532 /* Don't let register cross a call if it doesn't already
1533 cross one. This condition is written in accordance with
1534 that in sched-deps.c sched_analyze_reg(). */
1535 if (!reg_rename_p->crosses_call
1536 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1537 return gen_rtx_REG (mode, orig_regno);
1538 }
1539
1540 bad_hard_regs = true;
1541 }
1542 else
1543 return dest;
1544 }
1545 }
1546
1547 *is_orig_reg_p_ptr = false;
1548
1549 /* We had some original hard registers that couldn't be used.
1550 Those were likely special. Don't try to create a pseudo. */
1551 if (bad_hard_regs)
1552 return NULL_RTX;
1553
1554 /* We haven't found a register from original operations. Get a new one.
1555 FIXME: control register pressure somehow. */
1556 {
1557 rtx new_reg = gen_reg_rtx (mode);
1558
1559 gcc_assert (mode != VOIDmode);
1560
1561 max_regno = max_reg_num ();
1562 maybe_extend_reg_info_p ();
1563 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1564
1565 return new_reg;
1566 }
1567 }
1568
1569 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1570 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1571 static void
1572 verify_target_availability (expr_t expr, regset used_regs,
1573 struct reg_rename *reg_rename_p)
1574 {
1575 unsigned n, i, regno;
1576 enum machine_mode mode;
1577 bool target_available, live_available, hard_available;
1578
1579 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1580 return;
1581
1582 regno = expr_dest_regno (expr);
1583 mode = GET_MODE (EXPR_LHS (expr));
1584 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1585 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1586
1587 live_available = hard_available = true;
1588 for (i = 0; i < n; i++)
1589 {
1590 if (bitmap_bit_p (used_regs, regno + i))
1591 live_available = false;
1592 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1593 hard_available = false;
1594 }
1595
1596 /* When target is not available, it may be due to hard register
1597 restrictions, e.g. crosses calls, so we check hard_available too. */
1598 if (target_available)
1599 gcc_assert (live_available);
1600 else
1601 /* Check only if we haven't scheduled something on the previous fence,
1602 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1603 and having more than one fence, we may end having targ_un in a block
1604 in which successors target register is actually available.
1605
1606 The last condition handles the case when a dependence from a call insn
1607 was created in sched-deps.c for insns with destination registers that
1608 never crossed a call before, but do cross one after our code motion.
1609
1610 FIXME: in the latter case, we just uselessly called find_used_regs,
1611 because we can't move this expression with any other register
1612 as well. */
1613 gcc_assert (scheduled_something_on_previous_fence || !live_available
1614 || !hard_available
1615 || (!reload_completed && reg_rename_p->crosses_call
1616 && REG_N_CALLS_CROSSED (regno) == 0));
1617 }
1618
1619 /* Collect unavailable registers due to liveness for EXPR from BNDS
1620 into USED_REGS. Save additional information about available
1621 registers and unavailable due to hardware restriction registers
1622 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1623 list. */
1624 static void
1625 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1626 struct reg_rename *reg_rename_p,
1627 def_list_t *original_insns)
1628 {
1629 for (; bnds; bnds = BLIST_NEXT (bnds))
1630 {
1631 bool res;
1632 av_set_t orig_ops = NULL;
1633 bnd_t bnd = BLIST_BND (bnds);
1634
1635 /* If the chosen best expr doesn't belong to current boundary,
1636 skip it. */
1637 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1638 continue;
1639
1640 /* Put in ORIG_OPS all exprs from this boundary that became
1641 RES on top. */
1642 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1643
1644 /* Compute used regs and OR it into the USED_REGS. */
1645 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1646 reg_rename_p, original_insns);
1647
1648 /* FIXME: the assert is true until we'd have several boundaries. */
1649 gcc_assert (res);
1650 av_set_clear (&orig_ops);
1651 }
1652 }
1653
1654 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1655 If BEST_REG is valid, replace LHS of EXPR with it. */
1656 static bool
1657 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1658 {
1659 /* Try whether we'll be able to generate the insn
1660 'dest := best_reg' at the place of the original operation. */
1661 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1662 {
1663 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1664
1665 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1666
1667 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1668 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1669 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1670 return false;
1671 }
1672
1673 /* Make sure that EXPR has the right destination
1674 register. */
1675 if (expr_dest_regno (expr) != REGNO (best_reg))
1676 replace_dest_with_reg_in_expr (expr, best_reg);
1677 else
1678 EXPR_TARGET_AVAILABLE (expr) = 1;
1679
1680 return true;
1681 }
1682
1683 /* Select and assign best register to EXPR searching from BNDS.
1684 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1685 Return FALSE if no register can be chosen, which could happen when:
1686 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1687 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1688 that are used on the moving path. */
1689 static bool
1690 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1691 {
1692 static struct reg_rename reg_rename_data;
1693
1694 regset used_regs;
1695 def_list_t original_insns = NULL;
1696 bool reg_ok;
1697
1698 *is_orig_reg_p = false;
1699
1700 /* Don't bother to do anything if this insn doesn't set any registers. */
1701 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1702 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1703 return true;
1704
1705 used_regs = get_clear_regset_from_pool ();
1706 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1707
1708 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1709 &original_insns);
1710
1711 #ifdef ENABLE_CHECKING
1712 /* If after reload, make sure we're working with hard regs here. */
1713 if (reload_completed)
1714 {
1715 reg_set_iterator rsi;
1716 unsigned i;
1717
1718 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1719 gcc_unreachable ();
1720 }
1721 #endif
1722
1723 if (EXPR_SEPARABLE_P (expr))
1724 {
1725 rtx best_reg = NULL_RTX;
1726 /* Check that we have computed availability of a target register
1727 correctly. */
1728 verify_target_availability (expr, used_regs, &reg_rename_data);
1729
1730 /* Turn everything in hard regs after reload. */
1731 if (reload_completed)
1732 {
1733 HARD_REG_SET hard_regs_used;
1734 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1735
1736 /* Join hard registers unavailable due to register class
1737 restrictions and live range intersection. */
1738 IOR_HARD_REG_SET (hard_regs_used,
1739 reg_rename_data.unavailable_hard_regs);
1740
1741 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1742 original_insns, is_orig_reg_p);
1743 }
1744 else
1745 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1746 original_insns, is_orig_reg_p);
1747
1748 if (!best_reg)
1749 reg_ok = false;
1750 else if (*is_orig_reg_p)
1751 {
1752 /* In case of unification BEST_REG may be different from EXPR's LHS
1753 when EXPR's LHS is unavailable, and there is another LHS among
1754 ORIGINAL_INSNS. */
1755 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1756 }
1757 else
1758 {
1759 /* Forbid renaming of low-cost insns. */
1760 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1761 reg_ok = false;
1762 else
1763 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1764 }
1765 }
1766 else
1767 {
1768 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1769 any of the HARD_REGS_USED set. */
1770 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1771 reg_rename_data.unavailable_hard_regs))
1772 {
1773 reg_ok = false;
1774 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1775 }
1776 else
1777 {
1778 reg_ok = true;
1779 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1780 }
1781 }
1782
1783 ilist_clear (&original_insns);
1784 return_regset_to_pool (used_regs);
1785
1786 return reg_ok;
1787 }
1788 \f
1789
1790 /* Return true if dependence described by DS can be overcomed. */
1791 static bool
1792 can_speculate_dep_p (ds_t ds)
1793 {
1794 if (spec_info == NULL)
1795 return false;
1796
1797 /* Leave only speculative data. */
1798 ds &= SPECULATIVE;
1799
1800 if (ds == 0)
1801 return false;
1802
1803 {
1804 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1805 that we can overcome. */
1806 ds_t spec_mask = spec_info->mask;
1807
1808 if ((ds & spec_mask) != ds)
1809 return false;
1810 }
1811
1812 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1813 return false;
1814
1815 return true;
1816 }
1817
1818 /* Get a speculation check instruction.
1819 C_EXPR is a speculative expression,
1820 CHECK_DS describes speculations that should be checked,
1821 ORIG_INSN is the original non-speculative insn in the stream. */
1822 static insn_t
1823 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1824 {
1825 rtx check_pattern;
1826 rtx insn_rtx;
1827 insn_t insn;
1828 basic_block recovery_block;
1829 rtx label;
1830
1831 /* Create a recovery block if target is going to emit branchy check, or if
1832 ORIG_INSN was speculative already. */
1833 if (targetm.sched.needs_block_p (check_ds)
1834 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1835 {
1836 recovery_block = sel_create_recovery_block (orig_insn);
1837 label = BB_HEAD (recovery_block);
1838 }
1839 else
1840 {
1841 recovery_block = NULL;
1842 label = NULL_RTX;
1843 }
1844
1845 /* Get pattern of the check. */
1846 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1847 check_ds);
1848
1849 gcc_assert (check_pattern != NULL);
1850
1851 /* Emit check. */
1852 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1853
1854 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1855 INSN_SEQNO (orig_insn), orig_insn);
1856
1857 /* Make check to be non-speculative. */
1858 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1859 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1860
1861 /* Decrease priority of check by difference of load/check instruction
1862 latencies. */
1863 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1864 - sel_vinsn_cost (INSN_VINSN (insn)));
1865
1866 /* Emit copy of original insn (though with replaced target register,
1867 if needed) to the recovery block. */
1868 if (recovery_block != NULL)
1869 {
1870 rtx twin_rtx;
1871
1872 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1873 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1874 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1875 INSN_EXPR (orig_insn),
1876 INSN_SEQNO (insn),
1877 bb_note (recovery_block));
1878 }
1879
1880 /* If we've generated a data speculation check, make sure
1881 that all the bookkeeping instruction we'll create during
1882 this move_op () will allocate an ALAT entry so that the
1883 check won't fail.
1884 In case of control speculation we must convert C_EXPR to control
1885 speculative mode, because failing to do so will bring us an exception
1886 thrown by the non-control-speculative load. */
1887 check_ds = ds_get_max_dep_weak (check_ds);
1888 speculate_expr (c_expr, check_ds);
1889
1890 return insn;
1891 }
1892
1893 /* True when INSN is a "regN = regN" copy. */
1894 static bool
1895 identical_copy_p (rtx insn)
1896 {
1897 rtx lhs, rhs, pat;
1898
1899 pat = PATTERN (insn);
1900
1901 if (GET_CODE (pat) != SET)
1902 return false;
1903
1904 lhs = SET_DEST (pat);
1905 if (!REG_P (lhs))
1906 return false;
1907
1908 rhs = SET_SRC (pat);
1909 if (!REG_P (rhs))
1910 return false;
1911
1912 return REGNO (lhs) == REGNO (rhs);
1913 }
1914
1915 /* Undo all transformations on *AV_PTR that were done when
1916 moving through INSN. */
1917 static void
1918 undo_transformations (av_set_t *av_ptr, rtx insn)
1919 {
1920 av_set_iterator av_iter;
1921 expr_t expr;
1922 av_set_t new_set = NULL;
1923
1924 /* First, kill any EXPR that uses registers set by an insn. This is
1925 required for correctness. */
1926 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1927 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1928 && bitmap_intersect_p (INSN_REG_SETS (insn),
1929 VINSN_REG_USES (EXPR_VINSN (expr)))
1930 /* When an insn looks like 'r1 = r1', we could substitute through
1931 it, but the above condition will still hold. This happened with
1932 gcc.c-torture/execute/961125-1.c. */
1933 && !identical_copy_p (insn))
1934 {
1935 if (sched_verbose >= 6)
1936 sel_print ("Expr %d removed due to use/set conflict\n",
1937 INSN_UID (EXPR_INSN_RTX (expr)));
1938 av_set_iter_remove (&av_iter);
1939 }
1940
1941 /* Undo transformations looking at the history vector. */
1942 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1943 {
1944 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1945 insn, EXPR_VINSN (expr), true);
1946
1947 if (index >= 0)
1948 {
1949 expr_history_def *phist;
1950
1951 phist = VEC_index (expr_history_def,
1952 EXPR_HISTORY_OF_CHANGES (expr),
1953 index);
1954
1955 switch (phist->type)
1956 {
1957 case TRANS_SPECULATION:
1958 {
1959 ds_t old_ds, new_ds;
1960
1961 /* Compute the difference between old and new speculative
1962 statuses: that's what we need to check.
1963 Earlier we used to assert that the status will really
1964 change. This no longer works because only the probability
1965 bits in the status may have changed during compute_av_set,
1966 and in the case of merging different probabilities of the
1967 same speculative status along different paths we do not
1968 record this in the history vector. */
1969 old_ds = phist->spec_ds;
1970 new_ds = EXPR_SPEC_DONE_DS (expr);
1971
1972 old_ds &= SPECULATIVE;
1973 new_ds &= SPECULATIVE;
1974 new_ds &= ~old_ds;
1975
1976 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1977 break;
1978 }
1979 case TRANS_SUBSTITUTION:
1980 {
1981 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1982 vinsn_t new_vi;
1983 bool add = true;
1984
1985 new_vi = phist->old_expr_vinsn;
1986
1987 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1988 == EXPR_SEPARABLE_P (expr));
1989 copy_expr (tmp_expr, expr);
1990
1991 if (vinsn_equal_p (phist->new_expr_vinsn,
1992 EXPR_VINSN (tmp_expr)))
1993 change_vinsn_in_expr (tmp_expr, new_vi);
1994 else
1995 /* This happens when we're unsubstituting on a bookkeeping
1996 copy, which was in turn substituted. The history is wrong
1997 in this case. Do it the hard way. */
1998 add = substitute_reg_in_expr (tmp_expr, insn, true);
1999 if (add)
2000 av_set_add (&new_set, tmp_expr);
2001 clear_expr (tmp_expr);
2002 break;
2003 }
2004 default:
2005 gcc_unreachable ();
2006 }
2007 }
2008
2009 }
2010
2011 av_set_union_and_clear (av_ptr, &new_set, NULL);
2012 }
2013 \f
2014
2015 /* Moveup_* helpers for code motion and computing av sets. */
2016
2017 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2018 The difference from the below function is that only substitution is
2019 performed. */
2020 static enum MOVEUP_EXPR_CODE
2021 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2022 {
2023 vinsn_t vi = EXPR_VINSN (expr);
2024 ds_t *has_dep_p;
2025 ds_t full_ds;
2026
2027 /* Do this only inside insn group. */
2028 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2029
2030 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2031 if (full_ds == 0)
2032 return MOVEUP_EXPR_SAME;
2033
2034 /* Substitution is the possible choice in this case. */
2035 if (has_dep_p[DEPS_IN_RHS])
2036 {
2037 /* Can't substitute UNIQUE VINSNs. */
2038 gcc_assert (!VINSN_UNIQUE_P (vi));
2039
2040 if (can_substitute_through_p (through_insn,
2041 has_dep_p[DEPS_IN_RHS])
2042 && substitute_reg_in_expr (expr, through_insn, false))
2043 {
2044 EXPR_WAS_SUBSTITUTED (expr) = true;
2045 return MOVEUP_EXPR_CHANGED;
2046 }
2047
2048 /* Don't care about this, as even true dependencies may be allowed
2049 in an insn group. */
2050 return MOVEUP_EXPR_SAME;
2051 }
2052
2053 /* This can catch output dependencies in COND_EXECs. */
2054 if (has_dep_p[DEPS_IN_INSN])
2055 return MOVEUP_EXPR_NULL;
2056
2057 /* This is either an output or an anti dependence, which usually have
2058 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2059 will fix this. */
2060 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2061 return MOVEUP_EXPR_AS_RHS;
2062 }
2063
2064 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2065 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2066 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2067 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2068 && !sel_insn_is_speculation_check (through_insn))
2069
2070 /* True when a conflict on a target register was found during moveup_expr. */
2071 static bool was_target_conflict = false;
2072
2073 /* Return true when moving a debug INSN across THROUGH_INSN will
2074 create a bookkeeping block. We don't want to create such blocks,
2075 for they would cause codegen differences between compilations with
2076 and without debug info. */
2077
2078 static bool
2079 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2080 insn_t through_insn)
2081 {
2082 basic_block bbi, bbt;
2083 edge e1, e2;
2084 edge_iterator ei1, ei2;
2085
2086 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2087 {
2088 if (sched_verbose >= 9)
2089 sel_print ("no bookkeeping required: ");
2090 return FALSE;
2091 }
2092
2093 bbi = BLOCK_FOR_INSN (insn);
2094
2095 if (EDGE_COUNT (bbi->preds) == 1)
2096 {
2097 if (sched_verbose >= 9)
2098 sel_print ("only one pred edge: ");
2099 return TRUE;
2100 }
2101
2102 bbt = BLOCK_FOR_INSN (through_insn);
2103
2104 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2105 {
2106 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2107 {
2108 if (find_block_for_bookkeeping (e1, e2, TRUE))
2109 {
2110 if (sched_verbose >= 9)
2111 sel_print ("found existing block: ");
2112 return FALSE;
2113 }
2114 }
2115 }
2116
2117 if (sched_verbose >= 9)
2118 sel_print ("would create bookkeeping block: ");
2119
2120 return TRUE;
2121 }
2122
2123 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2124 performing necessary transformations. Record the type of transformation
2125 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2126 permit all dependencies except true ones, and try to remove those
2127 too via forward substitution. All cases when a non-eliminable
2128 non-zero cost dependency exists inside an insn group will be fixed
2129 in tick_check_p instead. */
2130 static enum MOVEUP_EXPR_CODE
2131 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2132 enum local_trans_type *ptrans_type)
2133 {
2134 vinsn_t vi = EXPR_VINSN (expr);
2135 insn_t insn = VINSN_INSN_RTX (vi);
2136 bool was_changed = false;
2137 bool as_rhs = false;
2138 ds_t *has_dep_p;
2139 ds_t full_ds;
2140
2141 /* When inside_insn_group, delegate to the helper. */
2142 if (inside_insn_group)
2143 return moveup_expr_inside_insn_group (expr, through_insn);
2144
2145 /* Deal with unique insns and control dependencies. */
2146 if (VINSN_UNIQUE_P (vi))
2147 {
2148 /* We can move jumps without side-effects or jumps that are
2149 mutually exclusive with instruction THROUGH_INSN (all in cases
2150 dependencies allow to do so and jump is not speculative). */
2151 if (control_flow_insn_p (insn))
2152 {
2153 basic_block fallthru_bb;
2154
2155 /* Do not move checks and do not move jumps through other
2156 jumps. */
2157 if (control_flow_insn_p (through_insn)
2158 || sel_insn_is_speculation_check (insn))
2159 return MOVEUP_EXPR_NULL;
2160
2161 /* Don't move jumps through CFG joins. */
2162 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2163 return MOVEUP_EXPR_NULL;
2164
2165 /* The jump should have a clear fallthru block, and
2166 this block should be in the current region. */
2167 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2168 || ! in_current_region_p (fallthru_bb))
2169 return MOVEUP_EXPR_NULL;
2170
2171 /* And it should be mutually exclusive with through_insn, or
2172 be an unconditional jump. */
2173 if (! any_uncondjump_p (insn)
2174 && ! sched_insns_conditions_mutex_p (insn, through_insn)
2175 && ! DEBUG_INSN_P (through_insn))
2176 return MOVEUP_EXPR_NULL;
2177 }
2178
2179 /* Don't move what we can't move. */
2180 if (EXPR_CANT_MOVE (expr)
2181 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2182 return MOVEUP_EXPR_NULL;
2183
2184 /* Don't move SCHED_GROUP instruction through anything.
2185 If we don't force this, then it will be possible to start
2186 scheduling a sched_group before all its dependencies are
2187 resolved.
2188 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2189 as late as possible through rank_for_schedule. */
2190 if (SCHED_GROUP_P (insn))
2191 return MOVEUP_EXPR_NULL;
2192 }
2193 else
2194 gcc_assert (!control_flow_insn_p (insn));
2195
2196 /* Don't move debug insns if this would require bookkeeping. */
2197 if (DEBUG_INSN_P (insn)
2198 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2199 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2200 return MOVEUP_EXPR_NULL;
2201
2202 /* Deal with data dependencies. */
2203 was_target_conflict = false;
2204 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2205 if (full_ds == 0)
2206 {
2207 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2208 return MOVEUP_EXPR_SAME;
2209 }
2210 else
2211 {
2212 /* We can move UNIQUE insn up only as a whole and unchanged,
2213 so it shouldn't have any dependencies. */
2214 if (VINSN_UNIQUE_P (vi))
2215 return MOVEUP_EXPR_NULL;
2216 }
2217
2218 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2219 {
2220 int res;
2221
2222 res = speculate_expr (expr, full_ds);
2223 if (res >= 0)
2224 {
2225 /* Speculation was successful. */
2226 full_ds = 0;
2227 was_changed = (res > 0);
2228 if (res == 2)
2229 was_target_conflict = true;
2230 if (ptrans_type)
2231 *ptrans_type = TRANS_SPECULATION;
2232 sel_clear_has_dependence ();
2233 }
2234 }
2235
2236 if (has_dep_p[DEPS_IN_INSN])
2237 /* We have some dependency that cannot be discarded. */
2238 return MOVEUP_EXPR_NULL;
2239
2240 if (has_dep_p[DEPS_IN_LHS])
2241 {
2242 /* Only separable insns can be moved up with the new register.
2243 Anyways, we should mark that the original register is
2244 unavailable. */
2245 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2246 return MOVEUP_EXPR_NULL;
2247
2248 EXPR_TARGET_AVAILABLE (expr) = false;
2249 was_target_conflict = true;
2250 as_rhs = true;
2251 }
2252
2253 /* At this point we have either separable insns, that will be lifted
2254 up only as RHSes, or non-separable insns with no dependency in lhs.
2255 If dependency is in RHS, then try to perform substitution and move up
2256 substituted RHS:
2257
2258 Ex. 1: Ex.2
2259 y = x; y = x;
2260 z = y*2; y = y*2;
2261
2262 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2263 moved above y=x assignment as z=x*2.
2264
2265 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2266 side can be moved because of the output dependency. The operation was
2267 cropped to its rhs above. */
2268 if (has_dep_p[DEPS_IN_RHS])
2269 {
2270 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2271
2272 /* Can't substitute UNIQUE VINSNs. */
2273 gcc_assert (!VINSN_UNIQUE_P (vi));
2274
2275 if (can_speculate_dep_p (*rhs_dsp))
2276 {
2277 int res;
2278
2279 res = speculate_expr (expr, *rhs_dsp);
2280 if (res >= 0)
2281 {
2282 /* Speculation was successful. */
2283 *rhs_dsp = 0;
2284 was_changed = (res > 0);
2285 if (res == 2)
2286 was_target_conflict = true;
2287 if (ptrans_type)
2288 *ptrans_type = TRANS_SPECULATION;
2289 }
2290 else
2291 return MOVEUP_EXPR_NULL;
2292 }
2293 else if (can_substitute_through_p (through_insn,
2294 *rhs_dsp)
2295 && substitute_reg_in_expr (expr, through_insn, false))
2296 {
2297 /* ??? We cannot perform substitution AND speculation on the same
2298 insn. */
2299 gcc_assert (!was_changed);
2300 was_changed = true;
2301 if (ptrans_type)
2302 *ptrans_type = TRANS_SUBSTITUTION;
2303 EXPR_WAS_SUBSTITUTED (expr) = true;
2304 }
2305 else
2306 return MOVEUP_EXPR_NULL;
2307 }
2308
2309 /* Don't move trapping insns through jumps.
2310 This check should be at the end to give a chance to control speculation
2311 to perform its duties. */
2312 if (CANT_MOVE_TRAPPING (expr, through_insn))
2313 return MOVEUP_EXPR_NULL;
2314
2315 return (was_changed
2316 ? MOVEUP_EXPR_CHANGED
2317 : (as_rhs
2318 ? MOVEUP_EXPR_AS_RHS
2319 : MOVEUP_EXPR_SAME));
2320 }
2321
2322 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2323 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2324 that can exist within a parallel group. Write to RES the resulting
2325 code for moveup_expr. */
2326 static bool
2327 try_bitmap_cache (expr_t expr, insn_t insn,
2328 bool inside_insn_group,
2329 enum MOVEUP_EXPR_CODE *res)
2330 {
2331 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2332
2333 /* First check whether we've analyzed this situation already. */
2334 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2335 {
2336 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2337 {
2338 if (sched_verbose >= 6)
2339 sel_print ("removed (cached)\n");
2340 *res = MOVEUP_EXPR_NULL;
2341 return true;
2342 }
2343 else
2344 {
2345 if (sched_verbose >= 6)
2346 sel_print ("unchanged (cached)\n");
2347 *res = MOVEUP_EXPR_SAME;
2348 return true;
2349 }
2350 }
2351 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2352 {
2353 if (inside_insn_group)
2354 {
2355 if (sched_verbose >= 6)
2356 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2357 *res = MOVEUP_EXPR_SAME;
2358 return true;
2359
2360 }
2361 else
2362 EXPR_TARGET_AVAILABLE (expr) = false;
2363
2364 /* This is the only case when propagation result can change over time,
2365 as we can dynamically switch off scheduling as RHS. In this case,
2366 just check the flag to reach the correct decision. */
2367 if (enable_schedule_as_rhs_p)
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("unchanged (as RHS, cached)\n");
2371 *res = MOVEUP_EXPR_AS_RHS;
2372 return true;
2373 }
2374 else
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("removed (cached as RHS, but renaming"
2378 " is now disabled)\n");
2379 *res = MOVEUP_EXPR_NULL;
2380 return true;
2381 }
2382 }
2383
2384 return false;
2385 }
2386
2387 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2388 if successful. Write to RES the resulting code for moveup_expr. */
2389 static bool
2390 try_transformation_cache (expr_t expr, insn_t insn,
2391 enum MOVEUP_EXPR_CODE *res)
2392 {
2393 struct transformed_insns *pti
2394 = (struct transformed_insns *)
2395 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2396 &EXPR_VINSN (expr),
2397 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2398 if (pti)
2399 {
2400 /* This EXPR was already moved through this insn and was
2401 changed as a result. Fetch the proper data from
2402 the hashtable. */
2403 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2404 INSN_UID (insn), pti->type,
2405 pti->vinsn_old, pti->vinsn_new,
2406 EXPR_SPEC_DONE_DS (expr));
2407
2408 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2409 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2410 change_vinsn_in_expr (expr, pti->vinsn_new);
2411 if (pti->was_target_conflict)
2412 EXPR_TARGET_AVAILABLE (expr) = false;
2413 if (pti->type == TRANS_SPECULATION)
2414 {
2415 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2416 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2417 }
2418
2419 if (sched_verbose >= 6)
2420 {
2421 sel_print ("changed (cached): ");
2422 dump_expr (expr);
2423 sel_print ("\n");
2424 }
2425
2426 *res = MOVEUP_EXPR_CHANGED;
2427 return true;
2428 }
2429
2430 return false;
2431 }
2432
2433 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2434 static void
2435 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2436 enum MOVEUP_EXPR_CODE res)
2437 {
2438 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2439
2440 /* Do not cache result of propagating jumps through an insn group,
2441 as it is always true, which is not useful outside the group. */
2442 if (inside_insn_group)
2443 return;
2444
2445 if (res == MOVEUP_EXPR_NULL)
2446 {
2447 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2448 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2449 }
2450 else if (res == MOVEUP_EXPR_SAME)
2451 {
2452 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2453 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2454 }
2455 else if (res == MOVEUP_EXPR_AS_RHS)
2456 {
2457 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2458 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2459 }
2460 else
2461 gcc_unreachable ();
2462 }
2463
2464 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2465 and transformation type TRANS_TYPE. */
2466 static void
2467 update_transformation_cache (expr_t expr, insn_t insn,
2468 bool inside_insn_group,
2469 enum local_trans_type trans_type,
2470 vinsn_t expr_old_vinsn)
2471 {
2472 struct transformed_insns *pti;
2473
2474 if (inside_insn_group)
2475 return;
2476
2477 pti = XNEW (struct transformed_insns);
2478 pti->vinsn_old = expr_old_vinsn;
2479 pti->vinsn_new = EXPR_VINSN (expr);
2480 pti->type = trans_type;
2481 pti->was_target_conflict = was_target_conflict;
2482 pti->ds = EXPR_SPEC_DONE_DS (expr);
2483 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2484 vinsn_attach (pti->vinsn_old);
2485 vinsn_attach (pti->vinsn_new);
2486 *((struct transformed_insns **)
2487 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2488 pti, VINSN_HASH_RTX (expr_old_vinsn),
2489 INSERT)) = pti;
2490 }
2491
2492 /* Same as moveup_expr, but first looks up the result of
2493 transformation in caches. */
2494 static enum MOVEUP_EXPR_CODE
2495 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2496 {
2497 enum MOVEUP_EXPR_CODE res;
2498 bool got_answer = false;
2499
2500 if (sched_verbose >= 6)
2501 {
2502 sel_print ("Moving ");
2503 dump_expr (expr);
2504 sel_print (" through %d: ", INSN_UID (insn));
2505 }
2506
2507 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2508 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2509 == EXPR_INSN_RTX (expr)))
2510 /* Don't use cached information for debug insns that are heads of
2511 basic blocks. */;
2512 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2513 /* When inside insn group, we do not want remove stores conflicting
2514 with previosly issued loads. */
2515 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2516 else if (try_transformation_cache (expr, insn, &res))
2517 got_answer = true;
2518
2519 if (! got_answer)
2520 {
2521 /* Invoke moveup_expr and record the results. */
2522 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2523 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2524 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2525 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2526 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2527
2528 /* ??? Invent something better than this. We can't allow old_vinsn
2529 to go, we need it for the history vector. */
2530 vinsn_attach (expr_old_vinsn);
2531
2532 res = moveup_expr (expr, insn, inside_insn_group,
2533 &trans_type);
2534 switch (res)
2535 {
2536 case MOVEUP_EXPR_NULL:
2537 update_bitmap_cache (expr, insn, inside_insn_group, res);
2538 if (sched_verbose >= 6)
2539 sel_print ("removed\n");
2540 break;
2541
2542 case MOVEUP_EXPR_SAME:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("unchanged\n");
2546 break;
2547
2548 case MOVEUP_EXPR_AS_RHS:
2549 gcc_assert (!unique_p || inside_insn_group);
2550 update_bitmap_cache (expr, insn, inside_insn_group, res);
2551 if (sched_verbose >= 6)
2552 sel_print ("unchanged (as RHS)\n");
2553 break;
2554
2555 case MOVEUP_EXPR_CHANGED:
2556 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2557 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2558 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2559 INSN_UID (insn), trans_type,
2560 expr_old_vinsn, EXPR_VINSN (expr),
2561 expr_old_spec_ds);
2562 update_transformation_cache (expr, insn, inside_insn_group,
2563 trans_type, expr_old_vinsn);
2564 if (sched_verbose >= 6)
2565 {
2566 sel_print ("changed: ");
2567 dump_expr (expr);
2568 sel_print ("\n");
2569 }
2570 break;
2571 default:
2572 gcc_unreachable ();
2573 }
2574
2575 vinsn_detach (expr_old_vinsn);
2576 }
2577
2578 return res;
2579 }
2580
2581 /* Moves an av set AVP up through INSN, performing necessary
2582 transformations. */
2583 static void
2584 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2585 {
2586 av_set_iterator i;
2587 expr_t expr;
2588
2589 FOR_EACH_EXPR_1 (expr, i, avp)
2590 {
2591
2592 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2593 {
2594 case MOVEUP_EXPR_SAME:
2595 case MOVEUP_EXPR_AS_RHS:
2596 break;
2597
2598 case MOVEUP_EXPR_NULL:
2599 av_set_iter_remove (&i);
2600 break;
2601
2602 case MOVEUP_EXPR_CHANGED:
2603 expr = merge_with_other_exprs (avp, &i, expr);
2604 break;
2605
2606 default:
2607 gcc_unreachable ();
2608 }
2609 }
2610 }
2611
2612 /* Moves AVP set along PATH. */
2613 static void
2614 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2615 {
2616 int last_cycle;
2617
2618 if (sched_verbose >= 6)
2619 sel_print ("Moving expressions up in the insn group...\n");
2620 if (! path)
2621 return;
2622 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2623 while (path
2624 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2625 {
2626 moveup_set_expr (avp, ILIST_INSN (path), true);
2627 path = ILIST_NEXT (path);
2628 }
2629 }
2630
2631 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2632 static bool
2633 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2634 {
2635 expr_def _tmp, *tmp = &_tmp;
2636 int last_cycle;
2637 bool res = true;
2638
2639 copy_expr_onside (tmp, expr);
2640 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2641 while (path
2642 && res
2643 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2644 {
2645 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2646 != MOVEUP_EXPR_NULL);
2647 path = ILIST_NEXT (path);
2648 }
2649
2650 if (res)
2651 {
2652 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2653 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2654
2655 if (tmp_vinsn != expr_vliw_vinsn)
2656 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2657 }
2658
2659 clear_expr (tmp);
2660 return res;
2661 }
2662 \f
2663
2664 /* Functions that compute av and lv sets. */
2665
2666 /* Returns true if INSN is not a downward continuation of the given path P in
2667 the current stage. */
2668 static bool
2669 is_ineligible_successor (insn_t insn, ilist_t p)
2670 {
2671 insn_t prev_insn;
2672
2673 /* Check if insn is not deleted. */
2674 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2675 gcc_unreachable ();
2676 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2677 gcc_unreachable ();
2678
2679 /* If it's the first insn visited, then the successor is ok. */
2680 if (!p)
2681 return false;
2682
2683 prev_insn = ILIST_INSN (p);
2684
2685 if (/* a backward edge. */
2686 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2687 /* is already visited. */
2688 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2689 && (ilist_is_in_p (p, insn)
2690 /* We can reach another fence here and still seqno of insn
2691 would be equal to seqno of prev_insn. This is possible
2692 when prev_insn is a previously created bookkeeping copy.
2693 In that case it'd get a seqno of insn. Thus, check here
2694 whether insn is in current fence too. */
2695 || IN_CURRENT_FENCE_P (insn)))
2696 /* Was already scheduled on this round. */
2697 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2698 && IN_CURRENT_FENCE_P (insn))
2699 /* An insn from another fence could also be
2700 scheduled earlier even if this insn is not in
2701 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2702 || (!pipelining_p
2703 && INSN_SCHED_TIMES (insn) > 0))
2704 return true;
2705 else
2706 return false;
2707 }
2708
2709 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2710 of handling multiple successors and properly merging its av_sets. P is
2711 the current path traversed. WS is the size of lookahead window.
2712 Return the av set computed. */
2713 static av_set_t
2714 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2715 {
2716 struct succs_info *sinfo;
2717 av_set_t expr_in_all_succ_branches = NULL;
2718 int is;
2719 insn_t succ, zero_succ = NULL;
2720 av_set_t av1 = NULL;
2721
2722 gcc_assert (sel_bb_end_p (insn));
2723
2724 /* Find different kind of successors needed for correct computing of
2725 SPEC and TARGET_AVAILABLE attributes. */
2726 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2727
2728 /* Debug output. */
2729 if (sched_verbose >= 6)
2730 {
2731 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2732 dump_insn_vector (sinfo->succs_ok);
2733 sel_print ("\n");
2734 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2735 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2736 }
2737
2738 /* Add insn to to the tail of current path. */
2739 ilist_add (&p, insn);
2740
2741 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2742 {
2743 av_set_t succ_set;
2744
2745 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2746 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2747
2748 av_set_split_usefulness (succ_set,
2749 VEC_index (int, sinfo->probs_ok, is),
2750 sinfo->all_prob);
2751
2752 if (sinfo->all_succs_n > 1)
2753 {
2754 /* Find EXPR'es that came from *all* successors and save them
2755 into expr_in_all_succ_branches. This set will be used later
2756 for calculating speculation attributes of EXPR'es. */
2757 if (is == 0)
2758 {
2759 expr_in_all_succ_branches = av_set_copy (succ_set);
2760
2761 /* Remember the first successor for later. */
2762 zero_succ = succ;
2763 }
2764 else
2765 {
2766 av_set_iterator i;
2767 expr_t expr;
2768
2769 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2770 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2771 av_set_iter_remove (&i);
2772 }
2773 }
2774
2775 /* Union the av_sets. Check liveness restrictions on target registers
2776 in special case of two successors. */
2777 if (sinfo->succs_ok_n == 2 && is == 1)
2778 {
2779 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2780 basic_block bb1 = BLOCK_FOR_INSN (succ);
2781
2782 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2783 av_set_union_and_live (&av1, &succ_set,
2784 BB_LV_SET (bb0),
2785 BB_LV_SET (bb1),
2786 insn);
2787 }
2788 else
2789 av_set_union_and_clear (&av1, &succ_set, insn);
2790 }
2791
2792 /* Check liveness restrictions via hard way when there are more than
2793 two successors. */
2794 if (sinfo->succs_ok_n > 2)
2795 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2796 {
2797 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2798
2799 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2800 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2801 BB_LV_SET (succ_bb));
2802 }
2803
2804 /* Finally, check liveness restrictions on paths leaving the region. */
2805 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2806 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2807 mark_unavailable_targets
2808 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2809
2810 if (sinfo->all_succs_n > 1)
2811 {
2812 av_set_iterator i;
2813 expr_t expr;
2814
2815 /* Increase the spec attribute of all EXPR'es that didn't come
2816 from all successors. */
2817 FOR_EACH_EXPR (expr, i, av1)
2818 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2819 EXPR_SPEC (expr)++;
2820
2821 av_set_clear (&expr_in_all_succ_branches);
2822
2823 /* Do not move conditional branches through other
2824 conditional branches. So, remove all conditional
2825 branches from av_set if current operator is a conditional
2826 branch. */
2827 av_set_substract_cond_branches (&av1);
2828 }
2829
2830 ilist_remove (&p);
2831 free_succs_info (sinfo);
2832
2833 if (sched_verbose >= 6)
2834 {
2835 sel_print ("av_succs (%d): ", INSN_UID (insn));
2836 dump_av_set (av1);
2837 sel_print ("\n");
2838 }
2839
2840 return av1;
2841 }
2842
2843 /* This function computes av_set for the FIRST_INSN by dragging valid
2844 av_set through all basic block insns either from the end of basic block
2845 (computed using compute_av_set_at_bb_end) or from the insn on which
2846 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2847 below the basic block and handling conditional branches.
2848 FIRST_INSN - the basic block head, P - path consisting of the insns
2849 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2850 and bb ends are added to the path), WS - current window size,
2851 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2852 static av_set_t
2853 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2854 bool need_copy_p)
2855 {
2856 insn_t cur_insn;
2857 int end_ws = ws;
2858 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2859 insn_t after_bb_end = NEXT_INSN (bb_end);
2860 insn_t last_insn;
2861 av_set_t av = NULL;
2862 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2863
2864 /* Return NULL if insn is not on the legitimate downward path. */
2865 if (is_ineligible_successor (first_insn, p))
2866 {
2867 if (sched_verbose >= 6)
2868 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2869
2870 return NULL;
2871 }
2872
2873 /* If insn already has valid av(insn) computed, just return it. */
2874 if (AV_SET_VALID_P (first_insn))
2875 {
2876 av_set_t av_set;
2877
2878 if (sel_bb_head_p (first_insn))
2879 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2880 else
2881 av_set = NULL;
2882
2883 if (sched_verbose >= 6)
2884 {
2885 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2886 dump_av_set (av_set);
2887 sel_print ("\n");
2888 }
2889
2890 return need_copy_p ? av_set_copy (av_set) : av_set;
2891 }
2892
2893 ilist_add (&p, first_insn);
2894
2895 /* As the result after this loop have completed, in LAST_INSN we'll
2896 have the insn which has valid av_set to start backward computation
2897 from: it either will be NULL because on it the window size was exceeded
2898 or other valid av_set as returned by compute_av_set for the last insn
2899 of the basic block. */
2900 for (last_insn = first_insn; last_insn != after_bb_end;
2901 last_insn = NEXT_INSN (last_insn))
2902 {
2903 /* We may encounter valid av_set not only on bb_head, but also on
2904 those insns on which previously MAX_WS was exceeded. */
2905 if (AV_SET_VALID_P (last_insn))
2906 {
2907 if (sched_verbose >= 6)
2908 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2909 break;
2910 }
2911
2912 /* The special case: the last insn of the BB may be an
2913 ineligible_successor due to its SEQ_NO that was set on
2914 it as a bookkeeping. */
2915 if (last_insn != first_insn
2916 && is_ineligible_successor (last_insn, p))
2917 {
2918 if (sched_verbose >= 6)
2919 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2920 break;
2921 }
2922
2923 if (DEBUG_INSN_P (last_insn))
2924 continue;
2925
2926 if (end_ws > max_ws)
2927 {
2928 /* We can reach max lookahead size at bb_header, so clean av_set
2929 first. */
2930 INSN_WS_LEVEL (last_insn) = global_level;
2931
2932 if (sched_verbose >= 6)
2933 sel_print ("Insn %d is beyond the software lookahead window size\n",
2934 INSN_UID (last_insn));
2935 break;
2936 }
2937
2938 end_ws++;
2939 }
2940
2941 /* Get the valid av_set into AV above the LAST_INSN to start backward
2942 computation from. It either will be empty av_set or av_set computed from
2943 the successors on the last insn of the current bb. */
2944 if (last_insn != after_bb_end)
2945 {
2946 av = NULL;
2947
2948 /* This is needed only to obtain av_sets that are identical to
2949 those computed by the old compute_av_set version. */
2950 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2951 av_set_add (&av, INSN_EXPR (last_insn));
2952 }
2953 else
2954 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2955 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2956
2957 /* Compute av_set in AV starting from below the LAST_INSN up to
2958 location above the FIRST_INSN. */
2959 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2960 cur_insn = PREV_INSN (cur_insn))
2961 if (!INSN_NOP_P (cur_insn))
2962 {
2963 expr_t expr;
2964
2965 moveup_set_expr (&av, cur_insn, false);
2966
2967 /* If the expression for CUR_INSN is already in the set,
2968 replace it by the new one. */
2969 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2970 if (expr != NULL)
2971 {
2972 clear_expr (expr);
2973 copy_expr (expr, INSN_EXPR (cur_insn));
2974 }
2975 else
2976 av_set_add (&av, INSN_EXPR (cur_insn));
2977 }
2978
2979 /* Clear stale bb_av_set. */
2980 if (sel_bb_head_p (first_insn))
2981 {
2982 av_set_clear (&BB_AV_SET (cur_bb));
2983 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2984 BB_AV_LEVEL (cur_bb) = global_level;
2985 }
2986
2987 if (sched_verbose >= 6)
2988 {
2989 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2990 dump_av_set (av);
2991 sel_print ("\n");
2992 }
2993
2994 ilist_remove (&p);
2995 return av;
2996 }
2997
2998 /* Compute av set before INSN.
2999 INSN - the current operation (actual rtx INSN)
3000 P - the current path, which is list of insns visited so far
3001 WS - software lookahead window size.
3002 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3003 if we want to save computed av_set in s_i_d, we should make a copy of it.
3004
3005 In the resulting set we will have only expressions that don't have delay
3006 stalls and nonsubstitutable dependences. */
3007 static av_set_t
3008 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3009 {
3010 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3011 }
3012
3013 /* Propagate a liveness set LV through INSN. */
3014 static void
3015 propagate_lv_set (regset lv, insn_t insn)
3016 {
3017 gcc_assert (INSN_P (insn));
3018
3019 if (INSN_NOP_P (insn))
3020 return;
3021
3022 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3023 }
3024
3025 /* Return livness set at the end of BB. */
3026 static regset
3027 compute_live_after_bb (basic_block bb)
3028 {
3029 edge e;
3030 edge_iterator ei;
3031 regset lv = get_clear_regset_from_pool ();
3032
3033 gcc_assert (!ignore_first);
3034
3035 FOR_EACH_EDGE (e, ei, bb->succs)
3036 if (sel_bb_empty_p (e->dest))
3037 {
3038 if (! BB_LV_SET_VALID_P (e->dest))
3039 {
3040 gcc_unreachable ();
3041 gcc_assert (BB_LV_SET (e->dest) == NULL);
3042 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3043 BB_LV_SET_VALID_P (e->dest) = true;
3044 }
3045 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3046 }
3047 else
3048 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3049
3050 return lv;
3051 }
3052
3053 /* Compute the set of all live registers at the point before INSN and save
3054 it at INSN if INSN is bb header. */
3055 regset
3056 compute_live (insn_t insn)
3057 {
3058 basic_block bb = BLOCK_FOR_INSN (insn);
3059 insn_t final, temp;
3060 regset lv;
3061
3062 /* Return the valid set if we're already on it. */
3063 if (!ignore_first)
3064 {
3065 regset src = NULL;
3066
3067 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3068 src = BB_LV_SET (bb);
3069 else
3070 {
3071 gcc_assert (in_current_region_p (bb));
3072 if (INSN_LIVE_VALID_P (insn))
3073 src = INSN_LIVE (insn);
3074 }
3075
3076 if (src)
3077 {
3078 lv = get_regset_from_pool ();
3079 COPY_REG_SET (lv, src);
3080
3081 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3082 {
3083 COPY_REG_SET (BB_LV_SET (bb), lv);
3084 BB_LV_SET_VALID_P (bb) = true;
3085 }
3086
3087 return_regset_to_pool (lv);
3088 return lv;
3089 }
3090 }
3091
3092 /* We've skipped the wrong lv_set. Don't skip the right one. */
3093 ignore_first = false;
3094 gcc_assert (in_current_region_p (bb));
3095
3096 /* Find a valid LV set in this block or below, if needed.
3097 Start searching from the next insn: either ignore_first is true, or
3098 INSN doesn't have a correct live set. */
3099 temp = NEXT_INSN (insn);
3100 final = NEXT_INSN (BB_END (bb));
3101 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3102 temp = NEXT_INSN (temp);
3103 if (temp == final)
3104 {
3105 lv = compute_live_after_bb (bb);
3106 temp = PREV_INSN (temp);
3107 }
3108 else
3109 {
3110 lv = get_regset_from_pool ();
3111 COPY_REG_SET (lv, INSN_LIVE (temp));
3112 }
3113
3114 /* Put correct lv sets on the insns which have bad sets. */
3115 final = PREV_INSN (insn);
3116 while (temp != final)
3117 {
3118 propagate_lv_set (lv, temp);
3119 COPY_REG_SET (INSN_LIVE (temp), lv);
3120 INSN_LIVE_VALID_P (temp) = true;
3121 temp = PREV_INSN (temp);
3122 }
3123
3124 /* Also put it in a BB. */
3125 if (sel_bb_head_p (insn))
3126 {
3127 basic_block bb = BLOCK_FOR_INSN (insn);
3128
3129 COPY_REG_SET (BB_LV_SET (bb), lv);
3130 BB_LV_SET_VALID_P (bb) = true;
3131 }
3132
3133 /* We return LV to the pool, but will not clear it there. Thus we can
3134 legimatelly use LV till the next use of regset_pool_get (). */
3135 return_regset_to_pool (lv);
3136 return lv;
3137 }
3138
3139 /* Update liveness sets for INSN. */
3140 static inline void
3141 update_liveness_on_insn (rtx insn)
3142 {
3143 ignore_first = true;
3144 compute_live (insn);
3145 }
3146
3147 /* Compute liveness below INSN and write it into REGS. */
3148 static inline void
3149 compute_live_below_insn (rtx insn, regset regs)
3150 {
3151 rtx succ;
3152 succ_iterator si;
3153
3154 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3155 IOR_REG_SET (regs, compute_live (succ));
3156 }
3157
3158 /* Update the data gathered in av and lv sets starting from INSN. */
3159 static void
3160 update_data_sets (rtx insn)
3161 {
3162 update_liveness_on_insn (insn);
3163 if (sel_bb_head_p (insn))
3164 {
3165 gcc_assert (AV_LEVEL (insn) != 0);
3166 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3167 compute_av_set (insn, NULL, 0, 0);
3168 }
3169 }
3170 \f
3171
3172 /* Helper for move_op () and find_used_regs ().
3173 Return speculation type for which a check should be created on the place
3174 of INSN. EXPR is one of the original ops we are searching for. */
3175 static ds_t
3176 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3177 {
3178 ds_t to_check_ds;
3179 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3180
3181 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3182
3183 if (targetm.sched.get_insn_checked_ds)
3184 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3185
3186 if (spec_info != NULL
3187 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3188 already_checked_ds |= BEGIN_CONTROL;
3189
3190 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3191
3192 to_check_ds &= ~already_checked_ds;
3193
3194 return to_check_ds;
3195 }
3196
3197 /* Find the set of registers that are unavailable for storing expres
3198 while moving ORIG_OPS up on the path starting from INSN due to
3199 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3200
3201 All the original operations found during the traversal are saved in the
3202 ORIGINAL_INSNS list.
3203
3204 REG_RENAME_P denotes the set of hardware registers that
3205 can not be used with renaming due to the register class restrictions,
3206 mode restrictions and other (the register we'll choose should be
3207 compatible class with the original uses, shouldn't be in call_used_regs,
3208 should be HARD_REGNO_RENAME_OK etc).
3209
3210 Returns TRUE if we've found all original insns, FALSE otherwise.
3211
3212 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3213 to traverse the code motion paths. This helper function finds registers
3214 that are not available for storing expres while moving ORIG_OPS up on the
3215 path starting from INSN. A register considered as used on the moving path,
3216 if one of the following conditions is not satisfied:
3217
3218 (1) a register not set or read on any path from xi to an instance of
3219 the original operation,
3220 (2) not among the live registers of the point immediately following the
3221 first original operation on a given downward path, except for the
3222 original target register of the operation,
3223 (3) not live on the other path of any conditional branch that is passed
3224 by the operation, in case original operations are not present on
3225 both paths of the conditional branch.
3226
3227 All the original operations found during the traversal are saved in the
3228 ORIGINAL_INSNS list.
3229
3230 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3231 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3232 to unavailable hard regs at the point original operation is found. */
3233
3234 static bool
3235 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3236 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3237 {
3238 def_list_iterator i;
3239 def_t def;
3240 int res;
3241 bool needs_spec_check_p = false;
3242 expr_t expr;
3243 av_set_iterator expr_iter;
3244 struct fur_static_params sparams;
3245 struct cmpd_local_params lparams;
3246
3247 /* We haven't visited any blocks yet. */
3248 bitmap_clear (code_motion_visited_blocks);
3249
3250 /* Init parameters for code_motion_path_driver. */
3251 sparams.crosses_call = false;
3252 sparams.original_insns = original_insns;
3253 sparams.used_regs = used_regs;
3254
3255 /* Set the appropriate hooks and data. */
3256 code_motion_path_driver_info = &fur_hooks;
3257
3258 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3259
3260 reg_rename_p->crosses_call |= sparams.crosses_call;
3261
3262 gcc_assert (res == 1);
3263 gcc_assert (original_insns && *original_insns);
3264
3265 /* ??? We calculate whether an expression needs a check when computing
3266 av sets. This information is not as precise as it could be due to
3267 merging this bit in merge_expr. We can do better in find_used_regs,
3268 but we want to avoid multiple traversals of the same code motion
3269 paths. */
3270 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3271 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3272
3273 /* Mark hardware regs in REG_RENAME_P that are not suitable
3274 for renaming expr in INSN due to hardware restrictions (register class,
3275 modes compatibility etc). */
3276 FOR_EACH_DEF (def, i, *original_insns)
3277 {
3278 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3279
3280 if (VINSN_SEPARABLE_P (vinsn))
3281 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3282
3283 /* Do not allow clobbering of ld.[sa] address in case some of the
3284 original operations need a check. */
3285 if (needs_spec_check_p)
3286 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3287 }
3288
3289 return true;
3290 }
3291 \f
3292
3293 /* Functions to choose the best insn from available ones. */
3294
3295 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3296 static int
3297 sel_target_adjust_priority (expr_t expr)
3298 {
3299 int priority = EXPR_PRIORITY (expr);
3300 int new_priority;
3301
3302 if (targetm.sched.adjust_priority)
3303 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3304 else
3305 new_priority = priority;
3306
3307 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3308 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3309
3310 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3311
3312 if (sched_verbose >= 4)
3313 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3314 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3315 EXPR_PRIORITY_ADJ (expr), new_priority);
3316
3317 return new_priority;
3318 }
3319
3320 /* Rank two available exprs for schedule. Never return 0 here. */
3321 static int
3322 sel_rank_for_schedule (const void *x, const void *y)
3323 {
3324 expr_t tmp = *(const expr_t *) y;
3325 expr_t tmp2 = *(const expr_t *) x;
3326 insn_t tmp_insn, tmp2_insn;
3327 vinsn_t tmp_vinsn, tmp2_vinsn;
3328 int val;
3329
3330 tmp_vinsn = EXPR_VINSN (tmp);
3331 tmp2_vinsn = EXPR_VINSN (tmp2);
3332 tmp_insn = EXPR_INSN_RTX (tmp);
3333 tmp2_insn = EXPR_INSN_RTX (tmp2);
3334
3335 /* Schedule debug insns as early as possible. */
3336 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3337 return -1;
3338 else if (DEBUG_INSN_P (tmp2_insn))
3339 return 1;
3340
3341 /* Prefer SCHED_GROUP_P insns to any others. */
3342 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3343 {
3344 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3345 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3346
3347 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3348 cannot be cloned. */
3349 if (VINSN_UNIQUE_P (tmp2_vinsn))
3350 return 1;
3351 return -1;
3352 }
3353
3354 /* Discourage scheduling of speculative checks. */
3355 val = (sel_insn_is_speculation_check (tmp_insn)
3356 - sel_insn_is_speculation_check (tmp2_insn));
3357 if (val)
3358 return val;
3359
3360 /* Prefer not scheduled insn over scheduled one. */
3361 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3362 {
3363 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3364 if (val)
3365 return val;
3366 }
3367
3368 /* Prefer jump over non-jump instruction. */
3369 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3370 return -1;
3371 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3372 return 1;
3373
3374 /* Prefer an expr with greater priority. */
3375 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3376 {
3377 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3378 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3379
3380 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3381 }
3382 else
3383 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3384 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3385 if (val)
3386 return val;
3387
3388 if (spec_info != NULL && spec_info->mask != 0)
3389 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3390 {
3391 ds_t ds1, ds2;
3392 dw_t dw1, dw2;
3393 int dw;
3394
3395 ds1 = EXPR_SPEC_DONE_DS (tmp);
3396 if (ds1)
3397 dw1 = ds_weak (ds1);
3398 else
3399 dw1 = NO_DEP_WEAK;
3400
3401 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3402 if (ds2)
3403 dw2 = ds_weak (ds2);
3404 else
3405 dw2 = NO_DEP_WEAK;
3406
3407 dw = dw2 - dw1;
3408 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3409 return dw;
3410 }
3411
3412 /* Prefer an old insn to a bookkeeping insn. */
3413 if (INSN_UID (tmp_insn) < first_emitted_uid
3414 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3415 return -1;
3416 if (INSN_UID (tmp_insn) >= first_emitted_uid
3417 && INSN_UID (tmp2_insn) < first_emitted_uid)
3418 return 1;
3419
3420 /* Prefer an insn with smaller UID, as a last resort.
3421 We can't safely use INSN_LUID as it is defined only for those insns
3422 that are in the stream. */
3423 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3424 }
3425
3426 /* Filter out expressions from av set pointed to by AV_PTR
3427 that are pipelined too many times. */
3428 static void
3429 process_pipelined_exprs (av_set_t *av_ptr)
3430 {
3431 expr_t expr;
3432 av_set_iterator si;
3433
3434 /* Don't pipeline already pipelined code as that would increase
3435 number of unnecessary register moves. */
3436 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3437 {
3438 if (EXPR_SCHED_TIMES (expr)
3439 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3440 av_set_iter_remove (&si);
3441 }
3442 }
3443
3444 /* Filter speculative insns from AV_PTR if we don't want them. */
3445 static void
3446 process_spec_exprs (av_set_t *av_ptr)
3447 {
3448 bool try_data_p = true;
3449 bool try_control_p = true;
3450 expr_t expr;
3451 av_set_iterator si;
3452
3453 if (spec_info == NULL)
3454 return;
3455
3456 /* Scan *AV_PTR to find out if we want to consider speculative
3457 instructions for scheduling. */
3458 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3459 {
3460 ds_t ds;
3461
3462 ds = EXPR_SPEC_DONE_DS (expr);
3463
3464 /* The probability of a success is too low - don't speculate. */
3465 if ((ds & SPECULATIVE)
3466 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3467 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3468 || (pipelining_p && false
3469 && (ds & DATA_SPEC)
3470 && (ds & CONTROL_SPEC))))
3471 {
3472 av_set_iter_remove (&si);
3473 continue;
3474 }
3475
3476 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3477 && !(ds & BEGIN_DATA))
3478 try_data_p = false;
3479
3480 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3481 && !(ds & BEGIN_CONTROL))
3482 try_control_p = false;
3483 }
3484
3485 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3486 {
3487 ds_t ds;
3488
3489 ds = EXPR_SPEC_DONE_DS (expr);
3490
3491 if (ds & SPECULATIVE)
3492 {
3493 if ((ds & BEGIN_DATA) && !try_data_p)
3494 /* We don't want any data speculative instructions right
3495 now. */
3496 av_set_iter_remove (&si);
3497
3498 if ((ds & BEGIN_CONTROL) && !try_control_p)
3499 /* We don't want any control speculative instructions right
3500 now. */
3501 av_set_iter_remove (&si);
3502 }
3503 }
3504 }
3505
3506 /* Search for any use-like insns in AV_PTR and decide on scheduling
3507 them. Return one when found, and NULL otherwise.
3508 Note that we check here whether a USE could be scheduled to avoid
3509 an infinite loop later. */
3510 static expr_t
3511 process_use_exprs (av_set_t *av_ptr)
3512 {
3513 expr_t expr;
3514 av_set_iterator si;
3515 bool uses_present_p = false;
3516 bool try_uses_p = true;
3517
3518 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3519 {
3520 /* This will also initialize INSN_CODE for later use. */
3521 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3522 {
3523 /* If we have a USE in *AV_PTR that was not scheduled yet,
3524 do so because it will do good only. */
3525 if (EXPR_SCHED_TIMES (expr) <= 0)
3526 {
3527 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3528 return expr;
3529
3530 av_set_iter_remove (&si);
3531 }
3532 else
3533 {
3534 gcc_assert (pipelining_p);
3535
3536 uses_present_p = true;
3537 }
3538 }
3539 else
3540 try_uses_p = false;
3541 }
3542
3543 if (uses_present_p)
3544 {
3545 /* If we don't want to schedule any USEs right now and we have some
3546 in *AV_PTR, remove them, else just return the first one found. */
3547 if (!try_uses_p)
3548 {
3549 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3550 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3551 av_set_iter_remove (&si);
3552 }
3553 else
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 {
3557 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3558
3559 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3560 return expr;
3561
3562 av_set_iter_remove (&si);
3563 }
3564 }
3565 }
3566
3567 return NULL;
3568 }
3569
3570 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3571 static bool
3572 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3573 {
3574 vinsn_t vinsn;
3575 int n;
3576
3577 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3578 if (VINSN_SEPARABLE_P (vinsn))
3579 {
3580 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3581 return true;
3582 }
3583 else
3584 {
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3590 VINSN_REG_SETS (EXPR_VINSN (expr))))
3591 return true;
3592 }
3593
3594 return false;
3595 }
3596
3597 #ifdef ENABLE_CHECKING
3598 /* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601 static bool
3602 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603 {
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3607
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3613
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3616
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3623
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3627 {
3628 unsigned regno = REGNO (sparams->dest);
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630
3631 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3632 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3633 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3634 return true;
3635 }
3636
3637 return false;
3638 }
3639 #endif
3640
3641 /* Clear VINSN_VEC and detach vinsns. */
3642 static void
3643 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644 {
3645 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
3650
3651 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3652 vinsn_detach (vinsn);
3653 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3654 }
3655 }
3656
3657 /* Add the vinsn of EXPR to the VINSN_VEC. */
3658 static void
3659 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660 {
3661 vinsn_attach (EXPR_VINSN (expr));
3662 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3663 }
3664
3665 /* Free the vector representing blocked expressions. */
3666 static void
3667 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3668 {
3669 if (*vinsn_vec)
3670 VEC_free (vinsn_t, heap, *vinsn_vec);
3671 }
3672
3673 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3674
3675 void sel_add_to_insn_priority (rtx insn, int amount)
3676 {
3677 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3678
3679 if (sched_verbose >= 2)
3680 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3681 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3682 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3683 }
3684
3685 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3686 true if there is something to schedule. BNDS and FENCE are current
3687 boundaries and fence, respectively. If we need to stall for some cycles
3688 before an expr from AV would become available, write this number to
3689 *PNEED_STALL. */
3690 static bool
3691 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3692 int *pneed_stall)
3693 {
3694 av_set_iterator si;
3695 expr_t expr;
3696 int sched_next_worked = 0, stalled, n;
3697 static int av_max_prio, est_ticks_till_branch;
3698 int min_need_stall = -1;
3699 deps_t dc = BND_DC (BLIST_BND (bnds));
3700
3701 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3702 already scheduled. */
3703 if (av == NULL)
3704 return false;
3705
3706 /* Empty vector from the previous stuff. */
3707 if (VEC_length (expr_t, vec_av_set) > 0)
3708 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3709
3710 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3711 for each insn. */
3712 gcc_assert (VEC_empty (expr_t, vec_av_set));
3713 FOR_EACH_EXPR (expr, si, av)
3714 {
3715 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3716
3717 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3718
3719 /* Adjust priority using target backend hook. */
3720 sel_target_adjust_priority (expr);
3721 }
3722
3723 /* Sort the vector. */
3724 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3725
3726 /* We record maximal priority of insns in av set for current instruction
3727 group. */
3728 if (FENCE_STARTS_CYCLE_P (fence))
3729 av_max_prio = est_ticks_till_branch = INT_MIN;
3730
3731 /* Filter out inappropriate expressions. Loop's direction is reversed to
3732 visit "best" instructions first. We assume that VEC_unordered_remove
3733 moves last element in place of one being deleted. */
3734 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3735 {
3736 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3737 insn_t insn = EXPR_INSN_RTX (expr);
3738 char target_available;
3739 bool is_orig_reg_p = true;
3740 int need_cycles, new_prio;
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
3745 VEC_unordered_remove (expr_t, vec_av_set, n);
3746 continue;
3747 }
3748
3749 /* Set number of sched_next insns (just in case there
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
3753
3754 /* Check all liveness requirements and try renaming.
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3761 target_available = -1;
3762
3763 /* If the availability of the EXPR is invalidated by the insertion of
3764 bookkeeping earlier, make sure that we won't choose this expr for
3765 scheduling if it's not separable, and if it is separable, then
3766 we have to recompute the set of available registers for it. */
3767 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3768 {
3769 VEC_unordered_remove (expr_t, vec_av_set, n);
3770 if (sched_verbose >= 4)
3771 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3772 INSN_UID (insn));
3773 continue;
3774 }
3775
3776 if (target_available == true)
3777 {
3778 /* Do nothing -- we can use an existing register. */
3779 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3780 }
3781 else if (/* Non-separable instruction will never
3782 get another register. */
3783 (target_available == false
3784 && !EXPR_SEPARABLE_P (expr))
3785 /* Don't try to find a register for low-priority expression. */
3786 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3787 /* ??? FIXME: Don't try to rename data speculation. */
3788 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3789 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3790 {
3791 VEC_unordered_remove (expr_t, vec_av_set, n);
3792 if (sched_verbose >= 4)
3793 sel_print ("Expr %d has no suitable target register\n",
3794 INSN_UID (insn));
3795 continue;
3796 }
3797
3798 /* Filter expressions that need to be renamed or speculated when
3799 pipelining, because compensating register copies or speculation
3800 checks are likely to be placed near the beginning of the loop,
3801 causing a stall. */
3802 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3803 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3804 {
3805 /* Estimation of number of cycles until loop branch for
3806 renaming/speculation to be successful. */
3807 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3808
3809 if ((int) current_loop_nest->ninsns < 9)
3810 {
3811 VEC_unordered_remove (expr_t, vec_av_set, n);
3812 if (sched_verbose >= 4)
3813 sel_print ("Pipelining expr %d will likely cause stall\n",
3814 INSN_UID (insn));
3815 continue;
3816 }
3817
3818 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3819 < need_n_ticks_till_branch * issue_rate / 2
3820 && est_ticks_till_branch < need_n_ticks_till_branch)
3821 {
3822 VEC_unordered_remove (expr_t, vec_av_set, n);
3823 if (sched_verbose >= 4)
3824 sel_print ("Pipelining expr %d will likely cause stall\n",
3825 INSN_UID (insn));
3826 continue;
3827 }
3828 }
3829
3830 /* We want to schedule speculation checks as late as possible. Discard
3831 them from av set if there are instructions with higher priority. */
3832 if (sel_insn_is_speculation_check (insn)
3833 && EXPR_PRIORITY (expr) < av_max_prio)
3834 {
3835 stalled++;
3836 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3837 VEC_unordered_remove (expr_t, vec_av_set, n);
3838 if (sched_verbose >= 4)
3839 sel_print ("Delaying speculation check %d until its first use\n",
3840 INSN_UID (insn));
3841 continue;
3842 }
3843
3844 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3845 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3846 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3847
3848 /* Don't allow any insns whose data is not yet ready.
3849 Check first whether we've already tried them and failed. */
3850 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3851 {
3852 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3853 - FENCE_CYCLE (fence));
3854 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3855 est_ticks_till_branch = MAX (est_ticks_till_branch,
3856 EXPR_PRIORITY (expr) + need_cycles);
3857
3858 if (need_cycles > 0)
3859 {
3860 stalled++;
3861 min_need_stall = (min_need_stall < 0
3862 ? need_cycles
3863 : MIN (min_need_stall, need_cycles));
3864 VEC_unordered_remove (expr_t, vec_av_set, n);
3865
3866 if (sched_verbose >= 4)
3867 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3868 INSN_UID (insn),
3869 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3870 continue;
3871 }
3872 }
3873
3874 /* Now resort to dependence analysis to find whether EXPR might be
3875 stalled due to dependencies from FENCE's context. */
3876 need_cycles = tick_check_p (expr, dc, fence);
3877 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3878
3879 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3880 est_ticks_till_branch = MAX (est_ticks_till_branch,
3881 new_prio);
3882
3883 if (need_cycles > 0)
3884 {
3885 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3886 {
3887 int new_size = INSN_UID (insn) * 3 / 2;
3888
3889 FENCE_READY_TICKS (fence)
3890 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3891 new_size, FENCE_READY_TICKS_SIZE (fence),
3892 sizeof (int));
3893 }
3894 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3895 = FENCE_CYCLE (fence) + need_cycles;
3896
3897 stalled++;
3898 min_need_stall = (min_need_stall < 0
3899 ? need_cycles
3900 : MIN (min_need_stall, need_cycles));
3901
3902 VEC_unordered_remove (expr_t, vec_av_set, n);
3903
3904 if (sched_verbose >= 4)
3905 sel_print ("Expr %d is not ready yet until cycle %d\n",
3906 INSN_UID (insn),
3907 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3908 continue;
3909 }
3910
3911 if (sched_verbose >= 4)
3912 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3913 min_need_stall = 0;
3914 }
3915
3916 /* Clear SCHED_NEXT. */
3917 if (FENCE_SCHED_NEXT (fence))
3918 {
3919 gcc_assert (sched_next_worked == 1);
3920 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3921 }
3922
3923 /* No need to stall if this variable was not initialized. */
3924 if (min_need_stall < 0)
3925 min_need_stall = 0;
3926
3927 if (VEC_empty (expr_t, vec_av_set))
3928 {
3929 /* We need to set *pneed_stall here, because later we skip this code
3930 when ready list is empty. */
3931 *pneed_stall = min_need_stall;
3932 return false;
3933 }
3934 else
3935 gcc_assert (min_need_stall == 0);
3936
3937 /* Sort the vector. */
3938 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3939
3940 if (sched_verbose >= 4)
3941 {
3942 sel_print ("Total ready exprs: %d, stalled: %d\n",
3943 VEC_length (expr_t, vec_av_set), stalled);
3944 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3945 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3946 dump_expr (expr);
3947 sel_print ("\n");
3948 }
3949
3950 *pneed_stall = 0;
3951 return true;
3952 }
3953
3954 /* Convert a vectored and sorted av set to the ready list that
3955 the rest of the backend wants to see. */
3956 static void
3957 convert_vec_av_set_to_ready (void)
3958 {
3959 int n;
3960 expr_t expr;
3961
3962 /* Allocate and fill the ready list from the sorted vector. */
3963 ready.n_ready = VEC_length (expr_t, vec_av_set);
3964 ready.first = ready.n_ready - 1;
3965
3966 gcc_assert (ready.n_ready > 0);
3967
3968 if (ready.n_ready > max_issue_size)
3969 {
3970 max_issue_size = ready.n_ready;
3971 sched_extend_ready_list (ready.n_ready);
3972 }
3973
3974 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3975 {
3976 vinsn_t vi = EXPR_VINSN (expr);
3977 insn_t insn = VINSN_INSN_RTX (vi);
3978
3979 ready_try[n] = 0;
3980 ready.vec[n] = insn;
3981 }
3982 }
3983
3984 /* Initialize ready list from *AV_PTR for the max_issue () call.
3985 If any unrecognizable insn found in *AV_PTR, return it (and skip
3986 max_issue). BND and FENCE are current boundary and fence,
3987 respectively. If we need to stall for some cycles before an expr
3988 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3989 static expr_t
3990 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3991 int *pneed_stall)
3992 {
3993 expr_t expr;
3994
3995 /* We do not support multiple boundaries per fence. */
3996 gcc_assert (BLIST_NEXT (bnds) == NULL);
3997
3998 /* Process expressions required special handling, i.e. pipelined,
3999 speculative and recog() < 0 expressions first. */
4000 process_pipelined_exprs (av_ptr);
4001 process_spec_exprs (av_ptr);
4002
4003 /* A USE could be scheduled immediately. */
4004 expr = process_use_exprs (av_ptr);
4005 if (expr)
4006 {
4007 *pneed_stall = 0;
4008 return expr;
4009 }
4010
4011 /* Turn the av set to a vector for sorting. */
4012 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4013 {
4014 ready.n_ready = 0;
4015 return NULL;
4016 }
4017
4018 /* Build the final ready list. */
4019 convert_vec_av_set_to_ready ();
4020 return NULL;
4021 }
4022
4023 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4024 static bool
4025 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4026 {
4027 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4028 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4029 : FENCE_CYCLE (fence) - 1;
4030 bool res = false;
4031 int sort_p = 0;
4032
4033 if (!targetm.sched.dfa_new_cycle)
4034 return false;
4035
4036 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4037
4038 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4039 insn, last_scheduled_cycle,
4040 FENCE_CYCLE (fence), &sort_p))
4041 {
4042 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4043 advance_one_cycle (fence);
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045 res = true;
4046 }
4047
4048 return res;
4049 }
4050
4051 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4052 we can issue. FENCE is the current fence. */
4053 static int
4054 invoke_reorder_hooks (fence_t fence)
4055 {
4056 int issue_more;
4057 bool ran_hook = false;
4058
4059 /* Call the reorder hook at the beginning of the cycle, and call
4060 the reorder2 hook in the middle of the cycle. */
4061 if (FENCE_ISSUED_INSNS (fence) == 0)
4062 {
4063 if (targetm.sched.reorder
4064 && !SCHED_GROUP_P (ready_element (&ready, 0))
4065 && ready.n_ready > 1)
4066 {
4067 /* Don't give reorder the most prioritized insn as it can break
4068 pipelining. */
4069 if (pipelining_p)
4070 --ready.n_ready;
4071
4072 issue_more
4073 = targetm.sched.reorder (sched_dump, sched_verbose,
4074 ready_lastpos (&ready),
4075 &ready.n_ready, FENCE_CYCLE (fence));
4076
4077 if (pipelining_p)
4078 ++ready.n_ready;
4079
4080 ran_hook = true;
4081 }
4082 else
4083 /* Initialize can_issue_more for variable_issue. */
4084 issue_more = issue_rate;
4085 }
4086 else if (targetm.sched.reorder2
4087 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4088 {
4089 if (ready.n_ready == 1)
4090 issue_more =
4091 targetm.sched.reorder2 (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094 else
4095 {
4096 if (pipelining_p)
4097 --ready.n_ready;
4098
4099 issue_more =
4100 targetm.sched.reorder2 (sched_dump, sched_verbose,
4101 ready.n_ready
4102 ? ready_lastpos (&ready) : NULL,
4103 &ready.n_ready, FENCE_CYCLE (fence));
4104
4105 if (pipelining_p)
4106 ++ready.n_ready;
4107 }
4108
4109 ran_hook = true;
4110 }
4111 else
4112 issue_more = FENCE_ISSUE_MORE (fence);
4113
4114 /* Ensure that ready list and vec_av_set are in line with each other,
4115 i.e. vec_av_set[i] == ready_element (&ready, i). */
4116 if (issue_more && ran_hook)
4117 {
4118 int i, j, n;
4119 rtx *arr = ready.vec;
4120 expr_t *vec = VEC_address (expr_t, vec_av_set);
4121
4122 for (i = 0, n = ready.n_ready; i < n; i++)
4123 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4124 {
4125 expr_t tmp;
4126
4127 for (j = i; j < n; j++)
4128 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4129 break;
4130 gcc_assert (j < n);
4131
4132 tmp = vec[i];
4133 vec[i] = vec[j];
4134 vec[j] = tmp;
4135 }
4136 }
4137
4138 return issue_more;
4139 }
4140
4141 /* Return an EXPR correponding to INDEX element of ready list, if
4142 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4143 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4144 ready.vec otherwise. */
4145 static inline expr_t
4146 find_expr_for_ready (int index, bool follow_ready_element)
4147 {
4148 expr_t expr;
4149 int real_index;
4150
4151 real_index = follow_ready_element ? ready.first - index : index;
4152
4153 expr = VEC_index (expr_t, vec_av_set, real_index);
4154 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4155
4156 return expr;
4157 }
4158
4159 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4160 of such insns found. */
4161 static int
4162 invoke_dfa_lookahead_guard (void)
4163 {
4164 int i, n;
4165 bool have_hook
4166 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4167
4168 if (sched_verbose >= 2)
4169 sel_print ("ready after reorder: ");
4170
4171 for (i = 0, n = 0; i < ready.n_ready; i++)
4172 {
4173 expr_t expr;
4174 insn_t insn;
4175 int r;
4176
4177 /* In this loop insn is Ith element of the ready list given by
4178 ready_element, not Ith element of ready.vec. */
4179 insn = ready_element (&ready, i);
4180
4181 if (! have_hook || i == 0)
4182 r = 0;
4183 else
4184 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4185
4186 gcc_assert (INSN_CODE (insn) >= 0);
4187
4188 /* Only insns with ready_try = 0 can get here
4189 from fill_ready_list. */
4190 gcc_assert (ready_try [i] == 0);
4191 ready_try[i] = r;
4192 if (!r)
4193 n++;
4194
4195 expr = find_expr_for_ready (i, true);
4196
4197 if (sched_verbose >= 2)
4198 {
4199 dump_vinsn (EXPR_VINSN (expr));
4200 sel_print (":%d; ", ready_try[i]);
4201 }
4202 }
4203
4204 if (sched_verbose >= 2)
4205 sel_print ("\n");
4206 return n;
4207 }
4208
4209 /* Calculate the number of privileged insns and return it. */
4210 static int
4211 calculate_privileged_insns (void)
4212 {
4213 expr_t cur_expr, min_spec_expr = NULL;
4214 int privileged_n = 0, i;
4215
4216 for (i = 0; i < ready.n_ready; i++)
4217 {
4218 if (ready_try[i])
4219 continue;
4220
4221 if (! min_spec_expr)
4222 min_spec_expr = find_expr_for_ready (i, true);
4223
4224 cur_expr = find_expr_for_ready (i, true);
4225
4226 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4227 break;
4228
4229 ++privileged_n;
4230 }
4231
4232 if (i == ready.n_ready)
4233 privileged_n = 0;
4234
4235 if (sched_verbose >= 2)
4236 sel_print ("privileged_n: %d insns with SPEC %d\n",
4237 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4238 return privileged_n;
4239 }
4240
4241 /* Call the rest of the hooks after the choice was made. Return
4242 the number of insns that still can be issued given that the current
4243 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4244 and the insn chosen for scheduling, respectively. */
4245 static int
4246 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4247 {
4248 gcc_assert (INSN_P (best_insn));
4249
4250 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4251 sel_dfa_new_cycle (best_insn, fence);
4252
4253 if (targetm.sched.variable_issue)
4254 {
4255 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4256 issue_more =
4257 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4258 issue_more);
4259 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4260 }
4261 else if (GET_CODE (PATTERN (best_insn)) != USE
4262 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4263 issue_more--;
4264
4265 return issue_more;
4266 }
4267
4268 /* Estimate the cost of issuing INSN on DFA state STATE. */
4269 static int
4270 estimate_insn_cost (rtx insn, state_t state)
4271 {
4272 static state_t temp = NULL;
4273 int cost;
4274
4275 if (!temp)
4276 temp = xmalloc (dfa_state_size);
4277
4278 memcpy (temp, state, dfa_state_size);
4279 cost = state_transition (temp, insn);
4280
4281 if (cost < 0)
4282 return 0;
4283 else if (cost == 0)
4284 return 1;
4285 return cost;
4286 }
4287
4288 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4289 This function properly handles ASMs, USEs etc. */
4290 static int
4291 get_expr_cost (expr_t expr, fence_t fence)
4292 {
4293 rtx insn = EXPR_INSN_RTX (expr);
4294
4295 if (recog_memoized (insn) < 0)
4296 {
4297 if (!FENCE_STARTS_CYCLE_P (fence)
4298 && INSN_ASM_P (insn))
4299 /* This is asm insn which is tryed to be issued on the
4300 cycle not first. Issue it on the next cycle. */
4301 return 1;
4302 else
4303 /* A USE insn, or something else we don't need to
4304 understand. We can't pass these directly to
4305 state_transition because it will trigger a
4306 fatal error for unrecognizable insns. */
4307 return 0;
4308 }
4309 else
4310 return estimate_insn_cost (insn, FENCE_STATE (fence));
4311 }
4312
4313 /* Find the best insn for scheduling, either via max_issue or just take
4314 the most prioritized available. */
4315 static int
4316 choose_best_insn (fence_t fence, int privileged_n, int *index)
4317 {
4318 int can_issue = 0;
4319
4320 if (dfa_lookahead > 0)
4321 {
4322 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4323 can_issue = max_issue (&ready, privileged_n,
4324 FENCE_STATE (fence), index);
4325 if (sched_verbose >= 2)
4326 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4327 can_issue, FENCE_ISSUED_INSNS (fence));
4328 }
4329 else
4330 {
4331 /* We can't use max_issue; just return the first available element. */
4332 int i;
4333
4334 for (i = 0; i < ready.n_ready; i++)
4335 {
4336 expr_t expr = find_expr_for_ready (i, true);
4337
4338 if (get_expr_cost (expr, fence) < 1)
4339 {
4340 can_issue = can_issue_more;
4341 *index = i;
4342
4343 if (sched_verbose >= 2)
4344 sel_print ("using %dth insn from the ready list\n", i + 1);
4345
4346 break;
4347 }
4348 }
4349
4350 if (i == ready.n_ready)
4351 {
4352 can_issue = 0;
4353 *index = -1;
4354 }
4355 }
4356
4357 return can_issue;
4358 }
4359
4360 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4361 BNDS and FENCE are current boundaries and scheduling fence respectively.
4362 Return the expr found and NULL if nothing can be issued atm.
4363 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4364 static expr_t
4365 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4366 int *pneed_stall)
4367 {
4368 expr_t best;
4369
4370 /* Choose the best insn for scheduling via:
4371 1) sorting the ready list based on priority;
4372 2) calling the reorder hook;
4373 3) calling max_issue. */
4374 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4375 if (best == NULL && ready.n_ready > 0)
4376 {
4377 int privileged_n, index;
4378
4379 can_issue_more = invoke_reorder_hooks (fence);
4380 if (can_issue_more > 0)
4381 {
4382 /* Try choosing the best insn until we find one that is could be
4383 scheduled due to liveness restrictions on its destination register.
4384 In the future, we'd like to choose once and then just probe insns
4385 in the order of their priority. */
4386 invoke_dfa_lookahead_guard ();
4387 privileged_n = calculate_privileged_insns ();
4388 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4389 if (can_issue_more)
4390 best = find_expr_for_ready (index, true);
4391 }
4392 /* We had some available insns, so if we can't issue them,
4393 we have a stall. */
4394 if (can_issue_more == 0)
4395 {
4396 best = NULL;
4397 *pneed_stall = 1;
4398 }
4399 }
4400
4401 if (best != NULL)
4402 {
4403 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4404 can_issue_more);
4405 if (can_issue_more == 0)
4406 *pneed_stall = 1;
4407 }
4408
4409 if (sched_verbose >= 2)
4410 {
4411 if (best != NULL)
4412 {
4413 sel_print ("Best expression (vliw form): ");
4414 dump_expr (best);
4415 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4416 }
4417 else
4418 sel_print ("No best expr found!\n");
4419 }
4420
4421 return best;
4422 }
4423 \f
4424
4425 /* Functions that implement the core of the scheduler. */
4426
4427
4428 /* Emit an instruction from EXPR with SEQNO and VINSN after
4429 PLACE_TO_INSERT. */
4430 static insn_t
4431 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4432 insn_t place_to_insert)
4433 {
4434 /* This assert fails when we have identical instructions
4435 one of which dominates the other. In this case move_op ()
4436 finds the first instruction and doesn't search for second one.
4437 The solution would be to compute av_set after the first found
4438 insn and, if insn present in that set, continue searching.
4439 For now we workaround this issue in move_op. */
4440 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4441
4442 if (EXPR_WAS_RENAMED (expr))
4443 {
4444 unsigned regno = expr_dest_regno (expr);
4445
4446 if (HARD_REGISTER_NUM_P (regno))
4447 {
4448 df_set_regs_ever_live (regno, true);
4449 reg_rename_tick[regno] = ++reg_rename_this_tick;
4450 }
4451 }
4452
4453 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4454 place_to_insert);
4455 }
4456
4457 /* Return TRUE if BB can hold bookkeeping code. */
4458 static bool
4459 block_valid_for_bookkeeping_p (basic_block bb)
4460 {
4461 insn_t bb_end = BB_END (bb);
4462
4463 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4464 return false;
4465
4466 if (INSN_P (bb_end))
4467 {
4468 if (INSN_SCHED_TIMES (bb_end) > 0)
4469 return false;
4470 }
4471 else
4472 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4473
4474 return true;
4475 }
4476
4477 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4478 into E2->dest, except from E1->src (there may be a sequence of empty basic
4479 blocks between E1->src and E2->dest). Return found block, or NULL if new
4480 one must be created. If LAX holds, don't assume there is a simple path
4481 from E1->src to E2->dest. */
4482 static basic_block
4483 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4484 {
4485 basic_block candidate_block = NULL;
4486 edge e;
4487
4488 /* Loop over edges from E1 to E2, inclusive. */
4489 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4490 {
4491 if (EDGE_COUNT (e->dest->preds) == 2)
4492 {
4493 if (candidate_block == NULL)
4494 candidate_block = (EDGE_PRED (e->dest, 0) == e
4495 ? EDGE_PRED (e->dest, 1)->src
4496 : EDGE_PRED (e->dest, 0)->src);
4497 else
4498 /* Found additional edge leading to path from e1 to e2
4499 from aside. */
4500 return NULL;
4501 }
4502 else if (EDGE_COUNT (e->dest->preds) > 2)
4503 /* Several edges leading to path from e1 to e2 from aside. */
4504 return NULL;
4505
4506 if (e == e2)
4507 return ((!lax || candidate_block)
4508 && block_valid_for_bookkeeping_p (candidate_block)
4509 ? candidate_block
4510 : NULL);
4511
4512 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4513 return NULL;
4514 }
4515
4516 if (lax)
4517 return NULL;
4518
4519 gcc_unreachable ();
4520 }
4521
4522 /* Create new basic block for bookkeeping code for path(s) incoming into
4523 E2->dest, except from E1->src. Return created block. */
4524 static basic_block
4525 create_block_for_bookkeeping (edge e1, edge e2)
4526 {
4527 basic_block new_bb, bb = e2->dest;
4528
4529 /* Check that we don't spoil the loop structure. */
4530 if (current_loop_nest)
4531 {
4532 basic_block latch = current_loop_nest->latch;
4533
4534 /* We do not split header. */
4535 gcc_assert (e2->dest != current_loop_nest->header);
4536
4537 /* We do not redirect the only edge to the latch block. */
4538 gcc_assert (e1->dest != latch
4539 || !single_pred_p (latch)
4540 || e1 != single_pred_edge (latch));
4541 }
4542
4543 /* Split BB to insert BOOK_INSN there. */
4544 new_bb = sched_split_block (bb, NULL);
4545
4546 /* Move note_list from the upper bb. */
4547 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4548 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4549 BB_NOTE_LIST (bb) = NULL_RTX;
4550
4551 gcc_assert (e2->dest == bb);
4552
4553 /* Skip block for bookkeeping copy when leaving E1->src. */
4554 if (e1->flags & EDGE_FALLTHRU)
4555 sel_redirect_edge_and_branch_force (e1, new_bb);
4556 else
4557 sel_redirect_edge_and_branch (e1, new_bb);
4558
4559 gcc_assert (e1->dest == new_bb);
4560 gcc_assert (sel_bb_empty_p (bb));
4561
4562 /* To keep basic block numbers in sync between debug and non-debug
4563 compilations, we have to rotate blocks here. Consider that we
4564 started from (a,b)->d, (c,d)->e, and d contained only debug
4565 insns. It would have been removed before if the debug insns
4566 weren't there, so we'd have split e rather than d. So what we do
4567 now is to swap the block numbers of new_bb and
4568 single_succ(new_bb) == e, so that the insns that were in e before
4569 get the new block number. */
4570
4571 if (MAY_HAVE_DEBUG_INSNS)
4572 {
4573 basic_block succ;
4574 insn_t insn = sel_bb_head (new_bb);
4575 insn_t last;
4576
4577 if (DEBUG_INSN_P (insn)
4578 && single_succ_p (new_bb)
4579 && (succ = single_succ (new_bb))
4580 && succ != EXIT_BLOCK_PTR
4581 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4582 {
4583 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4584 insn = NEXT_INSN (insn);
4585
4586 if (insn == last)
4587 {
4588 sel_global_bb_info_def gbi;
4589 sel_region_bb_info_def rbi;
4590 int i;
4591
4592 if (sched_verbose >= 2)
4593 sel_print ("Swapping block ids %i and %i\n",
4594 new_bb->index, succ->index);
4595
4596 i = new_bb->index;
4597 new_bb->index = succ->index;
4598 succ->index = i;
4599
4600 SET_BASIC_BLOCK (new_bb->index, new_bb);
4601 SET_BASIC_BLOCK (succ->index, succ);
4602
4603 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4604 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4605 sizeof (gbi));
4606 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4607
4608 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4609 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4610 sizeof (rbi));
4611 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4612
4613 i = BLOCK_TO_BB (new_bb->index);
4614 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4615 BLOCK_TO_BB (succ->index) = i;
4616
4617 i = CONTAINING_RGN (new_bb->index);
4618 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4619 CONTAINING_RGN (succ->index) = i;
4620
4621 for (i = 0; i < current_nr_blocks; i++)
4622 if (BB_TO_BLOCK (i) == succ->index)
4623 BB_TO_BLOCK (i) = new_bb->index;
4624 else if (BB_TO_BLOCK (i) == new_bb->index)
4625 BB_TO_BLOCK (i) = succ->index;
4626
4627 FOR_BB_INSNS (new_bb, insn)
4628 if (INSN_P (insn))
4629 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4630
4631 FOR_BB_INSNS (succ, insn)
4632 if (INSN_P (insn))
4633 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4634
4635 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4636 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4637
4638 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4639 && LABEL_P (BB_HEAD (succ)));
4640
4641 if (sched_verbose >= 4)
4642 sel_print ("Swapping code labels %i and %i\n",
4643 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4644 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4645
4646 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4647 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4648 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4650 }
4651 }
4652 }
4653
4654 return bb;
4655 }
4656
4657 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4658 into E2->dest, except from E1->src. */
4659 static insn_t
4660 find_place_for_bookkeeping (edge e1, edge e2)
4661 {
4662 insn_t place_to_insert;
4663 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4664 create new basic block, but insert bookkeeping there. */
4665 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4666
4667 if (book_block)
4668 {
4669 place_to_insert = BB_END (book_block);
4670
4671 /* Don't use a block containing only debug insns for
4672 bookkeeping, this causes scheduling differences between debug
4673 and non-debug compilations, for the block would have been
4674 removed already. */
4675 if (DEBUG_INSN_P (place_to_insert))
4676 {
4677 rtx insn = sel_bb_head (book_block);
4678
4679 while (insn != place_to_insert &&
4680 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4681 insn = NEXT_INSN (insn);
4682
4683 if (insn == place_to_insert)
4684 book_block = NULL;
4685 }
4686 }
4687
4688 if (!book_block)
4689 {
4690 book_block = create_block_for_bookkeeping (e1, e2);
4691 place_to_insert = BB_END (book_block);
4692 if (sched_verbose >= 9)
4693 sel_print ("New block is %i, split from bookkeeping block %i\n",
4694 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4695 }
4696 else
4697 {
4698 if (sched_verbose >= 9)
4699 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4700 }
4701
4702 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4703 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4704 place_to_insert = PREV_INSN (place_to_insert);
4705
4706 return place_to_insert;
4707 }
4708
4709 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4710 for JOIN_POINT. */
4711 static int
4712 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4713 {
4714 int seqno;
4715 rtx next;
4716
4717 /* Check if we are about to insert bookkeeping copy before a jump, and use
4718 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4719 next = NEXT_INSN (place_to_insert);
4720 if (INSN_P (next)
4721 && JUMP_P (next)
4722 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4723 {
4724 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4725 seqno = INSN_SEQNO (next);
4726 }
4727 else if (INSN_SEQNO (join_point) > 0)
4728 seqno = INSN_SEQNO (join_point);
4729 else
4730 {
4731 seqno = get_seqno_by_preds (place_to_insert);
4732
4733 /* Sometimes the fences can move in such a way that there will be
4734 no instructions with positive seqno around this bookkeeping.
4735 This means that there will be no way to get to it by a regular
4736 fence movement. Never mind because we pick up such pieces for
4737 rescheduling anyways, so any positive value will do for now. */
4738 if (seqno < 0)
4739 {
4740 gcc_assert (pipelining_p);
4741 seqno = 1;
4742 }
4743 }
4744
4745 gcc_assert (seqno > 0);
4746 return seqno;
4747 }
4748
4749 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4750 NEW_SEQNO to it. Return created insn. */
4751 static insn_t
4752 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4753 {
4754 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4755
4756 vinsn_t new_vinsn
4757 = create_vinsn_from_insn_rtx (new_insn_rtx,
4758 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4759
4760 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4761 place_to_insert);
4762
4763 INSN_SCHED_TIMES (new_insn) = 0;
4764 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4765
4766 return new_insn;
4767 }
4768
4769 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4770 E2->dest, except from E1->src (there may be a sequence of empty blocks
4771 between E1->src and E2->dest). Return block containing the copy.
4772 All scheduler data is initialized for the newly created insn. */
4773 static basic_block
4774 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4775 {
4776 insn_t join_point, place_to_insert, new_insn;
4777 int new_seqno;
4778 bool need_to_exchange_data_sets;
4779
4780 if (sched_verbose >= 4)
4781 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4782 e2->dest->index);
4783
4784 join_point = sel_bb_head (e2->dest);
4785 place_to_insert = find_place_for_bookkeeping (e1, e2);
4786 if (!place_to_insert)
4787 return NULL;
4788 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4789 need_to_exchange_data_sets
4790 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4791
4792 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4793
4794 /* When inserting bookkeeping insn in new block, av sets should be
4795 following: old basic block (that now holds bookkeeping) data sets are
4796 the same as was before generation of bookkeeping, and new basic block
4797 (that now hold all other insns of old basic block) data sets are
4798 invalid. So exchange data sets for these basic blocks as sel_split_block
4799 mistakenly exchanges them in this case. Cannot do it earlier because
4800 when single instruction is added to new basic block it should hold NULL
4801 lv_set. */
4802 if (need_to_exchange_data_sets)
4803 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4804 BLOCK_FOR_INSN (join_point));
4805
4806 stat_bookkeeping_copies++;
4807 return BLOCK_FOR_INSN (new_insn);
4808 }
4809
4810 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4811 on FENCE, but we are unable to copy them. */
4812 static void
4813 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4814 {
4815 expr_t expr;
4816 av_set_iterator i;
4817
4818 /* An expression does not need bookkeeping if it is available on all paths
4819 from current block to original block and current block dominates
4820 original block. We check availability on all paths by examining
4821 EXPR_SPEC; this is not equivalent, because it may be positive even
4822 if expr is available on all paths (but if expr is not available on
4823 any path, EXPR_SPEC will be positive). */
4824
4825 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4826 {
4827 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4828 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4829 && (EXPR_SPEC (expr)
4830 || !EXPR_ORIG_BB_INDEX (expr)
4831 || !dominated_by_p (CDI_DOMINATORS,
4832 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4833 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4834 {
4835 if (sched_verbose >= 4)
4836 sel_print ("Expr %d removed because it would need bookkeeping, which "
4837 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4838 av_set_iter_remove (&i);
4839 }
4840 }
4841 }
4842
4843 /* Moving conditional jump through some instructions.
4844
4845 Consider example:
4846
4847 ... <- current scheduling point
4848 NOTE BASIC BLOCK: <- bb header
4849 (p8) add r14=r14+0x9;;
4850 (p8) mov [r14]=r23
4851 (!p8) jump L1;;
4852 NOTE BASIC BLOCK:
4853 ...
4854
4855 We can schedule jump one cycle earlier, than mov, because they cannot be
4856 executed together as their predicates are mutually exclusive.
4857
4858 This is done in this way: first, new fallthrough basic block is created
4859 after jump (it is always can be done, because there already should be a
4860 fallthrough block, where control flow goes in case of predicate being true -
4861 in our example; otherwise there should be a dependence between those
4862 instructions and jump and we cannot schedule jump right now);
4863 next, all instructions between jump and current scheduling point are moved
4864 to this new block. And the result is this:
4865
4866 NOTE BASIC BLOCK:
4867 (!p8) jump L1 <- current scheduling point
4868 NOTE BASIC BLOCK: <- bb header
4869 (p8) add r14=r14+0x9;;
4870 (p8) mov [r14]=r23
4871 NOTE BASIC BLOCK:
4872 ...
4873 */
4874 static void
4875 move_cond_jump (rtx insn, bnd_t bnd)
4876 {
4877 edge ft_edge;
4878 basic_block block_from, block_next, block_new, block_bnd, bb;
4879 rtx next, prev, link, head;
4880
4881 block_from = BLOCK_FOR_INSN (insn);
4882 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4883 prev = BND_TO (bnd);
4884
4885 #ifdef ENABLE_CHECKING
4886 /* Moving of jump should not cross any other jumps or beginnings of new
4887 basic blocks. The only exception is when we move a jump through
4888 mutually exclusive insns along fallthru edges. */
4889 if (block_from != block_bnd)
4890 {
4891 bb = block_from;
4892 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4893 link = PREV_INSN (link))
4894 {
4895 if (INSN_P (link))
4896 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4897 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4898 {
4899 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4900 bb = BLOCK_FOR_INSN (link);
4901 }
4902 }
4903 }
4904 #endif
4905
4906 /* Jump is moved to the boundary. */
4907 next = PREV_INSN (insn);
4908 BND_TO (bnd) = insn;
4909
4910 ft_edge = find_fallthru_edge_from (block_from);
4911 block_next = ft_edge->dest;
4912 /* There must be a fallthrough block (or where should go
4913 control flow in case of false jump predicate otherwise?). */
4914 gcc_assert (block_next);
4915
4916 /* Create new empty basic block after source block. */
4917 block_new = sel_split_edge (ft_edge);
4918 gcc_assert (block_new->next_bb == block_next
4919 && block_from->next_bb == block_new);
4920
4921 /* Move all instructions except INSN to BLOCK_NEW. */
4922 bb = block_bnd;
4923 head = BB_HEAD (block_new);
4924 while (bb != block_from->next_bb)
4925 {
4926 rtx from, to;
4927 from = bb == block_bnd ? prev : sel_bb_head (bb);
4928 to = bb == block_from ? next : sel_bb_end (bb);
4929
4930 /* The jump being moved can be the first insn in the block.
4931 In this case we don't have to move anything in this block. */
4932 if (NEXT_INSN (to) != from)
4933 {
4934 reorder_insns (from, to, head);
4935
4936 for (link = to; link != head; link = PREV_INSN (link))
4937 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4938 head = to;
4939 }
4940
4941 /* Cleanup possibly empty blocks left. */
4942 block_next = bb->next_bb;
4943 if (bb != block_from)
4944 tidy_control_flow (bb, false);
4945 bb = block_next;
4946 }
4947
4948 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4949 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4950
4951 gcc_assert (!sel_bb_empty_p (block_from)
4952 && !sel_bb_empty_p (block_new));
4953
4954 /* Update data sets for BLOCK_NEW to represent that INSN and
4955 instructions from the other branch of INSN is no longer
4956 available at BLOCK_NEW. */
4957 BB_AV_LEVEL (block_new) = global_level;
4958 gcc_assert (BB_LV_SET (block_new) == NULL);
4959 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4960 update_data_sets (sel_bb_head (block_new));
4961
4962 /* INSN is a new basic block header - so prepare its data
4963 structures and update availability and liveness sets. */
4964 update_data_sets (insn);
4965
4966 if (sched_verbose >= 4)
4967 sel_print ("Moving jump %d\n", INSN_UID (insn));
4968 }
4969
4970 /* Remove nops generated during move_op for preventing removal of empty
4971 basic blocks. */
4972 static void
4973 remove_temp_moveop_nops (bool full_tidying)
4974 {
4975 int i;
4976 insn_t insn;
4977
4978 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4979 {
4980 gcc_assert (INSN_NOP_P (insn));
4981 return_nop_to_pool (insn, full_tidying);
4982 }
4983
4984 /* Empty the vector. */
4985 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4986 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4987 VEC_length (insn_t, vec_temp_moveop_nops));
4988 }
4989
4990 /* Records the maximal UID before moving up an instruction. Used for
4991 distinguishing between bookkeeping copies and original insns. */
4992 static int max_uid_before_move_op = 0;
4993
4994 /* Remove from AV_VLIW_P all instructions but next when debug counter
4995 tells us so. Next instruction is fetched from BNDS. */
4996 static void
4997 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
4998 {
4999 if (! dbg_cnt (sel_sched_insn_cnt))
5000 /* Leave only the next insn in av_vliw. */
5001 {
5002 av_set_iterator av_it;
5003 expr_t expr;
5004 bnd_t bnd = BLIST_BND (bnds);
5005 insn_t next = BND_TO (bnd);
5006
5007 gcc_assert (BLIST_NEXT (bnds) == NULL);
5008
5009 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5010 if (EXPR_INSN_RTX (expr) != next)
5011 av_set_iter_remove (&av_it);
5012 }
5013 }
5014
5015 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5016 the computed set to *AV_VLIW_P. */
5017 static void
5018 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5019 {
5020 if (sched_verbose >= 2)
5021 {
5022 sel_print ("Boundaries: ");
5023 dump_blist (bnds);
5024 sel_print ("\n");
5025 }
5026
5027 for (; bnds; bnds = BLIST_NEXT (bnds))
5028 {
5029 bnd_t bnd = BLIST_BND (bnds);
5030 av_set_t av1_copy;
5031 insn_t bnd_to = BND_TO (bnd);
5032
5033 /* Rewind BND->TO to the basic block header in case some bookkeeping
5034 instructions were inserted before BND->TO and it needs to be
5035 adjusted. */
5036 if (sel_bb_head_p (bnd_to))
5037 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5038 else
5039 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5040 {
5041 bnd_to = PREV_INSN (bnd_to);
5042 if (sel_bb_head_p (bnd_to))
5043 break;
5044 }
5045
5046 if (BND_TO (bnd) != bnd_to)
5047 {
5048 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5049 FENCE_INSN (fence) = bnd_to;
5050 BND_TO (bnd) = bnd_to;
5051 }
5052
5053 av_set_clear (&BND_AV (bnd));
5054 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5055
5056 av_set_clear (&BND_AV1 (bnd));
5057 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5058
5059 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5060
5061 av1_copy = av_set_copy (BND_AV1 (bnd));
5062 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5063 }
5064
5065 if (sched_verbose >= 2)
5066 {
5067 sel_print ("Available exprs (vliw form): ");
5068 dump_av_set (*av_vliw_p);
5069 sel_print ("\n");
5070 }
5071 }
5072
5073 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5074 expression. When FOR_MOVEOP is true, also replace the register of
5075 expressions found with the register from EXPR_VLIW. */
5076 static av_set_t
5077 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5078 {
5079 av_set_t expr_seq = NULL;
5080 expr_t expr;
5081 av_set_iterator i;
5082
5083 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5084 {
5085 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5086 {
5087 if (for_moveop)
5088 {
5089 /* The sequential expression has the right form to pass
5090 to move_op except when renaming happened. Put the
5091 correct register in EXPR then. */
5092 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5093 {
5094 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5095 {
5096 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5097 stat_renamed_scheduled++;
5098 }
5099 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5100 This is needed when renaming came up with original
5101 register. */
5102 else if (EXPR_TARGET_AVAILABLE (expr)
5103 != EXPR_TARGET_AVAILABLE (expr_vliw))
5104 {
5105 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5106 EXPR_TARGET_AVAILABLE (expr) = 1;
5107 }
5108 }
5109 if (EXPR_WAS_SUBSTITUTED (expr))
5110 stat_substitutions_total++;
5111 }
5112
5113 av_set_add (&expr_seq, expr);
5114
5115 /* With substitution inside insn group, it is possible
5116 that more than one expression in expr_seq will correspond
5117 to expr_vliw. In this case, choose one as the attempt to
5118 move both leads to miscompiles. */
5119 break;
5120 }
5121 }
5122
5123 if (for_moveop && sched_verbose >= 2)
5124 {
5125 sel_print ("Best expression(s) (sequential form): ");
5126 dump_av_set (expr_seq);
5127 sel_print ("\n");
5128 }
5129
5130 return expr_seq;
5131 }
5132
5133
5134 /* Move nop to previous block. */
5135 static void ATTRIBUTE_UNUSED
5136 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5137 {
5138 insn_t prev_insn, next_insn, note;
5139
5140 gcc_assert (sel_bb_head_p (nop)
5141 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5142 note = bb_note (BLOCK_FOR_INSN (nop));
5143 prev_insn = sel_bb_end (prev_bb);
5144 next_insn = NEXT_INSN (nop);
5145 gcc_assert (prev_insn != NULL_RTX
5146 && PREV_INSN (note) == prev_insn);
5147
5148 NEXT_INSN (prev_insn) = nop;
5149 PREV_INSN (nop) = prev_insn;
5150
5151 PREV_INSN (note) = nop;
5152 NEXT_INSN (note) = next_insn;
5153
5154 NEXT_INSN (nop) = note;
5155 PREV_INSN (next_insn) = note;
5156
5157 BB_END (prev_bb) = nop;
5158 BLOCK_FOR_INSN (nop) = prev_bb;
5159 }
5160
5161 /* Prepare a place to insert the chosen expression on BND. */
5162 static insn_t
5163 prepare_place_to_insert (bnd_t bnd)
5164 {
5165 insn_t place_to_insert;
5166
5167 /* Init place_to_insert before calling move_op, as the later
5168 can possibly remove BND_TO (bnd). */
5169 if (/* If this is not the first insn scheduled. */
5170 BND_PTR (bnd))
5171 {
5172 /* Add it after last scheduled. */
5173 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5174 if (DEBUG_INSN_P (place_to_insert))
5175 {
5176 ilist_t l = BND_PTR (bnd);
5177 while ((l = ILIST_NEXT (l)) &&
5178 DEBUG_INSN_P (ILIST_INSN (l)))
5179 ;
5180 if (!l)
5181 place_to_insert = NULL;
5182 }
5183 }
5184 else
5185 place_to_insert = NULL;
5186
5187 if (!place_to_insert)
5188 {
5189 /* Add it before BND_TO. The difference is in the
5190 basic block, where INSN will be added. */
5191 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5192 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5193 == BLOCK_FOR_INSN (BND_TO (bnd)));
5194 }
5195
5196 return place_to_insert;
5197 }
5198
5199 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5200 Return the expression to emit in C_EXPR. */
5201 static bool
5202 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5203 av_set_t expr_seq, expr_t c_expr)
5204 {
5205 bool b, should_move;
5206 unsigned book_uid;
5207 bitmap_iterator bi;
5208 int n_bookkeeping_copies_before_moveop;
5209
5210 /* Make a move. This call will remove the original operation,
5211 insert all necessary bookkeeping instructions and update the
5212 data sets. After that all we have to do is add the operation
5213 at before BND_TO (BND). */
5214 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5215 max_uid_before_move_op = get_max_uid ();
5216 bitmap_clear (current_copies);
5217 bitmap_clear (current_originators);
5218
5219 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5220 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5221
5222 /* We should be able to find the expression we've chosen for
5223 scheduling. */
5224 gcc_assert (b);
5225
5226 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5227 stat_insns_needed_bookkeeping++;
5228
5229 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5230 {
5231 unsigned uid;
5232 bitmap_iterator bi;
5233
5234 /* We allocate these bitmaps lazily. */
5235 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5236 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5237
5238 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5239 current_originators);
5240
5241 /* Transitively add all originators' originators. */
5242 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5243 if (INSN_ORIGINATORS_BY_UID (uid))
5244 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5245 INSN_ORIGINATORS_BY_UID (uid));
5246 }
5247
5248 return should_move;
5249 }
5250
5251
5252 /* Debug a DFA state as an array of bytes. */
5253 static void
5254 debug_state (state_t state)
5255 {
5256 unsigned char *p;
5257 unsigned int i, size = dfa_state_size;
5258
5259 sel_print ("state (%u):", size);
5260 for (i = 0, p = (unsigned char *) state; i < size; i++)
5261 sel_print (" %d", p[i]);
5262 sel_print ("\n");
5263 }
5264
5265 /* Advance state on FENCE with INSN. Return true if INSN is
5266 an ASM, and we should advance state once more. */
5267 static bool
5268 advance_state_on_fence (fence_t fence, insn_t insn)
5269 {
5270 bool asm_p;
5271
5272 if (recog_memoized (insn) >= 0)
5273 {
5274 int res;
5275 state_t temp_state = alloca (dfa_state_size);
5276
5277 gcc_assert (!INSN_ASM_P (insn));
5278 asm_p = false;
5279
5280 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5281 res = state_transition (FENCE_STATE (fence), insn);
5282 gcc_assert (res < 0);
5283
5284 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5285 {
5286 FENCE_ISSUED_INSNS (fence)++;
5287
5288 /* We should never issue more than issue_rate insns. */
5289 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5290 gcc_unreachable ();
5291 }
5292 }
5293 else
5294 {
5295 /* This could be an ASM insn which we'd like to schedule
5296 on the next cycle. */
5297 asm_p = INSN_ASM_P (insn);
5298 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5299 advance_one_cycle (fence);
5300 }
5301
5302 if (sched_verbose >= 2)
5303 debug_state (FENCE_STATE (fence));
5304 if (!DEBUG_INSN_P (insn))
5305 FENCE_STARTS_CYCLE_P (fence) = 0;
5306 FENCE_ISSUE_MORE (fence) = can_issue_more;
5307 return asm_p;
5308 }
5309
5310 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5311 is nonzero if we need to stall after issuing INSN. */
5312 static void
5313 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5314 {
5315 bool asm_p;
5316
5317 /* First, reflect that something is scheduled on this fence. */
5318 asm_p = advance_state_on_fence (fence, insn);
5319 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5320 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5321 if (SCHED_GROUP_P (insn))
5322 {
5323 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5324 SCHED_GROUP_P (insn) = 0;
5325 }
5326 else
5327 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5328 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5329 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5330
5331 /* Set instruction scheduling info. This will be used in bundling,
5332 pipelining, tick computations etc. */
5333 ++INSN_SCHED_TIMES (insn);
5334 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5335 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5336 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5337 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5338
5339 /* This does not account for adjust_cost hooks, just add the biggest
5340 constant the hook may add to the latency. TODO: make this
5341 a target dependent constant. */
5342 INSN_READY_CYCLE (insn)
5343 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5344 ? 1
5345 : maximal_insn_latency (insn) + 1);
5346
5347 /* Change these fields last, as they're used above. */
5348 FENCE_AFTER_STALL_P (fence) = 0;
5349 if (asm_p || need_stall)
5350 advance_one_cycle (fence);
5351
5352 /* Indicate that we've scheduled something on this fence. */
5353 FENCE_SCHEDULED_P (fence) = true;
5354 scheduled_something_on_previous_fence = true;
5355
5356 /* Print debug information when insn's fields are updated. */
5357 if (sched_verbose >= 2)
5358 {
5359 sel_print ("Scheduling insn: ");
5360 dump_insn_1 (insn, 1);
5361 sel_print ("\n");
5362 }
5363 }
5364
5365 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5366 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5367 return it. */
5368 static blist_t *
5369 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5370 blist_t *bnds_tailp)
5371 {
5372 succ_iterator si;
5373 insn_t succ;
5374
5375 advance_deps_context (BND_DC (bnd), insn);
5376 FOR_EACH_SUCC_1 (succ, si, insn,
5377 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5378 {
5379 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5380
5381 ilist_add (&ptr, insn);
5382
5383 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5384 && is_ineligible_successor (succ, ptr))
5385 {
5386 ilist_clear (&ptr);
5387 continue;
5388 }
5389
5390 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5391 {
5392 if (sched_verbose >= 9)
5393 sel_print ("Updating fence insn from %i to %i\n",
5394 INSN_UID (insn), INSN_UID (succ));
5395 FENCE_INSN (fence) = succ;
5396 }
5397 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5398 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5399 }
5400
5401 blist_remove (bndsp);
5402 return bnds_tailp;
5403 }
5404
5405 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5406 static insn_t
5407 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5408 {
5409 av_set_t expr_seq;
5410 expr_t c_expr = XALLOCA (expr_def);
5411 insn_t place_to_insert;
5412 insn_t insn;
5413 bool should_move;
5414
5415 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5416
5417 /* In case of scheduling a jump skipping some other instructions,
5418 prepare CFG. After this, jump is at the boundary and can be
5419 scheduled as usual insn by MOVE_OP. */
5420 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5421 {
5422 insn = EXPR_INSN_RTX (expr_vliw);
5423
5424 /* Speculative jumps are not handled. */
5425 if (insn != BND_TO (bnd)
5426 && !sel_insn_is_speculation_check (insn))
5427 move_cond_jump (insn, bnd);
5428 }
5429
5430 /* Find a place for C_EXPR to schedule. */
5431 place_to_insert = prepare_place_to_insert (bnd);
5432 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5433 clear_expr (c_expr);
5434
5435 /* Add the instruction. The corner case to care about is when
5436 the expr_seq set has more than one expr, and we chose the one that
5437 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5438 we can't use it. Generate the new vinsn. */
5439 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5440 {
5441 vinsn_t vinsn_new;
5442
5443 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5444 change_vinsn_in_expr (expr_vliw, vinsn_new);
5445 should_move = false;
5446 }
5447 if (should_move)
5448 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5449 else
5450 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5451 place_to_insert);
5452
5453 /* Return the nops generated for preserving of data sets back
5454 into pool. */
5455 if (INSN_NOP_P (place_to_insert))
5456 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5457 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5458
5459 av_set_clear (&expr_seq);
5460
5461 /* Save the expression scheduled so to reset target availability if we'll
5462 meet it later on the same fence. */
5463 if (EXPR_WAS_RENAMED (expr_vliw))
5464 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5465
5466 /* Check that the recent movement didn't destroyed loop
5467 structure. */
5468 gcc_assert (!pipelining_p
5469 || current_loop_nest == NULL
5470 || loop_latch_edge (current_loop_nest));
5471 return insn;
5472 }
5473
5474 /* Stall for N cycles on FENCE. */
5475 static void
5476 stall_for_cycles (fence_t fence, int n)
5477 {
5478 int could_more;
5479
5480 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5481 while (n--)
5482 advance_one_cycle (fence);
5483 if (could_more)
5484 FENCE_AFTER_STALL_P (fence) = 1;
5485 }
5486
5487 /* Gather a parallel group of insns at FENCE and assign their seqno
5488 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5489 list for later recalculation of seqnos. */
5490 static void
5491 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5492 {
5493 blist_t bnds = NULL, *bnds_tailp;
5494 av_set_t av_vliw = NULL;
5495 insn_t insn = FENCE_INSN (fence);
5496
5497 if (sched_verbose >= 2)
5498 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5499 INSN_UID (insn), FENCE_CYCLE (fence));
5500
5501 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5502 bnds_tailp = &BLIST_NEXT (bnds);
5503 set_target_context (FENCE_TC (fence));
5504 can_issue_more = FENCE_ISSUE_MORE (fence);
5505 target_bb = INSN_BB (insn);
5506
5507 /* Do while we can add any operation to the current group. */
5508 do
5509 {
5510 blist_t *bnds_tailp1, *bndsp;
5511 expr_t expr_vliw;
5512 int need_stall;
5513 int was_stall = 0, scheduled_insns = 0, stall_iterations = 0;
5514 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5515 int max_stall = pipelining_p ? 1 : 3;
5516 bool last_insn_was_debug = false;
5517 bool was_debug_bb_end_p = false;
5518
5519 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5520 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5521 remove_insns_for_debug (bnds, &av_vliw);
5522
5523 /* Return early if we have nothing to schedule. */
5524 if (av_vliw == NULL)
5525 break;
5526
5527 /* Choose the best expression and, if needed, destination register
5528 for it. */
5529 do
5530 {
5531 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5532 if (!expr_vliw && need_stall)
5533 {
5534 /* All expressions required a stall. Do not recompute av sets
5535 as we'll get the same answer (modulo the insns between
5536 the fence and its boundary, which will not be available for
5537 pipelining). */
5538 gcc_assert (! expr_vliw && stall_iterations < 2);
5539 was_stall++;
5540 /* If we are going to stall for too long, break to recompute av
5541 sets and bring more insns for pipelining. */
5542 if (need_stall <= 3)
5543 stall_for_cycles (fence, need_stall);
5544 else
5545 {
5546 stall_for_cycles (fence, 1);
5547 break;
5548 }
5549 }
5550 }
5551 while (! expr_vliw && need_stall);
5552
5553 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5554 if (!expr_vliw)
5555 {
5556 av_set_clear (&av_vliw);
5557 break;
5558 }
5559
5560 bndsp = &bnds;
5561 bnds_tailp1 = bnds_tailp;
5562
5563 do
5564 /* This code will be executed only once until we'd have several
5565 boundaries per fence. */
5566 {
5567 bnd_t bnd = BLIST_BND (*bndsp);
5568
5569 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5570 {
5571 bndsp = &BLIST_NEXT (*bndsp);
5572 continue;
5573 }
5574
5575 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5576 last_insn_was_debug = DEBUG_INSN_P (insn);
5577 if (last_insn_was_debug)
5578 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5579 update_fence_and_insn (fence, insn, need_stall);
5580 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5581
5582 /* Add insn to the list of scheduled on this cycle instructions. */
5583 ilist_add (*scheduled_insns_tailpp, insn);
5584 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5585 }
5586 while (*bndsp != *bnds_tailp1);
5587
5588 av_set_clear (&av_vliw);
5589 if (!last_insn_was_debug)
5590 scheduled_insns++;
5591
5592 /* We currently support information about candidate blocks only for
5593 one 'target_bb' block. Hence we can't schedule after jump insn,
5594 as this will bring two boundaries and, hence, necessity to handle
5595 information for two or more blocks concurrently. */
5596 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5597 || (was_stall
5598 && (was_stall >= max_stall
5599 || scheduled_insns >= max_insns)))
5600 break;
5601 }
5602 while (bnds);
5603
5604 gcc_assert (!FENCE_BNDS (fence));
5605
5606 /* Update boundaries of the FENCE. */
5607 while (bnds)
5608 {
5609 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5610
5611 if (ptr)
5612 {
5613 insn = ILIST_INSN (ptr);
5614
5615 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5616 ilist_add (&FENCE_BNDS (fence), insn);
5617 }
5618
5619 blist_remove (&bnds);
5620 }
5621
5622 /* Update target context on the fence. */
5623 reset_target_context (FENCE_TC (fence), false);
5624 }
5625
5626 /* All exprs in ORIG_OPS must have the same destination register or memory.
5627 Return that destination. */
5628 static rtx
5629 get_dest_from_orig_ops (av_set_t orig_ops)
5630 {
5631 rtx dest = NULL_RTX;
5632 av_set_iterator av_it;
5633 expr_t expr;
5634 bool first_p = true;
5635
5636 FOR_EACH_EXPR (expr, av_it, orig_ops)
5637 {
5638 rtx x = EXPR_LHS (expr);
5639
5640 if (first_p)
5641 {
5642 first_p = false;
5643 dest = x;
5644 }
5645 else
5646 gcc_assert (dest == x
5647 || (dest != NULL_RTX && x != NULL_RTX
5648 && rtx_equal_p (dest, x)));
5649 }
5650
5651 return dest;
5652 }
5653
5654 /* Update data sets for the bookkeeping block and record those expressions
5655 which become no longer available after inserting this bookkeeping. */
5656 static void
5657 update_and_record_unavailable_insns (basic_block book_block)
5658 {
5659 av_set_iterator i;
5660 av_set_t old_av_set = NULL;
5661 expr_t cur_expr;
5662 rtx bb_end = sel_bb_end (book_block);
5663
5664 /* First, get correct liveness in the bookkeeping block. The problem is
5665 the range between the bookeeping insn and the end of block. */
5666 update_liveness_on_insn (bb_end);
5667 if (control_flow_insn_p (bb_end))
5668 update_liveness_on_insn (PREV_INSN (bb_end));
5669
5670 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5671 fence above, where we may choose to schedule an insn which is
5672 actually blocked from moving up with the bookkeeping we create here. */
5673 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5674 {
5675 old_av_set = av_set_copy (BB_AV_SET (book_block));
5676 update_data_sets (sel_bb_head (book_block));
5677
5678 /* Traverse all the expressions in the old av_set and check whether
5679 CUR_EXPR is in new AV_SET. */
5680 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5681 {
5682 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5683 EXPR_VINSN (cur_expr));
5684
5685 if (! new_expr
5686 /* In this case, we can just turn off the E_T_A bit, but we can't
5687 represent this information with the current vector. */
5688 || EXPR_TARGET_AVAILABLE (new_expr)
5689 != EXPR_TARGET_AVAILABLE (cur_expr))
5690 /* Unfortunately, the below code could be also fired up on
5691 separable insns.
5692 FIXME: add an example of how this could happen. */
5693 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5694 }
5695
5696 av_set_clear (&old_av_set);
5697 }
5698 }
5699
5700 /* The main effect of this function is that sparams->c_expr is merged
5701 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5702 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5703 lparams->c_expr_merged is copied back to sparams->c_expr after all
5704 successors has been traversed. lparams->c_expr_local is an expr allocated
5705 on stack in the caller function, and is used if there is more than one
5706 successor.
5707
5708 SUCC is one of the SUCCS_NORMAL successors of INSN,
5709 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5710 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5711 static void
5712 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5713 insn_t succ ATTRIBUTE_UNUSED,
5714 int moveop_drv_call_res,
5715 cmpd_local_params_p lparams, void *static_params)
5716 {
5717 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5718
5719 /* Nothing to do, if original expr wasn't found below. */
5720 if (moveop_drv_call_res != 1)
5721 return;
5722
5723 /* If this is a first successor. */
5724 if (!lparams->c_expr_merged)
5725 {
5726 lparams->c_expr_merged = sparams->c_expr;
5727 sparams->c_expr = lparams->c_expr_local;
5728 }
5729 else
5730 {
5731 /* We must merge all found expressions to get reasonable
5732 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5733 do so then we can first find the expr with epsilon
5734 speculation success probability and only then with the
5735 good probability. As a result the insn will get epsilon
5736 probability and will never be scheduled because of
5737 weakness_cutoff in find_best_expr.
5738
5739 We call merge_expr_data here instead of merge_expr
5740 because due to speculation C_EXPR and X may have the
5741 same insns with different speculation types. And as of
5742 now such insns are considered non-equal.
5743
5744 However, EXPR_SCHED_TIMES is different -- we must get
5745 SCHED_TIMES from a real insn, not a bookkeeping copy.
5746 We force this here. Instead, we may consider merging
5747 SCHED_TIMES to the maximum instead of minimum in the
5748 below function. */
5749 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5750
5751 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5752 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5753 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5754
5755 clear_expr (sparams->c_expr);
5756 }
5757 }
5758
5759 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5760
5761 SUCC is one of the SUCCS_NORMAL successors of INSN,
5762 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5763 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5764 STATIC_PARAMS contain USED_REGS set. */
5765 static void
5766 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5767 int moveop_drv_call_res,
5768 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5769 void *static_params)
5770 {
5771 regset succ_live;
5772 fur_static_params_p sparams = (fur_static_params_p) static_params;
5773
5774 /* Here we compute live regsets only for branches that do not lie
5775 on the code motion paths. These branches correspond to value
5776 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5777 for such branches code_motion_path_driver is not called. */
5778 if (moveop_drv_call_res != 0)
5779 return;
5780
5781 /* Mark all registers that do not meet the following condition:
5782 (3) not live on the other path of any conditional branch
5783 that is passed by the operation, in case original
5784 operations are not present on both paths of the
5785 conditional branch. */
5786 succ_live = compute_live (succ);
5787 IOR_REG_SET (sparams->used_regs, succ_live);
5788 }
5789
5790 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5791 into SP->CEXPR. */
5792 static void
5793 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5794 {
5795 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5796
5797 sp->c_expr = lp->c_expr_merged;
5798 }
5799
5800 /* Track bookkeeping copies created, insns scheduled, and blocks for
5801 rescheduling when INSN is found by move_op. */
5802 static void
5803 track_scheduled_insns_and_blocks (rtx insn)
5804 {
5805 /* Even if this insn can be a copy that will be removed during current move_op,
5806 we still need to count it as an originator. */
5807 bitmap_set_bit (current_originators, INSN_UID (insn));
5808
5809 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5810 {
5811 /* Note that original block needs to be rescheduled, as we pulled an
5812 instruction out of it. */
5813 if (INSN_SCHED_TIMES (insn) > 0)
5814 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5815 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5816 num_insns_scheduled++;
5817 }
5818
5819 /* For instructions we must immediately remove insn from the
5820 stream, so subsequent update_data_sets () won't include this
5821 insn into av_set.
5822 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5823 if (INSN_UID (insn) > max_uid_before_move_op)
5824 stat_bookkeeping_copies--;
5825 }
5826
5827 /* Emit a register-register copy for INSN if needed. Return true if
5828 emitted one. PARAMS is the move_op static parameters. */
5829 static bool
5830 maybe_emit_renaming_copy (rtx insn,
5831 moveop_static_params_p params)
5832 {
5833 bool insn_emitted = false;
5834 rtx cur_reg;
5835
5836 /* Bail out early when expression can not be renamed at all. */
5837 if (!EXPR_SEPARABLE_P (params->c_expr))
5838 return false;
5839
5840 cur_reg = expr_dest_reg (params->c_expr);
5841 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5842
5843 /* If original operation has expr and the register chosen for
5844 that expr is not original operation's dest reg, substitute
5845 operation's right hand side with the register chosen. */
5846 if (REGNO (params->dest) != REGNO (cur_reg))
5847 {
5848 insn_t reg_move_insn, reg_move_insn_rtx;
5849
5850 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5851 params->dest);
5852 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5853 INSN_EXPR (insn),
5854 INSN_SEQNO (insn),
5855 insn);
5856 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5857 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5858
5859 insn_emitted = true;
5860 params->was_renamed = true;
5861 }
5862
5863 return insn_emitted;
5864 }
5865
5866 /* Emit a speculative check for INSN speculated as EXPR if needed.
5867 Return true if we've emitted one. PARAMS is the move_op static
5868 parameters. */
5869 static bool
5870 maybe_emit_speculative_check (rtx insn, expr_t expr,
5871 moveop_static_params_p params)
5872 {
5873 bool insn_emitted = false;
5874 insn_t x;
5875 ds_t check_ds;
5876
5877 check_ds = get_spec_check_type_for_insn (insn, expr);
5878 if (check_ds != 0)
5879 {
5880 /* A speculation check should be inserted. */
5881 x = create_speculation_check (params->c_expr, check_ds, insn);
5882 insn_emitted = true;
5883 }
5884 else
5885 {
5886 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5887 x = insn;
5888 }
5889
5890 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5891 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5892 return insn_emitted;
5893 }
5894
5895 /* Handle transformations that leave an insn in place of original
5896 insn such as renaming/speculation. Return true if one of such
5897 transformations actually happened, and we have emitted this insn. */
5898 static bool
5899 handle_emitting_transformations (rtx insn, expr_t expr,
5900 moveop_static_params_p params)
5901 {
5902 bool insn_emitted = false;
5903
5904 insn_emitted = maybe_emit_renaming_copy (insn, params);
5905 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5906
5907 return insn_emitted;
5908 }
5909
5910 /* If INSN is the only insn in the basic block (not counting JUMP,
5911 which may be a jump to next insn, and DEBUG_INSNs), we want to
5912 leave a NOP there till the return to fill_insns. */
5913
5914 static bool
5915 need_nop_to_preserve_insn_bb (rtx insn)
5916 {
5917 insn_t bb_head, bb_end, bb_next, in_next;
5918 basic_block bb = BLOCK_FOR_INSN (insn);
5919
5920 bb_head = sel_bb_head (bb);
5921 bb_end = sel_bb_end (bb);
5922
5923 if (bb_head == bb_end)
5924 return true;
5925
5926 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5927 bb_head = NEXT_INSN (bb_head);
5928
5929 if (bb_head == bb_end)
5930 return true;
5931
5932 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5933 bb_end = PREV_INSN (bb_end);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 bb_next = NEXT_INSN (bb_head);
5939 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5940 bb_next = NEXT_INSN (bb_next);
5941
5942 if (bb_next == bb_end && JUMP_P (bb_end))
5943 return true;
5944
5945 in_next = NEXT_INSN (insn);
5946 while (DEBUG_INSN_P (in_next))
5947 in_next = NEXT_INSN (in_next);
5948
5949 if (IN_CURRENT_FENCE_P (in_next))
5950 return true;
5951
5952 return false;
5953 }
5954
5955 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5956 is not removed but reused when INSN is re-emitted. */
5957 static void
5958 remove_insn_from_stream (rtx insn, bool only_disconnect)
5959 {
5960 /* If there's only one insn in the BB, make sure that a nop is
5961 inserted into it, so the basic block won't disappear when we'll
5962 delete INSN below with sel_remove_insn. It should also survive
5963 till the return to fill_insns. */
5964 if (need_nop_to_preserve_insn_bb (insn))
5965 {
5966 insn_t nop = get_nop_from_pool (insn);
5967 gcc_assert (INSN_NOP_P (nop));
5968 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5969 }
5970
5971 sel_remove_insn (insn, only_disconnect, false);
5972 }
5973
5974 /* This function is called when original expr is found.
5975 INSN - current insn traversed, EXPR - the corresponding expr found.
5976 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5977 is static parameters of move_op. */
5978 static void
5979 move_op_orig_expr_found (insn_t insn, expr_t expr,
5980 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5981 void *static_params)
5982 {
5983 bool only_disconnect, insn_emitted;
5984 moveop_static_params_p params = (moveop_static_params_p) static_params;
5985
5986 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5987 track_scheduled_insns_and_blocks (insn);
5988 insn_emitted = handle_emitting_transformations (insn, expr, params);
5989 only_disconnect = (params->uid == INSN_UID (insn)
5990 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5991
5992 /* Mark that we've disconnected an insn. */
5993 if (only_disconnect)
5994 params->uid = -1;
5995 remove_insn_from_stream (insn, only_disconnect);
5996 }
5997
5998 /* The function is called when original expr is found.
5999 INSN - current insn traversed, EXPR - the corresponding expr found,
6000 crosses_call and original_insns in STATIC_PARAMS are updated. */
6001 static void
6002 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6003 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6004 void *static_params)
6005 {
6006 fur_static_params_p params = (fur_static_params_p) static_params;
6007 regset tmp;
6008
6009 if (CALL_P (insn))
6010 params->crosses_call = true;
6011
6012 def_list_add (params->original_insns, insn, params->crosses_call);
6013
6014 /* Mark the registers that do not meet the following condition:
6015 (2) not among the live registers of the point
6016 immediately following the first original operation on
6017 a given downward path, except for the original target
6018 register of the operation. */
6019 tmp = get_clear_regset_from_pool ();
6020 compute_live_below_insn (insn, tmp);
6021 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6022 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6023 IOR_REG_SET (params->used_regs, tmp);
6024 return_regset_to_pool (tmp);
6025
6026 /* (*1) We need to add to USED_REGS registers that are read by
6027 INSN's lhs. This may lead to choosing wrong src register.
6028 E.g. (scheduling const expr enabled):
6029
6030 429: ax=0x0 <- Can't use AX for this expr (0x0)
6031 433: dx=[bp-0x18]
6032 427: [ax+dx+0x1]=ax
6033 REG_DEAD: ax
6034 168: di=dx
6035 REG_DEAD: dx
6036 */
6037 /* FIXME: see comment above and enable MEM_P
6038 in vinsn_separable_p. */
6039 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6040 || !MEM_P (INSN_LHS (insn)));
6041 }
6042
6043 /* This function is called on the ascending pass, before returning from
6044 current basic block. */
6045 static void
6046 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6047 void *static_params)
6048 {
6049 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6050 basic_block book_block = NULL;
6051
6052 /* When we have removed the boundary insn for scheduling, which also
6053 happened to be the end insn in its bb, we don't need to update sets. */
6054 if (!lparams->removed_last_insn
6055 && lparams->e1
6056 && sel_bb_head_p (insn))
6057 {
6058 /* We should generate bookkeeping code only if we are not at the
6059 top level of the move_op. */
6060 if (sel_num_cfg_preds_gt_1 (insn))
6061 book_block = generate_bookkeeping_insn (sparams->c_expr,
6062 lparams->e1, lparams->e2);
6063 /* Update data sets for the current insn. */
6064 update_data_sets (insn);
6065 }
6066
6067 /* If bookkeeping code was inserted, we need to update av sets of basic
6068 block that received bookkeeping. After generation of bookkeeping insn,
6069 bookkeeping block does not contain valid av set because we are not following
6070 the original algorithm in every detail with regards to e.g. renaming
6071 simple reg-reg copies. Consider example:
6072
6073 bookkeeping block scheduling fence
6074 \ /
6075 \ join /
6076 ----------
6077 | |
6078 ----------
6079 / \
6080 / \
6081 r1 := r2 r1 := r3
6082
6083 We try to schedule insn "r1 := r3" on the current
6084 scheduling fence. Also, note that av set of bookkeeping block
6085 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6086 been scheduled, the CFG is as follows:
6087
6088 r1 := r3 r1 := r3
6089 bookkeeping block scheduling fence
6090 \ /
6091 \ join /
6092 ----------
6093 | |
6094 ----------
6095 / \
6096 / \
6097 r1 := r2
6098
6099 Here, insn "r1 := r3" was scheduled at the current scheduling point
6100 and bookkeeping code was generated at the bookeeping block. This
6101 way insn "r1 := r2" is no longer available as a whole instruction
6102 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6103 This situation is handled by calling update_data_sets.
6104
6105 Since update_data_sets is called only on the bookkeeping block, and
6106 it also may have predecessors with av_sets, containing instructions that
6107 are no longer available, we save all such expressions that become
6108 unavailable during data sets update on the bookkeeping block in
6109 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6110 expressions for scheduling. This allows us to avoid recomputation of
6111 av_sets outside the code motion path. */
6112
6113 if (book_block)
6114 update_and_record_unavailable_insns (book_block);
6115
6116 /* If INSN was previously marked for deletion, it's time to do it. */
6117 if (lparams->removed_last_insn)
6118 insn = PREV_INSN (insn);
6119
6120 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6121 kill a block with a single nop in which the insn should be emitted. */
6122 if (lparams->e1)
6123 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6124 }
6125
6126 /* This function is called on the ascending pass, before returning from the
6127 current basic block. */
6128 static void
6129 fur_at_first_insn (insn_t insn,
6130 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6131 void *static_params ATTRIBUTE_UNUSED)
6132 {
6133 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6134 || AV_LEVEL (insn) == -1);
6135 }
6136
6137 /* Called on the backward stage of recursion to call moveup_expr for insn
6138 and sparams->c_expr. */
6139 static void
6140 move_op_ascend (insn_t insn, void *static_params)
6141 {
6142 enum MOVEUP_EXPR_CODE res;
6143 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6144
6145 if (! INSN_NOP_P (insn))
6146 {
6147 res = moveup_expr_cached (sparams->c_expr, insn, false);
6148 gcc_assert (res != MOVEUP_EXPR_NULL);
6149 }
6150
6151 /* Update liveness for this insn as it was invalidated. */
6152 update_liveness_on_insn (insn);
6153 }
6154
6155 /* This function is called on enter to the basic block.
6156 Returns TRUE if this block already have been visited and
6157 code_motion_path_driver should return 1, FALSE otherwise. */
6158 static int
6159 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6160 void *static_params, bool visited_p)
6161 {
6162 fur_static_params_p sparams = (fur_static_params_p) static_params;
6163
6164 if (visited_p)
6165 {
6166 /* If we have found something below this block, there should be at
6167 least one insn in ORIGINAL_INSNS. */
6168 gcc_assert (*sparams->original_insns);
6169
6170 /* Adjust CROSSES_CALL, since we may have come to this block along
6171 different path. */
6172 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6173 |= sparams->crosses_call;
6174 }
6175 else
6176 local_params->old_original_insns = *sparams->original_insns;
6177
6178 return 1;
6179 }
6180
6181 /* Same as above but for move_op. */
6182 static int
6183 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6184 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6185 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6186 {
6187 if (visited_p)
6188 return -1;
6189 return 1;
6190 }
6191
6192 /* This function is called while descending current basic block if current
6193 insn is not the original EXPR we're searching for.
6194
6195 Return value: FALSE, if code_motion_path_driver should perform a local
6196 cleanup and return 0 itself;
6197 TRUE, if code_motion_path_driver should continue. */
6198 static bool
6199 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6200 void *static_params)
6201 {
6202 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6203
6204 #ifdef ENABLE_CHECKING
6205 sparams->failed_insn = insn;
6206 #endif
6207
6208 /* If we're scheduling separate expr, in order to generate correct code
6209 we need to stop the search at bookkeeping code generated with the
6210 same destination register or memory. */
6211 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6212 return false;
6213 return true;
6214 }
6215
6216 /* This function is called while descending current basic block if current
6217 insn is not the original EXPR we're searching for.
6218
6219 Return value: TRUE (code_motion_path_driver should continue). */
6220 static bool
6221 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6222 {
6223 bool mutexed;
6224 expr_t r;
6225 av_set_iterator avi;
6226 fur_static_params_p sparams = (fur_static_params_p) static_params;
6227
6228 if (CALL_P (insn))
6229 sparams->crosses_call = true;
6230 else if (DEBUG_INSN_P (insn))
6231 return true;
6232
6233 /* If current insn we are looking at cannot be executed together
6234 with original insn, then we can skip it safely.
6235
6236 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6237 INSN = (!p6) r14 = r14 + 1;
6238
6239 Here we can schedule ORIG_OP with lhs = r14, though only
6240 looking at the set of used and set registers of INSN we must
6241 forbid it. So, add set/used in INSN registers to the
6242 untouchable set only if there is an insn in ORIG_OPS that can
6243 affect INSN. */
6244 mutexed = true;
6245 FOR_EACH_EXPR (r, avi, orig_ops)
6246 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6247 {
6248 mutexed = false;
6249 break;
6250 }
6251
6252 /* Mark all registers that do not meet the following condition:
6253 (1) Not set or read on any path from xi to an instance of the
6254 original operation. */
6255 if (!mutexed)
6256 {
6257 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6258 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6260 }
6261
6262 return true;
6263 }
6264
6265 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6266 struct code_motion_path_driver_info_def move_op_hooks = {
6267 move_op_on_enter,
6268 move_op_orig_expr_found,
6269 move_op_orig_expr_not_found,
6270 move_op_merge_succs,
6271 move_op_after_merge_succs,
6272 move_op_ascend,
6273 move_op_at_first_insn,
6274 SUCCS_NORMAL,
6275 "move_op"
6276 };
6277
6278 /* Hooks and data to perform find_used_regs operations
6279 with code_motion_path_driver. */
6280 struct code_motion_path_driver_info_def fur_hooks = {
6281 fur_on_enter,
6282 fur_orig_expr_found,
6283 fur_orig_expr_not_found,
6284 fur_merge_succs,
6285 NULL, /* fur_after_merge_succs */
6286 NULL, /* fur_ascend */
6287 fur_at_first_insn,
6288 SUCCS_ALL,
6289 "find_used_regs"
6290 };
6291
6292 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6293 code_motion_path_driver is called recursively. Original operation
6294 was found at least on one path that is starting with one of INSN's
6295 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6296 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6297 of either move_op or find_used_regs depending on the caller.
6298
6299 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6300 know for sure at this point. */
6301 static int
6302 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6303 ilist_t path, void *static_params)
6304 {
6305 int res = 0;
6306 succ_iterator succ_i;
6307 rtx succ;
6308 basic_block bb;
6309 int old_index;
6310 unsigned old_succs;
6311
6312 struct cmpd_local_params lparams;
6313 expr_def _x;
6314
6315 lparams.c_expr_local = &_x;
6316 lparams.c_expr_merged = NULL;
6317
6318 /* We need to process only NORMAL succs for move_op, and collect live
6319 registers from ALL branches (including those leading out of the
6320 region) for find_used_regs.
6321
6322 In move_op, there can be a case when insn's bb number has changed
6323 due to created bookkeeping. This happens very rare, as we need to
6324 move expression from the beginning to the end of the same block.
6325 Rescan successors in this case. */
6326
6327 rescan:
6328 bb = BLOCK_FOR_INSN (insn);
6329 old_index = bb->index;
6330 old_succs = EDGE_COUNT (bb->succs);
6331
6332 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6333 {
6334 int b;
6335
6336 lparams.e1 = succ_i.e1;
6337 lparams.e2 = succ_i.e2;
6338
6339 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6340 current region). */
6341 if (succ_i.current_flags == SUCCS_NORMAL)
6342 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6343 static_params);
6344 else
6345 b = 0;
6346
6347 /* Merge c_expres found or unify live register sets from different
6348 successors. */
6349 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6350 static_params);
6351 if (b == 1)
6352 res = b;
6353 else if (b == -1 && res != 1)
6354 res = b;
6355
6356 /* We have simplified the control flow below this point. In this case,
6357 the iterator becomes invalid. We need to try again. */
6358 if (BLOCK_FOR_INSN (insn)->index != old_index
6359 || EDGE_COUNT (bb->succs) != old_succs)
6360 goto rescan;
6361 }
6362
6363 /* Here, RES==1 if original expr was found at least for one of the
6364 successors. After the loop, RES may happen to have zero value
6365 only if at some point the expr searched is present in av_set, but is
6366 not found below. In most cases, this situation is an error.
6367 The exception is when the original operation is blocked by
6368 bookkeeping generated for another fence or for another path in current
6369 move_op. */
6370 gcc_checking_assert (res == 1
6371 || (res == 0
6372 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6373 static_params))
6374 || res == -1);
6375
6376 /* Merge data, clean up, etc. */
6377 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6378 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6379
6380 return res;
6381 }
6382
6383
6384 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6385 is the pointer to the av set with expressions we were looking for,
6386 PATH_P is the pointer to the traversed path. */
6387 static inline void
6388 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6389 {
6390 ilist_remove (path_p);
6391 av_set_clear (orig_ops_p);
6392 }
6393
6394 /* The driver function that implements move_op or find_used_regs
6395 functionality dependent whether code_motion_path_driver_INFO is set to
6396 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6397 of code (CFG traversal etc) that are shared among both functions. INSN
6398 is the insn we're starting the search from, ORIG_OPS are the expressions
6399 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6400 parameters of the driver, and STATIC_PARAMS are static parameters of
6401 the caller.
6402
6403 Returns whether original instructions were found. Note that top-level
6404 code_motion_path_driver always returns true. */
6405 static int
6406 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6407 cmpd_local_params_p local_params_in,
6408 void *static_params)
6409 {
6410 expr_t expr = NULL;
6411 basic_block bb = BLOCK_FOR_INSN (insn);
6412 insn_t first_insn, bb_tail, before_first;
6413 bool removed_last_insn = false;
6414
6415 if (sched_verbose >= 6)
6416 {
6417 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6418 dump_insn (insn);
6419 sel_print (",");
6420 dump_av_set (orig_ops);
6421 sel_print (")\n");
6422 }
6423
6424 gcc_assert (orig_ops);
6425
6426 /* If no original operations exist below this insn, return immediately. */
6427 if (is_ineligible_successor (insn, path))
6428 {
6429 if (sched_verbose >= 6)
6430 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6431 return false;
6432 }
6433
6434 /* The block can have invalid av set, in which case it was created earlier
6435 during move_op. Return immediately. */
6436 if (sel_bb_head_p (insn))
6437 {
6438 if (! AV_SET_VALID_P (insn))
6439 {
6440 if (sched_verbose >= 6)
6441 sel_print ("Returned from block %d as it had invalid av set\n",
6442 bb->index);
6443 return false;
6444 }
6445
6446 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6447 {
6448 /* We have already found an original operation on this branch, do not
6449 go any further and just return TRUE here. If we don't stop here,
6450 function can have exponential behaviour even on the small code
6451 with many different paths (e.g. with data speculation and
6452 recovery blocks). */
6453 if (sched_verbose >= 6)
6454 sel_print ("Block %d already visited in this traversal\n", bb->index);
6455 if (code_motion_path_driver_info->on_enter)
6456 return code_motion_path_driver_info->on_enter (insn,
6457 local_params_in,
6458 static_params,
6459 true);
6460 }
6461 }
6462
6463 if (code_motion_path_driver_info->on_enter)
6464 code_motion_path_driver_info->on_enter (insn, local_params_in,
6465 static_params, false);
6466 orig_ops = av_set_copy (orig_ops);
6467
6468 /* Filter the orig_ops set. */
6469 if (AV_SET_VALID_P (insn))
6470 av_set_intersect (&orig_ops, AV_SET (insn));
6471
6472 /* If no more original ops, return immediately. */
6473 if (!orig_ops)
6474 {
6475 if (sched_verbose >= 6)
6476 sel_print ("No intersection with av set of block %d\n", bb->index);
6477 return false;
6478 }
6479
6480 /* For non-speculative insns we have to leave only one form of the
6481 original operation, because if we don't, we may end up with
6482 different C_EXPRes and, consequently, with bookkeepings for different
6483 expression forms along the same code motion path. That may lead to
6484 generation of incorrect code. So for each code motion we stick to
6485 the single form of the instruction, except for speculative insns
6486 which we need to keep in different forms with all speculation
6487 types. */
6488 av_set_leave_one_nonspec (&orig_ops);
6489
6490 /* It is not possible that all ORIG_OPS are filtered out. */
6491 gcc_assert (orig_ops);
6492
6493 /* It is enough to place only heads and tails of visited basic blocks into
6494 the PATH. */
6495 ilist_add (&path, insn);
6496 first_insn = insn;
6497 bb_tail = sel_bb_end (bb);
6498
6499 /* Descend the basic block in search of the original expr; this part
6500 corresponds to the part of the original move_op procedure executed
6501 before the recursive call. */
6502 for (;;)
6503 {
6504 /* Look at the insn and decide if it could be an ancestor of currently
6505 scheduling operation. If it is so, then the insn "dest = op" could
6506 either be replaced with "dest = reg", because REG now holds the result
6507 of OP, or just removed, if we've scheduled the insn as a whole.
6508
6509 If this insn doesn't contain currently scheduling OP, then proceed
6510 with searching and look at its successors. Operations we're searching
6511 for could have changed when moving up through this insn via
6512 substituting. In this case, perform unsubstitution on them first.
6513
6514 When traversing the DAG below this insn is finished, insert
6515 bookkeeping code, if the insn is a joint point, and remove
6516 leftovers. */
6517
6518 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6519 if (expr)
6520 {
6521 insn_t last_insn = PREV_INSN (insn);
6522
6523 /* We have found the original operation. */
6524 if (sched_verbose >= 6)
6525 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6526
6527 code_motion_path_driver_info->orig_expr_found
6528 (insn, expr, local_params_in, static_params);
6529
6530 /* Step back, so on the way back we'll start traversing from the
6531 previous insn (or we'll see that it's bb_note and skip that
6532 loop). */
6533 if (insn == first_insn)
6534 {
6535 first_insn = NEXT_INSN (last_insn);
6536 removed_last_insn = sel_bb_end_p (last_insn);
6537 }
6538 insn = last_insn;
6539 break;
6540 }
6541 else
6542 {
6543 /* We haven't found the original expr, continue descending the basic
6544 block. */
6545 if (code_motion_path_driver_info->orig_expr_not_found
6546 (insn, orig_ops, static_params))
6547 {
6548 /* Av set ops could have been changed when moving through this
6549 insn. To find them below it, we have to un-substitute them. */
6550 undo_transformations (&orig_ops, insn);
6551 }
6552 else
6553 {
6554 /* Clean up and return, if the hook tells us to do so. It may
6555 happen if we've encountered the previously created
6556 bookkeeping. */
6557 code_motion_path_driver_cleanup (&orig_ops, &path);
6558 return -1;
6559 }
6560
6561 gcc_assert (orig_ops);
6562 }
6563
6564 /* Stop at insn if we got to the end of BB. */
6565 if (insn == bb_tail)
6566 break;
6567
6568 insn = NEXT_INSN (insn);
6569 }
6570
6571 /* Here INSN either points to the insn before the original insn (may be
6572 bb_note, if original insn was a bb_head) or to the bb_end. */
6573 if (!expr)
6574 {
6575 int res;
6576
6577 gcc_assert (insn == sel_bb_end (bb));
6578
6579 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6580 it's already in PATH then). */
6581 if (insn != first_insn)
6582 ilist_add (&path, insn);
6583
6584 /* Process_successors should be able to find at least one
6585 successor for which code_motion_path_driver returns TRUE. */
6586 res = code_motion_process_successors (insn, orig_ops,
6587 path, static_params);
6588
6589 /* Remove bb tail from path. */
6590 if (insn != first_insn)
6591 ilist_remove (&path);
6592
6593 if (res != 1)
6594 {
6595 /* This is the case when one of the original expr is no longer available
6596 due to bookkeeping created on this branch with the same register.
6597 In the original algorithm, which doesn't have update_data_sets call
6598 on a bookkeeping block, it would simply result in returning
6599 FALSE when we've encountered a previously generated bookkeeping
6600 insn in moveop_orig_expr_not_found. */
6601 code_motion_path_driver_cleanup (&orig_ops, &path);
6602 return res;
6603 }
6604 }
6605
6606 /* Don't need it any more. */
6607 av_set_clear (&orig_ops);
6608
6609 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6610 the beginning of the basic block. */
6611 before_first = PREV_INSN (first_insn);
6612 while (insn != before_first)
6613 {
6614 if (code_motion_path_driver_info->ascend)
6615 code_motion_path_driver_info->ascend (insn, static_params);
6616
6617 insn = PREV_INSN (insn);
6618 }
6619
6620 /* Now we're at the bb head. */
6621 insn = first_insn;
6622 ilist_remove (&path);
6623 local_params_in->removed_last_insn = removed_last_insn;
6624 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6625
6626 /* This should be the very last operation as at bb head we could change
6627 the numbering by creating bookkeeping blocks. */
6628 if (removed_last_insn)
6629 insn = PREV_INSN (insn);
6630 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6631 return true;
6632 }
6633
6634 /* Move up the operations from ORIG_OPS set traversing the dag starting
6635 from INSN. PATH represents the edges traversed so far.
6636 DEST is the register chosen for scheduling the current expr. Insert
6637 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6638 C_EXPR is how it looks like at the given cfg point.
6639 Set *SHOULD_MOVE to indicate whether we have only disconnected
6640 one of the insns found.
6641
6642 Returns whether original instructions were found, which is asserted
6643 to be true in the caller. */
6644 static bool
6645 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6646 rtx dest, expr_t c_expr, bool *should_move)
6647 {
6648 struct moveop_static_params sparams;
6649 struct cmpd_local_params lparams;
6650 bool res;
6651
6652 /* Init params for code_motion_path_driver. */
6653 sparams.dest = dest;
6654 sparams.c_expr = c_expr;
6655 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6656 #ifdef ENABLE_CHECKING
6657 sparams.failed_insn = NULL;
6658 #endif
6659 sparams.was_renamed = false;
6660 lparams.e1 = NULL;
6661
6662 /* We haven't visited any blocks yet. */
6663 bitmap_clear (code_motion_visited_blocks);
6664
6665 /* Set appropriate hooks and data. */
6666 code_motion_path_driver_info = &move_op_hooks;
6667 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6668
6669 if (sparams.was_renamed)
6670 EXPR_WAS_RENAMED (expr_vliw) = true;
6671
6672 *should_move = (sparams.uid == -1);
6673
6674 return res;
6675 }
6676 \f
6677
6678 /* Functions that work with regions. */
6679
6680 /* Current number of seqno used in init_seqno and init_seqno_1. */
6681 static int cur_seqno;
6682
6683 /* A helper for init_seqno. Traverse the region starting from BB and
6684 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6685 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6686 static void
6687 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6688 {
6689 int bbi = BLOCK_TO_BB (bb->index);
6690 insn_t insn, note = bb_note (bb);
6691 insn_t succ_insn;
6692 succ_iterator si;
6693
6694 SET_BIT (visited_bbs, bbi);
6695 if (blocks_to_reschedule)
6696 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6697
6698 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6699 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6700 {
6701 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6702 int succ_bbi = BLOCK_TO_BB (succ->index);
6703
6704 gcc_assert (in_current_region_p (succ));
6705
6706 if (!TEST_BIT (visited_bbs, succ_bbi))
6707 {
6708 gcc_assert (succ_bbi > bbi);
6709
6710 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6711 }
6712 }
6713
6714 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6715 INSN_SEQNO (insn) = cur_seqno--;
6716 }
6717
6718 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6719 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6720 which we're rescheduling when pipelining, FROM is the block where
6721 traversing region begins (it may not be the head of the region when
6722 pipelining, but the head of the loop instead).
6723
6724 Returns the maximal seqno found. */
6725 static int
6726 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6727 {
6728 sbitmap visited_bbs;
6729 bitmap_iterator bi;
6730 unsigned bbi;
6731
6732 visited_bbs = sbitmap_alloc (current_nr_blocks);
6733
6734 if (blocks_to_reschedule)
6735 {
6736 sbitmap_ones (visited_bbs);
6737 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6738 {
6739 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6740 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6741 }
6742 }
6743 else
6744 {
6745 sbitmap_zero (visited_bbs);
6746 from = EBB_FIRST_BB (0);
6747 }
6748
6749 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6750 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6751 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6752
6753 sbitmap_free (visited_bbs);
6754 return sched_max_luid - 1;
6755 }
6756
6757 /* Initialize scheduling parameters for current region. */
6758 static void
6759 sel_setup_region_sched_flags (void)
6760 {
6761 enable_schedule_as_rhs_p = 1;
6762 bookkeeping_p = 1;
6763 pipelining_p = (bookkeeping_p
6764 && (flag_sel_sched_pipelining != 0)
6765 && current_loop_nest != NULL);
6766 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6767 max_ws = MAX_WS;
6768 }
6769
6770 /* Return true if all basic blocks of current region are empty. */
6771 static bool
6772 current_region_empty_p (void)
6773 {
6774 int i;
6775 for (i = 0; i < current_nr_blocks; i++)
6776 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6777 return false;
6778
6779 return true;
6780 }
6781
6782 /* Prepare and verify loop nest for pipelining. */
6783 static void
6784 setup_current_loop_nest (int rgn)
6785 {
6786 current_loop_nest = get_loop_nest_for_rgn (rgn);
6787
6788 if (!current_loop_nest)
6789 return;
6790
6791 /* If this loop has any saved loop preheaders from nested loops,
6792 add these basic blocks to the current region. */
6793 sel_add_loop_preheaders ();
6794
6795 /* Check that we're starting with a valid information. */
6796 gcc_assert (loop_latch_edge (current_loop_nest));
6797 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6798 }
6799
6800 /* Compute instruction priorities for current region. */
6801 static void
6802 sel_compute_priorities (int rgn)
6803 {
6804 sched_rgn_compute_dependencies (rgn);
6805
6806 /* Compute insn priorities in haifa style. Then free haifa style
6807 dependencies that we've calculated for this. */
6808 compute_priorities ();
6809
6810 if (sched_verbose >= 5)
6811 debug_rgn_dependencies (0);
6812
6813 free_rgn_deps ();
6814 }
6815
6816 /* Init scheduling data for RGN. Returns true when this region should not
6817 be scheduled. */
6818 static bool
6819 sel_region_init (int rgn)
6820 {
6821 int i;
6822 bb_vec_t bbs;
6823
6824 rgn_setup_region (rgn);
6825
6826 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6827 do region initialization here so the region can be bundled correctly,
6828 but we'll skip the scheduling in sel_sched_region (). */
6829 if (current_region_empty_p ())
6830 return true;
6831
6832 if (flag_sel_sched_pipelining)
6833 setup_current_loop_nest (rgn);
6834
6835 sel_setup_region_sched_flags ();
6836
6837 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6838
6839 for (i = 0; i < current_nr_blocks; i++)
6840 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6841
6842 sel_init_bbs (bbs, NULL);
6843
6844 /* Initialize luids and dependence analysis which both sel-sched and haifa
6845 need. */
6846 sched_init_luids (bbs, NULL, NULL, NULL);
6847 sched_deps_init (false);
6848
6849 /* Initialize haifa data. */
6850 rgn_setup_sched_infos ();
6851 sel_set_sched_flags ();
6852 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6853
6854 sel_compute_priorities (rgn);
6855 init_deps_global ();
6856
6857 /* Main initialization. */
6858 sel_setup_sched_infos ();
6859 sel_init_global_and_expr (bbs);
6860
6861 VEC_free (basic_block, heap, bbs);
6862
6863 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6864
6865 /* Init correct liveness sets on each instruction of a single-block loop.
6866 This is the only situation when we can't update liveness when calling
6867 compute_live for the first insn of the loop. */
6868 if (current_loop_nest)
6869 {
6870 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6871 ? 1
6872 : 0);
6873
6874 if (current_nr_blocks == header + 1)
6875 update_liveness_on_insn
6876 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6877 }
6878
6879 /* Set hooks so that no newly generated insn will go out unnoticed. */
6880 sel_register_cfg_hooks ();
6881
6882 /* !!! We call target.sched.init () for the whole region, but we invoke
6883 targetm.sched.finish () for every ebb. */
6884 if (targetm.sched.init)
6885 /* None of the arguments are actually used in any target. */
6886 targetm.sched.init (sched_dump, sched_verbose, -1);
6887
6888 first_emitted_uid = get_max_uid () + 1;
6889 preheader_removed = false;
6890
6891 /* Reset register allocation ticks array. */
6892 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6893 reg_rename_this_tick = 0;
6894
6895 bitmap_initialize (forced_ebb_heads, 0);
6896 bitmap_clear (forced_ebb_heads);
6897
6898 setup_nop_vinsn ();
6899 current_copies = BITMAP_ALLOC (NULL);
6900 current_originators = BITMAP_ALLOC (NULL);
6901 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6902
6903 return false;
6904 }
6905
6906 /* Simplify insns after the scheduling. */
6907 static void
6908 simplify_changed_insns (void)
6909 {
6910 int i;
6911
6912 for (i = 0; i < current_nr_blocks; i++)
6913 {
6914 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6915 rtx insn;
6916
6917 FOR_BB_INSNS (bb, insn)
6918 if (INSN_P (insn))
6919 {
6920 expr_t expr = INSN_EXPR (insn);
6921
6922 if (EXPR_WAS_SUBSTITUTED (expr))
6923 validate_simplify_insn (insn);
6924 }
6925 }
6926 }
6927
6928 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6929 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6930 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6931 static void
6932 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6933 {
6934 insn_t head, tail;
6935 basic_block bb1 = bb;
6936 if (sched_verbose >= 2)
6937 sel_print ("Finishing schedule in bbs: ");
6938
6939 do
6940 {
6941 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6942
6943 if (sched_verbose >= 2)
6944 sel_print ("%d; ", bb1->index);
6945 }
6946 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6947
6948 if (sched_verbose >= 2)
6949 sel_print ("\n");
6950
6951 get_ebb_head_tail (bb, bb1, &head, &tail);
6952
6953 current_sched_info->head = head;
6954 current_sched_info->tail = tail;
6955 current_sched_info->prev_head = PREV_INSN (head);
6956 current_sched_info->next_tail = NEXT_INSN (tail);
6957 }
6958
6959 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6960 static void
6961 reset_sched_cycles_in_current_ebb (void)
6962 {
6963 int last_clock = 0;
6964 int haifa_last_clock = -1;
6965 int haifa_clock = 0;
6966 insn_t insn;
6967
6968 if (targetm.sched.init)
6969 {
6970 /* None of the arguments are actually used in any target.
6971 NB: We should have md_reset () hook for cases like this. */
6972 targetm.sched.init (sched_dump, sched_verbose, -1);
6973 }
6974
6975 state_reset (curr_state);
6976 advance_state (curr_state);
6977
6978 for (insn = current_sched_info->head;
6979 insn != current_sched_info->next_tail;
6980 insn = NEXT_INSN (insn))
6981 {
6982 int cost, haifa_cost;
6983 int sort_p;
6984 bool asm_p, real_insn, after_stall;
6985 int clock;
6986
6987 if (!INSN_P (insn))
6988 continue;
6989
6990 asm_p = false;
6991 real_insn = recog_memoized (insn) >= 0;
6992 clock = INSN_SCHED_CYCLE (insn);
6993
6994 cost = clock - last_clock;
6995
6996 /* Initialize HAIFA_COST. */
6997 if (! real_insn)
6998 {
6999 asm_p = INSN_ASM_P (insn);
7000
7001 if (asm_p)
7002 /* This is asm insn which *had* to be scheduled first
7003 on the cycle. */
7004 haifa_cost = 1;
7005 else
7006 /* This is a use/clobber insn. It should not change
7007 cost. */
7008 haifa_cost = 0;
7009 }
7010 else
7011 haifa_cost = estimate_insn_cost (insn, curr_state);
7012
7013 /* Stall for whatever cycles we've stalled before. */
7014 after_stall = 0;
7015 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7016 {
7017 haifa_cost = cost;
7018 after_stall = 1;
7019 }
7020
7021 if (haifa_cost > 0)
7022 {
7023 int i = 0;
7024
7025 while (haifa_cost--)
7026 {
7027 advance_state (curr_state);
7028 i++;
7029
7030 if (sched_verbose >= 2)
7031 {
7032 sel_print ("advance_state (state_transition)\n");
7033 debug_state (curr_state);
7034 }
7035
7036 /* The DFA may report that e.g. insn requires 2 cycles to be
7037 issued, but on the next cycle it says that insn is ready
7038 to go. Check this here. */
7039 if (!after_stall
7040 && real_insn
7041 && haifa_cost > 0
7042 && estimate_insn_cost (insn, curr_state) == 0)
7043 break;
7044 }
7045
7046 haifa_clock += i;
7047 }
7048 else
7049 gcc_assert (haifa_cost == 0);
7050
7051 if (sched_verbose >= 2)
7052 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7053
7054 if (targetm.sched.dfa_new_cycle)
7055 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7056 haifa_last_clock, haifa_clock,
7057 &sort_p))
7058 {
7059 advance_state (curr_state);
7060 haifa_clock++;
7061 if (sched_verbose >= 2)
7062 {
7063 sel_print ("advance_state (dfa_new_cycle)\n");
7064 debug_state (curr_state);
7065 }
7066 }
7067
7068 if (real_insn)
7069 {
7070 cost = state_transition (curr_state, insn);
7071
7072 if (sched_verbose >= 2)
7073 debug_state (curr_state);
7074
7075 gcc_assert (cost < 0);
7076 }
7077
7078 if (targetm.sched.variable_issue)
7079 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7080
7081 INSN_SCHED_CYCLE (insn) = haifa_clock;
7082
7083 last_clock = clock;
7084 haifa_last_clock = haifa_clock;
7085 }
7086 }
7087
7088 /* Put TImode markers on insns starting a new issue group. */
7089 static void
7090 put_TImodes (void)
7091 {
7092 int last_clock = -1;
7093 insn_t insn;
7094
7095 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7096 insn = NEXT_INSN (insn))
7097 {
7098 int cost, clock;
7099
7100 if (!INSN_P (insn))
7101 continue;
7102
7103 clock = INSN_SCHED_CYCLE (insn);
7104 cost = (last_clock == -1) ? 1 : clock - last_clock;
7105
7106 gcc_assert (cost >= 0);
7107
7108 if (issue_rate > 1
7109 && GET_CODE (PATTERN (insn)) != USE
7110 && GET_CODE (PATTERN (insn)) != CLOBBER)
7111 {
7112 if (reload_completed && cost > 0)
7113 PUT_MODE (insn, TImode);
7114
7115 last_clock = clock;
7116 }
7117
7118 if (sched_verbose >= 2)
7119 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7120 }
7121 }
7122
7123 /* Perform MD_FINISH on EBBs comprising current region. When
7124 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7125 to produce correct sched cycles on insns. */
7126 static void
7127 sel_region_target_finish (bool reset_sched_cycles_p)
7128 {
7129 int i;
7130 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7131
7132 for (i = 0; i < current_nr_blocks; i++)
7133 {
7134 if (bitmap_bit_p (scheduled_blocks, i))
7135 continue;
7136
7137 /* While pipelining outer loops, skip bundling for loop
7138 preheaders. Those will be rescheduled in the outer loop. */
7139 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7140 continue;
7141
7142 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7143
7144 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7145 continue;
7146
7147 if (reset_sched_cycles_p)
7148 reset_sched_cycles_in_current_ebb ();
7149
7150 if (targetm.sched.init)
7151 targetm.sched.init (sched_dump, sched_verbose, -1);
7152
7153 put_TImodes ();
7154
7155 if (targetm.sched.finish)
7156 {
7157 targetm.sched.finish (sched_dump, sched_verbose);
7158
7159 /* Extend luids so that insns generated by the target will
7160 get zero luid. */
7161 sched_init_luids (NULL, NULL, NULL, NULL);
7162 }
7163 }
7164
7165 BITMAP_FREE (scheduled_blocks);
7166 }
7167
7168 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7169 is true, make an additional pass emulating scheduler to get correct insn
7170 cycles for md_finish calls. */
7171 static void
7172 sel_region_finish (bool reset_sched_cycles_p)
7173 {
7174 simplify_changed_insns ();
7175 sched_finish_ready_list ();
7176 free_nop_pool ();
7177
7178 /* Free the vectors. */
7179 if (vec_av_set)
7180 VEC_free (expr_t, heap, vec_av_set);
7181 BITMAP_FREE (current_copies);
7182 BITMAP_FREE (current_originators);
7183 BITMAP_FREE (code_motion_visited_blocks);
7184 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7185 vinsn_vec_free (&vec_target_unavailable_vinsns);
7186
7187 /* If LV_SET of the region head should be updated, do it now because
7188 there will be no other chance. */
7189 {
7190 succ_iterator si;
7191 insn_t insn;
7192
7193 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7194 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7195 {
7196 basic_block bb = BLOCK_FOR_INSN (insn);
7197
7198 if (!BB_LV_SET_VALID_P (bb))
7199 compute_live (insn);
7200 }
7201 }
7202
7203 /* Emulate the Haifa scheduler for bundling. */
7204 if (reload_completed)
7205 sel_region_target_finish (reset_sched_cycles_p);
7206
7207 sel_finish_global_and_expr ();
7208
7209 bitmap_clear (forced_ebb_heads);
7210
7211 free_nop_vinsn ();
7212
7213 finish_deps_global ();
7214 sched_finish_luids ();
7215
7216 sel_finish_bbs ();
7217 BITMAP_FREE (blocks_to_reschedule);
7218
7219 sel_unregister_cfg_hooks ();
7220
7221 max_issue_size = 0;
7222 }
7223 \f
7224
7225 /* Functions that implement the scheduler driver. */
7226
7227 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7228 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7229 of insns scheduled -- these would be postprocessed later. */
7230 static void
7231 schedule_on_fences (flist_t fences, int max_seqno,
7232 ilist_t **scheduled_insns_tailpp)
7233 {
7234 flist_t old_fences = fences;
7235
7236 if (sched_verbose >= 1)
7237 {
7238 sel_print ("\nScheduling on fences: ");
7239 dump_flist (fences);
7240 sel_print ("\n");
7241 }
7242
7243 scheduled_something_on_previous_fence = false;
7244 for (; fences; fences = FLIST_NEXT (fences))
7245 {
7246 fence_t fence = NULL;
7247 int seqno = 0;
7248 flist_t fences2;
7249 bool first_p = true;
7250
7251 /* Choose the next fence group to schedule.
7252 The fact that insn can be scheduled only once
7253 on the cycle is guaranteed by two properties:
7254 1. seqnos of parallel groups decrease with each iteration.
7255 2. If is_ineligible_successor () sees the larger seqno, it
7256 checks if candidate insn is_in_current_fence_p (). */
7257 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7258 {
7259 fence_t f = FLIST_FENCE (fences2);
7260
7261 if (!FENCE_PROCESSED_P (f))
7262 {
7263 int i = INSN_SEQNO (FENCE_INSN (f));
7264
7265 if (first_p || i > seqno)
7266 {
7267 seqno = i;
7268 fence = f;
7269 first_p = false;
7270 }
7271 else
7272 /* ??? Seqnos of different groups should be different. */
7273 gcc_assert (1 || i != seqno);
7274 }
7275 }
7276
7277 gcc_assert (fence);
7278
7279 /* As FENCE is nonnull, SEQNO is initialized. */
7280 seqno -= max_seqno + 1;
7281 fill_insns (fence, seqno, scheduled_insns_tailpp);
7282 FENCE_PROCESSED_P (fence) = true;
7283 }
7284
7285 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7286 don't need to keep bookkeeping-invalidated and target-unavailable
7287 vinsns any more. */
7288 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7289 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7290 }
7291
7292 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7293 static void
7294 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7295 {
7296 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7297
7298 /* The first element is already processed. */
7299 while ((fences = FLIST_NEXT (fences)))
7300 {
7301 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7302
7303 if (*min_seqno > seqno)
7304 *min_seqno = seqno;
7305 else if (*max_seqno < seqno)
7306 *max_seqno = seqno;
7307 }
7308 }
7309
7310 /* Calculate new fences from FENCES. */
7311 static flist_t
7312 calculate_new_fences (flist_t fences, int orig_max_seqno)
7313 {
7314 flist_t old_fences = fences;
7315 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7316
7317 flist_tail_init (new_fences);
7318 for (; fences; fences = FLIST_NEXT (fences))
7319 {
7320 fence_t fence = FLIST_FENCE (fences);
7321 insn_t insn;
7322
7323 if (!FENCE_BNDS (fence))
7324 {
7325 /* This fence doesn't have any successors. */
7326 if (!FENCE_SCHEDULED_P (fence))
7327 {
7328 /* Nothing was scheduled on this fence. */
7329 int seqno;
7330
7331 insn = FENCE_INSN (fence);
7332 seqno = INSN_SEQNO (insn);
7333 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7334
7335 if (sched_verbose >= 1)
7336 sel_print ("Fence %d[%d] has not changed\n",
7337 INSN_UID (insn),
7338 BLOCK_NUM (insn));
7339 move_fence_to_fences (fences, new_fences);
7340 }
7341 }
7342 else
7343 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7344 }
7345
7346 flist_clear (&old_fences);
7347 return FLIST_TAIL_HEAD (new_fences);
7348 }
7349
7350 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7351 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7352 the highest seqno used in a region. Return the updated highest seqno. */
7353 static int
7354 update_seqnos_and_stage (int min_seqno, int max_seqno,
7355 int highest_seqno_in_use,
7356 ilist_t *pscheduled_insns)
7357 {
7358 int new_hs;
7359 ilist_iterator ii;
7360 insn_t insn;
7361
7362 /* Actually, new_hs is the seqno of the instruction, that was
7363 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7364 if (*pscheduled_insns)
7365 {
7366 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7367 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7368 gcc_assert (new_hs > highest_seqno_in_use);
7369 }
7370 else
7371 new_hs = highest_seqno_in_use;
7372
7373 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7374 {
7375 gcc_assert (INSN_SEQNO (insn) < 0);
7376 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7377 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7378
7379 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7380 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7381 require > 1GB of memory e.g. on limit-fnargs.c. */
7382 if (! pipelining_p)
7383 free_data_for_scheduled_insn (insn);
7384 }
7385
7386 ilist_clear (pscheduled_insns);
7387 global_level++;
7388
7389 return new_hs;
7390 }
7391
7392 /* The main driver for scheduling a region. This function is responsible
7393 for correct propagation of fences (i.e. scheduling points) and creating
7394 a group of parallel insns at each of them. It also supports
7395 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7396 of scheduling. */
7397 static void
7398 sel_sched_region_2 (int orig_max_seqno)
7399 {
7400 int highest_seqno_in_use = orig_max_seqno;
7401
7402 stat_bookkeeping_copies = 0;
7403 stat_insns_needed_bookkeeping = 0;
7404 stat_renamed_scheduled = 0;
7405 stat_substitutions_total = 0;
7406 num_insns_scheduled = 0;
7407
7408 while (fences)
7409 {
7410 int min_seqno, max_seqno;
7411 ilist_t scheduled_insns = NULL;
7412 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7413
7414 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7415 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7416 fences = calculate_new_fences (fences, orig_max_seqno);
7417 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7418 highest_seqno_in_use,
7419 &scheduled_insns);
7420 }
7421
7422 if (sched_verbose >= 1)
7423 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7424 "bookkeeping, %d insns renamed, %d insns substituted\n",
7425 stat_bookkeeping_copies,
7426 stat_insns_needed_bookkeeping,
7427 stat_renamed_scheduled,
7428 stat_substitutions_total);
7429 }
7430
7431 /* Schedule a region. When pipelining, search for possibly never scheduled
7432 bookkeeping code and schedule it. Reschedule pipelined code without
7433 pipelining after. */
7434 static void
7435 sel_sched_region_1 (void)
7436 {
7437 int number_of_insns;
7438 int orig_max_seqno;
7439
7440 /* Remove empty blocks that might be in the region from the beginning.
7441 We need to do save sched_max_luid before that, as it actually shows
7442 the number of insns in the region, and purge_empty_blocks can
7443 alter it. */
7444 number_of_insns = sched_max_luid - 1;
7445 purge_empty_blocks ();
7446
7447 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7448 gcc_assert (orig_max_seqno >= 1);
7449
7450 /* When pipelining outer loops, create fences on the loop header,
7451 not preheader. */
7452 fences = NULL;
7453 if (current_loop_nest)
7454 init_fences (BB_END (EBB_FIRST_BB (0)));
7455 else
7456 init_fences (bb_note (EBB_FIRST_BB (0)));
7457 global_level = 1;
7458
7459 sel_sched_region_2 (orig_max_seqno);
7460
7461 gcc_assert (fences == NULL);
7462
7463 if (pipelining_p)
7464 {
7465 int i;
7466 basic_block bb;
7467 struct flist_tail_def _new_fences;
7468 flist_tail_t new_fences = &_new_fences;
7469 bool do_p = true;
7470
7471 pipelining_p = false;
7472 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7473 bookkeeping_p = false;
7474 enable_schedule_as_rhs_p = false;
7475
7476 /* Schedule newly created code, that has not been scheduled yet. */
7477 do_p = true;
7478
7479 while (do_p)
7480 {
7481 do_p = false;
7482
7483 for (i = 0; i < current_nr_blocks; i++)
7484 {
7485 basic_block bb = EBB_FIRST_BB (i);
7486
7487 if (sel_bb_empty_p (bb))
7488 {
7489 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7490 continue;
7491 }
7492
7493 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7494 {
7495 clear_outdated_rtx_info (bb);
7496 if (sel_insn_is_speculation_check (BB_END (bb))
7497 && JUMP_P (BB_END (bb)))
7498 bitmap_set_bit (blocks_to_reschedule,
7499 BRANCH_EDGE (bb)->dest->index);
7500 }
7501 else if (INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7502 bitmap_set_bit (blocks_to_reschedule, bb->index);
7503 }
7504
7505 for (i = 0; i < current_nr_blocks; i++)
7506 {
7507 bb = EBB_FIRST_BB (i);
7508
7509 /* While pipelining outer loops, skip bundling for loop
7510 preheaders. Those will be rescheduled in the outer
7511 loop. */
7512 if (sel_is_loop_preheader_p (bb))
7513 {
7514 clear_outdated_rtx_info (bb);
7515 continue;
7516 }
7517
7518 if (bitmap_clear_bit (blocks_to_reschedule, bb->index))
7519 {
7520 flist_tail_init (new_fences);
7521
7522 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7523
7524 /* Mark BB as head of the new ebb. */
7525 bitmap_set_bit (forced_ebb_heads, bb->index);
7526
7527 gcc_assert (fences == NULL);
7528
7529 init_fences (bb_note (bb));
7530
7531 sel_sched_region_2 (orig_max_seqno);
7532
7533 do_p = true;
7534 break;
7535 }
7536 }
7537 }
7538 }
7539 }
7540
7541 /* Schedule the RGN region. */
7542 void
7543 sel_sched_region (int rgn)
7544 {
7545 bool schedule_p;
7546 bool reset_sched_cycles_p;
7547
7548 if (sel_region_init (rgn))
7549 return;
7550
7551 if (sched_verbose >= 1)
7552 sel_print ("Scheduling region %d\n", rgn);
7553
7554 schedule_p = (!sched_is_disabled_for_current_region_p ()
7555 && dbg_cnt (sel_sched_region_cnt));
7556 reset_sched_cycles_p = pipelining_p;
7557 if (schedule_p)
7558 sel_sched_region_1 ();
7559 else
7560 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7561 reset_sched_cycles_p = true;
7562
7563 sel_region_finish (reset_sched_cycles_p);
7564 }
7565
7566 /* Perform global init for the scheduler. */
7567 static void
7568 sel_global_init (void)
7569 {
7570 calculate_dominance_info (CDI_DOMINATORS);
7571 alloc_sched_pools ();
7572
7573 /* Setup the infos for sched_init. */
7574 sel_setup_sched_infos ();
7575 setup_sched_dump ();
7576
7577 sched_rgn_init (false);
7578 sched_init ();
7579
7580 sched_init_bbs ();
7581 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7582 after_recovery = 0;
7583 can_issue_more = issue_rate;
7584
7585 sched_extend_target ();
7586 sched_deps_init (true);
7587 setup_nop_and_exit_insns ();
7588 sel_extend_global_bb_info ();
7589 init_lv_sets ();
7590 init_hard_regs_data ();
7591 }
7592
7593 /* Free the global data of the scheduler. */
7594 static void
7595 sel_global_finish (void)
7596 {
7597 free_bb_note_pool ();
7598 free_lv_sets ();
7599 sel_finish_global_bb_info ();
7600
7601 free_regset_pool ();
7602 free_nop_and_exit_insns ();
7603
7604 sched_rgn_finish ();
7605 sched_deps_finish ();
7606 sched_finish ();
7607
7608 if (current_loops)
7609 sel_finish_pipelining ();
7610
7611 free_sched_pools ();
7612 free_dominance_info (CDI_DOMINATORS);
7613 }
7614
7615 /* Return true when we need to skip selective scheduling. Used for debugging. */
7616 bool
7617 maybe_skip_selective_scheduling (void)
7618 {
7619 return ! dbg_cnt (sel_sched_cnt);
7620 }
7621
7622 /* The entry point. */
7623 void
7624 run_selective_scheduling (void)
7625 {
7626 int rgn;
7627
7628 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7629 return;
7630
7631 sel_global_init ();
7632
7633 for (rgn = 0; rgn < nr_regions; rgn++)
7634 sel_sched_region (rgn);
7635
7636 sel_global_finish ();
7637 }
7638
7639 #endif