rtl.h (REG_NREGS): New macro
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "hashtab.h"
29 #include "hash-set.h"
30 #include "vec.h"
31 #include "machmode.h"
32 #include "input.h"
33 #include "function.h"
34 #include "predict.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfgbuild.h"
38 #include "basic-block.h"
39 #include "flags.h"
40 #include "insn-config.h"
41 #include "insn-attr.h"
42 #include "except.h"
43 #include "recog.h"
44 #include "params.h"
45 #include "target.h"
46 #include "output.h"
47 #include "sched-int.h"
48 #include "ggc.h"
49 #include "symtab.h"
50 #include "wide-int.h"
51 #include "inchash.h"
52 #include "tree.h"
53 #include "langhooks.h"
54 #include "rtlhooks-def.h"
55 #include "emit-rtl.h"
56 #include "ira.h"
57 #include "rtl-iter.h"
58
59 #ifdef INSN_SCHEDULING
60 #include "sel-sched-ir.h"
61 #include "sel-sched-dump.h"
62 #include "sel-sched.h"
63 #include "dbgcnt.h"
64
65 /* Implementation of selective scheduling approach.
66 The below implementation follows the original approach with the following
67 changes:
68
69 o the scheduler works after register allocation (but can be also tuned
70 to work before RA);
71 o some instructions are not copied or register renamed;
72 o conditional jumps are not moved with code duplication;
73 o several jumps in one parallel group are not supported;
74 o when pipelining outer loops, code motion through inner loops
75 is not supported;
76 o control and data speculation are supported;
77 o some improvements for better compile time/performance were made.
78
79 Terminology
80 ===========
81
82 A vinsn, or virtual insn, is an insn with additional data characterizing
83 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
84 Vinsns also act as smart pointers to save memory by reusing them in
85 different expressions. A vinsn is described by vinsn_t type.
86
87 An expression is a vinsn with additional data characterizing its properties
88 at some point in the control flow graph. The data may be its usefulness,
89 priority, speculative status, whether it was renamed/subsituted, etc.
90 An expression is described by expr_t type.
91
92 Availability set (av_set) is a set of expressions at a given control flow
93 point. It is represented as av_set_t. The expressions in av sets are kept
94 sorted in the terms of expr_greater_p function. It allows to truncate
95 the set while leaving the best expressions.
96
97 A fence is a point through which code motion is prohibited. On each step,
98 we gather a parallel group of insns at a fence. It is possible to have
99 multiple fences. A fence is represented via fence_t.
100
101 A boundary is the border between the fence group and the rest of the code.
102 Currently, we never have more than one boundary per fence, as we finalize
103 the fence group when a jump is scheduled. A boundary is represented
104 via bnd_t.
105
106 High-level overview
107 ===================
108
109 The scheduler finds regions to schedule, schedules each one, and finalizes.
110 The regions are formed starting from innermost loops, so that when the inner
111 loop is pipelined, its prologue can be scheduled together with yet unprocessed
112 outer loop. The rest of acyclic regions are found using extend_rgns:
113 the blocks that are not yet allocated to any regions are traversed in top-down
114 order, and a block is added to a region to which all its predecessors belong;
115 otherwise, the block starts its own region.
116
117 The main scheduling loop (sel_sched_region_2) consists of just
118 scheduling on each fence and updating fences. For each fence,
119 we fill a parallel group of insns (fill_insns) until some insns can be added.
120 First, we compute available exprs (av-set) at the boundary of the current
121 group. Second, we choose the best expression from it. If the stall is
122 required to schedule any of the expressions, we advance the current cycle
123 appropriately. So, the final group does not exactly correspond to a VLIW
124 word. Third, we move the chosen expression to the boundary (move_op)
125 and update the intermediate av sets and liveness sets. We quit fill_insns
126 when either no insns left for scheduling or we have scheduled enough insns
127 so we feel like advancing a scheduling point.
128
129 Computing available expressions
130 ===============================
131
132 The computation (compute_av_set) is a bottom-up traversal. At each insn,
133 we're moving the union of its successors' sets through it via
134 moveup_expr_set. The dependent expressions are removed. Local
135 transformations (substitution, speculation) are applied to move more
136 exprs. Then the expr corresponding to the current insn is added.
137 The result is saved on each basic block header.
138
139 When traversing the CFG, we're moving down for no more than max_ws insns.
140 Also, we do not move down to ineligible successors (is_ineligible_successor),
141 which include moving along a back-edge, moving to already scheduled code,
142 and moving to another fence. The first two restrictions are lifted during
143 pipelining, which allows us to move insns along a back-edge. We always have
144 an acyclic region for scheduling because we forbid motion through fences.
145
146 Choosing the best expression
147 ============================
148
149 We sort the final availability set via sel_rank_for_schedule, then we remove
150 expressions which are not yet ready (tick_check_p) or which dest registers
151 cannot be used. For some of them, we choose another register via
152 find_best_reg. To do this, we run find_used_regs to calculate the set of
153 registers which cannot be used. The find_used_regs function performs
154 a traversal of code motion paths for an expr. We consider for renaming
155 only registers which are from the same regclass as the original one and
156 using which does not interfere with any live ranges. Finally, we convert
157 the resulting set to the ready list format and use max_issue and reorder*
158 hooks similarly to the Haifa scheduler.
159
160 Scheduling the best expression
161 ==============================
162
163 We run the move_op routine to perform the same type of code motion paths
164 traversal as in find_used_regs. (These are working via the same driver,
165 code_motion_path_driver.) When moving down the CFG, we look for original
166 instruction that gave birth to a chosen expression. We undo
167 the transformations performed on an expression via the history saved in it.
168 When found, we remove the instruction or leave a reg-reg copy/speculation
169 check if needed. On a way up, we insert bookkeeping copies at each join
170 point. If a copy is not needed, it will be removed later during this
171 traversal. We update the saved av sets and liveness sets on the way up, too.
172
173 Finalizing the schedule
174 =======================
175
176 When pipelining, we reschedule the blocks from which insns were pipelined
177 to get a tighter schedule. On Itanium, we also perform bundling via
178 the same routine from ia64.c.
179
180 Dependence analysis changes
181 ===========================
182
183 We augmented the sched-deps.c with hooks that get called when a particular
184 dependence is found in a particular part of an insn. Using these hooks, we
185 can do several actions such as: determine whether an insn can be moved through
186 another (has_dependence_p, moveup_expr); find out whether an insn can be
187 scheduled on the current cycle (tick_check_p); find out registers that
188 are set/used/clobbered by an insn and find out all the strange stuff that
189 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
190 init_global_and_expr_for_insn).
191
192 Initialization changes
193 ======================
194
195 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
196 reused in all of the schedulers. We have split up the initialization of data
197 of such parts into different functions prefixed with scheduler type and
198 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
199 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
200 The same splitting is done with current_sched_info structure:
201 dependence-related parts are in sched_deps_info, common part is in
202 common_sched_info, and haifa/sel/etc part is in current_sched_info.
203
204 Target contexts
205 ===============
206
207 As we now have multiple-point scheduling, this would not work with backends
208 which save some of the scheduler state to use it in the target hooks.
209 For this purpose, we introduce a concept of target contexts, which
210 encapsulate such information. The backend should implement simple routines
211 of allocating/freeing/setting such a context. The scheduler calls these
212 as target hooks and handles the target context as an opaque pointer (similar
213 to the DFA state type, state_t).
214
215 Various speedups
216 ================
217
218 As the correct data dependence graph is not supported during scheduling (which
219 is to be changed in mid-term), we cache as much of the dependence analysis
220 results as possible to avoid reanalyzing. This includes: bitmap caches on
221 each insn in stream of the region saying yes/no for a query with a pair of
222 UIDs; hashtables with the previously done transformations on each insn in
223 stream; a vector keeping a history of transformations on each expr.
224
225 Also, we try to minimize the dependence context used on each fence to check
226 whether the given expression is ready for scheduling by removing from it
227 insns that are definitely completed the execution. The results of
228 tick_check_p checks are also cached in a vector on each fence.
229
230 We keep a valid liveness set on each insn in a region to avoid the high
231 cost of recomputation on large basic blocks.
232
233 Finally, we try to minimize the number of needed updates to the availability
234 sets. The updates happen in two cases: when fill_insns terminates,
235 we advance all fences and increase the stage number to show that the region
236 has changed and the sets are to be recomputed; and when the next iteration
237 of a loop in fill_insns happens (but this one reuses the saved av sets
238 on bb headers.) Thus, we try to break the fill_insns loop only when
239 "significant" number of insns from the current scheduling window was
240 scheduled. This should be made a target param.
241
242
243 TODO: correctly support the data dependence graph at all stages and get rid
244 of all caches. This should speed up the scheduler.
245 TODO: implement moving cond jumps with bookkeeping copies on both targets.
246 TODO: tune the scheduler before RA so it does not create too much pseudos.
247
248
249 References:
250 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
251 selective scheduling and software pipelining.
252 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
253
254 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
255 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
256 for GCC. In Proceedings of GCC Developers' Summit 2006.
257
258 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
259 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
260 http://rogue.colorado.edu/EPIC7/.
261
262 */
263
264 /* True when pipelining is enabled. */
265 bool pipelining_p;
266
267 /* True if bookkeeping is enabled. */
268 bool bookkeeping_p;
269
270 /* Maximum number of insns that are eligible for renaming. */
271 int max_insns_to_rename;
272 \f
273
274 /* Definitions of local types and macros. */
275
276 /* Represents possible outcomes of moving an expression through an insn. */
277 enum MOVEUP_EXPR_CODE
278 {
279 /* The expression is not changed. */
280 MOVEUP_EXPR_SAME,
281
282 /* Not changed, but requires a new destination register. */
283 MOVEUP_EXPR_AS_RHS,
284
285 /* Cannot be moved. */
286 MOVEUP_EXPR_NULL,
287
288 /* Changed (substituted or speculated). */
289 MOVEUP_EXPR_CHANGED
290 };
291
292 /* The container to be passed into rtx search & replace functions. */
293 struct rtx_search_arg
294 {
295 /* What we are searching for. */
296 rtx x;
297
298 /* The occurrence counter. */
299 int n;
300 };
301
302 typedef struct rtx_search_arg *rtx_search_arg_p;
303
304 /* This struct contains precomputed hard reg sets that are needed when
305 computing registers available for renaming. */
306 struct hard_regs_data
307 {
308 /* For every mode, this stores registers available for use with
309 that mode. */
310 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
311
312 /* True when regs_for_mode[mode] is initialized. */
313 bool regs_for_mode_ok[NUM_MACHINE_MODES];
314
315 /* For every register, it has regs that are ok to rename into it.
316 The register in question is always set. If not, this means
317 that the whole set is not computed yet. */
318 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
319
320 /* For every mode, this stores registers not available due to
321 call clobbering. */
322 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
323
324 /* All registers that are used or call used. */
325 HARD_REG_SET regs_ever_used;
326
327 #ifdef STACK_REGS
328 /* Stack registers. */
329 HARD_REG_SET stack_regs;
330 #endif
331 };
332
333 /* Holds the results of computation of available for renaming and
334 unavailable hard registers. */
335 struct reg_rename
336 {
337 /* These are unavailable due to calls crossing, globalness, etc. */
338 HARD_REG_SET unavailable_hard_regs;
339
340 /* These are *available* for renaming. */
341 HARD_REG_SET available_for_renaming;
342
343 /* Whether this code motion path crosses a call. */
344 bool crosses_call;
345 };
346
347 /* A global structure that contains the needed information about harg
348 regs. */
349 static struct hard_regs_data sel_hrd;
350 \f
351
352 /* This structure holds local data used in code_motion_path_driver hooks on
353 the same or adjacent levels of recursion. Here we keep those parameters
354 that are not used in code_motion_path_driver routine itself, but only in
355 its hooks. Moreover, all parameters that can be modified in hooks are
356 in this structure, so all other parameters passed explicitly to hooks are
357 read-only. */
358 struct cmpd_local_params
359 {
360 /* Local params used in move_op_* functions. */
361
362 /* Edges for bookkeeping generation. */
363 edge e1, e2;
364
365 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
366 expr_t c_expr_merged, c_expr_local;
367
368 /* Local params used in fur_* functions. */
369 /* Copy of the ORIGINAL_INSN list, stores the original insns already
370 found before entering the current level of code_motion_path_driver. */
371 def_list_t old_original_insns;
372
373 /* Local params used in move_op_* functions. */
374 /* True when we have removed last insn in the block which was
375 also a boundary. Do not update anything or create bookkeeping copies. */
376 BOOL_BITFIELD removed_last_insn : 1;
377 };
378
379 /* Stores the static parameters for move_op_* calls. */
380 struct moveop_static_params
381 {
382 /* Destination register. */
383 rtx dest;
384
385 /* Current C_EXPR. */
386 expr_t c_expr;
387
388 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
389 they are to be removed. */
390 int uid;
391
392 #ifdef ENABLE_CHECKING
393 /* This is initialized to the insn on which the driver stopped its traversal. */
394 insn_t failed_insn;
395 #endif
396
397 /* True if we scheduled an insn with different register. */
398 bool was_renamed;
399 };
400
401 /* Stores the static parameters for fur_* calls. */
402 struct fur_static_params
403 {
404 /* Set of registers unavailable on the code motion path. */
405 regset used_regs;
406
407 /* Pointer to the list of original insns definitions. */
408 def_list_t *original_insns;
409
410 /* True if a code motion path contains a CALL insn. */
411 bool crosses_call;
412 };
413
414 typedef struct fur_static_params *fur_static_params_p;
415 typedef struct cmpd_local_params *cmpd_local_params_p;
416 typedef struct moveop_static_params *moveop_static_params_p;
417
418 /* Set of hooks and parameters that determine behaviour specific to
419 move_op or find_used_regs functions. */
420 struct code_motion_path_driver_info_def
421 {
422 /* Called on enter to the basic block. */
423 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
424
425 /* Called when original expr is found. */
426 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
427
428 /* Called while descending current basic block if current insn is not
429 the original EXPR we're searching for. */
430 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
431
432 /* Function to merge C_EXPRes from different successors. */
433 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
434
435 /* Function to finalize merge from different successors and possibly
436 deallocate temporary data structures used for merging. */
437 void (*after_merge_succs) (cmpd_local_params_p, void *);
438
439 /* Called on the backward stage of recursion to do moveup_expr.
440 Used only with move_op_*. */
441 void (*ascend) (insn_t, void *);
442
443 /* Called on the ascending pass, before returning from the current basic
444 block or from the whole traversal. */
445 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
446
447 /* When processing successors in move_op we need only descend into
448 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
449 int succ_flags;
450
451 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
452 const char *routine_name;
453 };
454
455 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
456 FUR_HOOKS. */
457 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
458
459 /* Set of hooks for performing move_op and find_used_regs routines with
460 code_motion_path_driver. */
461 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
462
463 /* True if/when we want to emulate Haifa scheduler in the common code.
464 This is used in sched_rgn_local_init and in various places in
465 sched-deps.c. */
466 int sched_emulate_haifa_p;
467
468 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
469 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
470 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
471 scheduling window. */
472 int global_level;
473
474 /* Current fences. */
475 flist_t fences;
476
477 /* True when separable insns should be scheduled as RHSes. */
478 static bool enable_schedule_as_rhs_p;
479
480 /* Used in verify_target_availability to assert that target reg is reported
481 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
482 we haven't scheduled anything on the previous fence.
483 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
484 have more conservative value than the one returned by the
485 find_used_regs, thus we shouldn't assert that these values are equal. */
486 static bool scheduled_something_on_previous_fence;
487
488 /* All newly emitted insns will have their uids greater than this value. */
489 static int first_emitted_uid;
490
491 /* Set of basic blocks that are forced to start new ebbs. This is a subset
492 of all the ebb heads. */
493 static bitmap_head _forced_ebb_heads;
494 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
495
496 /* Blocks that need to be rescheduled after pipelining. */
497 bitmap blocks_to_reschedule = NULL;
498
499 /* True when the first lv set should be ignored when updating liveness. */
500 static bool ignore_first = false;
501
502 /* Number of insns max_issue has initialized data structures for. */
503 static int max_issue_size = 0;
504
505 /* Whether we can issue more instructions. */
506 static int can_issue_more;
507
508 /* Maximum software lookahead window size, reduced when rescheduling after
509 pipelining. */
510 static int max_ws;
511
512 /* Number of insns scheduled in current region. */
513 static int num_insns_scheduled;
514
515 /* A vector of expressions is used to be able to sort them. */
516 static vec<expr_t> vec_av_set = vNULL;
517
518 /* A vector of vinsns is used to hold temporary lists of vinsns. */
519 typedef vec<vinsn_t> vinsn_vec_t;
520
521 /* This vector has the exprs which may still present in av_sets, but actually
522 can't be moved up due to bookkeeping created during code motion to another
523 fence. See comment near the call to update_and_record_unavailable_insns
524 for the detailed explanations. */
525 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
526
527 /* This vector has vinsns which are scheduled with renaming on the first fence
528 and then seen on the second. For expressions with such vinsns, target
529 availability information may be wrong. */
530 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
531
532 /* Vector to store temporary nops inserted in move_op to prevent removal
533 of empty bbs. */
534 static vec<insn_t> vec_temp_moveop_nops = vNULL;
535
536 /* These bitmaps record original instructions scheduled on the current
537 iteration and bookkeeping copies created by them. */
538 static bitmap current_originators = NULL;
539 static bitmap current_copies = NULL;
540
541 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
542 visit them afterwards. */
543 static bitmap code_motion_visited_blocks = NULL;
544
545 /* Variables to accumulate different statistics. */
546
547 /* The number of bookkeeping copies created. */
548 static int stat_bookkeeping_copies;
549
550 /* The number of insns that required bookkeeiping for their scheduling. */
551 static int stat_insns_needed_bookkeeping;
552
553 /* The number of insns that got renamed. */
554 static int stat_renamed_scheduled;
555
556 /* The number of substitutions made during scheduling. */
557 static int stat_substitutions_total;
558 \f
559
560 /* Forward declarations of static functions. */
561 static bool rtx_ok_for_substitution_p (rtx, rtx);
562 static int sel_rank_for_schedule (const void *, const void *);
563 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
564 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
565
566 static rtx get_dest_from_orig_ops (av_set_t);
567 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
568 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
569 def_list_t *);
570 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
571 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
572 cmpd_local_params_p, void *);
573 static void sel_sched_region_1 (void);
574 static void sel_sched_region_2 (int);
575 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
576
577 static void debug_state (state_t);
578 \f
579
580 /* Functions that work with fences. */
581
582 /* Advance one cycle on FENCE. */
583 static void
584 advance_one_cycle (fence_t fence)
585 {
586 unsigned i;
587 int cycle;
588 rtx_insn *insn;
589
590 advance_state (FENCE_STATE (fence));
591 cycle = ++FENCE_CYCLE (fence);
592 FENCE_ISSUED_INSNS (fence) = 0;
593 FENCE_STARTS_CYCLE_P (fence) = 1;
594 can_issue_more = issue_rate;
595 FENCE_ISSUE_MORE (fence) = can_issue_more;
596
597 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
598 {
599 if (INSN_READY_CYCLE (insn) < cycle)
600 {
601 remove_from_deps (FENCE_DC (fence), insn);
602 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
603 continue;
604 }
605 i++;
606 }
607 if (sched_verbose >= 2)
608 {
609 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
610 debug_state (FENCE_STATE (fence));
611 }
612 }
613
614 /* Returns true when SUCC in a fallthru bb of INSN, possibly
615 skipping empty basic blocks. */
616 static bool
617 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
618 {
619 basic_block bb = BLOCK_FOR_INSN (insn);
620 edge e;
621
622 if (bb == BLOCK_FOR_INSN (succ))
623 return true;
624
625 e = find_fallthru_edge_from (bb);
626 if (e)
627 bb = e->dest;
628 else
629 return false;
630
631 while (sel_bb_empty_p (bb))
632 bb = bb->next_bb;
633
634 return bb == BLOCK_FOR_INSN (succ);
635 }
636
637 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
638 When a successor will continue a ebb, transfer all parameters of a fence
639 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
640 of scheduling helping to distinguish between the old and the new code. */
641 static void
642 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
643 int orig_max_seqno)
644 {
645 bool was_here_p = false;
646 insn_t insn = NULL;
647 insn_t succ;
648 succ_iterator si;
649 ilist_iterator ii;
650 fence_t fence = FLIST_FENCE (old_fences);
651 basic_block bb;
652
653 /* Get the only element of FENCE_BNDS (fence). */
654 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
655 {
656 gcc_assert (!was_here_p);
657 was_here_p = true;
658 }
659 gcc_assert (was_here_p && insn != NULL_RTX);
660
661 /* When in the "middle" of the block, just move this fence
662 to the new list. */
663 bb = BLOCK_FOR_INSN (insn);
664 if (! sel_bb_end_p (insn)
665 || (single_succ_p (bb)
666 && single_pred_p (single_succ (bb))))
667 {
668 insn_t succ;
669
670 succ = (sel_bb_end_p (insn)
671 ? sel_bb_head (single_succ (bb))
672 : NEXT_INSN (insn));
673
674 if (INSN_SEQNO (succ) > 0
675 && INSN_SEQNO (succ) <= orig_max_seqno
676 && INSN_SCHED_TIMES (succ) <= 0)
677 {
678 FENCE_INSN (fence) = succ;
679 move_fence_to_fences (old_fences, new_fences);
680
681 if (sched_verbose >= 1)
682 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
683 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
684 }
685 return;
686 }
687
688 /* Otherwise copy fence's structures to (possibly) multiple successors. */
689 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
690 {
691 int seqno = INSN_SEQNO (succ);
692
693 if (0 < seqno && seqno <= orig_max_seqno
694 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
695 {
696 bool b = (in_same_ebb_p (insn, succ)
697 || in_fallthru_bb_p (insn, succ));
698
699 if (sched_verbose >= 1)
700 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
701 INSN_UID (insn), INSN_UID (succ),
702 BLOCK_NUM (succ), b ? "continue" : "reset");
703
704 if (b)
705 add_dirty_fence_to_fences (new_fences, succ, fence);
706 else
707 {
708 /* Mark block of the SUCC as head of the new ebb. */
709 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
710 add_clean_fence_to_fences (new_fences, succ, fence);
711 }
712 }
713 }
714 }
715 \f
716
717 /* Functions to support substitution. */
718
719 /* Returns whether INSN with dependence status DS is eligible for
720 substitution, i.e. it's a copy operation x := y, and RHS that is
721 moved up through this insn should be substituted. */
722 static bool
723 can_substitute_through_p (insn_t insn, ds_t ds)
724 {
725 /* We can substitute only true dependencies. */
726 if ((ds & DEP_OUTPUT)
727 || (ds & DEP_ANTI)
728 || ! INSN_RHS (insn)
729 || ! INSN_LHS (insn))
730 return false;
731
732 /* Now we just need to make sure the INSN_RHS consists of only one
733 simple REG rtx. */
734 if (REG_P (INSN_LHS (insn))
735 && REG_P (INSN_RHS (insn)))
736 return true;
737 return false;
738 }
739
740 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
741 source (if INSN is eligible for substitution). Returns TRUE if
742 substitution was actually performed, FALSE otherwise. Substitution might
743 be not performed because it's either EXPR' vinsn doesn't contain INSN's
744 destination or the resulting insn is invalid for the target machine.
745 When UNDO is true, perform unsubstitution instead (the difference is in
746 the part of rtx on which validate_replace_rtx is called). */
747 static bool
748 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
749 {
750 rtx *where;
751 bool new_insn_valid;
752 vinsn_t *vi = &EXPR_VINSN (expr);
753 bool has_rhs = VINSN_RHS (*vi) != NULL;
754 rtx old, new_rtx;
755
756 /* Do not try to replace in SET_DEST. Although we'll choose new
757 register for the RHS, we don't want to change RHS' original reg.
758 If the insn is not SET, we may still be able to substitute something
759 in it, and if we're here (don't have deps), it doesn't write INSN's
760 dest. */
761 where = (has_rhs
762 ? &VINSN_RHS (*vi)
763 : &PATTERN (VINSN_INSN_RTX (*vi)));
764 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
765
766 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
767 if (rtx_ok_for_substitution_p (old, *where))
768 {
769 rtx_insn *new_insn;
770 rtx *where_replace;
771
772 /* We should copy these rtxes before substitution. */
773 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
774 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
775
776 /* Where we'll replace.
777 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
778 used instead of SET_SRC. */
779 where_replace = (has_rhs
780 ? &SET_SRC (PATTERN (new_insn))
781 : &PATTERN (new_insn));
782
783 new_insn_valid
784 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
785 new_insn);
786
787 /* ??? Actually, constrain_operands result depends upon choice of
788 destination register. E.g. if we allow single register to be an rhs,
789 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
790 in invalid insn dx=dx, so we'll loose this rhs here.
791 Just can't come up with significant testcase for this, so just
792 leaving it for now. */
793 if (new_insn_valid)
794 {
795 change_vinsn_in_expr (expr,
796 create_vinsn_from_insn_rtx (new_insn, false));
797
798 /* Do not allow clobbering the address register of speculative
799 insns. */
800 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
801 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
802 expr_dest_reg (expr)))
803 EXPR_TARGET_AVAILABLE (expr) = false;
804
805 return true;
806 }
807 else
808 return false;
809 }
810 else
811 return false;
812 }
813
814 /* Return the number of places WHAT appears within WHERE.
815 Bail out when we found a reference occupying several hard registers. */
816 static int
817 count_occurrences_equiv (const_rtx what, const_rtx where)
818 {
819 int count = 0;
820 subrtx_iterator::array_type array;
821 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
822 {
823 const_rtx x = *iter;
824 if (REG_P (x) && REGNO (x) == REGNO (what))
825 {
826 /* Bail out if mode is different or more than one register is
827 used. */
828 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
829 return 0;
830 count += 1;
831 }
832 else if (GET_CODE (x) == SUBREG
833 && (!REG_P (SUBREG_REG (x))
834 || REGNO (SUBREG_REG (x)) == REGNO (what)))
835 /* ??? Do not support substituting regs inside subregs. In that case,
836 simplify_subreg will be called by validate_replace_rtx, and
837 unsubstitution will fail later. */
838 return 0;
839 }
840 return count;
841 }
842
843 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
844 static bool
845 rtx_ok_for_substitution_p (rtx what, rtx where)
846 {
847 return (count_occurrences_equiv (what, where) > 0);
848 }
849 \f
850
851 /* Functions to support register renaming. */
852
853 /* Substitute VI's set source with REGNO. Returns newly created pattern
854 that has REGNO as its source. */
855 static rtx_insn *
856 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
857 {
858 rtx lhs_rtx;
859 rtx pattern;
860 rtx_insn *insn_rtx;
861
862 lhs_rtx = copy_rtx (VINSN_LHS (vi));
863
864 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
865 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
866
867 return insn_rtx;
868 }
869
870 /* Returns whether INSN's src can be replaced with register number
871 NEW_SRC_REG. E.g. the following insn is valid for i386:
872
873 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
874 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
875 (reg:SI 0 ax [orig:770 c1 ] [770]))
876 (const_int 288 [0x120])) [0 str S1 A8])
877 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
878 (nil))
879
880 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
881 because of operand constraints:
882
883 (define_insn "*movqi_1"
884 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
885 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
886 )]
887
888 So do constrain_operands here, before choosing NEW_SRC_REG as best
889 reg for rhs. */
890
891 static bool
892 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
893 {
894 vinsn_t vi = INSN_VINSN (insn);
895 machine_mode mode;
896 rtx dst_loc;
897 bool res;
898
899 gcc_assert (VINSN_SEPARABLE_P (vi));
900
901 get_dest_and_mode (insn, &dst_loc, &mode);
902 gcc_assert (mode == GET_MODE (new_src_reg));
903
904 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
905 return true;
906
907 /* See whether SET_SRC can be replaced with this register. */
908 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
909 res = verify_changes (0);
910 cancel_changes (0);
911
912 return res;
913 }
914
915 /* Returns whether INSN still be valid after replacing it's DEST with
916 register NEW_REG. */
917 static bool
918 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
919 {
920 vinsn_t vi = INSN_VINSN (insn);
921 bool res;
922
923 /* We should deal here only with separable insns. */
924 gcc_assert (VINSN_SEPARABLE_P (vi));
925 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
926
927 /* See whether SET_DEST can be replaced with this register. */
928 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
929 res = verify_changes (0);
930 cancel_changes (0);
931
932 return res;
933 }
934
935 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
936 static rtx_insn *
937 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
938 {
939 rtx rhs_rtx;
940 rtx pattern;
941 rtx_insn *insn_rtx;
942
943 rhs_rtx = copy_rtx (VINSN_RHS (vi));
944
945 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
946 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
947
948 return insn_rtx;
949 }
950
951 /* Substitute lhs in the given expression EXPR for the register with number
952 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
953 static void
954 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
955 {
956 rtx_insn *insn_rtx;
957 vinsn_t vinsn;
958
959 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
960 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
961
962 change_vinsn_in_expr (expr, vinsn);
963 EXPR_WAS_RENAMED (expr) = 1;
964 EXPR_TARGET_AVAILABLE (expr) = 1;
965 }
966
967 /* Returns whether VI writes either one of the USED_REGS registers or,
968 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
969 static bool
970 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
971 HARD_REG_SET unavailable_hard_regs)
972 {
973 unsigned regno;
974 reg_set_iterator rsi;
975
976 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
977 {
978 if (REGNO_REG_SET_P (used_regs, regno))
979 return true;
980 if (HARD_REGISTER_NUM_P (regno)
981 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
982 return true;
983 }
984
985 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
986 {
987 if (REGNO_REG_SET_P (used_regs, regno))
988 return true;
989 if (HARD_REGISTER_NUM_P (regno)
990 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
991 return true;
992 }
993
994 return false;
995 }
996
997 /* Returns register class of the output register in INSN.
998 Returns NO_REGS for call insns because some targets have constraints on
999 destination register of a call insn.
1000
1001 Code adopted from regrename.c::build_def_use. */
1002 static enum reg_class
1003 get_reg_class (rtx_insn *insn)
1004 {
1005 int i, n_ops;
1006
1007 extract_constrain_insn (insn);
1008 preprocess_constraints (insn);
1009 n_ops = recog_data.n_operands;
1010
1011 const operand_alternative *op_alt = which_op_alt ();
1012 if (asm_noperands (PATTERN (insn)) > 0)
1013 {
1014 for (i = 0; i < n_ops; i++)
1015 if (recog_data.operand_type[i] == OP_OUT)
1016 {
1017 rtx *loc = recog_data.operand_loc[i];
1018 rtx op = *loc;
1019 enum reg_class cl = alternative_class (op_alt, i);
1020
1021 if (REG_P (op)
1022 && REGNO (op) == ORIGINAL_REGNO (op))
1023 continue;
1024
1025 return cl;
1026 }
1027 }
1028 else if (!CALL_P (insn))
1029 {
1030 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1031 {
1032 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1033 enum reg_class cl = alternative_class (op_alt, opn);
1034
1035 if (recog_data.operand_type[opn] == OP_OUT ||
1036 recog_data.operand_type[opn] == OP_INOUT)
1037 return cl;
1038 }
1039 }
1040
1041 /* Insns like
1042 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1043 may result in returning NO_REGS, cause flags is written implicitly through
1044 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1045 return NO_REGS;
1046 }
1047
1048 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1049 static void
1050 init_hard_regno_rename (int regno)
1051 {
1052 int cur_reg;
1053
1054 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1055
1056 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1057 {
1058 /* We are not interested in renaming in other regs. */
1059 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1060 continue;
1061
1062 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1063 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1064 }
1065 }
1066
1067 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1068 data first. */
1069 static inline bool
1070 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1071 {
1072 /* Check whether this is all calculated. */
1073 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1074 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1075
1076 init_hard_regno_rename (from);
1077
1078 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1079 }
1080
1081 /* Calculate set of registers that are capable of holding MODE. */
1082 static void
1083 init_regs_for_mode (machine_mode mode)
1084 {
1085 int cur_reg;
1086
1087 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1088 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1089
1090 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1091 {
1092 int nregs;
1093 int i;
1094
1095 /* See whether it accepts all modes that occur in
1096 original insns. */
1097 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1098 continue;
1099
1100 nregs = hard_regno_nregs[cur_reg][mode];
1101
1102 for (i = nregs - 1; i >= 0; --i)
1103 if (fixed_regs[cur_reg + i]
1104 || global_regs[cur_reg + i]
1105 /* Can't use regs which aren't saved by
1106 the prologue. */
1107 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1108 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1109 it affects aliasing globally and invalidates all AV sets. */
1110 || get_reg_base_value (cur_reg + i)
1111 #ifdef LEAF_REGISTERS
1112 /* We can't use a non-leaf register if we're in a
1113 leaf function. */
1114 || (crtl->is_leaf
1115 && !LEAF_REGISTERS[cur_reg + i])
1116 #endif
1117 )
1118 break;
1119
1120 if (i >= 0)
1121 continue;
1122
1123 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1124 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1125 cur_reg);
1126
1127 /* If the CUR_REG passed all the checks above,
1128 then it's ok. */
1129 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1130 }
1131
1132 sel_hrd.regs_for_mode_ok[mode] = true;
1133 }
1134
1135 /* Init all register sets gathered in HRD. */
1136 static void
1137 init_hard_regs_data (void)
1138 {
1139 int cur_reg = 0;
1140 int cur_mode = 0;
1141
1142 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1143 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1144 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1145 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1146
1147 /* Initialize registers that are valid based on mode when this is
1148 really needed. */
1149 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1150 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1151
1152 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1153 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1154 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1155
1156 #ifdef STACK_REGS
1157 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1158
1159 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1160 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1161 #endif
1162 }
1163
1164 /* Mark hardware regs in REG_RENAME_P that are not suitable
1165 for renaming rhs in INSN due to hardware restrictions (register class,
1166 modes compatibility etc). This doesn't affect original insn's dest reg,
1167 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1168 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1169 Registers that are in used_regs are always marked in
1170 unavailable_hard_regs as well. */
1171
1172 static void
1173 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1174 regset used_regs ATTRIBUTE_UNUSED)
1175 {
1176 machine_mode mode;
1177 enum reg_class cl = NO_REGS;
1178 rtx orig_dest;
1179 unsigned cur_reg, regno;
1180 hard_reg_set_iterator hrsi;
1181
1182 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1183 gcc_assert (reg_rename_p);
1184
1185 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1186
1187 /* We have decided not to rename 'mem = something;' insns, as 'something'
1188 is usually a register. */
1189 if (!REG_P (orig_dest))
1190 return;
1191
1192 regno = REGNO (orig_dest);
1193
1194 /* If before reload, don't try to work with pseudos. */
1195 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1196 return;
1197
1198 if (reload_completed)
1199 cl = get_reg_class (def->orig_insn);
1200
1201 /* Stop if the original register is one of the fixed_regs, global_regs or
1202 frame pointer, or we could not discover its class. */
1203 if (fixed_regs[regno]
1204 || global_regs[regno]
1205 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1206 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1207 #else
1208 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1209 #endif
1210 || (reload_completed && cl == NO_REGS))
1211 {
1212 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1213
1214 /* Give a chance for original register, if it isn't in used_regs. */
1215 if (!def->crosses_call)
1216 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1217
1218 return;
1219 }
1220
1221 /* If something allocated on stack in this function, mark frame pointer
1222 register unavailable, considering also modes.
1223 FIXME: it is enough to do this once per all original defs. */
1224 if (frame_pointer_needed)
1225 {
1226 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1227 Pmode, FRAME_POINTER_REGNUM);
1228
1229 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1230 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1231 Pmode, HARD_FRAME_POINTER_REGNUM);
1232 }
1233
1234 #ifdef STACK_REGS
1235 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1236 is equivalent to as if all stack regs were in this set.
1237 I.e. no stack register can be renamed, and even if it's an original
1238 register here we make sure it won't be lifted over it's previous def
1239 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1240 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1241 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1242 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1243 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1244 sel_hrd.stack_regs);
1245 #endif
1246
1247 /* If there's a call on this path, make regs from call_used_reg_set
1248 unavailable. */
1249 if (def->crosses_call)
1250 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1251 call_used_reg_set);
1252
1253 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1254 but not register classes. */
1255 if (!reload_completed)
1256 return;
1257
1258 /* Leave regs as 'available' only from the current
1259 register class. */
1260 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1261 reg_class_contents[cl]);
1262
1263 mode = GET_MODE (orig_dest);
1264
1265 /* Leave only registers available for this mode. */
1266 if (!sel_hrd.regs_for_mode_ok[mode])
1267 init_regs_for_mode (mode);
1268 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1269 sel_hrd.regs_for_mode[mode]);
1270
1271 /* Exclude registers that are partially call clobbered. */
1272 if (def->crosses_call
1273 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1274 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1275 sel_hrd.regs_for_call_clobbered[mode]);
1276
1277 /* Leave only those that are ok to rename. */
1278 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1279 0, cur_reg, hrsi)
1280 {
1281 int nregs;
1282 int i;
1283
1284 nregs = hard_regno_nregs[cur_reg][mode];
1285 gcc_assert (nregs > 0);
1286
1287 for (i = nregs - 1; i >= 0; --i)
1288 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1289 break;
1290
1291 if (i >= 0)
1292 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1293 cur_reg);
1294 }
1295
1296 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1297 reg_rename_p->unavailable_hard_regs);
1298
1299 /* Regno is always ok from the renaming part of view, but it really
1300 could be in *unavailable_hard_regs already, so set it here instead
1301 of there. */
1302 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1303 }
1304
1305 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1306 best register more recently than REG2. */
1307 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1308
1309 /* Indicates the number of times renaming happened before the current one. */
1310 static int reg_rename_this_tick;
1311
1312 /* Choose the register among free, that is suitable for storing
1313 the rhs value.
1314
1315 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1316 originally appears. There could be multiple original operations
1317 for single rhs since we moving it up and merging along different
1318 paths.
1319
1320 Some code is adapted from regrename.c (regrename_optimize).
1321 If original register is available, function returns it.
1322 Otherwise it performs the checks, so the new register should
1323 comply with the following:
1324 - it should not violate any live ranges (such registers are in
1325 REG_RENAME_P->available_for_renaming set);
1326 - it should not be in the HARD_REGS_USED regset;
1327 - it should be in the class compatible with original uses;
1328 - it should not be clobbered through reference with different mode;
1329 - if we're in the leaf function, then the new register should
1330 not be in the LEAF_REGISTERS;
1331 - etc.
1332
1333 If several registers meet the conditions, the register with smallest
1334 tick is returned to achieve more even register allocation.
1335
1336 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1337
1338 If no register satisfies the above conditions, NULL_RTX is returned. */
1339 static rtx
1340 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1341 struct reg_rename *reg_rename_p,
1342 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1343 {
1344 int best_new_reg;
1345 unsigned cur_reg;
1346 machine_mode mode = VOIDmode;
1347 unsigned regno, i, n;
1348 hard_reg_set_iterator hrsi;
1349 def_list_iterator di;
1350 def_t def;
1351
1352 /* If original register is available, return it. */
1353 *is_orig_reg_p_ptr = true;
1354
1355 FOR_EACH_DEF (def, di, original_insns)
1356 {
1357 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1358
1359 gcc_assert (REG_P (orig_dest));
1360
1361 /* Check that all original operations have the same mode.
1362 This is done for the next loop; if we'd return from this
1363 loop, we'd check only part of them, but in this case
1364 it doesn't matter. */
1365 if (mode == VOIDmode)
1366 mode = GET_MODE (orig_dest);
1367 gcc_assert (mode == GET_MODE (orig_dest));
1368
1369 regno = REGNO (orig_dest);
1370 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1371 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1372 break;
1373
1374 /* All hard registers are available. */
1375 if (i == n)
1376 {
1377 gcc_assert (mode != VOIDmode);
1378
1379 /* Hard registers should not be shared. */
1380 return gen_rtx_REG (mode, regno);
1381 }
1382 }
1383
1384 *is_orig_reg_p_ptr = false;
1385 best_new_reg = -1;
1386
1387 /* Among all available regs choose the register that was
1388 allocated earliest. */
1389 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1390 0, cur_reg, hrsi)
1391 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1392 {
1393 /* Check that all hard regs for mode are available. */
1394 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1395 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1396 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1397 cur_reg + i))
1398 break;
1399
1400 if (i < n)
1401 continue;
1402
1403 /* All hard registers are available. */
1404 if (best_new_reg < 0
1405 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1406 {
1407 best_new_reg = cur_reg;
1408
1409 /* Return immediately when we know there's no better reg. */
1410 if (! reg_rename_tick[best_new_reg])
1411 break;
1412 }
1413 }
1414
1415 if (best_new_reg >= 0)
1416 {
1417 /* Use the check from the above loop. */
1418 gcc_assert (mode != VOIDmode);
1419 return gen_rtx_REG (mode, best_new_reg);
1420 }
1421
1422 return NULL_RTX;
1423 }
1424
1425 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1426 assumptions about available registers in the function. */
1427 static rtx
1428 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1429 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1430 {
1431 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1432 original_insns, is_orig_reg_p_ptr);
1433
1434 /* FIXME loop over hard_regno_nregs here. */
1435 gcc_assert (best_reg == NULL_RTX
1436 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1437
1438 return best_reg;
1439 }
1440
1441 /* Choose the pseudo register for storing rhs value. As this is supposed
1442 to work before reload, we return either the original register or make
1443 the new one. The parameters are the same that in choose_nest_reg_1
1444 functions, except that USED_REGS may contain pseudos.
1445 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1446
1447 TODO: take into account register pressure while doing this. Up to this
1448 moment, this function would never return NULL for pseudos, but we should
1449 not rely on this. */
1450 static rtx
1451 choose_best_pseudo_reg (regset used_regs,
1452 struct reg_rename *reg_rename_p,
1453 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1454 {
1455 def_list_iterator i;
1456 def_t def;
1457 machine_mode mode = VOIDmode;
1458 bool bad_hard_regs = false;
1459
1460 /* We should not use this after reload. */
1461 gcc_assert (!reload_completed);
1462
1463 /* If original register is available, return it. */
1464 *is_orig_reg_p_ptr = true;
1465
1466 FOR_EACH_DEF (def, i, original_insns)
1467 {
1468 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1469 int orig_regno;
1470
1471 gcc_assert (REG_P (dest));
1472
1473 /* Check that all original operations have the same mode. */
1474 if (mode == VOIDmode)
1475 mode = GET_MODE (dest);
1476 else
1477 gcc_assert (mode == GET_MODE (dest));
1478 orig_regno = REGNO (dest);
1479
1480 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1481 {
1482 if (orig_regno < FIRST_PSEUDO_REGISTER)
1483 {
1484 gcc_assert (df_regs_ever_live_p (orig_regno));
1485
1486 /* For hard registers, we have to check hardware imposed
1487 limitations (frame/stack registers, calls crossed). */
1488 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1489 orig_regno))
1490 {
1491 /* Don't let register cross a call if it doesn't already
1492 cross one. This condition is written in accordance with
1493 that in sched-deps.c sched_analyze_reg(). */
1494 if (!reg_rename_p->crosses_call
1495 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1496 return gen_rtx_REG (mode, orig_regno);
1497 }
1498
1499 bad_hard_regs = true;
1500 }
1501 else
1502 return dest;
1503 }
1504 }
1505
1506 *is_orig_reg_p_ptr = false;
1507
1508 /* We had some original hard registers that couldn't be used.
1509 Those were likely special. Don't try to create a pseudo. */
1510 if (bad_hard_regs)
1511 return NULL_RTX;
1512
1513 /* We haven't found a register from original operations. Get a new one.
1514 FIXME: control register pressure somehow. */
1515 {
1516 rtx new_reg = gen_reg_rtx (mode);
1517
1518 gcc_assert (mode != VOIDmode);
1519
1520 max_regno = max_reg_num ();
1521 maybe_extend_reg_info_p ();
1522 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1523
1524 return new_reg;
1525 }
1526 }
1527
1528 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1529 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1530 static void
1531 verify_target_availability (expr_t expr, regset used_regs,
1532 struct reg_rename *reg_rename_p)
1533 {
1534 unsigned n, i, regno;
1535 machine_mode mode;
1536 bool target_available, live_available, hard_available;
1537
1538 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1539 return;
1540
1541 regno = expr_dest_regno (expr);
1542 mode = GET_MODE (EXPR_LHS (expr));
1543 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1544 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1545
1546 live_available = hard_available = true;
1547 for (i = 0; i < n; i++)
1548 {
1549 if (bitmap_bit_p (used_regs, regno + i))
1550 live_available = false;
1551 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1552 hard_available = false;
1553 }
1554
1555 /* When target is not available, it may be due to hard register
1556 restrictions, e.g. crosses calls, so we check hard_available too. */
1557 if (target_available)
1558 gcc_assert (live_available);
1559 else
1560 /* Check only if we haven't scheduled something on the previous fence,
1561 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1562 and having more than one fence, we may end having targ_un in a block
1563 in which successors target register is actually available.
1564
1565 The last condition handles the case when a dependence from a call insn
1566 was created in sched-deps.c for insns with destination registers that
1567 never crossed a call before, but do cross one after our code motion.
1568
1569 FIXME: in the latter case, we just uselessly called find_used_regs,
1570 because we can't move this expression with any other register
1571 as well. */
1572 gcc_assert (scheduled_something_on_previous_fence || !live_available
1573 || !hard_available
1574 || (!reload_completed && reg_rename_p->crosses_call
1575 && REG_N_CALLS_CROSSED (regno) == 0));
1576 }
1577
1578 /* Collect unavailable registers due to liveness for EXPR from BNDS
1579 into USED_REGS. Save additional information about available
1580 registers and unavailable due to hardware restriction registers
1581 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1582 list. */
1583 static void
1584 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1585 struct reg_rename *reg_rename_p,
1586 def_list_t *original_insns)
1587 {
1588 for (; bnds; bnds = BLIST_NEXT (bnds))
1589 {
1590 bool res;
1591 av_set_t orig_ops = NULL;
1592 bnd_t bnd = BLIST_BND (bnds);
1593
1594 /* If the chosen best expr doesn't belong to current boundary,
1595 skip it. */
1596 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1597 continue;
1598
1599 /* Put in ORIG_OPS all exprs from this boundary that became
1600 RES on top. */
1601 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1602
1603 /* Compute used regs and OR it into the USED_REGS. */
1604 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1605 reg_rename_p, original_insns);
1606
1607 /* FIXME: the assert is true until we'd have several boundaries. */
1608 gcc_assert (res);
1609 av_set_clear (&orig_ops);
1610 }
1611 }
1612
1613 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1614 If BEST_REG is valid, replace LHS of EXPR with it. */
1615 static bool
1616 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1617 {
1618 /* Try whether we'll be able to generate the insn
1619 'dest := best_reg' at the place of the original operation. */
1620 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1621 {
1622 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1623
1624 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1625
1626 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1627 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1628 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1629 return false;
1630 }
1631
1632 /* Make sure that EXPR has the right destination
1633 register. */
1634 if (expr_dest_regno (expr) != REGNO (best_reg))
1635 replace_dest_with_reg_in_expr (expr, best_reg);
1636 else
1637 EXPR_TARGET_AVAILABLE (expr) = 1;
1638
1639 return true;
1640 }
1641
1642 /* Select and assign best register to EXPR searching from BNDS.
1643 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1644 Return FALSE if no register can be chosen, which could happen when:
1645 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1646 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1647 that are used on the moving path. */
1648 static bool
1649 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1650 {
1651 static struct reg_rename reg_rename_data;
1652
1653 regset used_regs;
1654 def_list_t original_insns = NULL;
1655 bool reg_ok;
1656
1657 *is_orig_reg_p = false;
1658
1659 /* Don't bother to do anything if this insn doesn't set any registers. */
1660 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1661 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1662 return true;
1663
1664 used_regs = get_clear_regset_from_pool ();
1665 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1666
1667 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1668 &original_insns);
1669
1670 #ifdef ENABLE_CHECKING
1671 /* If after reload, make sure we're working with hard regs here. */
1672 if (reload_completed)
1673 {
1674 reg_set_iterator rsi;
1675 unsigned i;
1676
1677 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1678 gcc_unreachable ();
1679 }
1680 #endif
1681
1682 if (EXPR_SEPARABLE_P (expr))
1683 {
1684 rtx best_reg = NULL_RTX;
1685 /* Check that we have computed availability of a target register
1686 correctly. */
1687 verify_target_availability (expr, used_regs, &reg_rename_data);
1688
1689 /* Turn everything in hard regs after reload. */
1690 if (reload_completed)
1691 {
1692 HARD_REG_SET hard_regs_used;
1693 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1694
1695 /* Join hard registers unavailable due to register class
1696 restrictions and live range intersection. */
1697 IOR_HARD_REG_SET (hard_regs_used,
1698 reg_rename_data.unavailable_hard_regs);
1699
1700 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1701 original_insns, is_orig_reg_p);
1702 }
1703 else
1704 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1705 original_insns, is_orig_reg_p);
1706
1707 if (!best_reg)
1708 reg_ok = false;
1709 else if (*is_orig_reg_p)
1710 {
1711 /* In case of unification BEST_REG may be different from EXPR's LHS
1712 when EXPR's LHS is unavailable, and there is another LHS among
1713 ORIGINAL_INSNS. */
1714 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1715 }
1716 else
1717 {
1718 /* Forbid renaming of low-cost insns. */
1719 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1720 reg_ok = false;
1721 else
1722 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1723 }
1724 }
1725 else
1726 {
1727 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1728 any of the HARD_REGS_USED set. */
1729 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1730 reg_rename_data.unavailable_hard_regs))
1731 {
1732 reg_ok = false;
1733 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1734 }
1735 else
1736 {
1737 reg_ok = true;
1738 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1739 }
1740 }
1741
1742 ilist_clear (&original_insns);
1743 return_regset_to_pool (used_regs);
1744
1745 return reg_ok;
1746 }
1747 \f
1748
1749 /* Return true if dependence described by DS can be overcomed. */
1750 static bool
1751 can_speculate_dep_p (ds_t ds)
1752 {
1753 if (spec_info == NULL)
1754 return false;
1755
1756 /* Leave only speculative data. */
1757 ds &= SPECULATIVE;
1758
1759 if (ds == 0)
1760 return false;
1761
1762 {
1763 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1764 that we can overcome. */
1765 ds_t spec_mask = spec_info->mask;
1766
1767 if ((ds & spec_mask) != ds)
1768 return false;
1769 }
1770
1771 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1772 return false;
1773
1774 return true;
1775 }
1776
1777 /* Get a speculation check instruction.
1778 C_EXPR is a speculative expression,
1779 CHECK_DS describes speculations that should be checked,
1780 ORIG_INSN is the original non-speculative insn in the stream. */
1781 static insn_t
1782 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1783 {
1784 rtx check_pattern;
1785 rtx_insn *insn_rtx;
1786 insn_t insn;
1787 basic_block recovery_block;
1788 rtx_insn *label;
1789
1790 /* Create a recovery block if target is going to emit branchy check, or if
1791 ORIG_INSN was speculative already. */
1792 if (targetm.sched.needs_block_p (check_ds)
1793 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1794 {
1795 recovery_block = sel_create_recovery_block (orig_insn);
1796 label = BB_HEAD (recovery_block);
1797 }
1798 else
1799 {
1800 recovery_block = NULL;
1801 label = NULL;
1802 }
1803
1804 /* Get pattern of the check. */
1805 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1806 check_ds);
1807
1808 gcc_assert (check_pattern != NULL);
1809
1810 /* Emit check. */
1811 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1812
1813 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1814 INSN_SEQNO (orig_insn), orig_insn);
1815
1816 /* Make check to be non-speculative. */
1817 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1818 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1819
1820 /* Decrease priority of check by difference of load/check instruction
1821 latencies. */
1822 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1823 - sel_vinsn_cost (INSN_VINSN (insn)));
1824
1825 /* Emit copy of original insn (though with replaced target register,
1826 if needed) to the recovery block. */
1827 if (recovery_block != NULL)
1828 {
1829 rtx twin_rtx;
1830
1831 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1832 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1833 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1834 INSN_EXPR (orig_insn),
1835 INSN_SEQNO (insn),
1836 bb_note (recovery_block));
1837 }
1838
1839 /* If we've generated a data speculation check, make sure
1840 that all the bookkeeping instruction we'll create during
1841 this move_op () will allocate an ALAT entry so that the
1842 check won't fail.
1843 In case of control speculation we must convert C_EXPR to control
1844 speculative mode, because failing to do so will bring us an exception
1845 thrown by the non-control-speculative load. */
1846 check_ds = ds_get_max_dep_weak (check_ds);
1847 speculate_expr (c_expr, check_ds);
1848
1849 return insn;
1850 }
1851
1852 /* True when INSN is a "regN = regN" copy. */
1853 static bool
1854 identical_copy_p (rtx_insn *insn)
1855 {
1856 rtx lhs, rhs, pat;
1857
1858 pat = PATTERN (insn);
1859
1860 if (GET_CODE (pat) != SET)
1861 return false;
1862
1863 lhs = SET_DEST (pat);
1864 if (!REG_P (lhs))
1865 return false;
1866
1867 rhs = SET_SRC (pat);
1868 if (!REG_P (rhs))
1869 return false;
1870
1871 return REGNO (lhs) == REGNO (rhs);
1872 }
1873
1874 /* Undo all transformations on *AV_PTR that were done when
1875 moving through INSN. */
1876 static void
1877 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1878 {
1879 av_set_iterator av_iter;
1880 expr_t expr;
1881 av_set_t new_set = NULL;
1882
1883 /* First, kill any EXPR that uses registers set by an insn. This is
1884 required for correctness. */
1885 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1886 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1887 && bitmap_intersect_p (INSN_REG_SETS (insn),
1888 VINSN_REG_USES (EXPR_VINSN (expr)))
1889 /* When an insn looks like 'r1 = r1', we could substitute through
1890 it, but the above condition will still hold. This happened with
1891 gcc.c-torture/execute/961125-1.c. */
1892 && !identical_copy_p (insn))
1893 {
1894 if (sched_verbose >= 6)
1895 sel_print ("Expr %d removed due to use/set conflict\n",
1896 INSN_UID (EXPR_INSN_RTX (expr)));
1897 av_set_iter_remove (&av_iter);
1898 }
1899
1900 /* Undo transformations looking at the history vector. */
1901 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1902 {
1903 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1904 insn, EXPR_VINSN (expr), true);
1905
1906 if (index >= 0)
1907 {
1908 expr_history_def *phist;
1909
1910 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1911
1912 switch (phist->type)
1913 {
1914 case TRANS_SPECULATION:
1915 {
1916 ds_t old_ds, new_ds;
1917
1918 /* Compute the difference between old and new speculative
1919 statuses: that's what we need to check.
1920 Earlier we used to assert that the status will really
1921 change. This no longer works because only the probability
1922 bits in the status may have changed during compute_av_set,
1923 and in the case of merging different probabilities of the
1924 same speculative status along different paths we do not
1925 record this in the history vector. */
1926 old_ds = phist->spec_ds;
1927 new_ds = EXPR_SPEC_DONE_DS (expr);
1928
1929 old_ds &= SPECULATIVE;
1930 new_ds &= SPECULATIVE;
1931 new_ds &= ~old_ds;
1932
1933 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1934 break;
1935 }
1936 case TRANS_SUBSTITUTION:
1937 {
1938 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1939 vinsn_t new_vi;
1940 bool add = true;
1941
1942 new_vi = phist->old_expr_vinsn;
1943
1944 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1945 == EXPR_SEPARABLE_P (expr));
1946 copy_expr (tmp_expr, expr);
1947
1948 if (vinsn_equal_p (phist->new_expr_vinsn,
1949 EXPR_VINSN (tmp_expr)))
1950 change_vinsn_in_expr (tmp_expr, new_vi);
1951 else
1952 /* This happens when we're unsubstituting on a bookkeeping
1953 copy, which was in turn substituted. The history is wrong
1954 in this case. Do it the hard way. */
1955 add = substitute_reg_in_expr (tmp_expr, insn, true);
1956 if (add)
1957 av_set_add (&new_set, tmp_expr);
1958 clear_expr (tmp_expr);
1959 break;
1960 }
1961 default:
1962 gcc_unreachable ();
1963 }
1964 }
1965
1966 }
1967
1968 av_set_union_and_clear (av_ptr, &new_set, NULL);
1969 }
1970 \f
1971
1972 /* Moveup_* helpers for code motion and computing av sets. */
1973
1974 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1975 The difference from the below function is that only substitution is
1976 performed. */
1977 static enum MOVEUP_EXPR_CODE
1978 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1979 {
1980 vinsn_t vi = EXPR_VINSN (expr);
1981 ds_t *has_dep_p;
1982 ds_t full_ds;
1983
1984 /* Do this only inside insn group. */
1985 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1986
1987 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1988 if (full_ds == 0)
1989 return MOVEUP_EXPR_SAME;
1990
1991 /* Substitution is the possible choice in this case. */
1992 if (has_dep_p[DEPS_IN_RHS])
1993 {
1994 /* Can't substitute UNIQUE VINSNs. */
1995 gcc_assert (!VINSN_UNIQUE_P (vi));
1996
1997 if (can_substitute_through_p (through_insn,
1998 has_dep_p[DEPS_IN_RHS])
1999 && substitute_reg_in_expr (expr, through_insn, false))
2000 {
2001 EXPR_WAS_SUBSTITUTED (expr) = true;
2002 return MOVEUP_EXPR_CHANGED;
2003 }
2004
2005 /* Don't care about this, as even true dependencies may be allowed
2006 in an insn group. */
2007 return MOVEUP_EXPR_SAME;
2008 }
2009
2010 /* This can catch output dependencies in COND_EXECs. */
2011 if (has_dep_p[DEPS_IN_INSN])
2012 return MOVEUP_EXPR_NULL;
2013
2014 /* This is either an output or an anti dependence, which usually have
2015 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2016 will fix this. */
2017 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2018 return MOVEUP_EXPR_AS_RHS;
2019 }
2020
2021 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2022 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2023 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2024 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2025 && !sel_insn_is_speculation_check (through_insn))
2026
2027 /* True when a conflict on a target register was found during moveup_expr. */
2028 static bool was_target_conflict = false;
2029
2030 /* Return true when moving a debug INSN across THROUGH_INSN will
2031 create a bookkeeping block. We don't want to create such blocks,
2032 for they would cause codegen differences between compilations with
2033 and without debug info. */
2034
2035 static bool
2036 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2037 insn_t through_insn)
2038 {
2039 basic_block bbi, bbt;
2040 edge e1, e2;
2041 edge_iterator ei1, ei2;
2042
2043 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2044 {
2045 if (sched_verbose >= 9)
2046 sel_print ("no bookkeeping required: ");
2047 return FALSE;
2048 }
2049
2050 bbi = BLOCK_FOR_INSN (insn);
2051
2052 if (EDGE_COUNT (bbi->preds) == 1)
2053 {
2054 if (sched_verbose >= 9)
2055 sel_print ("only one pred edge: ");
2056 return TRUE;
2057 }
2058
2059 bbt = BLOCK_FOR_INSN (through_insn);
2060
2061 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2062 {
2063 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2064 {
2065 if (find_block_for_bookkeeping (e1, e2, TRUE))
2066 {
2067 if (sched_verbose >= 9)
2068 sel_print ("found existing block: ");
2069 return FALSE;
2070 }
2071 }
2072 }
2073
2074 if (sched_verbose >= 9)
2075 sel_print ("would create bookkeeping block: ");
2076
2077 return TRUE;
2078 }
2079
2080 /* Return true when the conflict with newly created implicit clobbers
2081 between EXPR and THROUGH_INSN is found because of renaming. */
2082 static bool
2083 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2084 {
2085 HARD_REG_SET temp;
2086 rtx_insn *insn;
2087 rtx reg, rhs, pat;
2088 hard_reg_set_iterator hrsi;
2089 unsigned regno;
2090 bool valid;
2091
2092 /* Make a new pseudo register. */
2093 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2094 max_regno = max_reg_num ();
2095 maybe_extend_reg_info_p ();
2096
2097 /* Validate a change and bail out early. */
2098 insn = EXPR_INSN_RTX (expr);
2099 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2100 valid = verify_changes (0);
2101 cancel_changes (0);
2102 if (!valid)
2103 {
2104 if (sched_verbose >= 6)
2105 sel_print ("implicit clobbers failed validation, ");
2106 return true;
2107 }
2108
2109 /* Make a new insn with it. */
2110 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2111 pat = gen_rtx_SET (reg, rhs);
2112 start_sequence ();
2113 insn = emit_insn (pat);
2114 end_sequence ();
2115
2116 /* Calculate implicit clobbers. */
2117 extract_insn (insn);
2118 preprocess_constraints (insn);
2119 ira_implicitly_set_insn_hard_regs (&temp);
2120 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2121
2122 /* If any implicit clobber registers intersect with regular ones in
2123 through_insn, we have a dependency and thus bail out. */
2124 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2125 {
2126 vinsn_t vi = INSN_VINSN (through_insn);
2127 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2128 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2129 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2130 return true;
2131 }
2132
2133 return false;
2134 }
2135
2136 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2137 performing necessary transformations. Record the type of transformation
2138 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2139 permit all dependencies except true ones, and try to remove those
2140 too via forward substitution. All cases when a non-eliminable
2141 non-zero cost dependency exists inside an insn group will be fixed
2142 in tick_check_p instead. */
2143 static enum MOVEUP_EXPR_CODE
2144 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2145 enum local_trans_type *ptrans_type)
2146 {
2147 vinsn_t vi = EXPR_VINSN (expr);
2148 insn_t insn = VINSN_INSN_RTX (vi);
2149 bool was_changed = false;
2150 bool as_rhs = false;
2151 ds_t *has_dep_p;
2152 ds_t full_ds;
2153
2154 /* ??? We use dependencies of non-debug insns on debug insns to
2155 indicate that the debug insns need to be reset if the non-debug
2156 insn is pulled ahead of it. It's hard to figure out how to
2157 introduce such a notion in sel-sched, but it already fails to
2158 support debug insns in other ways, so we just go ahead and
2159 let the deug insns go corrupt for now. */
2160 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2161 return MOVEUP_EXPR_SAME;
2162
2163 /* When inside_insn_group, delegate to the helper. */
2164 if (inside_insn_group)
2165 return moveup_expr_inside_insn_group (expr, through_insn);
2166
2167 /* Deal with unique insns and control dependencies. */
2168 if (VINSN_UNIQUE_P (vi))
2169 {
2170 /* We can move jumps without side-effects or jumps that are
2171 mutually exclusive with instruction THROUGH_INSN (all in cases
2172 dependencies allow to do so and jump is not speculative). */
2173 if (control_flow_insn_p (insn))
2174 {
2175 basic_block fallthru_bb;
2176
2177 /* Do not move checks and do not move jumps through other
2178 jumps. */
2179 if (control_flow_insn_p (through_insn)
2180 || sel_insn_is_speculation_check (insn))
2181 return MOVEUP_EXPR_NULL;
2182
2183 /* Don't move jumps through CFG joins. */
2184 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2185 return MOVEUP_EXPR_NULL;
2186
2187 /* The jump should have a clear fallthru block, and
2188 this block should be in the current region. */
2189 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2190 || ! in_current_region_p (fallthru_bb))
2191 return MOVEUP_EXPR_NULL;
2192
2193 /* And it should be mutually exclusive with through_insn. */
2194 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2195 && ! DEBUG_INSN_P (through_insn))
2196 return MOVEUP_EXPR_NULL;
2197 }
2198
2199 /* Don't move what we can't move. */
2200 if (EXPR_CANT_MOVE (expr)
2201 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2202 return MOVEUP_EXPR_NULL;
2203
2204 /* Don't move SCHED_GROUP instruction through anything.
2205 If we don't force this, then it will be possible to start
2206 scheduling a sched_group before all its dependencies are
2207 resolved.
2208 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2209 as late as possible through rank_for_schedule. */
2210 if (SCHED_GROUP_P (insn))
2211 return MOVEUP_EXPR_NULL;
2212 }
2213 else
2214 gcc_assert (!control_flow_insn_p (insn));
2215
2216 /* Don't move debug insns if this would require bookkeeping. */
2217 if (DEBUG_INSN_P (insn)
2218 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2219 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2220 return MOVEUP_EXPR_NULL;
2221
2222 /* Deal with data dependencies. */
2223 was_target_conflict = false;
2224 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2225 if (full_ds == 0)
2226 {
2227 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2228 return MOVEUP_EXPR_SAME;
2229 }
2230 else
2231 {
2232 /* We can move UNIQUE insn up only as a whole and unchanged,
2233 so it shouldn't have any dependencies. */
2234 if (VINSN_UNIQUE_P (vi))
2235 return MOVEUP_EXPR_NULL;
2236 }
2237
2238 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2239 {
2240 int res;
2241
2242 res = speculate_expr (expr, full_ds);
2243 if (res >= 0)
2244 {
2245 /* Speculation was successful. */
2246 full_ds = 0;
2247 was_changed = (res > 0);
2248 if (res == 2)
2249 was_target_conflict = true;
2250 if (ptrans_type)
2251 *ptrans_type = TRANS_SPECULATION;
2252 sel_clear_has_dependence ();
2253 }
2254 }
2255
2256 if (has_dep_p[DEPS_IN_INSN])
2257 /* We have some dependency that cannot be discarded. */
2258 return MOVEUP_EXPR_NULL;
2259
2260 if (has_dep_p[DEPS_IN_LHS])
2261 {
2262 /* Only separable insns can be moved up with the new register.
2263 Anyways, we should mark that the original register is
2264 unavailable. */
2265 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2266 return MOVEUP_EXPR_NULL;
2267
2268 /* When renaming a hard register to a pseudo before reload, extra
2269 dependencies can occur from the implicit clobbers of the insn.
2270 Filter out such cases here. */
2271 if (!reload_completed && REG_P (EXPR_LHS (expr))
2272 && HARD_REGISTER_P (EXPR_LHS (expr))
2273 && implicit_clobber_conflict_p (through_insn, expr))
2274 {
2275 if (sched_verbose >= 6)
2276 sel_print ("implicit clobbers conflict detected, ");
2277 return MOVEUP_EXPR_NULL;
2278 }
2279 EXPR_TARGET_AVAILABLE (expr) = false;
2280 was_target_conflict = true;
2281 as_rhs = true;
2282 }
2283
2284 /* At this point we have either separable insns, that will be lifted
2285 up only as RHSes, or non-separable insns with no dependency in lhs.
2286 If dependency is in RHS, then try to perform substitution and move up
2287 substituted RHS:
2288
2289 Ex. 1: Ex.2
2290 y = x; y = x;
2291 z = y*2; y = y*2;
2292
2293 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2294 moved above y=x assignment as z=x*2.
2295
2296 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2297 side can be moved because of the output dependency. The operation was
2298 cropped to its rhs above. */
2299 if (has_dep_p[DEPS_IN_RHS])
2300 {
2301 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2302
2303 /* Can't substitute UNIQUE VINSNs. */
2304 gcc_assert (!VINSN_UNIQUE_P (vi));
2305
2306 if (can_speculate_dep_p (*rhs_dsp))
2307 {
2308 int res;
2309
2310 res = speculate_expr (expr, *rhs_dsp);
2311 if (res >= 0)
2312 {
2313 /* Speculation was successful. */
2314 *rhs_dsp = 0;
2315 was_changed = (res > 0);
2316 if (res == 2)
2317 was_target_conflict = true;
2318 if (ptrans_type)
2319 *ptrans_type = TRANS_SPECULATION;
2320 }
2321 else
2322 return MOVEUP_EXPR_NULL;
2323 }
2324 else if (can_substitute_through_p (through_insn,
2325 *rhs_dsp)
2326 && substitute_reg_in_expr (expr, through_insn, false))
2327 {
2328 /* ??? We cannot perform substitution AND speculation on the same
2329 insn. */
2330 gcc_assert (!was_changed);
2331 was_changed = true;
2332 if (ptrans_type)
2333 *ptrans_type = TRANS_SUBSTITUTION;
2334 EXPR_WAS_SUBSTITUTED (expr) = true;
2335 }
2336 else
2337 return MOVEUP_EXPR_NULL;
2338 }
2339
2340 /* Don't move trapping insns through jumps.
2341 This check should be at the end to give a chance to control speculation
2342 to perform its duties. */
2343 if (CANT_MOVE_TRAPPING (expr, through_insn))
2344 return MOVEUP_EXPR_NULL;
2345
2346 return (was_changed
2347 ? MOVEUP_EXPR_CHANGED
2348 : (as_rhs
2349 ? MOVEUP_EXPR_AS_RHS
2350 : MOVEUP_EXPR_SAME));
2351 }
2352
2353 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2354 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2355 that can exist within a parallel group. Write to RES the resulting
2356 code for moveup_expr. */
2357 static bool
2358 try_bitmap_cache (expr_t expr, insn_t insn,
2359 bool inside_insn_group,
2360 enum MOVEUP_EXPR_CODE *res)
2361 {
2362 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2363
2364 /* First check whether we've analyzed this situation already. */
2365 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2366 {
2367 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2368 {
2369 if (sched_verbose >= 6)
2370 sel_print ("removed (cached)\n");
2371 *res = MOVEUP_EXPR_NULL;
2372 return true;
2373 }
2374 else
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("unchanged (cached)\n");
2378 *res = MOVEUP_EXPR_SAME;
2379 return true;
2380 }
2381 }
2382 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2383 {
2384 if (inside_insn_group)
2385 {
2386 if (sched_verbose >= 6)
2387 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2388 *res = MOVEUP_EXPR_SAME;
2389 return true;
2390
2391 }
2392 else
2393 EXPR_TARGET_AVAILABLE (expr) = false;
2394
2395 /* This is the only case when propagation result can change over time,
2396 as we can dynamically switch off scheduling as RHS. In this case,
2397 just check the flag to reach the correct decision. */
2398 if (enable_schedule_as_rhs_p)
2399 {
2400 if (sched_verbose >= 6)
2401 sel_print ("unchanged (as RHS, cached)\n");
2402 *res = MOVEUP_EXPR_AS_RHS;
2403 return true;
2404 }
2405 else
2406 {
2407 if (sched_verbose >= 6)
2408 sel_print ("removed (cached as RHS, but renaming"
2409 " is now disabled)\n");
2410 *res = MOVEUP_EXPR_NULL;
2411 return true;
2412 }
2413 }
2414
2415 return false;
2416 }
2417
2418 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2419 if successful. Write to RES the resulting code for moveup_expr. */
2420 static bool
2421 try_transformation_cache (expr_t expr, insn_t insn,
2422 enum MOVEUP_EXPR_CODE *res)
2423 {
2424 struct transformed_insns *pti
2425 = (struct transformed_insns *)
2426 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2427 &EXPR_VINSN (expr),
2428 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2429 if (pti)
2430 {
2431 /* This EXPR was already moved through this insn and was
2432 changed as a result. Fetch the proper data from
2433 the hashtable. */
2434 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2435 INSN_UID (insn), pti->type,
2436 pti->vinsn_old, pti->vinsn_new,
2437 EXPR_SPEC_DONE_DS (expr));
2438
2439 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2440 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2441 change_vinsn_in_expr (expr, pti->vinsn_new);
2442 if (pti->was_target_conflict)
2443 EXPR_TARGET_AVAILABLE (expr) = false;
2444 if (pti->type == TRANS_SPECULATION)
2445 {
2446 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2447 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2448 }
2449
2450 if (sched_verbose >= 6)
2451 {
2452 sel_print ("changed (cached): ");
2453 dump_expr (expr);
2454 sel_print ("\n");
2455 }
2456
2457 *res = MOVEUP_EXPR_CHANGED;
2458 return true;
2459 }
2460
2461 return false;
2462 }
2463
2464 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2465 static void
2466 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2467 enum MOVEUP_EXPR_CODE res)
2468 {
2469 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2470
2471 /* Do not cache result of propagating jumps through an insn group,
2472 as it is always true, which is not useful outside the group. */
2473 if (inside_insn_group)
2474 return;
2475
2476 if (res == MOVEUP_EXPR_NULL)
2477 {
2478 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2479 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2480 }
2481 else if (res == MOVEUP_EXPR_SAME)
2482 {
2483 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2484 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2485 }
2486 else if (res == MOVEUP_EXPR_AS_RHS)
2487 {
2488 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2489 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2490 }
2491 else
2492 gcc_unreachable ();
2493 }
2494
2495 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2496 and transformation type TRANS_TYPE. */
2497 static void
2498 update_transformation_cache (expr_t expr, insn_t insn,
2499 bool inside_insn_group,
2500 enum local_trans_type trans_type,
2501 vinsn_t expr_old_vinsn)
2502 {
2503 struct transformed_insns *pti;
2504
2505 if (inside_insn_group)
2506 return;
2507
2508 pti = XNEW (struct transformed_insns);
2509 pti->vinsn_old = expr_old_vinsn;
2510 pti->vinsn_new = EXPR_VINSN (expr);
2511 pti->type = trans_type;
2512 pti->was_target_conflict = was_target_conflict;
2513 pti->ds = EXPR_SPEC_DONE_DS (expr);
2514 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2515 vinsn_attach (pti->vinsn_old);
2516 vinsn_attach (pti->vinsn_new);
2517 *((struct transformed_insns **)
2518 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2519 pti, VINSN_HASH_RTX (expr_old_vinsn),
2520 INSERT)) = pti;
2521 }
2522
2523 /* Same as moveup_expr, but first looks up the result of
2524 transformation in caches. */
2525 static enum MOVEUP_EXPR_CODE
2526 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2527 {
2528 enum MOVEUP_EXPR_CODE res;
2529 bool got_answer = false;
2530
2531 if (sched_verbose >= 6)
2532 {
2533 sel_print ("Moving ");
2534 dump_expr (expr);
2535 sel_print (" through %d: ", INSN_UID (insn));
2536 }
2537
2538 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2539 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2540 == EXPR_INSN_RTX (expr)))
2541 /* Don't use cached information for debug insns that are heads of
2542 basic blocks. */;
2543 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2544 /* When inside insn group, we do not want remove stores conflicting
2545 with previosly issued loads. */
2546 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2547 else if (try_transformation_cache (expr, insn, &res))
2548 got_answer = true;
2549
2550 if (! got_answer)
2551 {
2552 /* Invoke moveup_expr and record the results. */
2553 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2554 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2555 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2556 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2557 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2558
2559 /* ??? Invent something better than this. We can't allow old_vinsn
2560 to go, we need it for the history vector. */
2561 vinsn_attach (expr_old_vinsn);
2562
2563 res = moveup_expr (expr, insn, inside_insn_group,
2564 &trans_type);
2565 switch (res)
2566 {
2567 case MOVEUP_EXPR_NULL:
2568 update_bitmap_cache (expr, insn, inside_insn_group, res);
2569 if (sched_verbose >= 6)
2570 sel_print ("removed\n");
2571 break;
2572
2573 case MOVEUP_EXPR_SAME:
2574 update_bitmap_cache (expr, insn, inside_insn_group, res);
2575 if (sched_verbose >= 6)
2576 sel_print ("unchanged\n");
2577 break;
2578
2579 case MOVEUP_EXPR_AS_RHS:
2580 gcc_assert (!unique_p || inside_insn_group);
2581 update_bitmap_cache (expr, insn, inside_insn_group, res);
2582 if (sched_verbose >= 6)
2583 sel_print ("unchanged (as RHS)\n");
2584 break;
2585
2586 case MOVEUP_EXPR_CHANGED:
2587 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2588 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2589 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2590 INSN_UID (insn), trans_type,
2591 expr_old_vinsn, EXPR_VINSN (expr),
2592 expr_old_spec_ds);
2593 update_transformation_cache (expr, insn, inside_insn_group,
2594 trans_type, expr_old_vinsn);
2595 if (sched_verbose >= 6)
2596 {
2597 sel_print ("changed: ");
2598 dump_expr (expr);
2599 sel_print ("\n");
2600 }
2601 break;
2602 default:
2603 gcc_unreachable ();
2604 }
2605
2606 vinsn_detach (expr_old_vinsn);
2607 }
2608
2609 return res;
2610 }
2611
2612 /* Moves an av set AVP up through INSN, performing necessary
2613 transformations. */
2614 static void
2615 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2616 {
2617 av_set_iterator i;
2618 expr_t expr;
2619
2620 FOR_EACH_EXPR_1 (expr, i, avp)
2621 {
2622
2623 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2624 {
2625 case MOVEUP_EXPR_SAME:
2626 case MOVEUP_EXPR_AS_RHS:
2627 break;
2628
2629 case MOVEUP_EXPR_NULL:
2630 av_set_iter_remove (&i);
2631 break;
2632
2633 case MOVEUP_EXPR_CHANGED:
2634 expr = merge_with_other_exprs (avp, &i, expr);
2635 break;
2636
2637 default:
2638 gcc_unreachable ();
2639 }
2640 }
2641 }
2642
2643 /* Moves AVP set along PATH. */
2644 static void
2645 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2646 {
2647 int last_cycle;
2648
2649 if (sched_verbose >= 6)
2650 sel_print ("Moving expressions up in the insn group...\n");
2651 if (! path)
2652 return;
2653 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2654 while (path
2655 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2656 {
2657 moveup_set_expr (avp, ILIST_INSN (path), true);
2658 path = ILIST_NEXT (path);
2659 }
2660 }
2661
2662 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2663 static bool
2664 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2665 {
2666 expr_def _tmp, *tmp = &_tmp;
2667 int last_cycle;
2668 bool res = true;
2669
2670 copy_expr_onside (tmp, expr);
2671 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2672 while (path
2673 && res
2674 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2675 {
2676 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2677 != MOVEUP_EXPR_NULL);
2678 path = ILIST_NEXT (path);
2679 }
2680
2681 if (res)
2682 {
2683 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2684 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2685
2686 if (tmp_vinsn != expr_vliw_vinsn)
2687 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2688 }
2689
2690 clear_expr (tmp);
2691 return res;
2692 }
2693 \f
2694
2695 /* Functions that compute av and lv sets. */
2696
2697 /* Returns true if INSN is not a downward continuation of the given path P in
2698 the current stage. */
2699 static bool
2700 is_ineligible_successor (insn_t insn, ilist_t p)
2701 {
2702 insn_t prev_insn;
2703
2704 /* Check if insn is not deleted. */
2705 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2706 gcc_unreachable ();
2707 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2708 gcc_unreachable ();
2709
2710 /* If it's the first insn visited, then the successor is ok. */
2711 if (!p)
2712 return false;
2713
2714 prev_insn = ILIST_INSN (p);
2715
2716 if (/* a backward edge. */
2717 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2718 /* is already visited. */
2719 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2720 && (ilist_is_in_p (p, insn)
2721 /* We can reach another fence here and still seqno of insn
2722 would be equal to seqno of prev_insn. This is possible
2723 when prev_insn is a previously created bookkeeping copy.
2724 In that case it'd get a seqno of insn. Thus, check here
2725 whether insn is in current fence too. */
2726 || IN_CURRENT_FENCE_P (insn)))
2727 /* Was already scheduled on this round. */
2728 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2729 && IN_CURRENT_FENCE_P (insn))
2730 /* An insn from another fence could also be
2731 scheduled earlier even if this insn is not in
2732 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2733 || (!pipelining_p
2734 && INSN_SCHED_TIMES (insn) > 0))
2735 return true;
2736 else
2737 return false;
2738 }
2739
2740 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2741 of handling multiple successors and properly merging its av_sets. P is
2742 the current path traversed. WS is the size of lookahead window.
2743 Return the av set computed. */
2744 static av_set_t
2745 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2746 {
2747 struct succs_info *sinfo;
2748 av_set_t expr_in_all_succ_branches = NULL;
2749 int is;
2750 insn_t succ, zero_succ = NULL;
2751 av_set_t av1 = NULL;
2752
2753 gcc_assert (sel_bb_end_p (insn));
2754
2755 /* Find different kind of successors needed for correct computing of
2756 SPEC and TARGET_AVAILABLE attributes. */
2757 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2758
2759 /* Debug output. */
2760 if (sched_verbose >= 6)
2761 {
2762 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2763 dump_insn_vector (sinfo->succs_ok);
2764 sel_print ("\n");
2765 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2766 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2767 }
2768
2769 /* Add insn to the tail of current path. */
2770 ilist_add (&p, insn);
2771
2772 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2773 {
2774 av_set_t succ_set;
2775
2776 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2777 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2778
2779 av_set_split_usefulness (succ_set,
2780 sinfo->probs_ok[is],
2781 sinfo->all_prob);
2782
2783 if (sinfo->all_succs_n > 1)
2784 {
2785 /* Find EXPR'es that came from *all* successors and save them
2786 into expr_in_all_succ_branches. This set will be used later
2787 for calculating speculation attributes of EXPR'es. */
2788 if (is == 0)
2789 {
2790 expr_in_all_succ_branches = av_set_copy (succ_set);
2791
2792 /* Remember the first successor for later. */
2793 zero_succ = succ;
2794 }
2795 else
2796 {
2797 av_set_iterator i;
2798 expr_t expr;
2799
2800 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2801 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2802 av_set_iter_remove (&i);
2803 }
2804 }
2805
2806 /* Union the av_sets. Check liveness restrictions on target registers
2807 in special case of two successors. */
2808 if (sinfo->succs_ok_n == 2 && is == 1)
2809 {
2810 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2811 basic_block bb1 = BLOCK_FOR_INSN (succ);
2812
2813 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2814 av_set_union_and_live (&av1, &succ_set,
2815 BB_LV_SET (bb0),
2816 BB_LV_SET (bb1),
2817 insn);
2818 }
2819 else
2820 av_set_union_and_clear (&av1, &succ_set, insn);
2821 }
2822
2823 /* Check liveness restrictions via hard way when there are more than
2824 two successors. */
2825 if (sinfo->succs_ok_n > 2)
2826 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2827 {
2828 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2829
2830 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2831 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2832 BB_LV_SET (succ_bb));
2833 }
2834
2835 /* Finally, check liveness restrictions on paths leaving the region. */
2836 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2837 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2838 mark_unavailable_targets
2839 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2840
2841 if (sinfo->all_succs_n > 1)
2842 {
2843 av_set_iterator i;
2844 expr_t expr;
2845
2846 /* Increase the spec attribute of all EXPR'es that didn't come
2847 from all successors. */
2848 FOR_EACH_EXPR (expr, i, av1)
2849 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2850 EXPR_SPEC (expr)++;
2851
2852 av_set_clear (&expr_in_all_succ_branches);
2853
2854 /* Do not move conditional branches through other
2855 conditional branches. So, remove all conditional
2856 branches from av_set if current operator is a conditional
2857 branch. */
2858 av_set_substract_cond_branches (&av1);
2859 }
2860
2861 ilist_remove (&p);
2862 free_succs_info (sinfo);
2863
2864 if (sched_verbose >= 6)
2865 {
2866 sel_print ("av_succs (%d): ", INSN_UID (insn));
2867 dump_av_set (av1);
2868 sel_print ("\n");
2869 }
2870
2871 return av1;
2872 }
2873
2874 /* This function computes av_set for the FIRST_INSN by dragging valid
2875 av_set through all basic block insns either from the end of basic block
2876 (computed using compute_av_set_at_bb_end) or from the insn on which
2877 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2878 below the basic block and handling conditional branches.
2879 FIRST_INSN - the basic block head, P - path consisting of the insns
2880 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2881 and bb ends are added to the path), WS - current window size,
2882 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2883 static av_set_t
2884 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2885 bool need_copy_p)
2886 {
2887 insn_t cur_insn;
2888 int end_ws = ws;
2889 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2890 insn_t after_bb_end = NEXT_INSN (bb_end);
2891 insn_t last_insn;
2892 av_set_t av = NULL;
2893 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2894
2895 /* Return NULL if insn is not on the legitimate downward path. */
2896 if (is_ineligible_successor (first_insn, p))
2897 {
2898 if (sched_verbose >= 6)
2899 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2900
2901 return NULL;
2902 }
2903
2904 /* If insn already has valid av(insn) computed, just return it. */
2905 if (AV_SET_VALID_P (first_insn))
2906 {
2907 av_set_t av_set;
2908
2909 if (sel_bb_head_p (first_insn))
2910 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2911 else
2912 av_set = NULL;
2913
2914 if (sched_verbose >= 6)
2915 {
2916 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2917 dump_av_set (av_set);
2918 sel_print ("\n");
2919 }
2920
2921 return need_copy_p ? av_set_copy (av_set) : av_set;
2922 }
2923
2924 ilist_add (&p, first_insn);
2925
2926 /* As the result after this loop have completed, in LAST_INSN we'll
2927 have the insn which has valid av_set to start backward computation
2928 from: it either will be NULL because on it the window size was exceeded
2929 or other valid av_set as returned by compute_av_set for the last insn
2930 of the basic block. */
2931 for (last_insn = first_insn; last_insn != after_bb_end;
2932 last_insn = NEXT_INSN (last_insn))
2933 {
2934 /* We may encounter valid av_set not only on bb_head, but also on
2935 those insns on which previously MAX_WS was exceeded. */
2936 if (AV_SET_VALID_P (last_insn))
2937 {
2938 if (sched_verbose >= 6)
2939 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2940 break;
2941 }
2942
2943 /* The special case: the last insn of the BB may be an
2944 ineligible_successor due to its SEQ_NO that was set on
2945 it as a bookkeeping. */
2946 if (last_insn != first_insn
2947 && is_ineligible_successor (last_insn, p))
2948 {
2949 if (sched_verbose >= 6)
2950 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2951 break;
2952 }
2953
2954 if (DEBUG_INSN_P (last_insn))
2955 continue;
2956
2957 if (end_ws > max_ws)
2958 {
2959 /* We can reach max lookahead size at bb_header, so clean av_set
2960 first. */
2961 INSN_WS_LEVEL (last_insn) = global_level;
2962
2963 if (sched_verbose >= 6)
2964 sel_print ("Insn %d is beyond the software lookahead window size\n",
2965 INSN_UID (last_insn));
2966 break;
2967 }
2968
2969 end_ws++;
2970 }
2971
2972 /* Get the valid av_set into AV above the LAST_INSN to start backward
2973 computation from. It either will be empty av_set or av_set computed from
2974 the successors on the last insn of the current bb. */
2975 if (last_insn != after_bb_end)
2976 {
2977 av = NULL;
2978
2979 /* This is needed only to obtain av_sets that are identical to
2980 those computed by the old compute_av_set version. */
2981 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2982 av_set_add (&av, INSN_EXPR (last_insn));
2983 }
2984 else
2985 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2986 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2987
2988 /* Compute av_set in AV starting from below the LAST_INSN up to
2989 location above the FIRST_INSN. */
2990 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2991 cur_insn = PREV_INSN (cur_insn))
2992 if (!INSN_NOP_P (cur_insn))
2993 {
2994 expr_t expr;
2995
2996 moveup_set_expr (&av, cur_insn, false);
2997
2998 /* If the expression for CUR_INSN is already in the set,
2999 replace it by the new one. */
3000 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
3001 if (expr != NULL)
3002 {
3003 clear_expr (expr);
3004 copy_expr (expr, INSN_EXPR (cur_insn));
3005 }
3006 else
3007 av_set_add (&av, INSN_EXPR (cur_insn));
3008 }
3009
3010 /* Clear stale bb_av_set. */
3011 if (sel_bb_head_p (first_insn))
3012 {
3013 av_set_clear (&BB_AV_SET (cur_bb));
3014 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3015 BB_AV_LEVEL (cur_bb) = global_level;
3016 }
3017
3018 if (sched_verbose >= 6)
3019 {
3020 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3021 dump_av_set (av);
3022 sel_print ("\n");
3023 }
3024
3025 ilist_remove (&p);
3026 return av;
3027 }
3028
3029 /* Compute av set before INSN.
3030 INSN - the current operation (actual rtx INSN)
3031 P - the current path, which is list of insns visited so far
3032 WS - software lookahead window size.
3033 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3034 if we want to save computed av_set in s_i_d, we should make a copy of it.
3035
3036 In the resulting set we will have only expressions that don't have delay
3037 stalls and nonsubstitutable dependences. */
3038 static av_set_t
3039 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3040 {
3041 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3042 }
3043
3044 /* Propagate a liveness set LV through INSN. */
3045 static void
3046 propagate_lv_set (regset lv, insn_t insn)
3047 {
3048 gcc_assert (INSN_P (insn));
3049
3050 if (INSN_NOP_P (insn))
3051 return;
3052
3053 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3054 }
3055
3056 /* Return livness set at the end of BB. */
3057 static regset
3058 compute_live_after_bb (basic_block bb)
3059 {
3060 edge e;
3061 edge_iterator ei;
3062 regset lv = get_clear_regset_from_pool ();
3063
3064 gcc_assert (!ignore_first);
3065
3066 FOR_EACH_EDGE (e, ei, bb->succs)
3067 if (sel_bb_empty_p (e->dest))
3068 {
3069 if (! BB_LV_SET_VALID_P (e->dest))
3070 {
3071 gcc_unreachable ();
3072 gcc_assert (BB_LV_SET (e->dest) == NULL);
3073 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3074 BB_LV_SET_VALID_P (e->dest) = true;
3075 }
3076 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3077 }
3078 else
3079 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3080
3081 return lv;
3082 }
3083
3084 /* Compute the set of all live registers at the point before INSN and save
3085 it at INSN if INSN is bb header. */
3086 regset
3087 compute_live (insn_t insn)
3088 {
3089 basic_block bb = BLOCK_FOR_INSN (insn);
3090 insn_t final, temp;
3091 regset lv;
3092
3093 /* Return the valid set if we're already on it. */
3094 if (!ignore_first)
3095 {
3096 regset src = NULL;
3097
3098 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3099 src = BB_LV_SET (bb);
3100 else
3101 {
3102 gcc_assert (in_current_region_p (bb));
3103 if (INSN_LIVE_VALID_P (insn))
3104 src = INSN_LIVE (insn);
3105 }
3106
3107 if (src)
3108 {
3109 lv = get_regset_from_pool ();
3110 COPY_REG_SET (lv, src);
3111
3112 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3113 {
3114 COPY_REG_SET (BB_LV_SET (bb), lv);
3115 BB_LV_SET_VALID_P (bb) = true;
3116 }
3117
3118 return_regset_to_pool (lv);
3119 return lv;
3120 }
3121 }
3122
3123 /* We've skipped the wrong lv_set. Don't skip the right one. */
3124 ignore_first = false;
3125 gcc_assert (in_current_region_p (bb));
3126
3127 /* Find a valid LV set in this block or below, if needed.
3128 Start searching from the next insn: either ignore_first is true, or
3129 INSN doesn't have a correct live set. */
3130 temp = NEXT_INSN (insn);
3131 final = NEXT_INSN (BB_END (bb));
3132 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3133 temp = NEXT_INSN (temp);
3134 if (temp == final)
3135 {
3136 lv = compute_live_after_bb (bb);
3137 temp = PREV_INSN (temp);
3138 }
3139 else
3140 {
3141 lv = get_regset_from_pool ();
3142 COPY_REG_SET (lv, INSN_LIVE (temp));
3143 }
3144
3145 /* Put correct lv sets on the insns which have bad sets. */
3146 final = PREV_INSN (insn);
3147 while (temp != final)
3148 {
3149 propagate_lv_set (lv, temp);
3150 COPY_REG_SET (INSN_LIVE (temp), lv);
3151 INSN_LIVE_VALID_P (temp) = true;
3152 temp = PREV_INSN (temp);
3153 }
3154
3155 /* Also put it in a BB. */
3156 if (sel_bb_head_p (insn))
3157 {
3158 basic_block bb = BLOCK_FOR_INSN (insn);
3159
3160 COPY_REG_SET (BB_LV_SET (bb), lv);
3161 BB_LV_SET_VALID_P (bb) = true;
3162 }
3163
3164 /* We return LV to the pool, but will not clear it there. Thus we can
3165 legimatelly use LV till the next use of regset_pool_get (). */
3166 return_regset_to_pool (lv);
3167 return lv;
3168 }
3169
3170 /* Update liveness sets for INSN. */
3171 static inline void
3172 update_liveness_on_insn (rtx_insn *insn)
3173 {
3174 ignore_first = true;
3175 compute_live (insn);
3176 }
3177
3178 /* Compute liveness below INSN and write it into REGS. */
3179 static inline void
3180 compute_live_below_insn (rtx_insn *insn, regset regs)
3181 {
3182 rtx_insn *succ;
3183 succ_iterator si;
3184
3185 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3186 IOR_REG_SET (regs, compute_live (succ));
3187 }
3188
3189 /* Update the data gathered in av and lv sets starting from INSN. */
3190 static void
3191 update_data_sets (rtx_insn *insn)
3192 {
3193 update_liveness_on_insn (insn);
3194 if (sel_bb_head_p (insn))
3195 {
3196 gcc_assert (AV_LEVEL (insn) != 0);
3197 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3198 compute_av_set (insn, NULL, 0, 0);
3199 }
3200 }
3201 \f
3202
3203 /* Helper for move_op () and find_used_regs ().
3204 Return speculation type for which a check should be created on the place
3205 of INSN. EXPR is one of the original ops we are searching for. */
3206 static ds_t
3207 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3208 {
3209 ds_t to_check_ds;
3210 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3211
3212 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3213
3214 if (targetm.sched.get_insn_checked_ds)
3215 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3216
3217 if (spec_info != NULL
3218 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3219 already_checked_ds |= BEGIN_CONTROL;
3220
3221 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3222
3223 to_check_ds &= ~already_checked_ds;
3224
3225 return to_check_ds;
3226 }
3227
3228 /* Find the set of registers that are unavailable for storing expres
3229 while moving ORIG_OPS up on the path starting from INSN due to
3230 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3231
3232 All the original operations found during the traversal are saved in the
3233 ORIGINAL_INSNS list.
3234
3235 REG_RENAME_P denotes the set of hardware registers that
3236 can not be used with renaming due to the register class restrictions,
3237 mode restrictions and other (the register we'll choose should be
3238 compatible class with the original uses, shouldn't be in call_used_regs,
3239 should be HARD_REGNO_RENAME_OK etc).
3240
3241 Returns TRUE if we've found all original insns, FALSE otherwise.
3242
3243 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3244 to traverse the code motion paths. This helper function finds registers
3245 that are not available for storing expres while moving ORIG_OPS up on the
3246 path starting from INSN. A register considered as used on the moving path,
3247 if one of the following conditions is not satisfied:
3248
3249 (1) a register not set or read on any path from xi to an instance of
3250 the original operation,
3251 (2) not among the live registers of the point immediately following the
3252 first original operation on a given downward path, except for the
3253 original target register of the operation,
3254 (3) not live on the other path of any conditional branch that is passed
3255 by the operation, in case original operations are not present on
3256 both paths of the conditional branch.
3257
3258 All the original operations found during the traversal are saved in the
3259 ORIGINAL_INSNS list.
3260
3261 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3262 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3263 to unavailable hard regs at the point original operation is found. */
3264
3265 static bool
3266 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3267 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3268 {
3269 def_list_iterator i;
3270 def_t def;
3271 int res;
3272 bool needs_spec_check_p = false;
3273 expr_t expr;
3274 av_set_iterator expr_iter;
3275 struct fur_static_params sparams;
3276 struct cmpd_local_params lparams;
3277
3278 /* We haven't visited any blocks yet. */
3279 bitmap_clear (code_motion_visited_blocks);
3280
3281 /* Init parameters for code_motion_path_driver. */
3282 sparams.crosses_call = false;
3283 sparams.original_insns = original_insns;
3284 sparams.used_regs = used_regs;
3285
3286 /* Set the appropriate hooks and data. */
3287 code_motion_path_driver_info = &fur_hooks;
3288
3289 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3290
3291 reg_rename_p->crosses_call |= sparams.crosses_call;
3292
3293 gcc_assert (res == 1);
3294 gcc_assert (original_insns && *original_insns);
3295
3296 /* ??? We calculate whether an expression needs a check when computing
3297 av sets. This information is not as precise as it could be due to
3298 merging this bit in merge_expr. We can do better in find_used_regs,
3299 but we want to avoid multiple traversals of the same code motion
3300 paths. */
3301 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3302 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3303
3304 /* Mark hardware regs in REG_RENAME_P that are not suitable
3305 for renaming expr in INSN due to hardware restrictions (register class,
3306 modes compatibility etc). */
3307 FOR_EACH_DEF (def, i, *original_insns)
3308 {
3309 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3310
3311 if (VINSN_SEPARABLE_P (vinsn))
3312 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3313
3314 /* Do not allow clobbering of ld.[sa] address in case some of the
3315 original operations need a check. */
3316 if (needs_spec_check_p)
3317 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3318 }
3319
3320 return true;
3321 }
3322 \f
3323
3324 /* Functions to choose the best insn from available ones. */
3325
3326 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3327 static int
3328 sel_target_adjust_priority (expr_t expr)
3329 {
3330 int priority = EXPR_PRIORITY (expr);
3331 int new_priority;
3332
3333 if (targetm.sched.adjust_priority)
3334 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3335 else
3336 new_priority = priority;
3337
3338 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3339 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3340
3341 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3342
3343 if (sched_verbose >= 4)
3344 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3345 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3346 EXPR_PRIORITY_ADJ (expr), new_priority);
3347
3348 return new_priority;
3349 }
3350
3351 /* Rank two available exprs for schedule. Never return 0 here. */
3352 static int
3353 sel_rank_for_schedule (const void *x, const void *y)
3354 {
3355 expr_t tmp = *(const expr_t *) y;
3356 expr_t tmp2 = *(const expr_t *) x;
3357 insn_t tmp_insn, tmp2_insn;
3358 vinsn_t tmp_vinsn, tmp2_vinsn;
3359 int val;
3360
3361 tmp_vinsn = EXPR_VINSN (tmp);
3362 tmp2_vinsn = EXPR_VINSN (tmp2);
3363 tmp_insn = EXPR_INSN_RTX (tmp);
3364 tmp2_insn = EXPR_INSN_RTX (tmp2);
3365
3366 /* Schedule debug insns as early as possible. */
3367 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3368 return -1;
3369 else if (DEBUG_INSN_P (tmp2_insn))
3370 return 1;
3371
3372 /* Prefer SCHED_GROUP_P insns to any others. */
3373 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3374 {
3375 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3376 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3377
3378 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3379 cannot be cloned. */
3380 if (VINSN_UNIQUE_P (tmp2_vinsn))
3381 return 1;
3382 return -1;
3383 }
3384
3385 /* Discourage scheduling of speculative checks. */
3386 val = (sel_insn_is_speculation_check (tmp_insn)
3387 - sel_insn_is_speculation_check (tmp2_insn));
3388 if (val)
3389 return val;
3390
3391 /* Prefer not scheduled insn over scheduled one. */
3392 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3393 {
3394 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3395 if (val)
3396 return val;
3397 }
3398
3399 /* Prefer jump over non-jump instruction. */
3400 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3401 return -1;
3402 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3403 return 1;
3404
3405 /* Prefer an expr with greater priority. */
3406 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3407 {
3408 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3409 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3410
3411 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3412 }
3413 else
3414 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3415 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3416 if (val)
3417 return val;
3418
3419 if (spec_info != NULL && spec_info->mask != 0)
3420 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3421 {
3422 ds_t ds1, ds2;
3423 dw_t dw1, dw2;
3424 int dw;
3425
3426 ds1 = EXPR_SPEC_DONE_DS (tmp);
3427 if (ds1)
3428 dw1 = ds_weak (ds1);
3429 else
3430 dw1 = NO_DEP_WEAK;
3431
3432 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3433 if (ds2)
3434 dw2 = ds_weak (ds2);
3435 else
3436 dw2 = NO_DEP_WEAK;
3437
3438 dw = dw2 - dw1;
3439 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3440 return dw;
3441 }
3442
3443 /* Prefer an old insn to a bookkeeping insn. */
3444 if (INSN_UID (tmp_insn) < first_emitted_uid
3445 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3446 return -1;
3447 if (INSN_UID (tmp_insn) >= first_emitted_uid
3448 && INSN_UID (tmp2_insn) < first_emitted_uid)
3449 return 1;
3450
3451 /* Prefer an insn with smaller UID, as a last resort.
3452 We can't safely use INSN_LUID as it is defined only for those insns
3453 that are in the stream. */
3454 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3455 }
3456
3457 /* Filter out expressions from av set pointed to by AV_PTR
3458 that are pipelined too many times. */
3459 static void
3460 process_pipelined_exprs (av_set_t *av_ptr)
3461 {
3462 expr_t expr;
3463 av_set_iterator si;
3464
3465 /* Don't pipeline already pipelined code as that would increase
3466 number of unnecessary register moves. */
3467 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3468 {
3469 if (EXPR_SCHED_TIMES (expr)
3470 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3471 av_set_iter_remove (&si);
3472 }
3473 }
3474
3475 /* Filter speculative insns from AV_PTR if we don't want them. */
3476 static void
3477 process_spec_exprs (av_set_t *av_ptr)
3478 {
3479 expr_t expr;
3480 av_set_iterator si;
3481
3482 if (spec_info == NULL)
3483 return;
3484
3485 /* Scan *AV_PTR to find out if we want to consider speculative
3486 instructions for scheduling. */
3487 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3488 {
3489 ds_t ds;
3490
3491 ds = EXPR_SPEC_DONE_DS (expr);
3492
3493 /* The probability of a success is too low - don't speculate. */
3494 if ((ds & SPECULATIVE)
3495 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3496 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3497 || (pipelining_p && false
3498 && (ds & DATA_SPEC)
3499 && (ds & CONTROL_SPEC))))
3500 {
3501 av_set_iter_remove (&si);
3502 continue;
3503 }
3504 }
3505 }
3506
3507 /* Search for any use-like insns in AV_PTR and decide on scheduling
3508 them. Return one when found, and NULL otherwise.
3509 Note that we check here whether a USE could be scheduled to avoid
3510 an infinite loop later. */
3511 static expr_t
3512 process_use_exprs (av_set_t *av_ptr)
3513 {
3514 expr_t expr;
3515 av_set_iterator si;
3516 bool uses_present_p = false;
3517 bool try_uses_p = true;
3518
3519 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3520 {
3521 /* This will also initialize INSN_CODE for later use. */
3522 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3523 {
3524 /* If we have a USE in *AV_PTR that was not scheduled yet,
3525 do so because it will do good only. */
3526 if (EXPR_SCHED_TIMES (expr) <= 0)
3527 {
3528 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3529 return expr;
3530
3531 av_set_iter_remove (&si);
3532 }
3533 else
3534 {
3535 gcc_assert (pipelining_p);
3536
3537 uses_present_p = true;
3538 }
3539 }
3540 else
3541 try_uses_p = false;
3542 }
3543
3544 if (uses_present_p)
3545 {
3546 /* If we don't want to schedule any USEs right now and we have some
3547 in *AV_PTR, remove them, else just return the first one found. */
3548 if (!try_uses_p)
3549 {
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3552 av_set_iter_remove (&si);
3553 }
3554 else
3555 {
3556 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3557 {
3558 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3559
3560 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3561 return expr;
3562
3563 av_set_iter_remove (&si);
3564 }
3565 }
3566 }
3567
3568 return NULL;
3569 }
3570
3571 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3572 EXPR's history of changes. */
3573 static bool
3574 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3575 {
3576 vinsn_t vinsn, expr_vinsn;
3577 int n;
3578 unsigned i;
3579
3580 /* Start with checking expr itself and then proceed with all the old forms
3581 of expr taken from its history vector. */
3582 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3583 expr_vinsn;
3584 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3585 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3586 : NULL))
3587 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3588 if (VINSN_SEPARABLE_P (vinsn))
3589 {
3590 if (vinsn_equal_p (vinsn, expr_vinsn))
3591 return true;
3592 }
3593 else
3594 {
3595 /* For non-separable instructions, the blocking insn can have
3596 another pattern due to substitution, and we can't choose
3597 different register as in the above case. Check all registers
3598 being written instead. */
3599 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3600 VINSN_REG_SETS (expr_vinsn)))
3601 return true;
3602 }
3603
3604 return false;
3605 }
3606
3607 #ifdef ENABLE_CHECKING
3608 /* Return true if either of expressions from ORIG_OPS can be blocked
3609 by previously created bookkeeping code. STATIC_PARAMS points to static
3610 parameters of move_op. */
3611 static bool
3612 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3613 {
3614 expr_t expr;
3615 av_set_iterator iter;
3616 moveop_static_params_p sparams;
3617
3618 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3619 created while scheduling on another fence. */
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3622 return true;
3623
3624 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3625 sparams = (moveop_static_params_p) static_params;
3626
3627 /* Expressions can be also blocked by bookkeeping created during current
3628 move_op. */
3629 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3630 FOR_EACH_EXPR (expr, iter, orig_ops)
3631 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3632 return true;
3633
3634 /* Expressions in ORIG_OPS may have wrong destination register due to
3635 renaming. Check with the right register instead. */
3636 if (sparams->dest && REG_P (sparams->dest))
3637 {
3638 rtx reg = sparams->dest;
3639 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3640
3641 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3642 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3643 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3644 return true;
3645 }
3646
3647 return false;
3648 }
3649 #endif
3650
3651 /* Clear VINSN_VEC and detach vinsns. */
3652 static void
3653 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3654 {
3655 unsigned len = vinsn_vec->length ();
3656 if (len > 0)
3657 {
3658 vinsn_t vinsn;
3659 int n;
3660
3661 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3662 vinsn_detach (vinsn);
3663 vinsn_vec->block_remove (0, len);
3664 }
3665 }
3666
3667 /* Add the vinsn of EXPR to the VINSN_VEC. */
3668 static void
3669 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3670 {
3671 vinsn_attach (EXPR_VINSN (expr));
3672 vinsn_vec->safe_push (EXPR_VINSN (expr));
3673 }
3674
3675 /* Free the vector representing blocked expressions. */
3676 static void
3677 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3678 {
3679 vinsn_vec.release ();
3680 }
3681
3682 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3683
3684 void sel_add_to_insn_priority (rtx insn, int amount)
3685 {
3686 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3687
3688 if (sched_verbose >= 2)
3689 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3690 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3691 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3692 }
3693
3694 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3695 true if there is something to schedule. BNDS and FENCE are current
3696 boundaries and fence, respectively. If we need to stall for some cycles
3697 before an expr from AV would become available, write this number to
3698 *PNEED_STALL. */
3699 static bool
3700 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3701 int *pneed_stall)
3702 {
3703 av_set_iterator si;
3704 expr_t expr;
3705 int sched_next_worked = 0, stalled, n;
3706 static int av_max_prio, est_ticks_till_branch;
3707 int min_need_stall = -1;
3708 deps_t dc = BND_DC (BLIST_BND (bnds));
3709
3710 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3711 already scheduled. */
3712 if (av == NULL)
3713 return false;
3714
3715 /* Empty vector from the previous stuff. */
3716 if (vec_av_set.length () > 0)
3717 vec_av_set.block_remove (0, vec_av_set.length ());
3718
3719 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3720 for each insn. */
3721 gcc_assert (vec_av_set.is_empty ());
3722 FOR_EACH_EXPR (expr, si, av)
3723 {
3724 vec_av_set.safe_push (expr);
3725
3726 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3727
3728 /* Adjust priority using target backend hook. */
3729 sel_target_adjust_priority (expr);
3730 }
3731
3732 /* Sort the vector. */
3733 vec_av_set.qsort (sel_rank_for_schedule);
3734
3735 /* We record maximal priority of insns in av set for current instruction
3736 group. */
3737 if (FENCE_STARTS_CYCLE_P (fence))
3738 av_max_prio = est_ticks_till_branch = INT_MIN;
3739
3740 /* Filter out inappropriate expressions. Loop's direction is reversed to
3741 visit "best" instructions first. We assume that vec::unordered_remove
3742 moves last element in place of one being deleted. */
3743 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3744 {
3745 expr_t expr = vec_av_set[n];
3746 insn_t insn = EXPR_INSN_RTX (expr);
3747 signed char target_available;
3748 bool is_orig_reg_p = true;
3749 int need_cycles, new_prio;
3750 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3751
3752 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3753 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3754 {
3755 vec_av_set.unordered_remove (n);
3756 continue;
3757 }
3758
3759 /* Set number of sched_next insns (just in case there
3760 could be several). */
3761 if (FENCE_SCHED_NEXT (fence))
3762 sched_next_worked++;
3763
3764 /* Check all liveness requirements and try renaming.
3765 FIXME: try to minimize calls to this. */
3766 target_available = EXPR_TARGET_AVAILABLE (expr);
3767
3768 /* If insn was already scheduled on the current fence,
3769 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3770 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3771 && !fence_insn_p)
3772 target_available = -1;
3773
3774 /* If the availability of the EXPR is invalidated by the insertion of
3775 bookkeeping earlier, make sure that we won't choose this expr for
3776 scheduling if it's not separable, and if it is separable, then
3777 we have to recompute the set of available registers for it. */
3778 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3779 {
3780 vec_av_set.unordered_remove (n);
3781 if (sched_verbose >= 4)
3782 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3783 INSN_UID (insn));
3784 continue;
3785 }
3786
3787 if (target_available == true)
3788 {
3789 /* Do nothing -- we can use an existing register. */
3790 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3791 }
3792 else if (/* Non-separable instruction will never
3793 get another register. */
3794 (target_available == false
3795 && !EXPR_SEPARABLE_P (expr))
3796 /* Don't try to find a register for low-priority expression. */
3797 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3798 /* ??? FIXME: Don't try to rename data speculation. */
3799 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3800 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3801 {
3802 vec_av_set.unordered_remove (n);
3803 if (sched_verbose >= 4)
3804 sel_print ("Expr %d has no suitable target register\n",
3805 INSN_UID (insn));
3806
3807 /* A fence insn should not get here. */
3808 gcc_assert (!fence_insn_p);
3809 continue;
3810 }
3811
3812 /* At this point a fence insn should always be available. */
3813 gcc_assert (!fence_insn_p
3814 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3815
3816 /* Filter expressions that need to be renamed or speculated when
3817 pipelining, because compensating register copies or speculation
3818 checks are likely to be placed near the beginning of the loop,
3819 causing a stall. */
3820 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3821 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3822 {
3823 /* Estimation of number of cycles until loop branch for
3824 renaming/speculation to be successful. */
3825 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3826
3827 if ((int) current_loop_nest->ninsns < 9)
3828 {
3829 vec_av_set.unordered_remove (n);
3830 if (sched_verbose >= 4)
3831 sel_print ("Pipelining expr %d will likely cause stall\n",
3832 INSN_UID (insn));
3833 continue;
3834 }
3835
3836 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3837 < need_n_ticks_till_branch * issue_rate / 2
3838 && est_ticks_till_branch < need_n_ticks_till_branch)
3839 {
3840 vec_av_set.unordered_remove (n);
3841 if (sched_verbose >= 4)
3842 sel_print ("Pipelining expr %d will likely cause stall\n",
3843 INSN_UID (insn));
3844 continue;
3845 }
3846 }
3847
3848 /* We want to schedule speculation checks as late as possible. Discard
3849 them from av set if there are instructions with higher priority. */
3850 if (sel_insn_is_speculation_check (insn)
3851 && EXPR_PRIORITY (expr) < av_max_prio)
3852 {
3853 stalled++;
3854 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3855 vec_av_set.unordered_remove (n);
3856 if (sched_verbose >= 4)
3857 sel_print ("Delaying speculation check %d until its first use\n",
3858 INSN_UID (insn));
3859 continue;
3860 }
3861
3862 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3863 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3864 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3865
3866 /* Don't allow any insns whose data is not yet ready.
3867 Check first whether we've already tried them and failed. */
3868 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3869 {
3870 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3871 - FENCE_CYCLE (fence));
3872 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3873 est_ticks_till_branch = MAX (est_ticks_till_branch,
3874 EXPR_PRIORITY (expr) + need_cycles);
3875
3876 if (need_cycles > 0)
3877 {
3878 stalled++;
3879 min_need_stall = (min_need_stall < 0
3880 ? need_cycles
3881 : MIN (min_need_stall, need_cycles));
3882 vec_av_set.unordered_remove (n);
3883
3884 if (sched_verbose >= 4)
3885 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3886 INSN_UID (insn),
3887 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3888 continue;
3889 }
3890 }
3891
3892 /* Now resort to dependence analysis to find whether EXPR might be
3893 stalled due to dependencies from FENCE's context. */
3894 need_cycles = tick_check_p (expr, dc, fence);
3895 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3896
3897 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3898 est_ticks_till_branch = MAX (est_ticks_till_branch,
3899 new_prio);
3900
3901 if (need_cycles > 0)
3902 {
3903 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3904 {
3905 int new_size = INSN_UID (insn) * 3 / 2;
3906
3907 FENCE_READY_TICKS (fence)
3908 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3909 new_size, FENCE_READY_TICKS_SIZE (fence),
3910 sizeof (int));
3911 }
3912 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3913 = FENCE_CYCLE (fence) + need_cycles;
3914
3915 stalled++;
3916 min_need_stall = (min_need_stall < 0
3917 ? need_cycles
3918 : MIN (min_need_stall, need_cycles));
3919
3920 vec_av_set.unordered_remove (n);
3921
3922 if (sched_verbose >= 4)
3923 sel_print ("Expr %d is not ready yet until cycle %d\n",
3924 INSN_UID (insn),
3925 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3926 continue;
3927 }
3928
3929 if (sched_verbose >= 4)
3930 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3931 min_need_stall = 0;
3932 }
3933
3934 /* Clear SCHED_NEXT. */
3935 if (FENCE_SCHED_NEXT (fence))
3936 {
3937 gcc_assert (sched_next_worked == 1);
3938 FENCE_SCHED_NEXT (fence) = NULL;
3939 }
3940
3941 /* No need to stall if this variable was not initialized. */
3942 if (min_need_stall < 0)
3943 min_need_stall = 0;
3944
3945 if (vec_av_set.is_empty ())
3946 {
3947 /* We need to set *pneed_stall here, because later we skip this code
3948 when ready list is empty. */
3949 *pneed_stall = min_need_stall;
3950 return false;
3951 }
3952 else
3953 gcc_assert (min_need_stall == 0);
3954
3955 /* Sort the vector. */
3956 vec_av_set.qsort (sel_rank_for_schedule);
3957
3958 if (sched_verbose >= 4)
3959 {
3960 sel_print ("Total ready exprs: %d, stalled: %d\n",
3961 vec_av_set.length (), stalled);
3962 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3963 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3964 dump_expr (expr);
3965 sel_print ("\n");
3966 }
3967
3968 *pneed_stall = 0;
3969 return true;
3970 }
3971
3972 /* Convert a vectored and sorted av set to the ready list that
3973 the rest of the backend wants to see. */
3974 static void
3975 convert_vec_av_set_to_ready (void)
3976 {
3977 int n;
3978 expr_t expr;
3979
3980 /* Allocate and fill the ready list from the sorted vector. */
3981 ready.n_ready = vec_av_set.length ();
3982 ready.first = ready.n_ready - 1;
3983
3984 gcc_assert (ready.n_ready > 0);
3985
3986 if (ready.n_ready > max_issue_size)
3987 {
3988 max_issue_size = ready.n_ready;
3989 sched_extend_ready_list (ready.n_ready);
3990 }
3991
3992 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3993 {
3994 vinsn_t vi = EXPR_VINSN (expr);
3995 insn_t insn = VINSN_INSN_RTX (vi);
3996
3997 ready_try[n] = 0;
3998 ready.vec[n] = insn;
3999 }
4000 }
4001
4002 /* Initialize ready list from *AV_PTR for the max_issue () call.
4003 If any unrecognizable insn found in *AV_PTR, return it (and skip
4004 max_issue). BND and FENCE are current boundary and fence,
4005 respectively. If we need to stall for some cycles before an expr
4006 from *AV_PTR would become available, write this number to *PNEED_STALL. */
4007 static expr_t
4008 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
4009 int *pneed_stall)
4010 {
4011 expr_t expr;
4012
4013 /* We do not support multiple boundaries per fence. */
4014 gcc_assert (BLIST_NEXT (bnds) == NULL);
4015
4016 /* Process expressions required special handling, i.e. pipelined,
4017 speculative and recog() < 0 expressions first. */
4018 process_pipelined_exprs (av_ptr);
4019 process_spec_exprs (av_ptr);
4020
4021 /* A USE could be scheduled immediately. */
4022 expr = process_use_exprs (av_ptr);
4023 if (expr)
4024 {
4025 *pneed_stall = 0;
4026 return expr;
4027 }
4028
4029 /* Turn the av set to a vector for sorting. */
4030 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4031 {
4032 ready.n_ready = 0;
4033 return NULL;
4034 }
4035
4036 /* Build the final ready list. */
4037 convert_vec_av_set_to_ready ();
4038 return NULL;
4039 }
4040
4041 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4042 static bool
4043 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4044 {
4045 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4046 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4047 : FENCE_CYCLE (fence) - 1;
4048 bool res = false;
4049 int sort_p = 0;
4050
4051 if (!targetm.sched.dfa_new_cycle)
4052 return false;
4053
4054 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4055
4056 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4057 insn, last_scheduled_cycle,
4058 FENCE_CYCLE (fence), &sort_p))
4059 {
4060 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4061 advance_one_cycle (fence);
4062 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4063 res = true;
4064 }
4065
4066 return res;
4067 }
4068
4069 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4070 we can issue. FENCE is the current fence. */
4071 static int
4072 invoke_reorder_hooks (fence_t fence)
4073 {
4074 int issue_more;
4075 bool ran_hook = false;
4076
4077 /* Call the reorder hook at the beginning of the cycle, and call
4078 the reorder2 hook in the middle of the cycle. */
4079 if (FENCE_ISSUED_INSNS (fence) == 0)
4080 {
4081 if (targetm.sched.reorder
4082 && !SCHED_GROUP_P (ready_element (&ready, 0))
4083 && ready.n_ready > 1)
4084 {
4085 /* Don't give reorder the most prioritized insn as it can break
4086 pipelining. */
4087 if (pipelining_p)
4088 --ready.n_ready;
4089
4090 issue_more
4091 = targetm.sched.reorder (sched_dump, sched_verbose,
4092 ready_lastpos (&ready),
4093 &ready.n_ready, FENCE_CYCLE (fence));
4094
4095 if (pipelining_p)
4096 ++ready.n_ready;
4097
4098 ran_hook = true;
4099 }
4100 else
4101 /* Initialize can_issue_more for variable_issue. */
4102 issue_more = issue_rate;
4103 }
4104 else if (targetm.sched.reorder2
4105 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4106 {
4107 if (ready.n_ready == 1)
4108 issue_more =
4109 targetm.sched.reorder2 (sched_dump, sched_verbose,
4110 ready_lastpos (&ready),
4111 &ready.n_ready, FENCE_CYCLE (fence));
4112 else
4113 {
4114 if (pipelining_p)
4115 --ready.n_ready;
4116
4117 issue_more =
4118 targetm.sched.reorder2 (sched_dump, sched_verbose,
4119 ready.n_ready
4120 ? ready_lastpos (&ready) : NULL,
4121 &ready.n_ready, FENCE_CYCLE (fence));
4122
4123 if (pipelining_p)
4124 ++ready.n_ready;
4125 }
4126
4127 ran_hook = true;
4128 }
4129 else
4130 issue_more = FENCE_ISSUE_MORE (fence);
4131
4132 /* Ensure that ready list and vec_av_set are in line with each other,
4133 i.e. vec_av_set[i] == ready_element (&ready, i). */
4134 if (issue_more && ran_hook)
4135 {
4136 int i, j, n;
4137 rtx_insn **arr = ready.vec;
4138 expr_t *vec = vec_av_set.address ();
4139
4140 for (i = 0, n = ready.n_ready; i < n; i++)
4141 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4142 {
4143 for (j = i; j < n; j++)
4144 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4145 break;
4146 gcc_assert (j < n);
4147
4148 std::swap (vec[i], vec[j]);
4149 }
4150 }
4151
4152 return issue_more;
4153 }
4154
4155 /* Return an EXPR corresponding to INDEX element of ready list, if
4156 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4157 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4158 ready.vec otherwise. */
4159 static inline expr_t
4160 find_expr_for_ready (int index, bool follow_ready_element)
4161 {
4162 expr_t expr;
4163 int real_index;
4164
4165 real_index = follow_ready_element ? ready.first - index : index;
4166
4167 expr = vec_av_set[real_index];
4168 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4169
4170 return expr;
4171 }
4172
4173 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4174 of such insns found. */
4175 static int
4176 invoke_dfa_lookahead_guard (void)
4177 {
4178 int i, n;
4179 bool have_hook
4180 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4181
4182 if (sched_verbose >= 2)
4183 sel_print ("ready after reorder: ");
4184
4185 for (i = 0, n = 0; i < ready.n_ready; i++)
4186 {
4187 expr_t expr;
4188 insn_t insn;
4189 int r;
4190
4191 /* In this loop insn is Ith element of the ready list given by
4192 ready_element, not Ith element of ready.vec. */
4193 insn = ready_element (&ready, i);
4194
4195 if (! have_hook || i == 0)
4196 r = 0;
4197 else
4198 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4199
4200 gcc_assert (INSN_CODE (insn) >= 0);
4201
4202 /* Only insns with ready_try = 0 can get here
4203 from fill_ready_list. */
4204 gcc_assert (ready_try [i] == 0);
4205 ready_try[i] = r;
4206 if (!r)
4207 n++;
4208
4209 expr = find_expr_for_ready (i, true);
4210
4211 if (sched_verbose >= 2)
4212 {
4213 dump_vinsn (EXPR_VINSN (expr));
4214 sel_print (":%d; ", ready_try[i]);
4215 }
4216 }
4217
4218 if (sched_verbose >= 2)
4219 sel_print ("\n");
4220 return n;
4221 }
4222
4223 /* Calculate the number of privileged insns and return it. */
4224 static int
4225 calculate_privileged_insns (void)
4226 {
4227 expr_t cur_expr, min_spec_expr = NULL;
4228 int privileged_n = 0, i;
4229
4230 for (i = 0; i < ready.n_ready; i++)
4231 {
4232 if (ready_try[i])
4233 continue;
4234
4235 if (! min_spec_expr)
4236 min_spec_expr = find_expr_for_ready (i, true);
4237
4238 cur_expr = find_expr_for_ready (i, true);
4239
4240 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4241 break;
4242
4243 ++privileged_n;
4244 }
4245
4246 if (i == ready.n_ready)
4247 privileged_n = 0;
4248
4249 if (sched_verbose >= 2)
4250 sel_print ("privileged_n: %d insns with SPEC %d\n",
4251 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4252 return privileged_n;
4253 }
4254
4255 /* Call the rest of the hooks after the choice was made. Return
4256 the number of insns that still can be issued given that the current
4257 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4258 and the insn chosen for scheduling, respectively. */
4259 static int
4260 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4261 {
4262 gcc_assert (INSN_P (best_insn));
4263
4264 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4265 sel_dfa_new_cycle (best_insn, fence);
4266
4267 if (targetm.sched.variable_issue)
4268 {
4269 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4270 issue_more =
4271 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4272 issue_more);
4273 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4274 }
4275 else if (GET_CODE (PATTERN (best_insn)) != USE
4276 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4277 issue_more--;
4278
4279 return issue_more;
4280 }
4281
4282 /* Estimate the cost of issuing INSN on DFA state STATE. */
4283 static int
4284 estimate_insn_cost (rtx_insn *insn, state_t state)
4285 {
4286 static state_t temp = NULL;
4287 int cost;
4288
4289 if (!temp)
4290 temp = xmalloc (dfa_state_size);
4291
4292 memcpy (temp, state, dfa_state_size);
4293 cost = state_transition (temp, insn);
4294
4295 if (cost < 0)
4296 return 0;
4297 else if (cost == 0)
4298 return 1;
4299 return cost;
4300 }
4301
4302 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4303 This function properly handles ASMs, USEs etc. */
4304 static int
4305 get_expr_cost (expr_t expr, fence_t fence)
4306 {
4307 rtx_insn *insn = EXPR_INSN_RTX (expr);
4308
4309 if (recog_memoized (insn) < 0)
4310 {
4311 if (!FENCE_STARTS_CYCLE_P (fence)
4312 && INSN_ASM_P (insn))
4313 /* This is asm insn which is tryed to be issued on the
4314 cycle not first. Issue it on the next cycle. */
4315 return 1;
4316 else
4317 /* A USE insn, or something else we don't need to
4318 understand. We can't pass these directly to
4319 state_transition because it will trigger a
4320 fatal error for unrecognizable insns. */
4321 return 0;
4322 }
4323 else
4324 return estimate_insn_cost (insn, FENCE_STATE (fence));
4325 }
4326
4327 /* Find the best insn for scheduling, either via max_issue or just take
4328 the most prioritized available. */
4329 static int
4330 choose_best_insn (fence_t fence, int privileged_n, int *index)
4331 {
4332 int can_issue = 0;
4333
4334 if (dfa_lookahead > 0)
4335 {
4336 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4337 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4338 can_issue = max_issue (&ready, privileged_n,
4339 FENCE_STATE (fence), true, index);
4340 if (sched_verbose >= 2)
4341 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4342 can_issue, FENCE_ISSUED_INSNS (fence));
4343 }
4344 else
4345 {
4346 /* We can't use max_issue; just return the first available element. */
4347 int i;
4348
4349 for (i = 0; i < ready.n_ready; i++)
4350 {
4351 expr_t expr = find_expr_for_ready (i, true);
4352
4353 if (get_expr_cost (expr, fence) < 1)
4354 {
4355 can_issue = can_issue_more;
4356 *index = i;
4357
4358 if (sched_verbose >= 2)
4359 sel_print ("using %dth insn from the ready list\n", i + 1);
4360
4361 break;
4362 }
4363 }
4364
4365 if (i == ready.n_ready)
4366 {
4367 can_issue = 0;
4368 *index = -1;
4369 }
4370 }
4371
4372 return can_issue;
4373 }
4374
4375 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4376 BNDS and FENCE are current boundaries and scheduling fence respectively.
4377 Return the expr found and NULL if nothing can be issued atm.
4378 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4379 static expr_t
4380 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4381 int *pneed_stall)
4382 {
4383 expr_t best;
4384
4385 /* Choose the best insn for scheduling via:
4386 1) sorting the ready list based on priority;
4387 2) calling the reorder hook;
4388 3) calling max_issue. */
4389 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4390 if (best == NULL && ready.n_ready > 0)
4391 {
4392 int privileged_n, index;
4393
4394 can_issue_more = invoke_reorder_hooks (fence);
4395 if (can_issue_more > 0)
4396 {
4397 /* Try choosing the best insn until we find one that is could be
4398 scheduled due to liveness restrictions on its destination register.
4399 In the future, we'd like to choose once and then just probe insns
4400 in the order of their priority. */
4401 invoke_dfa_lookahead_guard ();
4402 privileged_n = calculate_privileged_insns ();
4403 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4404 if (can_issue_more)
4405 best = find_expr_for_ready (index, true);
4406 }
4407 /* We had some available insns, so if we can't issue them,
4408 we have a stall. */
4409 if (can_issue_more == 0)
4410 {
4411 best = NULL;
4412 *pneed_stall = 1;
4413 }
4414 }
4415
4416 if (best != NULL)
4417 {
4418 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4419 can_issue_more);
4420 if (targetm.sched.variable_issue
4421 && can_issue_more == 0)
4422 *pneed_stall = 1;
4423 }
4424
4425 if (sched_verbose >= 2)
4426 {
4427 if (best != NULL)
4428 {
4429 sel_print ("Best expression (vliw form): ");
4430 dump_expr (best);
4431 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4432 }
4433 else
4434 sel_print ("No best expr found!\n");
4435 }
4436
4437 return best;
4438 }
4439 \f
4440
4441 /* Functions that implement the core of the scheduler. */
4442
4443
4444 /* Emit an instruction from EXPR with SEQNO and VINSN after
4445 PLACE_TO_INSERT. */
4446 static insn_t
4447 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4448 insn_t place_to_insert)
4449 {
4450 /* This assert fails when we have identical instructions
4451 one of which dominates the other. In this case move_op ()
4452 finds the first instruction and doesn't search for second one.
4453 The solution would be to compute av_set after the first found
4454 insn and, if insn present in that set, continue searching.
4455 For now we workaround this issue in move_op. */
4456 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4457
4458 if (EXPR_WAS_RENAMED (expr))
4459 {
4460 unsigned regno = expr_dest_regno (expr);
4461
4462 if (HARD_REGISTER_NUM_P (regno))
4463 {
4464 df_set_regs_ever_live (regno, true);
4465 reg_rename_tick[regno] = ++reg_rename_this_tick;
4466 }
4467 }
4468
4469 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4470 place_to_insert);
4471 }
4472
4473 /* Return TRUE if BB can hold bookkeeping code. */
4474 static bool
4475 block_valid_for_bookkeeping_p (basic_block bb)
4476 {
4477 insn_t bb_end = BB_END (bb);
4478
4479 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4480 return false;
4481
4482 if (INSN_P (bb_end))
4483 {
4484 if (INSN_SCHED_TIMES (bb_end) > 0)
4485 return false;
4486 }
4487 else
4488 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4489
4490 return true;
4491 }
4492
4493 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4494 into E2->dest, except from E1->src (there may be a sequence of empty basic
4495 blocks between E1->src and E2->dest). Return found block, or NULL if new
4496 one must be created. If LAX holds, don't assume there is a simple path
4497 from E1->src to E2->dest. */
4498 static basic_block
4499 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4500 {
4501 basic_block candidate_block = NULL;
4502 edge e;
4503
4504 /* Loop over edges from E1 to E2, inclusive. */
4505 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4506 EDGE_SUCC (e->dest, 0))
4507 {
4508 if (EDGE_COUNT (e->dest->preds) == 2)
4509 {
4510 if (candidate_block == NULL)
4511 candidate_block = (EDGE_PRED (e->dest, 0) == e
4512 ? EDGE_PRED (e->dest, 1)->src
4513 : EDGE_PRED (e->dest, 0)->src);
4514 else
4515 /* Found additional edge leading to path from e1 to e2
4516 from aside. */
4517 return NULL;
4518 }
4519 else if (EDGE_COUNT (e->dest->preds) > 2)
4520 /* Several edges leading to path from e1 to e2 from aside. */
4521 return NULL;
4522
4523 if (e == e2)
4524 return ((!lax || candidate_block)
4525 && block_valid_for_bookkeeping_p (candidate_block)
4526 ? candidate_block
4527 : NULL);
4528
4529 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4530 return NULL;
4531 }
4532
4533 if (lax)
4534 return NULL;
4535
4536 gcc_unreachable ();
4537 }
4538
4539 /* Create new basic block for bookkeeping code for path(s) incoming into
4540 E2->dest, except from E1->src. Return created block. */
4541 static basic_block
4542 create_block_for_bookkeeping (edge e1, edge e2)
4543 {
4544 basic_block new_bb, bb = e2->dest;
4545
4546 /* Check that we don't spoil the loop structure. */
4547 if (current_loop_nest)
4548 {
4549 basic_block latch = current_loop_nest->latch;
4550
4551 /* We do not split header. */
4552 gcc_assert (e2->dest != current_loop_nest->header);
4553
4554 /* We do not redirect the only edge to the latch block. */
4555 gcc_assert (e1->dest != latch
4556 || !single_pred_p (latch)
4557 || e1 != single_pred_edge (latch));
4558 }
4559
4560 /* Split BB to insert BOOK_INSN there. */
4561 new_bb = sched_split_block (bb, NULL);
4562
4563 /* Move note_list from the upper bb. */
4564 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4565 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4566 BB_NOTE_LIST (bb) = NULL;
4567
4568 gcc_assert (e2->dest == bb);
4569
4570 /* Skip block for bookkeeping copy when leaving E1->src. */
4571 if (e1->flags & EDGE_FALLTHRU)
4572 sel_redirect_edge_and_branch_force (e1, new_bb);
4573 else
4574 sel_redirect_edge_and_branch (e1, new_bb);
4575
4576 gcc_assert (e1->dest == new_bb);
4577 gcc_assert (sel_bb_empty_p (bb));
4578
4579 /* To keep basic block numbers in sync between debug and non-debug
4580 compilations, we have to rotate blocks here. Consider that we
4581 started from (a,b)->d, (c,d)->e, and d contained only debug
4582 insns. It would have been removed before if the debug insns
4583 weren't there, so we'd have split e rather than d. So what we do
4584 now is to swap the block numbers of new_bb and
4585 single_succ(new_bb) == e, so that the insns that were in e before
4586 get the new block number. */
4587
4588 if (MAY_HAVE_DEBUG_INSNS)
4589 {
4590 basic_block succ;
4591 insn_t insn = sel_bb_head (new_bb);
4592 insn_t last;
4593
4594 if (DEBUG_INSN_P (insn)
4595 && single_succ_p (new_bb)
4596 && (succ = single_succ (new_bb))
4597 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4598 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4599 {
4600 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4601 insn = NEXT_INSN (insn);
4602
4603 if (insn == last)
4604 {
4605 sel_global_bb_info_def gbi;
4606 sel_region_bb_info_def rbi;
4607
4608 if (sched_verbose >= 2)
4609 sel_print ("Swapping block ids %i and %i\n",
4610 new_bb->index, succ->index);
4611
4612 std::swap (new_bb->index, succ->index);
4613
4614 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4615 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4616
4617 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4618 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4619 sizeof (gbi));
4620 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4621
4622 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4623 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4624 sizeof (rbi));
4625 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4626
4627 std::swap (BLOCK_TO_BB (new_bb->index),
4628 BLOCK_TO_BB (succ->index));
4629
4630 std::swap (CONTAINING_RGN (new_bb->index),
4631 CONTAINING_RGN (succ->index));
4632
4633 for (int i = 0; i < current_nr_blocks; i++)
4634 if (BB_TO_BLOCK (i) == succ->index)
4635 BB_TO_BLOCK (i) = new_bb->index;
4636 else if (BB_TO_BLOCK (i) == new_bb->index)
4637 BB_TO_BLOCK (i) = succ->index;
4638
4639 FOR_BB_INSNS (new_bb, insn)
4640 if (INSN_P (insn))
4641 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4642
4643 FOR_BB_INSNS (succ, insn)
4644 if (INSN_P (insn))
4645 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4646
4647 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4648 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4649
4650 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4651 && LABEL_P (BB_HEAD (succ)));
4652
4653 if (sched_verbose >= 4)
4654 sel_print ("Swapping code labels %i and %i\n",
4655 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4656 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4657
4658 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4659 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4660 }
4661 }
4662 }
4663
4664 return bb;
4665 }
4666
4667 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4668 into E2->dest, except from E1->src. If the returned insn immediately
4669 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4670 static insn_t
4671 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4672 {
4673 insn_t place_to_insert;
4674 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4675 create new basic block, but insert bookkeeping there. */
4676 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4677
4678 if (book_block)
4679 {
4680 place_to_insert = BB_END (book_block);
4681
4682 /* Don't use a block containing only debug insns for
4683 bookkeeping, this causes scheduling differences between debug
4684 and non-debug compilations, for the block would have been
4685 removed already. */
4686 if (DEBUG_INSN_P (place_to_insert))
4687 {
4688 rtx_insn *insn = sel_bb_head (book_block);
4689
4690 while (insn != place_to_insert &&
4691 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4692 insn = NEXT_INSN (insn);
4693
4694 if (insn == place_to_insert)
4695 book_block = NULL;
4696 }
4697 }
4698
4699 if (!book_block)
4700 {
4701 book_block = create_block_for_bookkeeping (e1, e2);
4702 place_to_insert = BB_END (book_block);
4703 if (sched_verbose >= 9)
4704 sel_print ("New block is %i, split from bookkeeping block %i\n",
4705 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4706 }
4707 else
4708 {
4709 if (sched_verbose >= 9)
4710 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4711 }
4712
4713 *fence_to_rewind = NULL;
4714 /* If basic block ends with a jump, insert bookkeeping code right before it.
4715 Notice if we are crossing a fence when taking PREV_INSN. */
4716 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4717 {
4718 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4719 place_to_insert = PREV_INSN (place_to_insert);
4720 }
4721
4722 return place_to_insert;
4723 }
4724
4725 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4726 for JOIN_POINT. */
4727 static int
4728 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4729 {
4730 int seqno;
4731 rtx next;
4732
4733 /* Check if we are about to insert bookkeeping copy before a jump, and use
4734 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4735 next = NEXT_INSN (place_to_insert);
4736 if (INSN_P (next)
4737 && JUMP_P (next)
4738 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4739 {
4740 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4741 seqno = INSN_SEQNO (next);
4742 }
4743 else if (INSN_SEQNO (join_point) > 0)
4744 seqno = INSN_SEQNO (join_point);
4745 else
4746 {
4747 seqno = get_seqno_by_preds (place_to_insert);
4748
4749 /* Sometimes the fences can move in such a way that there will be
4750 no instructions with positive seqno around this bookkeeping.
4751 This means that there will be no way to get to it by a regular
4752 fence movement. Never mind because we pick up such pieces for
4753 rescheduling anyways, so any positive value will do for now. */
4754 if (seqno < 0)
4755 {
4756 gcc_assert (pipelining_p);
4757 seqno = 1;
4758 }
4759 }
4760
4761 gcc_assert (seqno > 0);
4762 return seqno;
4763 }
4764
4765 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4766 NEW_SEQNO to it. Return created insn. */
4767 static insn_t
4768 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4769 {
4770 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4771
4772 vinsn_t new_vinsn
4773 = create_vinsn_from_insn_rtx (new_insn_rtx,
4774 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4775
4776 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4777 place_to_insert);
4778
4779 INSN_SCHED_TIMES (new_insn) = 0;
4780 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4781
4782 return new_insn;
4783 }
4784
4785 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4786 E2->dest, except from E1->src (there may be a sequence of empty blocks
4787 between E1->src and E2->dest). Return block containing the copy.
4788 All scheduler data is initialized for the newly created insn. */
4789 static basic_block
4790 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4791 {
4792 insn_t join_point, place_to_insert, new_insn;
4793 int new_seqno;
4794 bool need_to_exchange_data_sets;
4795 fence_t fence_to_rewind;
4796
4797 if (sched_verbose >= 4)
4798 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4799 e2->dest->index);
4800
4801 join_point = sel_bb_head (e2->dest);
4802 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4803 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4804 need_to_exchange_data_sets
4805 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4806
4807 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4808
4809 if (fence_to_rewind)
4810 FENCE_INSN (fence_to_rewind) = new_insn;
4811
4812 /* When inserting bookkeeping insn in new block, av sets should be
4813 following: old basic block (that now holds bookkeeping) data sets are
4814 the same as was before generation of bookkeeping, and new basic block
4815 (that now hold all other insns of old basic block) data sets are
4816 invalid. So exchange data sets for these basic blocks as sel_split_block
4817 mistakenly exchanges them in this case. Cannot do it earlier because
4818 when single instruction is added to new basic block it should hold NULL
4819 lv_set. */
4820 if (need_to_exchange_data_sets)
4821 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4822 BLOCK_FOR_INSN (join_point));
4823
4824 stat_bookkeeping_copies++;
4825 return BLOCK_FOR_INSN (new_insn);
4826 }
4827
4828 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4829 on FENCE, but we are unable to copy them. */
4830 static void
4831 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4832 {
4833 expr_t expr;
4834 av_set_iterator i;
4835
4836 /* An expression does not need bookkeeping if it is available on all paths
4837 from current block to original block and current block dominates
4838 original block. We check availability on all paths by examining
4839 EXPR_SPEC; this is not equivalent, because it may be positive even
4840 if expr is available on all paths (but if expr is not available on
4841 any path, EXPR_SPEC will be positive). */
4842
4843 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4844 {
4845 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4846 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4847 && (EXPR_SPEC (expr)
4848 || !EXPR_ORIG_BB_INDEX (expr)
4849 || !dominated_by_p (CDI_DOMINATORS,
4850 BASIC_BLOCK_FOR_FN (cfun,
4851 EXPR_ORIG_BB_INDEX (expr)),
4852 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4853 {
4854 if (sched_verbose >= 4)
4855 sel_print ("Expr %d removed because it would need bookkeeping, which "
4856 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4857 av_set_iter_remove (&i);
4858 }
4859 }
4860 }
4861
4862 /* Moving conditional jump through some instructions.
4863
4864 Consider example:
4865
4866 ... <- current scheduling point
4867 NOTE BASIC BLOCK: <- bb header
4868 (p8) add r14=r14+0x9;;
4869 (p8) mov [r14]=r23
4870 (!p8) jump L1;;
4871 NOTE BASIC BLOCK:
4872 ...
4873
4874 We can schedule jump one cycle earlier, than mov, because they cannot be
4875 executed together as their predicates are mutually exclusive.
4876
4877 This is done in this way: first, new fallthrough basic block is created
4878 after jump (it is always can be done, because there already should be a
4879 fallthrough block, where control flow goes in case of predicate being true -
4880 in our example; otherwise there should be a dependence between those
4881 instructions and jump and we cannot schedule jump right now);
4882 next, all instructions between jump and current scheduling point are moved
4883 to this new block. And the result is this:
4884
4885 NOTE BASIC BLOCK:
4886 (!p8) jump L1 <- current scheduling point
4887 NOTE BASIC BLOCK: <- bb header
4888 (p8) add r14=r14+0x9;;
4889 (p8) mov [r14]=r23
4890 NOTE BASIC BLOCK:
4891 ...
4892 */
4893 static void
4894 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4895 {
4896 edge ft_edge;
4897 basic_block block_from, block_next, block_new, block_bnd, bb;
4898 rtx_insn *next, *prev, *link, *head;
4899
4900 block_from = BLOCK_FOR_INSN (insn);
4901 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4902 prev = BND_TO (bnd);
4903
4904 #ifdef ENABLE_CHECKING
4905 /* Moving of jump should not cross any other jumps or beginnings of new
4906 basic blocks. The only exception is when we move a jump through
4907 mutually exclusive insns along fallthru edges. */
4908 if (block_from != block_bnd)
4909 {
4910 bb = block_from;
4911 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4912 link = PREV_INSN (link))
4913 {
4914 if (INSN_P (link))
4915 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4916 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4917 {
4918 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4919 bb = BLOCK_FOR_INSN (link);
4920 }
4921 }
4922 }
4923 #endif
4924
4925 /* Jump is moved to the boundary. */
4926 next = PREV_INSN (insn);
4927 BND_TO (bnd) = insn;
4928
4929 ft_edge = find_fallthru_edge_from (block_from);
4930 block_next = ft_edge->dest;
4931 /* There must be a fallthrough block (or where should go
4932 control flow in case of false jump predicate otherwise?). */
4933 gcc_assert (block_next);
4934
4935 /* Create new empty basic block after source block. */
4936 block_new = sel_split_edge (ft_edge);
4937 gcc_assert (block_new->next_bb == block_next
4938 && block_from->next_bb == block_new);
4939
4940 /* Move all instructions except INSN to BLOCK_NEW. */
4941 bb = block_bnd;
4942 head = BB_HEAD (block_new);
4943 while (bb != block_from->next_bb)
4944 {
4945 rtx_insn *from, *to;
4946 from = bb == block_bnd ? prev : sel_bb_head (bb);
4947 to = bb == block_from ? next : sel_bb_end (bb);
4948
4949 /* The jump being moved can be the first insn in the block.
4950 In this case we don't have to move anything in this block. */
4951 if (NEXT_INSN (to) != from)
4952 {
4953 reorder_insns (from, to, head);
4954
4955 for (link = to; link != head; link = PREV_INSN (link))
4956 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4957 head = to;
4958 }
4959
4960 /* Cleanup possibly empty blocks left. */
4961 block_next = bb->next_bb;
4962 if (bb != block_from)
4963 tidy_control_flow (bb, false);
4964 bb = block_next;
4965 }
4966
4967 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4968 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4969
4970 gcc_assert (!sel_bb_empty_p (block_from)
4971 && !sel_bb_empty_p (block_new));
4972
4973 /* Update data sets for BLOCK_NEW to represent that INSN and
4974 instructions from the other branch of INSN is no longer
4975 available at BLOCK_NEW. */
4976 BB_AV_LEVEL (block_new) = global_level;
4977 gcc_assert (BB_LV_SET (block_new) == NULL);
4978 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4979 update_data_sets (sel_bb_head (block_new));
4980
4981 /* INSN is a new basic block header - so prepare its data
4982 structures and update availability and liveness sets. */
4983 update_data_sets (insn);
4984
4985 if (sched_verbose >= 4)
4986 sel_print ("Moving jump %d\n", INSN_UID (insn));
4987 }
4988
4989 /* Remove nops generated during move_op for preventing removal of empty
4990 basic blocks. */
4991 static void
4992 remove_temp_moveop_nops (bool full_tidying)
4993 {
4994 int i;
4995 insn_t insn;
4996
4997 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4998 {
4999 gcc_assert (INSN_NOP_P (insn));
5000 return_nop_to_pool (insn, full_tidying);
5001 }
5002
5003 /* Empty the vector. */
5004 if (vec_temp_moveop_nops.length () > 0)
5005 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
5006 }
5007
5008 /* Records the maximal UID before moving up an instruction. Used for
5009 distinguishing between bookkeeping copies and original insns. */
5010 static int max_uid_before_move_op = 0;
5011
5012 /* Remove from AV_VLIW_P all instructions but next when debug counter
5013 tells us so. Next instruction is fetched from BNDS. */
5014 static void
5015 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5016 {
5017 if (! dbg_cnt (sel_sched_insn_cnt))
5018 /* Leave only the next insn in av_vliw. */
5019 {
5020 av_set_iterator av_it;
5021 expr_t expr;
5022 bnd_t bnd = BLIST_BND (bnds);
5023 insn_t next = BND_TO (bnd);
5024
5025 gcc_assert (BLIST_NEXT (bnds) == NULL);
5026
5027 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5028 if (EXPR_INSN_RTX (expr) != next)
5029 av_set_iter_remove (&av_it);
5030 }
5031 }
5032
5033 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5034 the computed set to *AV_VLIW_P. */
5035 static void
5036 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5037 {
5038 if (sched_verbose >= 2)
5039 {
5040 sel_print ("Boundaries: ");
5041 dump_blist (bnds);
5042 sel_print ("\n");
5043 }
5044
5045 for (; bnds; bnds = BLIST_NEXT (bnds))
5046 {
5047 bnd_t bnd = BLIST_BND (bnds);
5048 av_set_t av1_copy;
5049 insn_t bnd_to = BND_TO (bnd);
5050
5051 /* Rewind BND->TO to the basic block header in case some bookkeeping
5052 instructions were inserted before BND->TO and it needs to be
5053 adjusted. */
5054 if (sel_bb_head_p (bnd_to))
5055 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5056 else
5057 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5058 {
5059 bnd_to = PREV_INSN (bnd_to);
5060 if (sel_bb_head_p (bnd_to))
5061 break;
5062 }
5063
5064 if (BND_TO (bnd) != bnd_to)
5065 {
5066 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5067 FENCE_INSN (fence) = bnd_to;
5068 BND_TO (bnd) = bnd_to;
5069 }
5070
5071 av_set_clear (&BND_AV (bnd));
5072 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5073
5074 av_set_clear (&BND_AV1 (bnd));
5075 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5076
5077 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5078
5079 av1_copy = av_set_copy (BND_AV1 (bnd));
5080 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5081 }
5082
5083 if (sched_verbose >= 2)
5084 {
5085 sel_print ("Available exprs (vliw form): ");
5086 dump_av_set (*av_vliw_p);
5087 sel_print ("\n");
5088 }
5089 }
5090
5091 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5092 expression. When FOR_MOVEOP is true, also replace the register of
5093 expressions found with the register from EXPR_VLIW. */
5094 static av_set_t
5095 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5096 {
5097 av_set_t expr_seq = NULL;
5098 expr_t expr;
5099 av_set_iterator i;
5100
5101 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5102 {
5103 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5104 {
5105 if (for_moveop)
5106 {
5107 /* The sequential expression has the right form to pass
5108 to move_op except when renaming happened. Put the
5109 correct register in EXPR then. */
5110 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5111 {
5112 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5113 {
5114 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5115 stat_renamed_scheduled++;
5116 }
5117 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5118 This is needed when renaming came up with original
5119 register. */
5120 else if (EXPR_TARGET_AVAILABLE (expr)
5121 != EXPR_TARGET_AVAILABLE (expr_vliw))
5122 {
5123 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5124 EXPR_TARGET_AVAILABLE (expr) = 1;
5125 }
5126 }
5127 if (EXPR_WAS_SUBSTITUTED (expr))
5128 stat_substitutions_total++;
5129 }
5130
5131 av_set_add (&expr_seq, expr);
5132
5133 /* With substitution inside insn group, it is possible
5134 that more than one expression in expr_seq will correspond
5135 to expr_vliw. In this case, choose one as the attempt to
5136 move both leads to miscompiles. */
5137 break;
5138 }
5139 }
5140
5141 if (for_moveop && sched_verbose >= 2)
5142 {
5143 sel_print ("Best expression(s) (sequential form): ");
5144 dump_av_set (expr_seq);
5145 sel_print ("\n");
5146 }
5147
5148 return expr_seq;
5149 }
5150
5151
5152 /* Move nop to previous block. */
5153 static void ATTRIBUTE_UNUSED
5154 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5155 {
5156 insn_t prev_insn, next_insn, note;
5157
5158 gcc_assert (sel_bb_head_p (nop)
5159 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5160 note = bb_note (BLOCK_FOR_INSN (nop));
5161 prev_insn = sel_bb_end (prev_bb);
5162 next_insn = NEXT_INSN (nop);
5163 gcc_assert (prev_insn != NULL_RTX
5164 && PREV_INSN (note) == prev_insn);
5165
5166 SET_NEXT_INSN (prev_insn) = nop;
5167 SET_PREV_INSN (nop) = prev_insn;
5168
5169 SET_PREV_INSN (note) = nop;
5170 SET_NEXT_INSN (note) = next_insn;
5171
5172 SET_NEXT_INSN (nop) = note;
5173 SET_PREV_INSN (next_insn) = note;
5174
5175 BB_END (prev_bb) = nop;
5176 BLOCK_FOR_INSN (nop) = prev_bb;
5177 }
5178
5179 /* Prepare a place to insert the chosen expression on BND. */
5180 static insn_t
5181 prepare_place_to_insert (bnd_t bnd)
5182 {
5183 insn_t place_to_insert;
5184
5185 /* Init place_to_insert before calling move_op, as the later
5186 can possibly remove BND_TO (bnd). */
5187 if (/* If this is not the first insn scheduled. */
5188 BND_PTR (bnd))
5189 {
5190 /* Add it after last scheduled. */
5191 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5192 if (DEBUG_INSN_P (place_to_insert))
5193 {
5194 ilist_t l = BND_PTR (bnd);
5195 while ((l = ILIST_NEXT (l)) &&
5196 DEBUG_INSN_P (ILIST_INSN (l)))
5197 ;
5198 if (!l)
5199 place_to_insert = NULL;
5200 }
5201 }
5202 else
5203 place_to_insert = NULL;
5204
5205 if (!place_to_insert)
5206 {
5207 /* Add it before BND_TO. The difference is in the
5208 basic block, where INSN will be added. */
5209 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5210 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5211 == BLOCK_FOR_INSN (BND_TO (bnd)));
5212 }
5213
5214 return place_to_insert;
5215 }
5216
5217 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5218 Return the expression to emit in C_EXPR. */
5219 static bool
5220 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5221 av_set_t expr_seq, expr_t c_expr)
5222 {
5223 bool b, should_move;
5224 unsigned book_uid;
5225 bitmap_iterator bi;
5226 int n_bookkeeping_copies_before_moveop;
5227
5228 /* Make a move. This call will remove the original operation,
5229 insert all necessary bookkeeping instructions and update the
5230 data sets. After that all we have to do is add the operation
5231 at before BND_TO (BND). */
5232 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5233 max_uid_before_move_op = get_max_uid ();
5234 bitmap_clear (current_copies);
5235 bitmap_clear (current_originators);
5236
5237 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5238 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5239
5240 /* We should be able to find the expression we've chosen for
5241 scheduling. */
5242 gcc_assert (b);
5243
5244 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5245 stat_insns_needed_bookkeeping++;
5246
5247 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5248 {
5249 unsigned uid;
5250 bitmap_iterator bi;
5251
5252 /* We allocate these bitmaps lazily. */
5253 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5254 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5255
5256 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5257 current_originators);
5258
5259 /* Transitively add all originators' originators. */
5260 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5261 if (INSN_ORIGINATORS_BY_UID (uid))
5262 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5263 INSN_ORIGINATORS_BY_UID (uid));
5264 }
5265
5266 return should_move;
5267 }
5268
5269
5270 /* Debug a DFA state as an array of bytes. */
5271 static void
5272 debug_state (state_t state)
5273 {
5274 unsigned char *p;
5275 unsigned int i, size = dfa_state_size;
5276
5277 sel_print ("state (%u):", size);
5278 for (i = 0, p = (unsigned char *) state; i < size; i++)
5279 sel_print (" %d", p[i]);
5280 sel_print ("\n");
5281 }
5282
5283 /* Advance state on FENCE with INSN. Return true if INSN is
5284 an ASM, and we should advance state once more. */
5285 static bool
5286 advance_state_on_fence (fence_t fence, insn_t insn)
5287 {
5288 bool asm_p;
5289
5290 if (recog_memoized (insn) >= 0)
5291 {
5292 int res;
5293 state_t temp_state = alloca (dfa_state_size);
5294
5295 gcc_assert (!INSN_ASM_P (insn));
5296 asm_p = false;
5297
5298 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5299 res = state_transition (FENCE_STATE (fence), insn);
5300 gcc_assert (res < 0);
5301
5302 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5303 {
5304 FENCE_ISSUED_INSNS (fence)++;
5305
5306 /* We should never issue more than issue_rate insns. */
5307 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5308 gcc_unreachable ();
5309 }
5310 }
5311 else
5312 {
5313 /* This could be an ASM insn which we'd like to schedule
5314 on the next cycle. */
5315 asm_p = INSN_ASM_P (insn);
5316 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5317 advance_one_cycle (fence);
5318 }
5319
5320 if (sched_verbose >= 2)
5321 debug_state (FENCE_STATE (fence));
5322 if (!DEBUG_INSN_P (insn))
5323 FENCE_STARTS_CYCLE_P (fence) = 0;
5324 FENCE_ISSUE_MORE (fence) = can_issue_more;
5325 return asm_p;
5326 }
5327
5328 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5329 is nonzero if we need to stall after issuing INSN. */
5330 static void
5331 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5332 {
5333 bool asm_p;
5334
5335 /* First, reflect that something is scheduled on this fence. */
5336 asm_p = advance_state_on_fence (fence, insn);
5337 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5338 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5339 if (SCHED_GROUP_P (insn))
5340 {
5341 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5342 SCHED_GROUP_P (insn) = 0;
5343 }
5344 else
5345 FENCE_SCHED_NEXT (fence) = NULL;
5346 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5347 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5348
5349 /* Set instruction scheduling info. This will be used in bundling,
5350 pipelining, tick computations etc. */
5351 ++INSN_SCHED_TIMES (insn);
5352 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5353 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5354 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5355 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5356
5357 /* This does not account for adjust_cost hooks, just add the biggest
5358 constant the hook may add to the latency. TODO: make this
5359 a target dependent constant. */
5360 INSN_READY_CYCLE (insn)
5361 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5362 ? 1
5363 : maximal_insn_latency (insn) + 1);
5364
5365 /* Change these fields last, as they're used above. */
5366 FENCE_AFTER_STALL_P (fence) = 0;
5367 if (asm_p || need_stall)
5368 advance_one_cycle (fence);
5369
5370 /* Indicate that we've scheduled something on this fence. */
5371 FENCE_SCHEDULED_P (fence) = true;
5372 scheduled_something_on_previous_fence = true;
5373
5374 /* Print debug information when insn's fields are updated. */
5375 if (sched_verbose >= 2)
5376 {
5377 sel_print ("Scheduling insn: ");
5378 dump_insn_1 (insn, 1);
5379 sel_print ("\n");
5380 }
5381 }
5382
5383 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5384 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5385 return it. */
5386 static blist_t *
5387 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5388 blist_t *bnds_tailp)
5389 {
5390 succ_iterator si;
5391 insn_t succ;
5392
5393 advance_deps_context (BND_DC (bnd), insn);
5394 FOR_EACH_SUCC_1 (succ, si, insn,
5395 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5396 {
5397 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5398
5399 ilist_add (&ptr, insn);
5400
5401 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5402 && is_ineligible_successor (succ, ptr))
5403 {
5404 ilist_clear (&ptr);
5405 continue;
5406 }
5407
5408 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5409 {
5410 if (sched_verbose >= 9)
5411 sel_print ("Updating fence insn from %i to %i\n",
5412 INSN_UID (insn), INSN_UID (succ));
5413 FENCE_INSN (fence) = succ;
5414 }
5415 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5416 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5417 }
5418
5419 blist_remove (bndsp);
5420 return bnds_tailp;
5421 }
5422
5423 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5424 static insn_t
5425 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5426 {
5427 av_set_t expr_seq;
5428 expr_t c_expr = XALLOCA (expr_def);
5429 insn_t place_to_insert;
5430 insn_t insn;
5431 bool should_move;
5432
5433 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5434
5435 /* In case of scheduling a jump skipping some other instructions,
5436 prepare CFG. After this, jump is at the boundary and can be
5437 scheduled as usual insn by MOVE_OP. */
5438 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5439 {
5440 insn = EXPR_INSN_RTX (expr_vliw);
5441
5442 /* Speculative jumps are not handled. */
5443 if (insn != BND_TO (bnd)
5444 && !sel_insn_is_speculation_check (insn))
5445 move_cond_jump (insn, bnd);
5446 }
5447
5448 /* Find a place for C_EXPR to schedule. */
5449 place_to_insert = prepare_place_to_insert (bnd);
5450 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5451 clear_expr (c_expr);
5452
5453 /* Add the instruction. The corner case to care about is when
5454 the expr_seq set has more than one expr, and we chose the one that
5455 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5456 we can't use it. Generate the new vinsn. */
5457 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5458 {
5459 vinsn_t vinsn_new;
5460
5461 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5462 change_vinsn_in_expr (expr_vliw, vinsn_new);
5463 should_move = false;
5464 }
5465 if (should_move)
5466 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5467 else
5468 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5469 place_to_insert);
5470
5471 /* Return the nops generated for preserving of data sets back
5472 into pool. */
5473 if (INSN_NOP_P (place_to_insert))
5474 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5475 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5476
5477 av_set_clear (&expr_seq);
5478
5479 /* Save the expression scheduled so to reset target availability if we'll
5480 meet it later on the same fence. */
5481 if (EXPR_WAS_RENAMED (expr_vliw))
5482 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5483
5484 /* Check that the recent movement didn't destroyed loop
5485 structure. */
5486 gcc_assert (!pipelining_p
5487 || current_loop_nest == NULL
5488 || loop_latch_edge (current_loop_nest));
5489 return insn;
5490 }
5491
5492 /* Stall for N cycles on FENCE. */
5493 static void
5494 stall_for_cycles (fence_t fence, int n)
5495 {
5496 int could_more;
5497
5498 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5499 while (n--)
5500 advance_one_cycle (fence);
5501 if (could_more)
5502 FENCE_AFTER_STALL_P (fence) = 1;
5503 }
5504
5505 /* Gather a parallel group of insns at FENCE and assign their seqno
5506 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5507 list for later recalculation of seqnos. */
5508 static void
5509 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5510 {
5511 blist_t bnds = NULL, *bnds_tailp;
5512 av_set_t av_vliw = NULL;
5513 insn_t insn = FENCE_INSN (fence);
5514
5515 if (sched_verbose >= 2)
5516 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5517 INSN_UID (insn), FENCE_CYCLE (fence));
5518
5519 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5520 bnds_tailp = &BLIST_NEXT (bnds);
5521 set_target_context (FENCE_TC (fence));
5522 can_issue_more = FENCE_ISSUE_MORE (fence);
5523 target_bb = INSN_BB (insn);
5524
5525 /* Do while we can add any operation to the current group. */
5526 do
5527 {
5528 blist_t *bnds_tailp1, *bndsp;
5529 expr_t expr_vliw;
5530 int need_stall = false;
5531 int was_stall = 0, scheduled_insns = 0;
5532 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5533 int max_stall = pipelining_p ? 1 : 3;
5534 bool last_insn_was_debug = false;
5535 bool was_debug_bb_end_p = false;
5536
5537 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5538 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5539 remove_insns_for_debug (bnds, &av_vliw);
5540
5541 /* Return early if we have nothing to schedule. */
5542 if (av_vliw == NULL)
5543 break;
5544
5545 /* Choose the best expression and, if needed, destination register
5546 for it. */
5547 do
5548 {
5549 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5550 if (! expr_vliw && need_stall)
5551 {
5552 /* All expressions required a stall. Do not recompute av sets
5553 as we'll get the same answer (modulo the insns between
5554 the fence and its boundary, which will not be available for
5555 pipelining).
5556 If we are going to stall for too long, break to recompute av
5557 sets and bring more insns for pipelining. */
5558 was_stall++;
5559 if (need_stall <= 3)
5560 stall_for_cycles (fence, need_stall);
5561 else
5562 {
5563 stall_for_cycles (fence, 1);
5564 break;
5565 }
5566 }
5567 }
5568 while (! expr_vliw && need_stall);
5569
5570 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5571 if (!expr_vliw)
5572 {
5573 av_set_clear (&av_vliw);
5574 break;
5575 }
5576
5577 bndsp = &bnds;
5578 bnds_tailp1 = bnds_tailp;
5579
5580 do
5581 /* This code will be executed only once until we'd have several
5582 boundaries per fence. */
5583 {
5584 bnd_t bnd = BLIST_BND (*bndsp);
5585
5586 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5587 {
5588 bndsp = &BLIST_NEXT (*bndsp);
5589 continue;
5590 }
5591
5592 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5593 last_insn_was_debug = DEBUG_INSN_P (insn);
5594 if (last_insn_was_debug)
5595 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5596 update_fence_and_insn (fence, insn, need_stall);
5597 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5598
5599 /* Add insn to the list of scheduled on this cycle instructions. */
5600 ilist_add (*scheduled_insns_tailpp, insn);
5601 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5602 }
5603 while (*bndsp != *bnds_tailp1);
5604
5605 av_set_clear (&av_vliw);
5606 if (!last_insn_was_debug)
5607 scheduled_insns++;
5608
5609 /* We currently support information about candidate blocks only for
5610 one 'target_bb' block. Hence we can't schedule after jump insn,
5611 as this will bring two boundaries and, hence, necessity to handle
5612 information for two or more blocks concurrently. */
5613 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5614 || (was_stall
5615 && (was_stall >= max_stall
5616 || scheduled_insns >= max_insns)))
5617 break;
5618 }
5619 while (bnds);
5620
5621 gcc_assert (!FENCE_BNDS (fence));
5622
5623 /* Update boundaries of the FENCE. */
5624 while (bnds)
5625 {
5626 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5627
5628 if (ptr)
5629 {
5630 insn = ILIST_INSN (ptr);
5631
5632 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5633 ilist_add (&FENCE_BNDS (fence), insn);
5634 }
5635
5636 blist_remove (&bnds);
5637 }
5638
5639 /* Update target context on the fence. */
5640 reset_target_context (FENCE_TC (fence), false);
5641 }
5642
5643 /* All exprs in ORIG_OPS must have the same destination register or memory.
5644 Return that destination. */
5645 static rtx
5646 get_dest_from_orig_ops (av_set_t orig_ops)
5647 {
5648 rtx dest = NULL_RTX;
5649 av_set_iterator av_it;
5650 expr_t expr;
5651 bool first_p = true;
5652
5653 FOR_EACH_EXPR (expr, av_it, orig_ops)
5654 {
5655 rtx x = EXPR_LHS (expr);
5656
5657 if (first_p)
5658 {
5659 first_p = false;
5660 dest = x;
5661 }
5662 else
5663 gcc_assert (dest == x
5664 || (dest != NULL_RTX && x != NULL_RTX
5665 && rtx_equal_p (dest, x)));
5666 }
5667
5668 return dest;
5669 }
5670
5671 /* Update data sets for the bookkeeping block and record those expressions
5672 which become no longer available after inserting this bookkeeping. */
5673 static void
5674 update_and_record_unavailable_insns (basic_block book_block)
5675 {
5676 av_set_iterator i;
5677 av_set_t old_av_set = NULL;
5678 expr_t cur_expr;
5679 rtx_insn *bb_end = sel_bb_end (book_block);
5680
5681 /* First, get correct liveness in the bookkeeping block. The problem is
5682 the range between the bookeeping insn and the end of block. */
5683 update_liveness_on_insn (bb_end);
5684 if (control_flow_insn_p (bb_end))
5685 update_liveness_on_insn (PREV_INSN (bb_end));
5686
5687 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5688 fence above, where we may choose to schedule an insn which is
5689 actually blocked from moving up with the bookkeeping we create here. */
5690 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5691 {
5692 old_av_set = av_set_copy (BB_AV_SET (book_block));
5693 update_data_sets (sel_bb_head (book_block));
5694
5695 /* Traverse all the expressions in the old av_set and check whether
5696 CUR_EXPR is in new AV_SET. */
5697 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5698 {
5699 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5700 EXPR_VINSN (cur_expr));
5701
5702 if (! new_expr
5703 /* In this case, we can just turn off the E_T_A bit, but we can't
5704 represent this information with the current vector. */
5705 || EXPR_TARGET_AVAILABLE (new_expr)
5706 != EXPR_TARGET_AVAILABLE (cur_expr))
5707 /* Unfortunately, the below code could be also fired up on
5708 separable insns, e.g. when moving insns through the new
5709 speculation check as in PR 53701. */
5710 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5711 }
5712
5713 av_set_clear (&old_av_set);
5714 }
5715 }
5716
5717 /* The main effect of this function is that sparams->c_expr is merged
5718 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5719 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5720 lparams->c_expr_merged is copied back to sparams->c_expr after all
5721 successors has been traversed. lparams->c_expr_local is an expr allocated
5722 on stack in the caller function, and is used if there is more than one
5723 successor.
5724
5725 SUCC is one of the SUCCS_NORMAL successors of INSN,
5726 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5727 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5728 static void
5729 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5730 insn_t succ ATTRIBUTE_UNUSED,
5731 int moveop_drv_call_res,
5732 cmpd_local_params_p lparams, void *static_params)
5733 {
5734 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5735
5736 /* Nothing to do, if original expr wasn't found below. */
5737 if (moveop_drv_call_res != 1)
5738 return;
5739
5740 /* If this is a first successor. */
5741 if (!lparams->c_expr_merged)
5742 {
5743 lparams->c_expr_merged = sparams->c_expr;
5744 sparams->c_expr = lparams->c_expr_local;
5745 }
5746 else
5747 {
5748 /* We must merge all found expressions to get reasonable
5749 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5750 do so then we can first find the expr with epsilon
5751 speculation success probability and only then with the
5752 good probability. As a result the insn will get epsilon
5753 probability and will never be scheduled because of
5754 weakness_cutoff in find_best_expr.
5755
5756 We call merge_expr_data here instead of merge_expr
5757 because due to speculation C_EXPR and X may have the
5758 same insns with different speculation types. And as of
5759 now such insns are considered non-equal.
5760
5761 However, EXPR_SCHED_TIMES is different -- we must get
5762 SCHED_TIMES from a real insn, not a bookkeeping copy.
5763 We force this here. Instead, we may consider merging
5764 SCHED_TIMES to the maximum instead of minimum in the
5765 below function. */
5766 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5767
5768 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5769 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5770 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5771
5772 clear_expr (sparams->c_expr);
5773 }
5774 }
5775
5776 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5777
5778 SUCC is one of the SUCCS_NORMAL successors of INSN,
5779 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5780 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5781 STATIC_PARAMS contain USED_REGS set. */
5782 static void
5783 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5784 int moveop_drv_call_res,
5785 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5786 void *static_params)
5787 {
5788 regset succ_live;
5789 fur_static_params_p sparams = (fur_static_params_p) static_params;
5790
5791 /* Here we compute live regsets only for branches that do not lie
5792 on the code motion paths. These branches correspond to value
5793 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5794 for such branches code_motion_path_driver is not called. */
5795 if (moveop_drv_call_res != 0)
5796 return;
5797
5798 /* Mark all registers that do not meet the following condition:
5799 (3) not live on the other path of any conditional branch
5800 that is passed by the operation, in case original
5801 operations are not present on both paths of the
5802 conditional branch. */
5803 succ_live = compute_live (succ);
5804 IOR_REG_SET (sparams->used_regs, succ_live);
5805 }
5806
5807 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5808 into SP->CEXPR. */
5809 static void
5810 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5811 {
5812 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5813
5814 sp->c_expr = lp->c_expr_merged;
5815 }
5816
5817 /* Track bookkeeping copies created, insns scheduled, and blocks for
5818 rescheduling when INSN is found by move_op. */
5819 static void
5820 track_scheduled_insns_and_blocks (rtx_insn *insn)
5821 {
5822 /* Even if this insn can be a copy that will be removed during current move_op,
5823 we still need to count it as an originator. */
5824 bitmap_set_bit (current_originators, INSN_UID (insn));
5825
5826 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5827 {
5828 /* Note that original block needs to be rescheduled, as we pulled an
5829 instruction out of it. */
5830 if (INSN_SCHED_TIMES (insn) > 0)
5831 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5832 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5833 num_insns_scheduled++;
5834 }
5835
5836 /* For instructions we must immediately remove insn from the
5837 stream, so subsequent update_data_sets () won't include this
5838 insn into av_set.
5839 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5840 if (INSN_UID (insn) > max_uid_before_move_op)
5841 stat_bookkeeping_copies--;
5842 }
5843
5844 /* Emit a register-register copy for INSN if needed. Return true if
5845 emitted one. PARAMS is the move_op static parameters. */
5846 static bool
5847 maybe_emit_renaming_copy (rtx_insn *insn,
5848 moveop_static_params_p params)
5849 {
5850 bool insn_emitted = false;
5851 rtx cur_reg;
5852
5853 /* Bail out early when expression can not be renamed at all. */
5854 if (!EXPR_SEPARABLE_P (params->c_expr))
5855 return false;
5856
5857 cur_reg = expr_dest_reg (params->c_expr);
5858 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5859
5860 /* If original operation has expr and the register chosen for
5861 that expr is not original operation's dest reg, substitute
5862 operation's right hand side with the register chosen. */
5863 if (REGNO (params->dest) != REGNO (cur_reg))
5864 {
5865 insn_t reg_move_insn, reg_move_insn_rtx;
5866
5867 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5868 params->dest);
5869 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5870 INSN_EXPR (insn),
5871 INSN_SEQNO (insn),
5872 insn);
5873 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5874 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5875
5876 insn_emitted = true;
5877 params->was_renamed = true;
5878 }
5879
5880 return insn_emitted;
5881 }
5882
5883 /* Emit a speculative check for INSN speculated as EXPR if needed.
5884 Return true if we've emitted one. PARAMS is the move_op static
5885 parameters. */
5886 static bool
5887 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5888 moveop_static_params_p params)
5889 {
5890 bool insn_emitted = false;
5891 insn_t x;
5892 ds_t check_ds;
5893
5894 check_ds = get_spec_check_type_for_insn (insn, expr);
5895 if (check_ds != 0)
5896 {
5897 /* A speculation check should be inserted. */
5898 x = create_speculation_check (params->c_expr, check_ds, insn);
5899 insn_emitted = true;
5900 }
5901 else
5902 {
5903 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5904 x = insn;
5905 }
5906
5907 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5908 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5909 return insn_emitted;
5910 }
5911
5912 /* Handle transformations that leave an insn in place of original
5913 insn such as renaming/speculation. Return true if one of such
5914 transformations actually happened, and we have emitted this insn. */
5915 static bool
5916 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5917 moveop_static_params_p params)
5918 {
5919 bool insn_emitted = false;
5920
5921 insn_emitted = maybe_emit_renaming_copy (insn, params);
5922 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5923
5924 return insn_emitted;
5925 }
5926
5927 /* If INSN is the only insn in the basic block (not counting JUMP,
5928 which may be a jump to next insn, and DEBUG_INSNs), we want to
5929 leave a NOP there till the return to fill_insns. */
5930
5931 static bool
5932 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5933 {
5934 insn_t bb_head, bb_end, bb_next, in_next;
5935 basic_block bb = BLOCK_FOR_INSN (insn);
5936
5937 bb_head = sel_bb_head (bb);
5938 bb_end = sel_bb_end (bb);
5939
5940 if (bb_head == bb_end)
5941 return true;
5942
5943 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5944 bb_head = NEXT_INSN (bb_head);
5945
5946 if (bb_head == bb_end)
5947 return true;
5948
5949 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5950 bb_end = PREV_INSN (bb_end);
5951
5952 if (bb_head == bb_end)
5953 return true;
5954
5955 bb_next = NEXT_INSN (bb_head);
5956 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5957 bb_next = NEXT_INSN (bb_next);
5958
5959 if (bb_next == bb_end && JUMP_P (bb_end))
5960 return true;
5961
5962 in_next = NEXT_INSN (insn);
5963 while (DEBUG_INSN_P (in_next))
5964 in_next = NEXT_INSN (in_next);
5965
5966 if (IN_CURRENT_FENCE_P (in_next))
5967 return true;
5968
5969 return false;
5970 }
5971
5972 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5973 is not removed but reused when INSN is re-emitted. */
5974 static void
5975 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5976 {
5977 /* If there's only one insn in the BB, make sure that a nop is
5978 inserted into it, so the basic block won't disappear when we'll
5979 delete INSN below with sel_remove_insn. It should also survive
5980 till the return to fill_insns. */
5981 if (need_nop_to_preserve_insn_bb (insn))
5982 {
5983 insn_t nop = get_nop_from_pool (insn);
5984 gcc_assert (INSN_NOP_P (nop));
5985 vec_temp_moveop_nops.safe_push (nop);
5986 }
5987
5988 sel_remove_insn (insn, only_disconnect, false);
5989 }
5990
5991 /* This function is called when original expr is found.
5992 INSN - current insn traversed, EXPR - the corresponding expr found.
5993 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5994 is static parameters of move_op. */
5995 static void
5996 move_op_orig_expr_found (insn_t insn, expr_t expr,
5997 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5998 void *static_params)
5999 {
6000 bool only_disconnect;
6001 moveop_static_params_p params = (moveop_static_params_p) static_params;
6002
6003 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
6004 track_scheduled_insns_and_blocks (insn);
6005 handle_emitting_transformations (insn, expr, params);
6006 only_disconnect = params->uid == INSN_UID (insn);
6007
6008 /* Mark that we've disconnected an insn. */
6009 if (only_disconnect)
6010 params->uid = -1;
6011 remove_insn_from_stream (insn, only_disconnect);
6012 }
6013
6014 /* The function is called when original expr is found.
6015 INSN - current insn traversed, EXPR - the corresponding expr found,
6016 crosses_call and original_insns in STATIC_PARAMS are updated. */
6017 static void
6018 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6019 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6020 void *static_params)
6021 {
6022 fur_static_params_p params = (fur_static_params_p) static_params;
6023 regset tmp;
6024
6025 if (CALL_P (insn))
6026 params->crosses_call = true;
6027
6028 def_list_add (params->original_insns, insn, params->crosses_call);
6029
6030 /* Mark the registers that do not meet the following condition:
6031 (2) not among the live registers of the point
6032 immediately following the first original operation on
6033 a given downward path, except for the original target
6034 register of the operation. */
6035 tmp = get_clear_regset_from_pool ();
6036 compute_live_below_insn (insn, tmp);
6037 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6038 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6039 IOR_REG_SET (params->used_regs, tmp);
6040 return_regset_to_pool (tmp);
6041
6042 /* (*1) We need to add to USED_REGS registers that are read by
6043 INSN's lhs. This may lead to choosing wrong src register.
6044 E.g. (scheduling const expr enabled):
6045
6046 429: ax=0x0 <- Can't use AX for this expr (0x0)
6047 433: dx=[bp-0x18]
6048 427: [ax+dx+0x1]=ax
6049 REG_DEAD: ax
6050 168: di=dx
6051 REG_DEAD: dx
6052 */
6053 /* FIXME: see comment above and enable MEM_P
6054 in vinsn_separable_p. */
6055 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6056 || !MEM_P (INSN_LHS (insn)));
6057 }
6058
6059 /* This function is called on the ascending pass, before returning from
6060 current basic block. */
6061 static void
6062 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6063 void *static_params)
6064 {
6065 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6066 basic_block book_block = NULL;
6067
6068 /* When we have removed the boundary insn for scheduling, which also
6069 happened to be the end insn in its bb, we don't need to update sets. */
6070 if (!lparams->removed_last_insn
6071 && lparams->e1
6072 && sel_bb_head_p (insn))
6073 {
6074 /* We should generate bookkeeping code only if we are not at the
6075 top level of the move_op. */
6076 if (sel_num_cfg_preds_gt_1 (insn))
6077 book_block = generate_bookkeeping_insn (sparams->c_expr,
6078 lparams->e1, lparams->e2);
6079 /* Update data sets for the current insn. */
6080 update_data_sets (insn);
6081 }
6082
6083 /* If bookkeeping code was inserted, we need to update av sets of basic
6084 block that received bookkeeping. After generation of bookkeeping insn,
6085 bookkeeping block does not contain valid av set because we are not following
6086 the original algorithm in every detail with regards to e.g. renaming
6087 simple reg-reg copies. Consider example:
6088
6089 bookkeeping block scheduling fence
6090 \ /
6091 \ join /
6092 ----------
6093 | |
6094 ----------
6095 / \
6096 / \
6097 r1 := r2 r1 := r3
6098
6099 We try to schedule insn "r1 := r3" on the current
6100 scheduling fence. Also, note that av set of bookkeeping block
6101 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6102 been scheduled, the CFG is as follows:
6103
6104 r1 := r3 r1 := r3
6105 bookkeeping block scheduling fence
6106 \ /
6107 \ join /
6108 ----------
6109 | |
6110 ----------
6111 / \
6112 / \
6113 r1 := r2
6114
6115 Here, insn "r1 := r3" was scheduled at the current scheduling point
6116 and bookkeeping code was generated at the bookeeping block. This
6117 way insn "r1 := r2" is no longer available as a whole instruction
6118 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6119 This situation is handled by calling update_data_sets.
6120
6121 Since update_data_sets is called only on the bookkeeping block, and
6122 it also may have predecessors with av_sets, containing instructions that
6123 are no longer available, we save all such expressions that become
6124 unavailable during data sets update on the bookkeeping block in
6125 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6126 expressions for scheduling. This allows us to avoid recomputation of
6127 av_sets outside the code motion path. */
6128
6129 if (book_block)
6130 update_and_record_unavailable_insns (book_block);
6131
6132 /* If INSN was previously marked for deletion, it's time to do it. */
6133 if (lparams->removed_last_insn)
6134 insn = PREV_INSN (insn);
6135
6136 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6137 kill a block with a single nop in which the insn should be emitted. */
6138 if (lparams->e1)
6139 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6140 }
6141
6142 /* This function is called on the ascending pass, before returning from the
6143 current basic block. */
6144 static void
6145 fur_at_first_insn (insn_t insn,
6146 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6147 void *static_params ATTRIBUTE_UNUSED)
6148 {
6149 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6150 || AV_LEVEL (insn) == -1);
6151 }
6152
6153 /* Called on the backward stage of recursion to call moveup_expr for insn
6154 and sparams->c_expr. */
6155 static void
6156 move_op_ascend (insn_t insn, void *static_params)
6157 {
6158 enum MOVEUP_EXPR_CODE res;
6159 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6160
6161 if (! INSN_NOP_P (insn))
6162 {
6163 res = moveup_expr_cached (sparams->c_expr, insn, false);
6164 gcc_assert (res != MOVEUP_EXPR_NULL);
6165 }
6166
6167 /* Update liveness for this insn as it was invalidated. */
6168 update_liveness_on_insn (insn);
6169 }
6170
6171 /* This function is called on enter to the basic block.
6172 Returns TRUE if this block already have been visited and
6173 code_motion_path_driver should return 1, FALSE otherwise. */
6174 static int
6175 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6176 void *static_params, bool visited_p)
6177 {
6178 fur_static_params_p sparams = (fur_static_params_p) static_params;
6179
6180 if (visited_p)
6181 {
6182 /* If we have found something below this block, there should be at
6183 least one insn in ORIGINAL_INSNS. */
6184 gcc_assert (*sparams->original_insns);
6185
6186 /* Adjust CROSSES_CALL, since we may have come to this block along
6187 different path. */
6188 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6189 |= sparams->crosses_call;
6190 }
6191 else
6192 local_params->old_original_insns = *sparams->original_insns;
6193
6194 return 1;
6195 }
6196
6197 /* Same as above but for move_op. */
6198 static int
6199 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6200 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6201 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6202 {
6203 if (visited_p)
6204 return -1;
6205 return 1;
6206 }
6207
6208 /* This function is called while descending current basic block if current
6209 insn is not the original EXPR we're searching for.
6210
6211 Return value: FALSE, if code_motion_path_driver should perform a local
6212 cleanup and return 0 itself;
6213 TRUE, if code_motion_path_driver should continue. */
6214 static bool
6215 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6216 void *static_params)
6217 {
6218 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6219
6220 #ifdef ENABLE_CHECKING
6221 sparams->failed_insn = insn;
6222 #endif
6223
6224 /* If we're scheduling separate expr, in order to generate correct code
6225 we need to stop the search at bookkeeping code generated with the
6226 same destination register or memory. */
6227 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6228 return false;
6229 return true;
6230 }
6231
6232 /* This function is called while descending current basic block if current
6233 insn is not the original EXPR we're searching for.
6234
6235 Return value: TRUE (code_motion_path_driver should continue). */
6236 static bool
6237 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6238 {
6239 bool mutexed;
6240 expr_t r;
6241 av_set_iterator avi;
6242 fur_static_params_p sparams = (fur_static_params_p) static_params;
6243
6244 if (CALL_P (insn))
6245 sparams->crosses_call = true;
6246 else if (DEBUG_INSN_P (insn))
6247 return true;
6248
6249 /* If current insn we are looking at cannot be executed together
6250 with original insn, then we can skip it safely.
6251
6252 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6253 INSN = (!p6) r14 = r14 + 1;
6254
6255 Here we can schedule ORIG_OP with lhs = r14, though only
6256 looking at the set of used and set registers of INSN we must
6257 forbid it. So, add set/used in INSN registers to the
6258 untouchable set only if there is an insn in ORIG_OPS that can
6259 affect INSN. */
6260 mutexed = true;
6261 FOR_EACH_EXPR (r, avi, orig_ops)
6262 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6263 {
6264 mutexed = false;
6265 break;
6266 }
6267
6268 /* Mark all registers that do not meet the following condition:
6269 (1) Not set or read on any path from xi to an instance of the
6270 original operation. */
6271 if (!mutexed)
6272 {
6273 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6274 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6275 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6276 }
6277
6278 return true;
6279 }
6280
6281 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6282 struct code_motion_path_driver_info_def move_op_hooks = {
6283 move_op_on_enter,
6284 move_op_orig_expr_found,
6285 move_op_orig_expr_not_found,
6286 move_op_merge_succs,
6287 move_op_after_merge_succs,
6288 move_op_ascend,
6289 move_op_at_first_insn,
6290 SUCCS_NORMAL,
6291 "move_op"
6292 };
6293
6294 /* Hooks and data to perform find_used_regs operations
6295 with code_motion_path_driver. */
6296 struct code_motion_path_driver_info_def fur_hooks = {
6297 fur_on_enter,
6298 fur_orig_expr_found,
6299 fur_orig_expr_not_found,
6300 fur_merge_succs,
6301 NULL, /* fur_after_merge_succs */
6302 NULL, /* fur_ascend */
6303 fur_at_first_insn,
6304 SUCCS_ALL,
6305 "find_used_regs"
6306 };
6307
6308 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6309 code_motion_path_driver is called recursively. Original operation
6310 was found at least on one path that is starting with one of INSN's
6311 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6312 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6313 of either move_op or find_used_regs depending on the caller.
6314
6315 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6316 know for sure at this point. */
6317 static int
6318 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6319 ilist_t path, void *static_params)
6320 {
6321 int res = 0;
6322 succ_iterator succ_i;
6323 insn_t succ;
6324 basic_block bb;
6325 int old_index;
6326 unsigned old_succs;
6327
6328 struct cmpd_local_params lparams;
6329 expr_def _x;
6330
6331 lparams.c_expr_local = &_x;
6332 lparams.c_expr_merged = NULL;
6333
6334 /* We need to process only NORMAL succs for move_op, and collect live
6335 registers from ALL branches (including those leading out of the
6336 region) for find_used_regs.
6337
6338 In move_op, there can be a case when insn's bb number has changed
6339 due to created bookkeeping. This happens very rare, as we need to
6340 move expression from the beginning to the end of the same block.
6341 Rescan successors in this case. */
6342
6343 rescan:
6344 bb = BLOCK_FOR_INSN (insn);
6345 old_index = bb->index;
6346 old_succs = EDGE_COUNT (bb->succs);
6347
6348 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6349 {
6350 int b;
6351
6352 lparams.e1 = succ_i.e1;
6353 lparams.e2 = succ_i.e2;
6354
6355 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6356 current region). */
6357 if (succ_i.current_flags == SUCCS_NORMAL)
6358 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6359 static_params);
6360 else
6361 b = 0;
6362
6363 /* Merge c_expres found or unify live register sets from different
6364 successors. */
6365 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6366 static_params);
6367 if (b == 1)
6368 res = b;
6369 else if (b == -1 && res != 1)
6370 res = b;
6371
6372 /* We have simplified the control flow below this point. In this case,
6373 the iterator becomes invalid. We need to try again.
6374 If we have removed the insn itself, it could be only an
6375 unconditional jump. Thus, do not rescan but break immediately --
6376 we have already visited the only successor block. */
6377 if (!BLOCK_FOR_INSN (insn))
6378 {
6379 if (sched_verbose >= 6)
6380 sel_print ("Not doing rescan: already visited the only successor"
6381 " of block %d\n", old_index);
6382 break;
6383 }
6384 if (BLOCK_FOR_INSN (insn)->index != old_index
6385 || EDGE_COUNT (bb->succs) != old_succs)
6386 {
6387 if (sched_verbose >= 6)
6388 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6389 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6390 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6391 goto rescan;
6392 }
6393 }
6394
6395 #ifdef ENABLE_CHECKING
6396 /* Here, RES==1 if original expr was found at least for one of the
6397 successors. After the loop, RES may happen to have zero value
6398 only if at some point the expr searched is present in av_set, but is
6399 not found below. In most cases, this situation is an error.
6400 The exception is when the original operation is blocked by
6401 bookkeeping generated for another fence or for another path in current
6402 move_op. */
6403 gcc_assert (res == 1
6404 || (res == 0
6405 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6406 static_params))
6407 || res == -1);
6408 #endif
6409
6410 /* Merge data, clean up, etc. */
6411 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6412 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6413
6414 return res;
6415 }
6416
6417
6418 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6419 is the pointer to the av set with expressions we were looking for,
6420 PATH_P is the pointer to the traversed path. */
6421 static inline void
6422 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6423 {
6424 ilist_remove (path_p);
6425 av_set_clear (orig_ops_p);
6426 }
6427
6428 /* The driver function that implements move_op or find_used_regs
6429 functionality dependent whether code_motion_path_driver_INFO is set to
6430 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6431 of code (CFG traversal etc) that are shared among both functions. INSN
6432 is the insn we're starting the search from, ORIG_OPS are the expressions
6433 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6434 parameters of the driver, and STATIC_PARAMS are static parameters of
6435 the caller.
6436
6437 Returns whether original instructions were found. Note that top-level
6438 code_motion_path_driver always returns true. */
6439 static int
6440 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6441 cmpd_local_params_p local_params_in,
6442 void *static_params)
6443 {
6444 expr_t expr = NULL;
6445 basic_block bb = BLOCK_FOR_INSN (insn);
6446 insn_t first_insn, bb_tail, before_first;
6447 bool removed_last_insn = false;
6448
6449 if (sched_verbose >= 6)
6450 {
6451 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6452 dump_insn (insn);
6453 sel_print (",");
6454 dump_av_set (orig_ops);
6455 sel_print (")\n");
6456 }
6457
6458 gcc_assert (orig_ops);
6459
6460 /* If no original operations exist below this insn, return immediately. */
6461 if (is_ineligible_successor (insn, path))
6462 {
6463 if (sched_verbose >= 6)
6464 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6465 return false;
6466 }
6467
6468 /* The block can have invalid av set, in which case it was created earlier
6469 during move_op. Return immediately. */
6470 if (sel_bb_head_p (insn))
6471 {
6472 if (! AV_SET_VALID_P (insn))
6473 {
6474 if (sched_verbose >= 6)
6475 sel_print ("Returned from block %d as it had invalid av set\n",
6476 bb->index);
6477 return false;
6478 }
6479
6480 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6481 {
6482 /* We have already found an original operation on this branch, do not
6483 go any further and just return TRUE here. If we don't stop here,
6484 function can have exponential behaviour even on the small code
6485 with many different paths (e.g. with data speculation and
6486 recovery blocks). */
6487 if (sched_verbose >= 6)
6488 sel_print ("Block %d already visited in this traversal\n", bb->index);
6489 if (code_motion_path_driver_info->on_enter)
6490 return code_motion_path_driver_info->on_enter (insn,
6491 local_params_in,
6492 static_params,
6493 true);
6494 }
6495 }
6496
6497 if (code_motion_path_driver_info->on_enter)
6498 code_motion_path_driver_info->on_enter (insn, local_params_in,
6499 static_params, false);
6500 orig_ops = av_set_copy (orig_ops);
6501
6502 /* Filter the orig_ops set. */
6503 if (AV_SET_VALID_P (insn))
6504 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6505
6506 /* If no more original ops, return immediately. */
6507 if (!orig_ops)
6508 {
6509 if (sched_verbose >= 6)
6510 sel_print ("No intersection with av set of block %d\n", bb->index);
6511 return false;
6512 }
6513
6514 /* For non-speculative insns we have to leave only one form of the
6515 original operation, because if we don't, we may end up with
6516 different C_EXPRes and, consequently, with bookkeepings for different
6517 expression forms along the same code motion path. That may lead to
6518 generation of incorrect code. So for each code motion we stick to
6519 the single form of the instruction, except for speculative insns
6520 which we need to keep in different forms with all speculation
6521 types. */
6522 av_set_leave_one_nonspec (&orig_ops);
6523
6524 /* It is not possible that all ORIG_OPS are filtered out. */
6525 gcc_assert (orig_ops);
6526
6527 /* It is enough to place only heads and tails of visited basic blocks into
6528 the PATH. */
6529 ilist_add (&path, insn);
6530 first_insn = insn;
6531 bb_tail = sel_bb_end (bb);
6532
6533 /* Descend the basic block in search of the original expr; this part
6534 corresponds to the part of the original move_op procedure executed
6535 before the recursive call. */
6536 for (;;)
6537 {
6538 /* Look at the insn and decide if it could be an ancestor of currently
6539 scheduling operation. If it is so, then the insn "dest = op" could
6540 either be replaced with "dest = reg", because REG now holds the result
6541 of OP, or just removed, if we've scheduled the insn as a whole.
6542
6543 If this insn doesn't contain currently scheduling OP, then proceed
6544 with searching and look at its successors. Operations we're searching
6545 for could have changed when moving up through this insn via
6546 substituting. In this case, perform unsubstitution on them first.
6547
6548 When traversing the DAG below this insn is finished, insert
6549 bookkeeping code, if the insn is a joint point, and remove
6550 leftovers. */
6551
6552 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6553 if (expr)
6554 {
6555 insn_t last_insn = PREV_INSN (insn);
6556
6557 /* We have found the original operation. */
6558 if (sched_verbose >= 6)
6559 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6560
6561 code_motion_path_driver_info->orig_expr_found
6562 (insn, expr, local_params_in, static_params);
6563
6564 /* Step back, so on the way back we'll start traversing from the
6565 previous insn (or we'll see that it's bb_note and skip that
6566 loop). */
6567 if (insn == first_insn)
6568 {
6569 first_insn = NEXT_INSN (last_insn);
6570 removed_last_insn = sel_bb_end_p (last_insn);
6571 }
6572 insn = last_insn;
6573 break;
6574 }
6575 else
6576 {
6577 /* We haven't found the original expr, continue descending the basic
6578 block. */
6579 if (code_motion_path_driver_info->orig_expr_not_found
6580 (insn, orig_ops, static_params))
6581 {
6582 /* Av set ops could have been changed when moving through this
6583 insn. To find them below it, we have to un-substitute them. */
6584 undo_transformations (&orig_ops, insn);
6585 }
6586 else
6587 {
6588 /* Clean up and return, if the hook tells us to do so. It may
6589 happen if we've encountered the previously created
6590 bookkeeping. */
6591 code_motion_path_driver_cleanup (&orig_ops, &path);
6592 return -1;
6593 }
6594
6595 gcc_assert (orig_ops);
6596 }
6597
6598 /* Stop at insn if we got to the end of BB. */
6599 if (insn == bb_tail)
6600 break;
6601
6602 insn = NEXT_INSN (insn);
6603 }
6604
6605 /* Here INSN either points to the insn before the original insn (may be
6606 bb_note, if original insn was a bb_head) or to the bb_end. */
6607 if (!expr)
6608 {
6609 int res;
6610 rtx_insn *last_insn = PREV_INSN (insn);
6611 bool added_to_path;
6612
6613 gcc_assert (insn == sel_bb_end (bb));
6614
6615 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6616 it's already in PATH then). */
6617 if (insn != first_insn)
6618 {
6619 ilist_add (&path, insn);
6620 added_to_path = true;
6621 }
6622 else
6623 added_to_path = false;
6624
6625 /* Process_successors should be able to find at least one
6626 successor for which code_motion_path_driver returns TRUE. */
6627 res = code_motion_process_successors (insn, orig_ops,
6628 path, static_params);
6629
6630 /* Jump in the end of basic block could have been removed or replaced
6631 during code_motion_process_successors, so recompute insn as the
6632 last insn in bb. */
6633 if (NEXT_INSN (last_insn) != insn)
6634 {
6635 insn = sel_bb_end (bb);
6636 first_insn = sel_bb_head (bb);
6637 }
6638
6639 /* Remove bb tail from path. */
6640 if (added_to_path)
6641 ilist_remove (&path);
6642
6643 if (res != 1)
6644 {
6645 /* This is the case when one of the original expr is no longer available
6646 due to bookkeeping created on this branch with the same register.
6647 In the original algorithm, which doesn't have update_data_sets call
6648 on a bookkeeping block, it would simply result in returning
6649 FALSE when we've encountered a previously generated bookkeeping
6650 insn in moveop_orig_expr_not_found. */
6651 code_motion_path_driver_cleanup (&orig_ops, &path);
6652 return res;
6653 }
6654 }
6655
6656 /* Don't need it any more. */
6657 av_set_clear (&orig_ops);
6658
6659 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6660 the beginning of the basic block. */
6661 before_first = PREV_INSN (first_insn);
6662 while (insn != before_first)
6663 {
6664 if (code_motion_path_driver_info->ascend)
6665 code_motion_path_driver_info->ascend (insn, static_params);
6666
6667 insn = PREV_INSN (insn);
6668 }
6669
6670 /* Now we're at the bb head. */
6671 insn = first_insn;
6672 ilist_remove (&path);
6673 local_params_in->removed_last_insn = removed_last_insn;
6674 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6675
6676 /* This should be the very last operation as at bb head we could change
6677 the numbering by creating bookkeeping blocks. */
6678 if (removed_last_insn)
6679 insn = PREV_INSN (insn);
6680
6681 /* If we have simplified the control flow and removed the first jump insn,
6682 there's no point in marking this block in the visited blocks bitmap. */
6683 if (BLOCK_FOR_INSN (insn))
6684 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6685 return true;
6686 }
6687
6688 /* Move up the operations from ORIG_OPS set traversing the dag starting
6689 from INSN. PATH represents the edges traversed so far.
6690 DEST is the register chosen for scheduling the current expr. Insert
6691 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6692 C_EXPR is how it looks like at the given cfg point.
6693 Set *SHOULD_MOVE to indicate whether we have only disconnected
6694 one of the insns found.
6695
6696 Returns whether original instructions were found, which is asserted
6697 to be true in the caller. */
6698 static bool
6699 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6700 rtx dest, expr_t c_expr, bool *should_move)
6701 {
6702 struct moveop_static_params sparams;
6703 struct cmpd_local_params lparams;
6704 int res;
6705
6706 /* Init params for code_motion_path_driver. */
6707 sparams.dest = dest;
6708 sparams.c_expr = c_expr;
6709 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6710 #ifdef ENABLE_CHECKING
6711 sparams.failed_insn = NULL;
6712 #endif
6713 sparams.was_renamed = false;
6714 lparams.e1 = NULL;
6715
6716 /* We haven't visited any blocks yet. */
6717 bitmap_clear (code_motion_visited_blocks);
6718
6719 /* Set appropriate hooks and data. */
6720 code_motion_path_driver_info = &move_op_hooks;
6721 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6722
6723 gcc_assert (res != -1);
6724
6725 if (sparams.was_renamed)
6726 EXPR_WAS_RENAMED (expr_vliw) = true;
6727
6728 *should_move = (sparams.uid == -1);
6729
6730 return res;
6731 }
6732 \f
6733
6734 /* Functions that work with regions. */
6735
6736 /* Current number of seqno used in init_seqno and init_seqno_1. */
6737 static int cur_seqno;
6738
6739 /* A helper for init_seqno. Traverse the region starting from BB and
6740 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6741 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6742 static void
6743 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6744 {
6745 int bbi = BLOCK_TO_BB (bb->index);
6746 insn_t insn, note = bb_note (bb);
6747 insn_t succ_insn;
6748 succ_iterator si;
6749
6750 bitmap_set_bit (visited_bbs, bbi);
6751 if (blocks_to_reschedule)
6752 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6753
6754 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6755 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6756 {
6757 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6758 int succ_bbi = BLOCK_TO_BB (succ->index);
6759
6760 gcc_assert (in_current_region_p (succ));
6761
6762 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6763 {
6764 gcc_assert (succ_bbi > bbi);
6765
6766 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6767 }
6768 else if (blocks_to_reschedule)
6769 bitmap_set_bit (forced_ebb_heads, succ->index);
6770 }
6771
6772 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6773 INSN_SEQNO (insn) = cur_seqno--;
6774 }
6775
6776 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6777 blocks on which we're rescheduling when pipelining, FROM is the block where
6778 traversing region begins (it may not be the head of the region when
6779 pipelining, but the head of the loop instead).
6780
6781 Returns the maximal seqno found. */
6782 static int
6783 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6784 {
6785 sbitmap visited_bbs;
6786 bitmap_iterator bi;
6787 unsigned bbi;
6788
6789 visited_bbs = sbitmap_alloc (current_nr_blocks);
6790
6791 if (blocks_to_reschedule)
6792 {
6793 bitmap_ones (visited_bbs);
6794 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6795 {
6796 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6797 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6798 }
6799 }
6800 else
6801 {
6802 bitmap_clear (visited_bbs);
6803 from = EBB_FIRST_BB (0);
6804 }
6805
6806 cur_seqno = sched_max_luid - 1;
6807 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6808
6809 /* cur_seqno may be positive if the number of instructions is less than
6810 sched_max_luid - 1 (when rescheduling or if some instructions have been
6811 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6812 gcc_assert (cur_seqno >= 0);
6813
6814 sbitmap_free (visited_bbs);
6815 return sched_max_luid - 1;
6816 }
6817
6818 /* Initialize scheduling parameters for current region. */
6819 static void
6820 sel_setup_region_sched_flags (void)
6821 {
6822 enable_schedule_as_rhs_p = 1;
6823 bookkeeping_p = 1;
6824 pipelining_p = (bookkeeping_p
6825 && (flag_sel_sched_pipelining != 0)
6826 && current_loop_nest != NULL
6827 && loop_has_exit_edges (current_loop_nest));
6828 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6829 max_ws = MAX_WS;
6830 }
6831
6832 /* Return true if all basic blocks of current region are empty. */
6833 static bool
6834 current_region_empty_p (void)
6835 {
6836 int i;
6837 for (i = 0; i < current_nr_blocks; i++)
6838 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6839 return false;
6840
6841 return true;
6842 }
6843
6844 /* Prepare and verify loop nest for pipelining. */
6845 static void
6846 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6847 {
6848 current_loop_nest = get_loop_nest_for_rgn (rgn);
6849
6850 if (!current_loop_nest)
6851 return;
6852
6853 /* If this loop has any saved loop preheaders from nested loops,
6854 add these basic blocks to the current region. */
6855 sel_add_loop_preheaders (bbs);
6856
6857 /* Check that we're starting with a valid information. */
6858 gcc_assert (loop_latch_edge (current_loop_nest));
6859 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6860 }
6861
6862 /* Compute instruction priorities for current region. */
6863 static void
6864 sel_compute_priorities (int rgn)
6865 {
6866 sched_rgn_compute_dependencies (rgn);
6867
6868 /* Compute insn priorities in haifa style. Then free haifa style
6869 dependencies that we've calculated for this. */
6870 compute_priorities ();
6871
6872 if (sched_verbose >= 5)
6873 debug_rgn_dependencies (0);
6874
6875 free_rgn_deps ();
6876 }
6877
6878 /* Init scheduling data for RGN. Returns true when this region should not
6879 be scheduled. */
6880 static bool
6881 sel_region_init (int rgn)
6882 {
6883 int i;
6884 bb_vec_t bbs;
6885
6886 rgn_setup_region (rgn);
6887
6888 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6889 do region initialization here so the region can be bundled correctly,
6890 but we'll skip the scheduling in sel_sched_region (). */
6891 if (current_region_empty_p ())
6892 return true;
6893
6894 bbs.create (current_nr_blocks);
6895
6896 for (i = 0; i < current_nr_blocks; i++)
6897 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6898
6899 sel_init_bbs (bbs);
6900
6901 if (flag_sel_sched_pipelining)
6902 setup_current_loop_nest (rgn, &bbs);
6903
6904 sel_setup_region_sched_flags ();
6905
6906 /* Initialize luids and dependence analysis which both sel-sched and haifa
6907 need. */
6908 sched_init_luids (bbs);
6909 sched_deps_init (false);
6910
6911 /* Initialize haifa data. */
6912 rgn_setup_sched_infos ();
6913 sel_set_sched_flags ();
6914 haifa_init_h_i_d (bbs);
6915
6916 sel_compute_priorities (rgn);
6917 init_deps_global ();
6918
6919 /* Main initialization. */
6920 sel_setup_sched_infos ();
6921 sel_init_global_and_expr (bbs);
6922
6923 bbs.release ();
6924
6925 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6926
6927 /* Init correct liveness sets on each instruction of a single-block loop.
6928 This is the only situation when we can't update liveness when calling
6929 compute_live for the first insn of the loop. */
6930 if (current_loop_nest)
6931 {
6932 int header =
6933 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6934 ? 1
6935 : 0);
6936
6937 if (current_nr_blocks == header + 1)
6938 update_liveness_on_insn
6939 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6940 }
6941
6942 /* Set hooks so that no newly generated insn will go out unnoticed. */
6943 sel_register_cfg_hooks ();
6944
6945 /* !!! We call target.sched.init () for the whole region, but we invoke
6946 targetm.sched.finish () for every ebb. */
6947 if (targetm.sched.init)
6948 /* None of the arguments are actually used in any target. */
6949 targetm.sched.init (sched_dump, sched_verbose, -1);
6950
6951 first_emitted_uid = get_max_uid () + 1;
6952 preheader_removed = false;
6953
6954 /* Reset register allocation ticks array. */
6955 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6956 reg_rename_this_tick = 0;
6957
6958 bitmap_initialize (forced_ebb_heads, 0);
6959 bitmap_clear (forced_ebb_heads);
6960
6961 setup_nop_vinsn ();
6962 current_copies = BITMAP_ALLOC (NULL);
6963 current_originators = BITMAP_ALLOC (NULL);
6964 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6965
6966 return false;
6967 }
6968
6969 /* Simplify insns after the scheduling. */
6970 static void
6971 simplify_changed_insns (void)
6972 {
6973 int i;
6974
6975 for (i = 0; i < current_nr_blocks; i++)
6976 {
6977 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6978 rtx_insn *insn;
6979
6980 FOR_BB_INSNS (bb, insn)
6981 if (INSN_P (insn))
6982 {
6983 expr_t expr = INSN_EXPR (insn);
6984
6985 if (EXPR_WAS_SUBSTITUTED (expr))
6986 validate_simplify_insn (insn);
6987 }
6988 }
6989 }
6990
6991 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6992 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6993 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6994 static void
6995 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6996 {
6997 rtx_insn *head, *tail;
6998 basic_block bb1 = bb;
6999 if (sched_verbose >= 2)
7000 sel_print ("Finishing schedule in bbs: ");
7001
7002 do
7003 {
7004 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
7005
7006 if (sched_verbose >= 2)
7007 sel_print ("%d; ", bb1->index);
7008 }
7009 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7010
7011 if (sched_verbose >= 2)
7012 sel_print ("\n");
7013
7014 get_ebb_head_tail (bb, bb1, &head, &tail);
7015
7016 current_sched_info->head = head;
7017 current_sched_info->tail = tail;
7018 current_sched_info->prev_head = PREV_INSN (head);
7019 current_sched_info->next_tail = NEXT_INSN (tail);
7020 }
7021
7022 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7023 static void
7024 reset_sched_cycles_in_current_ebb (void)
7025 {
7026 int last_clock = 0;
7027 int haifa_last_clock = -1;
7028 int haifa_clock = 0;
7029 int issued_insns = 0;
7030 insn_t insn;
7031
7032 if (targetm.sched.init)
7033 {
7034 /* None of the arguments are actually used in any target.
7035 NB: We should have md_reset () hook for cases like this. */
7036 targetm.sched.init (sched_dump, sched_verbose, -1);
7037 }
7038
7039 state_reset (curr_state);
7040 advance_state (curr_state);
7041
7042 for (insn = current_sched_info->head;
7043 insn != current_sched_info->next_tail;
7044 insn = NEXT_INSN (insn))
7045 {
7046 int cost, haifa_cost;
7047 int sort_p;
7048 bool asm_p, real_insn, after_stall, all_issued;
7049 int clock;
7050
7051 if (!INSN_P (insn))
7052 continue;
7053
7054 asm_p = false;
7055 real_insn = recog_memoized (insn) >= 0;
7056 clock = INSN_SCHED_CYCLE (insn);
7057
7058 cost = clock - last_clock;
7059
7060 /* Initialize HAIFA_COST. */
7061 if (! real_insn)
7062 {
7063 asm_p = INSN_ASM_P (insn);
7064
7065 if (asm_p)
7066 /* This is asm insn which *had* to be scheduled first
7067 on the cycle. */
7068 haifa_cost = 1;
7069 else
7070 /* This is a use/clobber insn. It should not change
7071 cost. */
7072 haifa_cost = 0;
7073 }
7074 else
7075 haifa_cost = estimate_insn_cost (insn, curr_state);
7076
7077 /* Stall for whatever cycles we've stalled before. */
7078 after_stall = 0;
7079 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7080 {
7081 haifa_cost = cost;
7082 after_stall = 1;
7083 }
7084 all_issued = issued_insns == issue_rate;
7085 if (haifa_cost == 0 && all_issued)
7086 haifa_cost = 1;
7087 if (haifa_cost > 0)
7088 {
7089 int i = 0;
7090
7091 while (haifa_cost--)
7092 {
7093 advance_state (curr_state);
7094 issued_insns = 0;
7095 i++;
7096
7097 if (sched_verbose >= 2)
7098 {
7099 sel_print ("advance_state (state_transition)\n");
7100 debug_state (curr_state);
7101 }
7102
7103 /* The DFA may report that e.g. insn requires 2 cycles to be
7104 issued, but on the next cycle it says that insn is ready
7105 to go. Check this here. */
7106 if (!after_stall
7107 && real_insn
7108 && haifa_cost > 0
7109 && estimate_insn_cost (insn, curr_state) == 0)
7110 break;
7111
7112 /* When the data dependency stall is longer than the DFA stall,
7113 and when we have issued exactly issue_rate insns and stalled,
7114 it could be that after this longer stall the insn will again
7115 become unavailable to the DFA restrictions. Looks strange
7116 but happens e.g. on x86-64. So recheck DFA on the last
7117 iteration. */
7118 if ((after_stall || all_issued)
7119 && real_insn
7120 && haifa_cost == 0)
7121 haifa_cost = estimate_insn_cost (insn, curr_state);
7122 }
7123
7124 haifa_clock += i;
7125 if (sched_verbose >= 2)
7126 sel_print ("haifa clock: %d\n", haifa_clock);
7127 }
7128 else
7129 gcc_assert (haifa_cost == 0);
7130
7131 if (sched_verbose >= 2)
7132 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7133
7134 if (targetm.sched.dfa_new_cycle)
7135 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7136 haifa_last_clock, haifa_clock,
7137 &sort_p))
7138 {
7139 advance_state (curr_state);
7140 issued_insns = 0;
7141 haifa_clock++;
7142 if (sched_verbose >= 2)
7143 {
7144 sel_print ("advance_state (dfa_new_cycle)\n");
7145 debug_state (curr_state);
7146 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7147 }
7148 }
7149
7150 if (real_insn)
7151 {
7152 static state_t temp = NULL;
7153
7154 if (!temp)
7155 temp = xmalloc (dfa_state_size);
7156 memcpy (temp, curr_state, dfa_state_size);
7157
7158 cost = state_transition (curr_state, insn);
7159 if (memcmp (temp, curr_state, dfa_state_size))
7160 issued_insns++;
7161
7162 if (sched_verbose >= 2)
7163 {
7164 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7165 haifa_clock + 1);
7166 debug_state (curr_state);
7167 }
7168 gcc_assert (cost < 0);
7169 }
7170
7171 if (targetm.sched.variable_issue)
7172 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7173
7174 INSN_SCHED_CYCLE (insn) = haifa_clock;
7175
7176 last_clock = clock;
7177 haifa_last_clock = haifa_clock;
7178 }
7179 }
7180
7181 /* Put TImode markers on insns starting a new issue group. */
7182 static void
7183 put_TImodes (void)
7184 {
7185 int last_clock = -1;
7186 insn_t insn;
7187
7188 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7189 insn = NEXT_INSN (insn))
7190 {
7191 int cost, clock;
7192
7193 if (!INSN_P (insn))
7194 continue;
7195
7196 clock = INSN_SCHED_CYCLE (insn);
7197 cost = (last_clock == -1) ? 1 : clock - last_clock;
7198
7199 gcc_assert (cost >= 0);
7200
7201 if (issue_rate > 1
7202 && GET_CODE (PATTERN (insn)) != USE
7203 && GET_CODE (PATTERN (insn)) != CLOBBER)
7204 {
7205 if (reload_completed && cost > 0)
7206 PUT_MODE (insn, TImode);
7207
7208 last_clock = clock;
7209 }
7210
7211 if (sched_verbose >= 2)
7212 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7213 }
7214 }
7215
7216 /* Perform MD_FINISH on EBBs comprising current region. When
7217 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7218 to produce correct sched cycles on insns. */
7219 static void
7220 sel_region_target_finish (bool reset_sched_cycles_p)
7221 {
7222 int i;
7223 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7224
7225 for (i = 0; i < current_nr_blocks; i++)
7226 {
7227 if (bitmap_bit_p (scheduled_blocks, i))
7228 continue;
7229
7230 /* While pipelining outer loops, skip bundling for loop
7231 preheaders. Those will be rescheduled in the outer loop. */
7232 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7233 continue;
7234
7235 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7236
7237 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7238 continue;
7239
7240 if (reset_sched_cycles_p)
7241 reset_sched_cycles_in_current_ebb ();
7242
7243 if (targetm.sched.init)
7244 targetm.sched.init (sched_dump, sched_verbose, -1);
7245
7246 put_TImodes ();
7247
7248 if (targetm.sched.finish)
7249 {
7250 targetm.sched.finish (sched_dump, sched_verbose);
7251
7252 /* Extend luids so that insns generated by the target will
7253 get zero luid. */
7254 sched_extend_luids ();
7255 }
7256 }
7257
7258 BITMAP_FREE (scheduled_blocks);
7259 }
7260
7261 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7262 is true, make an additional pass emulating scheduler to get correct insn
7263 cycles for md_finish calls. */
7264 static void
7265 sel_region_finish (bool reset_sched_cycles_p)
7266 {
7267 simplify_changed_insns ();
7268 sched_finish_ready_list ();
7269 free_nop_pool ();
7270
7271 /* Free the vectors. */
7272 vec_av_set.release ();
7273 BITMAP_FREE (current_copies);
7274 BITMAP_FREE (current_originators);
7275 BITMAP_FREE (code_motion_visited_blocks);
7276 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7277 vinsn_vec_free (vec_target_unavailable_vinsns);
7278
7279 /* If LV_SET of the region head should be updated, do it now because
7280 there will be no other chance. */
7281 {
7282 succ_iterator si;
7283 insn_t insn;
7284
7285 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7286 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7287 {
7288 basic_block bb = BLOCK_FOR_INSN (insn);
7289
7290 if (!BB_LV_SET_VALID_P (bb))
7291 compute_live (insn);
7292 }
7293 }
7294
7295 /* Emulate the Haifa scheduler for bundling. */
7296 if (reload_completed)
7297 sel_region_target_finish (reset_sched_cycles_p);
7298
7299 sel_finish_global_and_expr ();
7300
7301 bitmap_clear (forced_ebb_heads);
7302
7303 free_nop_vinsn ();
7304
7305 finish_deps_global ();
7306 sched_finish_luids ();
7307 h_d_i_d.release ();
7308
7309 sel_finish_bbs ();
7310 BITMAP_FREE (blocks_to_reschedule);
7311
7312 sel_unregister_cfg_hooks ();
7313
7314 max_issue_size = 0;
7315 }
7316 \f
7317
7318 /* Functions that implement the scheduler driver. */
7319
7320 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7321 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7322 of insns scheduled -- these would be postprocessed later. */
7323 static void
7324 schedule_on_fences (flist_t fences, int max_seqno,
7325 ilist_t **scheduled_insns_tailpp)
7326 {
7327 flist_t old_fences = fences;
7328
7329 if (sched_verbose >= 1)
7330 {
7331 sel_print ("\nScheduling on fences: ");
7332 dump_flist (fences);
7333 sel_print ("\n");
7334 }
7335
7336 scheduled_something_on_previous_fence = false;
7337 for (; fences; fences = FLIST_NEXT (fences))
7338 {
7339 fence_t fence = NULL;
7340 int seqno = 0;
7341 flist_t fences2;
7342 bool first_p = true;
7343
7344 /* Choose the next fence group to schedule.
7345 The fact that insn can be scheduled only once
7346 on the cycle is guaranteed by two properties:
7347 1. seqnos of parallel groups decrease with each iteration.
7348 2. If is_ineligible_successor () sees the larger seqno, it
7349 checks if candidate insn is_in_current_fence_p (). */
7350 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7351 {
7352 fence_t f = FLIST_FENCE (fences2);
7353
7354 if (!FENCE_PROCESSED_P (f))
7355 {
7356 int i = INSN_SEQNO (FENCE_INSN (f));
7357
7358 if (first_p || i > seqno)
7359 {
7360 seqno = i;
7361 fence = f;
7362 first_p = false;
7363 }
7364 else
7365 /* ??? Seqnos of different groups should be different. */
7366 gcc_assert (1 || i != seqno);
7367 }
7368 }
7369
7370 gcc_assert (fence);
7371
7372 /* As FENCE is nonnull, SEQNO is initialized. */
7373 seqno -= max_seqno + 1;
7374 fill_insns (fence, seqno, scheduled_insns_tailpp);
7375 FENCE_PROCESSED_P (fence) = true;
7376 }
7377
7378 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7379 don't need to keep bookkeeping-invalidated and target-unavailable
7380 vinsns any more. */
7381 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7382 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7383 }
7384
7385 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7386 static void
7387 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7388 {
7389 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7390
7391 /* The first element is already processed. */
7392 while ((fences = FLIST_NEXT (fences)))
7393 {
7394 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7395
7396 if (*min_seqno > seqno)
7397 *min_seqno = seqno;
7398 else if (*max_seqno < seqno)
7399 *max_seqno = seqno;
7400 }
7401 }
7402
7403 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7404 static flist_t
7405 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7406 {
7407 flist_t old_fences = fences;
7408 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7409 int max_time = 0;
7410
7411 flist_tail_init (new_fences);
7412 for (; fences; fences = FLIST_NEXT (fences))
7413 {
7414 fence_t fence = FLIST_FENCE (fences);
7415 insn_t insn;
7416
7417 if (!FENCE_BNDS (fence))
7418 {
7419 /* This fence doesn't have any successors. */
7420 if (!FENCE_SCHEDULED_P (fence))
7421 {
7422 /* Nothing was scheduled on this fence. */
7423 int seqno;
7424
7425 insn = FENCE_INSN (fence);
7426 seqno = INSN_SEQNO (insn);
7427 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7428
7429 if (sched_verbose >= 1)
7430 sel_print ("Fence %d[%d] has not changed\n",
7431 INSN_UID (insn),
7432 BLOCK_NUM (insn));
7433 move_fence_to_fences (fences, new_fences);
7434 }
7435 }
7436 else
7437 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7438 max_time = MAX (max_time, FENCE_CYCLE (fence));
7439 }
7440
7441 flist_clear (&old_fences);
7442 *ptime = max_time;
7443 return FLIST_TAIL_HEAD (new_fences);
7444 }
7445
7446 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7447 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7448 the highest seqno used in a region. Return the updated highest seqno. */
7449 static int
7450 update_seqnos_and_stage (int min_seqno, int max_seqno,
7451 int highest_seqno_in_use,
7452 ilist_t *pscheduled_insns)
7453 {
7454 int new_hs;
7455 ilist_iterator ii;
7456 insn_t insn;
7457
7458 /* Actually, new_hs is the seqno of the instruction, that was
7459 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7460 if (*pscheduled_insns)
7461 {
7462 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7463 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7464 gcc_assert (new_hs > highest_seqno_in_use);
7465 }
7466 else
7467 new_hs = highest_seqno_in_use;
7468
7469 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7470 {
7471 gcc_assert (INSN_SEQNO (insn) < 0);
7472 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7473 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7474
7475 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7476 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7477 require > 1GB of memory e.g. on limit-fnargs.c. */
7478 if (! pipelining_p)
7479 free_data_for_scheduled_insn (insn);
7480 }
7481
7482 ilist_clear (pscheduled_insns);
7483 global_level++;
7484
7485 return new_hs;
7486 }
7487
7488 /* The main driver for scheduling a region. This function is responsible
7489 for correct propagation of fences (i.e. scheduling points) and creating
7490 a group of parallel insns at each of them. It also supports
7491 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7492 of scheduling. */
7493 static void
7494 sel_sched_region_2 (int orig_max_seqno)
7495 {
7496 int highest_seqno_in_use = orig_max_seqno;
7497 int max_time = 0;
7498
7499 stat_bookkeeping_copies = 0;
7500 stat_insns_needed_bookkeeping = 0;
7501 stat_renamed_scheduled = 0;
7502 stat_substitutions_total = 0;
7503 num_insns_scheduled = 0;
7504
7505 while (fences)
7506 {
7507 int min_seqno, max_seqno;
7508 ilist_t scheduled_insns = NULL;
7509 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7510
7511 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7512 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7513 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7514 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7515 highest_seqno_in_use,
7516 &scheduled_insns);
7517 }
7518
7519 if (sched_verbose >= 1)
7520 {
7521 sel_print ("Total scheduling time: %d cycles\n", max_time);
7522 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7523 "bookkeeping, %d insns renamed, %d insns substituted\n",
7524 stat_bookkeeping_copies,
7525 stat_insns_needed_bookkeeping,
7526 stat_renamed_scheduled,
7527 stat_substitutions_total);
7528 }
7529 }
7530
7531 /* Schedule a region. When pipelining, search for possibly never scheduled
7532 bookkeeping code and schedule it. Reschedule pipelined code without
7533 pipelining after. */
7534 static void
7535 sel_sched_region_1 (void)
7536 {
7537 int orig_max_seqno;
7538
7539 /* Remove empty blocks that might be in the region from the beginning. */
7540 purge_empty_blocks ();
7541
7542 orig_max_seqno = init_seqno (NULL, NULL);
7543 gcc_assert (orig_max_seqno >= 1);
7544
7545 /* When pipelining outer loops, create fences on the loop header,
7546 not preheader. */
7547 fences = NULL;
7548 if (current_loop_nest)
7549 init_fences (BB_END (EBB_FIRST_BB (0)));
7550 else
7551 init_fences (bb_note (EBB_FIRST_BB (0)));
7552 global_level = 1;
7553
7554 sel_sched_region_2 (orig_max_seqno);
7555
7556 gcc_assert (fences == NULL);
7557
7558 if (pipelining_p)
7559 {
7560 int i;
7561 basic_block bb;
7562 struct flist_tail_def _new_fences;
7563 flist_tail_t new_fences = &_new_fences;
7564 bool do_p = true;
7565
7566 pipelining_p = false;
7567 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7568 bookkeeping_p = false;
7569 enable_schedule_as_rhs_p = false;
7570
7571 /* Schedule newly created code, that has not been scheduled yet. */
7572 do_p = true;
7573
7574 while (do_p)
7575 {
7576 do_p = false;
7577
7578 for (i = 0; i < current_nr_blocks; i++)
7579 {
7580 basic_block bb = EBB_FIRST_BB (i);
7581
7582 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7583 {
7584 if (! bb_ends_ebb_p (bb))
7585 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7586 if (sel_bb_empty_p (bb))
7587 {
7588 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7589 continue;
7590 }
7591 clear_outdated_rtx_info (bb);
7592 if (sel_insn_is_speculation_check (BB_END (bb))
7593 && JUMP_P (BB_END (bb)))
7594 bitmap_set_bit (blocks_to_reschedule,
7595 BRANCH_EDGE (bb)->dest->index);
7596 }
7597 else if (! sel_bb_empty_p (bb)
7598 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7599 bitmap_set_bit (blocks_to_reschedule, bb->index);
7600 }
7601
7602 for (i = 0; i < current_nr_blocks; i++)
7603 {
7604 bb = EBB_FIRST_BB (i);
7605
7606 /* While pipelining outer loops, skip bundling for loop
7607 preheaders. Those will be rescheduled in the outer
7608 loop. */
7609 if (sel_is_loop_preheader_p (bb))
7610 {
7611 clear_outdated_rtx_info (bb);
7612 continue;
7613 }
7614
7615 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7616 {
7617 flist_tail_init (new_fences);
7618
7619 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7620
7621 /* Mark BB as head of the new ebb. */
7622 bitmap_set_bit (forced_ebb_heads, bb->index);
7623
7624 gcc_assert (fences == NULL);
7625
7626 init_fences (bb_note (bb));
7627
7628 sel_sched_region_2 (orig_max_seqno);
7629
7630 do_p = true;
7631 break;
7632 }
7633 }
7634 }
7635 }
7636 }
7637
7638 /* Schedule the RGN region. */
7639 void
7640 sel_sched_region (int rgn)
7641 {
7642 bool schedule_p;
7643 bool reset_sched_cycles_p;
7644
7645 if (sel_region_init (rgn))
7646 return;
7647
7648 if (sched_verbose >= 1)
7649 sel_print ("Scheduling region %d\n", rgn);
7650
7651 schedule_p = (!sched_is_disabled_for_current_region_p ()
7652 && dbg_cnt (sel_sched_region_cnt));
7653 reset_sched_cycles_p = pipelining_p;
7654 if (schedule_p)
7655 sel_sched_region_1 ();
7656 else
7657 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7658 reset_sched_cycles_p = true;
7659
7660 sel_region_finish (reset_sched_cycles_p);
7661 }
7662
7663 /* Perform global init for the scheduler. */
7664 static void
7665 sel_global_init (void)
7666 {
7667 calculate_dominance_info (CDI_DOMINATORS);
7668 alloc_sched_pools ();
7669
7670 /* Setup the infos for sched_init. */
7671 sel_setup_sched_infos ();
7672 setup_sched_dump ();
7673
7674 sched_rgn_init (false);
7675 sched_init ();
7676
7677 sched_init_bbs ();
7678 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7679 after_recovery = 0;
7680 can_issue_more = issue_rate;
7681
7682 sched_extend_target ();
7683 sched_deps_init (true);
7684 setup_nop_and_exit_insns ();
7685 sel_extend_global_bb_info ();
7686 init_lv_sets ();
7687 init_hard_regs_data ();
7688 }
7689
7690 /* Free the global data of the scheduler. */
7691 static void
7692 sel_global_finish (void)
7693 {
7694 free_bb_note_pool ();
7695 free_lv_sets ();
7696 sel_finish_global_bb_info ();
7697
7698 free_regset_pool ();
7699 free_nop_and_exit_insns ();
7700
7701 sched_rgn_finish ();
7702 sched_deps_finish ();
7703 sched_finish ();
7704
7705 if (current_loops)
7706 sel_finish_pipelining ();
7707
7708 free_sched_pools ();
7709 free_dominance_info (CDI_DOMINATORS);
7710 }
7711
7712 /* Return true when we need to skip selective scheduling. Used for debugging. */
7713 bool
7714 maybe_skip_selective_scheduling (void)
7715 {
7716 return ! dbg_cnt (sel_sched_cnt);
7717 }
7718
7719 /* The entry point. */
7720 void
7721 run_selective_scheduling (void)
7722 {
7723 int rgn;
7724
7725 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7726 return;
7727
7728 sel_global_init ();
7729
7730 for (rgn = 0; rgn < nr_regions; rgn++)
7731 sel_sched_region (rgn);
7732
7733 sel_global_finish ();
7734 }
7735
7736 #endif