Remove doubled up words.
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "rtl-error.h"
26 #include "tm_p.h"
27 #include "hard-reg-set.h"
28 #include "regs.h"
29 #include "function.h"
30 #include "flags.h"
31 #include "insn-config.h"
32 #include "insn-attr.h"
33 #include "except.h"
34 #include "recog.h"
35 #include "params.h"
36 #include "target.h"
37 #include "output.h"
38 #include "timevar.h"
39 #include "tree-pass.h"
40 #include "sched-int.h"
41 #include "ggc.h"
42 #include "tree.h"
43 #include "vec.h"
44 #include "langhooks.h"
45 #include "rtlhooks-def.h"
46 #include "output.h"
47 #include "emit-rtl.h"
48
49 #ifdef INSN_SCHEDULING
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252 */
253
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
256
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
259
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
262 \f
263
264 /* Definitions of local types and macros. */
265
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
284 {
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurence counter. */
289 int n;
290 };
291
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
297 {
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
321 };
322
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
326 {
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335 };
336
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
340 \f
341
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
349 {
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367 };
368
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
371 {
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389 };
390
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
393 {
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402 };
403
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
411 {
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443 };
444
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
463
464 /* Current fences. */
465 flist_t fences;
466
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
469
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
477
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
480
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
488
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
491
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
494
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
497
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
501
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
504
505 /* A vector of expressions is used to be able to sort them. */
506 DEF_VEC_P(expr_t);
507 DEF_VEC_ALLOC_P(expr_t,heap);
508 static VEC(expr_t, heap) *vec_av_set = NULL;
509
510 /* A vector of vinsns is used to hold temporary lists of vinsns. */
511 DEF_VEC_P(vinsn_t);
512 DEF_VEC_ALLOC_P(vinsn_t,heap);
513 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
514
515 /* This vector has the exprs which may still present in av_sets, but actually
516 can't be moved up due to bookkeeping created during code motion to another
517 fence. See comment near the call to update_and_record_unavailable_insns
518 for the detailed explanations. */
519 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
520
521 /* This vector has vinsns which are scheduled with renaming on the first fence
522 and then seen on the second. For expressions with such vinsns, target
523 availability information may be wrong. */
524 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
525
526 /* Vector to store temporary nops inserted in move_op to prevent removal
527 of empty bbs. */
528 DEF_VEC_P(insn_t);
529 DEF_VEC_ALLOC_P(insn_t,heap);
530 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
531
532 /* These bitmaps record original instructions scheduled on the current
533 iteration and bookkeeping copies created by them. */
534 static bitmap current_originators = NULL;
535 static bitmap current_copies = NULL;
536
537 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
538 visit them afterwards. */
539 static bitmap code_motion_visited_blocks = NULL;
540
541 /* Variables to accumulate different statistics. */
542
543 /* The number of bookkeeping copies created. */
544 static int stat_bookkeeping_copies;
545
546 /* The number of insns that required bookkeeiping for their scheduling. */
547 static int stat_insns_needed_bookkeeping;
548
549 /* The number of insns that got renamed. */
550 static int stat_renamed_scheduled;
551
552 /* The number of substitutions made during scheduling. */
553 static int stat_substitutions_total;
554 \f
555
556 /* Forward declarations of static functions. */
557 static bool rtx_ok_for_substitution_p (rtx, rtx);
558 static int sel_rank_for_schedule (const void *, const void *);
559 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
560 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
561
562 static rtx get_dest_from_orig_ops (av_set_t);
563 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
564 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
565 def_list_t *);
566 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
567 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
568 cmpd_local_params_p, void *);
569 static void sel_sched_region_1 (void);
570 static void sel_sched_region_2 (int);
571 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
572
573 static void debug_state (state_t);
574 \f
575
576 /* Functions that work with fences. */
577
578 /* Advance one cycle on FENCE. */
579 static void
580 advance_one_cycle (fence_t fence)
581 {
582 unsigned i;
583 int cycle;
584 rtx insn;
585
586 advance_state (FENCE_STATE (fence));
587 cycle = ++FENCE_CYCLE (fence);
588 FENCE_ISSUED_INSNS (fence) = 0;
589 FENCE_STARTS_CYCLE_P (fence) = 1;
590 can_issue_more = issue_rate;
591 FENCE_ISSUE_MORE (fence) = can_issue_more;
592
593 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
594 {
595 if (INSN_READY_CYCLE (insn) < cycle)
596 {
597 remove_from_deps (FENCE_DC (fence), insn);
598 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
599 continue;
600 }
601 i++;
602 }
603 if (sched_verbose >= 2)
604 {
605 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
606 debug_state (FENCE_STATE (fence));
607 }
608 }
609
610 /* Returns true when SUCC in a fallthru bb of INSN, possibly
611 skipping empty basic blocks. */
612 static bool
613 in_fallthru_bb_p (rtx insn, rtx succ)
614 {
615 basic_block bb = BLOCK_FOR_INSN (insn);
616 edge e;
617
618 if (bb == BLOCK_FOR_INSN (succ))
619 return true;
620
621 e = find_fallthru_edge_from (bb);
622 if (e)
623 bb = e->dest;
624 else
625 return false;
626
627 while (sel_bb_empty_p (bb))
628 bb = bb->next_bb;
629
630 return bb == BLOCK_FOR_INSN (succ);
631 }
632
633 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
634 When a successor will continue a ebb, transfer all parameters of a fence
635 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
636 of scheduling helping to distinguish between the old and the new code. */
637 static void
638 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
639 int orig_max_seqno)
640 {
641 bool was_here_p = false;
642 insn_t insn = NULL_RTX;
643 insn_t succ;
644 succ_iterator si;
645 ilist_iterator ii;
646 fence_t fence = FLIST_FENCE (old_fences);
647 basic_block bb;
648
649 /* Get the only element of FENCE_BNDS (fence). */
650 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
651 {
652 gcc_assert (!was_here_p);
653 was_here_p = true;
654 }
655 gcc_assert (was_here_p && insn != NULL_RTX);
656
657 /* When in the "middle" of the block, just move this fence
658 to the new list. */
659 bb = BLOCK_FOR_INSN (insn);
660 if (! sel_bb_end_p (insn)
661 || (single_succ_p (bb)
662 && single_pred_p (single_succ (bb))))
663 {
664 insn_t succ;
665
666 succ = (sel_bb_end_p (insn)
667 ? sel_bb_head (single_succ (bb))
668 : NEXT_INSN (insn));
669
670 if (INSN_SEQNO (succ) > 0
671 && INSN_SEQNO (succ) <= orig_max_seqno
672 && INSN_SCHED_TIMES (succ) <= 0)
673 {
674 FENCE_INSN (fence) = succ;
675 move_fence_to_fences (old_fences, new_fences);
676
677 if (sched_verbose >= 1)
678 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
679 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
680 }
681 return;
682 }
683
684 /* Otherwise copy fence's structures to (possibly) multiple successors. */
685 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
686 {
687 int seqno = INSN_SEQNO (succ);
688
689 if (0 < seqno && seqno <= orig_max_seqno
690 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
691 {
692 bool b = (in_same_ebb_p (insn, succ)
693 || in_fallthru_bb_p (insn, succ));
694
695 if (sched_verbose >= 1)
696 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
697 INSN_UID (insn), INSN_UID (succ),
698 BLOCK_NUM (succ), b ? "continue" : "reset");
699
700 if (b)
701 add_dirty_fence_to_fences (new_fences, succ, fence);
702 else
703 {
704 /* Mark block of the SUCC as head of the new ebb. */
705 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
706 add_clean_fence_to_fences (new_fences, succ, fence);
707 }
708 }
709 }
710 }
711 \f
712
713 /* Functions to support substitution. */
714
715 /* Returns whether INSN with dependence status DS is eligible for
716 substitution, i.e. it's a copy operation x := y, and RHS that is
717 moved up through this insn should be substituted. */
718 static bool
719 can_substitute_through_p (insn_t insn, ds_t ds)
720 {
721 /* We can substitute only true dependencies. */
722 if ((ds & DEP_OUTPUT)
723 || (ds & DEP_ANTI)
724 || ! INSN_RHS (insn)
725 || ! INSN_LHS (insn))
726 return false;
727
728 /* Now we just need to make sure the INSN_RHS consists of only one
729 simple REG rtx. */
730 if (REG_P (INSN_LHS (insn))
731 && REG_P (INSN_RHS (insn)))
732 return true;
733 return false;
734 }
735
736 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
737 source (if INSN is eligible for substitution). Returns TRUE if
738 substitution was actually performed, FALSE otherwise. Substitution might
739 be not performed because it's either EXPR' vinsn doesn't contain INSN's
740 destination or the resulting insn is invalid for the target machine.
741 When UNDO is true, perform unsubstitution instead (the difference is in
742 the part of rtx on which validate_replace_rtx is called). */
743 static bool
744 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
745 {
746 rtx *where;
747 bool new_insn_valid;
748 vinsn_t *vi = &EXPR_VINSN (expr);
749 bool has_rhs = VINSN_RHS (*vi) != NULL;
750 rtx old, new_rtx;
751
752 /* Do not try to replace in SET_DEST. Although we'll choose new
753 register for the RHS, we don't want to change RHS' original reg.
754 If the insn is not SET, we may still be able to substitute something
755 in it, and if we're here (don't have deps), it doesn't write INSN's
756 dest. */
757 where = (has_rhs
758 ? &VINSN_RHS (*vi)
759 : &PATTERN (VINSN_INSN_RTX (*vi)));
760 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
761
762 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
763 if (rtx_ok_for_substitution_p (old, *where))
764 {
765 rtx new_insn;
766 rtx *where_replace;
767
768 /* We should copy these rtxes before substitution. */
769 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
770 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
771
772 /* Where we'll replace.
773 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
774 used instead of SET_SRC. */
775 where_replace = (has_rhs
776 ? &SET_SRC (PATTERN (new_insn))
777 : &PATTERN (new_insn));
778
779 new_insn_valid
780 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
781 new_insn);
782
783 /* ??? Actually, constrain_operands result depends upon choice of
784 destination register. E.g. if we allow single register to be an rhs,
785 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
786 in invalid insn dx=dx, so we'll loose this rhs here.
787 Just can't come up with significant testcase for this, so just
788 leaving it for now. */
789 if (new_insn_valid)
790 {
791 change_vinsn_in_expr (expr,
792 create_vinsn_from_insn_rtx (new_insn, false));
793
794 /* Do not allow clobbering the address register of speculative
795 insns. */
796 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
797 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
798 expr_dest_regno (expr)))
799 EXPR_TARGET_AVAILABLE (expr) = false;
800
801 return true;
802 }
803 else
804 return false;
805 }
806 else
807 return false;
808 }
809
810 /* Helper function for count_occurences_equiv. */
811 static int
812 count_occurrences_1 (rtx *cur_rtx, void *arg)
813 {
814 rtx_search_arg_p p = (rtx_search_arg_p) arg;
815
816 /* The last param FOR_GCSE is true, because otherwise it performs excessive
817 substitutions like
818 r8 = r33
819 r16 = r33
820 for the last insn it presumes r33 equivalent to r8, so it changes it to
821 r33. Actually, there's no change, but it spoils debugging. */
822 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
823 {
824 /* Bail out if we occupy more than one register. */
825 if (REG_P (*cur_rtx)
826 && HARD_REGISTER_P (*cur_rtx)
827 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
828 {
829 p->n = 0;
830 return 1;
831 }
832
833 p->n++;
834
835 /* Do not traverse subexprs. */
836 return -1;
837 }
838
839 if (GET_CODE (*cur_rtx) == SUBREG
840 && REG_P (p->x)
841 && (!REG_P (SUBREG_REG (*cur_rtx))
842 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
843 {
844 /* ??? Do not support substituting regs inside subregs. In that case,
845 simplify_subreg will be called by validate_replace_rtx, and
846 unsubstitution will fail later. */
847 p->n = 0;
848 return 1;
849 }
850
851 /* Continue search. */
852 return 0;
853 }
854
855 /* Return the number of places WHAT appears within WHERE.
856 Bail out when we found a reference occupying several hard registers. */
857 static int
858 count_occurrences_equiv (rtx what, rtx where)
859 {
860 struct rtx_search_arg arg;
861
862 arg.x = what;
863 arg.n = 0;
864
865 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
866
867 return arg.n;
868 }
869
870 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
871 static bool
872 rtx_ok_for_substitution_p (rtx what, rtx where)
873 {
874 return (count_occurrences_equiv (what, where) > 0);
875 }
876 \f
877
878 /* Functions to support register renaming. */
879
880 /* Substitute VI's set source with REGNO. Returns newly created pattern
881 that has REGNO as its source. */
882 static rtx
883 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
884 {
885 rtx lhs_rtx;
886 rtx pattern;
887 rtx insn_rtx;
888
889 lhs_rtx = copy_rtx (VINSN_LHS (vi));
890
891 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
892 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
893
894 return insn_rtx;
895 }
896
897 /* Returns whether INSN's src can be replaced with register number
898 NEW_SRC_REG. E.g. the following insn is valid for i386:
899
900 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
901 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
902 (reg:SI 0 ax [orig:770 c1 ] [770]))
903 (const_int 288 [0x120])) [0 str S1 A8])
904 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
905 (nil))
906
907 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
908 because of operand constraints:
909
910 (define_insn "*movqi_1"
911 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
912 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
913 )]
914
915 So do constrain_operands here, before choosing NEW_SRC_REG as best
916 reg for rhs. */
917
918 static bool
919 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
920 {
921 vinsn_t vi = INSN_VINSN (insn);
922 enum machine_mode mode;
923 rtx dst_loc;
924 bool res;
925
926 gcc_assert (VINSN_SEPARABLE_P (vi));
927
928 get_dest_and_mode (insn, &dst_loc, &mode);
929 gcc_assert (mode == GET_MODE (new_src_reg));
930
931 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
932 return true;
933
934 /* See whether SET_SRC can be replaced with this register. */
935 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
936 res = verify_changes (0);
937 cancel_changes (0);
938
939 return res;
940 }
941
942 /* Returns whether INSN still be valid after replacing it's DEST with
943 register NEW_REG. */
944 static bool
945 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
946 {
947 vinsn_t vi = INSN_VINSN (insn);
948 bool res;
949
950 /* We should deal here only with separable insns. */
951 gcc_assert (VINSN_SEPARABLE_P (vi));
952 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
953
954 /* See whether SET_DEST can be replaced with this register. */
955 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
956 res = verify_changes (0);
957 cancel_changes (0);
958
959 return res;
960 }
961
962 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
963 static rtx
964 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
965 {
966 rtx rhs_rtx;
967 rtx pattern;
968 rtx insn_rtx;
969
970 rhs_rtx = copy_rtx (VINSN_RHS (vi));
971
972 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
973 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
974
975 return insn_rtx;
976 }
977
978 /* Substitute lhs in the given expression EXPR for the register with number
979 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
980 static void
981 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
982 {
983 rtx insn_rtx;
984 vinsn_t vinsn;
985
986 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
987 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
988
989 change_vinsn_in_expr (expr, vinsn);
990 EXPR_WAS_RENAMED (expr) = 1;
991 EXPR_TARGET_AVAILABLE (expr) = 1;
992 }
993
994 /* Returns whether VI writes either one of the USED_REGS registers or,
995 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
996 static bool
997 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
998 HARD_REG_SET unavailable_hard_regs)
999 {
1000 unsigned regno;
1001 reg_set_iterator rsi;
1002
1003 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1004 {
1005 if (REGNO_REG_SET_P (used_regs, regno))
1006 return true;
1007 if (HARD_REGISTER_NUM_P (regno)
1008 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1009 return true;
1010 }
1011
1012 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1013 {
1014 if (REGNO_REG_SET_P (used_regs, regno))
1015 return true;
1016 if (HARD_REGISTER_NUM_P (regno)
1017 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1018 return true;
1019 }
1020
1021 return false;
1022 }
1023
1024 /* Returns register class of the output register in INSN.
1025 Returns NO_REGS for call insns because some targets have constraints on
1026 destination register of a call insn.
1027
1028 Code adopted from regrename.c::build_def_use. */
1029 static enum reg_class
1030 get_reg_class (rtx insn)
1031 {
1032 int alt, i, n_ops;
1033
1034 extract_insn (insn);
1035 if (! constrain_operands (1))
1036 fatal_insn_not_found (insn);
1037 preprocess_constraints ();
1038 alt = which_alternative;
1039 n_ops = recog_data.n_operands;
1040
1041 for (i = 0; i < n_ops; ++i)
1042 {
1043 int matches = recog_op_alt[i][alt].matches;
1044 if (matches >= 0)
1045 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1046 }
1047
1048 if (asm_noperands (PATTERN (insn)) > 0)
1049 {
1050 for (i = 0; i < n_ops; i++)
1051 if (recog_data.operand_type[i] == OP_OUT)
1052 {
1053 rtx *loc = recog_data.operand_loc[i];
1054 rtx op = *loc;
1055 enum reg_class cl = recog_op_alt[i][alt].cl;
1056
1057 if (REG_P (op)
1058 && REGNO (op) == ORIGINAL_REGNO (op))
1059 continue;
1060
1061 return cl;
1062 }
1063 }
1064 else if (!CALL_P (insn))
1065 {
1066 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1067 {
1068 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1069 enum reg_class cl = recog_op_alt[opn][alt].cl;
1070
1071 if (recog_data.operand_type[opn] == OP_OUT ||
1072 recog_data.operand_type[opn] == OP_INOUT)
1073 return cl;
1074 }
1075 }
1076
1077 /* Insns like
1078 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1079 may result in returning NO_REGS, cause flags is written implicitly through
1080 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1081 return NO_REGS;
1082 }
1083
1084 #ifdef HARD_REGNO_RENAME_OK
1085 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1086 static void
1087 init_hard_regno_rename (int regno)
1088 {
1089 int cur_reg;
1090
1091 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1092
1093 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1094 {
1095 /* We are not interested in renaming in other regs. */
1096 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1097 continue;
1098
1099 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1100 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1101 }
1102 }
1103 #endif
1104
1105 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1106 data first. */
1107 static inline bool
1108 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1109 {
1110 #ifdef HARD_REGNO_RENAME_OK
1111 /* Check whether this is all calculated. */
1112 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1113 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1114
1115 init_hard_regno_rename (from);
1116
1117 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1118 #else
1119 return true;
1120 #endif
1121 }
1122
1123 /* Calculate set of registers that are capable of holding MODE. */
1124 static void
1125 init_regs_for_mode (enum machine_mode mode)
1126 {
1127 int cur_reg;
1128
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1130 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1131
1132 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1133 {
1134 int nregs = hard_regno_nregs[cur_reg][mode];
1135 int i;
1136
1137 for (i = nregs - 1; i >= 0; --i)
1138 if (fixed_regs[cur_reg + i]
1139 || global_regs[cur_reg + i]
1140 /* Can't use regs which aren't saved by
1141 the prologue. */
1142 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1143 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1144 it affects aliasing globally and invalidates all AV sets. */
1145 || get_reg_base_value (cur_reg + i)
1146 #ifdef LEAF_REGISTERS
1147 /* We can't use a non-leaf register if we're in a
1148 leaf function. */
1149 || (current_function_is_leaf
1150 && !LEAF_REGISTERS[cur_reg + i])
1151 #endif
1152 )
1153 break;
1154
1155 if (i >= 0)
1156 continue;
1157
1158 /* See whether it accepts all modes that occur in
1159 original insns. */
1160 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1161 continue;
1162
1163 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1164 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1165 cur_reg);
1166
1167 /* If the CUR_REG passed all the checks above,
1168 then it's ok. */
1169 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1170 }
1171
1172 sel_hrd.regs_for_mode_ok[mode] = true;
1173 }
1174
1175 /* Init all register sets gathered in HRD. */
1176 static void
1177 init_hard_regs_data (void)
1178 {
1179 int cur_reg = 0;
1180 int cur_mode = 0;
1181
1182 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1183 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1184 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1185 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1186
1187 /* Initialize registers that are valid based on mode when this is
1188 really needed. */
1189 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1190 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1191
1192 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1193 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1194 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1195
1196 #ifdef STACK_REGS
1197 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1198
1199 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1200 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1201 #endif
1202 }
1203
1204 /* Mark hardware regs in REG_RENAME_P that are not suitable
1205 for renaming rhs in INSN due to hardware restrictions (register class,
1206 modes compatibility etc). This doesn't affect original insn's dest reg,
1207 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1208 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1209 Registers that are in used_regs are always marked in
1210 unavailable_hard_regs as well. */
1211
1212 static void
1213 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1214 regset used_regs ATTRIBUTE_UNUSED)
1215 {
1216 enum machine_mode mode;
1217 enum reg_class cl = NO_REGS;
1218 rtx orig_dest;
1219 unsigned cur_reg, regno;
1220 hard_reg_set_iterator hrsi;
1221
1222 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1223 gcc_assert (reg_rename_p);
1224
1225 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1226
1227 /* We have decided not to rename 'mem = something;' insns, as 'something'
1228 is usually a register. */
1229 if (!REG_P (orig_dest))
1230 return;
1231
1232 regno = REGNO (orig_dest);
1233
1234 /* If before reload, don't try to work with pseudos. */
1235 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1236 return;
1237
1238 if (reload_completed)
1239 cl = get_reg_class (def->orig_insn);
1240
1241 /* Stop if the original register is one of the fixed_regs, global_regs or
1242 frame pointer, or we could not discover its class. */
1243 if (fixed_regs[regno]
1244 || global_regs[regno]
1245 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1246 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1247 #else
1248 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1249 #endif
1250 || (reload_completed && cl == NO_REGS))
1251 {
1252 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1253
1254 /* Give a chance for original register, if it isn't in used_regs. */
1255 if (!def->crosses_call)
1256 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1257
1258 return;
1259 }
1260
1261 /* If something allocated on stack in this function, mark frame pointer
1262 register unavailable, considering also modes.
1263 FIXME: it is enough to do this once per all original defs. */
1264 if (frame_pointer_needed)
1265 {
1266 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1267 Pmode, FRAME_POINTER_REGNUM);
1268
1269 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1270 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1271 Pmode, HARD_FRAME_POINTER_IS_FRAME_POINTER);
1272 }
1273
1274 #ifdef STACK_REGS
1275 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1276 is equivalent to as if all stack regs were in this set.
1277 I.e. no stack register can be renamed, and even if it's an original
1278 register here we make sure it won't be lifted over it's previous def
1279 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1280 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1281 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1282 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1283 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1284 sel_hrd.stack_regs);
1285 #endif
1286
1287 /* If there's a call on this path, make regs from call_used_reg_set
1288 unavailable. */
1289 if (def->crosses_call)
1290 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1291 call_used_reg_set);
1292
1293 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1294 but not register classes. */
1295 if (!reload_completed)
1296 return;
1297
1298 /* Leave regs as 'available' only from the current
1299 register class. */
1300 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1301 reg_class_contents[cl]);
1302
1303 mode = GET_MODE (orig_dest);
1304
1305 /* Leave only registers available for this mode. */
1306 if (!sel_hrd.regs_for_mode_ok[mode])
1307 init_regs_for_mode (mode);
1308 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1309 sel_hrd.regs_for_mode[mode]);
1310
1311 /* Exclude registers that are partially call clobbered. */
1312 if (def->crosses_call
1313 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1314 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1315 sel_hrd.regs_for_call_clobbered[mode]);
1316
1317 /* Leave only those that are ok to rename. */
1318 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1319 0, cur_reg, hrsi)
1320 {
1321 int nregs;
1322 int i;
1323
1324 nregs = hard_regno_nregs[cur_reg][mode];
1325 gcc_assert (nregs > 0);
1326
1327 for (i = nregs - 1; i >= 0; --i)
1328 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1329 break;
1330
1331 if (i >= 0)
1332 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1333 cur_reg);
1334 }
1335
1336 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1337 reg_rename_p->unavailable_hard_regs);
1338
1339 /* Regno is always ok from the renaming part of view, but it really
1340 could be in *unavailable_hard_regs already, so set it here instead
1341 of there. */
1342 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1343 }
1344
1345 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1346 best register more recently than REG2. */
1347 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1348
1349 /* Indicates the number of times renaming happened before the current one. */
1350 static int reg_rename_this_tick;
1351
1352 /* Choose the register among free, that is suitable for storing
1353 the rhs value.
1354
1355 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1356 originally appears. There could be multiple original operations
1357 for single rhs since we moving it up and merging along different
1358 paths.
1359
1360 Some code is adapted from regrename.c (regrename_optimize).
1361 If original register is available, function returns it.
1362 Otherwise it performs the checks, so the new register should
1363 comply with the following:
1364 - it should not violate any live ranges (such registers are in
1365 REG_RENAME_P->available_for_renaming set);
1366 - it should not be in the HARD_REGS_USED regset;
1367 - it should be in the class compatible with original uses;
1368 - it should not be clobbered through reference with different mode;
1369 - if we're in the leaf function, then the new register should
1370 not be in the LEAF_REGISTERS;
1371 - etc.
1372
1373 If several registers meet the conditions, the register with smallest
1374 tick is returned to achieve more even register allocation.
1375
1376 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1377
1378 If no register satisfies the above conditions, NULL_RTX is returned. */
1379 static rtx
1380 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1381 struct reg_rename *reg_rename_p,
1382 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1383 {
1384 int best_new_reg;
1385 unsigned cur_reg;
1386 enum machine_mode mode = VOIDmode;
1387 unsigned regno, i, n;
1388 hard_reg_set_iterator hrsi;
1389 def_list_iterator di;
1390 def_t def;
1391
1392 /* If original register is available, return it. */
1393 *is_orig_reg_p_ptr = true;
1394
1395 FOR_EACH_DEF (def, di, original_insns)
1396 {
1397 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1398
1399 gcc_assert (REG_P (orig_dest));
1400
1401 /* Check that all original operations have the same mode.
1402 This is done for the next loop; if we'd return from this
1403 loop, we'd check only part of them, but in this case
1404 it doesn't matter. */
1405 if (mode == VOIDmode)
1406 mode = GET_MODE (orig_dest);
1407 gcc_assert (mode == GET_MODE (orig_dest));
1408
1409 regno = REGNO (orig_dest);
1410 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1411 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1412 break;
1413
1414 /* All hard registers are available. */
1415 if (i == n)
1416 {
1417 gcc_assert (mode != VOIDmode);
1418
1419 /* Hard registers should not be shared. */
1420 return gen_rtx_REG (mode, regno);
1421 }
1422 }
1423
1424 *is_orig_reg_p_ptr = false;
1425 best_new_reg = -1;
1426
1427 /* Among all available regs choose the register that was
1428 allocated earliest. */
1429 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1430 0, cur_reg, hrsi)
1431 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1432 {
1433 /* Check that all hard regs for mode are available. */
1434 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1435 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1436 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1437 cur_reg + i))
1438 break;
1439
1440 if (i < n)
1441 continue;
1442
1443 /* All hard registers are available. */
1444 if (best_new_reg < 0
1445 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1446 {
1447 best_new_reg = cur_reg;
1448
1449 /* Return immediately when we know there's no better reg. */
1450 if (! reg_rename_tick[best_new_reg])
1451 break;
1452 }
1453 }
1454
1455 if (best_new_reg >= 0)
1456 {
1457 /* Use the check from the above loop. */
1458 gcc_assert (mode != VOIDmode);
1459 return gen_rtx_REG (mode, best_new_reg);
1460 }
1461
1462 return NULL_RTX;
1463 }
1464
1465 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1466 assumptions about available registers in the function. */
1467 static rtx
1468 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1469 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1470 {
1471 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1472 original_insns, is_orig_reg_p_ptr);
1473
1474 /* FIXME loop over hard_regno_nregs here. */
1475 gcc_assert (best_reg == NULL_RTX
1476 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1477
1478 return best_reg;
1479 }
1480
1481 /* Choose the pseudo register for storing rhs value. As this is supposed
1482 to work before reload, we return either the original register or make
1483 the new one. The parameters are the same that in choose_nest_reg_1
1484 functions, except that USED_REGS may contain pseudos.
1485 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1486
1487 TODO: take into account register pressure while doing this. Up to this
1488 moment, this function would never return NULL for pseudos, but we should
1489 not rely on this. */
1490 static rtx
1491 choose_best_pseudo_reg (regset used_regs,
1492 struct reg_rename *reg_rename_p,
1493 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1494 {
1495 def_list_iterator i;
1496 def_t def;
1497 enum machine_mode mode = VOIDmode;
1498 bool bad_hard_regs = false;
1499
1500 /* We should not use this after reload. */
1501 gcc_assert (!reload_completed);
1502
1503 /* If original register is available, return it. */
1504 *is_orig_reg_p_ptr = true;
1505
1506 FOR_EACH_DEF (def, i, original_insns)
1507 {
1508 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1509 int orig_regno;
1510
1511 gcc_assert (REG_P (dest));
1512
1513 /* Check that all original operations have the same mode. */
1514 if (mode == VOIDmode)
1515 mode = GET_MODE (dest);
1516 else
1517 gcc_assert (mode == GET_MODE (dest));
1518 orig_regno = REGNO (dest);
1519
1520 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1521 {
1522 if (orig_regno < FIRST_PSEUDO_REGISTER)
1523 {
1524 gcc_assert (df_regs_ever_live_p (orig_regno));
1525
1526 /* For hard registers, we have to check hardware imposed
1527 limitations (frame/stack registers, calls crossed). */
1528 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1529 orig_regno))
1530 {
1531 /* Don't let register cross a call if it doesn't already
1532 cross one. This condition is written in accordance with
1533 that in sched-deps.c sched_analyze_reg(). */
1534 if (!reg_rename_p->crosses_call
1535 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1536 return gen_rtx_REG (mode, orig_regno);
1537 }
1538
1539 bad_hard_regs = true;
1540 }
1541 else
1542 return dest;
1543 }
1544 }
1545
1546 *is_orig_reg_p_ptr = false;
1547
1548 /* We had some original hard registers that couldn't be used.
1549 Those were likely special. Don't try to create a pseudo. */
1550 if (bad_hard_regs)
1551 return NULL_RTX;
1552
1553 /* We haven't found a register from original operations. Get a new one.
1554 FIXME: control register pressure somehow. */
1555 {
1556 rtx new_reg = gen_reg_rtx (mode);
1557
1558 gcc_assert (mode != VOIDmode);
1559
1560 max_regno = max_reg_num ();
1561 maybe_extend_reg_info_p ();
1562 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1563
1564 return new_reg;
1565 }
1566 }
1567
1568 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1569 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1570 static void
1571 verify_target_availability (expr_t expr, regset used_regs,
1572 struct reg_rename *reg_rename_p)
1573 {
1574 unsigned n, i, regno;
1575 enum machine_mode mode;
1576 bool target_available, live_available, hard_available;
1577
1578 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1579 return;
1580
1581 regno = expr_dest_regno (expr);
1582 mode = GET_MODE (EXPR_LHS (expr));
1583 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1584 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1585
1586 live_available = hard_available = true;
1587 for (i = 0; i < n; i++)
1588 {
1589 if (bitmap_bit_p (used_regs, regno + i))
1590 live_available = false;
1591 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1592 hard_available = false;
1593 }
1594
1595 /* When target is not available, it may be due to hard register
1596 restrictions, e.g. crosses calls, so we check hard_available too. */
1597 if (target_available)
1598 gcc_assert (live_available);
1599 else
1600 /* Check only if we haven't scheduled something on the previous fence,
1601 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1602 and having more than one fence, we may end having targ_un in a block
1603 in which successors target register is actually available.
1604
1605 The last condition handles the case when a dependence from a call insn
1606 was created in sched-deps.c for insns with destination registers that
1607 never crossed a call before, but do cross one after our code motion.
1608
1609 FIXME: in the latter case, we just uselessly called find_used_regs,
1610 because we can't move this expression with any other register
1611 as well. */
1612 gcc_assert (scheduled_something_on_previous_fence || !live_available
1613 || !hard_available
1614 || (!reload_completed && reg_rename_p->crosses_call
1615 && REG_N_CALLS_CROSSED (regno) == 0));
1616 }
1617
1618 /* Collect unavailable registers due to liveness for EXPR from BNDS
1619 into USED_REGS. Save additional information about available
1620 registers and unavailable due to hardware restriction registers
1621 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1622 list. */
1623 static void
1624 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1625 struct reg_rename *reg_rename_p,
1626 def_list_t *original_insns)
1627 {
1628 for (; bnds; bnds = BLIST_NEXT (bnds))
1629 {
1630 bool res;
1631 av_set_t orig_ops = NULL;
1632 bnd_t bnd = BLIST_BND (bnds);
1633
1634 /* If the chosen best expr doesn't belong to current boundary,
1635 skip it. */
1636 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1637 continue;
1638
1639 /* Put in ORIG_OPS all exprs from this boundary that became
1640 RES on top. */
1641 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1642
1643 /* Compute used regs and OR it into the USED_REGS. */
1644 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1645 reg_rename_p, original_insns);
1646
1647 /* FIXME: the assert is true until we'd have several boundaries. */
1648 gcc_assert (res);
1649 av_set_clear (&orig_ops);
1650 }
1651 }
1652
1653 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1654 If BEST_REG is valid, replace LHS of EXPR with it. */
1655 static bool
1656 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1657 {
1658 /* Try whether we'll be able to generate the insn
1659 'dest := best_reg' at the place of the original operation. */
1660 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1661 {
1662 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1663
1664 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1665
1666 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1667 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1668 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1669 return false;
1670 }
1671
1672 /* Make sure that EXPR has the right destination
1673 register. */
1674 if (expr_dest_regno (expr) != REGNO (best_reg))
1675 replace_dest_with_reg_in_expr (expr, best_reg);
1676 else
1677 EXPR_TARGET_AVAILABLE (expr) = 1;
1678
1679 return true;
1680 }
1681
1682 /* Select and assign best register to EXPR searching from BNDS.
1683 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1684 Return FALSE if no register can be chosen, which could happen when:
1685 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1686 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1687 that are used on the moving path. */
1688 static bool
1689 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1690 {
1691 static struct reg_rename reg_rename_data;
1692
1693 regset used_regs;
1694 def_list_t original_insns = NULL;
1695 bool reg_ok;
1696
1697 *is_orig_reg_p = false;
1698
1699 /* Don't bother to do anything if this insn doesn't set any registers. */
1700 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1701 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1702 return true;
1703
1704 used_regs = get_clear_regset_from_pool ();
1705 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1706
1707 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1708 &original_insns);
1709
1710 #ifdef ENABLE_CHECKING
1711 /* If after reload, make sure we're working with hard regs here. */
1712 if (reload_completed)
1713 {
1714 reg_set_iterator rsi;
1715 unsigned i;
1716
1717 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1718 gcc_unreachable ();
1719 }
1720 #endif
1721
1722 if (EXPR_SEPARABLE_P (expr))
1723 {
1724 rtx best_reg = NULL_RTX;
1725 /* Check that we have computed availability of a target register
1726 correctly. */
1727 verify_target_availability (expr, used_regs, &reg_rename_data);
1728
1729 /* Turn everything in hard regs after reload. */
1730 if (reload_completed)
1731 {
1732 HARD_REG_SET hard_regs_used;
1733 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1734
1735 /* Join hard registers unavailable due to register class
1736 restrictions and live range intersection. */
1737 IOR_HARD_REG_SET (hard_regs_used,
1738 reg_rename_data.unavailable_hard_regs);
1739
1740 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1741 original_insns, is_orig_reg_p);
1742 }
1743 else
1744 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1745 original_insns, is_orig_reg_p);
1746
1747 if (!best_reg)
1748 reg_ok = false;
1749 else if (*is_orig_reg_p)
1750 {
1751 /* In case of unification BEST_REG may be different from EXPR's LHS
1752 when EXPR's LHS is unavailable, and there is another LHS among
1753 ORIGINAL_INSNS. */
1754 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1755 }
1756 else
1757 {
1758 /* Forbid renaming of low-cost insns. */
1759 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1760 reg_ok = false;
1761 else
1762 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1763 }
1764 }
1765 else
1766 {
1767 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1768 any of the HARD_REGS_USED set. */
1769 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1770 reg_rename_data.unavailable_hard_regs))
1771 {
1772 reg_ok = false;
1773 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1774 }
1775 else
1776 {
1777 reg_ok = true;
1778 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1779 }
1780 }
1781
1782 ilist_clear (&original_insns);
1783 return_regset_to_pool (used_regs);
1784
1785 return reg_ok;
1786 }
1787 \f
1788
1789 /* Return true if dependence described by DS can be overcomed. */
1790 static bool
1791 can_speculate_dep_p (ds_t ds)
1792 {
1793 if (spec_info == NULL)
1794 return false;
1795
1796 /* Leave only speculative data. */
1797 ds &= SPECULATIVE;
1798
1799 if (ds == 0)
1800 return false;
1801
1802 {
1803 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1804 that we can overcome. */
1805 ds_t spec_mask = spec_info->mask;
1806
1807 if ((ds & spec_mask) != ds)
1808 return false;
1809 }
1810
1811 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1812 return false;
1813
1814 return true;
1815 }
1816
1817 /* Get a speculation check instruction.
1818 C_EXPR is a speculative expression,
1819 CHECK_DS describes speculations that should be checked,
1820 ORIG_INSN is the original non-speculative insn in the stream. */
1821 static insn_t
1822 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1823 {
1824 rtx check_pattern;
1825 rtx insn_rtx;
1826 insn_t insn;
1827 basic_block recovery_block;
1828 rtx label;
1829
1830 /* Create a recovery block if target is going to emit branchy check, or if
1831 ORIG_INSN was speculative already. */
1832 if (targetm.sched.needs_block_p (check_ds)
1833 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1834 {
1835 recovery_block = sel_create_recovery_block (orig_insn);
1836 label = BB_HEAD (recovery_block);
1837 }
1838 else
1839 {
1840 recovery_block = NULL;
1841 label = NULL_RTX;
1842 }
1843
1844 /* Get pattern of the check. */
1845 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1846 check_ds);
1847
1848 gcc_assert (check_pattern != NULL);
1849
1850 /* Emit check. */
1851 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1852
1853 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1854 INSN_SEQNO (orig_insn), orig_insn);
1855
1856 /* Make check to be non-speculative. */
1857 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1858 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1859
1860 /* Decrease priority of check by difference of load/check instruction
1861 latencies. */
1862 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1863 - sel_vinsn_cost (INSN_VINSN (insn)));
1864
1865 /* Emit copy of original insn (though with replaced target register,
1866 if needed) to the recovery block. */
1867 if (recovery_block != NULL)
1868 {
1869 rtx twin_rtx;
1870
1871 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1872 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1873 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1874 INSN_EXPR (orig_insn),
1875 INSN_SEQNO (insn),
1876 bb_note (recovery_block));
1877 }
1878
1879 /* If we've generated a data speculation check, make sure
1880 that all the bookkeeping instruction we'll create during
1881 this move_op () will allocate an ALAT entry so that the
1882 check won't fail.
1883 In case of control speculation we must convert C_EXPR to control
1884 speculative mode, because failing to do so will bring us an exception
1885 thrown by the non-control-speculative load. */
1886 check_ds = ds_get_max_dep_weak (check_ds);
1887 speculate_expr (c_expr, check_ds);
1888
1889 return insn;
1890 }
1891
1892 /* True when INSN is a "regN = regN" copy. */
1893 static bool
1894 identical_copy_p (rtx insn)
1895 {
1896 rtx lhs, rhs, pat;
1897
1898 pat = PATTERN (insn);
1899
1900 if (GET_CODE (pat) != SET)
1901 return false;
1902
1903 lhs = SET_DEST (pat);
1904 if (!REG_P (lhs))
1905 return false;
1906
1907 rhs = SET_SRC (pat);
1908 if (!REG_P (rhs))
1909 return false;
1910
1911 return REGNO (lhs) == REGNO (rhs);
1912 }
1913
1914 /* Undo all transformations on *AV_PTR that were done when
1915 moving through INSN. */
1916 static void
1917 undo_transformations (av_set_t *av_ptr, rtx insn)
1918 {
1919 av_set_iterator av_iter;
1920 expr_t expr;
1921 av_set_t new_set = NULL;
1922
1923 /* First, kill any EXPR that uses registers set by an insn. This is
1924 required for correctness. */
1925 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1926 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1927 && bitmap_intersect_p (INSN_REG_SETS (insn),
1928 VINSN_REG_USES (EXPR_VINSN (expr)))
1929 /* When an insn looks like 'r1 = r1', we could substitute through
1930 it, but the above condition will still hold. This happened with
1931 gcc.c-torture/execute/961125-1.c. */
1932 && !identical_copy_p (insn))
1933 {
1934 if (sched_verbose >= 6)
1935 sel_print ("Expr %d removed due to use/set conflict\n",
1936 INSN_UID (EXPR_INSN_RTX (expr)));
1937 av_set_iter_remove (&av_iter);
1938 }
1939
1940 /* Undo transformations looking at the history vector. */
1941 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1942 {
1943 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1944 insn, EXPR_VINSN (expr), true);
1945
1946 if (index >= 0)
1947 {
1948 expr_history_def *phist;
1949
1950 phist = VEC_index (expr_history_def,
1951 EXPR_HISTORY_OF_CHANGES (expr),
1952 index);
1953
1954 switch (phist->type)
1955 {
1956 case TRANS_SPECULATION:
1957 {
1958 ds_t old_ds, new_ds;
1959
1960 /* Compute the difference between old and new speculative
1961 statuses: that's what we need to check.
1962 Earlier we used to assert that the status will really
1963 change. This no longer works because only the probability
1964 bits in the status may have changed during compute_av_set,
1965 and in the case of merging different probabilities of the
1966 same speculative status along different paths we do not
1967 record this in the history vector. */
1968 old_ds = phist->spec_ds;
1969 new_ds = EXPR_SPEC_DONE_DS (expr);
1970
1971 old_ds &= SPECULATIVE;
1972 new_ds &= SPECULATIVE;
1973 new_ds &= ~old_ds;
1974
1975 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1976 break;
1977 }
1978 case TRANS_SUBSTITUTION:
1979 {
1980 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1981 vinsn_t new_vi;
1982 bool add = true;
1983
1984 new_vi = phist->old_expr_vinsn;
1985
1986 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1987 == EXPR_SEPARABLE_P (expr));
1988 copy_expr (tmp_expr, expr);
1989
1990 if (vinsn_equal_p (phist->new_expr_vinsn,
1991 EXPR_VINSN (tmp_expr)))
1992 change_vinsn_in_expr (tmp_expr, new_vi);
1993 else
1994 /* This happens when we're unsubstituting on a bookkeeping
1995 copy, which was in turn substituted. The history is wrong
1996 in this case. Do it the hard way. */
1997 add = substitute_reg_in_expr (tmp_expr, insn, true);
1998 if (add)
1999 av_set_add (&new_set, tmp_expr);
2000 clear_expr (tmp_expr);
2001 break;
2002 }
2003 default:
2004 gcc_unreachable ();
2005 }
2006 }
2007
2008 }
2009
2010 av_set_union_and_clear (av_ptr, &new_set, NULL);
2011 }
2012 \f
2013
2014 /* Moveup_* helpers for code motion and computing av sets. */
2015
2016 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2017 The difference from the below function is that only substitution is
2018 performed. */
2019 static enum MOVEUP_EXPR_CODE
2020 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2021 {
2022 vinsn_t vi = EXPR_VINSN (expr);
2023 ds_t *has_dep_p;
2024 ds_t full_ds;
2025
2026 /* Do this only inside insn group. */
2027 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2028
2029 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2030 if (full_ds == 0)
2031 return MOVEUP_EXPR_SAME;
2032
2033 /* Substitution is the possible choice in this case. */
2034 if (has_dep_p[DEPS_IN_RHS])
2035 {
2036 /* Can't substitute UNIQUE VINSNs. */
2037 gcc_assert (!VINSN_UNIQUE_P (vi));
2038
2039 if (can_substitute_through_p (through_insn,
2040 has_dep_p[DEPS_IN_RHS])
2041 && substitute_reg_in_expr (expr, through_insn, false))
2042 {
2043 EXPR_WAS_SUBSTITUTED (expr) = true;
2044 return MOVEUP_EXPR_CHANGED;
2045 }
2046
2047 /* Don't care about this, as even true dependencies may be allowed
2048 in an insn group. */
2049 return MOVEUP_EXPR_SAME;
2050 }
2051
2052 /* This can catch output dependencies in COND_EXECs. */
2053 if (has_dep_p[DEPS_IN_INSN])
2054 return MOVEUP_EXPR_NULL;
2055
2056 /* This is either an output or an anti dependence, which usually have
2057 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2058 will fix this. */
2059 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2060 return MOVEUP_EXPR_AS_RHS;
2061 }
2062
2063 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2064 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2065 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2066 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2067 && !sel_insn_is_speculation_check (through_insn))
2068
2069 /* True when a conflict on a target register was found during moveup_expr. */
2070 static bool was_target_conflict = false;
2071
2072 /* Return true when moving a debug INSN across THROUGH_INSN will
2073 create a bookkeeping block. We don't want to create such blocks,
2074 for they would cause codegen differences between compilations with
2075 and without debug info. */
2076
2077 static bool
2078 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2079 insn_t through_insn)
2080 {
2081 basic_block bbi, bbt;
2082 edge e1, e2;
2083 edge_iterator ei1, ei2;
2084
2085 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2086 {
2087 if (sched_verbose >= 9)
2088 sel_print ("no bookkeeping required: ");
2089 return FALSE;
2090 }
2091
2092 bbi = BLOCK_FOR_INSN (insn);
2093
2094 if (EDGE_COUNT (bbi->preds) == 1)
2095 {
2096 if (sched_verbose >= 9)
2097 sel_print ("only one pred edge: ");
2098 return TRUE;
2099 }
2100
2101 bbt = BLOCK_FOR_INSN (through_insn);
2102
2103 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2104 {
2105 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2106 {
2107 if (find_block_for_bookkeeping (e1, e2, TRUE))
2108 {
2109 if (sched_verbose >= 9)
2110 sel_print ("found existing block: ");
2111 return FALSE;
2112 }
2113 }
2114 }
2115
2116 if (sched_verbose >= 9)
2117 sel_print ("would create bookkeeping block: ");
2118
2119 return TRUE;
2120 }
2121
2122 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2123 performing necessary transformations. Record the type of transformation
2124 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2125 permit all dependencies except true ones, and try to remove those
2126 too via forward substitution. All cases when a non-eliminable
2127 non-zero cost dependency exists inside an insn group will be fixed
2128 in tick_check_p instead. */
2129 static enum MOVEUP_EXPR_CODE
2130 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2131 enum local_trans_type *ptrans_type)
2132 {
2133 vinsn_t vi = EXPR_VINSN (expr);
2134 insn_t insn = VINSN_INSN_RTX (vi);
2135 bool was_changed = false;
2136 bool as_rhs = false;
2137 ds_t *has_dep_p;
2138 ds_t full_ds;
2139
2140 /* ??? We use dependencies of non-debug insns on debug insns to
2141 indicate that the debug insns need to be reset if the non-debug
2142 insn is pulled ahead of it. It's hard to figure out how to
2143 introduce such a notion in sel-sched, but it already fails to
2144 support debug insns in other ways, so we just go ahead and
2145 let the deug insns go corrupt for now. */
2146 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2147 return MOVEUP_EXPR_SAME;
2148
2149 /* When inside_insn_group, delegate to the helper. */
2150 if (inside_insn_group)
2151 return moveup_expr_inside_insn_group (expr, through_insn);
2152
2153 /* Deal with unique insns and control dependencies. */
2154 if (VINSN_UNIQUE_P (vi))
2155 {
2156 /* We can move jumps without side-effects or jumps that are
2157 mutually exclusive with instruction THROUGH_INSN (all in cases
2158 dependencies allow to do so and jump is not speculative). */
2159 if (control_flow_insn_p (insn))
2160 {
2161 basic_block fallthru_bb;
2162
2163 /* Do not move checks and do not move jumps through other
2164 jumps. */
2165 if (control_flow_insn_p (through_insn)
2166 || sel_insn_is_speculation_check (insn))
2167 return MOVEUP_EXPR_NULL;
2168
2169 /* Don't move jumps through CFG joins. */
2170 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2171 return MOVEUP_EXPR_NULL;
2172
2173 /* The jump should have a clear fallthru block, and
2174 this block should be in the current region. */
2175 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2176 || ! in_current_region_p (fallthru_bb))
2177 return MOVEUP_EXPR_NULL;
2178
2179 /* And it should be mutually exclusive with through_insn. */
2180 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2181 && ! DEBUG_INSN_P (through_insn))
2182 return MOVEUP_EXPR_NULL;
2183 }
2184
2185 /* Don't move what we can't move. */
2186 if (EXPR_CANT_MOVE (expr)
2187 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2188 return MOVEUP_EXPR_NULL;
2189
2190 /* Don't move SCHED_GROUP instruction through anything.
2191 If we don't force this, then it will be possible to start
2192 scheduling a sched_group before all its dependencies are
2193 resolved.
2194 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2195 as late as possible through rank_for_schedule. */
2196 if (SCHED_GROUP_P (insn))
2197 return MOVEUP_EXPR_NULL;
2198 }
2199 else
2200 gcc_assert (!control_flow_insn_p (insn));
2201
2202 /* Don't move debug insns if this would require bookkeeping. */
2203 if (DEBUG_INSN_P (insn)
2204 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2205 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2206 return MOVEUP_EXPR_NULL;
2207
2208 /* Deal with data dependencies. */
2209 was_target_conflict = false;
2210 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2211 if (full_ds == 0)
2212 {
2213 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2214 return MOVEUP_EXPR_SAME;
2215 }
2216 else
2217 {
2218 /* We can move UNIQUE insn up only as a whole and unchanged,
2219 so it shouldn't have any dependencies. */
2220 if (VINSN_UNIQUE_P (vi))
2221 return MOVEUP_EXPR_NULL;
2222 }
2223
2224 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2225 {
2226 int res;
2227
2228 res = speculate_expr (expr, full_ds);
2229 if (res >= 0)
2230 {
2231 /* Speculation was successful. */
2232 full_ds = 0;
2233 was_changed = (res > 0);
2234 if (res == 2)
2235 was_target_conflict = true;
2236 if (ptrans_type)
2237 *ptrans_type = TRANS_SPECULATION;
2238 sel_clear_has_dependence ();
2239 }
2240 }
2241
2242 if (has_dep_p[DEPS_IN_INSN])
2243 /* We have some dependency that cannot be discarded. */
2244 return MOVEUP_EXPR_NULL;
2245
2246 if (has_dep_p[DEPS_IN_LHS])
2247 {
2248 /* Only separable insns can be moved up with the new register.
2249 Anyways, we should mark that the original register is
2250 unavailable. */
2251 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2252 return MOVEUP_EXPR_NULL;
2253
2254 EXPR_TARGET_AVAILABLE (expr) = false;
2255 was_target_conflict = true;
2256 as_rhs = true;
2257 }
2258
2259 /* At this point we have either separable insns, that will be lifted
2260 up only as RHSes, or non-separable insns with no dependency in lhs.
2261 If dependency is in RHS, then try to perform substitution and move up
2262 substituted RHS:
2263
2264 Ex. 1: Ex.2
2265 y = x; y = x;
2266 z = y*2; y = y*2;
2267
2268 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2269 moved above y=x assignment as z=x*2.
2270
2271 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2272 side can be moved because of the output dependency. The operation was
2273 cropped to its rhs above. */
2274 if (has_dep_p[DEPS_IN_RHS])
2275 {
2276 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2277
2278 /* Can't substitute UNIQUE VINSNs. */
2279 gcc_assert (!VINSN_UNIQUE_P (vi));
2280
2281 if (can_speculate_dep_p (*rhs_dsp))
2282 {
2283 int res;
2284
2285 res = speculate_expr (expr, *rhs_dsp);
2286 if (res >= 0)
2287 {
2288 /* Speculation was successful. */
2289 *rhs_dsp = 0;
2290 was_changed = (res > 0);
2291 if (res == 2)
2292 was_target_conflict = true;
2293 if (ptrans_type)
2294 *ptrans_type = TRANS_SPECULATION;
2295 }
2296 else
2297 return MOVEUP_EXPR_NULL;
2298 }
2299 else if (can_substitute_through_p (through_insn,
2300 *rhs_dsp)
2301 && substitute_reg_in_expr (expr, through_insn, false))
2302 {
2303 /* ??? We cannot perform substitution AND speculation on the same
2304 insn. */
2305 gcc_assert (!was_changed);
2306 was_changed = true;
2307 if (ptrans_type)
2308 *ptrans_type = TRANS_SUBSTITUTION;
2309 EXPR_WAS_SUBSTITUTED (expr) = true;
2310 }
2311 else
2312 return MOVEUP_EXPR_NULL;
2313 }
2314
2315 /* Don't move trapping insns through jumps.
2316 This check should be at the end to give a chance to control speculation
2317 to perform its duties. */
2318 if (CANT_MOVE_TRAPPING (expr, through_insn))
2319 return MOVEUP_EXPR_NULL;
2320
2321 return (was_changed
2322 ? MOVEUP_EXPR_CHANGED
2323 : (as_rhs
2324 ? MOVEUP_EXPR_AS_RHS
2325 : MOVEUP_EXPR_SAME));
2326 }
2327
2328 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2329 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2330 that can exist within a parallel group. Write to RES the resulting
2331 code for moveup_expr. */
2332 static bool
2333 try_bitmap_cache (expr_t expr, insn_t insn,
2334 bool inside_insn_group,
2335 enum MOVEUP_EXPR_CODE *res)
2336 {
2337 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2338
2339 /* First check whether we've analyzed this situation already. */
2340 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2341 {
2342 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2343 {
2344 if (sched_verbose >= 6)
2345 sel_print ("removed (cached)\n");
2346 *res = MOVEUP_EXPR_NULL;
2347 return true;
2348 }
2349 else
2350 {
2351 if (sched_verbose >= 6)
2352 sel_print ("unchanged (cached)\n");
2353 *res = MOVEUP_EXPR_SAME;
2354 return true;
2355 }
2356 }
2357 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2358 {
2359 if (inside_insn_group)
2360 {
2361 if (sched_verbose >= 6)
2362 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2363 *res = MOVEUP_EXPR_SAME;
2364 return true;
2365
2366 }
2367 else
2368 EXPR_TARGET_AVAILABLE (expr) = false;
2369
2370 /* This is the only case when propagation result can change over time,
2371 as we can dynamically switch off scheduling as RHS. In this case,
2372 just check the flag to reach the correct decision. */
2373 if (enable_schedule_as_rhs_p)
2374 {
2375 if (sched_verbose >= 6)
2376 sel_print ("unchanged (as RHS, cached)\n");
2377 *res = MOVEUP_EXPR_AS_RHS;
2378 return true;
2379 }
2380 else
2381 {
2382 if (sched_verbose >= 6)
2383 sel_print ("removed (cached as RHS, but renaming"
2384 " is now disabled)\n");
2385 *res = MOVEUP_EXPR_NULL;
2386 return true;
2387 }
2388 }
2389
2390 return false;
2391 }
2392
2393 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2394 if successful. Write to RES the resulting code for moveup_expr. */
2395 static bool
2396 try_transformation_cache (expr_t expr, insn_t insn,
2397 enum MOVEUP_EXPR_CODE *res)
2398 {
2399 struct transformed_insns *pti
2400 = (struct transformed_insns *)
2401 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2402 &EXPR_VINSN (expr),
2403 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2404 if (pti)
2405 {
2406 /* This EXPR was already moved through this insn and was
2407 changed as a result. Fetch the proper data from
2408 the hashtable. */
2409 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2410 INSN_UID (insn), pti->type,
2411 pti->vinsn_old, pti->vinsn_new,
2412 EXPR_SPEC_DONE_DS (expr));
2413
2414 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2415 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2416 change_vinsn_in_expr (expr, pti->vinsn_new);
2417 if (pti->was_target_conflict)
2418 EXPR_TARGET_AVAILABLE (expr) = false;
2419 if (pti->type == TRANS_SPECULATION)
2420 {
2421 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2422 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2423 }
2424
2425 if (sched_verbose >= 6)
2426 {
2427 sel_print ("changed (cached): ");
2428 dump_expr (expr);
2429 sel_print ("\n");
2430 }
2431
2432 *res = MOVEUP_EXPR_CHANGED;
2433 return true;
2434 }
2435
2436 return false;
2437 }
2438
2439 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2440 static void
2441 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2442 enum MOVEUP_EXPR_CODE res)
2443 {
2444 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2445
2446 /* Do not cache result of propagating jumps through an insn group,
2447 as it is always true, which is not useful outside the group. */
2448 if (inside_insn_group)
2449 return;
2450
2451 if (res == MOVEUP_EXPR_NULL)
2452 {
2453 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2454 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2455 }
2456 else if (res == MOVEUP_EXPR_SAME)
2457 {
2458 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460 }
2461 else if (res == MOVEUP_EXPR_AS_RHS)
2462 {
2463 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2464 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2465 }
2466 else
2467 gcc_unreachable ();
2468 }
2469
2470 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2471 and transformation type TRANS_TYPE. */
2472 static void
2473 update_transformation_cache (expr_t expr, insn_t insn,
2474 bool inside_insn_group,
2475 enum local_trans_type trans_type,
2476 vinsn_t expr_old_vinsn)
2477 {
2478 struct transformed_insns *pti;
2479
2480 if (inside_insn_group)
2481 return;
2482
2483 pti = XNEW (struct transformed_insns);
2484 pti->vinsn_old = expr_old_vinsn;
2485 pti->vinsn_new = EXPR_VINSN (expr);
2486 pti->type = trans_type;
2487 pti->was_target_conflict = was_target_conflict;
2488 pti->ds = EXPR_SPEC_DONE_DS (expr);
2489 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2490 vinsn_attach (pti->vinsn_old);
2491 vinsn_attach (pti->vinsn_new);
2492 *((struct transformed_insns **)
2493 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2494 pti, VINSN_HASH_RTX (expr_old_vinsn),
2495 INSERT)) = pti;
2496 }
2497
2498 /* Same as moveup_expr, but first looks up the result of
2499 transformation in caches. */
2500 static enum MOVEUP_EXPR_CODE
2501 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2502 {
2503 enum MOVEUP_EXPR_CODE res;
2504 bool got_answer = false;
2505
2506 if (sched_verbose >= 6)
2507 {
2508 sel_print ("Moving ");
2509 dump_expr (expr);
2510 sel_print (" through %d: ", INSN_UID (insn));
2511 }
2512
2513 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2514 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2515 == EXPR_INSN_RTX (expr)))
2516 /* Don't use cached information for debug insns that are heads of
2517 basic blocks. */;
2518 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2519 /* When inside insn group, we do not want remove stores conflicting
2520 with previosly issued loads. */
2521 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2522 else if (try_transformation_cache (expr, insn, &res))
2523 got_answer = true;
2524
2525 if (! got_answer)
2526 {
2527 /* Invoke moveup_expr and record the results. */
2528 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2529 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2530 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2531 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2532 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2533
2534 /* ??? Invent something better than this. We can't allow old_vinsn
2535 to go, we need it for the history vector. */
2536 vinsn_attach (expr_old_vinsn);
2537
2538 res = moveup_expr (expr, insn, inside_insn_group,
2539 &trans_type);
2540 switch (res)
2541 {
2542 case MOVEUP_EXPR_NULL:
2543 update_bitmap_cache (expr, insn, inside_insn_group, res);
2544 if (sched_verbose >= 6)
2545 sel_print ("removed\n");
2546 break;
2547
2548 case MOVEUP_EXPR_SAME:
2549 update_bitmap_cache (expr, insn, inside_insn_group, res);
2550 if (sched_verbose >= 6)
2551 sel_print ("unchanged\n");
2552 break;
2553
2554 case MOVEUP_EXPR_AS_RHS:
2555 gcc_assert (!unique_p || inside_insn_group);
2556 update_bitmap_cache (expr, insn, inside_insn_group, res);
2557 if (sched_verbose >= 6)
2558 sel_print ("unchanged (as RHS)\n");
2559 break;
2560
2561 case MOVEUP_EXPR_CHANGED:
2562 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2563 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2564 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2565 INSN_UID (insn), trans_type,
2566 expr_old_vinsn, EXPR_VINSN (expr),
2567 expr_old_spec_ds);
2568 update_transformation_cache (expr, insn, inside_insn_group,
2569 trans_type, expr_old_vinsn);
2570 if (sched_verbose >= 6)
2571 {
2572 sel_print ("changed: ");
2573 dump_expr (expr);
2574 sel_print ("\n");
2575 }
2576 break;
2577 default:
2578 gcc_unreachable ();
2579 }
2580
2581 vinsn_detach (expr_old_vinsn);
2582 }
2583
2584 return res;
2585 }
2586
2587 /* Moves an av set AVP up through INSN, performing necessary
2588 transformations. */
2589 static void
2590 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2591 {
2592 av_set_iterator i;
2593 expr_t expr;
2594
2595 FOR_EACH_EXPR_1 (expr, i, avp)
2596 {
2597
2598 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2599 {
2600 case MOVEUP_EXPR_SAME:
2601 case MOVEUP_EXPR_AS_RHS:
2602 break;
2603
2604 case MOVEUP_EXPR_NULL:
2605 av_set_iter_remove (&i);
2606 break;
2607
2608 case MOVEUP_EXPR_CHANGED:
2609 expr = merge_with_other_exprs (avp, &i, expr);
2610 break;
2611
2612 default:
2613 gcc_unreachable ();
2614 }
2615 }
2616 }
2617
2618 /* Moves AVP set along PATH. */
2619 static void
2620 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2621 {
2622 int last_cycle;
2623
2624 if (sched_verbose >= 6)
2625 sel_print ("Moving expressions up in the insn group...\n");
2626 if (! path)
2627 return;
2628 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2629 while (path
2630 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2631 {
2632 moveup_set_expr (avp, ILIST_INSN (path), true);
2633 path = ILIST_NEXT (path);
2634 }
2635 }
2636
2637 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2638 static bool
2639 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2640 {
2641 expr_def _tmp, *tmp = &_tmp;
2642 int last_cycle;
2643 bool res = true;
2644
2645 copy_expr_onside (tmp, expr);
2646 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2647 while (path
2648 && res
2649 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2650 {
2651 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2652 != MOVEUP_EXPR_NULL);
2653 path = ILIST_NEXT (path);
2654 }
2655
2656 if (res)
2657 {
2658 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2659 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2660
2661 if (tmp_vinsn != expr_vliw_vinsn)
2662 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2663 }
2664
2665 clear_expr (tmp);
2666 return res;
2667 }
2668 \f
2669
2670 /* Functions that compute av and lv sets. */
2671
2672 /* Returns true if INSN is not a downward continuation of the given path P in
2673 the current stage. */
2674 static bool
2675 is_ineligible_successor (insn_t insn, ilist_t p)
2676 {
2677 insn_t prev_insn;
2678
2679 /* Check if insn is not deleted. */
2680 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2681 gcc_unreachable ();
2682 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2683 gcc_unreachable ();
2684
2685 /* If it's the first insn visited, then the successor is ok. */
2686 if (!p)
2687 return false;
2688
2689 prev_insn = ILIST_INSN (p);
2690
2691 if (/* a backward edge. */
2692 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2693 /* is already visited. */
2694 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2695 && (ilist_is_in_p (p, insn)
2696 /* We can reach another fence here and still seqno of insn
2697 would be equal to seqno of prev_insn. This is possible
2698 when prev_insn is a previously created bookkeeping copy.
2699 In that case it'd get a seqno of insn. Thus, check here
2700 whether insn is in current fence too. */
2701 || IN_CURRENT_FENCE_P (insn)))
2702 /* Was already scheduled on this round. */
2703 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2704 && IN_CURRENT_FENCE_P (insn))
2705 /* An insn from another fence could also be
2706 scheduled earlier even if this insn is not in
2707 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2708 || (!pipelining_p
2709 && INSN_SCHED_TIMES (insn) > 0))
2710 return true;
2711 else
2712 return false;
2713 }
2714
2715 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2716 of handling multiple successors and properly merging its av_sets. P is
2717 the current path traversed. WS is the size of lookahead window.
2718 Return the av set computed. */
2719 static av_set_t
2720 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2721 {
2722 struct succs_info *sinfo;
2723 av_set_t expr_in_all_succ_branches = NULL;
2724 int is;
2725 insn_t succ, zero_succ = NULL;
2726 av_set_t av1 = NULL;
2727
2728 gcc_assert (sel_bb_end_p (insn));
2729
2730 /* Find different kind of successors needed for correct computing of
2731 SPEC and TARGET_AVAILABLE attributes. */
2732 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2733
2734 /* Debug output. */
2735 if (sched_verbose >= 6)
2736 {
2737 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2738 dump_insn_vector (sinfo->succs_ok);
2739 sel_print ("\n");
2740 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2741 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2742 }
2743
2744 /* Add insn to the tail of current path. */
2745 ilist_add (&p, insn);
2746
2747 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2748 {
2749 av_set_t succ_set;
2750
2751 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2752 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2753
2754 av_set_split_usefulness (succ_set,
2755 VEC_index (int, sinfo->probs_ok, is),
2756 sinfo->all_prob);
2757
2758 if (sinfo->all_succs_n > 1)
2759 {
2760 /* Find EXPR'es that came from *all* successors and save them
2761 into expr_in_all_succ_branches. This set will be used later
2762 for calculating speculation attributes of EXPR'es. */
2763 if (is == 0)
2764 {
2765 expr_in_all_succ_branches = av_set_copy (succ_set);
2766
2767 /* Remember the first successor for later. */
2768 zero_succ = succ;
2769 }
2770 else
2771 {
2772 av_set_iterator i;
2773 expr_t expr;
2774
2775 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2776 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2777 av_set_iter_remove (&i);
2778 }
2779 }
2780
2781 /* Union the av_sets. Check liveness restrictions on target registers
2782 in special case of two successors. */
2783 if (sinfo->succs_ok_n == 2 && is == 1)
2784 {
2785 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2786 basic_block bb1 = BLOCK_FOR_INSN (succ);
2787
2788 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2789 av_set_union_and_live (&av1, &succ_set,
2790 BB_LV_SET (bb0),
2791 BB_LV_SET (bb1),
2792 insn);
2793 }
2794 else
2795 av_set_union_and_clear (&av1, &succ_set, insn);
2796 }
2797
2798 /* Check liveness restrictions via hard way when there are more than
2799 two successors. */
2800 if (sinfo->succs_ok_n > 2)
2801 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2802 {
2803 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2804
2805 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2806 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2807 BB_LV_SET (succ_bb));
2808 }
2809
2810 /* Finally, check liveness restrictions on paths leaving the region. */
2811 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2812 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2813 mark_unavailable_targets
2814 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2815
2816 if (sinfo->all_succs_n > 1)
2817 {
2818 av_set_iterator i;
2819 expr_t expr;
2820
2821 /* Increase the spec attribute of all EXPR'es that didn't come
2822 from all successors. */
2823 FOR_EACH_EXPR (expr, i, av1)
2824 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2825 EXPR_SPEC (expr)++;
2826
2827 av_set_clear (&expr_in_all_succ_branches);
2828
2829 /* Do not move conditional branches through other
2830 conditional branches. So, remove all conditional
2831 branches from av_set if current operator is a conditional
2832 branch. */
2833 av_set_substract_cond_branches (&av1);
2834 }
2835
2836 ilist_remove (&p);
2837 free_succs_info (sinfo);
2838
2839 if (sched_verbose >= 6)
2840 {
2841 sel_print ("av_succs (%d): ", INSN_UID (insn));
2842 dump_av_set (av1);
2843 sel_print ("\n");
2844 }
2845
2846 return av1;
2847 }
2848
2849 /* This function computes av_set for the FIRST_INSN by dragging valid
2850 av_set through all basic block insns either from the end of basic block
2851 (computed using compute_av_set_at_bb_end) or from the insn on which
2852 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2853 below the basic block and handling conditional branches.
2854 FIRST_INSN - the basic block head, P - path consisting of the insns
2855 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2856 and bb ends are added to the path), WS - current window size,
2857 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2858 static av_set_t
2859 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2860 bool need_copy_p)
2861 {
2862 insn_t cur_insn;
2863 int end_ws = ws;
2864 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2865 insn_t after_bb_end = NEXT_INSN (bb_end);
2866 insn_t last_insn;
2867 av_set_t av = NULL;
2868 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2869
2870 /* Return NULL if insn is not on the legitimate downward path. */
2871 if (is_ineligible_successor (first_insn, p))
2872 {
2873 if (sched_verbose >= 6)
2874 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2875
2876 return NULL;
2877 }
2878
2879 /* If insn already has valid av(insn) computed, just return it. */
2880 if (AV_SET_VALID_P (first_insn))
2881 {
2882 av_set_t av_set;
2883
2884 if (sel_bb_head_p (first_insn))
2885 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2886 else
2887 av_set = NULL;
2888
2889 if (sched_verbose >= 6)
2890 {
2891 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2892 dump_av_set (av_set);
2893 sel_print ("\n");
2894 }
2895
2896 return need_copy_p ? av_set_copy (av_set) : av_set;
2897 }
2898
2899 ilist_add (&p, first_insn);
2900
2901 /* As the result after this loop have completed, in LAST_INSN we'll
2902 have the insn which has valid av_set to start backward computation
2903 from: it either will be NULL because on it the window size was exceeded
2904 or other valid av_set as returned by compute_av_set for the last insn
2905 of the basic block. */
2906 for (last_insn = first_insn; last_insn != after_bb_end;
2907 last_insn = NEXT_INSN (last_insn))
2908 {
2909 /* We may encounter valid av_set not only on bb_head, but also on
2910 those insns on which previously MAX_WS was exceeded. */
2911 if (AV_SET_VALID_P (last_insn))
2912 {
2913 if (sched_verbose >= 6)
2914 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2915 break;
2916 }
2917
2918 /* The special case: the last insn of the BB may be an
2919 ineligible_successor due to its SEQ_NO that was set on
2920 it as a bookkeeping. */
2921 if (last_insn != first_insn
2922 && is_ineligible_successor (last_insn, p))
2923 {
2924 if (sched_verbose >= 6)
2925 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2926 break;
2927 }
2928
2929 if (DEBUG_INSN_P (last_insn))
2930 continue;
2931
2932 if (end_ws > max_ws)
2933 {
2934 /* We can reach max lookahead size at bb_header, so clean av_set
2935 first. */
2936 INSN_WS_LEVEL (last_insn) = global_level;
2937
2938 if (sched_verbose >= 6)
2939 sel_print ("Insn %d is beyond the software lookahead window size\n",
2940 INSN_UID (last_insn));
2941 break;
2942 }
2943
2944 end_ws++;
2945 }
2946
2947 /* Get the valid av_set into AV above the LAST_INSN to start backward
2948 computation from. It either will be empty av_set or av_set computed from
2949 the successors on the last insn of the current bb. */
2950 if (last_insn != after_bb_end)
2951 {
2952 av = NULL;
2953
2954 /* This is needed only to obtain av_sets that are identical to
2955 those computed by the old compute_av_set version. */
2956 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2957 av_set_add (&av, INSN_EXPR (last_insn));
2958 }
2959 else
2960 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2961 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2962
2963 /* Compute av_set in AV starting from below the LAST_INSN up to
2964 location above the FIRST_INSN. */
2965 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2966 cur_insn = PREV_INSN (cur_insn))
2967 if (!INSN_NOP_P (cur_insn))
2968 {
2969 expr_t expr;
2970
2971 moveup_set_expr (&av, cur_insn, false);
2972
2973 /* If the expression for CUR_INSN is already in the set,
2974 replace it by the new one. */
2975 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2976 if (expr != NULL)
2977 {
2978 clear_expr (expr);
2979 copy_expr (expr, INSN_EXPR (cur_insn));
2980 }
2981 else
2982 av_set_add (&av, INSN_EXPR (cur_insn));
2983 }
2984
2985 /* Clear stale bb_av_set. */
2986 if (sel_bb_head_p (first_insn))
2987 {
2988 av_set_clear (&BB_AV_SET (cur_bb));
2989 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2990 BB_AV_LEVEL (cur_bb) = global_level;
2991 }
2992
2993 if (sched_verbose >= 6)
2994 {
2995 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2996 dump_av_set (av);
2997 sel_print ("\n");
2998 }
2999
3000 ilist_remove (&p);
3001 return av;
3002 }
3003
3004 /* Compute av set before INSN.
3005 INSN - the current operation (actual rtx INSN)
3006 P - the current path, which is list of insns visited so far
3007 WS - software lookahead window size.
3008 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3009 if we want to save computed av_set in s_i_d, we should make a copy of it.
3010
3011 In the resulting set we will have only expressions that don't have delay
3012 stalls and nonsubstitutable dependences. */
3013 static av_set_t
3014 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3015 {
3016 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3017 }
3018
3019 /* Propagate a liveness set LV through INSN. */
3020 static void
3021 propagate_lv_set (regset lv, insn_t insn)
3022 {
3023 gcc_assert (INSN_P (insn));
3024
3025 if (INSN_NOP_P (insn))
3026 return;
3027
3028 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3029 }
3030
3031 /* Return livness set at the end of BB. */
3032 static regset
3033 compute_live_after_bb (basic_block bb)
3034 {
3035 edge e;
3036 edge_iterator ei;
3037 regset lv = get_clear_regset_from_pool ();
3038
3039 gcc_assert (!ignore_first);
3040
3041 FOR_EACH_EDGE (e, ei, bb->succs)
3042 if (sel_bb_empty_p (e->dest))
3043 {
3044 if (! BB_LV_SET_VALID_P (e->dest))
3045 {
3046 gcc_unreachable ();
3047 gcc_assert (BB_LV_SET (e->dest) == NULL);
3048 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3049 BB_LV_SET_VALID_P (e->dest) = true;
3050 }
3051 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3052 }
3053 else
3054 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3055
3056 return lv;
3057 }
3058
3059 /* Compute the set of all live registers at the point before INSN and save
3060 it at INSN if INSN is bb header. */
3061 regset
3062 compute_live (insn_t insn)
3063 {
3064 basic_block bb = BLOCK_FOR_INSN (insn);
3065 insn_t final, temp;
3066 regset lv;
3067
3068 /* Return the valid set if we're already on it. */
3069 if (!ignore_first)
3070 {
3071 regset src = NULL;
3072
3073 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3074 src = BB_LV_SET (bb);
3075 else
3076 {
3077 gcc_assert (in_current_region_p (bb));
3078 if (INSN_LIVE_VALID_P (insn))
3079 src = INSN_LIVE (insn);
3080 }
3081
3082 if (src)
3083 {
3084 lv = get_regset_from_pool ();
3085 COPY_REG_SET (lv, src);
3086
3087 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3088 {
3089 COPY_REG_SET (BB_LV_SET (bb), lv);
3090 BB_LV_SET_VALID_P (bb) = true;
3091 }
3092
3093 return_regset_to_pool (lv);
3094 return lv;
3095 }
3096 }
3097
3098 /* We've skipped the wrong lv_set. Don't skip the right one. */
3099 ignore_first = false;
3100 gcc_assert (in_current_region_p (bb));
3101
3102 /* Find a valid LV set in this block or below, if needed.
3103 Start searching from the next insn: either ignore_first is true, or
3104 INSN doesn't have a correct live set. */
3105 temp = NEXT_INSN (insn);
3106 final = NEXT_INSN (BB_END (bb));
3107 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3108 temp = NEXT_INSN (temp);
3109 if (temp == final)
3110 {
3111 lv = compute_live_after_bb (bb);
3112 temp = PREV_INSN (temp);
3113 }
3114 else
3115 {
3116 lv = get_regset_from_pool ();
3117 COPY_REG_SET (lv, INSN_LIVE (temp));
3118 }
3119
3120 /* Put correct lv sets on the insns which have bad sets. */
3121 final = PREV_INSN (insn);
3122 while (temp != final)
3123 {
3124 propagate_lv_set (lv, temp);
3125 COPY_REG_SET (INSN_LIVE (temp), lv);
3126 INSN_LIVE_VALID_P (temp) = true;
3127 temp = PREV_INSN (temp);
3128 }
3129
3130 /* Also put it in a BB. */
3131 if (sel_bb_head_p (insn))
3132 {
3133 basic_block bb = BLOCK_FOR_INSN (insn);
3134
3135 COPY_REG_SET (BB_LV_SET (bb), lv);
3136 BB_LV_SET_VALID_P (bb) = true;
3137 }
3138
3139 /* We return LV to the pool, but will not clear it there. Thus we can
3140 legimatelly use LV till the next use of regset_pool_get (). */
3141 return_regset_to_pool (lv);
3142 return lv;
3143 }
3144
3145 /* Update liveness sets for INSN. */
3146 static inline void
3147 update_liveness_on_insn (rtx insn)
3148 {
3149 ignore_first = true;
3150 compute_live (insn);
3151 }
3152
3153 /* Compute liveness below INSN and write it into REGS. */
3154 static inline void
3155 compute_live_below_insn (rtx insn, regset regs)
3156 {
3157 rtx succ;
3158 succ_iterator si;
3159
3160 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3161 IOR_REG_SET (regs, compute_live (succ));
3162 }
3163
3164 /* Update the data gathered in av and lv sets starting from INSN. */
3165 static void
3166 update_data_sets (rtx insn)
3167 {
3168 update_liveness_on_insn (insn);
3169 if (sel_bb_head_p (insn))
3170 {
3171 gcc_assert (AV_LEVEL (insn) != 0);
3172 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3173 compute_av_set (insn, NULL, 0, 0);
3174 }
3175 }
3176 \f
3177
3178 /* Helper for move_op () and find_used_regs ().
3179 Return speculation type for which a check should be created on the place
3180 of INSN. EXPR is one of the original ops we are searching for. */
3181 static ds_t
3182 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3183 {
3184 ds_t to_check_ds;
3185 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3186
3187 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3188
3189 if (targetm.sched.get_insn_checked_ds)
3190 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3191
3192 if (spec_info != NULL
3193 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3194 already_checked_ds |= BEGIN_CONTROL;
3195
3196 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3197
3198 to_check_ds &= ~already_checked_ds;
3199
3200 return to_check_ds;
3201 }
3202
3203 /* Find the set of registers that are unavailable for storing expres
3204 while moving ORIG_OPS up on the path starting from INSN due to
3205 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3206
3207 All the original operations found during the traversal are saved in the
3208 ORIGINAL_INSNS list.
3209
3210 REG_RENAME_P denotes the set of hardware registers that
3211 can not be used with renaming due to the register class restrictions,
3212 mode restrictions and other (the register we'll choose should be
3213 compatible class with the original uses, shouldn't be in call_used_regs,
3214 should be HARD_REGNO_RENAME_OK etc).
3215
3216 Returns TRUE if we've found all original insns, FALSE otherwise.
3217
3218 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3219 to traverse the code motion paths. This helper function finds registers
3220 that are not available for storing expres while moving ORIG_OPS up on the
3221 path starting from INSN. A register considered as used on the moving path,
3222 if one of the following conditions is not satisfied:
3223
3224 (1) a register not set or read on any path from xi to an instance of
3225 the original operation,
3226 (2) not among the live registers of the point immediately following the
3227 first original operation on a given downward path, except for the
3228 original target register of the operation,
3229 (3) not live on the other path of any conditional branch that is passed
3230 by the operation, in case original operations are not present on
3231 both paths of the conditional branch.
3232
3233 All the original operations found during the traversal are saved in the
3234 ORIGINAL_INSNS list.
3235
3236 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3237 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3238 to unavailable hard regs at the point original operation is found. */
3239
3240 static bool
3241 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3242 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3243 {
3244 def_list_iterator i;
3245 def_t def;
3246 int res;
3247 bool needs_spec_check_p = false;
3248 expr_t expr;
3249 av_set_iterator expr_iter;
3250 struct fur_static_params sparams;
3251 struct cmpd_local_params lparams;
3252
3253 /* We haven't visited any blocks yet. */
3254 bitmap_clear (code_motion_visited_blocks);
3255
3256 /* Init parameters for code_motion_path_driver. */
3257 sparams.crosses_call = false;
3258 sparams.original_insns = original_insns;
3259 sparams.used_regs = used_regs;
3260
3261 /* Set the appropriate hooks and data. */
3262 code_motion_path_driver_info = &fur_hooks;
3263
3264 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3265
3266 reg_rename_p->crosses_call |= sparams.crosses_call;
3267
3268 gcc_assert (res == 1);
3269 gcc_assert (original_insns && *original_insns);
3270
3271 /* ??? We calculate whether an expression needs a check when computing
3272 av sets. This information is not as precise as it could be due to
3273 merging this bit in merge_expr. We can do better in find_used_regs,
3274 but we want to avoid multiple traversals of the same code motion
3275 paths. */
3276 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3277 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3278
3279 /* Mark hardware regs in REG_RENAME_P that are not suitable
3280 for renaming expr in INSN due to hardware restrictions (register class,
3281 modes compatibility etc). */
3282 FOR_EACH_DEF (def, i, *original_insns)
3283 {
3284 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3285
3286 if (VINSN_SEPARABLE_P (vinsn))
3287 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3288
3289 /* Do not allow clobbering of ld.[sa] address in case some of the
3290 original operations need a check. */
3291 if (needs_spec_check_p)
3292 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3293 }
3294
3295 return true;
3296 }
3297 \f
3298
3299 /* Functions to choose the best insn from available ones. */
3300
3301 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3302 static int
3303 sel_target_adjust_priority (expr_t expr)
3304 {
3305 int priority = EXPR_PRIORITY (expr);
3306 int new_priority;
3307
3308 if (targetm.sched.adjust_priority)
3309 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3310 else
3311 new_priority = priority;
3312
3313 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3314 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3315
3316 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3317
3318 if (sched_verbose >= 4)
3319 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3320 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3321 EXPR_PRIORITY_ADJ (expr), new_priority);
3322
3323 return new_priority;
3324 }
3325
3326 /* Rank two available exprs for schedule. Never return 0 here. */
3327 static int
3328 sel_rank_for_schedule (const void *x, const void *y)
3329 {
3330 expr_t tmp = *(const expr_t *) y;
3331 expr_t tmp2 = *(const expr_t *) x;
3332 insn_t tmp_insn, tmp2_insn;
3333 vinsn_t tmp_vinsn, tmp2_vinsn;
3334 int val;
3335
3336 tmp_vinsn = EXPR_VINSN (tmp);
3337 tmp2_vinsn = EXPR_VINSN (tmp2);
3338 tmp_insn = EXPR_INSN_RTX (tmp);
3339 tmp2_insn = EXPR_INSN_RTX (tmp2);
3340
3341 /* Schedule debug insns as early as possible. */
3342 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3343 return -1;
3344 else if (DEBUG_INSN_P (tmp2_insn))
3345 return 1;
3346
3347 /* Prefer SCHED_GROUP_P insns to any others. */
3348 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3349 {
3350 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3351 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3352
3353 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3354 cannot be cloned. */
3355 if (VINSN_UNIQUE_P (tmp2_vinsn))
3356 return 1;
3357 return -1;
3358 }
3359
3360 /* Discourage scheduling of speculative checks. */
3361 val = (sel_insn_is_speculation_check (tmp_insn)
3362 - sel_insn_is_speculation_check (tmp2_insn));
3363 if (val)
3364 return val;
3365
3366 /* Prefer not scheduled insn over scheduled one. */
3367 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3368 {
3369 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3370 if (val)
3371 return val;
3372 }
3373
3374 /* Prefer jump over non-jump instruction. */
3375 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3376 return -1;
3377 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3378 return 1;
3379
3380 /* Prefer an expr with greater priority. */
3381 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3382 {
3383 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3384 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3385
3386 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3387 }
3388 else
3389 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3390 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3391 if (val)
3392 return val;
3393
3394 if (spec_info != NULL && spec_info->mask != 0)
3395 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3396 {
3397 ds_t ds1, ds2;
3398 dw_t dw1, dw2;
3399 int dw;
3400
3401 ds1 = EXPR_SPEC_DONE_DS (tmp);
3402 if (ds1)
3403 dw1 = ds_weak (ds1);
3404 else
3405 dw1 = NO_DEP_WEAK;
3406
3407 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3408 if (ds2)
3409 dw2 = ds_weak (ds2);
3410 else
3411 dw2 = NO_DEP_WEAK;
3412
3413 dw = dw2 - dw1;
3414 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3415 return dw;
3416 }
3417
3418 /* Prefer an old insn to a bookkeeping insn. */
3419 if (INSN_UID (tmp_insn) < first_emitted_uid
3420 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3421 return -1;
3422 if (INSN_UID (tmp_insn) >= first_emitted_uid
3423 && INSN_UID (tmp2_insn) < first_emitted_uid)
3424 return 1;
3425
3426 /* Prefer an insn with smaller UID, as a last resort.
3427 We can't safely use INSN_LUID as it is defined only for those insns
3428 that are in the stream. */
3429 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3430 }
3431
3432 /* Filter out expressions from av set pointed to by AV_PTR
3433 that are pipelined too many times. */
3434 static void
3435 process_pipelined_exprs (av_set_t *av_ptr)
3436 {
3437 expr_t expr;
3438 av_set_iterator si;
3439
3440 /* Don't pipeline already pipelined code as that would increase
3441 number of unnecessary register moves. */
3442 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3443 {
3444 if (EXPR_SCHED_TIMES (expr)
3445 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3446 av_set_iter_remove (&si);
3447 }
3448 }
3449
3450 /* Filter speculative insns from AV_PTR if we don't want them. */
3451 static void
3452 process_spec_exprs (av_set_t *av_ptr)
3453 {
3454 bool try_data_p = true;
3455 bool try_control_p = true;
3456 expr_t expr;
3457 av_set_iterator si;
3458
3459 if (spec_info == NULL)
3460 return;
3461
3462 /* Scan *AV_PTR to find out if we want to consider speculative
3463 instructions for scheduling. */
3464 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3465 {
3466 ds_t ds;
3467
3468 ds = EXPR_SPEC_DONE_DS (expr);
3469
3470 /* The probability of a success is too low - don't speculate. */
3471 if ((ds & SPECULATIVE)
3472 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3473 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3474 || (pipelining_p && false
3475 && (ds & DATA_SPEC)
3476 && (ds & CONTROL_SPEC))))
3477 {
3478 av_set_iter_remove (&si);
3479 continue;
3480 }
3481
3482 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3483 && !(ds & BEGIN_DATA))
3484 try_data_p = false;
3485
3486 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3487 && !(ds & BEGIN_CONTROL))
3488 try_control_p = false;
3489 }
3490
3491 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3492 {
3493 ds_t ds;
3494
3495 ds = EXPR_SPEC_DONE_DS (expr);
3496
3497 if (ds & SPECULATIVE)
3498 {
3499 if ((ds & BEGIN_DATA) && !try_data_p)
3500 /* We don't want any data speculative instructions right
3501 now. */
3502 av_set_iter_remove (&si);
3503
3504 if ((ds & BEGIN_CONTROL) && !try_control_p)
3505 /* We don't want any control speculative instructions right
3506 now. */
3507 av_set_iter_remove (&si);
3508 }
3509 }
3510 }
3511
3512 /* Search for any use-like insns in AV_PTR and decide on scheduling
3513 them. Return one when found, and NULL otherwise.
3514 Note that we check here whether a USE could be scheduled to avoid
3515 an infinite loop later. */
3516 static expr_t
3517 process_use_exprs (av_set_t *av_ptr)
3518 {
3519 expr_t expr;
3520 av_set_iterator si;
3521 bool uses_present_p = false;
3522 bool try_uses_p = true;
3523
3524 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3525 {
3526 /* This will also initialize INSN_CODE for later use. */
3527 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3528 {
3529 /* If we have a USE in *AV_PTR that was not scheduled yet,
3530 do so because it will do good only. */
3531 if (EXPR_SCHED_TIMES (expr) <= 0)
3532 {
3533 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3534 return expr;
3535
3536 av_set_iter_remove (&si);
3537 }
3538 else
3539 {
3540 gcc_assert (pipelining_p);
3541
3542 uses_present_p = true;
3543 }
3544 }
3545 else
3546 try_uses_p = false;
3547 }
3548
3549 if (uses_present_p)
3550 {
3551 /* If we don't want to schedule any USEs right now and we have some
3552 in *AV_PTR, remove them, else just return the first one found. */
3553 if (!try_uses_p)
3554 {
3555 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3556 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3557 av_set_iter_remove (&si);
3558 }
3559 else
3560 {
3561 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3562 {
3563 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3564
3565 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3566 return expr;
3567
3568 av_set_iter_remove (&si);
3569 }
3570 }
3571 }
3572
3573 return NULL;
3574 }
3575
3576 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3577 static bool
3578 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3579 {
3580 vinsn_t vinsn;
3581 int n;
3582
3583 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3584 if (VINSN_SEPARABLE_P (vinsn))
3585 {
3586 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3587 return true;
3588 }
3589 else
3590 {
3591 /* For non-separable instructions, the blocking insn can have
3592 another pattern due to substitution, and we can't choose
3593 different register as in the above case. Check all registers
3594 being written instead. */
3595 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3596 VINSN_REG_SETS (EXPR_VINSN (expr))))
3597 return true;
3598 }
3599
3600 return false;
3601 }
3602
3603 #ifdef ENABLE_CHECKING
3604 /* Return true if either of expressions from ORIG_OPS can be blocked
3605 by previously created bookkeeping code. STATIC_PARAMS points to static
3606 parameters of move_op. */
3607 static bool
3608 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3609 {
3610 expr_t expr;
3611 av_set_iterator iter;
3612 moveop_static_params_p sparams;
3613
3614 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3615 created while scheduling on another fence. */
3616 FOR_EACH_EXPR (expr, iter, orig_ops)
3617 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3618 return true;
3619
3620 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3621 sparams = (moveop_static_params_p) static_params;
3622
3623 /* Expressions can be also blocked by bookkeeping created during current
3624 move_op. */
3625 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3626 FOR_EACH_EXPR (expr, iter, orig_ops)
3627 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3628 return true;
3629
3630 /* Expressions in ORIG_OPS may have wrong destination register due to
3631 renaming. Check with the right register instead. */
3632 if (sparams->dest && REG_P (sparams->dest))
3633 {
3634 unsigned regno = REGNO (sparams->dest);
3635 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3636
3637 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3638 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3639 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3640 return true;
3641 }
3642
3643 return false;
3644 }
3645 #endif
3646
3647 /* Clear VINSN_VEC and detach vinsns. */
3648 static void
3649 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3650 {
3651 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3652 if (len > 0)
3653 {
3654 vinsn_t vinsn;
3655 int n;
3656
3657 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3658 vinsn_detach (vinsn);
3659 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3660 }
3661 }
3662
3663 /* Add the vinsn of EXPR to the VINSN_VEC. */
3664 static void
3665 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3666 {
3667 vinsn_attach (EXPR_VINSN (expr));
3668 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3669 }
3670
3671 /* Free the vector representing blocked expressions. */
3672 static void
3673 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3674 {
3675 if (*vinsn_vec)
3676 VEC_free (vinsn_t, heap, *vinsn_vec);
3677 }
3678
3679 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3680
3681 void sel_add_to_insn_priority (rtx insn, int amount)
3682 {
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3684
3685 if (sched_verbose >= 2)
3686 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3687 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3688 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3689 }
3690
3691 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3692 true if there is something to schedule. BNDS and FENCE are current
3693 boundaries and fence, respectively. If we need to stall for some cycles
3694 before an expr from AV would become available, write this number to
3695 *PNEED_STALL. */
3696 static bool
3697 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3698 int *pneed_stall)
3699 {
3700 av_set_iterator si;
3701 expr_t expr;
3702 int sched_next_worked = 0, stalled, n;
3703 static int av_max_prio, est_ticks_till_branch;
3704 int min_need_stall = -1;
3705 deps_t dc = BND_DC (BLIST_BND (bnds));
3706
3707 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3708 already scheduled. */
3709 if (av == NULL)
3710 return false;
3711
3712 /* Empty vector from the previous stuff. */
3713 if (VEC_length (expr_t, vec_av_set) > 0)
3714 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3715
3716 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3717 for each insn. */
3718 gcc_assert (VEC_empty (expr_t, vec_av_set));
3719 FOR_EACH_EXPR (expr, si, av)
3720 {
3721 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3722
3723 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3724
3725 /* Adjust priority using target backend hook. */
3726 sel_target_adjust_priority (expr);
3727 }
3728
3729 /* Sort the vector. */
3730 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3731
3732 /* We record maximal priority of insns in av set for current instruction
3733 group. */
3734 if (FENCE_STARTS_CYCLE_P (fence))
3735 av_max_prio = est_ticks_till_branch = INT_MIN;
3736
3737 /* Filter out inappropriate expressions. Loop's direction is reversed to
3738 visit "best" instructions first. We assume that VEC_unordered_remove
3739 moves last element in place of one being deleted. */
3740 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3741 {
3742 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3743 insn_t insn = EXPR_INSN_RTX (expr);
3744 signed char target_available;
3745 bool is_orig_reg_p = true;
3746 int need_cycles, new_prio;
3747
3748 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3749 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3750 {
3751 VEC_unordered_remove (expr_t, vec_av_set, n);
3752 continue;
3753 }
3754
3755 /* Set number of sched_next insns (just in case there
3756 could be several). */
3757 if (FENCE_SCHED_NEXT (fence))
3758 sched_next_worked++;
3759
3760 /* Check all liveness requirements and try renaming.
3761 FIXME: try to minimize calls to this. */
3762 target_available = EXPR_TARGET_AVAILABLE (expr);
3763
3764 /* If insn was already scheduled on the current fence,
3765 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3766 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3767 target_available = -1;
3768
3769 /* If the availability of the EXPR is invalidated by the insertion of
3770 bookkeeping earlier, make sure that we won't choose this expr for
3771 scheduling if it's not separable, and if it is separable, then
3772 we have to recompute the set of available registers for it. */
3773 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3774 {
3775 VEC_unordered_remove (expr_t, vec_av_set, n);
3776 if (sched_verbose >= 4)
3777 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3778 INSN_UID (insn));
3779 continue;
3780 }
3781
3782 if (target_available == true)
3783 {
3784 /* Do nothing -- we can use an existing register. */
3785 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3786 }
3787 else if (/* Non-separable instruction will never
3788 get another register. */
3789 (target_available == false
3790 && !EXPR_SEPARABLE_P (expr))
3791 /* Don't try to find a register for low-priority expression. */
3792 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3793 /* ??? FIXME: Don't try to rename data speculation. */
3794 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3795 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3796 {
3797 VEC_unordered_remove (expr_t, vec_av_set, n);
3798 if (sched_verbose >= 4)
3799 sel_print ("Expr %d has no suitable target register\n",
3800 INSN_UID (insn));
3801 continue;
3802 }
3803
3804 /* Filter expressions that need to be renamed or speculated when
3805 pipelining, because compensating register copies or speculation
3806 checks are likely to be placed near the beginning of the loop,
3807 causing a stall. */
3808 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3809 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3810 {
3811 /* Estimation of number of cycles until loop branch for
3812 renaming/speculation to be successful. */
3813 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3814
3815 if ((int) current_loop_nest->ninsns < 9)
3816 {
3817 VEC_unordered_remove (expr_t, vec_av_set, n);
3818 if (sched_verbose >= 4)
3819 sel_print ("Pipelining expr %d will likely cause stall\n",
3820 INSN_UID (insn));
3821 continue;
3822 }
3823
3824 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3825 < need_n_ticks_till_branch * issue_rate / 2
3826 && est_ticks_till_branch < need_n_ticks_till_branch)
3827 {
3828 VEC_unordered_remove (expr_t, vec_av_set, n);
3829 if (sched_verbose >= 4)
3830 sel_print ("Pipelining expr %d will likely cause stall\n",
3831 INSN_UID (insn));
3832 continue;
3833 }
3834 }
3835
3836 /* We want to schedule speculation checks as late as possible. Discard
3837 them from av set if there are instructions with higher priority. */
3838 if (sel_insn_is_speculation_check (insn)
3839 && EXPR_PRIORITY (expr) < av_max_prio)
3840 {
3841 stalled++;
3842 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3843 VEC_unordered_remove (expr_t, vec_av_set, n);
3844 if (sched_verbose >= 4)
3845 sel_print ("Delaying speculation check %d until its first use\n",
3846 INSN_UID (insn));
3847 continue;
3848 }
3849
3850 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3851 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3852 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3853
3854 /* Don't allow any insns whose data is not yet ready.
3855 Check first whether we've already tried them and failed. */
3856 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3857 {
3858 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3859 - FENCE_CYCLE (fence));
3860 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3861 est_ticks_till_branch = MAX (est_ticks_till_branch,
3862 EXPR_PRIORITY (expr) + need_cycles);
3863
3864 if (need_cycles > 0)
3865 {
3866 stalled++;
3867 min_need_stall = (min_need_stall < 0
3868 ? need_cycles
3869 : MIN (min_need_stall, need_cycles));
3870 VEC_unordered_remove (expr_t, vec_av_set, n);
3871
3872 if (sched_verbose >= 4)
3873 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3874 INSN_UID (insn),
3875 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3876 continue;
3877 }
3878 }
3879
3880 /* Now resort to dependence analysis to find whether EXPR might be
3881 stalled due to dependencies from FENCE's context. */
3882 need_cycles = tick_check_p (expr, dc, fence);
3883 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3884
3885 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3886 est_ticks_till_branch = MAX (est_ticks_till_branch,
3887 new_prio);
3888
3889 if (need_cycles > 0)
3890 {
3891 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3892 {
3893 int new_size = INSN_UID (insn) * 3 / 2;
3894
3895 FENCE_READY_TICKS (fence)
3896 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3897 new_size, FENCE_READY_TICKS_SIZE (fence),
3898 sizeof (int));
3899 }
3900 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3901 = FENCE_CYCLE (fence) + need_cycles;
3902
3903 stalled++;
3904 min_need_stall = (min_need_stall < 0
3905 ? need_cycles
3906 : MIN (min_need_stall, need_cycles));
3907
3908 VEC_unordered_remove (expr_t, vec_av_set, n);
3909
3910 if (sched_verbose >= 4)
3911 sel_print ("Expr %d is not ready yet until cycle %d\n",
3912 INSN_UID (insn),
3913 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3914 continue;
3915 }
3916
3917 if (sched_verbose >= 4)
3918 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3919 min_need_stall = 0;
3920 }
3921
3922 /* Clear SCHED_NEXT. */
3923 if (FENCE_SCHED_NEXT (fence))
3924 {
3925 gcc_assert (sched_next_worked == 1);
3926 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3927 }
3928
3929 /* No need to stall if this variable was not initialized. */
3930 if (min_need_stall < 0)
3931 min_need_stall = 0;
3932
3933 if (VEC_empty (expr_t, vec_av_set))
3934 {
3935 /* We need to set *pneed_stall here, because later we skip this code
3936 when ready list is empty. */
3937 *pneed_stall = min_need_stall;
3938 return false;
3939 }
3940 else
3941 gcc_assert (min_need_stall == 0);
3942
3943 /* Sort the vector. */
3944 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3945
3946 if (sched_verbose >= 4)
3947 {
3948 sel_print ("Total ready exprs: %d, stalled: %d\n",
3949 VEC_length (expr_t, vec_av_set), stalled);
3950 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3951 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3952 dump_expr (expr);
3953 sel_print ("\n");
3954 }
3955
3956 *pneed_stall = 0;
3957 return true;
3958 }
3959
3960 /* Convert a vectored and sorted av set to the ready list that
3961 the rest of the backend wants to see. */
3962 static void
3963 convert_vec_av_set_to_ready (void)
3964 {
3965 int n;
3966 expr_t expr;
3967
3968 /* Allocate and fill the ready list from the sorted vector. */
3969 ready.n_ready = VEC_length (expr_t, vec_av_set);
3970 ready.first = ready.n_ready - 1;
3971
3972 gcc_assert (ready.n_ready > 0);
3973
3974 if (ready.n_ready > max_issue_size)
3975 {
3976 max_issue_size = ready.n_ready;
3977 sched_extend_ready_list (ready.n_ready);
3978 }
3979
3980 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3981 {
3982 vinsn_t vi = EXPR_VINSN (expr);
3983 insn_t insn = VINSN_INSN_RTX (vi);
3984
3985 ready_try[n] = 0;
3986 ready.vec[n] = insn;
3987 }
3988 }
3989
3990 /* Initialize ready list from *AV_PTR for the max_issue () call.
3991 If any unrecognizable insn found in *AV_PTR, return it (and skip
3992 max_issue). BND and FENCE are current boundary and fence,
3993 respectively. If we need to stall for some cycles before an expr
3994 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3995 static expr_t
3996 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3997 int *pneed_stall)
3998 {
3999 expr_t expr;
4000
4001 /* We do not support multiple boundaries per fence. */
4002 gcc_assert (BLIST_NEXT (bnds) == NULL);
4003
4004 /* Process expressions required special handling, i.e. pipelined,
4005 speculative and recog() < 0 expressions first. */
4006 process_pipelined_exprs (av_ptr);
4007 process_spec_exprs (av_ptr);
4008
4009 /* A USE could be scheduled immediately. */
4010 expr = process_use_exprs (av_ptr);
4011 if (expr)
4012 {
4013 *pneed_stall = 0;
4014 return expr;
4015 }
4016
4017 /* Turn the av set to a vector for sorting. */
4018 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4019 {
4020 ready.n_ready = 0;
4021 return NULL;
4022 }
4023
4024 /* Build the final ready list. */
4025 convert_vec_av_set_to_ready ();
4026 return NULL;
4027 }
4028
4029 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4030 static bool
4031 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4032 {
4033 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4034 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4035 : FENCE_CYCLE (fence) - 1;
4036 bool res = false;
4037 int sort_p = 0;
4038
4039 if (!targetm.sched.dfa_new_cycle)
4040 return false;
4041
4042 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4043
4044 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4045 insn, last_scheduled_cycle,
4046 FENCE_CYCLE (fence), &sort_p))
4047 {
4048 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4049 advance_one_cycle (fence);
4050 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4051 res = true;
4052 }
4053
4054 return res;
4055 }
4056
4057 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4058 we can issue. FENCE is the current fence. */
4059 static int
4060 invoke_reorder_hooks (fence_t fence)
4061 {
4062 int issue_more;
4063 bool ran_hook = false;
4064
4065 /* Call the reorder hook at the beginning of the cycle, and call
4066 the reorder2 hook in the middle of the cycle. */
4067 if (FENCE_ISSUED_INSNS (fence) == 0)
4068 {
4069 if (targetm.sched.reorder
4070 && !SCHED_GROUP_P (ready_element (&ready, 0))
4071 && ready.n_ready > 1)
4072 {
4073 /* Don't give reorder the most prioritized insn as it can break
4074 pipelining. */
4075 if (pipelining_p)
4076 --ready.n_ready;
4077
4078 issue_more
4079 = targetm.sched.reorder (sched_dump, sched_verbose,
4080 ready_lastpos (&ready),
4081 &ready.n_ready, FENCE_CYCLE (fence));
4082
4083 if (pipelining_p)
4084 ++ready.n_ready;
4085
4086 ran_hook = true;
4087 }
4088 else
4089 /* Initialize can_issue_more for variable_issue. */
4090 issue_more = issue_rate;
4091 }
4092 else if (targetm.sched.reorder2
4093 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4094 {
4095 if (ready.n_ready == 1)
4096 issue_more =
4097 targetm.sched.reorder2 (sched_dump, sched_verbose,
4098 ready_lastpos (&ready),
4099 &ready.n_ready, FENCE_CYCLE (fence));
4100 else
4101 {
4102 if (pipelining_p)
4103 --ready.n_ready;
4104
4105 issue_more =
4106 targetm.sched.reorder2 (sched_dump, sched_verbose,
4107 ready.n_ready
4108 ? ready_lastpos (&ready) : NULL,
4109 &ready.n_ready, FENCE_CYCLE (fence));
4110
4111 if (pipelining_p)
4112 ++ready.n_ready;
4113 }
4114
4115 ran_hook = true;
4116 }
4117 else
4118 issue_more = FENCE_ISSUE_MORE (fence);
4119
4120 /* Ensure that ready list and vec_av_set are in line with each other,
4121 i.e. vec_av_set[i] == ready_element (&ready, i). */
4122 if (issue_more && ran_hook)
4123 {
4124 int i, j, n;
4125 rtx *arr = ready.vec;
4126 expr_t *vec = VEC_address (expr_t, vec_av_set);
4127
4128 for (i = 0, n = ready.n_ready; i < n; i++)
4129 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4130 {
4131 expr_t tmp;
4132
4133 for (j = i; j < n; j++)
4134 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4135 break;
4136 gcc_assert (j < n);
4137
4138 tmp = vec[i];
4139 vec[i] = vec[j];
4140 vec[j] = tmp;
4141 }
4142 }
4143
4144 return issue_more;
4145 }
4146
4147 /* Return an EXPR correponding to INDEX element of ready list, if
4148 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4149 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4150 ready.vec otherwise. */
4151 static inline expr_t
4152 find_expr_for_ready (int index, bool follow_ready_element)
4153 {
4154 expr_t expr;
4155 int real_index;
4156
4157 real_index = follow_ready_element ? ready.first - index : index;
4158
4159 expr = VEC_index (expr_t, vec_av_set, real_index);
4160 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4161
4162 return expr;
4163 }
4164
4165 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4166 of such insns found. */
4167 static int
4168 invoke_dfa_lookahead_guard (void)
4169 {
4170 int i, n;
4171 bool have_hook
4172 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4173
4174 if (sched_verbose >= 2)
4175 sel_print ("ready after reorder: ");
4176
4177 for (i = 0, n = 0; i < ready.n_ready; i++)
4178 {
4179 expr_t expr;
4180 insn_t insn;
4181 int r;
4182
4183 /* In this loop insn is Ith element of the ready list given by
4184 ready_element, not Ith element of ready.vec. */
4185 insn = ready_element (&ready, i);
4186
4187 if (! have_hook || i == 0)
4188 r = 0;
4189 else
4190 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4191
4192 gcc_assert (INSN_CODE (insn) >= 0);
4193
4194 /* Only insns with ready_try = 0 can get here
4195 from fill_ready_list. */
4196 gcc_assert (ready_try [i] == 0);
4197 ready_try[i] = r;
4198 if (!r)
4199 n++;
4200
4201 expr = find_expr_for_ready (i, true);
4202
4203 if (sched_verbose >= 2)
4204 {
4205 dump_vinsn (EXPR_VINSN (expr));
4206 sel_print (":%d; ", ready_try[i]);
4207 }
4208 }
4209
4210 if (sched_verbose >= 2)
4211 sel_print ("\n");
4212 return n;
4213 }
4214
4215 /* Calculate the number of privileged insns and return it. */
4216 static int
4217 calculate_privileged_insns (void)
4218 {
4219 expr_t cur_expr, min_spec_expr = NULL;
4220 int privileged_n = 0, i;
4221
4222 for (i = 0; i < ready.n_ready; i++)
4223 {
4224 if (ready_try[i])
4225 continue;
4226
4227 if (! min_spec_expr)
4228 min_spec_expr = find_expr_for_ready (i, true);
4229
4230 cur_expr = find_expr_for_ready (i, true);
4231
4232 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4233 break;
4234
4235 ++privileged_n;
4236 }
4237
4238 if (i == ready.n_ready)
4239 privileged_n = 0;
4240
4241 if (sched_verbose >= 2)
4242 sel_print ("privileged_n: %d insns with SPEC %d\n",
4243 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4244 return privileged_n;
4245 }
4246
4247 /* Call the rest of the hooks after the choice was made. Return
4248 the number of insns that still can be issued given that the current
4249 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4250 and the insn chosen for scheduling, respectively. */
4251 static int
4252 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4253 {
4254 gcc_assert (INSN_P (best_insn));
4255
4256 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4257 sel_dfa_new_cycle (best_insn, fence);
4258
4259 if (targetm.sched.variable_issue)
4260 {
4261 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4262 issue_more =
4263 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4264 issue_more);
4265 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4266 }
4267 else if (GET_CODE (PATTERN (best_insn)) != USE
4268 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4269 issue_more--;
4270
4271 return issue_more;
4272 }
4273
4274 /* Estimate the cost of issuing INSN on DFA state STATE. */
4275 static int
4276 estimate_insn_cost (rtx insn, state_t state)
4277 {
4278 static state_t temp = NULL;
4279 int cost;
4280
4281 if (!temp)
4282 temp = xmalloc (dfa_state_size);
4283
4284 memcpy (temp, state, dfa_state_size);
4285 cost = state_transition (temp, insn);
4286
4287 if (cost < 0)
4288 return 0;
4289 else if (cost == 0)
4290 return 1;
4291 return cost;
4292 }
4293
4294 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4295 This function properly handles ASMs, USEs etc. */
4296 static int
4297 get_expr_cost (expr_t expr, fence_t fence)
4298 {
4299 rtx insn = EXPR_INSN_RTX (expr);
4300
4301 if (recog_memoized (insn) < 0)
4302 {
4303 if (!FENCE_STARTS_CYCLE_P (fence)
4304 && INSN_ASM_P (insn))
4305 /* This is asm insn which is tryed to be issued on the
4306 cycle not first. Issue it on the next cycle. */
4307 return 1;
4308 else
4309 /* A USE insn, or something else we don't need to
4310 understand. We can't pass these directly to
4311 state_transition because it will trigger a
4312 fatal error for unrecognizable insns. */
4313 return 0;
4314 }
4315 else
4316 return estimate_insn_cost (insn, FENCE_STATE (fence));
4317 }
4318
4319 /* Find the best insn for scheduling, either via max_issue or just take
4320 the most prioritized available. */
4321 static int
4322 choose_best_insn (fence_t fence, int privileged_n, int *index)
4323 {
4324 int can_issue = 0;
4325
4326 if (dfa_lookahead > 0)
4327 {
4328 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4329 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4330 can_issue = max_issue (&ready, privileged_n,
4331 FENCE_STATE (fence), true, index);
4332 if (sched_verbose >= 2)
4333 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4334 can_issue, FENCE_ISSUED_INSNS (fence));
4335 }
4336 else
4337 {
4338 /* We can't use max_issue; just return the first available element. */
4339 int i;
4340
4341 for (i = 0; i < ready.n_ready; i++)
4342 {
4343 expr_t expr = find_expr_for_ready (i, true);
4344
4345 if (get_expr_cost (expr, fence) < 1)
4346 {
4347 can_issue = can_issue_more;
4348 *index = i;
4349
4350 if (sched_verbose >= 2)
4351 sel_print ("using %dth insn from the ready list\n", i + 1);
4352
4353 break;
4354 }
4355 }
4356
4357 if (i == ready.n_ready)
4358 {
4359 can_issue = 0;
4360 *index = -1;
4361 }
4362 }
4363
4364 return can_issue;
4365 }
4366
4367 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4368 BNDS and FENCE are current boundaries and scheduling fence respectively.
4369 Return the expr found and NULL if nothing can be issued atm.
4370 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4371 static expr_t
4372 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4373 int *pneed_stall)
4374 {
4375 expr_t best;
4376
4377 /* Choose the best insn for scheduling via:
4378 1) sorting the ready list based on priority;
4379 2) calling the reorder hook;
4380 3) calling max_issue. */
4381 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4382 if (best == NULL && ready.n_ready > 0)
4383 {
4384 int privileged_n, index;
4385
4386 can_issue_more = invoke_reorder_hooks (fence);
4387 if (can_issue_more > 0)
4388 {
4389 /* Try choosing the best insn until we find one that is could be
4390 scheduled due to liveness restrictions on its destination register.
4391 In the future, we'd like to choose once and then just probe insns
4392 in the order of their priority. */
4393 invoke_dfa_lookahead_guard ();
4394 privileged_n = calculate_privileged_insns ();
4395 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4396 if (can_issue_more)
4397 best = find_expr_for_ready (index, true);
4398 }
4399 /* We had some available insns, so if we can't issue them,
4400 we have a stall. */
4401 if (can_issue_more == 0)
4402 {
4403 best = NULL;
4404 *pneed_stall = 1;
4405 }
4406 }
4407
4408 if (best != NULL)
4409 {
4410 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4411 can_issue_more);
4412 if (targetm.sched.variable_issue
4413 && can_issue_more == 0)
4414 *pneed_stall = 1;
4415 }
4416
4417 if (sched_verbose >= 2)
4418 {
4419 if (best != NULL)
4420 {
4421 sel_print ("Best expression (vliw form): ");
4422 dump_expr (best);
4423 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4424 }
4425 else
4426 sel_print ("No best expr found!\n");
4427 }
4428
4429 return best;
4430 }
4431 \f
4432
4433 /* Functions that implement the core of the scheduler. */
4434
4435
4436 /* Emit an instruction from EXPR with SEQNO and VINSN after
4437 PLACE_TO_INSERT. */
4438 static insn_t
4439 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4440 insn_t place_to_insert)
4441 {
4442 /* This assert fails when we have identical instructions
4443 one of which dominates the other. In this case move_op ()
4444 finds the first instruction and doesn't search for second one.
4445 The solution would be to compute av_set after the first found
4446 insn and, if insn present in that set, continue searching.
4447 For now we workaround this issue in move_op. */
4448 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4449
4450 if (EXPR_WAS_RENAMED (expr))
4451 {
4452 unsigned regno = expr_dest_regno (expr);
4453
4454 if (HARD_REGISTER_NUM_P (regno))
4455 {
4456 df_set_regs_ever_live (regno, true);
4457 reg_rename_tick[regno] = ++reg_rename_this_tick;
4458 }
4459 }
4460
4461 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4462 place_to_insert);
4463 }
4464
4465 /* Return TRUE if BB can hold bookkeeping code. */
4466 static bool
4467 block_valid_for_bookkeeping_p (basic_block bb)
4468 {
4469 insn_t bb_end = BB_END (bb);
4470
4471 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4472 return false;
4473
4474 if (INSN_P (bb_end))
4475 {
4476 if (INSN_SCHED_TIMES (bb_end) > 0)
4477 return false;
4478 }
4479 else
4480 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4481
4482 return true;
4483 }
4484
4485 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4486 into E2->dest, except from E1->src (there may be a sequence of empty basic
4487 blocks between E1->src and E2->dest). Return found block, or NULL if new
4488 one must be created. If LAX holds, don't assume there is a simple path
4489 from E1->src to E2->dest. */
4490 static basic_block
4491 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4492 {
4493 basic_block candidate_block = NULL;
4494 edge e;
4495
4496 /* Loop over edges from E1 to E2, inclusive. */
4497 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4498 {
4499 if (EDGE_COUNT (e->dest->preds) == 2)
4500 {
4501 if (candidate_block == NULL)
4502 candidate_block = (EDGE_PRED (e->dest, 0) == e
4503 ? EDGE_PRED (e->dest, 1)->src
4504 : EDGE_PRED (e->dest, 0)->src);
4505 else
4506 /* Found additional edge leading to path from e1 to e2
4507 from aside. */
4508 return NULL;
4509 }
4510 else if (EDGE_COUNT (e->dest->preds) > 2)
4511 /* Several edges leading to path from e1 to e2 from aside. */
4512 return NULL;
4513
4514 if (e == e2)
4515 return ((!lax || candidate_block)
4516 && block_valid_for_bookkeeping_p (candidate_block)
4517 ? candidate_block
4518 : NULL);
4519
4520 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4521 return NULL;
4522 }
4523
4524 if (lax)
4525 return NULL;
4526
4527 gcc_unreachable ();
4528 }
4529
4530 /* Create new basic block for bookkeeping code for path(s) incoming into
4531 E2->dest, except from E1->src. Return created block. */
4532 static basic_block
4533 create_block_for_bookkeeping (edge e1, edge e2)
4534 {
4535 basic_block new_bb, bb = e2->dest;
4536
4537 /* Check that we don't spoil the loop structure. */
4538 if (current_loop_nest)
4539 {
4540 basic_block latch = current_loop_nest->latch;
4541
4542 /* We do not split header. */
4543 gcc_assert (e2->dest != current_loop_nest->header);
4544
4545 /* We do not redirect the only edge to the latch block. */
4546 gcc_assert (e1->dest != latch
4547 || !single_pred_p (latch)
4548 || e1 != single_pred_edge (latch));
4549 }
4550
4551 /* Split BB to insert BOOK_INSN there. */
4552 new_bb = sched_split_block (bb, NULL);
4553
4554 /* Move note_list from the upper bb. */
4555 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4556 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4557 BB_NOTE_LIST (bb) = NULL_RTX;
4558
4559 gcc_assert (e2->dest == bb);
4560
4561 /* Skip block for bookkeeping copy when leaving E1->src. */
4562 if (e1->flags & EDGE_FALLTHRU)
4563 sel_redirect_edge_and_branch_force (e1, new_bb);
4564 else
4565 sel_redirect_edge_and_branch (e1, new_bb);
4566
4567 gcc_assert (e1->dest == new_bb);
4568 gcc_assert (sel_bb_empty_p (bb));
4569
4570 /* To keep basic block numbers in sync between debug and non-debug
4571 compilations, we have to rotate blocks here. Consider that we
4572 started from (a,b)->d, (c,d)->e, and d contained only debug
4573 insns. It would have been removed before if the debug insns
4574 weren't there, so we'd have split e rather than d. So what we do
4575 now is to swap the block numbers of new_bb and
4576 single_succ(new_bb) == e, so that the insns that were in e before
4577 get the new block number. */
4578
4579 if (MAY_HAVE_DEBUG_INSNS)
4580 {
4581 basic_block succ;
4582 insn_t insn = sel_bb_head (new_bb);
4583 insn_t last;
4584
4585 if (DEBUG_INSN_P (insn)
4586 && single_succ_p (new_bb)
4587 && (succ = single_succ (new_bb))
4588 && succ != EXIT_BLOCK_PTR
4589 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4590 {
4591 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4592 insn = NEXT_INSN (insn);
4593
4594 if (insn == last)
4595 {
4596 sel_global_bb_info_def gbi;
4597 sel_region_bb_info_def rbi;
4598 int i;
4599
4600 if (sched_verbose >= 2)
4601 sel_print ("Swapping block ids %i and %i\n",
4602 new_bb->index, succ->index);
4603
4604 i = new_bb->index;
4605 new_bb->index = succ->index;
4606 succ->index = i;
4607
4608 SET_BASIC_BLOCK (new_bb->index, new_bb);
4609 SET_BASIC_BLOCK (succ->index, succ);
4610
4611 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4612 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4613 sizeof (gbi));
4614 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4615
4616 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4617 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4618 sizeof (rbi));
4619 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4620
4621 i = BLOCK_TO_BB (new_bb->index);
4622 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4623 BLOCK_TO_BB (succ->index) = i;
4624
4625 i = CONTAINING_RGN (new_bb->index);
4626 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4627 CONTAINING_RGN (succ->index) = i;
4628
4629 for (i = 0; i < current_nr_blocks; i++)
4630 if (BB_TO_BLOCK (i) == succ->index)
4631 BB_TO_BLOCK (i) = new_bb->index;
4632 else if (BB_TO_BLOCK (i) == new_bb->index)
4633 BB_TO_BLOCK (i) = succ->index;
4634
4635 FOR_BB_INSNS (new_bb, insn)
4636 if (INSN_P (insn))
4637 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4638
4639 FOR_BB_INSNS (succ, insn)
4640 if (INSN_P (insn))
4641 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4642
4643 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4644 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4645
4646 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4647 && LABEL_P (BB_HEAD (succ)));
4648
4649 if (sched_verbose >= 4)
4650 sel_print ("Swapping code labels %i and %i\n",
4651 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4653
4654 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4655 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4656 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4657 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4658 }
4659 }
4660 }
4661
4662 return bb;
4663 }
4664
4665 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4666 into E2->dest, except from E1->src. */
4667 static insn_t
4668 find_place_for_bookkeeping (edge e1, edge e2)
4669 {
4670 insn_t place_to_insert;
4671 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4672 create new basic block, but insert bookkeeping there. */
4673 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4674
4675 if (book_block)
4676 {
4677 place_to_insert = BB_END (book_block);
4678
4679 /* Don't use a block containing only debug insns for
4680 bookkeeping, this causes scheduling differences between debug
4681 and non-debug compilations, for the block would have been
4682 removed already. */
4683 if (DEBUG_INSN_P (place_to_insert))
4684 {
4685 rtx insn = sel_bb_head (book_block);
4686
4687 while (insn != place_to_insert &&
4688 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4689 insn = NEXT_INSN (insn);
4690
4691 if (insn == place_to_insert)
4692 book_block = NULL;
4693 }
4694 }
4695
4696 if (!book_block)
4697 {
4698 book_block = create_block_for_bookkeeping (e1, e2);
4699 place_to_insert = BB_END (book_block);
4700 if (sched_verbose >= 9)
4701 sel_print ("New block is %i, split from bookkeeping block %i\n",
4702 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4703 }
4704 else
4705 {
4706 if (sched_verbose >= 9)
4707 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4708 }
4709
4710 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4711 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4712 place_to_insert = PREV_INSN (place_to_insert);
4713
4714 return place_to_insert;
4715 }
4716
4717 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4718 for JOIN_POINT. */
4719 static int
4720 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4721 {
4722 int seqno;
4723 rtx next;
4724
4725 /* Check if we are about to insert bookkeeping copy before a jump, and use
4726 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4727 next = NEXT_INSN (place_to_insert);
4728 if (INSN_P (next)
4729 && JUMP_P (next)
4730 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4731 {
4732 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4733 seqno = INSN_SEQNO (next);
4734 }
4735 else if (INSN_SEQNO (join_point) > 0)
4736 seqno = INSN_SEQNO (join_point);
4737 else
4738 {
4739 seqno = get_seqno_by_preds (place_to_insert);
4740
4741 /* Sometimes the fences can move in such a way that there will be
4742 no instructions with positive seqno around this bookkeeping.
4743 This means that there will be no way to get to it by a regular
4744 fence movement. Never mind because we pick up such pieces for
4745 rescheduling anyways, so any positive value will do for now. */
4746 if (seqno < 0)
4747 {
4748 gcc_assert (pipelining_p);
4749 seqno = 1;
4750 }
4751 }
4752
4753 gcc_assert (seqno > 0);
4754 return seqno;
4755 }
4756
4757 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4758 NEW_SEQNO to it. Return created insn. */
4759 static insn_t
4760 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4761 {
4762 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4763
4764 vinsn_t new_vinsn
4765 = create_vinsn_from_insn_rtx (new_insn_rtx,
4766 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4767
4768 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4769 place_to_insert);
4770
4771 INSN_SCHED_TIMES (new_insn) = 0;
4772 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4773
4774 return new_insn;
4775 }
4776
4777 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4778 E2->dest, except from E1->src (there may be a sequence of empty blocks
4779 between E1->src and E2->dest). Return block containing the copy.
4780 All scheduler data is initialized for the newly created insn. */
4781 static basic_block
4782 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4783 {
4784 insn_t join_point, place_to_insert, new_insn;
4785 int new_seqno;
4786 bool need_to_exchange_data_sets;
4787
4788 if (sched_verbose >= 4)
4789 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4790 e2->dest->index);
4791
4792 join_point = sel_bb_head (e2->dest);
4793 place_to_insert = find_place_for_bookkeeping (e1, e2);
4794 if (!place_to_insert)
4795 return NULL;
4796 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4797 need_to_exchange_data_sets
4798 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4799
4800 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4801
4802 /* When inserting bookkeeping insn in new block, av sets should be
4803 following: old basic block (that now holds bookkeeping) data sets are
4804 the same as was before generation of bookkeeping, and new basic block
4805 (that now hold all other insns of old basic block) data sets are
4806 invalid. So exchange data sets for these basic blocks as sel_split_block
4807 mistakenly exchanges them in this case. Cannot do it earlier because
4808 when single instruction is added to new basic block it should hold NULL
4809 lv_set. */
4810 if (need_to_exchange_data_sets)
4811 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4812 BLOCK_FOR_INSN (join_point));
4813
4814 stat_bookkeeping_copies++;
4815 return BLOCK_FOR_INSN (new_insn);
4816 }
4817
4818 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4819 on FENCE, but we are unable to copy them. */
4820 static void
4821 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4822 {
4823 expr_t expr;
4824 av_set_iterator i;
4825
4826 /* An expression does not need bookkeeping if it is available on all paths
4827 from current block to original block and current block dominates
4828 original block. We check availability on all paths by examining
4829 EXPR_SPEC; this is not equivalent, because it may be positive even
4830 if expr is available on all paths (but if expr is not available on
4831 any path, EXPR_SPEC will be positive). */
4832
4833 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4834 {
4835 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4836 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4837 && (EXPR_SPEC (expr)
4838 || !EXPR_ORIG_BB_INDEX (expr)
4839 || !dominated_by_p (CDI_DOMINATORS,
4840 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4841 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4842 {
4843 if (sched_verbose >= 4)
4844 sel_print ("Expr %d removed because it would need bookkeeping, which "
4845 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4846 av_set_iter_remove (&i);
4847 }
4848 }
4849 }
4850
4851 /* Moving conditional jump through some instructions.
4852
4853 Consider example:
4854
4855 ... <- current scheduling point
4856 NOTE BASIC BLOCK: <- bb header
4857 (p8) add r14=r14+0x9;;
4858 (p8) mov [r14]=r23
4859 (!p8) jump L1;;
4860 NOTE BASIC BLOCK:
4861 ...
4862
4863 We can schedule jump one cycle earlier, than mov, because they cannot be
4864 executed together as their predicates are mutually exclusive.
4865
4866 This is done in this way: first, new fallthrough basic block is created
4867 after jump (it is always can be done, because there already should be a
4868 fallthrough block, where control flow goes in case of predicate being true -
4869 in our example; otherwise there should be a dependence between those
4870 instructions and jump and we cannot schedule jump right now);
4871 next, all instructions between jump and current scheduling point are moved
4872 to this new block. And the result is this:
4873
4874 NOTE BASIC BLOCK:
4875 (!p8) jump L1 <- current scheduling point
4876 NOTE BASIC BLOCK: <- bb header
4877 (p8) add r14=r14+0x9;;
4878 (p8) mov [r14]=r23
4879 NOTE BASIC BLOCK:
4880 ...
4881 */
4882 static void
4883 move_cond_jump (rtx insn, bnd_t bnd)
4884 {
4885 edge ft_edge;
4886 basic_block block_from, block_next, block_new, block_bnd, bb;
4887 rtx next, prev, link, head;
4888
4889 block_from = BLOCK_FOR_INSN (insn);
4890 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4891 prev = BND_TO (bnd);
4892
4893 #ifdef ENABLE_CHECKING
4894 /* Moving of jump should not cross any other jumps or beginnings of new
4895 basic blocks. The only exception is when we move a jump through
4896 mutually exclusive insns along fallthru edges. */
4897 if (block_from != block_bnd)
4898 {
4899 bb = block_from;
4900 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4901 link = PREV_INSN (link))
4902 {
4903 if (INSN_P (link))
4904 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4905 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4906 {
4907 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4908 bb = BLOCK_FOR_INSN (link);
4909 }
4910 }
4911 }
4912 #endif
4913
4914 /* Jump is moved to the boundary. */
4915 next = PREV_INSN (insn);
4916 BND_TO (bnd) = insn;
4917
4918 ft_edge = find_fallthru_edge_from (block_from);
4919 block_next = ft_edge->dest;
4920 /* There must be a fallthrough block (or where should go
4921 control flow in case of false jump predicate otherwise?). */
4922 gcc_assert (block_next);
4923
4924 /* Create new empty basic block after source block. */
4925 block_new = sel_split_edge (ft_edge);
4926 gcc_assert (block_new->next_bb == block_next
4927 && block_from->next_bb == block_new);
4928
4929 /* Move all instructions except INSN to BLOCK_NEW. */
4930 bb = block_bnd;
4931 head = BB_HEAD (block_new);
4932 while (bb != block_from->next_bb)
4933 {
4934 rtx from, to;
4935 from = bb == block_bnd ? prev : sel_bb_head (bb);
4936 to = bb == block_from ? next : sel_bb_end (bb);
4937
4938 /* The jump being moved can be the first insn in the block.
4939 In this case we don't have to move anything in this block. */
4940 if (NEXT_INSN (to) != from)
4941 {
4942 reorder_insns (from, to, head);
4943
4944 for (link = to; link != head; link = PREV_INSN (link))
4945 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4946 head = to;
4947 }
4948
4949 /* Cleanup possibly empty blocks left. */
4950 block_next = bb->next_bb;
4951 if (bb != block_from)
4952 tidy_control_flow (bb, false);
4953 bb = block_next;
4954 }
4955
4956 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4957 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4958
4959 gcc_assert (!sel_bb_empty_p (block_from)
4960 && !sel_bb_empty_p (block_new));
4961
4962 /* Update data sets for BLOCK_NEW to represent that INSN and
4963 instructions from the other branch of INSN is no longer
4964 available at BLOCK_NEW. */
4965 BB_AV_LEVEL (block_new) = global_level;
4966 gcc_assert (BB_LV_SET (block_new) == NULL);
4967 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4968 update_data_sets (sel_bb_head (block_new));
4969
4970 /* INSN is a new basic block header - so prepare its data
4971 structures and update availability and liveness sets. */
4972 update_data_sets (insn);
4973
4974 if (sched_verbose >= 4)
4975 sel_print ("Moving jump %d\n", INSN_UID (insn));
4976 }
4977
4978 /* Remove nops generated during move_op for preventing removal of empty
4979 basic blocks. */
4980 static void
4981 remove_temp_moveop_nops (bool full_tidying)
4982 {
4983 int i;
4984 insn_t insn;
4985
4986 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4987 {
4988 gcc_assert (INSN_NOP_P (insn));
4989 return_nop_to_pool (insn, full_tidying);
4990 }
4991
4992 /* Empty the vector. */
4993 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4994 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4995 VEC_length (insn_t, vec_temp_moveop_nops));
4996 }
4997
4998 /* Records the maximal UID before moving up an instruction. Used for
4999 distinguishing between bookkeeping copies and original insns. */
5000 static int max_uid_before_move_op = 0;
5001
5002 /* Remove from AV_VLIW_P all instructions but next when debug counter
5003 tells us so. Next instruction is fetched from BNDS. */
5004 static void
5005 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5006 {
5007 if (! dbg_cnt (sel_sched_insn_cnt))
5008 /* Leave only the next insn in av_vliw. */
5009 {
5010 av_set_iterator av_it;
5011 expr_t expr;
5012 bnd_t bnd = BLIST_BND (bnds);
5013 insn_t next = BND_TO (bnd);
5014
5015 gcc_assert (BLIST_NEXT (bnds) == NULL);
5016
5017 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5018 if (EXPR_INSN_RTX (expr) != next)
5019 av_set_iter_remove (&av_it);
5020 }
5021 }
5022
5023 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5024 the computed set to *AV_VLIW_P. */
5025 static void
5026 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5027 {
5028 if (sched_verbose >= 2)
5029 {
5030 sel_print ("Boundaries: ");
5031 dump_blist (bnds);
5032 sel_print ("\n");
5033 }
5034
5035 for (; bnds; bnds = BLIST_NEXT (bnds))
5036 {
5037 bnd_t bnd = BLIST_BND (bnds);
5038 av_set_t av1_copy;
5039 insn_t bnd_to = BND_TO (bnd);
5040
5041 /* Rewind BND->TO to the basic block header in case some bookkeeping
5042 instructions were inserted before BND->TO and it needs to be
5043 adjusted. */
5044 if (sel_bb_head_p (bnd_to))
5045 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5046 else
5047 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5048 {
5049 bnd_to = PREV_INSN (bnd_to);
5050 if (sel_bb_head_p (bnd_to))
5051 break;
5052 }
5053
5054 if (BND_TO (bnd) != bnd_to)
5055 {
5056 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5057 FENCE_INSN (fence) = bnd_to;
5058 BND_TO (bnd) = bnd_to;
5059 }
5060
5061 av_set_clear (&BND_AV (bnd));
5062 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5063
5064 av_set_clear (&BND_AV1 (bnd));
5065 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5066
5067 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5068
5069 av1_copy = av_set_copy (BND_AV1 (bnd));
5070 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5071 }
5072
5073 if (sched_verbose >= 2)
5074 {
5075 sel_print ("Available exprs (vliw form): ");
5076 dump_av_set (*av_vliw_p);
5077 sel_print ("\n");
5078 }
5079 }
5080
5081 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5082 expression. When FOR_MOVEOP is true, also replace the register of
5083 expressions found with the register from EXPR_VLIW. */
5084 static av_set_t
5085 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5086 {
5087 av_set_t expr_seq = NULL;
5088 expr_t expr;
5089 av_set_iterator i;
5090
5091 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5092 {
5093 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5094 {
5095 if (for_moveop)
5096 {
5097 /* The sequential expression has the right form to pass
5098 to move_op except when renaming happened. Put the
5099 correct register in EXPR then. */
5100 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5101 {
5102 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5103 {
5104 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5105 stat_renamed_scheduled++;
5106 }
5107 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5108 This is needed when renaming came up with original
5109 register. */
5110 else if (EXPR_TARGET_AVAILABLE (expr)
5111 != EXPR_TARGET_AVAILABLE (expr_vliw))
5112 {
5113 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5114 EXPR_TARGET_AVAILABLE (expr) = 1;
5115 }
5116 }
5117 if (EXPR_WAS_SUBSTITUTED (expr))
5118 stat_substitutions_total++;
5119 }
5120
5121 av_set_add (&expr_seq, expr);
5122
5123 /* With substitution inside insn group, it is possible
5124 that more than one expression in expr_seq will correspond
5125 to expr_vliw. In this case, choose one as the attempt to
5126 move both leads to miscompiles. */
5127 break;
5128 }
5129 }
5130
5131 if (for_moveop && sched_verbose >= 2)
5132 {
5133 sel_print ("Best expression(s) (sequential form): ");
5134 dump_av_set (expr_seq);
5135 sel_print ("\n");
5136 }
5137
5138 return expr_seq;
5139 }
5140
5141
5142 /* Move nop to previous block. */
5143 static void ATTRIBUTE_UNUSED
5144 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5145 {
5146 insn_t prev_insn, next_insn, note;
5147
5148 gcc_assert (sel_bb_head_p (nop)
5149 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5150 note = bb_note (BLOCK_FOR_INSN (nop));
5151 prev_insn = sel_bb_end (prev_bb);
5152 next_insn = NEXT_INSN (nop);
5153 gcc_assert (prev_insn != NULL_RTX
5154 && PREV_INSN (note) == prev_insn);
5155
5156 NEXT_INSN (prev_insn) = nop;
5157 PREV_INSN (nop) = prev_insn;
5158
5159 PREV_INSN (note) = nop;
5160 NEXT_INSN (note) = next_insn;
5161
5162 NEXT_INSN (nop) = note;
5163 PREV_INSN (next_insn) = note;
5164
5165 BB_END (prev_bb) = nop;
5166 BLOCK_FOR_INSN (nop) = prev_bb;
5167 }
5168
5169 /* Prepare a place to insert the chosen expression on BND. */
5170 static insn_t
5171 prepare_place_to_insert (bnd_t bnd)
5172 {
5173 insn_t place_to_insert;
5174
5175 /* Init place_to_insert before calling move_op, as the later
5176 can possibly remove BND_TO (bnd). */
5177 if (/* If this is not the first insn scheduled. */
5178 BND_PTR (bnd))
5179 {
5180 /* Add it after last scheduled. */
5181 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5182 if (DEBUG_INSN_P (place_to_insert))
5183 {
5184 ilist_t l = BND_PTR (bnd);
5185 while ((l = ILIST_NEXT (l)) &&
5186 DEBUG_INSN_P (ILIST_INSN (l)))
5187 ;
5188 if (!l)
5189 place_to_insert = NULL;
5190 }
5191 }
5192 else
5193 place_to_insert = NULL;
5194
5195 if (!place_to_insert)
5196 {
5197 /* Add it before BND_TO. The difference is in the
5198 basic block, where INSN will be added. */
5199 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5200 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5201 == BLOCK_FOR_INSN (BND_TO (bnd)));
5202 }
5203
5204 return place_to_insert;
5205 }
5206
5207 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5208 Return the expression to emit in C_EXPR. */
5209 static bool
5210 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5211 av_set_t expr_seq, expr_t c_expr)
5212 {
5213 bool b, should_move;
5214 unsigned book_uid;
5215 bitmap_iterator bi;
5216 int n_bookkeeping_copies_before_moveop;
5217
5218 /* Make a move. This call will remove the original operation,
5219 insert all necessary bookkeeping instructions and update the
5220 data sets. After that all we have to do is add the operation
5221 at before BND_TO (BND). */
5222 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5223 max_uid_before_move_op = get_max_uid ();
5224 bitmap_clear (current_copies);
5225 bitmap_clear (current_originators);
5226
5227 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5228 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5229
5230 /* We should be able to find the expression we've chosen for
5231 scheduling. */
5232 gcc_assert (b);
5233
5234 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5235 stat_insns_needed_bookkeeping++;
5236
5237 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5238 {
5239 unsigned uid;
5240 bitmap_iterator bi;
5241
5242 /* We allocate these bitmaps lazily. */
5243 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5244 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5245
5246 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5247 current_originators);
5248
5249 /* Transitively add all originators' originators. */
5250 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5251 if (INSN_ORIGINATORS_BY_UID (uid))
5252 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5253 INSN_ORIGINATORS_BY_UID (uid));
5254 }
5255
5256 return should_move;
5257 }
5258
5259
5260 /* Debug a DFA state as an array of bytes. */
5261 static void
5262 debug_state (state_t state)
5263 {
5264 unsigned char *p;
5265 unsigned int i, size = dfa_state_size;
5266
5267 sel_print ("state (%u):", size);
5268 for (i = 0, p = (unsigned char *) state; i < size; i++)
5269 sel_print (" %d", p[i]);
5270 sel_print ("\n");
5271 }
5272
5273 /* Advance state on FENCE with INSN. Return true if INSN is
5274 an ASM, and we should advance state once more. */
5275 static bool
5276 advance_state_on_fence (fence_t fence, insn_t insn)
5277 {
5278 bool asm_p;
5279
5280 if (recog_memoized (insn) >= 0)
5281 {
5282 int res;
5283 state_t temp_state = alloca (dfa_state_size);
5284
5285 gcc_assert (!INSN_ASM_P (insn));
5286 asm_p = false;
5287
5288 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5289 res = state_transition (FENCE_STATE (fence), insn);
5290 gcc_assert (res < 0);
5291
5292 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5293 {
5294 FENCE_ISSUED_INSNS (fence)++;
5295
5296 /* We should never issue more than issue_rate insns. */
5297 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5298 gcc_unreachable ();
5299 }
5300 }
5301 else
5302 {
5303 /* This could be an ASM insn which we'd like to schedule
5304 on the next cycle. */
5305 asm_p = INSN_ASM_P (insn);
5306 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5307 advance_one_cycle (fence);
5308 }
5309
5310 if (sched_verbose >= 2)
5311 debug_state (FENCE_STATE (fence));
5312 if (!DEBUG_INSN_P (insn))
5313 FENCE_STARTS_CYCLE_P (fence) = 0;
5314 FENCE_ISSUE_MORE (fence) = can_issue_more;
5315 return asm_p;
5316 }
5317
5318 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5319 is nonzero if we need to stall after issuing INSN. */
5320 static void
5321 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5322 {
5323 bool asm_p;
5324
5325 /* First, reflect that something is scheduled on this fence. */
5326 asm_p = advance_state_on_fence (fence, insn);
5327 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5328 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5329 if (SCHED_GROUP_P (insn))
5330 {
5331 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5332 SCHED_GROUP_P (insn) = 0;
5333 }
5334 else
5335 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5336 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5337 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5338
5339 /* Set instruction scheduling info. This will be used in bundling,
5340 pipelining, tick computations etc. */
5341 ++INSN_SCHED_TIMES (insn);
5342 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5343 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5344 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5345 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5346
5347 /* This does not account for adjust_cost hooks, just add the biggest
5348 constant the hook may add to the latency. TODO: make this
5349 a target dependent constant. */
5350 INSN_READY_CYCLE (insn)
5351 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5352 ? 1
5353 : maximal_insn_latency (insn) + 1);
5354
5355 /* Change these fields last, as they're used above. */
5356 FENCE_AFTER_STALL_P (fence) = 0;
5357 if (asm_p || need_stall)
5358 advance_one_cycle (fence);
5359
5360 /* Indicate that we've scheduled something on this fence. */
5361 FENCE_SCHEDULED_P (fence) = true;
5362 scheduled_something_on_previous_fence = true;
5363
5364 /* Print debug information when insn's fields are updated. */
5365 if (sched_verbose >= 2)
5366 {
5367 sel_print ("Scheduling insn: ");
5368 dump_insn_1 (insn, 1);
5369 sel_print ("\n");
5370 }
5371 }
5372
5373 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5374 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5375 return it. */
5376 static blist_t *
5377 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5378 blist_t *bnds_tailp)
5379 {
5380 succ_iterator si;
5381 insn_t succ;
5382
5383 advance_deps_context (BND_DC (bnd), insn);
5384 FOR_EACH_SUCC_1 (succ, si, insn,
5385 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5386 {
5387 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5388
5389 ilist_add (&ptr, insn);
5390
5391 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5392 && is_ineligible_successor (succ, ptr))
5393 {
5394 ilist_clear (&ptr);
5395 continue;
5396 }
5397
5398 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5399 {
5400 if (sched_verbose >= 9)
5401 sel_print ("Updating fence insn from %i to %i\n",
5402 INSN_UID (insn), INSN_UID (succ));
5403 FENCE_INSN (fence) = succ;
5404 }
5405 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5406 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5407 }
5408
5409 blist_remove (bndsp);
5410 return bnds_tailp;
5411 }
5412
5413 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5414 static insn_t
5415 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5416 {
5417 av_set_t expr_seq;
5418 expr_t c_expr = XALLOCA (expr_def);
5419 insn_t place_to_insert;
5420 insn_t insn;
5421 bool should_move;
5422
5423 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5424
5425 /* In case of scheduling a jump skipping some other instructions,
5426 prepare CFG. After this, jump is at the boundary and can be
5427 scheduled as usual insn by MOVE_OP. */
5428 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5429 {
5430 insn = EXPR_INSN_RTX (expr_vliw);
5431
5432 /* Speculative jumps are not handled. */
5433 if (insn != BND_TO (bnd)
5434 && !sel_insn_is_speculation_check (insn))
5435 move_cond_jump (insn, bnd);
5436 }
5437
5438 /* Find a place for C_EXPR to schedule. */
5439 place_to_insert = prepare_place_to_insert (bnd);
5440 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5441 clear_expr (c_expr);
5442
5443 /* Add the instruction. The corner case to care about is when
5444 the expr_seq set has more than one expr, and we chose the one that
5445 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5446 we can't use it. Generate the new vinsn. */
5447 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5448 {
5449 vinsn_t vinsn_new;
5450
5451 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5452 change_vinsn_in_expr (expr_vliw, vinsn_new);
5453 should_move = false;
5454 }
5455 if (should_move)
5456 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5457 else
5458 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5459 place_to_insert);
5460
5461 /* Return the nops generated for preserving of data sets back
5462 into pool. */
5463 if (INSN_NOP_P (place_to_insert))
5464 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5465 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5466
5467 av_set_clear (&expr_seq);
5468
5469 /* Save the expression scheduled so to reset target availability if we'll
5470 meet it later on the same fence. */
5471 if (EXPR_WAS_RENAMED (expr_vliw))
5472 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5473
5474 /* Check that the recent movement didn't destroyed loop
5475 structure. */
5476 gcc_assert (!pipelining_p
5477 || current_loop_nest == NULL
5478 || loop_latch_edge (current_loop_nest));
5479 return insn;
5480 }
5481
5482 /* Stall for N cycles on FENCE. */
5483 static void
5484 stall_for_cycles (fence_t fence, int n)
5485 {
5486 int could_more;
5487
5488 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5489 while (n--)
5490 advance_one_cycle (fence);
5491 if (could_more)
5492 FENCE_AFTER_STALL_P (fence) = 1;
5493 }
5494
5495 /* Gather a parallel group of insns at FENCE and assign their seqno
5496 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5497 list for later recalculation of seqnos. */
5498 static void
5499 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5500 {
5501 blist_t bnds = NULL, *bnds_tailp;
5502 av_set_t av_vliw = NULL;
5503 insn_t insn = FENCE_INSN (fence);
5504
5505 if (sched_verbose >= 2)
5506 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5507 INSN_UID (insn), FENCE_CYCLE (fence));
5508
5509 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5510 bnds_tailp = &BLIST_NEXT (bnds);
5511 set_target_context (FENCE_TC (fence));
5512 can_issue_more = FENCE_ISSUE_MORE (fence);
5513 target_bb = INSN_BB (insn);
5514
5515 /* Do while we can add any operation to the current group. */
5516 do
5517 {
5518 blist_t *bnds_tailp1, *bndsp;
5519 expr_t expr_vliw;
5520 int need_stall;
5521 int was_stall = 0, scheduled_insns = 0;
5522 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5523 int max_stall = pipelining_p ? 1 : 3;
5524 bool last_insn_was_debug = false;
5525 bool was_debug_bb_end_p = false;
5526
5527 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5528 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5529 remove_insns_for_debug (bnds, &av_vliw);
5530
5531 /* Return early if we have nothing to schedule. */
5532 if (av_vliw == NULL)
5533 break;
5534
5535 /* Choose the best expression and, if needed, destination register
5536 for it. */
5537 do
5538 {
5539 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5540 if (! expr_vliw && need_stall)
5541 {
5542 /* All expressions required a stall. Do not recompute av sets
5543 as we'll get the same answer (modulo the insns between
5544 the fence and its boundary, which will not be available for
5545 pipelining).
5546 If we are going to stall for too long, break to recompute av
5547 sets and bring more insns for pipelining. */
5548 was_stall++;
5549 if (need_stall <= 3)
5550 stall_for_cycles (fence, need_stall);
5551 else
5552 {
5553 stall_for_cycles (fence, 1);
5554 break;
5555 }
5556 }
5557 }
5558 while (! expr_vliw && need_stall);
5559
5560 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5561 if (!expr_vliw)
5562 {
5563 av_set_clear (&av_vliw);
5564 break;
5565 }
5566
5567 bndsp = &bnds;
5568 bnds_tailp1 = bnds_tailp;
5569
5570 do
5571 /* This code will be executed only once until we'd have several
5572 boundaries per fence. */
5573 {
5574 bnd_t bnd = BLIST_BND (*bndsp);
5575
5576 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5577 {
5578 bndsp = &BLIST_NEXT (*bndsp);
5579 continue;
5580 }
5581
5582 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5583 last_insn_was_debug = DEBUG_INSN_P (insn);
5584 if (last_insn_was_debug)
5585 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5586 update_fence_and_insn (fence, insn, need_stall);
5587 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5588
5589 /* Add insn to the list of scheduled on this cycle instructions. */
5590 ilist_add (*scheduled_insns_tailpp, insn);
5591 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5592 }
5593 while (*bndsp != *bnds_tailp1);
5594
5595 av_set_clear (&av_vliw);
5596 if (!last_insn_was_debug)
5597 scheduled_insns++;
5598
5599 /* We currently support information about candidate blocks only for
5600 one 'target_bb' block. Hence we can't schedule after jump insn,
5601 as this will bring two boundaries and, hence, necessity to handle
5602 information for two or more blocks concurrently. */
5603 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5604 || (was_stall
5605 && (was_stall >= max_stall
5606 || scheduled_insns >= max_insns)))
5607 break;
5608 }
5609 while (bnds);
5610
5611 gcc_assert (!FENCE_BNDS (fence));
5612
5613 /* Update boundaries of the FENCE. */
5614 while (bnds)
5615 {
5616 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5617
5618 if (ptr)
5619 {
5620 insn = ILIST_INSN (ptr);
5621
5622 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5623 ilist_add (&FENCE_BNDS (fence), insn);
5624 }
5625
5626 blist_remove (&bnds);
5627 }
5628
5629 /* Update target context on the fence. */
5630 reset_target_context (FENCE_TC (fence), false);
5631 }
5632
5633 /* All exprs in ORIG_OPS must have the same destination register or memory.
5634 Return that destination. */
5635 static rtx
5636 get_dest_from_orig_ops (av_set_t orig_ops)
5637 {
5638 rtx dest = NULL_RTX;
5639 av_set_iterator av_it;
5640 expr_t expr;
5641 bool first_p = true;
5642
5643 FOR_EACH_EXPR (expr, av_it, orig_ops)
5644 {
5645 rtx x = EXPR_LHS (expr);
5646
5647 if (first_p)
5648 {
5649 first_p = false;
5650 dest = x;
5651 }
5652 else
5653 gcc_assert (dest == x
5654 || (dest != NULL_RTX && x != NULL_RTX
5655 && rtx_equal_p (dest, x)));
5656 }
5657
5658 return dest;
5659 }
5660
5661 /* Update data sets for the bookkeeping block and record those expressions
5662 which become no longer available after inserting this bookkeeping. */
5663 static void
5664 update_and_record_unavailable_insns (basic_block book_block)
5665 {
5666 av_set_iterator i;
5667 av_set_t old_av_set = NULL;
5668 expr_t cur_expr;
5669 rtx bb_end = sel_bb_end (book_block);
5670
5671 /* First, get correct liveness in the bookkeeping block. The problem is
5672 the range between the bookeeping insn and the end of block. */
5673 update_liveness_on_insn (bb_end);
5674 if (control_flow_insn_p (bb_end))
5675 update_liveness_on_insn (PREV_INSN (bb_end));
5676
5677 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5678 fence above, where we may choose to schedule an insn which is
5679 actually blocked from moving up with the bookkeeping we create here. */
5680 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5681 {
5682 old_av_set = av_set_copy (BB_AV_SET (book_block));
5683 update_data_sets (sel_bb_head (book_block));
5684
5685 /* Traverse all the expressions in the old av_set and check whether
5686 CUR_EXPR is in new AV_SET. */
5687 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5688 {
5689 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5690 EXPR_VINSN (cur_expr));
5691
5692 if (! new_expr
5693 /* In this case, we can just turn off the E_T_A bit, but we can't
5694 represent this information with the current vector. */
5695 || EXPR_TARGET_AVAILABLE (new_expr)
5696 != EXPR_TARGET_AVAILABLE (cur_expr))
5697 /* Unfortunately, the below code could be also fired up on
5698 separable insns.
5699 FIXME: add an example of how this could happen. */
5700 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5701 }
5702
5703 av_set_clear (&old_av_set);
5704 }
5705 }
5706
5707 /* The main effect of this function is that sparams->c_expr is merged
5708 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5709 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5710 lparams->c_expr_merged is copied back to sparams->c_expr after all
5711 successors has been traversed. lparams->c_expr_local is an expr allocated
5712 on stack in the caller function, and is used if there is more than one
5713 successor.
5714
5715 SUCC is one of the SUCCS_NORMAL successors of INSN,
5716 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5717 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5718 static void
5719 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5720 insn_t succ ATTRIBUTE_UNUSED,
5721 int moveop_drv_call_res,
5722 cmpd_local_params_p lparams, void *static_params)
5723 {
5724 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5725
5726 /* Nothing to do, if original expr wasn't found below. */
5727 if (moveop_drv_call_res != 1)
5728 return;
5729
5730 /* If this is a first successor. */
5731 if (!lparams->c_expr_merged)
5732 {
5733 lparams->c_expr_merged = sparams->c_expr;
5734 sparams->c_expr = lparams->c_expr_local;
5735 }
5736 else
5737 {
5738 /* We must merge all found expressions to get reasonable
5739 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5740 do so then we can first find the expr with epsilon
5741 speculation success probability and only then with the
5742 good probability. As a result the insn will get epsilon
5743 probability and will never be scheduled because of
5744 weakness_cutoff in find_best_expr.
5745
5746 We call merge_expr_data here instead of merge_expr
5747 because due to speculation C_EXPR and X may have the
5748 same insns with different speculation types. And as of
5749 now such insns are considered non-equal.
5750
5751 However, EXPR_SCHED_TIMES is different -- we must get
5752 SCHED_TIMES from a real insn, not a bookkeeping copy.
5753 We force this here. Instead, we may consider merging
5754 SCHED_TIMES to the maximum instead of minimum in the
5755 below function. */
5756 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5757
5758 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5759 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5760 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5761
5762 clear_expr (sparams->c_expr);
5763 }
5764 }
5765
5766 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5767
5768 SUCC is one of the SUCCS_NORMAL successors of INSN,
5769 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5770 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5771 STATIC_PARAMS contain USED_REGS set. */
5772 static void
5773 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5774 int moveop_drv_call_res,
5775 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5776 void *static_params)
5777 {
5778 regset succ_live;
5779 fur_static_params_p sparams = (fur_static_params_p) static_params;
5780
5781 /* Here we compute live regsets only for branches that do not lie
5782 on the code motion paths. These branches correspond to value
5783 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5784 for such branches code_motion_path_driver is not called. */
5785 if (moveop_drv_call_res != 0)
5786 return;
5787
5788 /* Mark all registers that do not meet the following condition:
5789 (3) not live on the other path of any conditional branch
5790 that is passed by the operation, in case original
5791 operations are not present on both paths of the
5792 conditional branch. */
5793 succ_live = compute_live (succ);
5794 IOR_REG_SET (sparams->used_regs, succ_live);
5795 }
5796
5797 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5798 into SP->CEXPR. */
5799 static void
5800 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5801 {
5802 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5803
5804 sp->c_expr = lp->c_expr_merged;
5805 }
5806
5807 /* Track bookkeeping copies created, insns scheduled, and blocks for
5808 rescheduling when INSN is found by move_op. */
5809 static void
5810 track_scheduled_insns_and_blocks (rtx insn)
5811 {
5812 /* Even if this insn can be a copy that will be removed during current move_op,
5813 we still need to count it as an originator. */
5814 bitmap_set_bit (current_originators, INSN_UID (insn));
5815
5816 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5817 {
5818 /* Note that original block needs to be rescheduled, as we pulled an
5819 instruction out of it. */
5820 if (INSN_SCHED_TIMES (insn) > 0)
5821 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5822 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5823 num_insns_scheduled++;
5824 }
5825
5826 /* For instructions we must immediately remove insn from the
5827 stream, so subsequent update_data_sets () won't include this
5828 insn into av_set.
5829 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5830 if (INSN_UID (insn) > max_uid_before_move_op)
5831 stat_bookkeeping_copies--;
5832 }
5833
5834 /* Emit a register-register copy for INSN if needed. Return true if
5835 emitted one. PARAMS is the move_op static parameters. */
5836 static bool
5837 maybe_emit_renaming_copy (rtx insn,
5838 moveop_static_params_p params)
5839 {
5840 bool insn_emitted = false;
5841 rtx cur_reg;
5842
5843 /* Bail out early when expression can not be renamed at all. */
5844 if (!EXPR_SEPARABLE_P (params->c_expr))
5845 return false;
5846
5847 cur_reg = expr_dest_reg (params->c_expr);
5848 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5849
5850 /* If original operation has expr and the register chosen for
5851 that expr is not original operation's dest reg, substitute
5852 operation's right hand side with the register chosen. */
5853 if (REGNO (params->dest) != REGNO (cur_reg))
5854 {
5855 insn_t reg_move_insn, reg_move_insn_rtx;
5856
5857 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5858 params->dest);
5859 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5860 INSN_EXPR (insn),
5861 INSN_SEQNO (insn),
5862 insn);
5863 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5864 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5865
5866 insn_emitted = true;
5867 params->was_renamed = true;
5868 }
5869
5870 return insn_emitted;
5871 }
5872
5873 /* Emit a speculative check for INSN speculated as EXPR if needed.
5874 Return true if we've emitted one. PARAMS is the move_op static
5875 parameters. */
5876 static bool
5877 maybe_emit_speculative_check (rtx insn, expr_t expr,
5878 moveop_static_params_p params)
5879 {
5880 bool insn_emitted = false;
5881 insn_t x;
5882 ds_t check_ds;
5883
5884 check_ds = get_spec_check_type_for_insn (insn, expr);
5885 if (check_ds != 0)
5886 {
5887 /* A speculation check should be inserted. */
5888 x = create_speculation_check (params->c_expr, check_ds, insn);
5889 insn_emitted = true;
5890 }
5891 else
5892 {
5893 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5894 x = insn;
5895 }
5896
5897 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5898 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5899 return insn_emitted;
5900 }
5901
5902 /* Handle transformations that leave an insn in place of original
5903 insn such as renaming/speculation. Return true if one of such
5904 transformations actually happened, and we have emitted this insn. */
5905 static bool
5906 handle_emitting_transformations (rtx insn, expr_t expr,
5907 moveop_static_params_p params)
5908 {
5909 bool insn_emitted = false;
5910
5911 insn_emitted = maybe_emit_renaming_copy (insn, params);
5912 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5913
5914 return insn_emitted;
5915 }
5916
5917 /* If INSN is the only insn in the basic block (not counting JUMP,
5918 which may be a jump to next insn, and DEBUG_INSNs), we want to
5919 leave a NOP there till the return to fill_insns. */
5920
5921 static bool
5922 need_nop_to_preserve_insn_bb (rtx insn)
5923 {
5924 insn_t bb_head, bb_end, bb_next, in_next;
5925 basic_block bb = BLOCK_FOR_INSN (insn);
5926
5927 bb_head = sel_bb_head (bb);
5928 bb_end = sel_bb_end (bb);
5929
5930 if (bb_head == bb_end)
5931 return true;
5932
5933 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5934 bb_head = NEXT_INSN (bb_head);
5935
5936 if (bb_head == bb_end)
5937 return true;
5938
5939 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5940 bb_end = PREV_INSN (bb_end);
5941
5942 if (bb_head == bb_end)
5943 return true;
5944
5945 bb_next = NEXT_INSN (bb_head);
5946 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5947 bb_next = NEXT_INSN (bb_next);
5948
5949 if (bb_next == bb_end && JUMP_P (bb_end))
5950 return true;
5951
5952 in_next = NEXT_INSN (insn);
5953 while (DEBUG_INSN_P (in_next))
5954 in_next = NEXT_INSN (in_next);
5955
5956 if (IN_CURRENT_FENCE_P (in_next))
5957 return true;
5958
5959 return false;
5960 }
5961
5962 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5963 is not removed but reused when INSN is re-emitted. */
5964 static void
5965 remove_insn_from_stream (rtx insn, bool only_disconnect)
5966 {
5967 /* If there's only one insn in the BB, make sure that a nop is
5968 inserted into it, so the basic block won't disappear when we'll
5969 delete INSN below with sel_remove_insn. It should also survive
5970 till the return to fill_insns. */
5971 if (need_nop_to_preserve_insn_bb (insn))
5972 {
5973 insn_t nop = get_nop_from_pool (insn);
5974 gcc_assert (INSN_NOP_P (nop));
5975 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5976 }
5977
5978 sel_remove_insn (insn, only_disconnect, false);
5979 }
5980
5981 /* This function is called when original expr is found.
5982 INSN - current insn traversed, EXPR - the corresponding expr found.
5983 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5984 is static parameters of move_op. */
5985 static void
5986 move_op_orig_expr_found (insn_t insn, expr_t expr,
5987 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5988 void *static_params)
5989 {
5990 bool only_disconnect, insn_emitted;
5991 moveop_static_params_p params = (moveop_static_params_p) static_params;
5992
5993 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5994 track_scheduled_insns_and_blocks (insn);
5995 insn_emitted = handle_emitting_transformations (insn, expr, params);
5996 only_disconnect = (params->uid == INSN_UID (insn)
5997 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5998
5999 /* Mark that we've disconnected an insn. */
6000 if (only_disconnect)
6001 params->uid = -1;
6002 remove_insn_from_stream (insn, only_disconnect);
6003 }
6004
6005 /* The function is called when original expr is found.
6006 INSN - current insn traversed, EXPR - the corresponding expr found,
6007 crosses_call and original_insns in STATIC_PARAMS are updated. */
6008 static void
6009 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6010 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6011 void *static_params)
6012 {
6013 fur_static_params_p params = (fur_static_params_p) static_params;
6014 regset tmp;
6015
6016 if (CALL_P (insn))
6017 params->crosses_call = true;
6018
6019 def_list_add (params->original_insns, insn, params->crosses_call);
6020
6021 /* Mark the registers that do not meet the following condition:
6022 (2) not among the live registers of the point
6023 immediately following the first original operation on
6024 a given downward path, except for the original target
6025 register of the operation. */
6026 tmp = get_clear_regset_from_pool ();
6027 compute_live_below_insn (insn, tmp);
6028 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6029 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6030 IOR_REG_SET (params->used_regs, tmp);
6031 return_regset_to_pool (tmp);
6032
6033 /* (*1) We need to add to USED_REGS registers that are read by
6034 INSN's lhs. This may lead to choosing wrong src register.
6035 E.g. (scheduling const expr enabled):
6036
6037 429: ax=0x0 <- Can't use AX for this expr (0x0)
6038 433: dx=[bp-0x18]
6039 427: [ax+dx+0x1]=ax
6040 REG_DEAD: ax
6041 168: di=dx
6042 REG_DEAD: dx
6043 */
6044 /* FIXME: see comment above and enable MEM_P
6045 in vinsn_separable_p. */
6046 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6047 || !MEM_P (INSN_LHS (insn)));
6048 }
6049
6050 /* This function is called on the ascending pass, before returning from
6051 current basic block. */
6052 static void
6053 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6054 void *static_params)
6055 {
6056 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6057 basic_block book_block = NULL;
6058
6059 /* When we have removed the boundary insn for scheduling, which also
6060 happened to be the end insn in its bb, we don't need to update sets. */
6061 if (!lparams->removed_last_insn
6062 && lparams->e1
6063 && sel_bb_head_p (insn))
6064 {
6065 /* We should generate bookkeeping code only if we are not at the
6066 top level of the move_op. */
6067 if (sel_num_cfg_preds_gt_1 (insn))
6068 book_block = generate_bookkeeping_insn (sparams->c_expr,
6069 lparams->e1, lparams->e2);
6070 /* Update data sets for the current insn. */
6071 update_data_sets (insn);
6072 }
6073
6074 /* If bookkeeping code was inserted, we need to update av sets of basic
6075 block that received bookkeeping. After generation of bookkeeping insn,
6076 bookkeeping block does not contain valid av set because we are not following
6077 the original algorithm in every detail with regards to e.g. renaming
6078 simple reg-reg copies. Consider example:
6079
6080 bookkeeping block scheduling fence
6081 \ /
6082 \ join /
6083 ----------
6084 | |
6085 ----------
6086 / \
6087 / \
6088 r1 := r2 r1 := r3
6089
6090 We try to schedule insn "r1 := r3" on the current
6091 scheduling fence. Also, note that av set of bookkeeping block
6092 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6093 been scheduled, the CFG is as follows:
6094
6095 r1 := r3 r1 := r3
6096 bookkeeping block scheduling fence
6097 \ /
6098 \ join /
6099 ----------
6100 | |
6101 ----------
6102 / \
6103 / \
6104 r1 := r2
6105
6106 Here, insn "r1 := r3" was scheduled at the current scheduling point
6107 and bookkeeping code was generated at the bookeeping block. This
6108 way insn "r1 := r2" is no longer available as a whole instruction
6109 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6110 This situation is handled by calling update_data_sets.
6111
6112 Since update_data_sets is called only on the bookkeeping block, and
6113 it also may have predecessors with av_sets, containing instructions that
6114 are no longer available, we save all such expressions that become
6115 unavailable during data sets update on the bookkeeping block in
6116 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6117 expressions for scheduling. This allows us to avoid recomputation of
6118 av_sets outside the code motion path. */
6119
6120 if (book_block)
6121 update_and_record_unavailable_insns (book_block);
6122
6123 /* If INSN was previously marked for deletion, it's time to do it. */
6124 if (lparams->removed_last_insn)
6125 insn = PREV_INSN (insn);
6126
6127 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6128 kill a block with a single nop in which the insn should be emitted. */
6129 if (lparams->e1)
6130 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6131 }
6132
6133 /* This function is called on the ascending pass, before returning from the
6134 current basic block. */
6135 static void
6136 fur_at_first_insn (insn_t insn,
6137 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6138 void *static_params ATTRIBUTE_UNUSED)
6139 {
6140 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6141 || AV_LEVEL (insn) == -1);
6142 }
6143
6144 /* Called on the backward stage of recursion to call moveup_expr for insn
6145 and sparams->c_expr. */
6146 static void
6147 move_op_ascend (insn_t insn, void *static_params)
6148 {
6149 enum MOVEUP_EXPR_CODE res;
6150 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6151
6152 if (! INSN_NOP_P (insn))
6153 {
6154 res = moveup_expr_cached (sparams->c_expr, insn, false);
6155 gcc_assert (res != MOVEUP_EXPR_NULL);
6156 }
6157
6158 /* Update liveness for this insn as it was invalidated. */
6159 update_liveness_on_insn (insn);
6160 }
6161
6162 /* This function is called on enter to the basic block.
6163 Returns TRUE if this block already have been visited and
6164 code_motion_path_driver should return 1, FALSE otherwise. */
6165 static int
6166 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6167 void *static_params, bool visited_p)
6168 {
6169 fur_static_params_p sparams = (fur_static_params_p) static_params;
6170
6171 if (visited_p)
6172 {
6173 /* If we have found something below this block, there should be at
6174 least one insn in ORIGINAL_INSNS. */
6175 gcc_assert (*sparams->original_insns);
6176
6177 /* Adjust CROSSES_CALL, since we may have come to this block along
6178 different path. */
6179 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6180 |= sparams->crosses_call;
6181 }
6182 else
6183 local_params->old_original_insns = *sparams->original_insns;
6184
6185 return 1;
6186 }
6187
6188 /* Same as above but for move_op. */
6189 static int
6190 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6191 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6192 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6193 {
6194 if (visited_p)
6195 return -1;
6196 return 1;
6197 }
6198
6199 /* This function is called while descending current basic block if current
6200 insn is not the original EXPR we're searching for.
6201
6202 Return value: FALSE, if code_motion_path_driver should perform a local
6203 cleanup and return 0 itself;
6204 TRUE, if code_motion_path_driver should continue. */
6205 static bool
6206 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6207 void *static_params)
6208 {
6209 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6210
6211 #ifdef ENABLE_CHECKING
6212 sparams->failed_insn = insn;
6213 #endif
6214
6215 /* If we're scheduling separate expr, in order to generate correct code
6216 we need to stop the search at bookkeeping code generated with the
6217 same destination register or memory. */
6218 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6219 return false;
6220 return true;
6221 }
6222
6223 /* This function is called while descending current basic block if current
6224 insn is not the original EXPR we're searching for.
6225
6226 Return value: TRUE (code_motion_path_driver should continue). */
6227 static bool
6228 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6229 {
6230 bool mutexed;
6231 expr_t r;
6232 av_set_iterator avi;
6233 fur_static_params_p sparams = (fur_static_params_p) static_params;
6234
6235 if (CALL_P (insn))
6236 sparams->crosses_call = true;
6237 else if (DEBUG_INSN_P (insn))
6238 return true;
6239
6240 /* If current insn we are looking at cannot be executed together
6241 with original insn, then we can skip it safely.
6242
6243 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6244 INSN = (!p6) r14 = r14 + 1;
6245
6246 Here we can schedule ORIG_OP with lhs = r14, though only
6247 looking at the set of used and set registers of INSN we must
6248 forbid it. So, add set/used in INSN registers to the
6249 untouchable set only if there is an insn in ORIG_OPS that can
6250 affect INSN. */
6251 mutexed = true;
6252 FOR_EACH_EXPR (r, avi, orig_ops)
6253 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6254 {
6255 mutexed = false;
6256 break;
6257 }
6258
6259 /* Mark all registers that do not meet the following condition:
6260 (1) Not set or read on any path from xi to an instance of the
6261 original operation. */
6262 if (!mutexed)
6263 {
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6265 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6266 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6267 }
6268
6269 return true;
6270 }
6271
6272 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6273 struct code_motion_path_driver_info_def move_op_hooks = {
6274 move_op_on_enter,
6275 move_op_orig_expr_found,
6276 move_op_orig_expr_not_found,
6277 move_op_merge_succs,
6278 move_op_after_merge_succs,
6279 move_op_ascend,
6280 move_op_at_first_insn,
6281 SUCCS_NORMAL,
6282 "move_op"
6283 };
6284
6285 /* Hooks and data to perform find_used_regs operations
6286 with code_motion_path_driver. */
6287 struct code_motion_path_driver_info_def fur_hooks = {
6288 fur_on_enter,
6289 fur_orig_expr_found,
6290 fur_orig_expr_not_found,
6291 fur_merge_succs,
6292 NULL, /* fur_after_merge_succs */
6293 NULL, /* fur_ascend */
6294 fur_at_first_insn,
6295 SUCCS_ALL,
6296 "find_used_regs"
6297 };
6298
6299 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6300 code_motion_path_driver is called recursively. Original operation
6301 was found at least on one path that is starting with one of INSN's
6302 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6303 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6304 of either move_op or find_used_regs depending on the caller.
6305
6306 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6307 know for sure at this point. */
6308 static int
6309 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6310 ilist_t path, void *static_params)
6311 {
6312 int res = 0;
6313 succ_iterator succ_i;
6314 rtx succ;
6315 basic_block bb;
6316 int old_index;
6317 unsigned old_succs;
6318
6319 struct cmpd_local_params lparams;
6320 expr_def _x;
6321
6322 lparams.c_expr_local = &_x;
6323 lparams.c_expr_merged = NULL;
6324
6325 /* We need to process only NORMAL succs for move_op, and collect live
6326 registers from ALL branches (including those leading out of the
6327 region) for find_used_regs.
6328
6329 In move_op, there can be a case when insn's bb number has changed
6330 due to created bookkeeping. This happens very rare, as we need to
6331 move expression from the beginning to the end of the same block.
6332 Rescan successors in this case. */
6333
6334 rescan:
6335 bb = BLOCK_FOR_INSN (insn);
6336 old_index = bb->index;
6337 old_succs = EDGE_COUNT (bb->succs);
6338
6339 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6340 {
6341 int b;
6342
6343 lparams.e1 = succ_i.e1;
6344 lparams.e2 = succ_i.e2;
6345
6346 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6347 current region). */
6348 if (succ_i.current_flags == SUCCS_NORMAL)
6349 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6350 static_params);
6351 else
6352 b = 0;
6353
6354 /* Merge c_expres found or unify live register sets from different
6355 successors. */
6356 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6357 static_params);
6358 if (b == 1)
6359 res = b;
6360 else if (b == -1 && res != 1)
6361 res = b;
6362
6363 /* We have simplified the control flow below this point. In this case,
6364 the iterator becomes invalid. We need to try again. */
6365 if (BLOCK_FOR_INSN (insn)->index != old_index
6366 || EDGE_COUNT (bb->succs) != old_succs)
6367 {
6368 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6369 goto rescan;
6370 }
6371 }
6372
6373 #ifdef ENABLE_CHECKING
6374 /* Here, RES==1 if original expr was found at least for one of the
6375 successors. After the loop, RES may happen to have zero value
6376 only if at some point the expr searched is present in av_set, but is
6377 not found below. In most cases, this situation is an error.
6378 The exception is when the original operation is blocked by
6379 bookkeeping generated for another fence or for another path in current
6380 move_op. */
6381 gcc_assert (res == 1
6382 || (res == 0
6383 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6384 static_params))
6385 || res == -1);
6386 #endif
6387
6388 /* Merge data, clean up, etc. */
6389 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6390 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6391
6392 return res;
6393 }
6394
6395
6396 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6397 is the pointer to the av set with expressions we were looking for,
6398 PATH_P is the pointer to the traversed path. */
6399 static inline void
6400 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6401 {
6402 ilist_remove (path_p);
6403 av_set_clear (orig_ops_p);
6404 }
6405
6406 /* The driver function that implements move_op or find_used_regs
6407 functionality dependent whether code_motion_path_driver_INFO is set to
6408 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6409 of code (CFG traversal etc) that are shared among both functions. INSN
6410 is the insn we're starting the search from, ORIG_OPS are the expressions
6411 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6412 parameters of the driver, and STATIC_PARAMS are static parameters of
6413 the caller.
6414
6415 Returns whether original instructions were found. Note that top-level
6416 code_motion_path_driver always returns true. */
6417 static int
6418 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6419 cmpd_local_params_p local_params_in,
6420 void *static_params)
6421 {
6422 expr_t expr = NULL;
6423 basic_block bb = BLOCK_FOR_INSN (insn);
6424 insn_t first_insn, bb_tail, before_first;
6425 bool removed_last_insn = false;
6426
6427 if (sched_verbose >= 6)
6428 {
6429 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6430 dump_insn (insn);
6431 sel_print (",");
6432 dump_av_set (orig_ops);
6433 sel_print (")\n");
6434 }
6435
6436 gcc_assert (orig_ops);
6437
6438 /* If no original operations exist below this insn, return immediately. */
6439 if (is_ineligible_successor (insn, path))
6440 {
6441 if (sched_verbose >= 6)
6442 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6443 return false;
6444 }
6445
6446 /* The block can have invalid av set, in which case it was created earlier
6447 during move_op. Return immediately. */
6448 if (sel_bb_head_p (insn))
6449 {
6450 if (! AV_SET_VALID_P (insn))
6451 {
6452 if (sched_verbose >= 6)
6453 sel_print ("Returned from block %d as it had invalid av set\n",
6454 bb->index);
6455 return false;
6456 }
6457
6458 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6459 {
6460 /* We have already found an original operation on this branch, do not
6461 go any further and just return TRUE here. If we don't stop here,
6462 function can have exponential behaviour even on the small code
6463 with many different paths (e.g. with data speculation and
6464 recovery blocks). */
6465 if (sched_verbose >= 6)
6466 sel_print ("Block %d already visited in this traversal\n", bb->index);
6467 if (code_motion_path_driver_info->on_enter)
6468 return code_motion_path_driver_info->on_enter (insn,
6469 local_params_in,
6470 static_params,
6471 true);
6472 }
6473 }
6474
6475 if (code_motion_path_driver_info->on_enter)
6476 code_motion_path_driver_info->on_enter (insn, local_params_in,
6477 static_params, false);
6478 orig_ops = av_set_copy (orig_ops);
6479
6480 /* Filter the orig_ops set. */
6481 if (AV_SET_VALID_P (insn))
6482 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6483
6484 /* If no more original ops, return immediately. */
6485 if (!orig_ops)
6486 {
6487 if (sched_verbose >= 6)
6488 sel_print ("No intersection with av set of block %d\n", bb->index);
6489 return false;
6490 }
6491
6492 /* For non-speculative insns we have to leave only one form of the
6493 original operation, because if we don't, we may end up with
6494 different C_EXPRes and, consequently, with bookkeepings for different
6495 expression forms along the same code motion path. That may lead to
6496 generation of incorrect code. So for each code motion we stick to
6497 the single form of the instruction, except for speculative insns
6498 which we need to keep in different forms with all speculation
6499 types. */
6500 av_set_leave_one_nonspec (&orig_ops);
6501
6502 /* It is not possible that all ORIG_OPS are filtered out. */
6503 gcc_assert (orig_ops);
6504
6505 /* It is enough to place only heads and tails of visited basic blocks into
6506 the PATH. */
6507 ilist_add (&path, insn);
6508 first_insn = insn;
6509 bb_tail = sel_bb_end (bb);
6510
6511 /* Descend the basic block in search of the original expr; this part
6512 corresponds to the part of the original move_op procedure executed
6513 before the recursive call. */
6514 for (;;)
6515 {
6516 /* Look at the insn and decide if it could be an ancestor of currently
6517 scheduling operation. If it is so, then the insn "dest = op" could
6518 either be replaced with "dest = reg", because REG now holds the result
6519 of OP, or just removed, if we've scheduled the insn as a whole.
6520
6521 If this insn doesn't contain currently scheduling OP, then proceed
6522 with searching and look at its successors. Operations we're searching
6523 for could have changed when moving up through this insn via
6524 substituting. In this case, perform unsubstitution on them first.
6525
6526 When traversing the DAG below this insn is finished, insert
6527 bookkeeping code, if the insn is a joint point, and remove
6528 leftovers. */
6529
6530 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6531 if (expr)
6532 {
6533 insn_t last_insn = PREV_INSN (insn);
6534
6535 /* We have found the original operation. */
6536 if (sched_verbose >= 6)
6537 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6538
6539 code_motion_path_driver_info->orig_expr_found
6540 (insn, expr, local_params_in, static_params);
6541
6542 /* Step back, so on the way back we'll start traversing from the
6543 previous insn (or we'll see that it's bb_note and skip that
6544 loop). */
6545 if (insn == first_insn)
6546 {
6547 first_insn = NEXT_INSN (last_insn);
6548 removed_last_insn = sel_bb_end_p (last_insn);
6549 }
6550 insn = last_insn;
6551 break;
6552 }
6553 else
6554 {
6555 /* We haven't found the original expr, continue descending the basic
6556 block. */
6557 if (code_motion_path_driver_info->orig_expr_not_found
6558 (insn, orig_ops, static_params))
6559 {
6560 /* Av set ops could have been changed when moving through this
6561 insn. To find them below it, we have to un-substitute them. */
6562 undo_transformations (&orig_ops, insn);
6563 }
6564 else
6565 {
6566 /* Clean up and return, if the hook tells us to do so. It may
6567 happen if we've encountered the previously created
6568 bookkeeping. */
6569 code_motion_path_driver_cleanup (&orig_ops, &path);
6570 return -1;
6571 }
6572
6573 gcc_assert (orig_ops);
6574 }
6575
6576 /* Stop at insn if we got to the end of BB. */
6577 if (insn == bb_tail)
6578 break;
6579
6580 insn = NEXT_INSN (insn);
6581 }
6582
6583 /* Here INSN either points to the insn before the original insn (may be
6584 bb_note, if original insn was a bb_head) or to the bb_end. */
6585 if (!expr)
6586 {
6587 int res;
6588 rtx last_insn = PREV_INSN (insn);
6589 bool added_to_path;
6590
6591 gcc_assert (insn == sel_bb_end (bb));
6592
6593 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6594 it's already in PATH then). */
6595 if (insn != first_insn)
6596 {
6597 ilist_add (&path, insn);
6598 added_to_path = true;
6599 }
6600 else
6601 added_to_path = false;
6602
6603 /* Process_successors should be able to find at least one
6604 successor for which code_motion_path_driver returns TRUE. */
6605 res = code_motion_process_successors (insn, orig_ops,
6606 path, static_params);
6607
6608 /* Jump in the end of basic block could have been removed or replaced
6609 during code_motion_process_successors, so recompute insn as the
6610 last insn in bb. */
6611 if (NEXT_INSN (last_insn) != insn)
6612 {
6613 insn = sel_bb_end (bb);
6614 first_insn = sel_bb_head (bb);
6615 }
6616
6617 /* Remove bb tail from path. */
6618 if (added_to_path)
6619 ilist_remove (&path);
6620
6621 if (res != 1)
6622 {
6623 /* This is the case when one of the original expr is no longer available
6624 due to bookkeeping created on this branch with the same register.
6625 In the original algorithm, which doesn't have update_data_sets call
6626 on a bookkeeping block, it would simply result in returning
6627 FALSE when we've encountered a previously generated bookkeeping
6628 insn in moveop_orig_expr_not_found. */
6629 code_motion_path_driver_cleanup (&orig_ops, &path);
6630 return res;
6631 }
6632 }
6633
6634 /* Don't need it any more. */
6635 av_set_clear (&orig_ops);
6636
6637 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6638 the beginning of the basic block. */
6639 before_first = PREV_INSN (first_insn);
6640 while (insn != before_first)
6641 {
6642 if (code_motion_path_driver_info->ascend)
6643 code_motion_path_driver_info->ascend (insn, static_params);
6644
6645 insn = PREV_INSN (insn);
6646 }
6647
6648 /* Now we're at the bb head. */
6649 insn = first_insn;
6650 ilist_remove (&path);
6651 local_params_in->removed_last_insn = removed_last_insn;
6652 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6653
6654 /* This should be the very last operation as at bb head we could change
6655 the numbering by creating bookkeeping blocks. */
6656 if (removed_last_insn)
6657 insn = PREV_INSN (insn);
6658 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6659 return true;
6660 }
6661
6662 /* Move up the operations from ORIG_OPS set traversing the dag starting
6663 from INSN. PATH represents the edges traversed so far.
6664 DEST is the register chosen for scheduling the current expr. Insert
6665 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6666 C_EXPR is how it looks like at the given cfg point.
6667 Set *SHOULD_MOVE to indicate whether we have only disconnected
6668 one of the insns found.
6669
6670 Returns whether original instructions were found, which is asserted
6671 to be true in the caller. */
6672 static bool
6673 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6674 rtx dest, expr_t c_expr, bool *should_move)
6675 {
6676 struct moveop_static_params sparams;
6677 struct cmpd_local_params lparams;
6678 bool res;
6679
6680 /* Init params for code_motion_path_driver. */
6681 sparams.dest = dest;
6682 sparams.c_expr = c_expr;
6683 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6684 #ifdef ENABLE_CHECKING
6685 sparams.failed_insn = NULL;
6686 #endif
6687 sparams.was_renamed = false;
6688 lparams.e1 = NULL;
6689
6690 /* We haven't visited any blocks yet. */
6691 bitmap_clear (code_motion_visited_blocks);
6692
6693 /* Set appropriate hooks and data. */
6694 code_motion_path_driver_info = &move_op_hooks;
6695 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6696
6697 if (sparams.was_renamed)
6698 EXPR_WAS_RENAMED (expr_vliw) = true;
6699
6700 *should_move = (sparams.uid == -1);
6701
6702 return res;
6703 }
6704 \f
6705
6706 /* Functions that work with regions. */
6707
6708 /* Current number of seqno used in init_seqno and init_seqno_1. */
6709 static int cur_seqno;
6710
6711 /* A helper for init_seqno. Traverse the region starting from BB and
6712 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6713 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6714 static void
6715 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6716 {
6717 int bbi = BLOCK_TO_BB (bb->index);
6718 insn_t insn, note = bb_note (bb);
6719 insn_t succ_insn;
6720 succ_iterator si;
6721
6722 SET_BIT (visited_bbs, bbi);
6723 if (blocks_to_reschedule)
6724 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6725
6726 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6727 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6728 {
6729 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6730 int succ_bbi = BLOCK_TO_BB (succ->index);
6731
6732 gcc_assert (in_current_region_p (succ));
6733
6734 if (!TEST_BIT (visited_bbs, succ_bbi))
6735 {
6736 gcc_assert (succ_bbi > bbi);
6737
6738 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6739 }
6740 else if (blocks_to_reschedule)
6741 bitmap_set_bit (forced_ebb_heads, succ->index);
6742 }
6743
6744 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6745 INSN_SEQNO (insn) = cur_seqno--;
6746 }
6747
6748 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6749 blocks on which we're rescheduling when pipelining, FROM is the block where
6750 traversing region begins (it may not be the head of the region when
6751 pipelining, but the head of the loop instead).
6752
6753 Returns the maximal seqno found. */
6754 static int
6755 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6756 {
6757 sbitmap visited_bbs;
6758 bitmap_iterator bi;
6759 unsigned bbi;
6760
6761 visited_bbs = sbitmap_alloc (current_nr_blocks);
6762
6763 if (blocks_to_reschedule)
6764 {
6765 sbitmap_ones (visited_bbs);
6766 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6767 {
6768 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6769 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6770 }
6771 }
6772 else
6773 {
6774 sbitmap_zero (visited_bbs);
6775 from = EBB_FIRST_BB (0);
6776 }
6777
6778 cur_seqno = sched_max_luid - 1;
6779 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6780
6781 /* cur_seqno may be positive if the number of instructions is less than
6782 sched_max_luid - 1 (when rescheduling or if some instructions have been
6783 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6784 gcc_assert (cur_seqno >= 0);
6785
6786 sbitmap_free (visited_bbs);
6787 return sched_max_luid - 1;
6788 }
6789
6790 /* Initialize scheduling parameters for current region. */
6791 static void
6792 sel_setup_region_sched_flags (void)
6793 {
6794 enable_schedule_as_rhs_p = 1;
6795 bookkeeping_p = 1;
6796 pipelining_p = (bookkeeping_p
6797 && (flag_sel_sched_pipelining != 0)
6798 && current_loop_nest != NULL
6799 && loop_has_exit_edges (current_loop_nest));
6800 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6801 max_ws = MAX_WS;
6802 }
6803
6804 /* Return true if all basic blocks of current region are empty. */
6805 static bool
6806 current_region_empty_p (void)
6807 {
6808 int i;
6809 for (i = 0; i < current_nr_blocks; i++)
6810 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6811 return false;
6812
6813 return true;
6814 }
6815
6816 /* Prepare and verify loop nest for pipelining. */
6817 static void
6818 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6819 {
6820 current_loop_nest = get_loop_nest_for_rgn (rgn);
6821
6822 if (!current_loop_nest)
6823 return;
6824
6825 /* If this loop has any saved loop preheaders from nested loops,
6826 add these basic blocks to the current region. */
6827 sel_add_loop_preheaders (bbs);
6828
6829 /* Check that we're starting with a valid information. */
6830 gcc_assert (loop_latch_edge (current_loop_nest));
6831 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6832 }
6833
6834 /* Compute instruction priorities for current region. */
6835 static void
6836 sel_compute_priorities (int rgn)
6837 {
6838 sched_rgn_compute_dependencies (rgn);
6839
6840 /* Compute insn priorities in haifa style. Then free haifa style
6841 dependencies that we've calculated for this. */
6842 compute_priorities ();
6843
6844 if (sched_verbose >= 5)
6845 debug_rgn_dependencies (0);
6846
6847 free_rgn_deps ();
6848 }
6849
6850 /* Init scheduling data for RGN. Returns true when this region should not
6851 be scheduled. */
6852 static bool
6853 sel_region_init (int rgn)
6854 {
6855 int i;
6856 bb_vec_t bbs;
6857
6858 rgn_setup_region (rgn);
6859
6860 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6861 do region initialization here so the region can be bundled correctly,
6862 but we'll skip the scheduling in sel_sched_region (). */
6863 if (current_region_empty_p ())
6864 return true;
6865
6866 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6867
6868 for (i = 0; i < current_nr_blocks; i++)
6869 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6870
6871 sel_init_bbs (bbs, NULL);
6872
6873 if (flag_sel_sched_pipelining)
6874 setup_current_loop_nest (rgn, &bbs);
6875
6876 sel_setup_region_sched_flags ();
6877
6878 /* Initialize luids and dependence analysis which both sel-sched and haifa
6879 need. */
6880 sched_init_luids (bbs, NULL, NULL, NULL);
6881 sched_deps_init (false);
6882
6883 /* Initialize haifa data. */
6884 rgn_setup_sched_infos ();
6885 sel_set_sched_flags ();
6886 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6887
6888 sel_compute_priorities (rgn);
6889 init_deps_global ();
6890
6891 /* Main initialization. */
6892 sel_setup_sched_infos ();
6893 sel_init_global_and_expr (bbs);
6894
6895 VEC_free (basic_block, heap, bbs);
6896
6897 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6898
6899 /* Init correct liveness sets on each instruction of a single-block loop.
6900 This is the only situation when we can't update liveness when calling
6901 compute_live for the first insn of the loop. */
6902 if (current_loop_nest)
6903 {
6904 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6905 ? 1
6906 : 0);
6907
6908 if (current_nr_blocks == header + 1)
6909 update_liveness_on_insn
6910 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6911 }
6912
6913 /* Set hooks so that no newly generated insn will go out unnoticed. */
6914 sel_register_cfg_hooks ();
6915
6916 /* !!! We call target.sched.init () for the whole region, but we invoke
6917 targetm.sched.finish () for every ebb. */
6918 if (targetm.sched.init)
6919 /* None of the arguments are actually used in any target. */
6920 targetm.sched.init (sched_dump, sched_verbose, -1);
6921
6922 first_emitted_uid = get_max_uid () + 1;
6923 preheader_removed = false;
6924
6925 /* Reset register allocation ticks array. */
6926 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6927 reg_rename_this_tick = 0;
6928
6929 bitmap_initialize (forced_ebb_heads, 0);
6930 bitmap_clear (forced_ebb_heads);
6931
6932 setup_nop_vinsn ();
6933 current_copies = BITMAP_ALLOC (NULL);
6934 current_originators = BITMAP_ALLOC (NULL);
6935 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6936
6937 return false;
6938 }
6939
6940 /* Simplify insns after the scheduling. */
6941 static void
6942 simplify_changed_insns (void)
6943 {
6944 int i;
6945
6946 for (i = 0; i < current_nr_blocks; i++)
6947 {
6948 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6949 rtx insn;
6950
6951 FOR_BB_INSNS (bb, insn)
6952 if (INSN_P (insn))
6953 {
6954 expr_t expr = INSN_EXPR (insn);
6955
6956 if (EXPR_WAS_SUBSTITUTED (expr))
6957 validate_simplify_insn (insn);
6958 }
6959 }
6960 }
6961
6962 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6963 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6964 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6965 static void
6966 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6967 {
6968 insn_t head, tail;
6969 basic_block bb1 = bb;
6970 if (sched_verbose >= 2)
6971 sel_print ("Finishing schedule in bbs: ");
6972
6973 do
6974 {
6975 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6976
6977 if (sched_verbose >= 2)
6978 sel_print ("%d; ", bb1->index);
6979 }
6980 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6981
6982 if (sched_verbose >= 2)
6983 sel_print ("\n");
6984
6985 get_ebb_head_tail (bb, bb1, &head, &tail);
6986
6987 current_sched_info->head = head;
6988 current_sched_info->tail = tail;
6989 current_sched_info->prev_head = PREV_INSN (head);
6990 current_sched_info->next_tail = NEXT_INSN (tail);
6991 }
6992
6993 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6994 static void
6995 reset_sched_cycles_in_current_ebb (void)
6996 {
6997 int last_clock = 0;
6998 int haifa_last_clock = -1;
6999 int haifa_clock = 0;
7000 int issued_insns = 0;
7001 insn_t insn;
7002
7003 if (targetm.sched.init)
7004 {
7005 /* None of the arguments are actually used in any target.
7006 NB: We should have md_reset () hook for cases like this. */
7007 targetm.sched.init (sched_dump, sched_verbose, -1);
7008 }
7009
7010 state_reset (curr_state);
7011 advance_state (curr_state);
7012
7013 for (insn = current_sched_info->head;
7014 insn != current_sched_info->next_tail;
7015 insn = NEXT_INSN (insn))
7016 {
7017 int cost, haifa_cost;
7018 int sort_p;
7019 bool asm_p, real_insn, after_stall, all_issued;
7020 int clock;
7021
7022 if (!INSN_P (insn))
7023 continue;
7024
7025 asm_p = false;
7026 real_insn = recog_memoized (insn) >= 0;
7027 clock = INSN_SCHED_CYCLE (insn);
7028
7029 cost = clock - last_clock;
7030
7031 /* Initialize HAIFA_COST. */
7032 if (! real_insn)
7033 {
7034 asm_p = INSN_ASM_P (insn);
7035
7036 if (asm_p)
7037 /* This is asm insn which *had* to be scheduled first
7038 on the cycle. */
7039 haifa_cost = 1;
7040 else
7041 /* This is a use/clobber insn. It should not change
7042 cost. */
7043 haifa_cost = 0;
7044 }
7045 else
7046 haifa_cost = estimate_insn_cost (insn, curr_state);
7047
7048 /* Stall for whatever cycles we've stalled before. */
7049 after_stall = 0;
7050 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7051 {
7052 haifa_cost = cost;
7053 after_stall = 1;
7054 }
7055 all_issued = issued_insns == issue_rate;
7056 if (haifa_cost == 0 && all_issued)
7057 haifa_cost = 1;
7058 if (haifa_cost > 0)
7059 {
7060 int i = 0;
7061
7062 while (haifa_cost--)
7063 {
7064 advance_state (curr_state);
7065 issued_insns = 0;
7066 i++;
7067
7068 if (sched_verbose >= 2)
7069 {
7070 sel_print ("advance_state (state_transition)\n");
7071 debug_state (curr_state);
7072 }
7073
7074 /* The DFA may report that e.g. insn requires 2 cycles to be
7075 issued, but on the next cycle it says that insn is ready
7076 to go. Check this here. */
7077 if (!after_stall
7078 && real_insn
7079 && haifa_cost > 0
7080 && estimate_insn_cost (insn, curr_state) == 0)
7081 break;
7082
7083 /* When the data dependency stall is longer than the DFA stall,
7084 and when we have issued exactly issue_rate insns and stalled,
7085 it could be that after this longer stall the insn will again
7086 become unavailable to the DFA restrictions. Looks strange
7087 but happens e.g. on x86-64. So recheck DFA on the last
7088 iteration. */
7089 if ((after_stall || all_issued)
7090 && real_insn
7091 && haifa_cost == 0)
7092 haifa_cost = estimate_insn_cost (insn, curr_state);
7093 }
7094
7095 haifa_clock += i;
7096 if (sched_verbose >= 2)
7097 sel_print ("haifa clock: %d\n", haifa_clock);
7098 }
7099 else
7100 gcc_assert (haifa_cost == 0);
7101
7102 if (sched_verbose >= 2)
7103 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7104
7105 if (targetm.sched.dfa_new_cycle)
7106 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7107 haifa_last_clock, haifa_clock,
7108 &sort_p))
7109 {
7110 advance_state (curr_state);
7111 issued_insns = 0;
7112 haifa_clock++;
7113 if (sched_verbose >= 2)
7114 {
7115 sel_print ("advance_state (dfa_new_cycle)\n");
7116 debug_state (curr_state);
7117 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7118 }
7119 }
7120
7121 if (real_insn)
7122 {
7123 cost = state_transition (curr_state, insn);
7124 issued_insns++;
7125
7126 if (sched_verbose >= 2)
7127 {
7128 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7129 haifa_clock + 1);
7130 debug_state (curr_state);
7131 }
7132 gcc_assert (cost < 0);
7133 }
7134
7135 if (targetm.sched.variable_issue)
7136 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7137
7138 INSN_SCHED_CYCLE (insn) = haifa_clock;
7139
7140 last_clock = clock;
7141 haifa_last_clock = haifa_clock;
7142 }
7143 }
7144
7145 /* Put TImode markers on insns starting a new issue group. */
7146 static void
7147 put_TImodes (void)
7148 {
7149 int last_clock = -1;
7150 insn_t insn;
7151
7152 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7153 insn = NEXT_INSN (insn))
7154 {
7155 int cost, clock;
7156
7157 if (!INSN_P (insn))
7158 continue;
7159
7160 clock = INSN_SCHED_CYCLE (insn);
7161 cost = (last_clock == -1) ? 1 : clock - last_clock;
7162
7163 gcc_assert (cost >= 0);
7164
7165 if (issue_rate > 1
7166 && GET_CODE (PATTERN (insn)) != USE
7167 && GET_CODE (PATTERN (insn)) != CLOBBER)
7168 {
7169 if (reload_completed && cost > 0)
7170 PUT_MODE (insn, TImode);
7171
7172 last_clock = clock;
7173 }
7174
7175 if (sched_verbose >= 2)
7176 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7177 }
7178 }
7179
7180 /* Perform MD_FINISH on EBBs comprising current region. When
7181 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7182 to produce correct sched cycles on insns. */
7183 static void
7184 sel_region_target_finish (bool reset_sched_cycles_p)
7185 {
7186 int i;
7187 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7188
7189 for (i = 0; i < current_nr_blocks; i++)
7190 {
7191 if (bitmap_bit_p (scheduled_blocks, i))
7192 continue;
7193
7194 /* While pipelining outer loops, skip bundling for loop
7195 preheaders. Those will be rescheduled in the outer loop. */
7196 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7197 continue;
7198
7199 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7200
7201 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7202 continue;
7203
7204 if (reset_sched_cycles_p)
7205 reset_sched_cycles_in_current_ebb ();
7206
7207 if (targetm.sched.init)
7208 targetm.sched.init (sched_dump, sched_verbose, -1);
7209
7210 put_TImodes ();
7211
7212 if (targetm.sched.finish)
7213 {
7214 targetm.sched.finish (sched_dump, sched_verbose);
7215
7216 /* Extend luids so that insns generated by the target will
7217 get zero luid. */
7218 sched_init_luids (NULL, NULL, NULL, NULL);
7219 }
7220 }
7221
7222 BITMAP_FREE (scheduled_blocks);
7223 }
7224
7225 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7226 is true, make an additional pass emulating scheduler to get correct insn
7227 cycles for md_finish calls. */
7228 static void
7229 sel_region_finish (bool reset_sched_cycles_p)
7230 {
7231 simplify_changed_insns ();
7232 sched_finish_ready_list ();
7233 free_nop_pool ();
7234
7235 /* Free the vectors. */
7236 if (vec_av_set)
7237 VEC_free (expr_t, heap, vec_av_set);
7238 BITMAP_FREE (current_copies);
7239 BITMAP_FREE (current_originators);
7240 BITMAP_FREE (code_motion_visited_blocks);
7241 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7242 vinsn_vec_free (&vec_target_unavailable_vinsns);
7243
7244 /* If LV_SET of the region head should be updated, do it now because
7245 there will be no other chance. */
7246 {
7247 succ_iterator si;
7248 insn_t insn;
7249
7250 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7251 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7252 {
7253 basic_block bb = BLOCK_FOR_INSN (insn);
7254
7255 if (!BB_LV_SET_VALID_P (bb))
7256 compute_live (insn);
7257 }
7258 }
7259
7260 /* Emulate the Haifa scheduler for bundling. */
7261 if (reload_completed)
7262 sel_region_target_finish (reset_sched_cycles_p);
7263
7264 sel_finish_global_and_expr ();
7265
7266 bitmap_clear (forced_ebb_heads);
7267
7268 free_nop_vinsn ();
7269
7270 finish_deps_global ();
7271 sched_finish_luids ();
7272
7273 sel_finish_bbs ();
7274 BITMAP_FREE (blocks_to_reschedule);
7275
7276 sel_unregister_cfg_hooks ();
7277
7278 max_issue_size = 0;
7279 }
7280 \f
7281
7282 /* Functions that implement the scheduler driver. */
7283
7284 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7285 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7286 of insns scheduled -- these would be postprocessed later. */
7287 static void
7288 schedule_on_fences (flist_t fences, int max_seqno,
7289 ilist_t **scheduled_insns_tailpp)
7290 {
7291 flist_t old_fences = fences;
7292
7293 if (sched_verbose >= 1)
7294 {
7295 sel_print ("\nScheduling on fences: ");
7296 dump_flist (fences);
7297 sel_print ("\n");
7298 }
7299
7300 scheduled_something_on_previous_fence = false;
7301 for (; fences; fences = FLIST_NEXT (fences))
7302 {
7303 fence_t fence = NULL;
7304 int seqno = 0;
7305 flist_t fences2;
7306 bool first_p = true;
7307
7308 /* Choose the next fence group to schedule.
7309 The fact that insn can be scheduled only once
7310 on the cycle is guaranteed by two properties:
7311 1. seqnos of parallel groups decrease with each iteration.
7312 2. If is_ineligible_successor () sees the larger seqno, it
7313 checks if candidate insn is_in_current_fence_p (). */
7314 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7315 {
7316 fence_t f = FLIST_FENCE (fences2);
7317
7318 if (!FENCE_PROCESSED_P (f))
7319 {
7320 int i = INSN_SEQNO (FENCE_INSN (f));
7321
7322 if (first_p || i > seqno)
7323 {
7324 seqno = i;
7325 fence = f;
7326 first_p = false;
7327 }
7328 else
7329 /* ??? Seqnos of different groups should be different. */
7330 gcc_assert (1 || i != seqno);
7331 }
7332 }
7333
7334 gcc_assert (fence);
7335
7336 /* As FENCE is nonnull, SEQNO is initialized. */
7337 seqno -= max_seqno + 1;
7338 fill_insns (fence, seqno, scheduled_insns_tailpp);
7339 FENCE_PROCESSED_P (fence) = true;
7340 }
7341
7342 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7343 don't need to keep bookkeeping-invalidated and target-unavailable
7344 vinsns any more. */
7345 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7346 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7347 }
7348
7349 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7350 static void
7351 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7352 {
7353 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7354
7355 /* The first element is already processed. */
7356 while ((fences = FLIST_NEXT (fences)))
7357 {
7358 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7359
7360 if (*min_seqno > seqno)
7361 *min_seqno = seqno;
7362 else if (*max_seqno < seqno)
7363 *max_seqno = seqno;
7364 }
7365 }
7366
7367 /* Calculate new fences from FENCES. */
7368 static flist_t
7369 calculate_new_fences (flist_t fences, int orig_max_seqno)
7370 {
7371 flist_t old_fences = fences;
7372 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7373
7374 flist_tail_init (new_fences);
7375 for (; fences; fences = FLIST_NEXT (fences))
7376 {
7377 fence_t fence = FLIST_FENCE (fences);
7378 insn_t insn;
7379
7380 if (!FENCE_BNDS (fence))
7381 {
7382 /* This fence doesn't have any successors. */
7383 if (!FENCE_SCHEDULED_P (fence))
7384 {
7385 /* Nothing was scheduled on this fence. */
7386 int seqno;
7387
7388 insn = FENCE_INSN (fence);
7389 seqno = INSN_SEQNO (insn);
7390 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7391
7392 if (sched_verbose >= 1)
7393 sel_print ("Fence %d[%d] has not changed\n",
7394 INSN_UID (insn),
7395 BLOCK_NUM (insn));
7396 move_fence_to_fences (fences, new_fences);
7397 }
7398 }
7399 else
7400 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7401 }
7402
7403 flist_clear (&old_fences);
7404 return FLIST_TAIL_HEAD (new_fences);
7405 }
7406
7407 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7408 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7409 the highest seqno used in a region. Return the updated highest seqno. */
7410 static int
7411 update_seqnos_and_stage (int min_seqno, int max_seqno,
7412 int highest_seqno_in_use,
7413 ilist_t *pscheduled_insns)
7414 {
7415 int new_hs;
7416 ilist_iterator ii;
7417 insn_t insn;
7418
7419 /* Actually, new_hs is the seqno of the instruction, that was
7420 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7421 if (*pscheduled_insns)
7422 {
7423 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7424 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7425 gcc_assert (new_hs > highest_seqno_in_use);
7426 }
7427 else
7428 new_hs = highest_seqno_in_use;
7429
7430 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7431 {
7432 gcc_assert (INSN_SEQNO (insn) < 0);
7433 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7434 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7435
7436 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7437 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7438 require > 1GB of memory e.g. on limit-fnargs.c. */
7439 if (! pipelining_p)
7440 free_data_for_scheduled_insn (insn);
7441 }
7442
7443 ilist_clear (pscheduled_insns);
7444 global_level++;
7445
7446 return new_hs;
7447 }
7448
7449 /* The main driver for scheduling a region. This function is responsible
7450 for correct propagation of fences (i.e. scheduling points) and creating
7451 a group of parallel insns at each of them. It also supports
7452 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7453 of scheduling. */
7454 static void
7455 sel_sched_region_2 (int orig_max_seqno)
7456 {
7457 int highest_seqno_in_use = orig_max_seqno;
7458
7459 stat_bookkeeping_copies = 0;
7460 stat_insns_needed_bookkeeping = 0;
7461 stat_renamed_scheduled = 0;
7462 stat_substitutions_total = 0;
7463 num_insns_scheduled = 0;
7464
7465 while (fences)
7466 {
7467 int min_seqno, max_seqno;
7468 ilist_t scheduled_insns = NULL;
7469 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7470
7471 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7472 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7473 fences = calculate_new_fences (fences, orig_max_seqno);
7474 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7475 highest_seqno_in_use,
7476 &scheduled_insns);
7477 }
7478
7479 if (sched_verbose >= 1)
7480 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7481 "bookkeeping, %d insns renamed, %d insns substituted\n",
7482 stat_bookkeeping_copies,
7483 stat_insns_needed_bookkeeping,
7484 stat_renamed_scheduled,
7485 stat_substitutions_total);
7486 }
7487
7488 /* Schedule a region. When pipelining, search for possibly never scheduled
7489 bookkeeping code and schedule it. Reschedule pipelined code without
7490 pipelining after. */
7491 static void
7492 sel_sched_region_1 (void)
7493 {
7494 int orig_max_seqno;
7495
7496 /* Remove empty blocks that might be in the region from the beginning. */
7497 purge_empty_blocks ();
7498
7499 orig_max_seqno = init_seqno (NULL, NULL);
7500 gcc_assert (orig_max_seqno >= 1);
7501
7502 /* When pipelining outer loops, create fences on the loop header,
7503 not preheader. */
7504 fences = NULL;
7505 if (current_loop_nest)
7506 init_fences (BB_END (EBB_FIRST_BB (0)));
7507 else
7508 init_fences (bb_note (EBB_FIRST_BB (0)));
7509 global_level = 1;
7510
7511 sel_sched_region_2 (orig_max_seqno);
7512
7513 gcc_assert (fences == NULL);
7514
7515 if (pipelining_p)
7516 {
7517 int i;
7518 basic_block bb;
7519 struct flist_tail_def _new_fences;
7520 flist_tail_t new_fences = &_new_fences;
7521 bool do_p = true;
7522
7523 pipelining_p = false;
7524 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7525 bookkeeping_p = false;
7526 enable_schedule_as_rhs_p = false;
7527
7528 /* Schedule newly created code, that has not been scheduled yet. */
7529 do_p = true;
7530
7531 while (do_p)
7532 {
7533 do_p = false;
7534
7535 for (i = 0; i < current_nr_blocks; i++)
7536 {
7537 basic_block bb = EBB_FIRST_BB (i);
7538
7539 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7540 {
7541 if (! bb_ends_ebb_p (bb))
7542 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7543 if (sel_bb_empty_p (bb))
7544 {
7545 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7546 continue;
7547 }
7548 clear_outdated_rtx_info (bb);
7549 if (sel_insn_is_speculation_check (BB_END (bb))
7550 && JUMP_P (BB_END (bb)))
7551 bitmap_set_bit (blocks_to_reschedule,
7552 BRANCH_EDGE (bb)->dest->index);
7553 }
7554 else if (! sel_bb_empty_p (bb)
7555 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7556 bitmap_set_bit (blocks_to_reschedule, bb->index);
7557 }
7558
7559 for (i = 0; i < current_nr_blocks; i++)
7560 {
7561 bb = EBB_FIRST_BB (i);
7562
7563 /* While pipelining outer loops, skip bundling for loop
7564 preheaders. Those will be rescheduled in the outer
7565 loop. */
7566 if (sel_is_loop_preheader_p (bb))
7567 {
7568 clear_outdated_rtx_info (bb);
7569 continue;
7570 }
7571
7572 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7573 {
7574 flist_tail_init (new_fences);
7575
7576 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7577
7578 /* Mark BB as head of the new ebb. */
7579 bitmap_set_bit (forced_ebb_heads, bb->index);
7580
7581 gcc_assert (fences == NULL);
7582
7583 init_fences (bb_note (bb));
7584
7585 sel_sched_region_2 (orig_max_seqno);
7586
7587 do_p = true;
7588 break;
7589 }
7590 }
7591 }
7592 }
7593 }
7594
7595 /* Schedule the RGN region. */
7596 void
7597 sel_sched_region (int rgn)
7598 {
7599 bool schedule_p;
7600 bool reset_sched_cycles_p;
7601
7602 if (sel_region_init (rgn))
7603 return;
7604
7605 if (sched_verbose >= 1)
7606 sel_print ("Scheduling region %d\n", rgn);
7607
7608 schedule_p = (!sched_is_disabled_for_current_region_p ()
7609 && dbg_cnt (sel_sched_region_cnt));
7610 reset_sched_cycles_p = pipelining_p;
7611 if (schedule_p)
7612 sel_sched_region_1 ();
7613 else
7614 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7615 reset_sched_cycles_p = true;
7616
7617 sel_region_finish (reset_sched_cycles_p);
7618 }
7619
7620 /* Perform global init for the scheduler. */
7621 static void
7622 sel_global_init (void)
7623 {
7624 calculate_dominance_info (CDI_DOMINATORS);
7625 alloc_sched_pools ();
7626
7627 /* Setup the infos for sched_init. */
7628 sel_setup_sched_infos ();
7629 setup_sched_dump ();
7630
7631 sched_rgn_init (false);
7632 sched_init ();
7633
7634 sched_init_bbs ();
7635 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7636 after_recovery = 0;
7637 can_issue_more = issue_rate;
7638
7639 sched_extend_target ();
7640 sched_deps_init (true);
7641 setup_nop_and_exit_insns ();
7642 sel_extend_global_bb_info ();
7643 init_lv_sets ();
7644 init_hard_regs_data ();
7645 }
7646
7647 /* Free the global data of the scheduler. */
7648 static void
7649 sel_global_finish (void)
7650 {
7651 free_bb_note_pool ();
7652 free_lv_sets ();
7653 sel_finish_global_bb_info ();
7654
7655 free_regset_pool ();
7656 free_nop_and_exit_insns ();
7657
7658 sched_rgn_finish ();
7659 sched_deps_finish ();
7660 sched_finish ();
7661
7662 if (current_loops)
7663 sel_finish_pipelining ();
7664
7665 free_sched_pools ();
7666 free_dominance_info (CDI_DOMINATORS);
7667 }
7668
7669 /* Return true when we need to skip selective scheduling. Used for debugging. */
7670 bool
7671 maybe_skip_selective_scheduling (void)
7672 {
7673 return ! dbg_cnt (sel_sched_cnt);
7674 }
7675
7676 /* The entry point. */
7677 void
7678 run_selective_scheduling (void)
7679 {
7680 int rgn;
7681
7682 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7683 return;
7684
7685 sel_global_init ();
7686
7687 for (rgn = 0; rgn < nr_regions; rgn++)
7688 sel_sched_region (rgn);
7689
7690 sel_global_finish ();
7691 }
7692
7693 #endif