re PR rtl-optimization/47036 (ICE: in move_cond_jump, at sel-sched.c:4901 with -fsche...
[gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "rtl-error.h"
25 #include "tm_p.h"
26 #include "hard-reg-set.h"
27 #include "regs.h"
28 #include "function.h"
29 #include "flags.h"
30 #include "insn-config.h"
31 #include "insn-attr.h"
32 #include "except.h"
33 #include "recog.h"
34 #include "params.h"
35 #include "target.h"
36 #include "output.h"
37 #include "timevar.h"
38 #include "tree-pass.h"
39 #include "sched-int.h"
40 #include "ggc.h"
41 #include "tree.h"
42 #include "vec.h"
43 #include "langhooks.h"
44 #include "rtlhooks-def.h"
45 #include "output.h"
46 #include "emit-rtl.h"
47
48 #ifdef INSN_SCHEDULING
49 #include "sel-sched-ir.h"
50 #include "sel-sched-dump.h"
51 #include "sel-sched.h"
52 #include "dbgcnt.h"
53
54 /* Implementation of selective scheduling approach.
55 The below implementation follows the original approach with the following
56 changes:
57
58 o the scheduler works after register allocation (but can be also tuned
59 to work before RA);
60 o some instructions are not copied or register renamed;
61 o conditional jumps are not moved with code duplication;
62 o several jumps in one parallel group are not supported;
63 o when pipelining outer loops, code motion through inner loops
64 is not supported;
65 o control and data speculation are supported;
66 o some improvements for better compile time/performance were made.
67
68 Terminology
69 ===========
70
71 A vinsn, or virtual insn, is an insn with additional data characterizing
72 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
73 Vinsns also act as smart pointers to save memory by reusing them in
74 different expressions. A vinsn is described by vinsn_t type.
75
76 An expression is a vinsn with additional data characterizing its properties
77 at some point in the control flow graph. The data may be its usefulness,
78 priority, speculative status, whether it was renamed/subsituted, etc.
79 An expression is described by expr_t type.
80
81 Availability set (av_set) is a set of expressions at a given control flow
82 point. It is represented as av_set_t. The expressions in av sets are kept
83 sorted in the terms of expr_greater_p function. It allows to truncate
84 the set while leaving the best expressions.
85
86 A fence is a point through which code motion is prohibited. On each step,
87 we gather a parallel group of insns at a fence. It is possible to have
88 multiple fences. A fence is represented via fence_t.
89
90 A boundary is the border between the fence group and the rest of the code.
91 Currently, we never have more than one boundary per fence, as we finalize
92 the fence group when a jump is scheduled. A boundary is represented
93 via bnd_t.
94
95 High-level overview
96 ===================
97
98 The scheduler finds regions to schedule, schedules each one, and finalizes.
99 The regions are formed starting from innermost loops, so that when the inner
100 loop is pipelined, its prologue can be scheduled together with yet unprocessed
101 outer loop. The rest of acyclic regions are found using extend_rgns:
102 the blocks that are not yet allocated to any regions are traversed in top-down
103 order, and a block is added to a region to which all its predecessors belong;
104 otherwise, the block starts its own region.
105
106 The main scheduling loop (sel_sched_region_2) consists of just
107 scheduling on each fence and updating fences. For each fence,
108 we fill a parallel group of insns (fill_insns) until some insns can be added.
109 First, we compute available exprs (av-set) at the boundary of the current
110 group. Second, we choose the best expression from it. If the stall is
111 required to schedule any of the expressions, we advance the current cycle
112 appropriately. So, the final group does not exactly correspond to a VLIW
113 word. Third, we move the chosen expression to the boundary (move_op)
114 and update the intermediate av sets and liveness sets. We quit fill_insns
115 when either no insns left for scheduling or we have scheduled enough insns
116 so we feel like advancing a scheduling point.
117
118 Computing available expressions
119 ===============================
120
121 The computation (compute_av_set) is a bottom-up traversal. At each insn,
122 we're moving the union of its successors' sets through it via
123 moveup_expr_set. The dependent expressions are removed. Local
124 transformations (substitution, speculation) are applied to move more
125 exprs. Then the expr corresponding to the current insn is added.
126 The result is saved on each basic block header.
127
128 When traversing the CFG, we're moving down for no more than max_ws insns.
129 Also, we do not move down to ineligible successors (is_ineligible_successor),
130 which include moving along a back-edge, moving to already scheduled code,
131 and moving to another fence. The first two restrictions are lifted during
132 pipelining, which allows us to move insns along a back-edge. We always have
133 an acyclic region for scheduling because we forbid motion through fences.
134
135 Choosing the best expression
136 ============================
137
138 We sort the final availability set via sel_rank_for_schedule, then we remove
139 expressions which are not yet ready (tick_check_p) or which dest registers
140 cannot be used. For some of them, we choose another register via
141 find_best_reg. To do this, we run find_used_regs to calculate the set of
142 registers which cannot be used. The find_used_regs function performs
143 a traversal of code motion paths for an expr. We consider for renaming
144 only registers which are from the same regclass as the original one and
145 using which does not interfere with any live ranges. Finally, we convert
146 the resulting set to the ready list format and use max_issue and reorder*
147 hooks similarly to the Haifa scheduler.
148
149 Scheduling the best expression
150 ==============================
151
152 We run the move_op routine to perform the same type of code motion paths
153 traversal as in find_used_regs. (These are working via the same driver,
154 code_motion_path_driver.) When moving down the CFG, we look for original
155 instruction that gave birth to a chosen expression. We undo
156 the transformations performed on an expression via the history saved in it.
157 When found, we remove the instruction or leave a reg-reg copy/speculation
158 check if needed. On a way up, we insert bookkeeping copies at each join
159 point. If a copy is not needed, it will be removed later during this
160 traversal. We update the saved av sets and liveness sets on the way up, too.
161
162 Finalizing the schedule
163 =======================
164
165 When pipelining, we reschedule the blocks from which insns were pipelined
166 to get a tighter schedule. On Itanium, we also perform bundling via
167 the same routine from ia64.c.
168
169 Dependence analysis changes
170 ===========================
171
172 We augmented the sched-deps.c with hooks that get called when a particular
173 dependence is found in a particular part of an insn. Using these hooks, we
174 can do several actions such as: determine whether an insn can be moved through
175 another (has_dependence_p, moveup_expr); find out whether an insn can be
176 scheduled on the current cycle (tick_check_p); find out registers that
177 are set/used/clobbered by an insn and find out all the strange stuff that
178 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
179 init_global_and_expr_for_insn).
180
181 Initialization changes
182 ======================
183
184 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
185 reused in all of the schedulers. We have split up the initialization of data
186 of such parts into different functions prefixed with scheduler type and
187 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
188 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
189 The same splitting is done with current_sched_info structure:
190 dependence-related parts are in sched_deps_info, common part is in
191 common_sched_info, and haifa/sel/etc part is in current_sched_info.
192
193 Target contexts
194 ===============
195
196 As we now have multiple-point scheduling, this would not work with backends
197 which save some of the scheduler state to use it in the target hooks.
198 For this purpose, we introduce a concept of target contexts, which
199 encapsulate such information. The backend should implement simple routines
200 of allocating/freeing/setting such a context. The scheduler calls these
201 as target hooks and handles the target context as an opaque pointer (similar
202 to the DFA state type, state_t).
203
204 Various speedups
205 ================
206
207 As the correct data dependence graph is not supported during scheduling (which
208 is to be changed in mid-term), we cache as much of the dependence analysis
209 results as possible to avoid reanalyzing. This includes: bitmap caches on
210 each insn in stream of the region saying yes/no for a query with a pair of
211 UIDs; hashtables with the previously done transformations on each insn in
212 stream; a vector keeping a history of transformations on each expr.
213
214 Also, we try to minimize the dependence context used on each fence to check
215 whether the given expression is ready for scheduling by removing from it
216 insns that are definitely completed the execution. The results of
217 tick_check_p checks are also cached in a vector on each fence.
218
219 We keep a valid liveness set on each insn in a region to avoid the high
220 cost of recomputation on large basic blocks.
221
222 Finally, we try to minimize the number of needed updates to the availability
223 sets. The updates happen in two cases: when fill_insns terminates,
224 we advance all fences and increase the stage number to show that the region
225 has changed and the sets are to be recomputed; and when the next iteration
226 of a loop in fill_insns happens (but this one reuses the saved av sets
227 on bb headers.) Thus, we try to break the fill_insns loop only when
228 "significant" number of insns from the current scheduling window was
229 scheduled. This should be made a target param.
230
231
232 TODO: correctly support the data dependence graph at all stages and get rid
233 of all caches. This should speed up the scheduler.
234 TODO: implement moving cond jumps with bookkeeping copies on both targets.
235 TODO: tune the scheduler before RA so it does not create too much pseudos.
236
237
238 References:
239 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
240 selective scheduling and software pipelining.
241 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
242
243 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
244 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
245 for GCC. In Proceedings of GCC Developers' Summit 2006.
246
247 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
248 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
249 http://rogue.colorado.edu/EPIC7/.
250
251 */
252
253 /* True when pipelining is enabled. */
254 bool pipelining_p;
255
256 /* True if bookkeeping is enabled. */
257 bool bookkeeping_p;
258
259 /* Maximum number of insns that are eligible for renaming. */
260 int max_insns_to_rename;
261 \f
262
263 /* Definitions of local types and macros. */
264
265 /* Represents possible outcomes of moving an expression through an insn. */
266 enum MOVEUP_EXPR_CODE
267 {
268 /* The expression is not changed. */
269 MOVEUP_EXPR_SAME,
270
271 /* Not changed, but requires a new destination register. */
272 MOVEUP_EXPR_AS_RHS,
273
274 /* Cannot be moved. */
275 MOVEUP_EXPR_NULL,
276
277 /* Changed (substituted or speculated). */
278 MOVEUP_EXPR_CHANGED
279 };
280
281 /* The container to be passed into rtx search & replace functions. */
282 struct rtx_search_arg
283 {
284 /* What we are searching for. */
285 rtx x;
286
287 /* The occurence counter. */
288 int n;
289 };
290
291 typedef struct rtx_search_arg *rtx_search_arg_p;
292
293 /* This struct contains precomputed hard reg sets that are needed when
294 computing registers available for renaming. */
295 struct hard_regs_data
296 {
297 /* For every mode, this stores registers available for use with
298 that mode. */
299 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
300
301 /* True when regs_for_mode[mode] is initialized. */
302 bool regs_for_mode_ok[NUM_MACHINE_MODES];
303
304 /* For every register, it has regs that are ok to rename into it.
305 The register in question is always set. If not, this means
306 that the whole set is not computed yet. */
307 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
308
309 /* For every mode, this stores registers not available due to
310 call clobbering. */
311 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
312
313 /* All registers that are used or call used. */
314 HARD_REG_SET regs_ever_used;
315
316 #ifdef STACK_REGS
317 /* Stack registers. */
318 HARD_REG_SET stack_regs;
319 #endif
320 };
321
322 /* Holds the results of computation of available for renaming and
323 unavailable hard registers. */
324 struct reg_rename
325 {
326 /* These are unavailable due to calls crossing, globalness, etc. */
327 HARD_REG_SET unavailable_hard_regs;
328
329 /* These are *available* for renaming. */
330 HARD_REG_SET available_for_renaming;
331
332 /* Whether this code motion path crosses a call. */
333 bool crosses_call;
334 };
335
336 /* A global structure that contains the needed information about harg
337 regs. */
338 static struct hard_regs_data sel_hrd;
339 \f
340
341 /* This structure holds local data used in code_motion_path_driver hooks on
342 the same or adjacent levels of recursion. Here we keep those parameters
343 that are not used in code_motion_path_driver routine itself, but only in
344 its hooks. Moreover, all parameters that can be modified in hooks are
345 in this structure, so all other parameters passed explicitly to hooks are
346 read-only. */
347 struct cmpd_local_params
348 {
349 /* Local params used in move_op_* functions. */
350
351 /* Edges for bookkeeping generation. */
352 edge e1, e2;
353
354 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
355 expr_t c_expr_merged, c_expr_local;
356
357 /* Local params used in fur_* functions. */
358 /* Copy of the ORIGINAL_INSN list, stores the original insns already
359 found before entering the current level of code_motion_path_driver. */
360 def_list_t old_original_insns;
361
362 /* Local params used in move_op_* functions. */
363 /* True when we have removed last insn in the block which was
364 also a boundary. Do not update anything or create bookkeeping copies. */
365 BOOL_BITFIELD removed_last_insn : 1;
366 };
367
368 /* Stores the static parameters for move_op_* calls. */
369 struct moveop_static_params
370 {
371 /* Destination register. */
372 rtx dest;
373
374 /* Current C_EXPR. */
375 expr_t c_expr;
376
377 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
378 they are to be removed. */
379 int uid;
380
381 #ifdef ENABLE_CHECKING
382 /* This is initialized to the insn on which the driver stopped its traversal. */
383 insn_t failed_insn;
384 #endif
385
386 /* True if we scheduled an insn with different register. */
387 bool was_renamed;
388 };
389
390 /* Stores the static parameters for fur_* calls. */
391 struct fur_static_params
392 {
393 /* Set of registers unavailable on the code motion path. */
394 regset used_regs;
395
396 /* Pointer to the list of original insns definitions. */
397 def_list_t *original_insns;
398
399 /* True if a code motion path contains a CALL insn. */
400 bool crosses_call;
401 };
402
403 typedef struct fur_static_params *fur_static_params_p;
404 typedef struct cmpd_local_params *cmpd_local_params_p;
405 typedef struct moveop_static_params *moveop_static_params_p;
406
407 /* Set of hooks and parameters that determine behaviour specific to
408 move_op or find_used_regs functions. */
409 struct code_motion_path_driver_info_def
410 {
411 /* Called on enter to the basic block. */
412 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
413
414 /* Called when original expr is found. */
415 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
416
417 /* Called while descending current basic block if current insn is not
418 the original EXPR we're searching for. */
419 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
420
421 /* Function to merge C_EXPRes from different successors. */
422 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
423
424 /* Function to finalize merge from different successors and possibly
425 deallocate temporary data structures used for merging. */
426 void (*after_merge_succs) (cmpd_local_params_p, void *);
427
428 /* Called on the backward stage of recursion to do moveup_expr.
429 Used only with move_op_*. */
430 void (*ascend) (insn_t, void *);
431
432 /* Called on the ascending pass, before returning from the current basic
433 block or from the whole traversal. */
434 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
435
436 /* When processing successors in move_op we need only descend into
437 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
438 int succ_flags;
439
440 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
441 const char *routine_name;
442 };
443
444 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
445 FUR_HOOKS. */
446 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
447
448 /* Set of hooks for performing move_op and find_used_regs routines with
449 code_motion_path_driver. */
450 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
451
452 /* True if/when we want to emulate Haifa scheduler in the common code.
453 This is used in sched_rgn_local_init and in various places in
454 sched-deps.c. */
455 int sched_emulate_haifa_p;
456
457 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
458 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
459 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
460 scheduling window. */
461 int global_level;
462
463 /* Current fences. */
464 flist_t fences;
465
466 /* True when separable insns should be scheduled as RHSes. */
467 static bool enable_schedule_as_rhs_p;
468
469 /* Used in verify_target_availability to assert that target reg is reported
470 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
471 we haven't scheduled anything on the previous fence.
472 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
473 have more conservative value than the one returned by the
474 find_used_regs, thus we shouldn't assert that these values are equal. */
475 static bool scheduled_something_on_previous_fence;
476
477 /* All newly emitted insns will have their uids greater than this value. */
478 static int first_emitted_uid;
479
480 /* Set of basic blocks that are forced to start new ebbs. This is a subset
481 of all the ebb heads. */
482 static bitmap_head _forced_ebb_heads;
483 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
484
485 /* Blocks that need to be rescheduled after pipelining. */
486 bitmap blocks_to_reschedule = NULL;
487
488 /* True when the first lv set should be ignored when updating liveness. */
489 static bool ignore_first = false;
490
491 /* Number of insns max_issue has initialized data structures for. */
492 static int max_issue_size = 0;
493
494 /* Whether we can issue more instructions. */
495 static int can_issue_more;
496
497 /* Maximum software lookahead window size, reduced when rescheduling after
498 pipelining. */
499 static int max_ws;
500
501 /* Number of insns scheduled in current region. */
502 static int num_insns_scheduled;
503
504 /* A vector of expressions is used to be able to sort them. */
505 DEF_VEC_P(expr_t);
506 DEF_VEC_ALLOC_P(expr_t,heap);
507 static VEC(expr_t, heap) *vec_av_set = NULL;
508
509 /* A vector of vinsns is used to hold temporary lists of vinsns. */
510 DEF_VEC_P(vinsn_t);
511 DEF_VEC_ALLOC_P(vinsn_t,heap);
512 typedef VEC(vinsn_t, heap) *vinsn_vec_t;
513
514 /* This vector has the exprs which may still present in av_sets, but actually
515 can't be moved up due to bookkeeping created during code motion to another
516 fence. See comment near the call to update_and_record_unavailable_insns
517 for the detailed explanations. */
518 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = NULL;
519
520 /* This vector has vinsns which are scheduled with renaming on the first fence
521 and then seen on the second. For expressions with such vinsns, target
522 availability information may be wrong. */
523 static vinsn_vec_t vec_target_unavailable_vinsns = NULL;
524
525 /* Vector to store temporary nops inserted in move_op to prevent removal
526 of empty bbs. */
527 DEF_VEC_P(insn_t);
528 DEF_VEC_ALLOC_P(insn_t,heap);
529 static VEC(insn_t, heap) *vec_temp_moveop_nops = NULL;
530
531 /* These bitmaps record original instructions scheduled on the current
532 iteration and bookkeeping copies created by them. */
533 static bitmap current_originators = NULL;
534 static bitmap current_copies = NULL;
535
536 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
537 visit them afterwards. */
538 static bitmap code_motion_visited_blocks = NULL;
539
540 /* Variables to accumulate different statistics. */
541
542 /* The number of bookkeeping copies created. */
543 static int stat_bookkeeping_copies;
544
545 /* The number of insns that required bookkeeiping for their scheduling. */
546 static int stat_insns_needed_bookkeeping;
547
548 /* The number of insns that got renamed. */
549 static int stat_renamed_scheduled;
550
551 /* The number of substitutions made during scheduling. */
552 static int stat_substitutions_total;
553 \f
554
555 /* Forward declarations of static functions. */
556 static bool rtx_ok_for_substitution_p (rtx, rtx);
557 static int sel_rank_for_schedule (const void *, const void *);
558 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
559 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
560
561 static rtx get_dest_from_orig_ops (av_set_t);
562 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
563 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
564 def_list_t *);
565 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
566 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
567 cmpd_local_params_p, void *);
568 static void sel_sched_region_1 (void);
569 static void sel_sched_region_2 (int);
570 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
571
572 static void debug_state (state_t);
573 \f
574
575 /* Functions that work with fences. */
576
577 /* Advance one cycle on FENCE. */
578 static void
579 advance_one_cycle (fence_t fence)
580 {
581 unsigned i;
582 int cycle;
583 rtx insn;
584
585 advance_state (FENCE_STATE (fence));
586 cycle = ++FENCE_CYCLE (fence);
587 FENCE_ISSUED_INSNS (fence) = 0;
588 FENCE_STARTS_CYCLE_P (fence) = 1;
589 can_issue_more = issue_rate;
590 FENCE_ISSUE_MORE (fence) = can_issue_more;
591
592 for (i = 0; VEC_iterate (rtx, FENCE_EXECUTING_INSNS (fence), i, insn); )
593 {
594 if (INSN_READY_CYCLE (insn) < cycle)
595 {
596 remove_from_deps (FENCE_DC (fence), insn);
597 VEC_unordered_remove (rtx, FENCE_EXECUTING_INSNS (fence), i);
598 continue;
599 }
600 i++;
601 }
602 if (sched_verbose >= 2)
603 {
604 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
605 debug_state (FENCE_STATE (fence));
606 }
607 }
608
609 /* Returns true when SUCC in a fallthru bb of INSN, possibly
610 skipping empty basic blocks. */
611 static bool
612 in_fallthru_bb_p (rtx insn, rtx succ)
613 {
614 basic_block bb = BLOCK_FOR_INSN (insn);
615 edge e;
616
617 if (bb == BLOCK_FOR_INSN (succ))
618 return true;
619
620 e = find_fallthru_edge_from (bb);
621 if (e)
622 bb = e->dest;
623 else
624 return false;
625
626 while (sel_bb_empty_p (bb))
627 bb = bb->next_bb;
628
629 return bb == BLOCK_FOR_INSN (succ);
630 }
631
632 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
633 When a successor will continue a ebb, transfer all parameters of a fence
634 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
635 of scheduling helping to distinguish between the old and the new code. */
636 static void
637 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
638 int orig_max_seqno)
639 {
640 bool was_here_p = false;
641 insn_t insn = NULL_RTX;
642 insn_t succ;
643 succ_iterator si;
644 ilist_iterator ii;
645 fence_t fence = FLIST_FENCE (old_fences);
646 basic_block bb;
647
648 /* Get the only element of FENCE_BNDS (fence). */
649 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
650 {
651 gcc_assert (!was_here_p);
652 was_here_p = true;
653 }
654 gcc_assert (was_here_p && insn != NULL_RTX);
655
656 /* When in the "middle" of the block, just move this fence
657 to the new list. */
658 bb = BLOCK_FOR_INSN (insn);
659 if (! sel_bb_end_p (insn)
660 || (single_succ_p (bb)
661 && single_pred_p (single_succ (bb))))
662 {
663 insn_t succ;
664
665 succ = (sel_bb_end_p (insn)
666 ? sel_bb_head (single_succ (bb))
667 : NEXT_INSN (insn));
668
669 if (INSN_SEQNO (succ) > 0
670 && INSN_SEQNO (succ) <= orig_max_seqno
671 && INSN_SCHED_TIMES (succ) <= 0)
672 {
673 FENCE_INSN (fence) = succ;
674 move_fence_to_fences (old_fences, new_fences);
675
676 if (sched_verbose >= 1)
677 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
678 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
679 }
680 return;
681 }
682
683 /* Otherwise copy fence's structures to (possibly) multiple successors. */
684 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
685 {
686 int seqno = INSN_SEQNO (succ);
687
688 if (0 < seqno && seqno <= orig_max_seqno
689 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
690 {
691 bool b = (in_same_ebb_p (insn, succ)
692 || in_fallthru_bb_p (insn, succ));
693
694 if (sched_verbose >= 1)
695 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
696 INSN_UID (insn), INSN_UID (succ),
697 BLOCK_NUM (succ), b ? "continue" : "reset");
698
699 if (b)
700 add_dirty_fence_to_fences (new_fences, succ, fence);
701 else
702 {
703 /* Mark block of the SUCC as head of the new ebb. */
704 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
705 add_clean_fence_to_fences (new_fences, succ, fence);
706 }
707 }
708 }
709 }
710 \f
711
712 /* Functions to support substitution. */
713
714 /* Returns whether INSN with dependence status DS is eligible for
715 substitution, i.e. it's a copy operation x := y, and RHS that is
716 moved up through this insn should be substituted. */
717 static bool
718 can_substitute_through_p (insn_t insn, ds_t ds)
719 {
720 /* We can substitute only true dependencies. */
721 if ((ds & DEP_OUTPUT)
722 || (ds & DEP_ANTI)
723 || ! INSN_RHS (insn)
724 || ! INSN_LHS (insn))
725 return false;
726
727 /* Now we just need to make sure the INSN_RHS consists of only one
728 simple REG rtx. */
729 if (REG_P (INSN_LHS (insn))
730 && REG_P (INSN_RHS (insn)))
731 return true;
732 return false;
733 }
734
735 /* Substitute all occurences of INSN's destination in EXPR' vinsn with INSN's
736 source (if INSN is eligible for substitution). Returns TRUE if
737 substitution was actually performed, FALSE otherwise. Substitution might
738 be not performed because it's either EXPR' vinsn doesn't contain INSN's
739 destination or the resulting insn is invalid for the target machine.
740 When UNDO is true, perform unsubstitution instead (the difference is in
741 the part of rtx on which validate_replace_rtx is called). */
742 static bool
743 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
744 {
745 rtx *where;
746 bool new_insn_valid;
747 vinsn_t *vi = &EXPR_VINSN (expr);
748 bool has_rhs = VINSN_RHS (*vi) != NULL;
749 rtx old, new_rtx;
750
751 /* Do not try to replace in SET_DEST. Although we'll choose new
752 register for the RHS, we don't want to change RHS' original reg.
753 If the insn is not SET, we may still be able to substitute something
754 in it, and if we're here (don't have deps), it doesn't write INSN's
755 dest. */
756 where = (has_rhs
757 ? &VINSN_RHS (*vi)
758 : &PATTERN (VINSN_INSN_RTX (*vi)));
759 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
760
761 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
762 if (rtx_ok_for_substitution_p (old, *where))
763 {
764 rtx new_insn;
765 rtx *where_replace;
766
767 /* We should copy these rtxes before substitution. */
768 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
769 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
770
771 /* Where we'll replace.
772 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
773 used instead of SET_SRC. */
774 where_replace = (has_rhs
775 ? &SET_SRC (PATTERN (new_insn))
776 : &PATTERN (new_insn));
777
778 new_insn_valid
779 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
780 new_insn);
781
782 /* ??? Actually, constrain_operands result depends upon choice of
783 destination register. E.g. if we allow single register to be an rhs,
784 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
785 in invalid insn dx=dx, so we'll loose this rhs here.
786 Just can't come up with significant testcase for this, so just
787 leaving it for now. */
788 if (new_insn_valid)
789 {
790 change_vinsn_in_expr (expr,
791 create_vinsn_from_insn_rtx (new_insn, false));
792
793 /* Do not allow clobbering the address register of speculative
794 insns. */
795 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
796 && bitmap_bit_p (VINSN_REG_USES (EXPR_VINSN (expr)),
797 expr_dest_regno (expr)))
798 EXPR_TARGET_AVAILABLE (expr) = false;
799
800 return true;
801 }
802 else
803 return false;
804 }
805 else
806 return false;
807 }
808
809 /* Helper function for count_occurences_equiv. */
810 static int
811 count_occurrences_1 (rtx *cur_rtx, void *arg)
812 {
813 rtx_search_arg_p p = (rtx_search_arg_p) arg;
814
815 /* The last param FOR_GCSE is true, because otherwise it performs excessive
816 substitutions like
817 r8 = r33
818 r16 = r33
819 for the last insn it presumes r33 equivalent to r8, so it changes it to
820 r33. Actually, there's no change, but it spoils debugging. */
821 if (exp_equiv_p (*cur_rtx, p->x, 0, true))
822 {
823 /* Bail out if we occupy more than one register. */
824 if (REG_P (*cur_rtx)
825 && HARD_REGISTER_P (*cur_rtx)
826 && hard_regno_nregs[REGNO(*cur_rtx)][GET_MODE (*cur_rtx)] > 1)
827 {
828 p->n = 0;
829 return 1;
830 }
831
832 p->n++;
833
834 /* Do not traverse subexprs. */
835 return -1;
836 }
837
838 if (GET_CODE (*cur_rtx) == SUBREG
839 && REG_P (p->x)
840 && (!REG_P (SUBREG_REG (*cur_rtx))
841 || REGNO (SUBREG_REG (*cur_rtx)) == REGNO (p->x)))
842 {
843 /* ??? Do not support substituting regs inside subregs. In that case,
844 simplify_subreg will be called by validate_replace_rtx, and
845 unsubstitution will fail later. */
846 p->n = 0;
847 return 1;
848 }
849
850 /* Continue search. */
851 return 0;
852 }
853
854 /* Return the number of places WHAT appears within WHERE.
855 Bail out when we found a reference occupying several hard registers. */
856 static int
857 count_occurrences_equiv (rtx what, rtx where)
858 {
859 struct rtx_search_arg arg;
860
861 arg.x = what;
862 arg.n = 0;
863
864 for_each_rtx (&where, &count_occurrences_1, (void *) &arg);
865
866 return arg.n;
867 }
868
869 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
870 static bool
871 rtx_ok_for_substitution_p (rtx what, rtx where)
872 {
873 return (count_occurrences_equiv (what, where) > 0);
874 }
875 \f
876
877 /* Functions to support register renaming. */
878
879 /* Substitute VI's set source with REGNO. Returns newly created pattern
880 that has REGNO as its source. */
881 static rtx
882 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
883 {
884 rtx lhs_rtx;
885 rtx pattern;
886 rtx insn_rtx;
887
888 lhs_rtx = copy_rtx (VINSN_LHS (vi));
889
890 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
891 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
892
893 return insn_rtx;
894 }
895
896 /* Returns whether INSN's src can be replaced with register number
897 NEW_SRC_REG. E.g. the following insn is valid for i386:
898
899 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
900 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
901 (reg:SI 0 ax [orig:770 c1 ] [770]))
902 (const_int 288 [0x120])) [0 str S1 A8])
903 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
904 (nil))
905
906 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
907 because of operand constraints:
908
909 (define_insn "*movqi_1"
910 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
911 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
912 )]
913
914 So do constrain_operands here, before choosing NEW_SRC_REG as best
915 reg for rhs. */
916
917 static bool
918 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
919 {
920 vinsn_t vi = INSN_VINSN (insn);
921 enum machine_mode mode;
922 rtx dst_loc;
923 bool res;
924
925 gcc_assert (VINSN_SEPARABLE_P (vi));
926
927 get_dest_and_mode (insn, &dst_loc, &mode);
928 gcc_assert (mode == GET_MODE (new_src_reg));
929
930 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
931 return true;
932
933 /* See whether SET_SRC can be replaced with this register. */
934 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
935 res = verify_changes (0);
936 cancel_changes (0);
937
938 return res;
939 }
940
941 /* Returns whether INSN still be valid after replacing it's DEST with
942 register NEW_REG. */
943 static bool
944 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
945 {
946 vinsn_t vi = INSN_VINSN (insn);
947 bool res;
948
949 /* We should deal here only with separable insns. */
950 gcc_assert (VINSN_SEPARABLE_P (vi));
951 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
952
953 /* See whether SET_DEST can be replaced with this register. */
954 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
955 res = verify_changes (0);
956 cancel_changes (0);
957
958 return res;
959 }
960
961 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
962 static rtx
963 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
964 {
965 rtx rhs_rtx;
966 rtx pattern;
967 rtx insn_rtx;
968
969 rhs_rtx = copy_rtx (VINSN_RHS (vi));
970
971 pattern = gen_rtx_SET (VOIDmode, lhs_rtx, rhs_rtx);
972 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
973
974 return insn_rtx;
975 }
976
977 /* Substitute lhs in the given expression EXPR for the register with number
978 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
979 static void
980 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
981 {
982 rtx insn_rtx;
983 vinsn_t vinsn;
984
985 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
986 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
987
988 change_vinsn_in_expr (expr, vinsn);
989 EXPR_WAS_RENAMED (expr) = 1;
990 EXPR_TARGET_AVAILABLE (expr) = 1;
991 }
992
993 /* Returns whether VI writes either one of the USED_REGS registers or,
994 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
995 static bool
996 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
997 HARD_REG_SET unavailable_hard_regs)
998 {
999 unsigned regno;
1000 reg_set_iterator rsi;
1001
1002 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
1003 {
1004 if (REGNO_REG_SET_P (used_regs, regno))
1005 return true;
1006 if (HARD_REGISTER_NUM_P (regno)
1007 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1008 return true;
1009 }
1010
1011 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
1012 {
1013 if (REGNO_REG_SET_P (used_regs, regno))
1014 return true;
1015 if (HARD_REGISTER_NUM_P (regno)
1016 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
1017 return true;
1018 }
1019
1020 return false;
1021 }
1022
1023 /* Returns register class of the output register in INSN.
1024 Returns NO_REGS for call insns because some targets have constraints on
1025 destination register of a call insn.
1026
1027 Code adopted from regrename.c::build_def_use. */
1028 static enum reg_class
1029 get_reg_class (rtx insn)
1030 {
1031 int alt, i, n_ops;
1032
1033 extract_insn (insn);
1034 if (! constrain_operands (1))
1035 fatal_insn_not_found (insn);
1036 preprocess_constraints ();
1037 alt = which_alternative;
1038 n_ops = recog_data.n_operands;
1039
1040 for (i = 0; i < n_ops; ++i)
1041 {
1042 int matches = recog_op_alt[i][alt].matches;
1043 if (matches >= 0)
1044 recog_op_alt[i][alt].cl = recog_op_alt[matches][alt].cl;
1045 }
1046
1047 if (asm_noperands (PATTERN (insn)) > 0)
1048 {
1049 for (i = 0; i < n_ops; i++)
1050 if (recog_data.operand_type[i] == OP_OUT)
1051 {
1052 rtx *loc = recog_data.operand_loc[i];
1053 rtx op = *loc;
1054 enum reg_class cl = recog_op_alt[i][alt].cl;
1055
1056 if (REG_P (op)
1057 && REGNO (op) == ORIGINAL_REGNO (op))
1058 continue;
1059
1060 return cl;
1061 }
1062 }
1063 else if (!CALL_P (insn))
1064 {
1065 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1066 {
1067 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1068 enum reg_class cl = recog_op_alt[opn][alt].cl;
1069
1070 if (recog_data.operand_type[opn] == OP_OUT ||
1071 recog_data.operand_type[opn] == OP_INOUT)
1072 return cl;
1073 }
1074 }
1075
1076 /* Insns like
1077 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1078 may result in returning NO_REGS, cause flags is written implicitly through
1079 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1080 return NO_REGS;
1081 }
1082
1083 #ifdef HARD_REGNO_RENAME_OK
1084 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1085 static void
1086 init_hard_regno_rename (int regno)
1087 {
1088 int cur_reg;
1089
1090 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1091
1092 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1093 {
1094 /* We are not interested in renaming in other regs. */
1095 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1096 continue;
1097
1098 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1099 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1100 }
1101 }
1102 #endif
1103
1104 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1105 data first. */
1106 static inline bool
1107 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1108 {
1109 #ifdef HARD_REGNO_RENAME_OK
1110 /* Check whether this is all calculated. */
1111 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1112 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1113
1114 init_hard_regno_rename (from);
1115
1116 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1117 #else
1118 return true;
1119 #endif
1120 }
1121
1122 /* Calculate set of registers that are capable of holding MODE. */
1123 static void
1124 init_regs_for_mode (enum machine_mode mode)
1125 {
1126 int cur_reg;
1127
1128 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1129 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1130
1131 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1132 {
1133 int nregs = hard_regno_nregs[cur_reg][mode];
1134 int i;
1135
1136 for (i = nregs - 1; i >= 0; --i)
1137 if (fixed_regs[cur_reg + i]
1138 || global_regs[cur_reg + i]
1139 /* Can't use regs which aren't saved by
1140 the prologue. */
1141 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1142 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1143 it affects aliasing globally and invalidates all AV sets. */
1144 || get_reg_base_value (cur_reg + i)
1145 #ifdef LEAF_REGISTERS
1146 /* We can't use a non-leaf register if we're in a
1147 leaf function. */
1148 || (current_function_is_leaf
1149 && !LEAF_REGISTERS[cur_reg + i])
1150 #endif
1151 )
1152 break;
1153
1154 if (i >= 0)
1155 continue;
1156
1157 /* See whether it accepts all modes that occur in
1158 original insns. */
1159 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1160 continue;
1161
1162 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1163 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1164 cur_reg);
1165
1166 /* If the CUR_REG passed all the checks above,
1167 then it's ok. */
1168 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1169 }
1170
1171 sel_hrd.regs_for_mode_ok[mode] = true;
1172 }
1173
1174 /* Init all register sets gathered in HRD. */
1175 static void
1176 init_hard_regs_data (void)
1177 {
1178 int cur_reg = 0;
1179 int cur_mode = 0;
1180
1181 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1182 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1183 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1184 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1185
1186 /* Initialize registers that are valid based on mode when this is
1187 really needed. */
1188 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1189 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1190
1191 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1192 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1193 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1194
1195 #ifdef STACK_REGS
1196 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1197
1198 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1199 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1200 #endif
1201 }
1202
1203 /* Mark hardware regs in REG_RENAME_P that are not suitable
1204 for renaming rhs in INSN due to hardware restrictions (register class,
1205 modes compatibility etc). This doesn't affect original insn's dest reg,
1206 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1207 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1208 Registers that are in used_regs are always marked in
1209 unavailable_hard_regs as well. */
1210
1211 static void
1212 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1213 regset used_regs ATTRIBUTE_UNUSED)
1214 {
1215 enum machine_mode mode;
1216 enum reg_class cl = NO_REGS;
1217 rtx orig_dest;
1218 unsigned cur_reg, regno;
1219 hard_reg_set_iterator hrsi;
1220
1221 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1222 gcc_assert (reg_rename_p);
1223
1224 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1225
1226 /* We have decided not to rename 'mem = something;' insns, as 'something'
1227 is usually a register. */
1228 if (!REG_P (orig_dest))
1229 return;
1230
1231 regno = REGNO (orig_dest);
1232
1233 /* If before reload, don't try to work with pseudos. */
1234 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1235 return;
1236
1237 if (reload_completed)
1238 cl = get_reg_class (def->orig_insn);
1239
1240 /* Stop if the original register is one of the fixed_regs, global_regs or
1241 frame pointer, or we could not discover its class. */
1242 if (fixed_regs[regno]
1243 || global_regs[regno]
1244 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1245 || (frame_pointer_needed && regno == HARD_FRAME_POINTER_REGNUM)
1246 #else
1247 || (frame_pointer_needed && regno == FRAME_POINTER_REGNUM)
1248 #endif
1249 || (reload_completed && cl == NO_REGS))
1250 {
1251 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1252
1253 /* Give a chance for original register, if it isn't in used_regs. */
1254 if (!def->crosses_call)
1255 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1256
1257 return;
1258 }
1259
1260 /* If something allocated on stack in this function, mark frame pointer
1261 register unavailable, considering also modes.
1262 FIXME: it is enough to do this once per all original defs. */
1263 if (frame_pointer_needed)
1264 {
1265 int i;
1266
1267 for (i = hard_regno_nregs[FRAME_POINTER_REGNUM][Pmode]; i--;)
1268 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1269 FRAME_POINTER_REGNUM + i);
1270
1271 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
1272 for (i = hard_regno_nregs[HARD_FRAME_POINTER_REGNUM][Pmode]; i--;)
1273 SET_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1274 HARD_FRAME_POINTER_REGNUM + i);
1275 #endif
1276 }
1277
1278 #ifdef STACK_REGS
1279 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1280 is equivalent to as if all stack regs were in this set.
1281 I.e. no stack register can be renamed, and even if it's an original
1282 register here we make sure it won't be lifted over it's previous def
1283 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1284 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1285 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1286 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1287 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1288 sel_hrd.stack_regs);
1289 #endif
1290
1291 /* If there's a call on this path, make regs from call_used_reg_set
1292 unavailable. */
1293 if (def->crosses_call)
1294 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1295 call_used_reg_set);
1296
1297 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1298 but not register classes. */
1299 if (!reload_completed)
1300 return;
1301
1302 /* Leave regs as 'available' only from the current
1303 register class. */
1304 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1305 reg_class_contents[cl]);
1306
1307 mode = GET_MODE (orig_dest);
1308
1309 /* Leave only registers available for this mode. */
1310 if (!sel_hrd.regs_for_mode_ok[mode])
1311 init_regs_for_mode (mode);
1312 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1313 sel_hrd.regs_for_mode[mode]);
1314
1315 /* Exclude registers that are partially call clobbered. */
1316 if (def->crosses_call
1317 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1318 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1319 sel_hrd.regs_for_call_clobbered[mode]);
1320
1321 /* Leave only those that are ok to rename. */
1322 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1323 0, cur_reg, hrsi)
1324 {
1325 int nregs;
1326 int i;
1327
1328 nregs = hard_regno_nregs[cur_reg][mode];
1329 gcc_assert (nregs > 0);
1330
1331 for (i = nregs - 1; i >= 0; --i)
1332 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1333 break;
1334
1335 if (i >= 0)
1336 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1337 cur_reg);
1338 }
1339
1340 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1341 reg_rename_p->unavailable_hard_regs);
1342
1343 /* Regno is always ok from the renaming part of view, but it really
1344 could be in *unavailable_hard_regs already, so set it here instead
1345 of there. */
1346 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1347 }
1348
1349 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1350 best register more recently than REG2. */
1351 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1352
1353 /* Indicates the number of times renaming happened before the current one. */
1354 static int reg_rename_this_tick;
1355
1356 /* Choose the register among free, that is suitable for storing
1357 the rhs value.
1358
1359 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1360 originally appears. There could be multiple original operations
1361 for single rhs since we moving it up and merging along different
1362 paths.
1363
1364 Some code is adapted from regrename.c (regrename_optimize).
1365 If original register is available, function returns it.
1366 Otherwise it performs the checks, so the new register should
1367 comply with the following:
1368 - it should not violate any live ranges (such registers are in
1369 REG_RENAME_P->available_for_renaming set);
1370 - it should not be in the HARD_REGS_USED regset;
1371 - it should be in the class compatible with original uses;
1372 - it should not be clobbered through reference with different mode;
1373 - if we're in the leaf function, then the new register should
1374 not be in the LEAF_REGISTERS;
1375 - etc.
1376
1377 If several registers meet the conditions, the register with smallest
1378 tick is returned to achieve more even register allocation.
1379
1380 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1381
1382 If no register satisfies the above conditions, NULL_RTX is returned. */
1383 static rtx
1384 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1385 struct reg_rename *reg_rename_p,
1386 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1387 {
1388 int best_new_reg;
1389 unsigned cur_reg;
1390 enum machine_mode mode = VOIDmode;
1391 unsigned regno, i, n;
1392 hard_reg_set_iterator hrsi;
1393 def_list_iterator di;
1394 def_t def;
1395
1396 /* If original register is available, return it. */
1397 *is_orig_reg_p_ptr = true;
1398
1399 FOR_EACH_DEF (def, di, original_insns)
1400 {
1401 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1402
1403 gcc_assert (REG_P (orig_dest));
1404
1405 /* Check that all original operations have the same mode.
1406 This is done for the next loop; if we'd return from this
1407 loop, we'd check only part of them, but in this case
1408 it doesn't matter. */
1409 if (mode == VOIDmode)
1410 mode = GET_MODE (orig_dest);
1411 gcc_assert (mode == GET_MODE (orig_dest));
1412
1413 regno = REGNO (orig_dest);
1414 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1415 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1416 break;
1417
1418 /* All hard registers are available. */
1419 if (i == n)
1420 {
1421 gcc_assert (mode != VOIDmode);
1422
1423 /* Hard registers should not be shared. */
1424 return gen_rtx_REG (mode, regno);
1425 }
1426 }
1427
1428 *is_orig_reg_p_ptr = false;
1429 best_new_reg = -1;
1430
1431 /* Among all available regs choose the register that was
1432 allocated earliest. */
1433 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1434 0, cur_reg, hrsi)
1435 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1436 {
1437 /* Check that all hard regs for mode are available. */
1438 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1439 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1440 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1441 cur_reg + i))
1442 break;
1443
1444 if (i < n)
1445 continue;
1446
1447 /* All hard registers are available. */
1448 if (best_new_reg < 0
1449 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1450 {
1451 best_new_reg = cur_reg;
1452
1453 /* Return immediately when we know there's no better reg. */
1454 if (! reg_rename_tick[best_new_reg])
1455 break;
1456 }
1457 }
1458
1459 if (best_new_reg >= 0)
1460 {
1461 /* Use the check from the above loop. */
1462 gcc_assert (mode != VOIDmode);
1463 return gen_rtx_REG (mode, best_new_reg);
1464 }
1465
1466 return NULL_RTX;
1467 }
1468
1469 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1470 assumptions about available registers in the function. */
1471 static rtx
1472 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1473 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1474 {
1475 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1476 original_insns, is_orig_reg_p_ptr);
1477
1478 /* FIXME loop over hard_regno_nregs here. */
1479 gcc_assert (best_reg == NULL_RTX
1480 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1481
1482 return best_reg;
1483 }
1484
1485 /* Choose the pseudo register for storing rhs value. As this is supposed
1486 to work before reload, we return either the original register or make
1487 the new one. The parameters are the same that in choose_nest_reg_1
1488 functions, except that USED_REGS may contain pseudos.
1489 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1490
1491 TODO: take into account register pressure while doing this. Up to this
1492 moment, this function would never return NULL for pseudos, but we should
1493 not rely on this. */
1494 static rtx
1495 choose_best_pseudo_reg (regset used_regs,
1496 struct reg_rename *reg_rename_p,
1497 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1498 {
1499 def_list_iterator i;
1500 def_t def;
1501 enum machine_mode mode = VOIDmode;
1502 bool bad_hard_regs = false;
1503
1504 /* We should not use this after reload. */
1505 gcc_assert (!reload_completed);
1506
1507 /* If original register is available, return it. */
1508 *is_orig_reg_p_ptr = true;
1509
1510 FOR_EACH_DEF (def, i, original_insns)
1511 {
1512 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1513 int orig_regno;
1514
1515 gcc_assert (REG_P (dest));
1516
1517 /* Check that all original operations have the same mode. */
1518 if (mode == VOIDmode)
1519 mode = GET_MODE (dest);
1520 else
1521 gcc_assert (mode == GET_MODE (dest));
1522 orig_regno = REGNO (dest);
1523
1524 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1525 {
1526 if (orig_regno < FIRST_PSEUDO_REGISTER)
1527 {
1528 gcc_assert (df_regs_ever_live_p (orig_regno));
1529
1530 /* For hard registers, we have to check hardware imposed
1531 limitations (frame/stack registers, calls crossed). */
1532 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1533 orig_regno))
1534 {
1535 /* Don't let register cross a call if it doesn't already
1536 cross one. This condition is written in accordance with
1537 that in sched-deps.c sched_analyze_reg(). */
1538 if (!reg_rename_p->crosses_call
1539 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1540 return gen_rtx_REG (mode, orig_regno);
1541 }
1542
1543 bad_hard_regs = true;
1544 }
1545 else
1546 return dest;
1547 }
1548 }
1549
1550 *is_orig_reg_p_ptr = false;
1551
1552 /* We had some original hard registers that couldn't be used.
1553 Those were likely special. Don't try to create a pseudo. */
1554 if (bad_hard_regs)
1555 return NULL_RTX;
1556
1557 /* We haven't found a register from original operations. Get a new one.
1558 FIXME: control register pressure somehow. */
1559 {
1560 rtx new_reg = gen_reg_rtx (mode);
1561
1562 gcc_assert (mode != VOIDmode);
1563
1564 max_regno = max_reg_num ();
1565 maybe_extend_reg_info_p ();
1566 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1567
1568 return new_reg;
1569 }
1570 }
1571
1572 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1573 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1574 static void
1575 verify_target_availability (expr_t expr, regset used_regs,
1576 struct reg_rename *reg_rename_p)
1577 {
1578 unsigned n, i, regno;
1579 enum machine_mode mode;
1580 bool target_available, live_available, hard_available;
1581
1582 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1583 return;
1584
1585 regno = expr_dest_regno (expr);
1586 mode = GET_MODE (EXPR_LHS (expr));
1587 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1588 n = reload_completed ? hard_regno_nregs[regno][mode] : 1;
1589
1590 live_available = hard_available = true;
1591 for (i = 0; i < n; i++)
1592 {
1593 if (bitmap_bit_p (used_regs, regno + i))
1594 live_available = false;
1595 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1596 hard_available = false;
1597 }
1598
1599 /* When target is not available, it may be due to hard register
1600 restrictions, e.g. crosses calls, so we check hard_available too. */
1601 if (target_available)
1602 gcc_assert (live_available);
1603 else
1604 /* Check only if we haven't scheduled something on the previous fence,
1605 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1606 and having more than one fence, we may end having targ_un in a block
1607 in which successors target register is actually available.
1608
1609 The last condition handles the case when a dependence from a call insn
1610 was created in sched-deps.c for insns with destination registers that
1611 never crossed a call before, but do cross one after our code motion.
1612
1613 FIXME: in the latter case, we just uselessly called find_used_regs,
1614 because we can't move this expression with any other register
1615 as well. */
1616 gcc_assert (scheduled_something_on_previous_fence || !live_available
1617 || !hard_available
1618 || (!reload_completed && reg_rename_p->crosses_call
1619 && REG_N_CALLS_CROSSED (regno) == 0));
1620 }
1621
1622 /* Collect unavailable registers due to liveness for EXPR from BNDS
1623 into USED_REGS. Save additional information about available
1624 registers and unavailable due to hardware restriction registers
1625 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1626 list. */
1627 static void
1628 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1629 struct reg_rename *reg_rename_p,
1630 def_list_t *original_insns)
1631 {
1632 for (; bnds; bnds = BLIST_NEXT (bnds))
1633 {
1634 bool res;
1635 av_set_t orig_ops = NULL;
1636 bnd_t bnd = BLIST_BND (bnds);
1637
1638 /* If the chosen best expr doesn't belong to current boundary,
1639 skip it. */
1640 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1641 continue;
1642
1643 /* Put in ORIG_OPS all exprs from this boundary that became
1644 RES on top. */
1645 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1646
1647 /* Compute used regs and OR it into the USED_REGS. */
1648 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1649 reg_rename_p, original_insns);
1650
1651 /* FIXME: the assert is true until we'd have several boundaries. */
1652 gcc_assert (res);
1653 av_set_clear (&orig_ops);
1654 }
1655 }
1656
1657 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1658 If BEST_REG is valid, replace LHS of EXPR with it. */
1659 static bool
1660 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1661 {
1662 /* Try whether we'll be able to generate the insn
1663 'dest := best_reg' at the place of the original operation. */
1664 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1665 {
1666 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1667
1668 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1669
1670 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1671 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1672 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1673 return false;
1674 }
1675
1676 /* Make sure that EXPR has the right destination
1677 register. */
1678 if (expr_dest_regno (expr) != REGNO (best_reg))
1679 replace_dest_with_reg_in_expr (expr, best_reg);
1680 else
1681 EXPR_TARGET_AVAILABLE (expr) = 1;
1682
1683 return true;
1684 }
1685
1686 /* Select and assign best register to EXPR searching from BNDS.
1687 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1688 Return FALSE if no register can be chosen, which could happen when:
1689 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1690 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1691 that are used on the moving path. */
1692 static bool
1693 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1694 {
1695 static struct reg_rename reg_rename_data;
1696
1697 regset used_regs;
1698 def_list_t original_insns = NULL;
1699 bool reg_ok;
1700
1701 *is_orig_reg_p = false;
1702
1703 /* Don't bother to do anything if this insn doesn't set any registers. */
1704 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1705 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1706 return true;
1707
1708 used_regs = get_clear_regset_from_pool ();
1709 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1710
1711 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1712 &original_insns);
1713
1714 #ifdef ENABLE_CHECKING
1715 /* If after reload, make sure we're working with hard regs here. */
1716 if (reload_completed)
1717 {
1718 reg_set_iterator rsi;
1719 unsigned i;
1720
1721 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1722 gcc_unreachable ();
1723 }
1724 #endif
1725
1726 if (EXPR_SEPARABLE_P (expr))
1727 {
1728 rtx best_reg = NULL_RTX;
1729 /* Check that we have computed availability of a target register
1730 correctly. */
1731 verify_target_availability (expr, used_regs, &reg_rename_data);
1732
1733 /* Turn everything in hard regs after reload. */
1734 if (reload_completed)
1735 {
1736 HARD_REG_SET hard_regs_used;
1737 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1738
1739 /* Join hard registers unavailable due to register class
1740 restrictions and live range intersection. */
1741 IOR_HARD_REG_SET (hard_regs_used,
1742 reg_rename_data.unavailable_hard_regs);
1743
1744 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1745 original_insns, is_orig_reg_p);
1746 }
1747 else
1748 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1749 original_insns, is_orig_reg_p);
1750
1751 if (!best_reg)
1752 reg_ok = false;
1753 else if (*is_orig_reg_p)
1754 {
1755 /* In case of unification BEST_REG may be different from EXPR's LHS
1756 when EXPR's LHS is unavailable, and there is another LHS among
1757 ORIGINAL_INSNS. */
1758 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1759 }
1760 else
1761 {
1762 /* Forbid renaming of low-cost insns. */
1763 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1764 reg_ok = false;
1765 else
1766 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1767 }
1768 }
1769 else
1770 {
1771 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1772 any of the HARD_REGS_USED set. */
1773 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1774 reg_rename_data.unavailable_hard_regs))
1775 {
1776 reg_ok = false;
1777 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1778 }
1779 else
1780 {
1781 reg_ok = true;
1782 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1783 }
1784 }
1785
1786 ilist_clear (&original_insns);
1787 return_regset_to_pool (used_regs);
1788
1789 return reg_ok;
1790 }
1791 \f
1792
1793 /* Return true if dependence described by DS can be overcomed. */
1794 static bool
1795 can_speculate_dep_p (ds_t ds)
1796 {
1797 if (spec_info == NULL)
1798 return false;
1799
1800 /* Leave only speculative data. */
1801 ds &= SPECULATIVE;
1802
1803 if (ds == 0)
1804 return false;
1805
1806 {
1807 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1808 that we can overcome. */
1809 ds_t spec_mask = spec_info->mask;
1810
1811 if ((ds & spec_mask) != ds)
1812 return false;
1813 }
1814
1815 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1816 return false;
1817
1818 return true;
1819 }
1820
1821 /* Get a speculation check instruction.
1822 C_EXPR is a speculative expression,
1823 CHECK_DS describes speculations that should be checked,
1824 ORIG_INSN is the original non-speculative insn in the stream. */
1825 static insn_t
1826 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1827 {
1828 rtx check_pattern;
1829 rtx insn_rtx;
1830 insn_t insn;
1831 basic_block recovery_block;
1832 rtx label;
1833
1834 /* Create a recovery block if target is going to emit branchy check, or if
1835 ORIG_INSN was speculative already. */
1836 if (targetm.sched.needs_block_p (check_ds)
1837 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1838 {
1839 recovery_block = sel_create_recovery_block (orig_insn);
1840 label = BB_HEAD (recovery_block);
1841 }
1842 else
1843 {
1844 recovery_block = NULL;
1845 label = NULL_RTX;
1846 }
1847
1848 /* Get pattern of the check. */
1849 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1850 check_ds);
1851
1852 gcc_assert (check_pattern != NULL);
1853
1854 /* Emit check. */
1855 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1856
1857 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1858 INSN_SEQNO (orig_insn), orig_insn);
1859
1860 /* Make check to be non-speculative. */
1861 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1862 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1863
1864 /* Decrease priority of check by difference of load/check instruction
1865 latencies. */
1866 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1867 - sel_vinsn_cost (INSN_VINSN (insn)));
1868
1869 /* Emit copy of original insn (though with replaced target register,
1870 if needed) to the recovery block. */
1871 if (recovery_block != NULL)
1872 {
1873 rtx twin_rtx;
1874
1875 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1876 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1877 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1878 INSN_EXPR (orig_insn),
1879 INSN_SEQNO (insn),
1880 bb_note (recovery_block));
1881 }
1882
1883 /* If we've generated a data speculation check, make sure
1884 that all the bookkeeping instruction we'll create during
1885 this move_op () will allocate an ALAT entry so that the
1886 check won't fail.
1887 In case of control speculation we must convert C_EXPR to control
1888 speculative mode, because failing to do so will bring us an exception
1889 thrown by the non-control-speculative load. */
1890 check_ds = ds_get_max_dep_weak (check_ds);
1891 speculate_expr (c_expr, check_ds);
1892
1893 return insn;
1894 }
1895
1896 /* True when INSN is a "regN = regN" copy. */
1897 static bool
1898 identical_copy_p (rtx insn)
1899 {
1900 rtx lhs, rhs, pat;
1901
1902 pat = PATTERN (insn);
1903
1904 if (GET_CODE (pat) != SET)
1905 return false;
1906
1907 lhs = SET_DEST (pat);
1908 if (!REG_P (lhs))
1909 return false;
1910
1911 rhs = SET_SRC (pat);
1912 if (!REG_P (rhs))
1913 return false;
1914
1915 return REGNO (lhs) == REGNO (rhs);
1916 }
1917
1918 /* Undo all transformations on *AV_PTR that were done when
1919 moving through INSN. */
1920 static void
1921 undo_transformations (av_set_t *av_ptr, rtx insn)
1922 {
1923 av_set_iterator av_iter;
1924 expr_t expr;
1925 av_set_t new_set = NULL;
1926
1927 /* First, kill any EXPR that uses registers set by an insn. This is
1928 required for correctness. */
1929 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1930 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1931 && bitmap_intersect_p (INSN_REG_SETS (insn),
1932 VINSN_REG_USES (EXPR_VINSN (expr)))
1933 /* When an insn looks like 'r1 = r1', we could substitute through
1934 it, but the above condition will still hold. This happened with
1935 gcc.c-torture/execute/961125-1.c. */
1936 && !identical_copy_p (insn))
1937 {
1938 if (sched_verbose >= 6)
1939 sel_print ("Expr %d removed due to use/set conflict\n",
1940 INSN_UID (EXPR_INSN_RTX (expr)));
1941 av_set_iter_remove (&av_iter);
1942 }
1943
1944 /* Undo transformations looking at the history vector. */
1945 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1946 {
1947 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1948 insn, EXPR_VINSN (expr), true);
1949
1950 if (index >= 0)
1951 {
1952 expr_history_def *phist;
1953
1954 phist = VEC_index (expr_history_def,
1955 EXPR_HISTORY_OF_CHANGES (expr),
1956 index);
1957
1958 switch (phist->type)
1959 {
1960 case TRANS_SPECULATION:
1961 {
1962 ds_t old_ds, new_ds;
1963
1964 /* Compute the difference between old and new speculative
1965 statuses: that's what we need to check.
1966 Earlier we used to assert that the status will really
1967 change. This no longer works because only the probability
1968 bits in the status may have changed during compute_av_set,
1969 and in the case of merging different probabilities of the
1970 same speculative status along different paths we do not
1971 record this in the history vector. */
1972 old_ds = phist->spec_ds;
1973 new_ds = EXPR_SPEC_DONE_DS (expr);
1974
1975 old_ds &= SPECULATIVE;
1976 new_ds &= SPECULATIVE;
1977 new_ds &= ~old_ds;
1978
1979 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1980 break;
1981 }
1982 case TRANS_SUBSTITUTION:
1983 {
1984 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1985 vinsn_t new_vi;
1986 bool add = true;
1987
1988 new_vi = phist->old_expr_vinsn;
1989
1990 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1991 == EXPR_SEPARABLE_P (expr));
1992 copy_expr (tmp_expr, expr);
1993
1994 if (vinsn_equal_p (phist->new_expr_vinsn,
1995 EXPR_VINSN (tmp_expr)))
1996 change_vinsn_in_expr (tmp_expr, new_vi);
1997 else
1998 /* This happens when we're unsubstituting on a bookkeeping
1999 copy, which was in turn substituted. The history is wrong
2000 in this case. Do it the hard way. */
2001 add = substitute_reg_in_expr (tmp_expr, insn, true);
2002 if (add)
2003 av_set_add (&new_set, tmp_expr);
2004 clear_expr (tmp_expr);
2005 break;
2006 }
2007 default:
2008 gcc_unreachable ();
2009 }
2010 }
2011
2012 }
2013
2014 av_set_union_and_clear (av_ptr, &new_set, NULL);
2015 }
2016 \f
2017
2018 /* Moveup_* helpers for code motion and computing av sets. */
2019
2020 /* Propagates EXPR inside an insn group through THROUGH_INSN.
2021 The difference from the below function is that only substitution is
2022 performed. */
2023 static enum MOVEUP_EXPR_CODE
2024 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
2025 {
2026 vinsn_t vi = EXPR_VINSN (expr);
2027 ds_t *has_dep_p;
2028 ds_t full_ds;
2029
2030 /* Do this only inside insn group. */
2031 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
2032
2033 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2034 if (full_ds == 0)
2035 return MOVEUP_EXPR_SAME;
2036
2037 /* Substitution is the possible choice in this case. */
2038 if (has_dep_p[DEPS_IN_RHS])
2039 {
2040 /* Can't substitute UNIQUE VINSNs. */
2041 gcc_assert (!VINSN_UNIQUE_P (vi));
2042
2043 if (can_substitute_through_p (through_insn,
2044 has_dep_p[DEPS_IN_RHS])
2045 && substitute_reg_in_expr (expr, through_insn, false))
2046 {
2047 EXPR_WAS_SUBSTITUTED (expr) = true;
2048 return MOVEUP_EXPR_CHANGED;
2049 }
2050
2051 /* Don't care about this, as even true dependencies may be allowed
2052 in an insn group. */
2053 return MOVEUP_EXPR_SAME;
2054 }
2055
2056 /* This can catch output dependencies in COND_EXECs. */
2057 if (has_dep_p[DEPS_IN_INSN])
2058 return MOVEUP_EXPR_NULL;
2059
2060 /* This is either an output or an anti dependence, which usually have
2061 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2062 will fix this. */
2063 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2064 return MOVEUP_EXPR_AS_RHS;
2065 }
2066
2067 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2068 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2069 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2070 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2071 && !sel_insn_is_speculation_check (through_insn))
2072
2073 /* True when a conflict on a target register was found during moveup_expr. */
2074 static bool was_target_conflict = false;
2075
2076 /* Return true when moving a debug INSN across THROUGH_INSN will
2077 create a bookkeeping block. We don't want to create such blocks,
2078 for they would cause codegen differences between compilations with
2079 and without debug info. */
2080
2081 static bool
2082 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2083 insn_t through_insn)
2084 {
2085 basic_block bbi, bbt;
2086 edge e1, e2;
2087 edge_iterator ei1, ei2;
2088
2089 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2090 {
2091 if (sched_verbose >= 9)
2092 sel_print ("no bookkeeping required: ");
2093 return FALSE;
2094 }
2095
2096 bbi = BLOCK_FOR_INSN (insn);
2097
2098 if (EDGE_COUNT (bbi->preds) == 1)
2099 {
2100 if (sched_verbose >= 9)
2101 sel_print ("only one pred edge: ");
2102 return TRUE;
2103 }
2104
2105 bbt = BLOCK_FOR_INSN (through_insn);
2106
2107 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2108 {
2109 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2110 {
2111 if (find_block_for_bookkeeping (e1, e2, TRUE))
2112 {
2113 if (sched_verbose >= 9)
2114 sel_print ("found existing block: ");
2115 return FALSE;
2116 }
2117 }
2118 }
2119
2120 if (sched_verbose >= 9)
2121 sel_print ("would create bookkeeping block: ");
2122
2123 return TRUE;
2124 }
2125
2126 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2127 performing necessary transformations. Record the type of transformation
2128 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2129 permit all dependencies except true ones, and try to remove those
2130 too via forward substitution. All cases when a non-eliminable
2131 non-zero cost dependency exists inside an insn group will be fixed
2132 in tick_check_p instead. */
2133 static enum MOVEUP_EXPR_CODE
2134 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2135 enum local_trans_type *ptrans_type)
2136 {
2137 vinsn_t vi = EXPR_VINSN (expr);
2138 insn_t insn = VINSN_INSN_RTX (vi);
2139 bool was_changed = false;
2140 bool as_rhs = false;
2141 ds_t *has_dep_p;
2142 ds_t full_ds;
2143
2144 /* When inside_insn_group, delegate to the helper. */
2145 if (inside_insn_group)
2146 return moveup_expr_inside_insn_group (expr, through_insn);
2147
2148 /* Deal with unique insns and control dependencies. */
2149 if (VINSN_UNIQUE_P (vi))
2150 {
2151 /* We can move jumps without side-effects or jumps that are
2152 mutually exclusive with instruction THROUGH_INSN (all in cases
2153 dependencies allow to do so and jump is not speculative). */
2154 if (control_flow_insn_p (insn))
2155 {
2156 basic_block fallthru_bb;
2157
2158 /* Do not move checks and do not move jumps through other
2159 jumps. */
2160 if (control_flow_insn_p (through_insn)
2161 || sel_insn_is_speculation_check (insn))
2162 return MOVEUP_EXPR_NULL;
2163
2164 /* Don't move jumps through CFG joins. */
2165 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2166 return MOVEUP_EXPR_NULL;
2167
2168 /* The jump should have a clear fallthru block, and
2169 this block should be in the current region. */
2170 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2171 || ! in_current_region_p (fallthru_bb))
2172 return MOVEUP_EXPR_NULL;
2173
2174 /* And it should be mutually exclusive with through_insn. */
2175 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2176 && ! DEBUG_INSN_P (through_insn))
2177 return MOVEUP_EXPR_NULL;
2178 }
2179
2180 /* Don't move what we can't move. */
2181 if (EXPR_CANT_MOVE (expr)
2182 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2183 return MOVEUP_EXPR_NULL;
2184
2185 /* Don't move SCHED_GROUP instruction through anything.
2186 If we don't force this, then it will be possible to start
2187 scheduling a sched_group before all its dependencies are
2188 resolved.
2189 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2190 as late as possible through rank_for_schedule. */
2191 if (SCHED_GROUP_P (insn))
2192 return MOVEUP_EXPR_NULL;
2193 }
2194 else
2195 gcc_assert (!control_flow_insn_p (insn));
2196
2197 /* Don't move debug insns if this would require bookkeeping. */
2198 if (DEBUG_INSN_P (insn)
2199 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2200 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2201 return MOVEUP_EXPR_NULL;
2202
2203 /* Deal with data dependencies. */
2204 was_target_conflict = false;
2205 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2206 if (full_ds == 0)
2207 {
2208 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2209 return MOVEUP_EXPR_SAME;
2210 }
2211 else
2212 {
2213 /* We can move UNIQUE insn up only as a whole and unchanged,
2214 so it shouldn't have any dependencies. */
2215 if (VINSN_UNIQUE_P (vi))
2216 return MOVEUP_EXPR_NULL;
2217 }
2218
2219 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2220 {
2221 int res;
2222
2223 res = speculate_expr (expr, full_ds);
2224 if (res >= 0)
2225 {
2226 /* Speculation was successful. */
2227 full_ds = 0;
2228 was_changed = (res > 0);
2229 if (res == 2)
2230 was_target_conflict = true;
2231 if (ptrans_type)
2232 *ptrans_type = TRANS_SPECULATION;
2233 sel_clear_has_dependence ();
2234 }
2235 }
2236
2237 if (has_dep_p[DEPS_IN_INSN])
2238 /* We have some dependency that cannot be discarded. */
2239 return MOVEUP_EXPR_NULL;
2240
2241 if (has_dep_p[DEPS_IN_LHS])
2242 {
2243 /* Only separable insns can be moved up with the new register.
2244 Anyways, we should mark that the original register is
2245 unavailable. */
2246 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2247 return MOVEUP_EXPR_NULL;
2248
2249 EXPR_TARGET_AVAILABLE (expr) = false;
2250 was_target_conflict = true;
2251 as_rhs = true;
2252 }
2253
2254 /* At this point we have either separable insns, that will be lifted
2255 up only as RHSes, or non-separable insns with no dependency in lhs.
2256 If dependency is in RHS, then try to perform substitution and move up
2257 substituted RHS:
2258
2259 Ex. 1: Ex.2
2260 y = x; y = x;
2261 z = y*2; y = y*2;
2262
2263 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2264 moved above y=x assignment as z=x*2.
2265
2266 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2267 side can be moved because of the output dependency. The operation was
2268 cropped to its rhs above. */
2269 if (has_dep_p[DEPS_IN_RHS])
2270 {
2271 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2272
2273 /* Can't substitute UNIQUE VINSNs. */
2274 gcc_assert (!VINSN_UNIQUE_P (vi));
2275
2276 if (can_speculate_dep_p (*rhs_dsp))
2277 {
2278 int res;
2279
2280 res = speculate_expr (expr, *rhs_dsp);
2281 if (res >= 0)
2282 {
2283 /* Speculation was successful. */
2284 *rhs_dsp = 0;
2285 was_changed = (res > 0);
2286 if (res == 2)
2287 was_target_conflict = true;
2288 if (ptrans_type)
2289 *ptrans_type = TRANS_SPECULATION;
2290 }
2291 else
2292 return MOVEUP_EXPR_NULL;
2293 }
2294 else if (can_substitute_through_p (through_insn,
2295 *rhs_dsp)
2296 && substitute_reg_in_expr (expr, through_insn, false))
2297 {
2298 /* ??? We cannot perform substitution AND speculation on the same
2299 insn. */
2300 gcc_assert (!was_changed);
2301 was_changed = true;
2302 if (ptrans_type)
2303 *ptrans_type = TRANS_SUBSTITUTION;
2304 EXPR_WAS_SUBSTITUTED (expr) = true;
2305 }
2306 else
2307 return MOVEUP_EXPR_NULL;
2308 }
2309
2310 /* Don't move trapping insns through jumps.
2311 This check should be at the end to give a chance to control speculation
2312 to perform its duties. */
2313 if (CANT_MOVE_TRAPPING (expr, through_insn))
2314 return MOVEUP_EXPR_NULL;
2315
2316 return (was_changed
2317 ? MOVEUP_EXPR_CHANGED
2318 : (as_rhs
2319 ? MOVEUP_EXPR_AS_RHS
2320 : MOVEUP_EXPR_SAME));
2321 }
2322
2323 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2324 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2325 that can exist within a parallel group. Write to RES the resulting
2326 code for moveup_expr. */
2327 static bool
2328 try_bitmap_cache (expr_t expr, insn_t insn,
2329 bool inside_insn_group,
2330 enum MOVEUP_EXPR_CODE *res)
2331 {
2332 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2333
2334 /* First check whether we've analyzed this situation already. */
2335 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2336 {
2337 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2338 {
2339 if (sched_verbose >= 6)
2340 sel_print ("removed (cached)\n");
2341 *res = MOVEUP_EXPR_NULL;
2342 return true;
2343 }
2344 else
2345 {
2346 if (sched_verbose >= 6)
2347 sel_print ("unchanged (cached)\n");
2348 *res = MOVEUP_EXPR_SAME;
2349 return true;
2350 }
2351 }
2352 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2353 {
2354 if (inside_insn_group)
2355 {
2356 if (sched_verbose >= 6)
2357 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2358 *res = MOVEUP_EXPR_SAME;
2359 return true;
2360
2361 }
2362 else
2363 EXPR_TARGET_AVAILABLE (expr) = false;
2364
2365 /* This is the only case when propagation result can change over time,
2366 as we can dynamically switch off scheduling as RHS. In this case,
2367 just check the flag to reach the correct decision. */
2368 if (enable_schedule_as_rhs_p)
2369 {
2370 if (sched_verbose >= 6)
2371 sel_print ("unchanged (as RHS, cached)\n");
2372 *res = MOVEUP_EXPR_AS_RHS;
2373 return true;
2374 }
2375 else
2376 {
2377 if (sched_verbose >= 6)
2378 sel_print ("removed (cached as RHS, but renaming"
2379 " is now disabled)\n");
2380 *res = MOVEUP_EXPR_NULL;
2381 return true;
2382 }
2383 }
2384
2385 return false;
2386 }
2387
2388 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2389 if successful. Write to RES the resulting code for moveup_expr. */
2390 static bool
2391 try_transformation_cache (expr_t expr, insn_t insn,
2392 enum MOVEUP_EXPR_CODE *res)
2393 {
2394 struct transformed_insns *pti
2395 = (struct transformed_insns *)
2396 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2397 &EXPR_VINSN (expr),
2398 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2399 if (pti)
2400 {
2401 /* This EXPR was already moved through this insn and was
2402 changed as a result. Fetch the proper data from
2403 the hashtable. */
2404 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2405 INSN_UID (insn), pti->type,
2406 pti->vinsn_old, pti->vinsn_new,
2407 EXPR_SPEC_DONE_DS (expr));
2408
2409 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2410 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2411 change_vinsn_in_expr (expr, pti->vinsn_new);
2412 if (pti->was_target_conflict)
2413 EXPR_TARGET_AVAILABLE (expr) = false;
2414 if (pti->type == TRANS_SPECULATION)
2415 {
2416 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2417 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2418 }
2419
2420 if (sched_verbose >= 6)
2421 {
2422 sel_print ("changed (cached): ");
2423 dump_expr (expr);
2424 sel_print ("\n");
2425 }
2426
2427 *res = MOVEUP_EXPR_CHANGED;
2428 return true;
2429 }
2430
2431 return false;
2432 }
2433
2434 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2435 static void
2436 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2437 enum MOVEUP_EXPR_CODE res)
2438 {
2439 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2440
2441 /* Do not cache result of propagating jumps through an insn group,
2442 as it is always true, which is not useful outside the group. */
2443 if (inside_insn_group)
2444 return;
2445
2446 if (res == MOVEUP_EXPR_NULL)
2447 {
2448 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2449 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2450 }
2451 else if (res == MOVEUP_EXPR_SAME)
2452 {
2453 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2454 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2455 }
2456 else if (res == MOVEUP_EXPR_AS_RHS)
2457 {
2458 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2459 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2460 }
2461 else
2462 gcc_unreachable ();
2463 }
2464
2465 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2466 and transformation type TRANS_TYPE. */
2467 static void
2468 update_transformation_cache (expr_t expr, insn_t insn,
2469 bool inside_insn_group,
2470 enum local_trans_type trans_type,
2471 vinsn_t expr_old_vinsn)
2472 {
2473 struct transformed_insns *pti;
2474
2475 if (inside_insn_group)
2476 return;
2477
2478 pti = XNEW (struct transformed_insns);
2479 pti->vinsn_old = expr_old_vinsn;
2480 pti->vinsn_new = EXPR_VINSN (expr);
2481 pti->type = trans_type;
2482 pti->was_target_conflict = was_target_conflict;
2483 pti->ds = EXPR_SPEC_DONE_DS (expr);
2484 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2485 vinsn_attach (pti->vinsn_old);
2486 vinsn_attach (pti->vinsn_new);
2487 *((struct transformed_insns **)
2488 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2489 pti, VINSN_HASH_RTX (expr_old_vinsn),
2490 INSERT)) = pti;
2491 }
2492
2493 /* Same as moveup_expr, but first looks up the result of
2494 transformation in caches. */
2495 static enum MOVEUP_EXPR_CODE
2496 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2497 {
2498 enum MOVEUP_EXPR_CODE res;
2499 bool got_answer = false;
2500
2501 if (sched_verbose >= 6)
2502 {
2503 sel_print ("Moving ");
2504 dump_expr (expr);
2505 sel_print (" through %d: ", INSN_UID (insn));
2506 }
2507
2508 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2509 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2510 == EXPR_INSN_RTX (expr)))
2511 /* Don't use cached information for debug insns that are heads of
2512 basic blocks. */;
2513 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2514 /* When inside insn group, we do not want remove stores conflicting
2515 with previosly issued loads. */
2516 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2517 else if (try_transformation_cache (expr, insn, &res))
2518 got_answer = true;
2519
2520 if (! got_answer)
2521 {
2522 /* Invoke moveup_expr and record the results. */
2523 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2524 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2525 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2526 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2527 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2528
2529 /* ??? Invent something better than this. We can't allow old_vinsn
2530 to go, we need it for the history vector. */
2531 vinsn_attach (expr_old_vinsn);
2532
2533 res = moveup_expr (expr, insn, inside_insn_group,
2534 &trans_type);
2535 switch (res)
2536 {
2537 case MOVEUP_EXPR_NULL:
2538 update_bitmap_cache (expr, insn, inside_insn_group, res);
2539 if (sched_verbose >= 6)
2540 sel_print ("removed\n");
2541 break;
2542
2543 case MOVEUP_EXPR_SAME:
2544 update_bitmap_cache (expr, insn, inside_insn_group, res);
2545 if (sched_verbose >= 6)
2546 sel_print ("unchanged\n");
2547 break;
2548
2549 case MOVEUP_EXPR_AS_RHS:
2550 gcc_assert (!unique_p || inside_insn_group);
2551 update_bitmap_cache (expr, insn, inside_insn_group, res);
2552 if (sched_verbose >= 6)
2553 sel_print ("unchanged (as RHS)\n");
2554 break;
2555
2556 case MOVEUP_EXPR_CHANGED:
2557 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2558 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2559 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2560 INSN_UID (insn), trans_type,
2561 expr_old_vinsn, EXPR_VINSN (expr),
2562 expr_old_spec_ds);
2563 update_transformation_cache (expr, insn, inside_insn_group,
2564 trans_type, expr_old_vinsn);
2565 if (sched_verbose >= 6)
2566 {
2567 sel_print ("changed: ");
2568 dump_expr (expr);
2569 sel_print ("\n");
2570 }
2571 break;
2572 default:
2573 gcc_unreachable ();
2574 }
2575
2576 vinsn_detach (expr_old_vinsn);
2577 }
2578
2579 return res;
2580 }
2581
2582 /* Moves an av set AVP up through INSN, performing necessary
2583 transformations. */
2584 static void
2585 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2586 {
2587 av_set_iterator i;
2588 expr_t expr;
2589
2590 FOR_EACH_EXPR_1 (expr, i, avp)
2591 {
2592
2593 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2594 {
2595 case MOVEUP_EXPR_SAME:
2596 case MOVEUP_EXPR_AS_RHS:
2597 break;
2598
2599 case MOVEUP_EXPR_NULL:
2600 av_set_iter_remove (&i);
2601 break;
2602
2603 case MOVEUP_EXPR_CHANGED:
2604 expr = merge_with_other_exprs (avp, &i, expr);
2605 break;
2606
2607 default:
2608 gcc_unreachable ();
2609 }
2610 }
2611 }
2612
2613 /* Moves AVP set along PATH. */
2614 static void
2615 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2616 {
2617 int last_cycle;
2618
2619 if (sched_verbose >= 6)
2620 sel_print ("Moving expressions up in the insn group...\n");
2621 if (! path)
2622 return;
2623 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2624 while (path
2625 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2626 {
2627 moveup_set_expr (avp, ILIST_INSN (path), true);
2628 path = ILIST_NEXT (path);
2629 }
2630 }
2631
2632 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2633 static bool
2634 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2635 {
2636 expr_def _tmp, *tmp = &_tmp;
2637 int last_cycle;
2638 bool res = true;
2639
2640 copy_expr_onside (tmp, expr);
2641 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2642 while (path
2643 && res
2644 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2645 {
2646 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2647 != MOVEUP_EXPR_NULL);
2648 path = ILIST_NEXT (path);
2649 }
2650
2651 if (res)
2652 {
2653 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2654 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2655
2656 if (tmp_vinsn != expr_vliw_vinsn)
2657 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2658 }
2659
2660 clear_expr (tmp);
2661 return res;
2662 }
2663 \f
2664
2665 /* Functions that compute av and lv sets. */
2666
2667 /* Returns true if INSN is not a downward continuation of the given path P in
2668 the current stage. */
2669 static bool
2670 is_ineligible_successor (insn_t insn, ilist_t p)
2671 {
2672 insn_t prev_insn;
2673
2674 /* Check if insn is not deleted. */
2675 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2676 gcc_unreachable ();
2677 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2678 gcc_unreachable ();
2679
2680 /* If it's the first insn visited, then the successor is ok. */
2681 if (!p)
2682 return false;
2683
2684 prev_insn = ILIST_INSN (p);
2685
2686 if (/* a backward edge. */
2687 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2688 /* is already visited. */
2689 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2690 && (ilist_is_in_p (p, insn)
2691 /* We can reach another fence here and still seqno of insn
2692 would be equal to seqno of prev_insn. This is possible
2693 when prev_insn is a previously created bookkeeping copy.
2694 In that case it'd get a seqno of insn. Thus, check here
2695 whether insn is in current fence too. */
2696 || IN_CURRENT_FENCE_P (insn)))
2697 /* Was already scheduled on this round. */
2698 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2699 && IN_CURRENT_FENCE_P (insn))
2700 /* An insn from another fence could also be
2701 scheduled earlier even if this insn is not in
2702 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2703 || (!pipelining_p
2704 && INSN_SCHED_TIMES (insn) > 0))
2705 return true;
2706 else
2707 return false;
2708 }
2709
2710 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2711 of handling multiple successors and properly merging its av_sets. P is
2712 the current path traversed. WS is the size of lookahead window.
2713 Return the av set computed. */
2714 static av_set_t
2715 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2716 {
2717 struct succs_info *sinfo;
2718 av_set_t expr_in_all_succ_branches = NULL;
2719 int is;
2720 insn_t succ, zero_succ = NULL;
2721 av_set_t av1 = NULL;
2722
2723 gcc_assert (sel_bb_end_p (insn));
2724
2725 /* Find different kind of successors needed for correct computing of
2726 SPEC and TARGET_AVAILABLE attributes. */
2727 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2728
2729 /* Debug output. */
2730 if (sched_verbose >= 6)
2731 {
2732 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2733 dump_insn_vector (sinfo->succs_ok);
2734 sel_print ("\n");
2735 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2736 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2737 }
2738
2739 /* Add insn to to the tail of current path. */
2740 ilist_add (&p, insn);
2741
2742 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2743 {
2744 av_set_t succ_set;
2745
2746 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2747 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2748
2749 av_set_split_usefulness (succ_set,
2750 VEC_index (int, sinfo->probs_ok, is),
2751 sinfo->all_prob);
2752
2753 if (sinfo->all_succs_n > 1)
2754 {
2755 /* Find EXPR'es that came from *all* successors and save them
2756 into expr_in_all_succ_branches. This set will be used later
2757 for calculating speculation attributes of EXPR'es. */
2758 if (is == 0)
2759 {
2760 expr_in_all_succ_branches = av_set_copy (succ_set);
2761
2762 /* Remember the first successor for later. */
2763 zero_succ = succ;
2764 }
2765 else
2766 {
2767 av_set_iterator i;
2768 expr_t expr;
2769
2770 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2771 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2772 av_set_iter_remove (&i);
2773 }
2774 }
2775
2776 /* Union the av_sets. Check liveness restrictions on target registers
2777 in special case of two successors. */
2778 if (sinfo->succs_ok_n == 2 && is == 1)
2779 {
2780 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2781 basic_block bb1 = BLOCK_FOR_INSN (succ);
2782
2783 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2784 av_set_union_and_live (&av1, &succ_set,
2785 BB_LV_SET (bb0),
2786 BB_LV_SET (bb1),
2787 insn);
2788 }
2789 else
2790 av_set_union_and_clear (&av1, &succ_set, insn);
2791 }
2792
2793 /* Check liveness restrictions via hard way when there are more than
2794 two successors. */
2795 if (sinfo->succs_ok_n > 2)
2796 FOR_EACH_VEC_ELT (rtx, sinfo->succs_ok, is, succ)
2797 {
2798 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2799
2800 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2801 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2802 BB_LV_SET (succ_bb));
2803 }
2804
2805 /* Finally, check liveness restrictions on paths leaving the region. */
2806 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2807 FOR_EACH_VEC_ELT (rtx, sinfo->succs_other, is, succ)
2808 mark_unavailable_targets
2809 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2810
2811 if (sinfo->all_succs_n > 1)
2812 {
2813 av_set_iterator i;
2814 expr_t expr;
2815
2816 /* Increase the spec attribute of all EXPR'es that didn't come
2817 from all successors. */
2818 FOR_EACH_EXPR (expr, i, av1)
2819 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2820 EXPR_SPEC (expr)++;
2821
2822 av_set_clear (&expr_in_all_succ_branches);
2823
2824 /* Do not move conditional branches through other
2825 conditional branches. So, remove all conditional
2826 branches from av_set if current operator is a conditional
2827 branch. */
2828 av_set_substract_cond_branches (&av1);
2829 }
2830
2831 ilist_remove (&p);
2832 free_succs_info (sinfo);
2833
2834 if (sched_verbose >= 6)
2835 {
2836 sel_print ("av_succs (%d): ", INSN_UID (insn));
2837 dump_av_set (av1);
2838 sel_print ("\n");
2839 }
2840
2841 return av1;
2842 }
2843
2844 /* This function computes av_set for the FIRST_INSN by dragging valid
2845 av_set through all basic block insns either from the end of basic block
2846 (computed using compute_av_set_at_bb_end) or from the insn on which
2847 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2848 below the basic block and handling conditional branches.
2849 FIRST_INSN - the basic block head, P - path consisting of the insns
2850 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2851 and bb ends are added to the path), WS - current window size,
2852 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2853 static av_set_t
2854 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2855 bool need_copy_p)
2856 {
2857 insn_t cur_insn;
2858 int end_ws = ws;
2859 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2860 insn_t after_bb_end = NEXT_INSN (bb_end);
2861 insn_t last_insn;
2862 av_set_t av = NULL;
2863 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2864
2865 /* Return NULL if insn is not on the legitimate downward path. */
2866 if (is_ineligible_successor (first_insn, p))
2867 {
2868 if (sched_verbose >= 6)
2869 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2870
2871 return NULL;
2872 }
2873
2874 /* If insn already has valid av(insn) computed, just return it. */
2875 if (AV_SET_VALID_P (first_insn))
2876 {
2877 av_set_t av_set;
2878
2879 if (sel_bb_head_p (first_insn))
2880 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2881 else
2882 av_set = NULL;
2883
2884 if (sched_verbose >= 6)
2885 {
2886 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2887 dump_av_set (av_set);
2888 sel_print ("\n");
2889 }
2890
2891 return need_copy_p ? av_set_copy (av_set) : av_set;
2892 }
2893
2894 ilist_add (&p, first_insn);
2895
2896 /* As the result after this loop have completed, in LAST_INSN we'll
2897 have the insn which has valid av_set to start backward computation
2898 from: it either will be NULL because on it the window size was exceeded
2899 or other valid av_set as returned by compute_av_set for the last insn
2900 of the basic block. */
2901 for (last_insn = first_insn; last_insn != after_bb_end;
2902 last_insn = NEXT_INSN (last_insn))
2903 {
2904 /* We may encounter valid av_set not only on bb_head, but also on
2905 those insns on which previously MAX_WS was exceeded. */
2906 if (AV_SET_VALID_P (last_insn))
2907 {
2908 if (sched_verbose >= 6)
2909 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2910 break;
2911 }
2912
2913 /* The special case: the last insn of the BB may be an
2914 ineligible_successor due to its SEQ_NO that was set on
2915 it as a bookkeeping. */
2916 if (last_insn != first_insn
2917 && is_ineligible_successor (last_insn, p))
2918 {
2919 if (sched_verbose >= 6)
2920 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2921 break;
2922 }
2923
2924 if (DEBUG_INSN_P (last_insn))
2925 continue;
2926
2927 if (end_ws > max_ws)
2928 {
2929 /* We can reach max lookahead size at bb_header, so clean av_set
2930 first. */
2931 INSN_WS_LEVEL (last_insn) = global_level;
2932
2933 if (sched_verbose >= 6)
2934 sel_print ("Insn %d is beyond the software lookahead window size\n",
2935 INSN_UID (last_insn));
2936 break;
2937 }
2938
2939 end_ws++;
2940 }
2941
2942 /* Get the valid av_set into AV above the LAST_INSN to start backward
2943 computation from. It either will be empty av_set or av_set computed from
2944 the successors on the last insn of the current bb. */
2945 if (last_insn != after_bb_end)
2946 {
2947 av = NULL;
2948
2949 /* This is needed only to obtain av_sets that are identical to
2950 those computed by the old compute_av_set version. */
2951 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2952 av_set_add (&av, INSN_EXPR (last_insn));
2953 }
2954 else
2955 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2956 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2957
2958 /* Compute av_set in AV starting from below the LAST_INSN up to
2959 location above the FIRST_INSN. */
2960 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2961 cur_insn = PREV_INSN (cur_insn))
2962 if (!INSN_NOP_P (cur_insn))
2963 {
2964 expr_t expr;
2965
2966 moveup_set_expr (&av, cur_insn, false);
2967
2968 /* If the expression for CUR_INSN is already in the set,
2969 replace it by the new one. */
2970 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2971 if (expr != NULL)
2972 {
2973 clear_expr (expr);
2974 copy_expr (expr, INSN_EXPR (cur_insn));
2975 }
2976 else
2977 av_set_add (&av, INSN_EXPR (cur_insn));
2978 }
2979
2980 /* Clear stale bb_av_set. */
2981 if (sel_bb_head_p (first_insn))
2982 {
2983 av_set_clear (&BB_AV_SET (cur_bb));
2984 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
2985 BB_AV_LEVEL (cur_bb) = global_level;
2986 }
2987
2988 if (sched_verbose >= 6)
2989 {
2990 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
2991 dump_av_set (av);
2992 sel_print ("\n");
2993 }
2994
2995 ilist_remove (&p);
2996 return av;
2997 }
2998
2999 /* Compute av set before INSN.
3000 INSN - the current operation (actual rtx INSN)
3001 P - the current path, which is list of insns visited so far
3002 WS - software lookahead window size.
3003 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3004 if we want to save computed av_set in s_i_d, we should make a copy of it.
3005
3006 In the resulting set we will have only expressions that don't have delay
3007 stalls and nonsubstitutable dependences. */
3008 static av_set_t
3009 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3010 {
3011 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3012 }
3013
3014 /* Propagate a liveness set LV through INSN. */
3015 static void
3016 propagate_lv_set (regset lv, insn_t insn)
3017 {
3018 gcc_assert (INSN_P (insn));
3019
3020 if (INSN_NOP_P (insn))
3021 return;
3022
3023 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3024 }
3025
3026 /* Return livness set at the end of BB. */
3027 static regset
3028 compute_live_after_bb (basic_block bb)
3029 {
3030 edge e;
3031 edge_iterator ei;
3032 regset lv = get_clear_regset_from_pool ();
3033
3034 gcc_assert (!ignore_first);
3035
3036 FOR_EACH_EDGE (e, ei, bb->succs)
3037 if (sel_bb_empty_p (e->dest))
3038 {
3039 if (! BB_LV_SET_VALID_P (e->dest))
3040 {
3041 gcc_unreachable ();
3042 gcc_assert (BB_LV_SET (e->dest) == NULL);
3043 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3044 BB_LV_SET_VALID_P (e->dest) = true;
3045 }
3046 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3047 }
3048 else
3049 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3050
3051 return lv;
3052 }
3053
3054 /* Compute the set of all live registers at the point before INSN and save
3055 it at INSN if INSN is bb header. */
3056 regset
3057 compute_live (insn_t insn)
3058 {
3059 basic_block bb = BLOCK_FOR_INSN (insn);
3060 insn_t final, temp;
3061 regset lv;
3062
3063 /* Return the valid set if we're already on it. */
3064 if (!ignore_first)
3065 {
3066 regset src = NULL;
3067
3068 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3069 src = BB_LV_SET (bb);
3070 else
3071 {
3072 gcc_assert (in_current_region_p (bb));
3073 if (INSN_LIVE_VALID_P (insn))
3074 src = INSN_LIVE (insn);
3075 }
3076
3077 if (src)
3078 {
3079 lv = get_regset_from_pool ();
3080 COPY_REG_SET (lv, src);
3081
3082 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3083 {
3084 COPY_REG_SET (BB_LV_SET (bb), lv);
3085 BB_LV_SET_VALID_P (bb) = true;
3086 }
3087
3088 return_regset_to_pool (lv);
3089 return lv;
3090 }
3091 }
3092
3093 /* We've skipped the wrong lv_set. Don't skip the right one. */
3094 ignore_first = false;
3095 gcc_assert (in_current_region_p (bb));
3096
3097 /* Find a valid LV set in this block or below, if needed.
3098 Start searching from the next insn: either ignore_first is true, or
3099 INSN doesn't have a correct live set. */
3100 temp = NEXT_INSN (insn);
3101 final = NEXT_INSN (BB_END (bb));
3102 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3103 temp = NEXT_INSN (temp);
3104 if (temp == final)
3105 {
3106 lv = compute_live_after_bb (bb);
3107 temp = PREV_INSN (temp);
3108 }
3109 else
3110 {
3111 lv = get_regset_from_pool ();
3112 COPY_REG_SET (lv, INSN_LIVE (temp));
3113 }
3114
3115 /* Put correct lv sets on the insns which have bad sets. */
3116 final = PREV_INSN (insn);
3117 while (temp != final)
3118 {
3119 propagate_lv_set (lv, temp);
3120 COPY_REG_SET (INSN_LIVE (temp), lv);
3121 INSN_LIVE_VALID_P (temp) = true;
3122 temp = PREV_INSN (temp);
3123 }
3124
3125 /* Also put it in a BB. */
3126 if (sel_bb_head_p (insn))
3127 {
3128 basic_block bb = BLOCK_FOR_INSN (insn);
3129
3130 COPY_REG_SET (BB_LV_SET (bb), lv);
3131 BB_LV_SET_VALID_P (bb) = true;
3132 }
3133
3134 /* We return LV to the pool, but will not clear it there. Thus we can
3135 legimatelly use LV till the next use of regset_pool_get (). */
3136 return_regset_to_pool (lv);
3137 return lv;
3138 }
3139
3140 /* Update liveness sets for INSN. */
3141 static inline void
3142 update_liveness_on_insn (rtx insn)
3143 {
3144 ignore_first = true;
3145 compute_live (insn);
3146 }
3147
3148 /* Compute liveness below INSN and write it into REGS. */
3149 static inline void
3150 compute_live_below_insn (rtx insn, regset regs)
3151 {
3152 rtx succ;
3153 succ_iterator si;
3154
3155 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3156 IOR_REG_SET (regs, compute_live (succ));
3157 }
3158
3159 /* Update the data gathered in av and lv sets starting from INSN. */
3160 static void
3161 update_data_sets (rtx insn)
3162 {
3163 update_liveness_on_insn (insn);
3164 if (sel_bb_head_p (insn))
3165 {
3166 gcc_assert (AV_LEVEL (insn) != 0);
3167 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3168 compute_av_set (insn, NULL, 0, 0);
3169 }
3170 }
3171 \f
3172
3173 /* Helper for move_op () and find_used_regs ().
3174 Return speculation type for which a check should be created on the place
3175 of INSN. EXPR is one of the original ops we are searching for. */
3176 static ds_t
3177 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3178 {
3179 ds_t to_check_ds;
3180 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3181
3182 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3183
3184 if (targetm.sched.get_insn_checked_ds)
3185 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3186
3187 if (spec_info != NULL
3188 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3189 already_checked_ds |= BEGIN_CONTROL;
3190
3191 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3192
3193 to_check_ds &= ~already_checked_ds;
3194
3195 return to_check_ds;
3196 }
3197
3198 /* Find the set of registers that are unavailable for storing expres
3199 while moving ORIG_OPS up on the path starting from INSN due to
3200 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3201
3202 All the original operations found during the traversal are saved in the
3203 ORIGINAL_INSNS list.
3204
3205 REG_RENAME_P denotes the set of hardware registers that
3206 can not be used with renaming due to the register class restrictions,
3207 mode restrictions and other (the register we'll choose should be
3208 compatible class with the original uses, shouldn't be in call_used_regs,
3209 should be HARD_REGNO_RENAME_OK etc).
3210
3211 Returns TRUE if we've found all original insns, FALSE otherwise.
3212
3213 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3214 to traverse the code motion paths. This helper function finds registers
3215 that are not available for storing expres while moving ORIG_OPS up on the
3216 path starting from INSN. A register considered as used on the moving path,
3217 if one of the following conditions is not satisfied:
3218
3219 (1) a register not set or read on any path from xi to an instance of
3220 the original operation,
3221 (2) not among the live registers of the point immediately following the
3222 first original operation on a given downward path, except for the
3223 original target register of the operation,
3224 (3) not live on the other path of any conditional branch that is passed
3225 by the operation, in case original operations are not present on
3226 both paths of the conditional branch.
3227
3228 All the original operations found during the traversal are saved in the
3229 ORIGINAL_INSNS list.
3230
3231 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3232 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3233 to unavailable hard regs at the point original operation is found. */
3234
3235 static bool
3236 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3237 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3238 {
3239 def_list_iterator i;
3240 def_t def;
3241 int res;
3242 bool needs_spec_check_p = false;
3243 expr_t expr;
3244 av_set_iterator expr_iter;
3245 struct fur_static_params sparams;
3246 struct cmpd_local_params lparams;
3247
3248 /* We haven't visited any blocks yet. */
3249 bitmap_clear (code_motion_visited_blocks);
3250
3251 /* Init parameters for code_motion_path_driver. */
3252 sparams.crosses_call = false;
3253 sparams.original_insns = original_insns;
3254 sparams.used_regs = used_regs;
3255
3256 /* Set the appropriate hooks and data. */
3257 code_motion_path_driver_info = &fur_hooks;
3258
3259 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3260
3261 reg_rename_p->crosses_call |= sparams.crosses_call;
3262
3263 gcc_assert (res == 1);
3264 gcc_assert (original_insns && *original_insns);
3265
3266 /* ??? We calculate whether an expression needs a check when computing
3267 av sets. This information is not as precise as it could be due to
3268 merging this bit in merge_expr. We can do better in find_used_regs,
3269 but we want to avoid multiple traversals of the same code motion
3270 paths. */
3271 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3272 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3273
3274 /* Mark hardware regs in REG_RENAME_P that are not suitable
3275 for renaming expr in INSN due to hardware restrictions (register class,
3276 modes compatibility etc). */
3277 FOR_EACH_DEF (def, i, *original_insns)
3278 {
3279 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3280
3281 if (VINSN_SEPARABLE_P (vinsn))
3282 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3283
3284 /* Do not allow clobbering of ld.[sa] address in case some of the
3285 original operations need a check. */
3286 if (needs_spec_check_p)
3287 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3288 }
3289
3290 return true;
3291 }
3292 \f
3293
3294 /* Functions to choose the best insn from available ones. */
3295
3296 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3297 static int
3298 sel_target_adjust_priority (expr_t expr)
3299 {
3300 int priority = EXPR_PRIORITY (expr);
3301 int new_priority;
3302
3303 if (targetm.sched.adjust_priority)
3304 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3305 else
3306 new_priority = priority;
3307
3308 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3309 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3310
3311 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3312
3313 if (sched_verbose >= 4)
3314 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3315 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3316 EXPR_PRIORITY_ADJ (expr), new_priority);
3317
3318 return new_priority;
3319 }
3320
3321 /* Rank two available exprs for schedule. Never return 0 here. */
3322 static int
3323 sel_rank_for_schedule (const void *x, const void *y)
3324 {
3325 expr_t tmp = *(const expr_t *) y;
3326 expr_t tmp2 = *(const expr_t *) x;
3327 insn_t tmp_insn, tmp2_insn;
3328 vinsn_t tmp_vinsn, tmp2_vinsn;
3329 int val;
3330
3331 tmp_vinsn = EXPR_VINSN (tmp);
3332 tmp2_vinsn = EXPR_VINSN (tmp2);
3333 tmp_insn = EXPR_INSN_RTX (tmp);
3334 tmp2_insn = EXPR_INSN_RTX (tmp2);
3335
3336 /* Schedule debug insns as early as possible. */
3337 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3338 return -1;
3339 else if (DEBUG_INSN_P (tmp2_insn))
3340 return 1;
3341
3342 /* Prefer SCHED_GROUP_P insns to any others. */
3343 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3344 {
3345 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3346 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3347
3348 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3349 cannot be cloned. */
3350 if (VINSN_UNIQUE_P (tmp2_vinsn))
3351 return 1;
3352 return -1;
3353 }
3354
3355 /* Discourage scheduling of speculative checks. */
3356 val = (sel_insn_is_speculation_check (tmp_insn)
3357 - sel_insn_is_speculation_check (tmp2_insn));
3358 if (val)
3359 return val;
3360
3361 /* Prefer not scheduled insn over scheduled one. */
3362 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3363 {
3364 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3365 if (val)
3366 return val;
3367 }
3368
3369 /* Prefer jump over non-jump instruction. */
3370 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3371 return -1;
3372 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3373 return 1;
3374
3375 /* Prefer an expr with greater priority. */
3376 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3377 {
3378 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3379 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3380
3381 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3382 }
3383 else
3384 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3385 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3386 if (val)
3387 return val;
3388
3389 if (spec_info != NULL && spec_info->mask != 0)
3390 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3391 {
3392 ds_t ds1, ds2;
3393 dw_t dw1, dw2;
3394 int dw;
3395
3396 ds1 = EXPR_SPEC_DONE_DS (tmp);
3397 if (ds1)
3398 dw1 = ds_weak (ds1);
3399 else
3400 dw1 = NO_DEP_WEAK;
3401
3402 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3403 if (ds2)
3404 dw2 = ds_weak (ds2);
3405 else
3406 dw2 = NO_DEP_WEAK;
3407
3408 dw = dw2 - dw1;
3409 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3410 return dw;
3411 }
3412
3413 /* Prefer an old insn to a bookkeeping insn. */
3414 if (INSN_UID (tmp_insn) < first_emitted_uid
3415 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3416 return -1;
3417 if (INSN_UID (tmp_insn) >= first_emitted_uid
3418 && INSN_UID (tmp2_insn) < first_emitted_uid)
3419 return 1;
3420
3421 /* Prefer an insn with smaller UID, as a last resort.
3422 We can't safely use INSN_LUID as it is defined only for those insns
3423 that are in the stream. */
3424 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3425 }
3426
3427 /* Filter out expressions from av set pointed to by AV_PTR
3428 that are pipelined too many times. */
3429 static void
3430 process_pipelined_exprs (av_set_t *av_ptr)
3431 {
3432 expr_t expr;
3433 av_set_iterator si;
3434
3435 /* Don't pipeline already pipelined code as that would increase
3436 number of unnecessary register moves. */
3437 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3438 {
3439 if (EXPR_SCHED_TIMES (expr)
3440 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3441 av_set_iter_remove (&si);
3442 }
3443 }
3444
3445 /* Filter speculative insns from AV_PTR if we don't want them. */
3446 static void
3447 process_spec_exprs (av_set_t *av_ptr)
3448 {
3449 bool try_data_p = true;
3450 bool try_control_p = true;
3451 expr_t expr;
3452 av_set_iterator si;
3453
3454 if (spec_info == NULL)
3455 return;
3456
3457 /* Scan *AV_PTR to find out if we want to consider speculative
3458 instructions for scheduling. */
3459 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3460 {
3461 ds_t ds;
3462
3463 ds = EXPR_SPEC_DONE_DS (expr);
3464
3465 /* The probability of a success is too low - don't speculate. */
3466 if ((ds & SPECULATIVE)
3467 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3468 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3469 || (pipelining_p && false
3470 && (ds & DATA_SPEC)
3471 && (ds & CONTROL_SPEC))))
3472 {
3473 av_set_iter_remove (&si);
3474 continue;
3475 }
3476
3477 if ((spec_info->flags & PREFER_NON_DATA_SPEC)
3478 && !(ds & BEGIN_DATA))
3479 try_data_p = false;
3480
3481 if ((spec_info->flags & PREFER_NON_CONTROL_SPEC)
3482 && !(ds & BEGIN_CONTROL))
3483 try_control_p = false;
3484 }
3485
3486 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3487 {
3488 ds_t ds;
3489
3490 ds = EXPR_SPEC_DONE_DS (expr);
3491
3492 if (ds & SPECULATIVE)
3493 {
3494 if ((ds & BEGIN_DATA) && !try_data_p)
3495 /* We don't want any data speculative instructions right
3496 now. */
3497 av_set_iter_remove (&si);
3498
3499 if ((ds & BEGIN_CONTROL) && !try_control_p)
3500 /* We don't want any control speculative instructions right
3501 now. */
3502 av_set_iter_remove (&si);
3503 }
3504 }
3505 }
3506
3507 /* Search for any use-like insns in AV_PTR and decide on scheduling
3508 them. Return one when found, and NULL otherwise.
3509 Note that we check here whether a USE could be scheduled to avoid
3510 an infinite loop later. */
3511 static expr_t
3512 process_use_exprs (av_set_t *av_ptr)
3513 {
3514 expr_t expr;
3515 av_set_iterator si;
3516 bool uses_present_p = false;
3517 bool try_uses_p = true;
3518
3519 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3520 {
3521 /* This will also initialize INSN_CODE for later use. */
3522 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3523 {
3524 /* If we have a USE in *AV_PTR that was not scheduled yet,
3525 do so because it will do good only. */
3526 if (EXPR_SCHED_TIMES (expr) <= 0)
3527 {
3528 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3529 return expr;
3530
3531 av_set_iter_remove (&si);
3532 }
3533 else
3534 {
3535 gcc_assert (pipelining_p);
3536
3537 uses_present_p = true;
3538 }
3539 }
3540 else
3541 try_uses_p = false;
3542 }
3543
3544 if (uses_present_p)
3545 {
3546 /* If we don't want to schedule any USEs right now and we have some
3547 in *AV_PTR, remove them, else just return the first one found. */
3548 if (!try_uses_p)
3549 {
3550 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3551 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3552 av_set_iter_remove (&si);
3553 }
3554 else
3555 {
3556 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3557 {
3558 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3559
3560 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3561 return expr;
3562
3563 av_set_iter_remove (&si);
3564 }
3565 }
3566 }
3567
3568 return NULL;
3569 }
3570
3571 /* Lookup EXPR in VINSN_VEC and return TRUE if found. */
3572 static bool
3573 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3574 {
3575 vinsn_t vinsn;
3576 int n;
3577
3578 FOR_EACH_VEC_ELT (vinsn_t, vinsn_vec, n, vinsn)
3579 if (VINSN_SEPARABLE_P (vinsn))
3580 {
3581 if (vinsn_equal_p (vinsn, EXPR_VINSN (expr)))
3582 return true;
3583 }
3584 else
3585 {
3586 /* For non-separable instructions, the blocking insn can have
3587 another pattern due to substitution, and we can't choose
3588 different register as in the above case. Check all registers
3589 being written instead. */
3590 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3591 VINSN_REG_SETS (EXPR_VINSN (expr))))
3592 return true;
3593 }
3594
3595 return false;
3596 }
3597
3598 #ifdef ENABLE_CHECKING
3599 /* Return true if either of expressions from ORIG_OPS can be blocked
3600 by previously created bookkeeping code. STATIC_PARAMS points to static
3601 parameters of move_op. */
3602 static bool
3603 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3604 {
3605 expr_t expr;
3606 av_set_iterator iter;
3607 moveop_static_params_p sparams;
3608
3609 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3610 created while scheduling on another fence. */
3611 FOR_EACH_EXPR (expr, iter, orig_ops)
3612 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3613 return true;
3614
3615 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3616 sparams = (moveop_static_params_p) static_params;
3617
3618 /* Expressions can be also blocked by bookkeeping created during current
3619 move_op. */
3620 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3621 FOR_EACH_EXPR (expr, iter, orig_ops)
3622 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3623 return true;
3624
3625 /* Expressions in ORIG_OPS may have wrong destination register due to
3626 renaming. Check with the right register instead. */
3627 if (sparams->dest && REG_P (sparams->dest))
3628 {
3629 unsigned regno = REGNO (sparams->dest);
3630 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3631
3632 if (bitmap_bit_p (VINSN_REG_SETS (failed_vinsn), regno)
3633 || bitmap_bit_p (VINSN_REG_USES (failed_vinsn), regno)
3634 || bitmap_bit_p (VINSN_REG_CLOBBERS (failed_vinsn), regno))
3635 return true;
3636 }
3637
3638 return false;
3639 }
3640 #endif
3641
3642 /* Clear VINSN_VEC and detach vinsns. */
3643 static void
3644 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3645 {
3646 unsigned len = VEC_length (vinsn_t, *vinsn_vec);
3647 if (len > 0)
3648 {
3649 vinsn_t vinsn;
3650 int n;
3651
3652 FOR_EACH_VEC_ELT (vinsn_t, *vinsn_vec, n, vinsn)
3653 vinsn_detach (vinsn);
3654 VEC_block_remove (vinsn_t, *vinsn_vec, 0, len);
3655 }
3656 }
3657
3658 /* Add the vinsn of EXPR to the VINSN_VEC. */
3659 static void
3660 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3661 {
3662 vinsn_attach (EXPR_VINSN (expr));
3663 VEC_safe_push (vinsn_t, heap, *vinsn_vec, EXPR_VINSN (expr));
3664 }
3665
3666 /* Free the vector representing blocked expressions. */
3667 static void
3668 vinsn_vec_free (vinsn_vec_t *vinsn_vec)
3669 {
3670 if (*vinsn_vec)
3671 VEC_free (vinsn_t, heap, *vinsn_vec);
3672 }
3673
3674 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3675
3676 void sel_add_to_insn_priority (rtx insn, int amount)
3677 {
3678 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3679
3680 if (sched_verbose >= 2)
3681 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3682 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3683 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3684 }
3685
3686 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3687 true if there is something to schedule. BNDS and FENCE are current
3688 boundaries and fence, respectively. If we need to stall for some cycles
3689 before an expr from AV would become available, write this number to
3690 *PNEED_STALL. */
3691 static bool
3692 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3693 int *pneed_stall)
3694 {
3695 av_set_iterator si;
3696 expr_t expr;
3697 int sched_next_worked = 0, stalled, n;
3698 static int av_max_prio, est_ticks_till_branch;
3699 int min_need_stall = -1;
3700 deps_t dc = BND_DC (BLIST_BND (bnds));
3701
3702 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3703 already scheduled. */
3704 if (av == NULL)
3705 return false;
3706
3707 /* Empty vector from the previous stuff. */
3708 if (VEC_length (expr_t, vec_av_set) > 0)
3709 VEC_block_remove (expr_t, vec_av_set, 0, VEC_length (expr_t, vec_av_set));
3710
3711 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3712 for each insn. */
3713 gcc_assert (VEC_empty (expr_t, vec_av_set));
3714 FOR_EACH_EXPR (expr, si, av)
3715 {
3716 VEC_safe_push (expr_t, heap, vec_av_set, expr);
3717
3718 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3719
3720 /* Adjust priority using target backend hook. */
3721 sel_target_adjust_priority (expr);
3722 }
3723
3724 /* Sort the vector. */
3725 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3726
3727 /* We record maximal priority of insns in av set for current instruction
3728 group. */
3729 if (FENCE_STARTS_CYCLE_P (fence))
3730 av_max_prio = est_ticks_till_branch = INT_MIN;
3731
3732 /* Filter out inappropriate expressions. Loop's direction is reversed to
3733 visit "best" instructions first. We assume that VEC_unordered_remove
3734 moves last element in place of one being deleted. */
3735 for (n = VEC_length (expr_t, vec_av_set) - 1, stalled = 0; n >= 0; n--)
3736 {
3737 expr_t expr = VEC_index (expr_t, vec_av_set, n);
3738 insn_t insn = EXPR_INSN_RTX (expr);
3739 signed char target_available;
3740 bool is_orig_reg_p = true;
3741 int need_cycles, new_prio;
3742
3743 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3744 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3745 {
3746 VEC_unordered_remove (expr_t, vec_av_set, n);
3747 continue;
3748 }
3749
3750 /* Set number of sched_next insns (just in case there
3751 could be several). */
3752 if (FENCE_SCHED_NEXT (fence))
3753 sched_next_worked++;
3754
3755 /* Check all liveness requirements and try renaming.
3756 FIXME: try to minimize calls to this. */
3757 target_available = EXPR_TARGET_AVAILABLE (expr);
3758
3759 /* If insn was already scheduled on the current fence,
3760 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3761 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr))
3762 target_available = -1;
3763
3764 /* If the availability of the EXPR is invalidated by the insertion of
3765 bookkeeping earlier, make sure that we won't choose this expr for
3766 scheduling if it's not separable, and if it is separable, then
3767 we have to recompute the set of available registers for it. */
3768 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3769 {
3770 VEC_unordered_remove (expr_t, vec_av_set, n);
3771 if (sched_verbose >= 4)
3772 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3773 INSN_UID (insn));
3774 continue;
3775 }
3776
3777 if (target_available == true)
3778 {
3779 /* Do nothing -- we can use an existing register. */
3780 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3781 }
3782 else if (/* Non-separable instruction will never
3783 get another register. */
3784 (target_available == false
3785 && !EXPR_SEPARABLE_P (expr))
3786 /* Don't try to find a register for low-priority expression. */
3787 || (int) VEC_length (expr_t, vec_av_set) - 1 - n >= max_insns_to_rename
3788 /* ??? FIXME: Don't try to rename data speculation. */
3789 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3790 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3791 {
3792 VEC_unordered_remove (expr_t, vec_av_set, n);
3793 if (sched_verbose >= 4)
3794 sel_print ("Expr %d has no suitable target register\n",
3795 INSN_UID (insn));
3796 continue;
3797 }
3798
3799 /* Filter expressions that need to be renamed or speculated when
3800 pipelining, because compensating register copies or speculation
3801 checks are likely to be placed near the beginning of the loop,
3802 causing a stall. */
3803 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3804 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3805 {
3806 /* Estimation of number of cycles until loop branch for
3807 renaming/speculation to be successful. */
3808 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3809
3810 if ((int) current_loop_nest->ninsns < 9)
3811 {
3812 VEC_unordered_remove (expr_t, vec_av_set, n);
3813 if (sched_verbose >= 4)
3814 sel_print ("Pipelining expr %d will likely cause stall\n",
3815 INSN_UID (insn));
3816 continue;
3817 }
3818
3819 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3820 < need_n_ticks_till_branch * issue_rate / 2
3821 && est_ticks_till_branch < need_n_ticks_till_branch)
3822 {
3823 VEC_unordered_remove (expr_t, vec_av_set, n);
3824 if (sched_verbose >= 4)
3825 sel_print ("Pipelining expr %d will likely cause stall\n",
3826 INSN_UID (insn));
3827 continue;
3828 }
3829 }
3830
3831 /* We want to schedule speculation checks as late as possible. Discard
3832 them from av set if there are instructions with higher priority. */
3833 if (sel_insn_is_speculation_check (insn)
3834 && EXPR_PRIORITY (expr) < av_max_prio)
3835 {
3836 stalled++;
3837 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3838 VEC_unordered_remove (expr_t, vec_av_set, n);
3839 if (sched_verbose >= 4)
3840 sel_print ("Delaying speculation check %d until its first use\n",
3841 INSN_UID (insn));
3842 continue;
3843 }
3844
3845 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3846 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3847 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3848
3849 /* Don't allow any insns whose data is not yet ready.
3850 Check first whether we've already tried them and failed. */
3851 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3852 {
3853 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3854 - FENCE_CYCLE (fence));
3855 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3856 est_ticks_till_branch = MAX (est_ticks_till_branch,
3857 EXPR_PRIORITY (expr) + need_cycles);
3858
3859 if (need_cycles > 0)
3860 {
3861 stalled++;
3862 min_need_stall = (min_need_stall < 0
3863 ? need_cycles
3864 : MIN (min_need_stall, need_cycles));
3865 VEC_unordered_remove (expr_t, vec_av_set, n);
3866
3867 if (sched_verbose >= 4)
3868 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3869 INSN_UID (insn),
3870 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3871 continue;
3872 }
3873 }
3874
3875 /* Now resort to dependence analysis to find whether EXPR might be
3876 stalled due to dependencies from FENCE's context. */
3877 need_cycles = tick_check_p (expr, dc, fence);
3878 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3879
3880 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3881 est_ticks_till_branch = MAX (est_ticks_till_branch,
3882 new_prio);
3883
3884 if (need_cycles > 0)
3885 {
3886 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3887 {
3888 int new_size = INSN_UID (insn) * 3 / 2;
3889
3890 FENCE_READY_TICKS (fence)
3891 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3892 new_size, FENCE_READY_TICKS_SIZE (fence),
3893 sizeof (int));
3894 }
3895 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3896 = FENCE_CYCLE (fence) + need_cycles;
3897
3898 stalled++;
3899 min_need_stall = (min_need_stall < 0
3900 ? need_cycles
3901 : MIN (min_need_stall, need_cycles));
3902
3903 VEC_unordered_remove (expr_t, vec_av_set, n);
3904
3905 if (sched_verbose >= 4)
3906 sel_print ("Expr %d is not ready yet until cycle %d\n",
3907 INSN_UID (insn),
3908 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3909 continue;
3910 }
3911
3912 if (sched_verbose >= 4)
3913 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3914 min_need_stall = 0;
3915 }
3916
3917 /* Clear SCHED_NEXT. */
3918 if (FENCE_SCHED_NEXT (fence))
3919 {
3920 gcc_assert (sched_next_worked == 1);
3921 FENCE_SCHED_NEXT (fence) = NULL_RTX;
3922 }
3923
3924 /* No need to stall if this variable was not initialized. */
3925 if (min_need_stall < 0)
3926 min_need_stall = 0;
3927
3928 if (VEC_empty (expr_t, vec_av_set))
3929 {
3930 /* We need to set *pneed_stall here, because later we skip this code
3931 when ready list is empty. */
3932 *pneed_stall = min_need_stall;
3933 return false;
3934 }
3935 else
3936 gcc_assert (min_need_stall == 0);
3937
3938 /* Sort the vector. */
3939 VEC_qsort (expr_t, vec_av_set, sel_rank_for_schedule);
3940
3941 if (sched_verbose >= 4)
3942 {
3943 sel_print ("Total ready exprs: %d, stalled: %d\n",
3944 VEC_length (expr_t, vec_av_set), stalled);
3945 sel_print ("Sorted av set (%d): ", VEC_length (expr_t, vec_av_set));
3946 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3947 dump_expr (expr);
3948 sel_print ("\n");
3949 }
3950
3951 *pneed_stall = 0;
3952 return true;
3953 }
3954
3955 /* Convert a vectored and sorted av set to the ready list that
3956 the rest of the backend wants to see. */
3957 static void
3958 convert_vec_av_set_to_ready (void)
3959 {
3960 int n;
3961 expr_t expr;
3962
3963 /* Allocate and fill the ready list from the sorted vector. */
3964 ready.n_ready = VEC_length (expr_t, vec_av_set);
3965 ready.first = ready.n_ready - 1;
3966
3967 gcc_assert (ready.n_ready > 0);
3968
3969 if (ready.n_ready > max_issue_size)
3970 {
3971 max_issue_size = ready.n_ready;
3972 sched_extend_ready_list (ready.n_ready);
3973 }
3974
3975 FOR_EACH_VEC_ELT (expr_t, vec_av_set, n, expr)
3976 {
3977 vinsn_t vi = EXPR_VINSN (expr);
3978 insn_t insn = VINSN_INSN_RTX (vi);
3979
3980 ready_try[n] = 0;
3981 ready.vec[n] = insn;
3982 }
3983 }
3984
3985 /* Initialize ready list from *AV_PTR for the max_issue () call.
3986 If any unrecognizable insn found in *AV_PTR, return it (and skip
3987 max_issue). BND and FENCE are current boundary and fence,
3988 respectively. If we need to stall for some cycles before an expr
3989 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3990 static expr_t
3991 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3992 int *pneed_stall)
3993 {
3994 expr_t expr;
3995
3996 /* We do not support multiple boundaries per fence. */
3997 gcc_assert (BLIST_NEXT (bnds) == NULL);
3998
3999 /* Process expressions required special handling, i.e. pipelined,
4000 speculative and recog() < 0 expressions first. */
4001 process_pipelined_exprs (av_ptr);
4002 process_spec_exprs (av_ptr);
4003
4004 /* A USE could be scheduled immediately. */
4005 expr = process_use_exprs (av_ptr);
4006 if (expr)
4007 {
4008 *pneed_stall = 0;
4009 return expr;
4010 }
4011
4012 /* Turn the av set to a vector for sorting. */
4013 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4014 {
4015 ready.n_ready = 0;
4016 return NULL;
4017 }
4018
4019 /* Build the final ready list. */
4020 convert_vec_av_set_to_ready ();
4021 return NULL;
4022 }
4023
4024 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4025 static bool
4026 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4027 {
4028 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4029 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4030 : FENCE_CYCLE (fence) - 1;
4031 bool res = false;
4032 int sort_p = 0;
4033
4034 if (!targetm.sched.dfa_new_cycle)
4035 return false;
4036
4037 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4038
4039 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4040 insn, last_scheduled_cycle,
4041 FENCE_CYCLE (fence), &sort_p))
4042 {
4043 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4044 advance_one_cycle (fence);
4045 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4046 res = true;
4047 }
4048
4049 return res;
4050 }
4051
4052 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4053 we can issue. FENCE is the current fence. */
4054 static int
4055 invoke_reorder_hooks (fence_t fence)
4056 {
4057 int issue_more;
4058 bool ran_hook = false;
4059
4060 /* Call the reorder hook at the beginning of the cycle, and call
4061 the reorder2 hook in the middle of the cycle. */
4062 if (FENCE_ISSUED_INSNS (fence) == 0)
4063 {
4064 if (targetm.sched.reorder
4065 && !SCHED_GROUP_P (ready_element (&ready, 0))
4066 && ready.n_ready > 1)
4067 {
4068 /* Don't give reorder the most prioritized insn as it can break
4069 pipelining. */
4070 if (pipelining_p)
4071 --ready.n_ready;
4072
4073 issue_more
4074 = targetm.sched.reorder (sched_dump, sched_verbose,
4075 ready_lastpos (&ready),
4076 &ready.n_ready, FENCE_CYCLE (fence));
4077
4078 if (pipelining_p)
4079 ++ready.n_ready;
4080
4081 ran_hook = true;
4082 }
4083 else
4084 /* Initialize can_issue_more for variable_issue. */
4085 issue_more = issue_rate;
4086 }
4087 else if (targetm.sched.reorder2
4088 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4089 {
4090 if (ready.n_ready == 1)
4091 issue_more =
4092 targetm.sched.reorder2 (sched_dump, sched_verbose,
4093 ready_lastpos (&ready),
4094 &ready.n_ready, FENCE_CYCLE (fence));
4095 else
4096 {
4097 if (pipelining_p)
4098 --ready.n_ready;
4099
4100 issue_more =
4101 targetm.sched.reorder2 (sched_dump, sched_verbose,
4102 ready.n_ready
4103 ? ready_lastpos (&ready) : NULL,
4104 &ready.n_ready, FENCE_CYCLE (fence));
4105
4106 if (pipelining_p)
4107 ++ready.n_ready;
4108 }
4109
4110 ran_hook = true;
4111 }
4112 else
4113 issue_more = FENCE_ISSUE_MORE (fence);
4114
4115 /* Ensure that ready list and vec_av_set are in line with each other,
4116 i.e. vec_av_set[i] == ready_element (&ready, i). */
4117 if (issue_more && ran_hook)
4118 {
4119 int i, j, n;
4120 rtx *arr = ready.vec;
4121 expr_t *vec = VEC_address (expr_t, vec_av_set);
4122
4123 for (i = 0, n = ready.n_ready; i < n; i++)
4124 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4125 {
4126 expr_t tmp;
4127
4128 for (j = i; j < n; j++)
4129 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4130 break;
4131 gcc_assert (j < n);
4132
4133 tmp = vec[i];
4134 vec[i] = vec[j];
4135 vec[j] = tmp;
4136 }
4137 }
4138
4139 return issue_more;
4140 }
4141
4142 /* Return an EXPR correponding to INDEX element of ready list, if
4143 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4144 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4145 ready.vec otherwise. */
4146 static inline expr_t
4147 find_expr_for_ready (int index, bool follow_ready_element)
4148 {
4149 expr_t expr;
4150 int real_index;
4151
4152 real_index = follow_ready_element ? ready.first - index : index;
4153
4154 expr = VEC_index (expr_t, vec_av_set, real_index);
4155 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4156
4157 return expr;
4158 }
4159
4160 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4161 of such insns found. */
4162 static int
4163 invoke_dfa_lookahead_guard (void)
4164 {
4165 int i, n;
4166 bool have_hook
4167 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4168
4169 if (sched_verbose >= 2)
4170 sel_print ("ready after reorder: ");
4171
4172 for (i = 0, n = 0; i < ready.n_ready; i++)
4173 {
4174 expr_t expr;
4175 insn_t insn;
4176 int r;
4177
4178 /* In this loop insn is Ith element of the ready list given by
4179 ready_element, not Ith element of ready.vec. */
4180 insn = ready_element (&ready, i);
4181
4182 if (! have_hook || i == 0)
4183 r = 0;
4184 else
4185 r = !targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn);
4186
4187 gcc_assert (INSN_CODE (insn) >= 0);
4188
4189 /* Only insns with ready_try = 0 can get here
4190 from fill_ready_list. */
4191 gcc_assert (ready_try [i] == 0);
4192 ready_try[i] = r;
4193 if (!r)
4194 n++;
4195
4196 expr = find_expr_for_ready (i, true);
4197
4198 if (sched_verbose >= 2)
4199 {
4200 dump_vinsn (EXPR_VINSN (expr));
4201 sel_print (":%d; ", ready_try[i]);
4202 }
4203 }
4204
4205 if (sched_verbose >= 2)
4206 sel_print ("\n");
4207 return n;
4208 }
4209
4210 /* Calculate the number of privileged insns and return it. */
4211 static int
4212 calculate_privileged_insns (void)
4213 {
4214 expr_t cur_expr, min_spec_expr = NULL;
4215 int privileged_n = 0, i;
4216
4217 for (i = 0; i < ready.n_ready; i++)
4218 {
4219 if (ready_try[i])
4220 continue;
4221
4222 if (! min_spec_expr)
4223 min_spec_expr = find_expr_for_ready (i, true);
4224
4225 cur_expr = find_expr_for_ready (i, true);
4226
4227 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4228 break;
4229
4230 ++privileged_n;
4231 }
4232
4233 if (i == ready.n_ready)
4234 privileged_n = 0;
4235
4236 if (sched_verbose >= 2)
4237 sel_print ("privileged_n: %d insns with SPEC %d\n",
4238 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4239 return privileged_n;
4240 }
4241
4242 /* Call the rest of the hooks after the choice was made. Return
4243 the number of insns that still can be issued given that the current
4244 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4245 and the insn chosen for scheduling, respectively. */
4246 static int
4247 invoke_aftermath_hooks (fence_t fence, rtx best_insn, int issue_more)
4248 {
4249 gcc_assert (INSN_P (best_insn));
4250
4251 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4252 sel_dfa_new_cycle (best_insn, fence);
4253
4254 if (targetm.sched.variable_issue)
4255 {
4256 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4257 issue_more =
4258 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4259 issue_more);
4260 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4261 }
4262 else if (GET_CODE (PATTERN (best_insn)) != USE
4263 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4264 issue_more--;
4265
4266 return issue_more;
4267 }
4268
4269 /* Estimate the cost of issuing INSN on DFA state STATE. */
4270 static int
4271 estimate_insn_cost (rtx insn, state_t state)
4272 {
4273 static state_t temp = NULL;
4274 int cost;
4275
4276 if (!temp)
4277 temp = xmalloc (dfa_state_size);
4278
4279 memcpy (temp, state, dfa_state_size);
4280 cost = state_transition (temp, insn);
4281
4282 if (cost < 0)
4283 return 0;
4284 else if (cost == 0)
4285 return 1;
4286 return cost;
4287 }
4288
4289 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4290 This function properly handles ASMs, USEs etc. */
4291 static int
4292 get_expr_cost (expr_t expr, fence_t fence)
4293 {
4294 rtx insn = EXPR_INSN_RTX (expr);
4295
4296 if (recog_memoized (insn) < 0)
4297 {
4298 if (!FENCE_STARTS_CYCLE_P (fence)
4299 && INSN_ASM_P (insn))
4300 /* This is asm insn which is tryed to be issued on the
4301 cycle not first. Issue it on the next cycle. */
4302 return 1;
4303 else
4304 /* A USE insn, or something else we don't need to
4305 understand. We can't pass these directly to
4306 state_transition because it will trigger a
4307 fatal error for unrecognizable insns. */
4308 return 0;
4309 }
4310 else
4311 return estimate_insn_cost (insn, FENCE_STATE (fence));
4312 }
4313
4314 /* Find the best insn for scheduling, either via max_issue or just take
4315 the most prioritized available. */
4316 static int
4317 choose_best_insn (fence_t fence, int privileged_n, int *index)
4318 {
4319 int can_issue = 0;
4320
4321 if (dfa_lookahead > 0)
4322 {
4323 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4324 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4325 can_issue = max_issue (&ready, privileged_n,
4326 FENCE_STATE (fence), true, index);
4327 if (sched_verbose >= 2)
4328 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4329 can_issue, FENCE_ISSUED_INSNS (fence));
4330 }
4331 else
4332 {
4333 /* We can't use max_issue; just return the first available element. */
4334 int i;
4335
4336 for (i = 0; i < ready.n_ready; i++)
4337 {
4338 expr_t expr = find_expr_for_ready (i, true);
4339
4340 if (get_expr_cost (expr, fence) < 1)
4341 {
4342 can_issue = can_issue_more;
4343 *index = i;
4344
4345 if (sched_verbose >= 2)
4346 sel_print ("using %dth insn from the ready list\n", i + 1);
4347
4348 break;
4349 }
4350 }
4351
4352 if (i == ready.n_ready)
4353 {
4354 can_issue = 0;
4355 *index = -1;
4356 }
4357 }
4358
4359 return can_issue;
4360 }
4361
4362 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4363 BNDS and FENCE are current boundaries and scheduling fence respectively.
4364 Return the expr found and NULL if nothing can be issued atm.
4365 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4366 static expr_t
4367 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4368 int *pneed_stall)
4369 {
4370 expr_t best;
4371
4372 /* Choose the best insn for scheduling via:
4373 1) sorting the ready list based on priority;
4374 2) calling the reorder hook;
4375 3) calling max_issue. */
4376 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4377 if (best == NULL && ready.n_ready > 0)
4378 {
4379 int privileged_n, index;
4380
4381 can_issue_more = invoke_reorder_hooks (fence);
4382 if (can_issue_more > 0)
4383 {
4384 /* Try choosing the best insn until we find one that is could be
4385 scheduled due to liveness restrictions on its destination register.
4386 In the future, we'd like to choose once and then just probe insns
4387 in the order of their priority. */
4388 invoke_dfa_lookahead_guard ();
4389 privileged_n = calculate_privileged_insns ();
4390 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4391 if (can_issue_more)
4392 best = find_expr_for_ready (index, true);
4393 }
4394 /* We had some available insns, so if we can't issue them,
4395 we have a stall. */
4396 if (can_issue_more == 0)
4397 {
4398 best = NULL;
4399 *pneed_stall = 1;
4400 }
4401 }
4402
4403 if (best != NULL)
4404 {
4405 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4406 can_issue_more);
4407 if (targetm.sched.variable_issue
4408 && can_issue_more == 0)
4409 *pneed_stall = 1;
4410 }
4411
4412 if (sched_verbose >= 2)
4413 {
4414 if (best != NULL)
4415 {
4416 sel_print ("Best expression (vliw form): ");
4417 dump_expr (best);
4418 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4419 }
4420 else
4421 sel_print ("No best expr found!\n");
4422 }
4423
4424 return best;
4425 }
4426 \f
4427
4428 /* Functions that implement the core of the scheduler. */
4429
4430
4431 /* Emit an instruction from EXPR with SEQNO and VINSN after
4432 PLACE_TO_INSERT. */
4433 static insn_t
4434 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4435 insn_t place_to_insert)
4436 {
4437 /* This assert fails when we have identical instructions
4438 one of which dominates the other. In this case move_op ()
4439 finds the first instruction and doesn't search for second one.
4440 The solution would be to compute av_set after the first found
4441 insn and, if insn present in that set, continue searching.
4442 For now we workaround this issue in move_op. */
4443 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4444
4445 if (EXPR_WAS_RENAMED (expr))
4446 {
4447 unsigned regno = expr_dest_regno (expr);
4448
4449 if (HARD_REGISTER_NUM_P (regno))
4450 {
4451 df_set_regs_ever_live (regno, true);
4452 reg_rename_tick[regno] = ++reg_rename_this_tick;
4453 }
4454 }
4455
4456 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4457 place_to_insert);
4458 }
4459
4460 /* Return TRUE if BB can hold bookkeeping code. */
4461 static bool
4462 block_valid_for_bookkeeping_p (basic_block bb)
4463 {
4464 insn_t bb_end = BB_END (bb);
4465
4466 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4467 return false;
4468
4469 if (INSN_P (bb_end))
4470 {
4471 if (INSN_SCHED_TIMES (bb_end) > 0)
4472 return false;
4473 }
4474 else
4475 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4476
4477 return true;
4478 }
4479
4480 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4481 into E2->dest, except from E1->src (there may be a sequence of empty basic
4482 blocks between E1->src and E2->dest). Return found block, or NULL if new
4483 one must be created. If LAX holds, don't assume there is a simple path
4484 from E1->src to E2->dest. */
4485 static basic_block
4486 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4487 {
4488 basic_block candidate_block = NULL;
4489 edge e;
4490
4491 /* Loop over edges from E1 to E2, inclusive. */
4492 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR; e = EDGE_SUCC (e->dest, 0))
4493 {
4494 if (EDGE_COUNT (e->dest->preds) == 2)
4495 {
4496 if (candidate_block == NULL)
4497 candidate_block = (EDGE_PRED (e->dest, 0) == e
4498 ? EDGE_PRED (e->dest, 1)->src
4499 : EDGE_PRED (e->dest, 0)->src);
4500 else
4501 /* Found additional edge leading to path from e1 to e2
4502 from aside. */
4503 return NULL;
4504 }
4505 else if (EDGE_COUNT (e->dest->preds) > 2)
4506 /* Several edges leading to path from e1 to e2 from aside. */
4507 return NULL;
4508
4509 if (e == e2)
4510 return ((!lax || candidate_block)
4511 && block_valid_for_bookkeeping_p (candidate_block)
4512 ? candidate_block
4513 : NULL);
4514
4515 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4516 return NULL;
4517 }
4518
4519 if (lax)
4520 return NULL;
4521
4522 gcc_unreachable ();
4523 }
4524
4525 /* Create new basic block for bookkeeping code for path(s) incoming into
4526 E2->dest, except from E1->src. Return created block. */
4527 static basic_block
4528 create_block_for_bookkeeping (edge e1, edge e2)
4529 {
4530 basic_block new_bb, bb = e2->dest;
4531
4532 /* Check that we don't spoil the loop structure. */
4533 if (current_loop_nest)
4534 {
4535 basic_block latch = current_loop_nest->latch;
4536
4537 /* We do not split header. */
4538 gcc_assert (e2->dest != current_loop_nest->header);
4539
4540 /* We do not redirect the only edge to the latch block. */
4541 gcc_assert (e1->dest != latch
4542 || !single_pred_p (latch)
4543 || e1 != single_pred_edge (latch));
4544 }
4545
4546 /* Split BB to insert BOOK_INSN there. */
4547 new_bb = sched_split_block (bb, NULL);
4548
4549 /* Move note_list from the upper bb. */
4550 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4551 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4552 BB_NOTE_LIST (bb) = NULL_RTX;
4553
4554 gcc_assert (e2->dest == bb);
4555
4556 /* Skip block for bookkeeping copy when leaving E1->src. */
4557 if (e1->flags & EDGE_FALLTHRU)
4558 sel_redirect_edge_and_branch_force (e1, new_bb);
4559 else
4560 sel_redirect_edge_and_branch (e1, new_bb);
4561
4562 gcc_assert (e1->dest == new_bb);
4563 gcc_assert (sel_bb_empty_p (bb));
4564
4565 /* To keep basic block numbers in sync between debug and non-debug
4566 compilations, we have to rotate blocks here. Consider that we
4567 started from (a,b)->d, (c,d)->e, and d contained only debug
4568 insns. It would have been removed before if the debug insns
4569 weren't there, so we'd have split e rather than d. So what we do
4570 now is to swap the block numbers of new_bb and
4571 single_succ(new_bb) == e, so that the insns that were in e before
4572 get the new block number. */
4573
4574 if (MAY_HAVE_DEBUG_INSNS)
4575 {
4576 basic_block succ;
4577 insn_t insn = sel_bb_head (new_bb);
4578 insn_t last;
4579
4580 if (DEBUG_INSN_P (insn)
4581 && single_succ_p (new_bb)
4582 && (succ = single_succ (new_bb))
4583 && succ != EXIT_BLOCK_PTR
4584 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4585 {
4586 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4587 insn = NEXT_INSN (insn);
4588
4589 if (insn == last)
4590 {
4591 sel_global_bb_info_def gbi;
4592 sel_region_bb_info_def rbi;
4593 int i;
4594
4595 if (sched_verbose >= 2)
4596 sel_print ("Swapping block ids %i and %i\n",
4597 new_bb->index, succ->index);
4598
4599 i = new_bb->index;
4600 new_bb->index = succ->index;
4601 succ->index = i;
4602
4603 SET_BASIC_BLOCK (new_bb->index, new_bb);
4604 SET_BASIC_BLOCK (succ->index, succ);
4605
4606 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4607 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4608 sizeof (gbi));
4609 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4610
4611 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4612 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4613 sizeof (rbi));
4614 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4615
4616 i = BLOCK_TO_BB (new_bb->index);
4617 BLOCK_TO_BB (new_bb->index) = BLOCK_TO_BB (succ->index);
4618 BLOCK_TO_BB (succ->index) = i;
4619
4620 i = CONTAINING_RGN (new_bb->index);
4621 CONTAINING_RGN (new_bb->index) = CONTAINING_RGN (succ->index);
4622 CONTAINING_RGN (succ->index) = i;
4623
4624 for (i = 0; i < current_nr_blocks; i++)
4625 if (BB_TO_BLOCK (i) == succ->index)
4626 BB_TO_BLOCK (i) = new_bb->index;
4627 else if (BB_TO_BLOCK (i) == new_bb->index)
4628 BB_TO_BLOCK (i) = succ->index;
4629
4630 FOR_BB_INSNS (new_bb, insn)
4631 if (INSN_P (insn))
4632 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4633
4634 FOR_BB_INSNS (succ, insn)
4635 if (INSN_P (insn))
4636 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4637
4638 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4639 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4640
4641 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4642 && LABEL_P (BB_HEAD (succ)));
4643
4644 if (sched_verbose >= 4)
4645 sel_print ("Swapping code labels %i and %i\n",
4646 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4647 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4648
4649 i = CODE_LABEL_NUMBER (BB_HEAD (new_bb));
4650 CODE_LABEL_NUMBER (BB_HEAD (new_bb))
4651 = CODE_LABEL_NUMBER (BB_HEAD (succ));
4652 CODE_LABEL_NUMBER (BB_HEAD (succ)) = i;
4653 }
4654 }
4655 }
4656
4657 return bb;
4658 }
4659
4660 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4661 into E2->dest, except from E1->src. */
4662 static insn_t
4663 find_place_for_bookkeeping (edge e1, edge e2)
4664 {
4665 insn_t place_to_insert;
4666 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4667 create new basic block, but insert bookkeeping there. */
4668 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4669
4670 if (book_block)
4671 {
4672 place_to_insert = BB_END (book_block);
4673
4674 /* Don't use a block containing only debug insns for
4675 bookkeeping, this causes scheduling differences between debug
4676 and non-debug compilations, for the block would have been
4677 removed already. */
4678 if (DEBUG_INSN_P (place_to_insert))
4679 {
4680 rtx insn = sel_bb_head (book_block);
4681
4682 while (insn != place_to_insert &&
4683 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4684 insn = NEXT_INSN (insn);
4685
4686 if (insn == place_to_insert)
4687 book_block = NULL;
4688 }
4689 }
4690
4691 if (!book_block)
4692 {
4693 book_block = create_block_for_bookkeeping (e1, e2);
4694 place_to_insert = BB_END (book_block);
4695 if (sched_verbose >= 9)
4696 sel_print ("New block is %i, split from bookkeeping block %i\n",
4697 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4698 }
4699 else
4700 {
4701 if (sched_verbose >= 9)
4702 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4703 }
4704
4705 /* If basic block ends with a jump, insert bookkeeping code right before it. */
4706 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4707 place_to_insert = PREV_INSN (place_to_insert);
4708
4709 return place_to_insert;
4710 }
4711
4712 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4713 for JOIN_POINT. */
4714 static int
4715 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4716 {
4717 int seqno;
4718 rtx next;
4719
4720 /* Check if we are about to insert bookkeeping copy before a jump, and use
4721 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4722 next = NEXT_INSN (place_to_insert);
4723 if (INSN_P (next)
4724 && JUMP_P (next)
4725 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4726 {
4727 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4728 seqno = INSN_SEQNO (next);
4729 }
4730 else if (INSN_SEQNO (join_point) > 0)
4731 seqno = INSN_SEQNO (join_point);
4732 else
4733 {
4734 seqno = get_seqno_by_preds (place_to_insert);
4735
4736 /* Sometimes the fences can move in such a way that there will be
4737 no instructions with positive seqno around this bookkeeping.
4738 This means that there will be no way to get to it by a regular
4739 fence movement. Never mind because we pick up such pieces for
4740 rescheduling anyways, so any positive value will do for now. */
4741 if (seqno < 0)
4742 {
4743 gcc_assert (pipelining_p);
4744 seqno = 1;
4745 }
4746 }
4747
4748 gcc_assert (seqno > 0);
4749 return seqno;
4750 }
4751
4752 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4753 NEW_SEQNO to it. Return created insn. */
4754 static insn_t
4755 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4756 {
4757 rtx new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4758
4759 vinsn_t new_vinsn
4760 = create_vinsn_from_insn_rtx (new_insn_rtx,
4761 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4762
4763 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4764 place_to_insert);
4765
4766 INSN_SCHED_TIMES (new_insn) = 0;
4767 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4768
4769 return new_insn;
4770 }
4771
4772 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4773 E2->dest, except from E1->src (there may be a sequence of empty blocks
4774 between E1->src and E2->dest). Return block containing the copy.
4775 All scheduler data is initialized for the newly created insn. */
4776 static basic_block
4777 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4778 {
4779 insn_t join_point, place_to_insert, new_insn;
4780 int new_seqno;
4781 bool need_to_exchange_data_sets;
4782
4783 if (sched_verbose >= 4)
4784 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4785 e2->dest->index);
4786
4787 join_point = sel_bb_head (e2->dest);
4788 place_to_insert = find_place_for_bookkeeping (e1, e2);
4789 if (!place_to_insert)
4790 return NULL;
4791 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4792 need_to_exchange_data_sets
4793 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4794
4795 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4796
4797 /* When inserting bookkeeping insn in new block, av sets should be
4798 following: old basic block (that now holds bookkeeping) data sets are
4799 the same as was before generation of bookkeeping, and new basic block
4800 (that now hold all other insns of old basic block) data sets are
4801 invalid. So exchange data sets for these basic blocks as sel_split_block
4802 mistakenly exchanges them in this case. Cannot do it earlier because
4803 when single instruction is added to new basic block it should hold NULL
4804 lv_set. */
4805 if (need_to_exchange_data_sets)
4806 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4807 BLOCK_FOR_INSN (join_point));
4808
4809 stat_bookkeeping_copies++;
4810 return BLOCK_FOR_INSN (new_insn);
4811 }
4812
4813 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4814 on FENCE, but we are unable to copy them. */
4815 static void
4816 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4817 {
4818 expr_t expr;
4819 av_set_iterator i;
4820
4821 /* An expression does not need bookkeeping if it is available on all paths
4822 from current block to original block and current block dominates
4823 original block. We check availability on all paths by examining
4824 EXPR_SPEC; this is not equivalent, because it may be positive even
4825 if expr is available on all paths (but if expr is not available on
4826 any path, EXPR_SPEC will be positive). */
4827
4828 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4829 {
4830 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4831 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4832 && (EXPR_SPEC (expr)
4833 || !EXPR_ORIG_BB_INDEX (expr)
4834 || !dominated_by_p (CDI_DOMINATORS,
4835 BASIC_BLOCK (EXPR_ORIG_BB_INDEX (expr)),
4836 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4837 {
4838 if (sched_verbose >= 4)
4839 sel_print ("Expr %d removed because it would need bookkeeping, which "
4840 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4841 av_set_iter_remove (&i);
4842 }
4843 }
4844 }
4845
4846 /* Moving conditional jump through some instructions.
4847
4848 Consider example:
4849
4850 ... <- current scheduling point
4851 NOTE BASIC BLOCK: <- bb header
4852 (p8) add r14=r14+0x9;;
4853 (p8) mov [r14]=r23
4854 (!p8) jump L1;;
4855 NOTE BASIC BLOCK:
4856 ...
4857
4858 We can schedule jump one cycle earlier, than mov, because they cannot be
4859 executed together as their predicates are mutually exclusive.
4860
4861 This is done in this way: first, new fallthrough basic block is created
4862 after jump (it is always can be done, because there already should be a
4863 fallthrough block, where control flow goes in case of predicate being true -
4864 in our example; otherwise there should be a dependence between those
4865 instructions and jump and we cannot schedule jump right now);
4866 next, all instructions between jump and current scheduling point are moved
4867 to this new block. And the result is this:
4868
4869 NOTE BASIC BLOCK:
4870 (!p8) jump L1 <- current scheduling point
4871 NOTE BASIC BLOCK: <- bb header
4872 (p8) add r14=r14+0x9;;
4873 (p8) mov [r14]=r23
4874 NOTE BASIC BLOCK:
4875 ...
4876 */
4877 static void
4878 move_cond_jump (rtx insn, bnd_t bnd)
4879 {
4880 edge ft_edge;
4881 basic_block block_from, block_next, block_new, block_bnd, bb;
4882 rtx next, prev, link, head;
4883
4884 block_from = BLOCK_FOR_INSN (insn);
4885 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4886 prev = BND_TO (bnd);
4887
4888 #ifdef ENABLE_CHECKING
4889 /* Moving of jump should not cross any other jumps or beginnings of new
4890 basic blocks. The only exception is when we move a jump through
4891 mutually exclusive insns along fallthru edges. */
4892 if (block_from != block_bnd)
4893 {
4894 bb = block_from;
4895 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4896 link = PREV_INSN (link))
4897 {
4898 if (INSN_P (link))
4899 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4900 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4901 {
4902 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4903 bb = BLOCK_FOR_INSN (link);
4904 }
4905 }
4906 }
4907 #endif
4908
4909 /* Jump is moved to the boundary. */
4910 next = PREV_INSN (insn);
4911 BND_TO (bnd) = insn;
4912
4913 ft_edge = find_fallthru_edge_from (block_from);
4914 block_next = ft_edge->dest;
4915 /* There must be a fallthrough block (or where should go
4916 control flow in case of false jump predicate otherwise?). */
4917 gcc_assert (block_next);
4918
4919 /* Create new empty basic block after source block. */
4920 block_new = sel_split_edge (ft_edge);
4921 gcc_assert (block_new->next_bb == block_next
4922 && block_from->next_bb == block_new);
4923
4924 /* Move all instructions except INSN to BLOCK_NEW. */
4925 bb = block_bnd;
4926 head = BB_HEAD (block_new);
4927 while (bb != block_from->next_bb)
4928 {
4929 rtx from, to;
4930 from = bb == block_bnd ? prev : sel_bb_head (bb);
4931 to = bb == block_from ? next : sel_bb_end (bb);
4932
4933 /* The jump being moved can be the first insn in the block.
4934 In this case we don't have to move anything in this block. */
4935 if (NEXT_INSN (to) != from)
4936 {
4937 reorder_insns (from, to, head);
4938
4939 for (link = to; link != head; link = PREV_INSN (link))
4940 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4941 head = to;
4942 }
4943
4944 /* Cleanup possibly empty blocks left. */
4945 block_next = bb->next_bb;
4946 if (bb != block_from)
4947 tidy_control_flow (bb, false);
4948 bb = block_next;
4949 }
4950
4951 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4952 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4953
4954 gcc_assert (!sel_bb_empty_p (block_from)
4955 && !sel_bb_empty_p (block_new));
4956
4957 /* Update data sets for BLOCK_NEW to represent that INSN and
4958 instructions from the other branch of INSN is no longer
4959 available at BLOCK_NEW. */
4960 BB_AV_LEVEL (block_new) = global_level;
4961 gcc_assert (BB_LV_SET (block_new) == NULL);
4962 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4963 update_data_sets (sel_bb_head (block_new));
4964
4965 /* INSN is a new basic block header - so prepare its data
4966 structures and update availability and liveness sets. */
4967 update_data_sets (insn);
4968
4969 if (sched_verbose >= 4)
4970 sel_print ("Moving jump %d\n", INSN_UID (insn));
4971 }
4972
4973 /* Remove nops generated during move_op for preventing removal of empty
4974 basic blocks. */
4975 static void
4976 remove_temp_moveop_nops (bool full_tidying)
4977 {
4978 int i;
4979 insn_t insn;
4980
4981 FOR_EACH_VEC_ELT (insn_t, vec_temp_moveop_nops, i, insn)
4982 {
4983 gcc_assert (INSN_NOP_P (insn));
4984 return_nop_to_pool (insn, full_tidying);
4985 }
4986
4987 /* Empty the vector. */
4988 if (VEC_length (insn_t, vec_temp_moveop_nops) > 0)
4989 VEC_block_remove (insn_t, vec_temp_moveop_nops, 0,
4990 VEC_length (insn_t, vec_temp_moveop_nops));
4991 }
4992
4993 /* Records the maximal UID before moving up an instruction. Used for
4994 distinguishing between bookkeeping copies and original insns. */
4995 static int max_uid_before_move_op = 0;
4996
4997 /* Remove from AV_VLIW_P all instructions but next when debug counter
4998 tells us so. Next instruction is fetched from BNDS. */
4999 static void
5000 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5001 {
5002 if (! dbg_cnt (sel_sched_insn_cnt))
5003 /* Leave only the next insn in av_vliw. */
5004 {
5005 av_set_iterator av_it;
5006 expr_t expr;
5007 bnd_t bnd = BLIST_BND (bnds);
5008 insn_t next = BND_TO (bnd);
5009
5010 gcc_assert (BLIST_NEXT (bnds) == NULL);
5011
5012 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5013 if (EXPR_INSN_RTX (expr) != next)
5014 av_set_iter_remove (&av_it);
5015 }
5016 }
5017
5018 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5019 the computed set to *AV_VLIW_P. */
5020 static void
5021 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5022 {
5023 if (sched_verbose >= 2)
5024 {
5025 sel_print ("Boundaries: ");
5026 dump_blist (bnds);
5027 sel_print ("\n");
5028 }
5029
5030 for (; bnds; bnds = BLIST_NEXT (bnds))
5031 {
5032 bnd_t bnd = BLIST_BND (bnds);
5033 av_set_t av1_copy;
5034 insn_t bnd_to = BND_TO (bnd);
5035
5036 /* Rewind BND->TO to the basic block header in case some bookkeeping
5037 instructions were inserted before BND->TO and it needs to be
5038 adjusted. */
5039 if (sel_bb_head_p (bnd_to))
5040 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5041 else
5042 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5043 {
5044 bnd_to = PREV_INSN (bnd_to);
5045 if (sel_bb_head_p (bnd_to))
5046 break;
5047 }
5048
5049 if (BND_TO (bnd) != bnd_to)
5050 {
5051 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5052 FENCE_INSN (fence) = bnd_to;
5053 BND_TO (bnd) = bnd_to;
5054 }
5055
5056 av_set_clear (&BND_AV (bnd));
5057 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5058
5059 av_set_clear (&BND_AV1 (bnd));
5060 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5061
5062 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5063
5064 av1_copy = av_set_copy (BND_AV1 (bnd));
5065 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5066 }
5067
5068 if (sched_verbose >= 2)
5069 {
5070 sel_print ("Available exprs (vliw form): ");
5071 dump_av_set (*av_vliw_p);
5072 sel_print ("\n");
5073 }
5074 }
5075
5076 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5077 expression. When FOR_MOVEOP is true, also replace the register of
5078 expressions found with the register from EXPR_VLIW. */
5079 static av_set_t
5080 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5081 {
5082 av_set_t expr_seq = NULL;
5083 expr_t expr;
5084 av_set_iterator i;
5085
5086 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5087 {
5088 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5089 {
5090 if (for_moveop)
5091 {
5092 /* The sequential expression has the right form to pass
5093 to move_op except when renaming happened. Put the
5094 correct register in EXPR then. */
5095 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5096 {
5097 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5098 {
5099 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5100 stat_renamed_scheduled++;
5101 }
5102 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5103 This is needed when renaming came up with original
5104 register. */
5105 else if (EXPR_TARGET_AVAILABLE (expr)
5106 != EXPR_TARGET_AVAILABLE (expr_vliw))
5107 {
5108 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5109 EXPR_TARGET_AVAILABLE (expr) = 1;
5110 }
5111 }
5112 if (EXPR_WAS_SUBSTITUTED (expr))
5113 stat_substitutions_total++;
5114 }
5115
5116 av_set_add (&expr_seq, expr);
5117
5118 /* With substitution inside insn group, it is possible
5119 that more than one expression in expr_seq will correspond
5120 to expr_vliw. In this case, choose one as the attempt to
5121 move both leads to miscompiles. */
5122 break;
5123 }
5124 }
5125
5126 if (for_moveop && sched_verbose >= 2)
5127 {
5128 sel_print ("Best expression(s) (sequential form): ");
5129 dump_av_set (expr_seq);
5130 sel_print ("\n");
5131 }
5132
5133 return expr_seq;
5134 }
5135
5136
5137 /* Move nop to previous block. */
5138 static void ATTRIBUTE_UNUSED
5139 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5140 {
5141 insn_t prev_insn, next_insn, note;
5142
5143 gcc_assert (sel_bb_head_p (nop)
5144 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5145 note = bb_note (BLOCK_FOR_INSN (nop));
5146 prev_insn = sel_bb_end (prev_bb);
5147 next_insn = NEXT_INSN (nop);
5148 gcc_assert (prev_insn != NULL_RTX
5149 && PREV_INSN (note) == prev_insn);
5150
5151 NEXT_INSN (prev_insn) = nop;
5152 PREV_INSN (nop) = prev_insn;
5153
5154 PREV_INSN (note) = nop;
5155 NEXT_INSN (note) = next_insn;
5156
5157 NEXT_INSN (nop) = note;
5158 PREV_INSN (next_insn) = note;
5159
5160 BB_END (prev_bb) = nop;
5161 BLOCK_FOR_INSN (nop) = prev_bb;
5162 }
5163
5164 /* Prepare a place to insert the chosen expression on BND. */
5165 static insn_t
5166 prepare_place_to_insert (bnd_t bnd)
5167 {
5168 insn_t place_to_insert;
5169
5170 /* Init place_to_insert before calling move_op, as the later
5171 can possibly remove BND_TO (bnd). */
5172 if (/* If this is not the first insn scheduled. */
5173 BND_PTR (bnd))
5174 {
5175 /* Add it after last scheduled. */
5176 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5177 if (DEBUG_INSN_P (place_to_insert))
5178 {
5179 ilist_t l = BND_PTR (bnd);
5180 while ((l = ILIST_NEXT (l)) &&
5181 DEBUG_INSN_P (ILIST_INSN (l)))
5182 ;
5183 if (!l)
5184 place_to_insert = NULL;
5185 }
5186 }
5187 else
5188 place_to_insert = NULL;
5189
5190 if (!place_to_insert)
5191 {
5192 /* Add it before BND_TO. The difference is in the
5193 basic block, where INSN will be added. */
5194 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5195 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5196 == BLOCK_FOR_INSN (BND_TO (bnd)));
5197 }
5198
5199 return place_to_insert;
5200 }
5201
5202 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5203 Return the expression to emit in C_EXPR. */
5204 static bool
5205 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5206 av_set_t expr_seq, expr_t c_expr)
5207 {
5208 bool b, should_move;
5209 unsigned book_uid;
5210 bitmap_iterator bi;
5211 int n_bookkeeping_copies_before_moveop;
5212
5213 /* Make a move. This call will remove the original operation,
5214 insert all necessary bookkeeping instructions and update the
5215 data sets. After that all we have to do is add the operation
5216 at before BND_TO (BND). */
5217 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5218 max_uid_before_move_op = get_max_uid ();
5219 bitmap_clear (current_copies);
5220 bitmap_clear (current_originators);
5221
5222 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5223 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5224
5225 /* We should be able to find the expression we've chosen for
5226 scheduling. */
5227 gcc_assert (b);
5228
5229 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5230 stat_insns_needed_bookkeeping++;
5231
5232 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5233 {
5234 unsigned uid;
5235 bitmap_iterator bi;
5236
5237 /* We allocate these bitmaps lazily. */
5238 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5239 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5240
5241 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5242 current_originators);
5243
5244 /* Transitively add all originators' originators. */
5245 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5246 if (INSN_ORIGINATORS_BY_UID (uid))
5247 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5248 INSN_ORIGINATORS_BY_UID (uid));
5249 }
5250
5251 return should_move;
5252 }
5253
5254
5255 /* Debug a DFA state as an array of bytes. */
5256 static void
5257 debug_state (state_t state)
5258 {
5259 unsigned char *p;
5260 unsigned int i, size = dfa_state_size;
5261
5262 sel_print ("state (%u):", size);
5263 for (i = 0, p = (unsigned char *) state; i < size; i++)
5264 sel_print (" %d", p[i]);
5265 sel_print ("\n");
5266 }
5267
5268 /* Advance state on FENCE with INSN. Return true if INSN is
5269 an ASM, and we should advance state once more. */
5270 static bool
5271 advance_state_on_fence (fence_t fence, insn_t insn)
5272 {
5273 bool asm_p;
5274
5275 if (recog_memoized (insn) >= 0)
5276 {
5277 int res;
5278 state_t temp_state = alloca (dfa_state_size);
5279
5280 gcc_assert (!INSN_ASM_P (insn));
5281 asm_p = false;
5282
5283 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5284 res = state_transition (FENCE_STATE (fence), insn);
5285 gcc_assert (res < 0);
5286
5287 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5288 {
5289 FENCE_ISSUED_INSNS (fence)++;
5290
5291 /* We should never issue more than issue_rate insns. */
5292 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5293 gcc_unreachable ();
5294 }
5295 }
5296 else
5297 {
5298 /* This could be an ASM insn which we'd like to schedule
5299 on the next cycle. */
5300 asm_p = INSN_ASM_P (insn);
5301 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5302 advance_one_cycle (fence);
5303 }
5304
5305 if (sched_verbose >= 2)
5306 debug_state (FENCE_STATE (fence));
5307 if (!DEBUG_INSN_P (insn))
5308 FENCE_STARTS_CYCLE_P (fence) = 0;
5309 FENCE_ISSUE_MORE (fence) = can_issue_more;
5310 return asm_p;
5311 }
5312
5313 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5314 is nonzero if we need to stall after issuing INSN. */
5315 static void
5316 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5317 {
5318 bool asm_p;
5319
5320 /* First, reflect that something is scheduled on this fence. */
5321 asm_p = advance_state_on_fence (fence, insn);
5322 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5323 VEC_safe_push (rtx, gc, FENCE_EXECUTING_INSNS (fence), insn);
5324 if (SCHED_GROUP_P (insn))
5325 {
5326 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5327 SCHED_GROUP_P (insn) = 0;
5328 }
5329 else
5330 FENCE_SCHED_NEXT (fence) = NULL_RTX;
5331 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5332 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5333
5334 /* Set instruction scheduling info. This will be used in bundling,
5335 pipelining, tick computations etc. */
5336 ++INSN_SCHED_TIMES (insn);
5337 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5338 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5339 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5340 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5341
5342 /* This does not account for adjust_cost hooks, just add the biggest
5343 constant the hook may add to the latency. TODO: make this
5344 a target dependent constant. */
5345 INSN_READY_CYCLE (insn)
5346 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5347 ? 1
5348 : maximal_insn_latency (insn) + 1);
5349
5350 /* Change these fields last, as they're used above. */
5351 FENCE_AFTER_STALL_P (fence) = 0;
5352 if (asm_p || need_stall)
5353 advance_one_cycle (fence);
5354
5355 /* Indicate that we've scheduled something on this fence. */
5356 FENCE_SCHEDULED_P (fence) = true;
5357 scheduled_something_on_previous_fence = true;
5358
5359 /* Print debug information when insn's fields are updated. */
5360 if (sched_verbose >= 2)
5361 {
5362 sel_print ("Scheduling insn: ");
5363 dump_insn_1 (insn, 1);
5364 sel_print ("\n");
5365 }
5366 }
5367
5368 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5369 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5370 return it. */
5371 static blist_t *
5372 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5373 blist_t *bnds_tailp)
5374 {
5375 succ_iterator si;
5376 insn_t succ;
5377
5378 advance_deps_context (BND_DC (bnd), insn);
5379 FOR_EACH_SUCC_1 (succ, si, insn,
5380 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5381 {
5382 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5383
5384 ilist_add (&ptr, insn);
5385
5386 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5387 && is_ineligible_successor (succ, ptr))
5388 {
5389 ilist_clear (&ptr);
5390 continue;
5391 }
5392
5393 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5394 {
5395 if (sched_verbose >= 9)
5396 sel_print ("Updating fence insn from %i to %i\n",
5397 INSN_UID (insn), INSN_UID (succ));
5398 FENCE_INSN (fence) = succ;
5399 }
5400 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5401 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5402 }
5403
5404 blist_remove (bndsp);
5405 return bnds_tailp;
5406 }
5407
5408 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5409 static insn_t
5410 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5411 {
5412 av_set_t expr_seq;
5413 expr_t c_expr = XALLOCA (expr_def);
5414 insn_t place_to_insert;
5415 insn_t insn;
5416 bool should_move;
5417
5418 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5419
5420 /* In case of scheduling a jump skipping some other instructions,
5421 prepare CFG. After this, jump is at the boundary and can be
5422 scheduled as usual insn by MOVE_OP. */
5423 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5424 {
5425 insn = EXPR_INSN_RTX (expr_vliw);
5426
5427 /* Speculative jumps are not handled. */
5428 if (insn != BND_TO (bnd)
5429 && !sel_insn_is_speculation_check (insn))
5430 move_cond_jump (insn, bnd);
5431 }
5432
5433 /* Find a place for C_EXPR to schedule. */
5434 place_to_insert = prepare_place_to_insert (bnd);
5435 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5436 clear_expr (c_expr);
5437
5438 /* Add the instruction. The corner case to care about is when
5439 the expr_seq set has more than one expr, and we chose the one that
5440 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5441 we can't use it. Generate the new vinsn. */
5442 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5443 {
5444 vinsn_t vinsn_new;
5445
5446 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5447 change_vinsn_in_expr (expr_vliw, vinsn_new);
5448 should_move = false;
5449 }
5450 if (should_move)
5451 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5452 else
5453 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5454 place_to_insert);
5455
5456 /* Return the nops generated for preserving of data sets back
5457 into pool. */
5458 if (INSN_NOP_P (place_to_insert))
5459 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5460 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5461
5462 av_set_clear (&expr_seq);
5463
5464 /* Save the expression scheduled so to reset target availability if we'll
5465 meet it later on the same fence. */
5466 if (EXPR_WAS_RENAMED (expr_vliw))
5467 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5468
5469 /* Check that the recent movement didn't destroyed loop
5470 structure. */
5471 gcc_assert (!pipelining_p
5472 || current_loop_nest == NULL
5473 || loop_latch_edge (current_loop_nest));
5474 return insn;
5475 }
5476
5477 /* Stall for N cycles on FENCE. */
5478 static void
5479 stall_for_cycles (fence_t fence, int n)
5480 {
5481 int could_more;
5482
5483 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5484 while (n--)
5485 advance_one_cycle (fence);
5486 if (could_more)
5487 FENCE_AFTER_STALL_P (fence) = 1;
5488 }
5489
5490 /* Gather a parallel group of insns at FENCE and assign their seqno
5491 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5492 list for later recalculation of seqnos. */
5493 static void
5494 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5495 {
5496 blist_t bnds = NULL, *bnds_tailp;
5497 av_set_t av_vliw = NULL;
5498 insn_t insn = FENCE_INSN (fence);
5499
5500 if (sched_verbose >= 2)
5501 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5502 INSN_UID (insn), FENCE_CYCLE (fence));
5503
5504 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5505 bnds_tailp = &BLIST_NEXT (bnds);
5506 set_target_context (FENCE_TC (fence));
5507 can_issue_more = FENCE_ISSUE_MORE (fence);
5508 target_bb = INSN_BB (insn);
5509
5510 /* Do while we can add any operation to the current group. */
5511 do
5512 {
5513 blist_t *bnds_tailp1, *bndsp;
5514 expr_t expr_vliw;
5515 int need_stall;
5516 int was_stall = 0, scheduled_insns = 0;
5517 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5518 int max_stall = pipelining_p ? 1 : 3;
5519 bool last_insn_was_debug = false;
5520 bool was_debug_bb_end_p = false;
5521
5522 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5523 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5524 remove_insns_for_debug (bnds, &av_vliw);
5525
5526 /* Return early if we have nothing to schedule. */
5527 if (av_vliw == NULL)
5528 break;
5529
5530 /* Choose the best expression and, if needed, destination register
5531 for it. */
5532 do
5533 {
5534 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5535 if (! expr_vliw && need_stall)
5536 {
5537 /* All expressions required a stall. Do not recompute av sets
5538 as we'll get the same answer (modulo the insns between
5539 the fence and its boundary, which will not be available for
5540 pipelining).
5541 If we are going to stall for too long, break to recompute av
5542 sets and bring more insns for pipelining. */
5543 was_stall++;
5544 if (need_stall <= 3)
5545 stall_for_cycles (fence, need_stall);
5546 else
5547 {
5548 stall_for_cycles (fence, 1);
5549 break;
5550 }
5551 }
5552 }
5553 while (! expr_vliw && need_stall);
5554
5555 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5556 if (!expr_vliw)
5557 {
5558 av_set_clear (&av_vliw);
5559 break;
5560 }
5561
5562 bndsp = &bnds;
5563 bnds_tailp1 = bnds_tailp;
5564
5565 do
5566 /* This code will be executed only once until we'd have several
5567 boundaries per fence. */
5568 {
5569 bnd_t bnd = BLIST_BND (*bndsp);
5570
5571 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5572 {
5573 bndsp = &BLIST_NEXT (*bndsp);
5574 continue;
5575 }
5576
5577 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5578 last_insn_was_debug = DEBUG_INSN_P (insn);
5579 if (last_insn_was_debug)
5580 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5581 update_fence_and_insn (fence, insn, need_stall);
5582 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5583
5584 /* Add insn to the list of scheduled on this cycle instructions. */
5585 ilist_add (*scheduled_insns_tailpp, insn);
5586 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5587 }
5588 while (*bndsp != *bnds_tailp1);
5589
5590 av_set_clear (&av_vliw);
5591 if (!last_insn_was_debug)
5592 scheduled_insns++;
5593
5594 /* We currently support information about candidate blocks only for
5595 one 'target_bb' block. Hence we can't schedule after jump insn,
5596 as this will bring two boundaries and, hence, necessity to handle
5597 information for two or more blocks concurrently. */
5598 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5599 || (was_stall
5600 && (was_stall >= max_stall
5601 || scheduled_insns >= max_insns)))
5602 break;
5603 }
5604 while (bnds);
5605
5606 gcc_assert (!FENCE_BNDS (fence));
5607
5608 /* Update boundaries of the FENCE. */
5609 while (bnds)
5610 {
5611 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5612
5613 if (ptr)
5614 {
5615 insn = ILIST_INSN (ptr);
5616
5617 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5618 ilist_add (&FENCE_BNDS (fence), insn);
5619 }
5620
5621 blist_remove (&bnds);
5622 }
5623
5624 /* Update target context on the fence. */
5625 reset_target_context (FENCE_TC (fence), false);
5626 }
5627
5628 /* All exprs in ORIG_OPS must have the same destination register or memory.
5629 Return that destination. */
5630 static rtx
5631 get_dest_from_orig_ops (av_set_t orig_ops)
5632 {
5633 rtx dest = NULL_RTX;
5634 av_set_iterator av_it;
5635 expr_t expr;
5636 bool first_p = true;
5637
5638 FOR_EACH_EXPR (expr, av_it, orig_ops)
5639 {
5640 rtx x = EXPR_LHS (expr);
5641
5642 if (first_p)
5643 {
5644 first_p = false;
5645 dest = x;
5646 }
5647 else
5648 gcc_assert (dest == x
5649 || (dest != NULL_RTX && x != NULL_RTX
5650 && rtx_equal_p (dest, x)));
5651 }
5652
5653 return dest;
5654 }
5655
5656 /* Update data sets for the bookkeeping block and record those expressions
5657 which become no longer available after inserting this bookkeeping. */
5658 static void
5659 update_and_record_unavailable_insns (basic_block book_block)
5660 {
5661 av_set_iterator i;
5662 av_set_t old_av_set = NULL;
5663 expr_t cur_expr;
5664 rtx bb_end = sel_bb_end (book_block);
5665
5666 /* First, get correct liveness in the bookkeeping block. The problem is
5667 the range between the bookeeping insn and the end of block. */
5668 update_liveness_on_insn (bb_end);
5669 if (control_flow_insn_p (bb_end))
5670 update_liveness_on_insn (PREV_INSN (bb_end));
5671
5672 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5673 fence above, where we may choose to schedule an insn which is
5674 actually blocked from moving up with the bookkeeping we create here. */
5675 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5676 {
5677 old_av_set = av_set_copy (BB_AV_SET (book_block));
5678 update_data_sets (sel_bb_head (book_block));
5679
5680 /* Traverse all the expressions in the old av_set and check whether
5681 CUR_EXPR is in new AV_SET. */
5682 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5683 {
5684 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5685 EXPR_VINSN (cur_expr));
5686
5687 if (! new_expr
5688 /* In this case, we can just turn off the E_T_A bit, but we can't
5689 represent this information with the current vector. */
5690 || EXPR_TARGET_AVAILABLE (new_expr)
5691 != EXPR_TARGET_AVAILABLE (cur_expr))
5692 /* Unfortunately, the below code could be also fired up on
5693 separable insns.
5694 FIXME: add an example of how this could happen. */
5695 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5696 }
5697
5698 av_set_clear (&old_av_set);
5699 }
5700 }
5701
5702 /* The main effect of this function is that sparams->c_expr is merged
5703 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5704 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5705 lparams->c_expr_merged is copied back to sparams->c_expr after all
5706 successors has been traversed. lparams->c_expr_local is an expr allocated
5707 on stack in the caller function, and is used if there is more than one
5708 successor.
5709
5710 SUCC is one of the SUCCS_NORMAL successors of INSN,
5711 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5712 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5713 static void
5714 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5715 insn_t succ ATTRIBUTE_UNUSED,
5716 int moveop_drv_call_res,
5717 cmpd_local_params_p lparams, void *static_params)
5718 {
5719 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5720
5721 /* Nothing to do, if original expr wasn't found below. */
5722 if (moveop_drv_call_res != 1)
5723 return;
5724
5725 /* If this is a first successor. */
5726 if (!lparams->c_expr_merged)
5727 {
5728 lparams->c_expr_merged = sparams->c_expr;
5729 sparams->c_expr = lparams->c_expr_local;
5730 }
5731 else
5732 {
5733 /* We must merge all found expressions to get reasonable
5734 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5735 do so then we can first find the expr with epsilon
5736 speculation success probability and only then with the
5737 good probability. As a result the insn will get epsilon
5738 probability and will never be scheduled because of
5739 weakness_cutoff in find_best_expr.
5740
5741 We call merge_expr_data here instead of merge_expr
5742 because due to speculation C_EXPR and X may have the
5743 same insns with different speculation types. And as of
5744 now such insns are considered non-equal.
5745
5746 However, EXPR_SCHED_TIMES is different -- we must get
5747 SCHED_TIMES from a real insn, not a bookkeeping copy.
5748 We force this here. Instead, we may consider merging
5749 SCHED_TIMES to the maximum instead of minimum in the
5750 below function. */
5751 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5752
5753 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5754 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5755 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5756
5757 clear_expr (sparams->c_expr);
5758 }
5759 }
5760
5761 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5762
5763 SUCC is one of the SUCCS_NORMAL successors of INSN,
5764 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5765 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5766 STATIC_PARAMS contain USED_REGS set. */
5767 static void
5768 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5769 int moveop_drv_call_res,
5770 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5771 void *static_params)
5772 {
5773 regset succ_live;
5774 fur_static_params_p sparams = (fur_static_params_p) static_params;
5775
5776 /* Here we compute live regsets only for branches that do not lie
5777 on the code motion paths. These branches correspond to value
5778 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5779 for such branches code_motion_path_driver is not called. */
5780 if (moveop_drv_call_res != 0)
5781 return;
5782
5783 /* Mark all registers that do not meet the following condition:
5784 (3) not live on the other path of any conditional branch
5785 that is passed by the operation, in case original
5786 operations are not present on both paths of the
5787 conditional branch. */
5788 succ_live = compute_live (succ);
5789 IOR_REG_SET (sparams->used_regs, succ_live);
5790 }
5791
5792 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5793 into SP->CEXPR. */
5794 static void
5795 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5796 {
5797 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5798
5799 sp->c_expr = lp->c_expr_merged;
5800 }
5801
5802 /* Track bookkeeping copies created, insns scheduled, and blocks for
5803 rescheduling when INSN is found by move_op. */
5804 static void
5805 track_scheduled_insns_and_blocks (rtx insn)
5806 {
5807 /* Even if this insn can be a copy that will be removed during current move_op,
5808 we still need to count it as an originator. */
5809 bitmap_set_bit (current_originators, INSN_UID (insn));
5810
5811 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5812 {
5813 /* Note that original block needs to be rescheduled, as we pulled an
5814 instruction out of it. */
5815 if (INSN_SCHED_TIMES (insn) > 0)
5816 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5817 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5818 num_insns_scheduled++;
5819 }
5820
5821 /* For instructions we must immediately remove insn from the
5822 stream, so subsequent update_data_sets () won't include this
5823 insn into av_set.
5824 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5825 if (INSN_UID (insn) > max_uid_before_move_op)
5826 stat_bookkeeping_copies--;
5827 }
5828
5829 /* Emit a register-register copy for INSN if needed. Return true if
5830 emitted one. PARAMS is the move_op static parameters. */
5831 static bool
5832 maybe_emit_renaming_copy (rtx insn,
5833 moveop_static_params_p params)
5834 {
5835 bool insn_emitted = false;
5836 rtx cur_reg;
5837
5838 /* Bail out early when expression can not be renamed at all. */
5839 if (!EXPR_SEPARABLE_P (params->c_expr))
5840 return false;
5841
5842 cur_reg = expr_dest_reg (params->c_expr);
5843 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5844
5845 /* If original operation has expr and the register chosen for
5846 that expr is not original operation's dest reg, substitute
5847 operation's right hand side with the register chosen. */
5848 if (REGNO (params->dest) != REGNO (cur_reg))
5849 {
5850 insn_t reg_move_insn, reg_move_insn_rtx;
5851
5852 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5853 params->dest);
5854 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5855 INSN_EXPR (insn),
5856 INSN_SEQNO (insn),
5857 insn);
5858 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5859 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5860
5861 insn_emitted = true;
5862 params->was_renamed = true;
5863 }
5864
5865 return insn_emitted;
5866 }
5867
5868 /* Emit a speculative check for INSN speculated as EXPR if needed.
5869 Return true if we've emitted one. PARAMS is the move_op static
5870 parameters. */
5871 static bool
5872 maybe_emit_speculative_check (rtx insn, expr_t expr,
5873 moveop_static_params_p params)
5874 {
5875 bool insn_emitted = false;
5876 insn_t x;
5877 ds_t check_ds;
5878
5879 check_ds = get_spec_check_type_for_insn (insn, expr);
5880 if (check_ds != 0)
5881 {
5882 /* A speculation check should be inserted. */
5883 x = create_speculation_check (params->c_expr, check_ds, insn);
5884 insn_emitted = true;
5885 }
5886 else
5887 {
5888 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5889 x = insn;
5890 }
5891
5892 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5893 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5894 return insn_emitted;
5895 }
5896
5897 /* Handle transformations that leave an insn in place of original
5898 insn such as renaming/speculation. Return true if one of such
5899 transformations actually happened, and we have emitted this insn. */
5900 static bool
5901 handle_emitting_transformations (rtx insn, expr_t expr,
5902 moveop_static_params_p params)
5903 {
5904 bool insn_emitted = false;
5905
5906 insn_emitted = maybe_emit_renaming_copy (insn, params);
5907 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5908
5909 return insn_emitted;
5910 }
5911
5912 /* If INSN is the only insn in the basic block (not counting JUMP,
5913 which may be a jump to next insn, and DEBUG_INSNs), we want to
5914 leave a NOP there till the return to fill_insns. */
5915
5916 static bool
5917 need_nop_to_preserve_insn_bb (rtx insn)
5918 {
5919 insn_t bb_head, bb_end, bb_next, in_next;
5920 basic_block bb = BLOCK_FOR_INSN (insn);
5921
5922 bb_head = sel_bb_head (bb);
5923 bb_end = sel_bb_end (bb);
5924
5925 if (bb_head == bb_end)
5926 return true;
5927
5928 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5929 bb_head = NEXT_INSN (bb_head);
5930
5931 if (bb_head == bb_end)
5932 return true;
5933
5934 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5935 bb_end = PREV_INSN (bb_end);
5936
5937 if (bb_head == bb_end)
5938 return true;
5939
5940 bb_next = NEXT_INSN (bb_head);
5941 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5942 bb_next = NEXT_INSN (bb_next);
5943
5944 if (bb_next == bb_end && JUMP_P (bb_end))
5945 return true;
5946
5947 in_next = NEXT_INSN (insn);
5948 while (DEBUG_INSN_P (in_next))
5949 in_next = NEXT_INSN (in_next);
5950
5951 if (IN_CURRENT_FENCE_P (in_next))
5952 return true;
5953
5954 return false;
5955 }
5956
5957 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5958 is not removed but reused when INSN is re-emitted. */
5959 static void
5960 remove_insn_from_stream (rtx insn, bool only_disconnect)
5961 {
5962 /* If there's only one insn in the BB, make sure that a nop is
5963 inserted into it, so the basic block won't disappear when we'll
5964 delete INSN below with sel_remove_insn. It should also survive
5965 till the return to fill_insns. */
5966 if (need_nop_to_preserve_insn_bb (insn))
5967 {
5968 insn_t nop = get_nop_from_pool (insn);
5969 gcc_assert (INSN_NOP_P (nop));
5970 VEC_safe_push (insn_t, heap, vec_temp_moveop_nops, nop);
5971 }
5972
5973 sel_remove_insn (insn, only_disconnect, false);
5974 }
5975
5976 /* This function is called when original expr is found.
5977 INSN - current insn traversed, EXPR - the corresponding expr found.
5978 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5979 is static parameters of move_op. */
5980 static void
5981 move_op_orig_expr_found (insn_t insn, expr_t expr,
5982 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5983 void *static_params)
5984 {
5985 bool only_disconnect, insn_emitted;
5986 moveop_static_params_p params = (moveop_static_params_p) static_params;
5987
5988 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5989 track_scheduled_insns_and_blocks (insn);
5990 insn_emitted = handle_emitting_transformations (insn, expr, params);
5991 only_disconnect = (params->uid == INSN_UID (insn)
5992 && ! insn_emitted && ! EXPR_WAS_CHANGED (expr));
5993
5994 /* Mark that we've disconnected an insn. */
5995 if (only_disconnect)
5996 params->uid = -1;
5997 remove_insn_from_stream (insn, only_disconnect);
5998 }
5999
6000 /* The function is called when original expr is found.
6001 INSN - current insn traversed, EXPR - the corresponding expr found,
6002 crosses_call and original_insns in STATIC_PARAMS are updated. */
6003 static void
6004 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6005 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6006 void *static_params)
6007 {
6008 fur_static_params_p params = (fur_static_params_p) static_params;
6009 regset tmp;
6010
6011 if (CALL_P (insn))
6012 params->crosses_call = true;
6013
6014 def_list_add (params->original_insns, insn, params->crosses_call);
6015
6016 /* Mark the registers that do not meet the following condition:
6017 (2) not among the live registers of the point
6018 immediately following the first original operation on
6019 a given downward path, except for the original target
6020 register of the operation. */
6021 tmp = get_clear_regset_from_pool ();
6022 compute_live_below_insn (insn, tmp);
6023 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6024 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6025 IOR_REG_SET (params->used_regs, tmp);
6026 return_regset_to_pool (tmp);
6027
6028 /* (*1) We need to add to USED_REGS registers that are read by
6029 INSN's lhs. This may lead to choosing wrong src register.
6030 E.g. (scheduling const expr enabled):
6031
6032 429: ax=0x0 <- Can't use AX for this expr (0x0)
6033 433: dx=[bp-0x18]
6034 427: [ax+dx+0x1]=ax
6035 REG_DEAD: ax
6036 168: di=dx
6037 REG_DEAD: dx
6038 */
6039 /* FIXME: see comment above and enable MEM_P
6040 in vinsn_separable_p. */
6041 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6042 || !MEM_P (INSN_LHS (insn)));
6043 }
6044
6045 /* This function is called on the ascending pass, before returning from
6046 current basic block. */
6047 static void
6048 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6049 void *static_params)
6050 {
6051 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6052 basic_block book_block = NULL;
6053
6054 /* When we have removed the boundary insn for scheduling, which also
6055 happened to be the end insn in its bb, we don't need to update sets. */
6056 if (!lparams->removed_last_insn
6057 && lparams->e1
6058 && sel_bb_head_p (insn))
6059 {
6060 /* We should generate bookkeeping code only if we are not at the
6061 top level of the move_op. */
6062 if (sel_num_cfg_preds_gt_1 (insn))
6063 book_block = generate_bookkeeping_insn (sparams->c_expr,
6064 lparams->e1, lparams->e2);
6065 /* Update data sets for the current insn. */
6066 update_data_sets (insn);
6067 }
6068
6069 /* If bookkeeping code was inserted, we need to update av sets of basic
6070 block that received bookkeeping. After generation of bookkeeping insn,
6071 bookkeeping block does not contain valid av set because we are not following
6072 the original algorithm in every detail with regards to e.g. renaming
6073 simple reg-reg copies. Consider example:
6074
6075 bookkeeping block scheduling fence
6076 \ /
6077 \ join /
6078 ----------
6079 | |
6080 ----------
6081 / \
6082 / \
6083 r1 := r2 r1 := r3
6084
6085 We try to schedule insn "r1 := r3" on the current
6086 scheduling fence. Also, note that av set of bookkeeping block
6087 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6088 been scheduled, the CFG is as follows:
6089
6090 r1 := r3 r1 := r3
6091 bookkeeping block scheduling fence
6092 \ /
6093 \ join /
6094 ----------
6095 | |
6096 ----------
6097 / \
6098 / \
6099 r1 := r2
6100
6101 Here, insn "r1 := r3" was scheduled at the current scheduling point
6102 and bookkeeping code was generated at the bookeeping block. This
6103 way insn "r1 := r2" is no longer available as a whole instruction
6104 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6105 This situation is handled by calling update_data_sets.
6106
6107 Since update_data_sets is called only on the bookkeeping block, and
6108 it also may have predecessors with av_sets, containing instructions that
6109 are no longer available, we save all such expressions that become
6110 unavailable during data sets update on the bookkeeping block in
6111 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6112 expressions for scheduling. This allows us to avoid recomputation of
6113 av_sets outside the code motion path. */
6114
6115 if (book_block)
6116 update_and_record_unavailable_insns (book_block);
6117
6118 /* If INSN was previously marked for deletion, it's time to do it. */
6119 if (lparams->removed_last_insn)
6120 insn = PREV_INSN (insn);
6121
6122 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6123 kill a block with a single nop in which the insn should be emitted. */
6124 if (lparams->e1)
6125 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6126 }
6127
6128 /* This function is called on the ascending pass, before returning from the
6129 current basic block. */
6130 static void
6131 fur_at_first_insn (insn_t insn,
6132 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6133 void *static_params ATTRIBUTE_UNUSED)
6134 {
6135 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6136 || AV_LEVEL (insn) == -1);
6137 }
6138
6139 /* Called on the backward stage of recursion to call moveup_expr for insn
6140 and sparams->c_expr. */
6141 static void
6142 move_op_ascend (insn_t insn, void *static_params)
6143 {
6144 enum MOVEUP_EXPR_CODE res;
6145 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6146
6147 if (! INSN_NOP_P (insn))
6148 {
6149 res = moveup_expr_cached (sparams->c_expr, insn, false);
6150 gcc_assert (res != MOVEUP_EXPR_NULL);
6151 }
6152
6153 /* Update liveness for this insn as it was invalidated. */
6154 update_liveness_on_insn (insn);
6155 }
6156
6157 /* This function is called on enter to the basic block.
6158 Returns TRUE if this block already have been visited and
6159 code_motion_path_driver should return 1, FALSE otherwise. */
6160 static int
6161 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6162 void *static_params, bool visited_p)
6163 {
6164 fur_static_params_p sparams = (fur_static_params_p) static_params;
6165
6166 if (visited_p)
6167 {
6168 /* If we have found something below this block, there should be at
6169 least one insn in ORIGINAL_INSNS. */
6170 gcc_assert (*sparams->original_insns);
6171
6172 /* Adjust CROSSES_CALL, since we may have come to this block along
6173 different path. */
6174 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6175 |= sparams->crosses_call;
6176 }
6177 else
6178 local_params->old_original_insns = *sparams->original_insns;
6179
6180 return 1;
6181 }
6182
6183 /* Same as above but for move_op. */
6184 static int
6185 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6186 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6187 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6188 {
6189 if (visited_p)
6190 return -1;
6191 return 1;
6192 }
6193
6194 /* This function is called while descending current basic block if current
6195 insn is not the original EXPR we're searching for.
6196
6197 Return value: FALSE, if code_motion_path_driver should perform a local
6198 cleanup and return 0 itself;
6199 TRUE, if code_motion_path_driver should continue. */
6200 static bool
6201 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6202 void *static_params)
6203 {
6204 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6205
6206 #ifdef ENABLE_CHECKING
6207 sparams->failed_insn = insn;
6208 #endif
6209
6210 /* If we're scheduling separate expr, in order to generate correct code
6211 we need to stop the search at bookkeeping code generated with the
6212 same destination register or memory. */
6213 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6214 return false;
6215 return true;
6216 }
6217
6218 /* This function is called while descending current basic block if current
6219 insn is not the original EXPR we're searching for.
6220
6221 Return value: TRUE (code_motion_path_driver should continue). */
6222 static bool
6223 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6224 {
6225 bool mutexed;
6226 expr_t r;
6227 av_set_iterator avi;
6228 fur_static_params_p sparams = (fur_static_params_p) static_params;
6229
6230 if (CALL_P (insn))
6231 sparams->crosses_call = true;
6232 else if (DEBUG_INSN_P (insn))
6233 return true;
6234
6235 /* If current insn we are looking at cannot be executed together
6236 with original insn, then we can skip it safely.
6237
6238 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6239 INSN = (!p6) r14 = r14 + 1;
6240
6241 Here we can schedule ORIG_OP with lhs = r14, though only
6242 looking at the set of used and set registers of INSN we must
6243 forbid it. So, add set/used in INSN registers to the
6244 untouchable set only if there is an insn in ORIG_OPS that can
6245 affect INSN. */
6246 mutexed = true;
6247 FOR_EACH_EXPR (r, avi, orig_ops)
6248 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6249 {
6250 mutexed = false;
6251 break;
6252 }
6253
6254 /* Mark all registers that do not meet the following condition:
6255 (1) Not set or read on any path from xi to an instance of the
6256 original operation. */
6257 if (!mutexed)
6258 {
6259 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6260 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6261 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6262 }
6263
6264 return true;
6265 }
6266
6267 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6268 struct code_motion_path_driver_info_def move_op_hooks = {
6269 move_op_on_enter,
6270 move_op_orig_expr_found,
6271 move_op_orig_expr_not_found,
6272 move_op_merge_succs,
6273 move_op_after_merge_succs,
6274 move_op_ascend,
6275 move_op_at_first_insn,
6276 SUCCS_NORMAL,
6277 "move_op"
6278 };
6279
6280 /* Hooks and data to perform find_used_regs operations
6281 with code_motion_path_driver. */
6282 struct code_motion_path_driver_info_def fur_hooks = {
6283 fur_on_enter,
6284 fur_orig_expr_found,
6285 fur_orig_expr_not_found,
6286 fur_merge_succs,
6287 NULL, /* fur_after_merge_succs */
6288 NULL, /* fur_ascend */
6289 fur_at_first_insn,
6290 SUCCS_ALL,
6291 "find_used_regs"
6292 };
6293
6294 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6295 code_motion_path_driver is called recursively. Original operation
6296 was found at least on one path that is starting with one of INSN's
6297 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6298 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6299 of either move_op or find_used_regs depending on the caller.
6300
6301 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6302 know for sure at this point. */
6303 static int
6304 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6305 ilist_t path, void *static_params)
6306 {
6307 int res = 0;
6308 succ_iterator succ_i;
6309 rtx succ;
6310 basic_block bb;
6311 int old_index;
6312 unsigned old_succs;
6313
6314 struct cmpd_local_params lparams;
6315 expr_def _x;
6316
6317 lparams.c_expr_local = &_x;
6318 lparams.c_expr_merged = NULL;
6319
6320 /* We need to process only NORMAL succs for move_op, and collect live
6321 registers from ALL branches (including those leading out of the
6322 region) for find_used_regs.
6323
6324 In move_op, there can be a case when insn's bb number has changed
6325 due to created bookkeeping. This happens very rare, as we need to
6326 move expression from the beginning to the end of the same block.
6327 Rescan successors in this case. */
6328
6329 rescan:
6330 bb = BLOCK_FOR_INSN (insn);
6331 old_index = bb->index;
6332 old_succs = EDGE_COUNT (bb->succs);
6333
6334 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6335 {
6336 int b;
6337
6338 lparams.e1 = succ_i.e1;
6339 lparams.e2 = succ_i.e2;
6340
6341 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6342 current region). */
6343 if (succ_i.current_flags == SUCCS_NORMAL)
6344 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6345 static_params);
6346 else
6347 b = 0;
6348
6349 /* Merge c_expres found or unify live register sets from different
6350 successors. */
6351 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6352 static_params);
6353 if (b == 1)
6354 res = b;
6355 else if (b == -1 && res != 1)
6356 res = b;
6357
6358 /* We have simplified the control flow below this point. In this case,
6359 the iterator becomes invalid. We need to try again. */
6360 if (BLOCK_FOR_INSN (insn)->index != old_index
6361 || EDGE_COUNT (bb->succs) != old_succs)
6362 goto rescan;
6363 }
6364
6365 #ifdef ENABLE_CHECKING
6366 /* Here, RES==1 if original expr was found at least for one of the
6367 successors. After the loop, RES may happen to have zero value
6368 only if at some point the expr searched is present in av_set, but is
6369 not found below. In most cases, this situation is an error.
6370 The exception is when the original operation is blocked by
6371 bookkeeping generated for another fence or for another path in current
6372 move_op. */
6373 gcc_assert (res == 1
6374 || (res == 0
6375 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6376 static_params))
6377 || res == -1);
6378 #endif
6379
6380 /* Merge data, clean up, etc. */
6381 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6382 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6383
6384 return res;
6385 }
6386
6387
6388 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6389 is the pointer to the av set with expressions we were looking for,
6390 PATH_P is the pointer to the traversed path. */
6391 static inline void
6392 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6393 {
6394 ilist_remove (path_p);
6395 av_set_clear (orig_ops_p);
6396 }
6397
6398 /* The driver function that implements move_op or find_used_regs
6399 functionality dependent whether code_motion_path_driver_INFO is set to
6400 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6401 of code (CFG traversal etc) that are shared among both functions. INSN
6402 is the insn we're starting the search from, ORIG_OPS are the expressions
6403 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6404 parameters of the driver, and STATIC_PARAMS are static parameters of
6405 the caller.
6406
6407 Returns whether original instructions were found. Note that top-level
6408 code_motion_path_driver always returns true. */
6409 static int
6410 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6411 cmpd_local_params_p local_params_in,
6412 void *static_params)
6413 {
6414 expr_t expr = NULL;
6415 basic_block bb = BLOCK_FOR_INSN (insn);
6416 insn_t first_insn, bb_tail, before_first;
6417 bool removed_last_insn = false;
6418
6419 if (sched_verbose >= 6)
6420 {
6421 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6422 dump_insn (insn);
6423 sel_print (",");
6424 dump_av_set (orig_ops);
6425 sel_print (")\n");
6426 }
6427
6428 gcc_assert (orig_ops);
6429
6430 /* If no original operations exist below this insn, return immediately. */
6431 if (is_ineligible_successor (insn, path))
6432 {
6433 if (sched_verbose >= 6)
6434 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6435 return false;
6436 }
6437
6438 /* The block can have invalid av set, in which case it was created earlier
6439 during move_op. Return immediately. */
6440 if (sel_bb_head_p (insn))
6441 {
6442 if (! AV_SET_VALID_P (insn))
6443 {
6444 if (sched_verbose >= 6)
6445 sel_print ("Returned from block %d as it had invalid av set\n",
6446 bb->index);
6447 return false;
6448 }
6449
6450 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6451 {
6452 /* We have already found an original operation on this branch, do not
6453 go any further and just return TRUE here. If we don't stop here,
6454 function can have exponential behaviour even on the small code
6455 with many different paths (e.g. with data speculation and
6456 recovery blocks). */
6457 if (sched_verbose >= 6)
6458 sel_print ("Block %d already visited in this traversal\n", bb->index);
6459 if (code_motion_path_driver_info->on_enter)
6460 return code_motion_path_driver_info->on_enter (insn,
6461 local_params_in,
6462 static_params,
6463 true);
6464 }
6465 }
6466
6467 if (code_motion_path_driver_info->on_enter)
6468 code_motion_path_driver_info->on_enter (insn, local_params_in,
6469 static_params, false);
6470 orig_ops = av_set_copy (orig_ops);
6471
6472 /* Filter the orig_ops set. */
6473 if (AV_SET_VALID_P (insn))
6474 av_set_intersect (&orig_ops, AV_SET (insn));
6475
6476 /* If no more original ops, return immediately. */
6477 if (!orig_ops)
6478 {
6479 if (sched_verbose >= 6)
6480 sel_print ("No intersection with av set of block %d\n", bb->index);
6481 return false;
6482 }
6483
6484 /* For non-speculative insns we have to leave only one form of the
6485 original operation, because if we don't, we may end up with
6486 different C_EXPRes and, consequently, with bookkeepings for different
6487 expression forms along the same code motion path. That may lead to
6488 generation of incorrect code. So for each code motion we stick to
6489 the single form of the instruction, except for speculative insns
6490 which we need to keep in different forms with all speculation
6491 types. */
6492 av_set_leave_one_nonspec (&orig_ops);
6493
6494 /* It is not possible that all ORIG_OPS are filtered out. */
6495 gcc_assert (orig_ops);
6496
6497 /* It is enough to place only heads and tails of visited basic blocks into
6498 the PATH. */
6499 ilist_add (&path, insn);
6500 first_insn = insn;
6501 bb_tail = sel_bb_end (bb);
6502
6503 /* Descend the basic block in search of the original expr; this part
6504 corresponds to the part of the original move_op procedure executed
6505 before the recursive call. */
6506 for (;;)
6507 {
6508 /* Look at the insn and decide if it could be an ancestor of currently
6509 scheduling operation. If it is so, then the insn "dest = op" could
6510 either be replaced with "dest = reg", because REG now holds the result
6511 of OP, or just removed, if we've scheduled the insn as a whole.
6512
6513 If this insn doesn't contain currently scheduling OP, then proceed
6514 with searching and look at its successors. Operations we're searching
6515 for could have changed when moving up through this insn via
6516 substituting. In this case, perform unsubstitution on them first.
6517
6518 When traversing the DAG below this insn is finished, insert
6519 bookkeeping code, if the insn is a joint point, and remove
6520 leftovers. */
6521
6522 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6523 if (expr)
6524 {
6525 insn_t last_insn = PREV_INSN (insn);
6526
6527 /* We have found the original operation. */
6528 if (sched_verbose >= 6)
6529 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6530
6531 code_motion_path_driver_info->orig_expr_found
6532 (insn, expr, local_params_in, static_params);
6533
6534 /* Step back, so on the way back we'll start traversing from the
6535 previous insn (or we'll see that it's bb_note and skip that
6536 loop). */
6537 if (insn == first_insn)
6538 {
6539 first_insn = NEXT_INSN (last_insn);
6540 removed_last_insn = sel_bb_end_p (last_insn);
6541 }
6542 insn = last_insn;
6543 break;
6544 }
6545 else
6546 {
6547 /* We haven't found the original expr, continue descending the basic
6548 block. */
6549 if (code_motion_path_driver_info->orig_expr_not_found
6550 (insn, orig_ops, static_params))
6551 {
6552 /* Av set ops could have been changed when moving through this
6553 insn. To find them below it, we have to un-substitute them. */
6554 undo_transformations (&orig_ops, insn);
6555 }
6556 else
6557 {
6558 /* Clean up and return, if the hook tells us to do so. It may
6559 happen if we've encountered the previously created
6560 bookkeeping. */
6561 code_motion_path_driver_cleanup (&orig_ops, &path);
6562 return -1;
6563 }
6564
6565 gcc_assert (orig_ops);
6566 }
6567
6568 /* Stop at insn if we got to the end of BB. */
6569 if (insn == bb_tail)
6570 break;
6571
6572 insn = NEXT_INSN (insn);
6573 }
6574
6575 /* Here INSN either points to the insn before the original insn (may be
6576 bb_note, if original insn was a bb_head) or to the bb_end. */
6577 if (!expr)
6578 {
6579 int res;
6580
6581 gcc_assert (insn == sel_bb_end (bb));
6582
6583 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6584 it's already in PATH then). */
6585 if (insn != first_insn)
6586 ilist_add (&path, insn);
6587
6588 /* Process_successors should be able to find at least one
6589 successor for which code_motion_path_driver returns TRUE. */
6590 res = code_motion_process_successors (insn, orig_ops,
6591 path, static_params);
6592
6593 /* Remove bb tail from path. */
6594 if (insn != first_insn)
6595 ilist_remove (&path);
6596
6597 if (res != 1)
6598 {
6599 /* This is the case when one of the original expr is no longer available
6600 due to bookkeeping created on this branch with the same register.
6601 In the original algorithm, which doesn't have update_data_sets call
6602 on a bookkeeping block, it would simply result in returning
6603 FALSE when we've encountered a previously generated bookkeeping
6604 insn in moveop_orig_expr_not_found. */
6605 code_motion_path_driver_cleanup (&orig_ops, &path);
6606 return res;
6607 }
6608 }
6609
6610 /* Don't need it any more. */
6611 av_set_clear (&orig_ops);
6612
6613 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6614 the beginning of the basic block. */
6615 before_first = PREV_INSN (first_insn);
6616 while (insn != before_first)
6617 {
6618 if (code_motion_path_driver_info->ascend)
6619 code_motion_path_driver_info->ascend (insn, static_params);
6620
6621 insn = PREV_INSN (insn);
6622 }
6623
6624 /* Now we're at the bb head. */
6625 insn = first_insn;
6626 ilist_remove (&path);
6627 local_params_in->removed_last_insn = removed_last_insn;
6628 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6629
6630 /* This should be the very last operation as at bb head we could change
6631 the numbering by creating bookkeeping blocks. */
6632 if (removed_last_insn)
6633 insn = PREV_INSN (insn);
6634 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6635 return true;
6636 }
6637
6638 /* Move up the operations from ORIG_OPS set traversing the dag starting
6639 from INSN. PATH represents the edges traversed so far.
6640 DEST is the register chosen for scheduling the current expr. Insert
6641 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6642 C_EXPR is how it looks like at the given cfg point.
6643 Set *SHOULD_MOVE to indicate whether we have only disconnected
6644 one of the insns found.
6645
6646 Returns whether original instructions were found, which is asserted
6647 to be true in the caller. */
6648 static bool
6649 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6650 rtx dest, expr_t c_expr, bool *should_move)
6651 {
6652 struct moveop_static_params sparams;
6653 struct cmpd_local_params lparams;
6654 bool res;
6655
6656 /* Init params for code_motion_path_driver. */
6657 sparams.dest = dest;
6658 sparams.c_expr = c_expr;
6659 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6660 #ifdef ENABLE_CHECKING
6661 sparams.failed_insn = NULL;
6662 #endif
6663 sparams.was_renamed = false;
6664 lparams.e1 = NULL;
6665
6666 /* We haven't visited any blocks yet. */
6667 bitmap_clear (code_motion_visited_blocks);
6668
6669 /* Set appropriate hooks and data. */
6670 code_motion_path_driver_info = &move_op_hooks;
6671 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6672
6673 if (sparams.was_renamed)
6674 EXPR_WAS_RENAMED (expr_vliw) = true;
6675
6676 *should_move = (sparams.uid == -1);
6677
6678 return res;
6679 }
6680 \f
6681
6682 /* Functions that work with regions. */
6683
6684 /* Current number of seqno used in init_seqno and init_seqno_1. */
6685 static int cur_seqno;
6686
6687 /* A helper for init_seqno. Traverse the region starting from BB and
6688 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6689 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6690 static void
6691 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6692 {
6693 int bbi = BLOCK_TO_BB (bb->index);
6694 insn_t insn, note = bb_note (bb);
6695 insn_t succ_insn;
6696 succ_iterator si;
6697
6698 SET_BIT (visited_bbs, bbi);
6699 if (blocks_to_reschedule)
6700 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6701
6702 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6703 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6704 {
6705 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6706 int succ_bbi = BLOCK_TO_BB (succ->index);
6707
6708 gcc_assert (in_current_region_p (succ));
6709
6710 if (!TEST_BIT (visited_bbs, succ_bbi))
6711 {
6712 gcc_assert (succ_bbi > bbi);
6713
6714 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6715 }
6716 else if (blocks_to_reschedule)
6717 bitmap_set_bit (forced_ebb_heads, succ->index);
6718 }
6719
6720 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6721 INSN_SEQNO (insn) = cur_seqno--;
6722 }
6723
6724 /* Initialize seqnos for the current region. NUMBER_OF_INSNS is the number
6725 of instructions in the region, BLOCKS_TO_RESCHEDULE contains blocks on
6726 which we're rescheduling when pipelining, FROM is the block where
6727 traversing region begins (it may not be the head of the region when
6728 pipelining, but the head of the loop instead).
6729
6730 Returns the maximal seqno found. */
6731 static int
6732 init_seqno (int number_of_insns, bitmap blocks_to_reschedule, basic_block from)
6733 {
6734 sbitmap visited_bbs;
6735 bitmap_iterator bi;
6736 unsigned bbi;
6737
6738 visited_bbs = sbitmap_alloc (current_nr_blocks);
6739
6740 if (blocks_to_reschedule)
6741 {
6742 sbitmap_ones (visited_bbs);
6743 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6744 {
6745 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6746 RESET_BIT (visited_bbs, BLOCK_TO_BB (bbi));
6747 }
6748 }
6749 else
6750 {
6751 sbitmap_zero (visited_bbs);
6752 from = EBB_FIRST_BB (0);
6753 }
6754
6755 cur_seqno = number_of_insns > 0 ? number_of_insns : sched_max_luid - 1;
6756 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6757 gcc_assert (cur_seqno == 0 || number_of_insns == 0);
6758
6759 sbitmap_free (visited_bbs);
6760 return sched_max_luid - 1;
6761 }
6762
6763 /* Initialize scheduling parameters for current region. */
6764 static void
6765 sel_setup_region_sched_flags (void)
6766 {
6767 enable_schedule_as_rhs_p = 1;
6768 bookkeeping_p = 1;
6769 pipelining_p = (bookkeeping_p
6770 && (flag_sel_sched_pipelining != 0)
6771 && current_loop_nest != NULL);
6772 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6773 max_ws = MAX_WS;
6774 }
6775
6776 /* Return true if all basic blocks of current region are empty. */
6777 static bool
6778 current_region_empty_p (void)
6779 {
6780 int i;
6781 for (i = 0; i < current_nr_blocks; i++)
6782 if (! sel_bb_empty_p (BASIC_BLOCK (BB_TO_BLOCK (i))))
6783 return false;
6784
6785 return true;
6786 }
6787
6788 /* Prepare and verify loop nest for pipelining. */
6789 static void
6790 setup_current_loop_nest (int rgn)
6791 {
6792 current_loop_nest = get_loop_nest_for_rgn (rgn);
6793
6794 if (!current_loop_nest)
6795 return;
6796
6797 /* If this loop has any saved loop preheaders from nested loops,
6798 add these basic blocks to the current region. */
6799 sel_add_loop_preheaders ();
6800
6801 /* Check that we're starting with a valid information. */
6802 gcc_assert (loop_latch_edge (current_loop_nest));
6803 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6804 }
6805
6806 /* Compute instruction priorities for current region. */
6807 static void
6808 sel_compute_priorities (int rgn)
6809 {
6810 sched_rgn_compute_dependencies (rgn);
6811
6812 /* Compute insn priorities in haifa style. Then free haifa style
6813 dependencies that we've calculated for this. */
6814 compute_priorities ();
6815
6816 if (sched_verbose >= 5)
6817 debug_rgn_dependencies (0);
6818
6819 free_rgn_deps ();
6820 }
6821
6822 /* Init scheduling data for RGN. Returns true when this region should not
6823 be scheduled. */
6824 static bool
6825 sel_region_init (int rgn)
6826 {
6827 int i;
6828 bb_vec_t bbs;
6829
6830 rgn_setup_region (rgn);
6831
6832 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6833 do region initialization here so the region can be bundled correctly,
6834 but we'll skip the scheduling in sel_sched_region (). */
6835 if (current_region_empty_p ())
6836 return true;
6837
6838 if (flag_sel_sched_pipelining)
6839 setup_current_loop_nest (rgn);
6840
6841 sel_setup_region_sched_flags ();
6842
6843 bbs = VEC_alloc (basic_block, heap, current_nr_blocks);
6844
6845 for (i = 0; i < current_nr_blocks; i++)
6846 VEC_quick_push (basic_block, bbs, BASIC_BLOCK (BB_TO_BLOCK (i)));
6847
6848 sel_init_bbs (bbs, NULL);
6849
6850 /* Initialize luids and dependence analysis which both sel-sched and haifa
6851 need. */
6852 sched_init_luids (bbs, NULL, NULL, NULL);
6853 sched_deps_init (false);
6854
6855 /* Initialize haifa data. */
6856 rgn_setup_sched_infos ();
6857 sel_set_sched_flags ();
6858 haifa_init_h_i_d (bbs, NULL, NULL, NULL);
6859
6860 sel_compute_priorities (rgn);
6861 init_deps_global ();
6862
6863 /* Main initialization. */
6864 sel_setup_sched_infos ();
6865 sel_init_global_and_expr (bbs);
6866
6867 VEC_free (basic_block, heap, bbs);
6868
6869 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6870
6871 /* Init correct liveness sets on each instruction of a single-block loop.
6872 This is the only situation when we can't update liveness when calling
6873 compute_live for the first insn of the loop. */
6874 if (current_loop_nest)
6875 {
6876 int header = (sel_is_loop_preheader_p (BASIC_BLOCK (BB_TO_BLOCK (0)))
6877 ? 1
6878 : 0);
6879
6880 if (current_nr_blocks == header + 1)
6881 update_liveness_on_insn
6882 (sel_bb_head (BASIC_BLOCK (BB_TO_BLOCK (header))));
6883 }
6884
6885 /* Set hooks so that no newly generated insn will go out unnoticed. */
6886 sel_register_cfg_hooks ();
6887
6888 /* !!! We call target.sched.init () for the whole region, but we invoke
6889 targetm.sched.finish () for every ebb. */
6890 if (targetm.sched.init)
6891 /* None of the arguments are actually used in any target. */
6892 targetm.sched.init (sched_dump, sched_verbose, -1);
6893
6894 first_emitted_uid = get_max_uid () + 1;
6895 preheader_removed = false;
6896
6897 /* Reset register allocation ticks array. */
6898 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6899 reg_rename_this_tick = 0;
6900
6901 bitmap_initialize (forced_ebb_heads, 0);
6902 bitmap_clear (forced_ebb_heads);
6903
6904 setup_nop_vinsn ();
6905 current_copies = BITMAP_ALLOC (NULL);
6906 current_originators = BITMAP_ALLOC (NULL);
6907 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6908
6909 return false;
6910 }
6911
6912 /* Simplify insns after the scheduling. */
6913 static void
6914 simplify_changed_insns (void)
6915 {
6916 int i;
6917
6918 for (i = 0; i < current_nr_blocks; i++)
6919 {
6920 basic_block bb = BASIC_BLOCK (BB_TO_BLOCK (i));
6921 rtx insn;
6922
6923 FOR_BB_INSNS (bb, insn)
6924 if (INSN_P (insn))
6925 {
6926 expr_t expr = INSN_EXPR (insn);
6927
6928 if (EXPR_WAS_SUBSTITUTED (expr))
6929 validate_simplify_insn (insn);
6930 }
6931 }
6932 }
6933
6934 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6935 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6936 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6937 static void
6938 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6939 {
6940 insn_t head, tail;
6941 basic_block bb1 = bb;
6942 if (sched_verbose >= 2)
6943 sel_print ("Finishing schedule in bbs: ");
6944
6945 do
6946 {
6947 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6948
6949 if (sched_verbose >= 2)
6950 sel_print ("%d; ", bb1->index);
6951 }
6952 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
6953
6954 if (sched_verbose >= 2)
6955 sel_print ("\n");
6956
6957 get_ebb_head_tail (bb, bb1, &head, &tail);
6958
6959 current_sched_info->head = head;
6960 current_sched_info->tail = tail;
6961 current_sched_info->prev_head = PREV_INSN (head);
6962 current_sched_info->next_tail = NEXT_INSN (tail);
6963 }
6964
6965 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
6966 static void
6967 reset_sched_cycles_in_current_ebb (void)
6968 {
6969 int last_clock = 0;
6970 int haifa_last_clock = -1;
6971 int haifa_clock = 0;
6972 int issued_insns = 0;
6973 insn_t insn;
6974
6975 if (targetm.sched.init)
6976 {
6977 /* None of the arguments are actually used in any target.
6978 NB: We should have md_reset () hook for cases like this. */
6979 targetm.sched.init (sched_dump, sched_verbose, -1);
6980 }
6981
6982 state_reset (curr_state);
6983 advance_state (curr_state);
6984
6985 for (insn = current_sched_info->head;
6986 insn != current_sched_info->next_tail;
6987 insn = NEXT_INSN (insn))
6988 {
6989 int cost, haifa_cost;
6990 int sort_p;
6991 bool asm_p, real_insn, after_stall;
6992 int clock;
6993
6994 if (!INSN_P (insn))
6995 continue;
6996
6997 asm_p = false;
6998 real_insn = recog_memoized (insn) >= 0;
6999 clock = INSN_SCHED_CYCLE (insn);
7000
7001 cost = clock - last_clock;
7002
7003 /* Initialize HAIFA_COST. */
7004 if (! real_insn)
7005 {
7006 asm_p = INSN_ASM_P (insn);
7007
7008 if (asm_p)
7009 /* This is asm insn which *had* to be scheduled first
7010 on the cycle. */
7011 haifa_cost = 1;
7012 else
7013 /* This is a use/clobber insn. It should not change
7014 cost. */
7015 haifa_cost = 0;
7016 }
7017 else
7018 haifa_cost = estimate_insn_cost (insn, curr_state);
7019
7020 /* Stall for whatever cycles we've stalled before. */
7021 after_stall = 0;
7022 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7023 {
7024 haifa_cost = cost;
7025 after_stall = 1;
7026 }
7027 if (haifa_cost == 0
7028 && issued_insns == issue_rate)
7029 haifa_cost = 1;
7030 if (haifa_cost > 0)
7031 {
7032 int i = 0;
7033
7034 while (haifa_cost--)
7035 {
7036 advance_state (curr_state);
7037 issued_insns = 0;
7038 i++;
7039
7040 if (sched_verbose >= 2)
7041 {
7042 sel_print ("advance_state (state_transition)\n");
7043 debug_state (curr_state);
7044 }
7045
7046 /* The DFA may report that e.g. insn requires 2 cycles to be
7047 issued, but on the next cycle it says that insn is ready
7048 to go. Check this here. */
7049 if (!after_stall
7050 && real_insn
7051 && haifa_cost > 0
7052 && estimate_insn_cost (insn, curr_state) == 0)
7053 break;
7054
7055 /* When the data dependency stall is longer than the DFA stall,
7056 it could be that after the longer stall the insn will again
7057 become unavailable to the DFA restrictions. Looks strange
7058 but happens e.g. on x86-64. So recheck DFA on the last
7059 iteration. */
7060 if (after_stall
7061 && real_insn
7062 && haifa_cost == 0)
7063 haifa_cost = estimate_insn_cost (insn, curr_state);
7064 }
7065
7066 haifa_clock += i;
7067 if (sched_verbose >= 2)
7068 sel_print ("haifa clock: %d\n", haifa_clock);
7069 }
7070 else
7071 gcc_assert (haifa_cost == 0);
7072
7073 if (sched_verbose >= 2)
7074 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7075
7076 if (targetm.sched.dfa_new_cycle)
7077 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7078 haifa_last_clock, haifa_clock,
7079 &sort_p))
7080 {
7081 advance_state (curr_state);
7082 issued_insns = 0;
7083 haifa_clock++;
7084 if (sched_verbose >= 2)
7085 {
7086 sel_print ("advance_state (dfa_new_cycle)\n");
7087 debug_state (curr_state);
7088 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7089 }
7090 }
7091
7092 if (real_insn)
7093 {
7094 cost = state_transition (curr_state, insn);
7095 issued_insns++;
7096
7097 if (sched_verbose >= 2)
7098 {
7099 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7100 haifa_clock + 1);
7101 debug_state (curr_state);
7102 }
7103 gcc_assert (cost < 0);
7104 }
7105
7106 if (targetm.sched.variable_issue)
7107 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7108
7109 INSN_SCHED_CYCLE (insn) = haifa_clock;
7110
7111 last_clock = clock;
7112 haifa_last_clock = haifa_clock;
7113 }
7114 }
7115
7116 /* Put TImode markers on insns starting a new issue group. */
7117 static void
7118 put_TImodes (void)
7119 {
7120 int last_clock = -1;
7121 insn_t insn;
7122
7123 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7124 insn = NEXT_INSN (insn))
7125 {
7126 int cost, clock;
7127
7128 if (!INSN_P (insn))
7129 continue;
7130
7131 clock = INSN_SCHED_CYCLE (insn);
7132 cost = (last_clock == -1) ? 1 : clock - last_clock;
7133
7134 gcc_assert (cost >= 0);
7135
7136 if (issue_rate > 1
7137 && GET_CODE (PATTERN (insn)) != USE
7138 && GET_CODE (PATTERN (insn)) != CLOBBER)
7139 {
7140 if (reload_completed && cost > 0)
7141 PUT_MODE (insn, TImode);
7142
7143 last_clock = clock;
7144 }
7145
7146 if (sched_verbose >= 2)
7147 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7148 }
7149 }
7150
7151 /* Perform MD_FINISH on EBBs comprising current region. When
7152 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7153 to produce correct sched cycles on insns. */
7154 static void
7155 sel_region_target_finish (bool reset_sched_cycles_p)
7156 {
7157 int i;
7158 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7159
7160 for (i = 0; i < current_nr_blocks; i++)
7161 {
7162 if (bitmap_bit_p (scheduled_blocks, i))
7163 continue;
7164
7165 /* While pipelining outer loops, skip bundling for loop
7166 preheaders. Those will be rescheduled in the outer loop. */
7167 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7168 continue;
7169
7170 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7171
7172 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7173 continue;
7174
7175 if (reset_sched_cycles_p)
7176 reset_sched_cycles_in_current_ebb ();
7177
7178 if (targetm.sched.init)
7179 targetm.sched.init (sched_dump, sched_verbose, -1);
7180
7181 put_TImodes ();
7182
7183 if (targetm.sched.finish)
7184 {
7185 targetm.sched.finish (sched_dump, sched_verbose);
7186
7187 /* Extend luids so that insns generated by the target will
7188 get zero luid. */
7189 sched_init_luids (NULL, NULL, NULL, NULL);
7190 }
7191 }
7192
7193 BITMAP_FREE (scheduled_blocks);
7194 }
7195
7196 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7197 is true, make an additional pass emulating scheduler to get correct insn
7198 cycles for md_finish calls. */
7199 static void
7200 sel_region_finish (bool reset_sched_cycles_p)
7201 {
7202 simplify_changed_insns ();
7203 sched_finish_ready_list ();
7204 free_nop_pool ();
7205
7206 /* Free the vectors. */
7207 if (vec_av_set)
7208 VEC_free (expr_t, heap, vec_av_set);
7209 BITMAP_FREE (current_copies);
7210 BITMAP_FREE (current_originators);
7211 BITMAP_FREE (code_motion_visited_blocks);
7212 vinsn_vec_free (&vec_bookkeeping_blocked_vinsns);
7213 vinsn_vec_free (&vec_target_unavailable_vinsns);
7214
7215 /* If LV_SET of the region head should be updated, do it now because
7216 there will be no other chance. */
7217 {
7218 succ_iterator si;
7219 insn_t insn;
7220
7221 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7222 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7223 {
7224 basic_block bb = BLOCK_FOR_INSN (insn);
7225
7226 if (!BB_LV_SET_VALID_P (bb))
7227 compute_live (insn);
7228 }
7229 }
7230
7231 /* Emulate the Haifa scheduler for bundling. */
7232 if (reload_completed)
7233 sel_region_target_finish (reset_sched_cycles_p);
7234
7235 sel_finish_global_and_expr ();
7236
7237 bitmap_clear (forced_ebb_heads);
7238
7239 free_nop_vinsn ();
7240
7241 finish_deps_global ();
7242 sched_finish_luids ();
7243
7244 sel_finish_bbs ();
7245 BITMAP_FREE (blocks_to_reschedule);
7246
7247 sel_unregister_cfg_hooks ();
7248
7249 max_issue_size = 0;
7250 }
7251 \f
7252
7253 /* Functions that implement the scheduler driver. */
7254
7255 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7256 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7257 of insns scheduled -- these would be postprocessed later. */
7258 static void
7259 schedule_on_fences (flist_t fences, int max_seqno,
7260 ilist_t **scheduled_insns_tailpp)
7261 {
7262 flist_t old_fences = fences;
7263
7264 if (sched_verbose >= 1)
7265 {
7266 sel_print ("\nScheduling on fences: ");
7267 dump_flist (fences);
7268 sel_print ("\n");
7269 }
7270
7271 scheduled_something_on_previous_fence = false;
7272 for (; fences; fences = FLIST_NEXT (fences))
7273 {
7274 fence_t fence = NULL;
7275 int seqno = 0;
7276 flist_t fences2;
7277 bool first_p = true;
7278
7279 /* Choose the next fence group to schedule.
7280 The fact that insn can be scheduled only once
7281 on the cycle is guaranteed by two properties:
7282 1. seqnos of parallel groups decrease with each iteration.
7283 2. If is_ineligible_successor () sees the larger seqno, it
7284 checks if candidate insn is_in_current_fence_p (). */
7285 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7286 {
7287 fence_t f = FLIST_FENCE (fences2);
7288
7289 if (!FENCE_PROCESSED_P (f))
7290 {
7291 int i = INSN_SEQNO (FENCE_INSN (f));
7292
7293 if (first_p || i > seqno)
7294 {
7295 seqno = i;
7296 fence = f;
7297 first_p = false;
7298 }
7299 else
7300 /* ??? Seqnos of different groups should be different. */
7301 gcc_assert (1 || i != seqno);
7302 }
7303 }
7304
7305 gcc_assert (fence);
7306
7307 /* As FENCE is nonnull, SEQNO is initialized. */
7308 seqno -= max_seqno + 1;
7309 fill_insns (fence, seqno, scheduled_insns_tailpp);
7310 FENCE_PROCESSED_P (fence) = true;
7311 }
7312
7313 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7314 don't need to keep bookkeeping-invalidated and target-unavailable
7315 vinsns any more. */
7316 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7317 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7318 }
7319
7320 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7321 static void
7322 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7323 {
7324 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7325
7326 /* The first element is already processed. */
7327 while ((fences = FLIST_NEXT (fences)))
7328 {
7329 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7330
7331 if (*min_seqno > seqno)
7332 *min_seqno = seqno;
7333 else if (*max_seqno < seqno)
7334 *max_seqno = seqno;
7335 }
7336 }
7337
7338 /* Calculate new fences from FENCES. */
7339 static flist_t
7340 calculate_new_fences (flist_t fences, int orig_max_seqno)
7341 {
7342 flist_t old_fences = fences;
7343 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7344
7345 flist_tail_init (new_fences);
7346 for (; fences; fences = FLIST_NEXT (fences))
7347 {
7348 fence_t fence = FLIST_FENCE (fences);
7349 insn_t insn;
7350
7351 if (!FENCE_BNDS (fence))
7352 {
7353 /* This fence doesn't have any successors. */
7354 if (!FENCE_SCHEDULED_P (fence))
7355 {
7356 /* Nothing was scheduled on this fence. */
7357 int seqno;
7358
7359 insn = FENCE_INSN (fence);
7360 seqno = INSN_SEQNO (insn);
7361 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7362
7363 if (sched_verbose >= 1)
7364 sel_print ("Fence %d[%d] has not changed\n",
7365 INSN_UID (insn),
7366 BLOCK_NUM (insn));
7367 move_fence_to_fences (fences, new_fences);
7368 }
7369 }
7370 else
7371 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7372 }
7373
7374 flist_clear (&old_fences);
7375 return FLIST_TAIL_HEAD (new_fences);
7376 }
7377
7378 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7379 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7380 the highest seqno used in a region. Return the updated highest seqno. */
7381 static int
7382 update_seqnos_and_stage (int min_seqno, int max_seqno,
7383 int highest_seqno_in_use,
7384 ilist_t *pscheduled_insns)
7385 {
7386 int new_hs;
7387 ilist_iterator ii;
7388 insn_t insn;
7389
7390 /* Actually, new_hs is the seqno of the instruction, that was
7391 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7392 if (*pscheduled_insns)
7393 {
7394 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7395 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7396 gcc_assert (new_hs > highest_seqno_in_use);
7397 }
7398 else
7399 new_hs = highest_seqno_in_use;
7400
7401 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7402 {
7403 gcc_assert (INSN_SEQNO (insn) < 0);
7404 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7405 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7406
7407 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7408 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7409 require > 1GB of memory e.g. on limit-fnargs.c. */
7410 if (! pipelining_p)
7411 free_data_for_scheduled_insn (insn);
7412 }
7413
7414 ilist_clear (pscheduled_insns);
7415 global_level++;
7416
7417 return new_hs;
7418 }
7419
7420 /* The main driver for scheduling a region. This function is responsible
7421 for correct propagation of fences (i.e. scheduling points) and creating
7422 a group of parallel insns at each of them. It also supports
7423 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7424 of scheduling. */
7425 static void
7426 sel_sched_region_2 (int orig_max_seqno)
7427 {
7428 int highest_seqno_in_use = orig_max_seqno;
7429
7430 stat_bookkeeping_copies = 0;
7431 stat_insns_needed_bookkeeping = 0;
7432 stat_renamed_scheduled = 0;
7433 stat_substitutions_total = 0;
7434 num_insns_scheduled = 0;
7435
7436 while (fences)
7437 {
7438 int min_seqno, max_seqno;
7439 ilist_t scheduled_insns = NULL;
7440 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7441
7442 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7443 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7444 fences = calculate_new_fences (fences, orig_max_seqno);
7445 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7446 highest_seqno_in_use,
7447 &scheduled_insns);
7448 }
7449
7450 if (sched_verbose >= 1)
7451 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7452 "bookkeeping, %d insns renamed, %d insns substituted\n",
7453 stat_bookkeeping_copies,
7454 stat_insns_needed_bookkeeping,
7455 stat_renamed_scheduled,
7456 stat_substitutions_total);
7457 }
7458
7459 /* Schedule a region. When pipelining, search for possibly never scheduled
7460 bookkeeping code and schedule it. Reschedule pipelined code without
7461 pipelining after. */
7462 static void
7463 sel_sched_region_1 (void)
7464 {
7465 int number_of_insns;
7466 int orig_max_seqno;
7467
7468 /* Remove empty blocks that might be in the region from the beginning.
7469 We need to do save sched_max_luid before that, as it actually shows
7470 the number of insns in the region, and purge_empty_blocks can
7471 alter it. */
7472 number_of_insns = sched_max_luid - 1;
7473 purge_empty_blocks ();
7474
7475 orig_max_seqno = init_seqno (number_of_insns, NULL, NULL);
7476 gcc_assert (orig_max_seqno >= 1);
7477
7478 /* When pipelining outer loops, create fences on the loop header,
7479 not preheader. */
7480 fences = NULL;
7481 if (current_loop_nest)
7482 init_fences (BB_END (EBB_FIRST_BB (0)));
7483 else
7484 init_fences (bb_note (EBB_FIRST_BB (0)));
7485 global_level = 1;
7486
7487 sel_sched_region_2 (orig_max_seqno);
7488
7489 gcc_assert (fences == NULL);
7490
7491 if (pipelining_p)
7492 {
7493 int i;
7494 basic_block bb;
7495 struct flist_tail_def _new_fences;
7496 flist_tail_t new_fences = &_new_fences;
7497 bool do_p = true;
7498
7499 pipelining_p = false;
7500 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7501 bookkeeping_p = false;
7502 enable_schedule_as_rhs_p = false;
7503
7504 /* Schedule newly created code, that has not been scheduled yet. */
7505 do_p = true;
7506
7507 while (do_p)
7508 {
7509 do_p = false;
7510
7511 for (i = 0; i < current_nr_blocks; i++)
7512 {
7513 basic_block bb = EBB_FIRST_BB (i);
7514
7515 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7516 {
7517 if (! bb_ends_ebb_p (bb))
7518 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7519 if (sel_bb_empty_p (bb))
7520 {
7521 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7522 continue;
7523 }
7524 clear_outdated_rtx_info (bb);
7525 if (sel_insn_is_speculation_check (BB_END (bb))
7526 && JUMP_P (BB_END (bb)))
7527 bitmap_set_bit (blocks_to_reschedule,
7528 BRANCH_EDGE (bb)->dest->index);
7529 }
7530 else if (! sel_bb_empty_p (bb)
7531 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7532 bitmap_set_bit (blocks_to_reschedule, bb->index);
7533 }
7534
7535 for (i = 0; i < current_nr_blocks; i++)
7536 {
7537 bb = EBB_FIRST_BB (i);
7538
7539 /* While pipelining outer loops, skip bundling for loop
7540 preheaders. Those will be rescheduled in the outer
7541 loop. */
7542 if (sel_is_loop_preheader_p (bb))
7543 {
7544 clear_outdated_rtx_info (bb);
7545 continue;
7546 }
7547
7548 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7549 {
7550 flist_tail_init (new_fences);
7551
7552 orig_max_seqno = init_seqno (0, blocks_to_reschedule, bb);
7553
7554 /* Mark BB as head of the new ebb. */
7555 bitmap_set_bit (forced_ebb_heads, bb->index);
7556
7557 gcc_assert (fences == NULL);
7558
7559 init_fences (bb_note (bb));
7560
7561 sel_sched_region_2 (orig_max_seqno);
7562
7563 do_p = true;
7564 break;
7565 }
7566 }
7567 }
7568 }
7569 }
7570
7571 /* Schedule the RGN region. */
7572 void
7573 sel_sched_region (int rgn)
7574 {
7575 bool schedule_p;
7576 bool reset_sched_cycles_p;
7577
7578 if (sel_region_init (rgn))
7579 return;
7580
7581 if (sched_verbose >= 1)
7582 sel_print ("Scheduling region %d\n", rgn);
7583
7584 schedule_p = (!sched_is_disabled_for_current_region_p ()
7585 && dbg_cnt (sel_sched_region_cnt));
7586 reset_sched_cycles_p = pipelining_p;
7587 if (schedule_p)
7588 sel_sched_region_1 ();
7589 else
7590 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7591 reset_sched_cycles_p = true;
7592
7593 sel_region_finish (reset_sched_cycles_p);
7594 }
7595
7596 /* Perform global init for the scheduler. */
7597 static void
7598 sel_global_init (void)
7599 {
7600 calculate_dominance_info (CDI_DOMINATORS);
7601 alloc_sched_pools ();
7602
7603 /* Setup the infos for sched_init. */
7604 sel_setup_sched_infos ();
7605 setup_sched_dump ();
7606
7607 sched_rgn_init (false);
7608 sched_init ();
7609
7610 sched_init_bbs ();
7611 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7612 after_recovery = 0;
7613 can_issue_more = issue_rate;
7614
7615 sched_extend_target ();
7616 sched_deps_init (true);
7617 setup_nop_and_exit_insns ();
7618 sel_extend_global_bb_info ();
7619 init_lv_sets ();
7620 init_hard_regs_data ();
7621 }
7622
7623 /* Free the global data of the scheduler. */
7624 static void
7625 sel_global_finish (void)
7626 {
7627 free_bb_note_pool ();
7628 free_lv_sets ();
7629 sel_finish_global_bb_info ();
7630
7631 free_regset_pool ();
7632 free_nop_and_exit_insns ();
7633
7634 sched_rgn_finish ();
7635 sched_deps_finish ();
7636 sched_finish ();
7637
7638 if (current_loops)
7639 sel_finish_pipelining ();
7640
7641 free_sched_pools ();
7642 free_dominance_info (CDI_DOMINATORS);
7643 }
7644
7645 /* Return true when we need to skip selective scheduling. Used for debugging. */
7646 bool
7647 maybe_skip_selective_scheduling (void)
7648 {
7649 return ! dbg_cnt (sel_sched_cnt);
7650 }
7651
7652 /* The entry point. */
7653 void
7654 run_selective_scheduling (void)
7655 {
7656 int rgn;
7657
7658 if (n_basic_blocks == NUM_FIXED_BLOCKS)
7659 return;
7660
7661 sel_global_init ();
7662
7663 for (rgn = 0; rgn < nr_regions; rgn++)
7664 sel_sched_region (rgn);
7665
7666 sel_global_finish ();
7667 }
7668
7669 #endif