cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / sese.c
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008-2013 Free Software Foundation, Inc.
3 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
4 Sebastian Pop <sebastian.pop@amd.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "hash-table.h"
26 #include "tree.h"
27 #include "tree-pretty-print.h"
28 #include "gimple.h"
29 #include "gimplify.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
33 #include "tree-cfg.h"
34 #include "tree-phinodes.h"
35 #include "ssa-iterators.h"
36 #include "stringpool.h"
37 #include "tree-ssanames.h"
38 #include "tree-ssa-loop.h"
39 #include "tree-into-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-chrec.h"
42 #include "tree-data-ref.h"
43 #include "tree-scalar-evolution.h"
44 #include "tree-pass.h"
45 #include "value-prof.h"
46 #include "sese.h"
47 #include "tree-ssa-propagate.h"
48
49 /* Print to stderr the element ELT. */
50
51 static void
52 debug_rename_elt (rename_map_elt elt)
53 {
54 fprintf (stderr, "(");
55 print_generic_expr (stderr, elt->old_name, 0);
56 fprintf (stderr, ", ");
57 print_generic_expr (stderr, elt->expr, 0);
58 fprintf (stderr, ")\n");
59 }
60
61 /* Helper function for debug_rename_map. */
62
63 int
64 debug_rename_map_1 (rename_map_elt_s **slot, void *s ATTRIBUTE_UNUSED)
65 {
66 struct rename_map_elt_s *entry = *slot;
67 debug_rename_elt (entry);
68 return 1;
69 }
70 \f
71
72 /* Hashtable helpers. */
73
74 struct rename_map_hasher : typed_free_remove <rename_map_elt_s>
75 {
76 typedef rename_map_elt_s value_type;
77 typedef rename_map_elt_s compare_type;
78 static inline hashval_t hash (const value_type *);
79 static inline bool equal (const value_type *, const compare_type *);
80 };
81
82 /* Computes a hash function for database element ELT. */
83
84 inline hashval_t
85 rename_map_hasher::hash (const value_type *elt)
86 {
87 return SSA_NAME_VERSION (elt->old_name);
88 }
89
90 /* Compares database elements E1 and E2. */
91
92 inline bool
93 rename_map_hasher::equal (const value_type *elt1, const compare_type *elt2)
94 {
95 return (elt1->old_name == elt2->old_name);
96 }
97
98 typedef hash_table <rename_map_hasher> rename_map_type;
99 \f
100
101 /* Print to stderr all the elements of RENAME_MAP. */
102
103 DEBUG_FUNCTION void
104 debug_rename_map (rename_map_type rename_map)
105 {
106 rename_map.traverse <void *, debug_rename_map_1> (NULL);
107 }
108
109 /* Computes a hash function for database element ELT. */
110
111 hashval_t
112 rename_map_elt_info (const void *elt)
113 {
114 return SSA_NAME_VERSION (((const struct rename_map_elt_s *) elt)->old_name);
115 }
116
117 /* Compares database elements E1 and E2. */
118
119 int
120 eq_rename_map_elts (const void *e1, const void *e2)
121 {
122 const struct rename_map_elt_s *elt1 = (const struct rename_map_elt_s *) e1;
123 const struct rename_map_elt_s *elt2 = (const struct rename_map_elt_s *) e2;
124
125 return (elt1->old_name == elt2->old_name);
126 }
127
128 \f
129
130 /* Record LOOP as occurring in REGION. */
131
132 static void
133 sese_record_loop (sese region, loop_p loop)
134 {
135 if (sese_contains_loop (region, loop))
136 return;
137
138 bitmap_set_bit (SESE_LOOPS (region), loop->num);
139 SESE_LOOP_NEST (region).safe_push (loop);
140 }
141
142 /* Build the loop nests contained in REGION. Returns true when the
143 operation was successful. */
144
145 void
146 build_sese_loop_nests (sese region)
147 {
148 unsigned i;
149 basic_block bb;
150 struct loop *loop0, *loop1;
151
152 FOR_EACH_BB (bb)
153 if (bb_in_sese_p (bb, region))
154 {
155 struct loop *loop = bb->loop_father;
156
157 /* Only add loops if they are completely contained in the SCoP. */
158 if (loop->header == bb
159 && bb_in_sese_p (loop->latch, region))
160 sese_record_loop (region, loop);
161 }
162
163 /* Make sure that the loops in the SESE_LOOP_NEST are ordered. It
164 can be the case that an inner loop is inserted before an outer
165 loop. To avoid this, semi-sort once. */
166 FOR_EACH_VEC_ELT (SESE_LOOP_NEST (region), i, loop0)
167 {
168 if (SESE_LOOP_NEST (region).length () == i + 1)
169 break;
170
171 loop1 = SESE_LOOP_NEST (region)[i + 1];
172 if (loop0->num > loop1->num)
173 {
174 SESE_LOOP_NEST (region)[i] = loop1;
175 SESE_LOOP_NEST (region)[i + 1] = loop0;
176 }
177 }
178 }
179
180 /* For a USE in BB, if BB is outside REGION, mark the USE in the
181 LIVEOUTS set. */
182
183 static void
184 sese_build_liveouts_use (sese region, bitmap liveouts, basic_block bb,
185 tree use)
186 {
187 unsigned ver;
188 basic_block def_bb;
189
190 if (TREE_CODE (use) != SSA_NAME)
191 return;
192
193 ver = SSA_NAME_VERSION (use);
194 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
195
196 if (!def_bb
197 || !bb_in_sese_p (def_bb, region)
198 || bb_in_sese_p (bb, region))
199 return;
200
201 bitmap_set_bit (liveouts, ver);
202 }
203
204 /* Marks for rewrite all the SSA_NAMES defined in REGION and that are
205 used in BB that is outside of the REGION. */
206
207 static void
208 sese_build_liveouts_bb (sese region, bitmap liveouts, basic_block bb)
209 {
210 gimple_stmt_iterator bsi;
211 edge e;
212 edge_iterator ei;
213 ssa_op_iter iter;
214 use_operand_p use_p;
215
216 FOR_EACH_EDGE (e, ei, bb->succs)
217 for (bsi = gsi_start_phis (e->dest); !gsi_end_p (bsi); gsi_next (&bsi))
218 sese_build_liveouts_use (region, liveouts, bb,
219 PHI_ARG_DEF_FROM_EDGE (gsi_stmt (bsi), e));
220
221 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
222 {
223 gimple stmt = gsi_stmt (bsi);
224
225 if (is_gimple_debug (stmt))
226 continue;
227
228 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
229 sese_build_liveouts_use (region, liveouts, bb, USE_FROM_PTR (use_p));
230 }
231 }
232
233 /* For a USE in BB, return true if BB is outside REGION and it's not
234 in the LIVEOUTS set. */
235
236 static bool
237 sese_bad_liveouts_use (sese region, bitmap liveouts, basic_block bb,
238 tree use)
239 {
240 unsigned ver;
241 basic_block def_bb;
242
243 if (TREE_CODE (use) != SSA_NAME)
244 return false;
245
246 ver = SSA_NAME_VERSION (use);
247
248 /* If it's in liveouts, the variable will get a new PHI node, and
249 the debug use will be properly adjusted. */
250 if (bitmap_bit_p (liveouts, ver))
251 return false;
252
253 def_bb = gimple_bb (SSA_NAME_DEF_STMT (use));
254
255 if (!def_bb
256 || !bb_in_sese_p (def_bb, region)
257 || bb_in_sese_p (bb, region))
258 return false;
259
260 return true;
261 }
262
263 /* Reset debug stmts that reference SSA_NAMES defined in REGION that
264 are not marked as liveouts. */
265
266 static void
267 sese_reset_debug_liveouts_bb (sese region, bitmap liveouts, basic_block bb)
268 {
269 gimple_stmt_iterator bsi;
270 ssa_op_iter iter;
271 use_operand_p use_p;
272
273 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
274 {
275 gimple stmt = gsi_stmt (bsi);
276
277 if (!is_gimple_debug (stmt))
278 continue;
279
280 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
281 if (sese_bad_liveouts_use (region, liveouts, bb,
282 USE_FROM_PTR (use_p)))
283 {
284 gimple_debug_bind_reset_value (stmt);
285 update_stmt (stmt);
286 break;
287 }
288 }
289 }
290
291 /* Build the LIVEOUTS of REGION: the set of variables defined inside
292 and used outside the REGION. */
293
294 static void
295 sese_build_liveouts (sese region, bitmap liveouts)
296 {
297 basic_block bb;
298
299 FOR_EACH_BB (bb)
300 sese_build_liveouts_bb (region, liveouts, bb);
301 if (MAY_HAVE_DEBUG_STMTS)
302 FOR_EACH_BB (bb)
303 sese_reset_debug_liveouts_bb (region, liveouts, bb);
304 }
305
306 /* Builds a new SESE region from edges ENTRY and EXIT. */
307
308 sese
309 new_sese (edge entry, edge exit)
310 {
311 sese region = XNEW (struct sese_s);
312
313 SESE_ENTRY (region) = entry;
314 SESE_EXIT (region) = exit;
315 SESE_LOOPS (region) = BITMAP_ALLOC (NULL);
316 SESE_LOOP_NEST (region).create (3);
317 SESE_ADD_PARAMS (region) = true;
318 SESE_PARAMS (region).create (3);
319
320 return region;
321 }
322
323 /* Deletes REGION. */
324
325 void
326 free_sese (sese region)
327 {
328 if (SESE_LOOPS (region))
329 SESE_LOOPS (region) = BITMAP_ALLOC (NULL);
330
331 SESE_PARAMS (region).release ();
332 SESE_LOOP_NEST (region).release ();
333
334 XDELETE (region);
335 }
336
337 /* Add exit phis for USE on EXIT. */
338
339 static void
340 sese_add_exit_phis_edge (basic_block exit, tree use, edge false_e, edge true_e)
341 {
342 gimple phi = create_phi_node (NULL_TREE, exit);
343 create_new_def_for (use, phi, gimple_phi_result_ptr (phi));
344 add_phi_arg (phi, use, false_e, UNKNOWN_LOCATION);
345 add_phi_arg (phi, use, true_e, UNKNOWN_LOCATION);
346 }
347
348 /* Insert in the block BB phi nodes for variables defined in REGION
349 and used outside the REGION. The code generation moves REGION in
350 the else clause of an "if (1)" and generates code in the then
351 clause that is at this point empty:
352
353 | if (1)
354 | empty;
355 | else
356 | REGION;
357 */
358
359 void
360 sese_insert_phis_for_liveouts (sese region, basic_block bb,
361 edge false_e, edge true_e)
362 {
363 unsigned i;
364 bitmap_iterator bi;
365 bitmap liveouts = BITMAP_ALLOC (NULL);
366
367 update_ssa (TODO_update_ssa);
368
369 sese_build_liveouts (region, liveouts);
370 EXECUTE_IF_SET_IN_BITMAP (liveouts, 0, i, bi)
371 sese_add_exit_phis_edge (bb, ssa_name (i), false_e, true_e);
372 BITMAP_FREE (liveouts);
373
374 update_ssa (TODO_update_ssa);
375 }
376
377 /* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag set. */
378
379 edge
380 get_true_edge_from_guard_bb (basic_block bb)
381 {
382 edge e;
383 edge_iterator ei;
384
385 FOR_EACH_EDGE (e, ei, bb->succs)
386 if (e->flags & EDGE_TRUE_VALUE)
387 return e;
388
389 gcc_unreachable ();
390 return NULL;
391 }
392
393 /* Returns the first successor edge of BB with EDGE_TRUE_VALUE flag cleared. */
394
395 edge
396 get_false_edge_from_guard_bb (basic_block bb)
397 {
398 edge e;
399 edge_iterator ei;
400
401 FOR_EACH_EDGE (e, ei, bb->succs)
402 if (!(e->flags & EDGE_TRUE_VALUE))
403 return e;
404
405 gcc_unreachable ();
406 return NULL;
407 }
408
409 /* Returns the expression associated to OLD_NAME in RENAME_MAP. */
410
411 static tree
412 get_rename (rename_map_type rename_map, tree old_name)
413 {
414 struct rename_map_elt_s tmp;
415 rename_map_elt_s **slot;
416
417 gcc_assert (TREE_CODE (old_name) == SSA_NAME);
418 tmp.old_name = old_name;
419 slot = rename_map.find_slot (&tmp, NO_INSERT);
420
421 if (slot && *slot)
422 return (*slot)->expr;
423
424 return NULL_TREE;
425 }
426
427 /* Register in RENAME_MAP the rename tuple (OLD_NAME, EXPR). */
428
429 static void
430 set_rename (rename_map_type rename_map, tree old_name, tree expr)
431 {
432 struct rename_map_elt_s tmp;
433 rename_map_elt_s **slot;
434
435 if (old_name == expr)
436 return;
437
438 tmp.old_name = old_name;
439 slot = rename_map.find_slot (&tmp, INSERT);
440
441 if (!slot)
442 return;
443
444 free (*slot);
445
446 *slot = new_rename_map_elt (old_name, expr);
447 }
448
449 /* Renames the scalar uses of the statement COPY, using the
450 substitution map RENAME_MAP, inserting the gimplification code at
451 GSI_TGT, for the translation REGION, with the original copied
452 statement in LOOP, and using the induction variable renaming map
453 IV_MAP. Returns true when something has been renamed. GLOOG_ERROR
454 is set when the code generation cannot continue. */
455
456 static bool
457 rename_uses (gimple copy, rename_map_type rename_map,
458 gimple_stmt_iterator *gsi_tgt,
459 sese region, loop_p loop, vec<tree> iv_map,
460 bool *gloog_error)
461 {
462 use_operand_p use_p;
463 ssa_op_iter op_iter;
464 bool changed = false;
465
466 if (is_gimple_debug (copy))
467 {
468 if (gimple_debug_bind_p (copy))
469 gimple_debug_bind_reset_value (copy);
470 else if (gimple_debug_source_bind_p (copy))
471 return false;
472 else
473 gcc_unreachable ();
474
475 return false;
476 }
477
478 FOR_EACH_SSA_USE_OPERAND (use_p, copy, op_iter, SSA_OP_USE)
479 {
480 tree old_name = USE_FROM_PTR (use_p);
481 tree new_expr, scev;
482 gimple_seq stmts;
483
484 if (TREE_CODE (old_name) != SSA_NAME
485 || SSA_NAME_IS_DEFAULT_DEF (old_name))
486 continue;
487
488 changed = true;
489 new_expr = get_rename (rename_map, old_name);
490 if (new_expr)
491 {
492 tree type_old_name = TREE_TYPE (old_name);
493 tree type_new_expr = TREE_TYPE (new_expr);
494
495 if (type_old_name != type_new_expr
496 || TREE_CODE (new_expr) != SSA_NAME)
497 {
498 tree var = create_tmp_var (type_old_name, "var");
499
500 if (!useless_type_conversion_p (type_old_name, type_new_expr))
501 new_expr = fold_convert (type_old_name, new_expr);
502
503 new_expr = force_gimple_operand (new_expr, &stmts, true, var);
504 gsi_insert_seq_before (gsi_tgt, stmts, GSI_SAME_STMT);
505 }
506
507 replace_exp (use_p, new_expr);
508 continue;
509 }
510
511 scev = scalar_evolution_in_region (region, loop, old_name);
512
513 /* At this point we should know the exact scev for each
514 scalar SSA_NAME used in the scop: all the other scalar
515 SSA_NAMEs should have been translated out of SSA using
516 arrays with one element. */
517 if (chrec_contains_undetermined (scev))
518 {
519 *gloog_error = true;
520 new_expr = build_zero_cst (TREE_TYPE (old_name));
521 }
522 else
523 new_expr = chrec_apply_map (scev, iv_map);
524
525 /* The apply should produce an expression tree containing
526 the uses of the new induction variables. We should be
527 able to use new_expr instead of the old_name in the newly
528 generated loop nest. */
529 if (chrec_contains_undetermined (new_expr)
530 || tree_contains_chrecs (new_expr, NULL))
531 {
532 *gloog_error = true;
533 new_expr = build_zero_cst (TREE_TYPE (old_name));
534 }
535 else
536 /* Replace the old_name with the new_expr. */
537 new_expr = force_gimple_operand (unshare_expr (new_expr), &stmts,
538 true, NULL_TREE);
539
540 gsi_insert_seq_before (gsi_tgt, stmts, GSI_SAME_STMT);
541 replace_exp (use_p, new_expr);
542
543 if (TREE_CODE (new_expr) == INTEGER_CST
544 && is_gimple_assign (copy))
545 {
546 tree rhs = gimple_assign_rhs1 (copy);
547
548 if (TREE_CODE (rhs) == ADDR_EXPR)
549 recompute_tree_invariant_for_addr_expr (rhs);
550 }
551
552 set_rename (rename_map, old_name, new_expr);
553 }
554
555 return changed;
556 }
557
558 /* Duplicates the statements of basic block BB into basic block NEW_BB
559 and compute the new induction variables according to the IV_MAP.
560 GLOOG_ERROR is set when the code generation cannot continue. */
561
562 static void
563 graphite_copy_stmts_from_block (basic_block bb, basic_block new_bb,
564 rename_map_type rename_map,
565 vec<tree> iv_map, sese region,
566 bool *gloog_error)
567 {
568 gimple_stmt_iterator gsi, gsi_tgt;
569 loop_p loop = bb->loop_father;
570
571 gsi_tgt = gsi_start_bb (new_bb);
572 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
573 {
574 def_operand_p def_p;
575 ssa_op_iter op_iter;
576 gimple stmt = gsi_stmt (gsi);
577 gimple copy;
578 tree lhs;
579
580 /* Do not copy labels or conditions. */
581 if (gimple_code (stmt) == GIMPLE_LABEL
582 || gimple_code (stmt) == GIMPLE_COND)
583 continue;
584
585 /* Do not copy induction variables. */
586 if (is_gimple_assign (stmt)
587 && (lhs = gimple_assign_lhs (stmt))
588 && TREE_CODE (lhs) == SSA_NAME
589 && is_gimple_reg (lhs)
590 && scev_analyzable_p (lhs, region))
591 continue;
592
593 /* Create a new copy of STMT and duplicate STMT's virtual
594 operands. */
595 copy = gimple_copy (stmt);
596 gsi_insert_after (&gsi_tgt, copy, GSI_NEW_STMT);
597
598 maybe_duplicate_eh_stmt (copy, stmt);
599 gimple_duplicate_stmt_histograms (cfun, copy, cfun, stmt);
600
601 /* Create new names for all the definitions created by COPY and
602 add replacement mappings for each new name. */
603 FOR_EACH_SSA_DEF_OPERAND (def_p, copy, op_iter, SSA_OP_ALL_DEFS)
604 {
605 tree old_name = DEF_FROM_PTR (def_p);
606 tree new_name = create_new_def_for (old_name, copy, def_p);
607 set_rename (rename_map, old_name, new_name);
608 }
609
610 if (rename_uses (copy, rename_map, &gsi_tgt, region, loop, iv_map,
611 gloog_error))
612 {
613 gcc_assert (gsi_stmt (gsi_tgt) == copy);
614 fold_stmt_inplace (&gsi_tgt);
615 }
616
617 update_stmt (copy);
618 }
619 }
620
621 /* Copies BB and includes in the copied BB all the statements that can
622 be reached following the use-def chains from the memory accesses,
623 and returns the next edge following this new block. GLOOG_ERROR is
624 set when the code generation cannot continue. */
625
626 edge
627 copy_bb_and_scalar_dependences (basic_block bb, sese region,
628 edge next_e, vec<tree> iv_map,
629 bool *gloog_error)
630 {
631 basic_block new_bb = split_edge (next_e);
632 rename_map_type rename_map;
633 rename_map.create (10);
634
635 next_e = single_succ_edge (new_bb);
636 graphite_copy_stmts_from_block (bb, new_bb, rename_map, iv_map, region,
637 gloog_error);
638 remove_phi_nodes (new_bb);
639 rename_map.dispose ();
640
641 return next_e;
642 }
643
644 /* Returns the outermost loop in SCOP that contains BB. */
645
646 struct loop *
647 outermost_loop_in_sese (sese region, basic_block bb)
648 {
649 struct loop *nest;
650
651 nest = bb->loop_father;
652 while (loop_outer (nest)
653 && loop_in_sese_p (loop_outer (nest), region))
654 nest = loop_outer (nest);
655
656 return nest;
657 }
658
659 /* Sets the false region of an IF_REGION to REGION. */
660
661 void
662 if_region_set_false_region (ifsese if_region, sese region)
663 {
664 basic_block condition = if_region_get_condition_block (if_region);
665 edge false_edge = get_false_edge_from_guard_bb (condition);
666 basic_block dummy = false_edge->dest;
667 edge entry_region = SESE_ENTRY (region);
668 edge exit_region = SESE_EXIT (region);
669 basic_block before_region = entry_region->src;
670 basic_block last_in_region = exit_region->src;
671 void **slot = htab_find_slot_with_hash (current_loops->exits, exit_region,
672 htab_hash_pointer (exit_region),
673 NO_INSERT);
674
675 entry_region->flags = false_edge->flags;
676 false_edge->flags = exit_region->flags;
677
678 redirect_edge_pred (entry_region, condition);
679 redirect_edge_pred (exit_region, before_region);
680 redirect_edge_pred (false_edge, last_in_region);
681 redirect_edge_succ (false_edge, single_succ (dummy));
682 delete_basic_block (dummy);
683
684 exit_region->flags = EDGE_FALLTHRU;
685 recompute_all_dominators ();
686
687 SESE_EXIT (region) = false_edge;
688
689 free (if_region->false_region);
690 if_region->false_region = region;
691
692 if (slot)
693 {
694 struct loop_exit *loop_exit = ggc_alloc_cleared_loop_exit ();
695
696 memcpy (loop_exit, *((struct loop_exit **) slot), sizeof (struct loop_exit));
697 htab_clear_slot (current_loops->exits, slot);
698
699 slot = htab_find_slot_with_hash (current_loops->exits, false_edge,
700 htab_hash_pointer (false_edge),
701 INSERT);
702 loop_exit->e = false_edge;
703 *slot = loop_exit;
704 false_edge->src->loop_father->exits->next = loop_exit;
705 }
706 }
707
708 /* Creates an IFSESE with CONDITION on edge ENTRY. */
709
710 static ifsese
711 create_if_region_on_edge (edge entry, tree condition)
712 {
713 edge e;
714 edge_iterator ei;
715 sese sese_region = XNEW (struct sese_s);
716 sese true_region = XNEW (struct sese_s);
717 sese false_region = XNEW (struct sese_s);
718 ifsese if_region = XNEW (struct ifsese_s);
719 edge exit = create_empty_if_region_on_edge (entry, condition);
720
721 if_region->region = sese_region;
722 if_region->region->entry = entry;
723 if_region->region->exit = exit;
724
725 FOR_EACH_EDGE (e, ei, entry->dest->succs)
726 {
727 if (e->flags & EDGE_TRUE_VALUE)
728 {
729 true_region->entry = e;
730 true_region->exit = single_succ_edge (e->dest);
731 if_region->true_region = true_region;
732 }
733 else if (e->flags & EDGE_FALSE_VALUE)
734 {
735 false_region->entry = e;
736 false_region->exit = single_succ_edge (e->dest);
737 if_region->false_region = false_region;
738 }
739 }
740
741 return if_region;
742 }
743
744 /* Moves REGION in a condition expression:
745 | if (1)
746 | ;
747 | else
748 | REGION;
749 */
750
751 ifsese
752 move_sese_in_condition (sese region)
753 {
754 basic_block pred_block = split_edge (SESE_ENTRY (region));
755 ifsese if_region;
756
757 SESE_ENTRY (region) = single_succ_edge (pred_block);
758 if_region = create_if_region_on_edge (single_pred_edge (pred_block), integer_one_node);
759 if_region_set_false_region (if_region, region);
760
761 return if_region;
762 }
763
764 /* Replaces the condition of the IF_REGION with CONDITION:
765 | if (CONDITION)
766 | true_region;
767 | else
768 | false_region;
769 */
770
771 void
772 set_ifsese_condition (ifsese if_region, tree condition)
773 {
774 sese region = if_region->region;
775 edge entry = region->entry;
776 basic_block bb = entry->dest;
777 gimple last = last_stmt (bb);
778 gimple_stmt_iterator gsi = gsi_last_bb (bb);
779 gimple cond_stmt;
780
781 gcc_assert (gimple_code (last) == GIMPLE_COND);
782
783 gsi_remove (&gsi, true);
784 gsi = gsi_last_bb (bb);
785 condition = force_gimple_operand_gsi (&gsi, condition, true, NULL,
786 false, GSI_NEW_STMT);
787 cond_stmt = gimple_build_cond_from_tree (condition, NULL_TREE, NULL_TREE);
788 gsi = gsi_last_bb (bb);
789 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
790 }
791
792 /* Returns the scalar evolution of T in REGION. Every variable that
793 is not defined in the REGION is considered a parameter. */
794
795 tree
796 scalar_evolution_in_region (sese region, loop_p loop, tree t)
797 {
798 gimple def;
799 struct loop *def_loop;
800 basic_block before = block_before_sese (region);
801
802 /* SCOP parameters. */
803 if (TREE_CODE (t) == SSA_NAME
804 && !defined_in_sese_p (t, region))
805 return t;
806
807 if (TREE_CODE (t) != SSA_NAME
808 || loop_in_sese_p (loop, region))
809 return instantiate_scev (before, loop,
810 analyze_scalar_evolution (loop, t));
811
812 def = SSA_NAME_DEF_STMT (t);
813 def_loop = loop_containing_stmt (def);
814
815 if (loop_in_sese_p (def_loop, region))
816 {
817 t = analyze_scalar_evolution (def_loop, t);
818 def_loop = superloop_at_depth (def_loop, loop_depth (loop) + 1);
819 t = compute_overall_effect_of_inner_loop (def_loop, t);
820 return t;
821 }
822 else
823 return instantiate_scev (before, loop, t);
824 }