Daily bump.
[gcc.git] / gcc / sese.h
1 /* Single entry single exit control flow regions.
2 Copyright (C) 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Jan Sjodin <jan.sjodin@amd.com> and
5 Sebastian Pop <sebastian.pop@amd.com>.
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3, or (at your option)
12 any later version.
13
14 GCC is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #ifndef GCC_SESE_H
24 #define GCC_SESE_H
25
26 /* A Single Entry, Single Exit region is a part of the CFG delimited
27 by two edges. */
28 typedef struct sese_s
29 {
30 /* Single ENTRY and single EXIT from the SESE region. */
31 edge entry, exit;
32
33 /* Parameters used within the SCOP. */
34 vec<tree> params;
35
36 /* Loops completely contained in the SCOP. */
37 bitmap loops;
38 vec<loop_p> loop_nest;
39
40 /* Are we allowed to add more params? This is for debugging purpose. We
41 can only add new params before generating the bb domains, otherwise they
42 become invalid. */
43 bool add_params;
44 } *sese;
45
46 #define SESE_ENTRY(S) (S->entry)
47 #define SESE_ENTRY_BB(S) (S->entry->dest)
48 #define SESE_EXIT(S) (S->exit)
49 #define SESE_EXIT_BB(S) (S->exit->dest)
50 #define SESE_PARAMS(S) (S->params)
51 #define SESE_LOOPS(S) (S->loops)
52 #define SESE_LOOP_NEST(S) (S->loop_nest)
53 #define SESE_ADD_PARAMS(S) (S->add_params)
54
55 extern sese new_sese (edge, edge);
56 extern void free_sese (sese);
57 extern void sese_insert_phis_for_liveouts (sese, basic_block, edge, edge);
58 extern void build_sese_loop_nests (sese);
59 extern edge copy_bb_and_scalar_dependences (basic_block, sese, edge,
60 vec<tree> , bool *);
61 extern struct loop *outermost_loop_in_sese (sese, basic_block);
62 extern void insert_loop_close_phis (htab_t, loop_p);
63 extern void insert_guard_phis (basic_block, edge, edge, htab_t, htab_t);
64 extern tree scalar_evolution_in_region (sese, loop_p, tree);
65
66 /* Check that SESE contains LOOP. */
67
68 static inline bool
69 sese_contains_loop (sese sese, struct loop *loop)
70 {
71 return bitmap_bit_p (SESE_LOOPS (sese), loop->num);
72 }
73
74 /* The number of parameters in REGION. */
75
76 static inline unsigned
77 sese_nb_params (sese region)
78 {
79 return SESE_PARAMS (region).length ();
80 }
81
82 /* Checks whether BB is contained in the region delimited by ENTRY and
83 EXIT blocks. */
84
85 static inline bool
86 bb_in_region (basic_block bb, basic_block entry, basic_block exit)
87 {
88 #ifdef ENABLE_CHECKING
89 {
90 edge e;
91 edge_iterator ei;
92
93 /* Check that there are no edges coming in the region: all the
94 predecessors of EXIT are dominated by ENTRY. */
95 FOR_EACH_EDGE (e, ei, exit->preds)
96 dominated_by_p (CDI_DOMINATORS, e->src, entry);
97 }
98 #endif
99
100 return dominated_by_p (CDI_DOMINATORS, bb, entry)
101 && !(dominated_by_p (CDI_DOMINATORS, bb, exit)
102 && !dominated_by_p (CDI_DOMINATORS, entry, exit));
103 }
104
105 /* Checks whether BB is contained in the region delimited by ENTRY and
106 EXIT blocks. */
107
108 static inline bool
109 bb_in_sese_p (basic_block bb, sese region)
110 {
111 basic_block entry = SESE_ENTRY_BB (region);
112 basic_block exit = SESE_EXIT_BB (region);
113
114 return bb_in_region (bb, entry, exit);
115 }
116
117 /* Returns true when STMT is defined in REGION. */
118
119 static inline bool
120 stmt_in_sese_p (gimple stmt, sese region)
121 {
122 basic_block bb = gimple_bb (stmt);
123 return bb && bb_in_sese_p (bb, region);
124 }
125
126 /* Returns true when NAME is defined in REGION. */
127
128 static inline bool
129 defined_in_sese_p (tree name, sese region)
130 {
131 gimple stmt = SSA_NAME_DEF_STMT (name);
132 return stmt_in_sese_p (stmt, region);
133 }
134
135 /* Returns true when LOOP is in REGION. */
136
137 static inline bool
138 loop_in_sese_p (struct loop *loop, sese region)
139 {
140 return (bb_in_sese_p (loop->header, region)
141 && bb_in_sese_p (loop->latch, region));
142 }
143
144 /* Returns the loop depth of LOOP in REGION. The loop depth
145 is the same as the normal loop depth, but limited by a region.
146
147 Example:
148
149 loop_0
150 loop_1
151 {
152 S0
153 <- region start
154 S1
155
156 loop_2
157 S2
158
159 S3
160 <- region end
161 }
162
163 loop_0 does not exist in the region -> invalid
164 loop_1 exists, but is not completely contained in the region -> depth 0
165 loop_2 is completely contained -> depth 1 */
166
167 static inline unsigned int
168 sese_loop_depth (sese region, loop_p loop)
169 {
170 unsigned int depth = 0;
171
172 gcc_assert ((!loop_in_sese_p (loop, region)
173 && (SESE_ENTRY_BB (region)->loop_father == loop
174 || SESE_EXIT (region)->src->loop_father == loop))
175 || loop_in_sese_p (loop, region));
176
177 while (loop_in_sese_p (loop, region))
178 {
179 depth++;
180 loop = loop_outer (loop);
181 }
182
183 return depth;
184 }
185
186 /* Splits BB to make a single entry single exit region. */
187
188 static inline sese
189 split_region_for_bb (basic_block bb)
190 {
191 edge entry, exit;
192
193 if (single_pred_p (bb))
194 entry = single_pred_edge (bb);
195 else
196 {
197 entry = split_block_after_labels (bb);
198 bb = single_succ (bb);
199 }
200
201 if (single_succ_p (bb))
202 exit = single_succ_edge (bb);
203 else
204 {
205 gimple_stmt_iterator gsi = gsi_last_bb (bb);
206 gsi_prev (&gsi);
207 exit = split_block (bb, gsi_stmt (gsi));
208 }
209
210 return new_sese (entry, exit);
211 }
212
213 /* Returns the block preceding the entry of a SESE. */
214
215 static inline basic_block
216 block_before_sese (sese sese)
217 {
218 return SESE_ENTRY (sese)->src;
219 }
220
221 \f
222
223 /* A single entry single exit specialized for conditions. */
224
225 typedef struct ifsese_s {
226 sese region;
227 sese true_region;
228 sese false_region;
229 } *ifsese;
230
231 extern void if_region_set_false_region (ifsese, sese);
232 extern ifsese move_sese_in_condition (sese);
233 extern edge get_true_edge_from_guard_bb (basic_block);
234 extern edge get_false_edge_from_guard_bb (basic_block);
235 extern void set_ifsese_condition (ifsese, tree);
236
237 static inline edge
238 if_region_entry (ifsese if_region)
239 {
240 return SESE_ENTRY (if_region->region);
241 }
242
243 static inline edge
244 if_region_exit (ifsese if_region)
245 {
246 return SESE_EXIT (if_region->region);
247 }
248
249 static inline basic_block
250 if_region_get_condition_block (ifsese if_region)
251 {
252 return if_region_entry (if_region)->dest;
253 }
254
255 /* Structure containing the mapping between the old names and the new
256 names used after block copy in the new loop context. */
257 typedef struct rename_map_elt_s
258 {
259 tree old_name, expr;
260 } *rename_map_elt;
261
262
263 extern void debug_rename_map (htab_t);
264 extern hashval_t rename_map_elt_info (const void *);
265 extern int eq_rename_map_elts (const void *, const void *);
266
267 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
268
269 static inline rename_map_elt
270 new_rename_map_elt (tree old_name, tree expr)
271 {
272 rename_map_elt res;
273
274 res = XNEW (struct rename_map_elt_s);
275 res->old_name = old_name;
276 res->expr = expr;
277
278 return res;
279 }
280
281 /* Structure containing the mapping between the CLooG's induction
282 variable and the type of the old induction variable. */
283 typedef struct ivtype_map_elt_s
284 {
285 tree type;
286 const char *cloog_iv;
287 } *ivtype_map_elt;
288
289 extern void debug_ivtype_map (htab_t);
290 extern hashval_t ivtype_map_elt_info (const void *);
291 extern int eq_ivtype_map_elts (const void *, const void *);
292
293 /* Constructs a new SCEV_INFO_STR structure for VAR and INSTANTIATED_BELOW. */
294
295 static inline ivtype_map_elt
296 new_ivtype_map_elt (const char *cloog_iv, tree type)
297 {
298 ivtype_map_elt res;
299
300 res = XNEW (struct ivtype_map_elt_s);
301 res->cloog_iv = cloog_iv;
302 res->type = type;
303
304 return res;
305 }
306
307 /* Free and compute again all the dominators information. */
308
309 static inline void
310 recompute_all_dominators (void)
311 {
312 mark_irreducible_loops ();
313 free_dominance_info (CDI_DOMINATORS);
314 calculate_dominance_info (CDI_DOMINATORS);
315 }
316
317 typedef struct gimple_bb
318 {
319 basic_block bb;
320 struct poly_bb *pbb;
321
322 /* Lists containing the restrictions of the conditional statements
323 dominating this bb. This bb can only be executed, if all conditions
324 are true.
325
326 Example:
327
328 for (i = 0; i <= 20; i++)
329 {
330 A
331
332 if (2i <= 8)
333 B
334 }
335
336 So for B there is an additional condition (2i <= 8).
337
338 List of COND_EXPR and SWITCH_EXPR. A COND_EXPR is true only if the
339 corresponding element in CONDITION_CASES is not NULL_TREE. For a
340 SWITCH_EXPR the corresponding element in CONDITION_CASES is a
341 CASE_LABEL_EXPR. */
342 vec<gimple> conditions;
343 vec<gimple> condition_cases;
344 vec<data_reference_p> data_refs;
345 } *gimple_bb_p;
346
347 #define GBB_BB(GBB) (GBB)->bb
348 #define GBB_PBB(GBB) (GBB)->pbb
349 #define GBB_DATA_REFS(GBB) (GBB)->data_refs
350 #define GBB_CONDITIONS(GBB) (GBB)->conditions
351 #define GBB_CONDITION_CASES(GBB) (GBB)->condition_cases
352
353 /* Return the innermost loop that contains the basic block GBB. */
354
355 static inline struct loop *
356 gbb_loop (struct gimple_bb *gbb)
357 {
358 return GBB_BB (gbb)->loop_father;
359 }
360
361 /* Returns the gimple loop, that corresponds to the loop_iterator_INDEX.
362 If there is no corresponding gimple loop, we return NULL. */
363
364 static inline loop_p
365 gbb_loop_at_index (gimple_bb_p gbb, sese region, int index)
366 {
367 loop_p loop = gbb_loop (gbb);
368 int depth = sese_loop_depth (region, loop);
369
370 while (--depth > index)
371 loop = loop_outer (loop);
372
373 gcc_assert (sese_contains_loop (region, loop));
374
375 return loop;
376 }
377
378 /* The number of common loops in REGION for GBB1 and GBB2. */
379
380 static inline int
381 nb_common_loops (sese region, gimple_bb_p gbb1, gimple_bb_p gbb2)
382 {
383 loop_p l1 = gbb_loop (gbb1);
384 loop_p l2 = gbb_loop (gbb2);
385 loop_p common = find_common_loop (l1, l2);
386
387 return sese_loop_depth (region, common);
388 }
389
390 /* Return true when DEF can be analyzed in REGION by the scalar
391 evolution analyzer. */
392
393 static inline bool
394 scev_analyzable_p (tree def, sese region)
395 {
396 loop_p loop;
397 tree scev;
398 tree type = TREE_TYPE (def);
399
400 /* When Graphite generates code for a scev, the code generator
401 expresses the scev in function of a single induction variable.
402 This is unsafe for floating point computations, as it may replace
403 a floating point sum reduction with a multiplication. The
404 following test returns false for non integer types to avoid such
405 problems. */
406 if (!INTEGRAL_TYPE_P (type)
407 && !POINTER_TYPE_P (type))
408 return false;
409
410 loop = loop_containing_stmt (SSA_NAME_DEF_STMT (def));
411 scev = scalar_evolution_in_region (region, loop, def);
412
413 return !chrec_contains_undetermined (scev)
414 && (TREE_CODE (scev) != SSA_NAME
415 || !defined_in_sese_p (scev, region))
416 && (tree_does_not_contain_chrecs (scev)
417 || evolution_function_is_affine_p (scev));
418 }
419
420 #endif